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ABSTRACT

It is not merely an aggregation of static entities that a video clip carries, but also

a variety of interactions and relations among these entities. Challenges still remain

for a video captioning system to generate natural language descriptions focusing on

the prominent interest and aligning with the latent aspects beyond observations. This

work presents a Commonsense knowledge Anchored Video cAptioNing (dubbed as

CAVAN) approach. CAVAN exploits inferential commonsense knowledge to assist the

training of video captioning model with a novel paradigm for sentence-level semantic

alignment. Specifically, commonsense knowledge is queried to complement per training

caption by querying a generic knowledge atlas ATOMIC, and form the commonsense-

caption entailment corpus. A BERT based language entailment model trained from

this corpus then serves as a commonsense discriminator for the training of video

captioning model, and penalizes the model from generating semantically misaligned

captions. With extensive empirical evaluations on MSR-VTT, V2C and VATEX

datasets, CAVAN consistently improves the quality of generations and shows higher

keyword hit rate. Experimental results with ablations validate the effectiveness of

CAVAN and reveals that the use of commonsense knowledge contributes to the video

caption generation.
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Chapter 1

INTRODUCTION

1.1 Purpose Statement

This work was implemented to satisfy degree requirements for Masters of Science

in Computer Science and course requirements for independent study with Professor

Yezhou Yang. Video Captioning, as a popular task in the intersection area of Computer

Vision and Natural Language Processing, aims at generating textual descriptions

from video content. Challenge still remains for current captioning systems to describe

observed daily events into narrative that semantically aligns with their contextual

knowledge, i.e, probable causes, effects and attributes. The main purpose of the

project is to design a novel training schema of video captioning model to generate

more accurate and natural descriptions that aligns well with the latent aspects beyond

observations. Additionally, the development of the model structure within the system

contributes to better understand the video content by focusing on the prominent

interest.

1.2 Intended Audience

The intended audiences for the work are the members of the graduate committee

Dr. Yezhou Yang [chairperson], Dr. Suren Jayasuriya, and Dr. Chaowei Xiao; and

anyone who are devoted to the vision and language field (including, but not limited
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to, Captioning, Visual Question Answering, Visual Reasoning) either extending this

work or using this as a reference in their own work.

1.3 Problem Definition

1.3.1 Sentence-level Semantic Alignment

Human beings with extensive life experiences could describe observed daily events

into narrative that semantically aligns with their contextual knowledge. For instance,

given the video clips shown in Figure 1, one can identify the agent and the patient are

“people” and “food ” respectively by leveraging recognition, then supplement them with

latent relations carrying interactions between the agent and the patient with multiple

possibilities. The description could be as succinct as “people are eating food ”, or a

verbose one, “people are talking about food while eating”. Beyond straightforwardly

narrating objects/entities of interest, an accumulation of good sense and sound

judgement in practical matters connects them with latent relations, thus forming

descriptions carrying prominent entities as well as suggesting probable causes, effects

and attributes. In other words, we say not only what we discern, but also reflects what

we think and feel as well.

Motivated by the example in Figure 1, we argue that a video captioning system

benefits from aligning descriptions semantically w.r.t. an inferable context (causes,

effects and attributes). Such a need has been recognized by a few image captioning

work (Vinyals et al. 2015; Karpathy and Fei-Fei 2015; Yang et al. 2011). These

approaches attempt to fill the gap between the perceivable entities and their latent

and even obscure relationships by exploiting visual representation learning with direct

2



supervisions. (Fu et al. 2016; C. Liu et al. 2016; Lu et al. 2017; You et al. 2016;

Pedersoli et al. 2017) adopt the spatial attention mechanism with a goal to learn more

descriptive visual representations. Similarly, (L. Gao et al. 2017; Zhang and Peng 2019;

Chen et al. 2018; Yang, Han, and Wang 2017) adopt the temporal attention module

for extracting informative frames in video captioning. However, stacking blocks solely

in the visual encoder could ease the symptoms, but it does not fundamentally address

the pain point of lacking commonsense aspects during the decoding phase.

Advancements made in image/video sequence-to-sequence translation domain

reveal the benefits of adopting the evaluation metrics, e.g., CIDEr (Vedantam, Zitnick,

and Parikh 2014), BLEU(Papineni et al. 2002) and SPICE(Anderson et al. 2016)

scores, as additional loss, together with a traditional word-level cross-entropy loss.

More recently, reinforcement-based text generations, e.g., policy gradient (X. Wang

et al. 2018; S. Liu et al. 2017), actor-critic (L. Zhang et al. 2017; Z. Ren et al. 2017)

formulate reward functions incorporating the phrase-matching metrics. Adopting the

evaluation metrics as reward/loss to maximize/minimize boosts the performances

measure by the same set of evaluation metrics. Even so, the performance gain are

mostly ascribed to a distributional consistency among training and testing sets. By a

brutal integration of the phrase-level evaluation metric based reward function could

trigger severe overall semantic misalignment. Figure 1 shows such a failure case, where

comparing to the ground-truth annotation: “person is introducing the food ”, a caption

like “person eating while talking” achieves a higher SPICE score than its semantic

inverse: “person talking while eating”, even though the latter one is semantically more

correct according to the ground-truth. In essence, the captioning performance training

and evaluation done by the aforementioned metrics are unanimously constricted by

the ground-truth annotations from the datasets, neglecting the latent and probably

3



Ground Truth Caption: 

video t

SPICE Score

A person is introducing the food to his friend.

Person eating the food with friends while talking.

Person talks about the food with friends while eating.

Generation w/o CMS:

CMS Anchor:

‘A person is introducing ...’

Query

CMS Database

‘ to show his 

knowledgeable’

Person is eating the food …

Person talks about the food ...

CMS Score

0.85

0.21

14.3

54.5

CMS Anchor

CMS Anchor

GT Caption

Compare

Entail

CMS Discriminator

GT Caption

CMS Anchored Generation:

Figure 1. Commonsense Anchor

Note: We present CAVAN to address the semantic alignment for video captioning
tasks using commonsense alignment (CMS-A). Different from traditional generation
methods where the generations are only supervised by ground-truth annotations
using token-level or phrase-matching metrics (e.g., Cross-Entropy, CIDEr and BLEU).
CMS-A leverages commonsense knowledge as anchors to constrain the overall
semantics of the generated captions from deviating the current latent context.

inferable context that is not explicitly expressed by caption annotations, i.e., cause

and effect, entity and its attributes at sentence-level.
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1.3.2 Multi-modal Visual Feature Fusion

To fulfill video captioning tasks, a robust overall video encoding is required to

incorporate multi-modal visual features with higher-order interactions. Previous works

(Yao et al. 2015; Yu et al. 2015; B. Wang et al. 2018; P. Pan et al. 2015; Y. Pan

et al. 2015) always extract appearance features of video frames and motion features of

video segments to represent global information of video contents. The most recent

works (Z. Zhang et al. 2020; B. Pan et al. 2020; Zhang and Peng 2019; Hu et al. 2019)

pre-train an object detector to extract salient object features from video keyframes. To

fuse the global and local features, existing research either apply simple concatenation

(N. Xu et al. 2018), or a polynomial feature fusion (Jiyang Gao et al. 2017) while

ignore the spatio-temporal relations. Z. Zhang et al. 2020 propose a hierarchical

decoder with a temporal-spatial attention module to generate global and local context

feature and fuse them simply by a concatenation operation, which fails to exploit

higher-order interactions among visual features. It is attractive to develop a fusion

mechanism that has the capability to selectively capitalize on visual information and

exploit both spatio-temporal relations and higher-order interactions between the input

multi-modal features.

1.4 Contribution

In this work, we propose a novel model supervised by a sentence-level metric

ensuring semantic alignment exploiting commonsense knowledge. Specifically, we first

design a fusion module that reasons over multi-model visual features and dynamically

aggregates them to obtain high-level semantic feature, which is conducive to infer

5



the otherwise neglected sentence-level context. We then leverage a commonsense

knowledge atlas to query semantic anchors carrying the inferable context, and adopt a

sentence level entailment score comparing generated caption with the retrieved anchors

as a semantic consistency measure. We present the Commonsense knowledge Anchored

Video cAptioNing (dubbed as CAVAN), where the commonsense entailment loss is

introduced for the first time to supplement the existing caption generation supervisions.

To the best of our knowledge, this work is the first that leverages the complementary

commonsense knowledge thus imposes additional contextual constraints for video

captioning training, and ultimately generates captions with better aligned sentence-

level semantic.

We compile a complementary set of commonsense knowledge by querying cap-

tion annotations from the ATOMIC dataset (Sap et al. 2019) and a human curate

commonsense annotations of captions from the V2C dataset (Fang et al. 2020), then

retrieving a set of probable causes, effects and attributes. With the augmented and

paired (caption, commonsense knowledge) data, we train a generic natural language

entailment model based on BERT (Devlin et al. 2018) to serve as a discriminator

during training by evaluating the entailment score of each generated caption (see

Figure 2). Empirically, we test and observe that our CAVAN model achieves significant

improvements over the baseline models and achieve competitive results with previous

state-of-the-art video captioning methods. We further provide in-depth analysis of

each critical sub-modules within CAVAN by extensive ablation experiments. We

summarize our contributions as:

• CAVAN is the first to leverage commonsense knowledge to assist the training of

video captioning model, and shows quality of improvement for generations.

6



• We carefully design a novel fusion module to reason over and capture the

higher-order interactions between multi-modal features.

• CAVAN achieves state-of-the-art performances on both V2C, MSR-VTT and

VATEX testing beds for video captioning task over a standard set of automated

metrics.

• Our ablations on CAVAN comprehensively analyze the effect of incorporating

different types of knowledge and modules, providing guiding insights for future

research.
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Chapter 2

RELATED WORK

2.1 Video Captioning

Traditional captioning systems (Venugopalan et al. 2015; Yao et al. 2015; Karpathy

and Fei-Fei 2015; K. Xu et al. 2016) are trained typically with a teacher-forcing

(Bengio et al. 2015) manner and evaluated using discrete and non-differential metrics.

However, such training schema suffers from exposure bias (Ranzato et al. 2015) and the

inconsistency between the optimizing function and evaluation metrics. Recent work

(S. Liu et al. 2016; L. Zhang et al. 2017; Bahdanau et al. 2017; Junlong Gao et al. 2019)

introduce Reinforcement-Learning (RL) techniques based on policy gradient to tackle

these issues. Specifically, Ranzato et al. (Ranzato et al. 2015) adopt REINFORCE

algorithm to sequence training with RNNs via treating the task metrics as optimization

objectives. Later, Rennie et al. (Rennie et al. 2017) directly optimize CIDEr metric

with a self-critical sequence training (SCST) approach that harmonizes the model with

respect to its test-time inference procedure. Though optimizing towards the automatic

metrics yields impressive benchmark results, these metrics tend to neglect the essential

need of semantic alignment. In our work, we further incorporate a sentence-level

semantic score into the reinforced objectiveness following the REINFORCE training

strategy.
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2.2 Higher-order Interactions among Multi-modal Visual Features

Yao et al. (Yao et al. 2015) is the first to introduce a C3D visual encoder with

a attention mechanism to dynamically model the video’s global temporal structure.

Yu et al. 2015; Aafaq et al. 2019 make efforts to design attention mechanisms to

effectively capture spatio-temporal dynamics of the video content. More recently,

graph based visual representations have been exploited in video captioning. B. Pan

et al. 2020; Z. Zhang et al. 2020 captures more detailed interaction information to

learn discriminative spatio-temporal representations via building visual relation graphs.

However, most of the previous work only concentrate on the exploration of 1st order

feature interactions, which is lacking in efficacy. In this work, we propose a novel

fusion module to reason over multi-modal visual representations and learn higher-order

feature interactions among them.

2.3 Commonsense Knowledge in Visual Understanding

It is becoming popular to make use of commonsense knowledge to mine the

underlying semantics for visual understanding (Aditya, Yang, and Baral 2019; Fader,

Zettlemoyer, and Etzioni 2014; Shah et al. 2019; Hou et al. 2020; P. Wang et al. 2018).

Previous work (Zhou, Sun, and Honavar 2019; Hou et al. 2019) take advantage of

external knowledge to augment the visual information, thus improving the quality

of machine generated captions. For fine-grained video understanding, recent work

aim to obtain inferable context beyond appearances. Fang et al. (Fang et al. 2020)

present a generative model for commonsense video captioning to describe the latent

aspects of an visual scene. More recently, Lei et al. (Lei et al. 2020) incorporate

9



commonsense into text representations, proving helpful to address an interesting next

event prediction task. Unlike the above work where commonsense knowledge solely

serves as a guidance to improve the visual/text representations, we directly apply it

to regulate the learning of the inherent visual semantics.

2.4 Semantic Alignment across Modalities.

As the semantic inconsistency between vision and language inevitably exists, a

few approaches (You, Luo, and Zhang 2018; Fang et al. 2019; Wu et al. 2019; Z.

Wang et al. 2020) attempt to learn such inter-modal correspondence. Karpathy et

al. (Karpathy and Li 2014) learn the latent alignment between the two modalities

through a common embedding space and a structured objective. Dognin et al. (Dognin

et al. 2019) present a co-attention discriminator to score the similarity of the visual

and linguistic representations and enforce semantic alignments among them. Recently,

instead of directly aligning visual features and linguistic tokens, Guo et al. (Guo

et al. 2019) hierarchically align the tokens with visual relations. The above methods

learns effective yet limited semantic consistency from existing data. Few efforts

exploit the extra semantic alignment with the inferential context from commonsense

knowledge.

10



Chapter 3

COMMONSENSE KNOWLEDGE RETRIEVAL PIPELINE

3.1 Commonsense Knowledge Base: Atomic

We query from a external knowledge atlas ATOMIC (Sap et al. 2019) to comple-

ment each video caption with 3 types of complementary commonsense descriptions

(intention/attribute/effect) as commonsense anchors for training. More concretely,

ATOMIC is an atlas of everyday commonsense knowledge and consists of 880k triplets

of annotations that contain causes, effects, attributes of human activities/events as

an if-then relations. Given an observed event, ATOMIC provides unobserved related

causes and effects: what might happened just before, what might happen next as a

result, and how different events are chained through causes and effects. For instance,

as depicted in Figure 2, when observing the event “X repels Y’s attack.”, ATOMIC

provides plausible facts in relation to the events. As for the pre-conditions prior to

the event, X might wanted to save themselves. Regarding the plausible motivations,

X might have been trained hard enough to rebel Y’s attack. As a result of the event,

X might gain an enemy while Y, on the other hand, might wants to attack X again.

It can be inferred from the event that X is brave, strong and skilled.
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X repels 
Y's attack

X wanted to
save themselves

X wanted to
protect others

Y wants to 
run home

X wants to file a 
police report

X wants to leave
the scene

X needs to know 
self-defense

X is skilled

as a result,
X wants

Y wants to 
attack X again

Y feels
weak

X is strong

X feels 
angry

X feels
tired

Y feels 
ashamed

Y gets hurt

X gains an 
enemy

X's heart 
races

Y falls back

as a result,
X feels

X pushes Y 
around

X makes a fool
of themselves

as a result,
Y wants

Y wants to 
yell at X

bossy

X joins the 
military

before, X
needed to

X needs to 
train hard

X wanted to serve 
their country

X needs
to enlist

X gets dizzy

has an
effect on X

has an 
effect on Y

as a result,
Y feels

Effects on Y
Effects on X

Causes for X

Attributes of X

because X
wanted to

X is brave

X is 
seen as

Figure 2. A subset of ATOMIC

Source:sap_ATOMIC_2019

Note: ATOMIC is an atlas of machine commonsense for everyday events, causes, and
effects.
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3.2 Step 1: Event and Caption Embeddings Generation

To augment each caption with commonsense knowledge, we need to extract out

the most similar ATOMIC event w.r.t each caption and take the plausible inference

provided by ATOMIC as complementary knowledge. It’s required to project and

encode both captions and events in the same embedding space prior to comparing

their similarity. We extract out the key nouns and verbs of the each event in ATOMIC

and encode them into word vectors based on pretrained GloVe embeddings1. Then we

take the addition of word vectors for key nouns and verbs as final embeddings of each

event. Similarly, we get the final encodings for each ground-truth caption by adding

up word embeddings of key nouns and verbs.

3.3 Step 2: Commonsense-Caption Pairing

Based on the pre-computed embeddings in Sec. 3.2, each caption is paired with

the most similar event by comparing their cosine similarities. The surrounding

inferential facts (intention/attribute/effect) related to the paired event are retrieved

as complementary commonsense anchors for each caption.

1GloVe is an unsupervised learning algorithm for obtaining vector representations for words.
Files with the pre-trained vectors Glove can be found in many sites like Kaggle or in the previous
link of the Stanford University. We will use the glove.6B.100d.txt file containing the glove vectors
trained on the Wikipedia and GigaWord dataset.
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3.4 Step 3: Refinement Based on Ranking Score

Following Fang et al. 2020, we pre-train a Bert discriminator to get a more

reasonable subsets of commonsense descriptions for each type of knowledge associated

with the events for each caption. To be more specific, a Bert discriminator is pretrained

on the entailment task which predicts a binary relation between two textual descriptions

- whether the meaning of one text fragment is inferred from the meaning of the other

text fragment.

For the training data, we choose event sentence and its corresponded commonsense

description as positive pair, and another random commonsense sentence from the

ATOMIC as a negative pair. In total, we have 230,624 event-commonsense pairs

constructed, with 70% for training, and 30% for testing. Our discriminator achieves

85% accuracy on the testing split.

We then select the top-3 most plausible commonsense descriptions for each type of

knowledge associated with the events by ranking scores produced by the pre-trained

Bert discriminator.

3.5 Commonsense Retrieval Example

An Example of retrieved commonsense knowledge is shown in Figure 3. Given the

ground-truth caption, ”A woman is practicing some movements in dancing room.”, we

query three types of commonsense knowledge from ATOMIC: As for the pre-conditions

of practice dancing, the woman might need to perform on stage. In terms of the

motivation behind the event, the woman might want to be a better dancer. For the
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Ground Truth Caption: A woman is practicing some movements in dancing room.

Attributes:

- skilled;

- talented;

- free-spirit;

- be better dancer;

- learn to dance;

- perform on stage;

- know how to dance

- feel ready

- feel happy & confident

Intentions: Effects:

ATOMIC

query

Figure 3. An example of retrieved commonsense knowledge

Note: Inferential commonsense knowledge retrieved from ATOMIC includes several
types, e.g., intentions, effects and attributes of the agents.

characteristics of the woman, she can be described as talented, skilled. As a result,

she might become more confidence and feel ready for her debut on stage.
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Chapter 4

METHODOLOGY

4.1 Overview of the Framework

CAVAN’s backbone is an encoder-decoder architecture based on the transformer

self-attention modules (Vaswani et al. 2017). A two-branch encoder takes the input of

global and object features respectively, and produces attentively aggregated visual

representations. Notably, we develop a novel module that dynamically reasons over

attended features and alternatively fusing them based on the high-level interactions

across modalities. A transformer decoder then generates the caption taking the visual

representations from the specifically designed fusion module, and is supervised by

both traditional video captioning losses (i.e., smoothed cross-entropy) and the newly

introduced commonsense entailment reinforcement loss (as shown in Figure 4).

4.2 Video Encoder

Given a sequence of video frames, a couple pre-trained networks are employed

to extract both global (key frames or video snippets) and entity-level features (local

regional features for objects) to form a holistic representations. Specifically, we obtain

the per-frame features from ImageNet (Deng et al. 2009) pre-trained 2D recognition

network by sampling one key frame from every 32 frames, V f = [vf1 . . . v
f
T ], with T

denotes the temporal length of videos. For motion signals, we encode every non-

overlapping 32 frames by a 3D activity recognition network (Carreira and Zisserman
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Figure 4. Overview of our proposed framework.

Note: CAVAN consists of transformer-based encoders and decoders, a dynamic fusion
module, and a commonsense discriminator. Our model adopts a two-branch structure
that generates attended object and global representations respectively. A fusion
module is then adopted to fuse the outputs of two branches for decoding. The final
predicted probability distribution is under the supervision of traditional cross-entropy
loss. Meanwhile, a commonsense entailment loss is applied to guide the semantic
alignment between current decoding descriptions and commonsense knowledge
queried from ATOMIC Sap et al. 2019.

2017), and yields V m = [vm1 . . . vmT ]. Following recent work in video captioning (Z.

Zhang et al. 2020; B. Pan et al. 2020), we extract features of the class-agnostic object

proposals sampled from keyframes of the input video. Then typical candidates propos-

als are obtained by clustering on the sampled candidates proposals and represented by

the cluster centers. Let V o = [vo1 . . . v
o
N ] denote the features of typical object proposals,

where N is the number of object proposals.

We directly adopt the transformer-based visual encoder for encoding global and

object features separately. Specifically, the object branch passes the features of candi-
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date proposals V o and generates enhanced local representations L = [l1 . . . lN ] ∈ RN×d

with interaction message between objects. The global branch takes the concatenation

of appearance features V f and motion features V m as inputs to produce a global

embedding G = [g1 . . . gT ] ∈ RT×d of a temporal sequence, which provides additional

global context that may be missing in the object branch.

4.3 Dynamic Fusion Module

Effective video captioning calls for a robust overall video encoding. It is critical for

such encoding to incorporate representations with higher-order interactions. Existing

research either apply simple concatenation (N. Xu et al. 2018), or a polynomial feature

fusion (Jiyang Gao et al. 2017). Apart from that, Dynamic Memory Networks (DMN)

(Kumar et al. 2015) has been applied in tasks across domains that require higher-order

interactions among features, and is shown to be effective in VQA (Li, Su, and Zhu

2017).

In CAVAN, we propose the Dynamic Fusion Module which builds on an attention

module and a memory update module (dubbed as DFM). The attention module is

responsible for producing global contextual representations from global features with

relevance inferred by typical object features and previous memory status. Then the

memory update module renews its internal episodic memory based on the global

contextual message, which has the ability to retrieve new global context that were

considered to be irrelevant during previous iteration.

Formally, given the refined global features G = [g1 . . . gN ] and object representations

L = [l1 . . . lN ] from visual encoders, an episodic memory M = [m1 . . .mN ] is initialized
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as M (0) = L and iteratively refined by an attention mechanism until the final step I is

reached.

Attention Component: For the nth object proposal, the attention is implemented

by allowing the interaction between object feature vector ln ∈ L and both the global

features G = [g1 . . . gN ] and previous memory states m(i−1)
n ∈ M (i−1). The context c(i)n

is obtained by applying soft attention procedure as:

z(i)n =
[
G⊙ ln ; G⊙m(i−1)

n ; |G− ln| ;

|G−m(i−1)
n |

]
;

α(i) = Softmax(W2(tanh(W1z
(i)
n + b1)) + b2);

c(i)n =
T∑
t=1

α
(i)
t · gt,

(4.1)

where ⊙ denotes element-wise multiplication; | · | is the the element-wise absolute

value; [; ] represents concatenation operation. α
(i)
t is the tth element of α(i) which

denotes the normalized attention weight for gt at ith iteration. W1,W2, b1 and b2 are

the parameters in the linear operation.

Memory Updating Component: The memory vector is updated as

m(i)
n = ReLU(W3[m

(t−1)
n ; c(i)n ; ln] + b3), (4.2)

where W3, b3 are the parameters for the linear layer. mi
n is the memory vector for nth

object proposal at the tth iteration.

By the Ith iteration, the memory vector m
(I)
n that memorizes the most relevant

context from global features for nth object proposal, is fused with the object vector ln

to generate globally contextualized object representations l̃n for decoding.

l̃n = ReLU(W4[ln;m
(I)
n ] + b4), (4.3)

where W4, b4 are the linear parameters.
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4.4 Language Decoder

We design the language decoder by compiling a stack of transformer attention

blocks using self-attention module. During training, it takes as input of the encoded

word embedding and their corresponding positional encoding Vaswani et al. 2017 and

attend to visual representations from the fusion module. The training criterion is

based on cross-entropy loss LCE:

LCE = −
T∑
t=1

ϕ(w∗
t )

′ · log(P (wt)), (4.4)

where T denotes the total training step of the ground-truth captions; P(wt) represents

the probability distribution across the vocabulary at time t; ϕ(w∗
t ) is the one-hot

vector of ground-truth word at time t.

4.5 Commonsense Entailment Loss

Supervising captioning model learning with existing short textual annotations

largely limits training efficacy. The semantic carried by caption only is often with

weak expressive power without latent inferable context. Instead, we leverage infer-

able commonsense knowledge to complement each video caption and treat them as

additional constrains to regularize the generating process. In practice, we acquire the

commonsense knowledge description k, w.r.t. the video caption by either retrieving

from knowledge base (MSR-VTT + ATOMIC) or directly from human annotations

(V2C). We discuss the commonsense knowledge retrieval procedure in Chapter 3.

Given a textual sequence ws = {ws
1 . . . w

s
T} sampled from language decoder, we

regularize the generation by an entailment reward leveraging the commonsense descrip-

tion k. Intuitively, we encourage the model to caption by entailing the commonsense
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knowledge. To enable optimizing over non-differentiable metrics, previous efforts

adopt the policy gradient approach (Ranzato et al. 2015; Rennie et al. 2017) and

treat the task as a reinforcement learning one, with the testing metrics as the reward

function. Particularly, Pasunuru et al. (Pasunuru and Bansal 2017) implement an

entailment-enhanced score from a pre-trained model as the reward. Formally, with the

policy gradient strategy, model like an active agent which generates word (as action)

and the learning process is supervised by minimizing the negative expected reward

function:

L(θ) = −Ews∼pθ [r(w
s)], (4.5)

where pθ is the policy and θ is the model parameters.

CAVAN exploits commonsense-caption entailment score as a reward for training.

We adopt a BERT model as the commonsense (CMS) discriminator Dcms, which returns

the entailment score for the caption and commonsense description pair. Following Fang

et al. 2020, we pre-train the BERT model on ATOMIC dataset using the next sentence

prediction task, whose input is an event description sentence and its associated

commonsense description. Then, this BERT model is frozen and applied to our

entailment score computation as offline. Further details for BERT pre-training are

given in Section ??. Dcms computes a probability (as SE score) for whether the

sampled caption (ws) entails the commonsense anchor:

rcms(w
s) = Dcms(w

s, k). (4.6)

Here, the commonsense-caption entailment score essentially encodes whether the

generated caption semantically aligns with the caption w.r.t. the sentence-level

meaning. Applying rcms(w
s) to e.q. (4.5) yields a commonsense entailment loss Lcms.
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The gradient is estimated as follows:

∇θLcms(θ) = −Ews∼pθ [(rcms(w
s)− rcms(ŵ))

∇θ log pθ(w
s)],

(4.7)

where ŵ is the generated sequence obtained by the current model using greedy

decoding. The corresponding entailment reward rcms(ŵ) is seen as a baseline to reduce

the variance of the gradient estimate without changing the expected gradient.

For our experiments, we also adopt the commonsense-caption entailment score as

an extra evaluating metric on the testing split. Note that, the queried commonsense

knowledge and Dcms are only needed to form supervision signal Lcms, but not required

during inference.

4.6 Training Loss

Putting all the loss terms together for an end-to-end training yields an overall

optimization target:

L = LCE + β · Lcms, (4.8)

where β is a trade-off hyper-parameter weighting each loss term. During the training

process, we freeze the CMS discriminator and compute the rrms(w
s) with an inference

mode.
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Chapter 5

EVALUATION

Evaluating natural language generation systems is a complex task. For this reason,

a number of different metrics have been proposed for tasks such as captioning and

machine translation etc. BLEU@4 (Papineni et al. 2002), ROUGE-L (Lin 2004),

CIDEr (Vedantam, Zitnick, and Parikh 2014) and METEOR (Banerjee and Lavie

2005) are the widely used and popular metrics for captioning tasks. Previous metrics

are mainly used to evaluate texts at corpus level, which fails to take into account

the sentence-level semantic congruity and alignment. Thus we propose a Semantic

Entailment score (dubbed as SE score) measuring the sentence-level alignment between

candidate and reference sentences.

5.1 BLEU@4

BLEU, which stands for Bilingual Evaluation Understudy, is one of the most

popular metrics to measure the quality of machine-generated texts based on their

correspondence with human descriptions. BLEU scores quantify the overlap between

predicted uni-gram (single word) or n-grams (sequence of n adjacent words) and a

set of one or more ground-truth sentences. A description that has exact match of

words and their order with ground-truth texts will get a high score on BLEU metric.

However, BLEU metric is barely designed on corpus-level instead of sentence-level.

BLEU score can be calculated as:

logBLEU = min(1− lr/lp, 0) +
N∑

n=1

wn logpn (5.1)
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where lr/lp is the ratio between the lengths of reference sentences and predicted

descriptions. wn are positive weights, and pn is the geometric average of the n-gram

precisions. The second term calculates the exact matching score while the first term

penalizes the sentence that has less words than the reference sentences.

5.2 ROUGE-L

ROUGE-L is a evaluation metric for text summaries, which computes recall and

precision scores of the longest common subsequences (LCS) between the generated and

each reference sentence. To be more specific, the subsequences refers to the common

words that are in sequence but not strictly consecutive. The intuition behind the

metric is that the longer LCS between reference sentences and predicted texts indicates

high similarity between the two summaries. Unlike BLEU, pre-defined n-gram length

is not required since this is automatically incorporated by LCS. ROUGE-L score is

computed to find how similar summary A of length m is to summary B of length n:

ROUGE − L =
(1 + β2)RlcsPlcs

Rlcs + β2Plcs

(5.2)

where A is the ground-truth sentence and B is the candidate sentence. Rlcs and Plcs

are the recall and precision scores of the longest common subsequences (LCS) between

the generated and each reference sentence. Rlcs and Plcs can be obtained as:

Rlcs =
LCS(A,B)

m

Plcs =
LCS(A,B)

n

(5.3)

where LCS(A,B) denotes the length of longest common subsequence between reference

sentences and candidate sentences. ROUGE-L is equal to 1 When A and B is exactly

the same i.e., LCS(A,B) = 1, otherwise 0 in case A and B have no commonalities,

i.e., LCS(A,B) = 0.
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5.3 METEOR

METEOR metric measures the alignment between generated and reference sen-

tences. Each sentence is seen as a set of uni-grams and the alignment is done by

mapping the uni-grams of generated and reference sentences. A uni-gram in predicted

sentence should either map to a uni-gram in generated sentence or to zero. Meteor

score is calculated using a uni-gram based F-score:

Fmean =
10PR

R + 9P
(5.4)

where P, R denotes the unigram-based precision score and recall score respectively.

The precision and recall score can be calculated as follows:

P =
mcr

mct

R =
mcr

mrt

(5.5)

where mcr represents the number of uni-grams appears co-occurring in both

generated and reference sentences. mct and mrt are the number of uni-grams in

generated sentences and reference sentence, respectively.

For METEOR metric, a penalty weight is placed on the uni-gram based F-score by

using higher order similarities. The penalty is calculated by grouping the uni-grams

into a minimum number of chunks that includes adjacent uni-grams in both candidate

and reference sentences. The penalty P is computed as:

P = 1/2(
Nc

Nu

) (5.6)

where Nc denotes the number of chunks and Nu corresponds to the number of uni-

grams grouped together. METEOR score is computed by applying penalty weight P
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to the uni-gram based F-score:

METEOR = Fmean(1− P ) (5.7)

In case where multiple reference sentences are given, the maximum METEOR score

of a generated and reference sentence pair is taken.

5.4 CIDEr

Recently, CIDEr metric has been proposed especially for captioning task. It

evaluates the consensus between generated descriptions and one or more reference

sentences by stemming. Specifically, all the words from candidate as well as reference

sentences are stemmed into their root forms. For examples, ’sees’, ’saw, ’seen’,’seeing’

should be converted to its stem word ’see’. According to CIDEr, each sentence is

decomposed into a set of n-gram including 1 to 4 words. By measuring the co-existence

frequency of n-grams in both sentences, n-grams that are very common among the

reference sentences of all the given visual data are assigned lower weight, as they

are likely to be less informative about the visual content and more biased towards

lexical structure of the sentences. The weight for each n-gram is computed using Term

Frequency Inverse Document Frequency (TF-IDF), where the first term TF places

higher weights on the frequently occurring n-grams in the reference sentences of the

single sample, whereas IDF reduces the weight of n-grams that commonly appear

across the whole dataset. The CIDErn score for n-grams of length n is computed

based on calculating the average cosine similarity between the predicted sentence ci

and the reference sentences sij:

CIDErn(ci, sij) =
1

m

∑
j

gn(ci)g
n(sij)

∥gn(ci)∥∥gn(sij)∥
(5.8)
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where m denotes the number of reference sentences for the single sample si. gn(ci) is

a vector representing all n-grams with length n for predicted sentences and ∥gn(ci)∥ is

the magnitude of gn(ci). Same is true for ∥gn(sij)∥, which is the vector representation

for reference sentences.

The CIDEr is obtained by combining higher order n-grams of varying lengths to

capture grammatical properties as well as richer semantics:

CIDEr(ci, sij) =
N∑
n

wnCIDErn(ci, sij) (5.9)

where wn is the weight and uniformly set to 1
N

, which proves to work for best. N is

empirically set to 4.

5.5 Semantic Entailment Score

Since previous evaluation metrics are mainly based on corpus-level measurements,

it is not fair to measure the sentence-level semantic congruity and correctness by

the pre-mentioned automatic metrics. Therefore, we propose an entailment based

semantic score (SE score) to evaluate the sentence-level semantic alignment between

generated captions and retrieved commonsense knowledge. Technically, commonsense

knowledge that carries inferential context is queried from ATOMIC dataset for each

ground-truth caption. Then a pre-trained discriminator is applied to compute SE

score between generated captions and commonsense knowledge that is paired with

the corresponding ground-truth captions. Formattly, given generated captions ws and

commonsense knowledge k:

SE(ws) =
1

N

∑
n=1

NDcms(ws, k) (5.10)
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where Dcms is the pre-trained discriminator which is frozen and applied to SE score

computation as offline. N represents the total number of generated samples. More

technical details can be found in Chapter 3.

5.6 Human Evaluation

Considering low correlation with human judgments of automated evaluation metrics,

human evaluations are critical for measuring the performance of machine-generated

captions. It can either be done by crowd-sourced, e.g., AMT workers, or specialist

judges, as in some competitions. Such human evaluations can be achieved by two

common measurements: Relevance Rating and Grammar Correctness. For Relevance

Rating task, experts are required to choose subjective scores judging video-content

relevance, with highest score to ’Most Relevance’ and lowest score to ’Least Relevance’.

In terms of Grammar Correctness, without video content, the sentences are graded

directly based on the grammatical correctness.
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Chapter 6

EXPERIMENTS

6.1 Overview

The aforementioned motivation and technical contributions suggest an empirical

validation of the effectiveness using CAVAN. To this end, we conduct experiments and

ablation studies on two benchmarks, MSR-VTT (J. Xu et al. 2016) and V2C (Fang

et al. 2020) dataset. We evaluate the performance on CAVAN with standard caption

evaluation metrics: BLEU@4 (Papineni et al. 2002), METEOR (Lin 2004), ROUGE-L

(Banerjee and Lavie 2005), CIDEr (Vedantam, Zitnick, and Parikh 2014), and our

newly proposed commonsense-caption entailment score (SE) (see Section 4.5). In order

to further validate the effectiveness of CAVAN, we further conduct experiments on

VATEX (X. Wang et al. 2019) dataset, one of the largest multi-lingual video-caption

dataset, and observe similar performance improvements on it.

6.2 Dataset and Augmentation

MSR-VTT (J. Xu et al. 2016) as a large-scale video description dataset, contains

10,000 video clip with 200,000 clip-sentence pairs in total. Each video is annotated

with 20 English descriptions. It covers the most comprehensive categories and diverse

visual content. Following the official split, we use 6,513 videos for training, 457 videos

for validation and 2,990 videos for testing.

VATEX (X. Wang et al. 2019) as a large-scale multilingual video description
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dataset, contains 41,250 videos with 825,000 captions in both English and Chinese. It

covers diverse human activities and a variety of video content. The dataset is collected

by reusing a subset of the Kinetics-600 dataset with additional human annotations.

Each video is paired with 10 English and 10 Chinese diverse captions. In CAVAN,

we only use English captions for monolingual video captioning task. Following the

official split, we use 25,991 videos for training, 3,000 videos for validation and 6,000

videos for testing.

Following the pipeline introduced in Chapter 3, we augment each video caption in

MSR-VTT (J. Xu et al. 2016) and VATEX dataset (X. Wang et al. 2019) with 3 types

of complementary commonsense descriptions (intention/attribute/effect) retrieved

from ATOMIC dataset as commonsense anchors for training.

As the queried knowledge from ATOMIC unavoidably comes with noises and

incorrect annotations, we further move to use V2C (Fang et al. 2020) dataset with

more reliable commonsense knowledge for CAVAN.

V2C (Fang et al. 2020) is a video description dataset adapted from a subset of

MSR-VTT (J. Xu et al. 2016). It contains 9,725 videos, 121,651 captions with each

surrounded by 3 types of commonsense descriptions, i.e., intention, attribute and

effect. We use the standard splits with 6,819 videos for training, and 2,906 videos for

testing.

6.3 Implement Details

To obtain the visual representations, we encode videos using multiple pre-trained

visual models. For global video representations, we use the I3D (Carreira and Zisserman

2017) network pre-trained on Kinetics dataset (Kay et al. 2017) for motion feature
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extraction, and the ImageNet pre-trained (Deng et al. 2009) InceptionResNetV2

(Szegedy, Ioffe, and Vanhoucke 2016) for appearance feature of frames. As for object

features on entity-level, we utilize a ResNet152 backbone based Faster-RCNN (S.

Ren et al. 2015) pretrained on VisualGenome (Krishna et al. 2016). For caption

pre-processing, all captions are truncated to a maximum of 24 words, and converted

into lower case with punctuation removed. We replace all words with less than 2 word

counts into ⟨UNK⟩ token in the vocabulary.

Our BERT based CMS discriminator consists of 12 transformer blocks, 12 attention

heads, and is with 768 hidden dimensions. For the entailment pre-training, we choose

the event sentence and its corresponded commonsense description as positive pair,

and another random commonsense sentence from the ATOMIC as a negative pair. In

total, we have 230,624 event-commonsense pairs constructed, with 70% for training,

and 30% for testing. Our discriminator achieves 85% accuracy on the testing split.

We use 3 transformer blocks in the visual encoders and decoders, with the hidden

dimensions to be 768 and 8 attention heads. We find optimum result by setting the

weighting loss term β=0.5. Following the strategy used by Devlin et al. 2018, we train

the model using Adam optimizer with the initial learning rate 1e-4, β1=0.9, β2=0.999,

L2 weight decay 0.01. We use the warm-up strategy for the first 5 epochs, and the

learning rate is updated by the cosine scheduler. We set the batch size as 32 and

train it for 50 epochs. The reinforcement losses Lcms is not applied until 15 epochs.

During testing, we use greedy decoding to generate sentences. Our experiments are

implemented on single GTX1080Ti GPU using PyTorch toolbox (Paszke et al. 2019).
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6.4 Experimental Results

6.4.1 Results on MSR-VTT Dataset

We show performances of CAVAN in Table 1 and compare them with state-of-

the-art methods. To translate content-rich videos into human language, current

methods not only extract multi-modal visual features i.e.motion, appearance and

object features, but also bridge the semantic gap to generate accurate captions by

introducing external knowledge. For comparison, we list the feature extractors and

the sources of external knowledge in Table 1.

CAVAN outperforms all of the earlier methods on four metrics except ORG-TRL.

We summarize the following reasons for this: (1) ORG-TRL carefully designs a relation

graph to encode the cross-object interactions later aggregated with global features

via a temporal-spatial attention module. Since the main focus lies on the novel

commonsense supervision, CAVAN puts less effort on visual encoding. (2) Different

video pre-processing and feature extraction methods make it harder to get a completely

fair comparison and have a great impact on the results: the baseline models only using

appearance and motion features for CAVAN and ORG-TRL achieve 40.9 and 41.9

on BLEU@4 metric respectively. Despite the performance gap for baseline results,

CAVAN still gets as competitive improvement as ORG-TRL in comparison with their

own baseline models, which validates the effectiveness of our proposed methods.

It is worth noting that CAVAN gets outstanding result on CIDEr metric because

semantically aligning with commonsense knowledge encourages accurate and infor-

mative details to be involved in the output descriptions, which coincides with the

mechanism of CIDEr. In addition, we propose to evaluate the generated captions
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using the BERT produced semantic score on testing split, which heuristically measures

the caption quality and its semantic alignment to commonsense knowledge.

Table 1. Results on MSR-VTT public testing split

Note: We compare CAVAN with previous state-of-the-art models on MSR-VTT
(J. Xu et al. 2016) public testing split using various evaluation metrics. “External K.”
represents the source of external knowledge. “SE” denotes the average entailment
scores of generated captions with their corresponded commonsense knowledge using a
generic commonsense discriminator model (BERT) pre-trained on ATOMIC dataset.

Method Motion Appearence Object External K. B@4 M R C SE
RecNet(B. Wang et al. 2018) - Inception-V4 - - 39.1 26.6 59.3 42.7 -
PickNet(Chen et al. 2018) ResNet152 - - 41.3 27.7 59.8 44.1 -
MARN(Pei et al. 2019) C3D ResNet-101 Faster-RCNN - 40.4 28.1 60.7 47.1 -

OA-BTG(Zhang and Peng 2019) - ResNet-200 MASK-RCNN - 41.4 28.2 - 46.9 -
GRU-EVE(Aafaq et al. 2019) C3D InceptionResnetV2 YOLO - 38.3 28.4 60.7 48.1 -
MGSA(Chen and Jiang 2019) C3D InceptionResnetV2 Faster-RCNN - 42.4 27.6 - 47.5 -

ORG-TRL(Z. Zhang et al. 2020) C3D InceptionResnetV2 Faster-RCNN TBC&WiKi 43.6 28.8 62.1 50.9 -
STG-KD(B. Pan et al. 2020) I3D ResNet-100 Faster-RCNN - 40.5 28.3 60.9 47.1

Baseline(ours) I3D InceptionResNetV2 - - 40.9 27.6 60.5 47.3 47.8
CAVAN I3D InceptionResNetV2 Faster-RCNN ATOMIC 43.0 28.8 61.6 51.0 49.2

6.4.2 Results on VATEX Dataset

We also conduct experiments on VATEX (X. Wang et al. 2019) dataset which

contains 41,250 videos with 825,000 captions in both English and Chinese. It covers

diverse human activities and a variety of video content. We show performances of

CAVAN using different modules in Tab. 2 and compare them with previous methods.

To demonstrate the effectiveness of TSC block and the CMS entailment loss, we

list results with and without commonsense knowledge and different features. First,

the baseline model applies only appearance and motion features with only single

global branch. After we fuse the object-level features using the DFM module (see

baseline+DFM), performances of the our model are improved from 30.5 to 31.7 on

B@4 metric. This clearly indicates that the object-level features aggregated by DFM
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module help boosting the results. ORG (Z. Zhang et al. 2020) is a counterpart

baseline of (baseline+DFM), which also exploits motion, appearance and object-level

features. Then, we combine the commonsense entailment loss to the baselines to

compare the effectiveness of Lcms. Specifically, when equipped with the Lcms, B@4

of baseline is increased from 30.5 to 31.1. Similar trend is also observed on all other

metrics, verifying that the use of commonsense anchor brings comprehensive benefits

to captioning task. The final performance of CAVAN is shown at the last row where

both object-level features and commonsense entailment loss are utilized.It is also

worth noting that, TRL and TRL+ORG (Z. Zhang et al. 2020) also make uses of

external linguistic knowledge by distilling word probabilities inferred from BERT to

the language decoder.

Table 2. Performance on VATEX public testing split

Note: We compare CAVAN with previous state-of-the-art models on VATEX public
testing split using various evaluation metrics. “External K.” represents the source of
external knowledge. “SE” denotes the average entailment scores of generated captions
with their corresponded commonsense knowledge using a generic commonsense
discriminator model (BERT) pre-trained on ATOMIC dataset.

Method Motion Appear. Entity External K. B@4 M R C SE
Shared Enc X. Wang et al. 2019 I3D - - - 28.9 21.9 47.4 46.8 -

Shared Enc-Dec X. Wang et al. 2019 I3D - - - 28.7 21.9 47.2 45.6 -
ORG Z. Zhang et al. 2020 C3D Incep. F-RCNN - 31.5 21.9 48.7 48.8 -
TRL Z. Zhang et al. 2020 C3D Incep. - TBC&Wiki 31.5 22.1 48.7 49.3 -

TRL+ORG Z. Zhang et al. 2020 C3D Incep. F-RCNN TBC&Wiki 32.1 22.2 48.9 49.7 -
baseline I3D Incep. - - 30.5 21.6 47.2 47.6 40.6

baseline + DFM I3D Incep. F-RCNN - 31.7 22.3 48.2 49.6 41.3
baseline + CMS I3D Incep. - ATOMIC 31.1 21.9 47.8 48.5 41.9

CAVAN I3D Incep. F-RCNN ATOMIC 32.3 22.4 48.4 50.4 42.5
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6.4.3 Results on V2C Dataset

We report video captioning results on V2C (Fang et al. 2020) dataset in Table 3

using CAVAN. Different with other video captioning models, V2C (Fang et al. 2020)

model learns to generate both the ground-truth caption and its complementary

commonsense description as a two-stage generating task. Comparing with V2C

(Fang et al. 2020) which also uses intention-type knowledge, CAVAN shows a great

improvement on B@4 score: 4.0 higher on B@4 metric. The consistent improvements

on both MSR-VTT (J. Xu et al. 2016) and V2C (Fang et al. 2020) datasets corroborate

that CAVAN is not dataset specific, it is applicable for video captioning task as a

generic and novel training schema.

Table 3. Video captioning results on V2C testset using intention-type of knowledge.

Method K. Type B@4 M R C SE
V2C Fang et al. 2020 - 34.2 - - - -
V2C Fang et al. 2020 INT. 34.6 - - - -
CAVAN (w/o CMS) - 38.0 26.6 59.1 57.3 48.3

CAVAN INT. 38.6 26.8 59.4 58.7 49.6
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Chapter 7

ABLATION STUDY

7.1 Effectiveness of Components

To demonstrate the effectiveness of the proposed DFM module and commonsense

entailment loss, we design control experiments. First, baseline model applies only

appearance and motion features with only global branch. After we fuse the object-level

features with global representations using the DFM module (see baseline+DFM),

performances of the our model are dramatically improved, which clearly indicates

that the enhanced object-level features aggregated by DFM module help boosting

the results. Also, we combine the commonsense entailment loss to the baselines(see

baseline+CMS) to compare the effectiveness of Lcms. Specifically, when equipped with

the Lcms, CIDEr of the baseline is obviously increased from 47.3 to 48.4. Similar trend

is also observed on all other metrics, verifying that the use of commonsense anchor

brings comprehensive benefits to captioning task. We notice that both object-level

feature and commonsense knowledge make improvements on SE score. This is because

object-level features provide more semantic information and commonsense knowledge

put more semantic constrains for the generation. The final performance of CAVAN is

shown at the last row of Table 4 where both DFM and commonsense entailment loss

are utilized.
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Table 4. Effect of each component on MSR-VTT dataset.
Model B@4 M R C SE

Baseline 40.9 27.6 60.5 47.3 47.8
Baseline + DFM 42.5 28.6 61.2 49.6 48.2
Baseline + CMS 41.5 27.9 60.9 48.4 48.8

Baseline + DFM + CMS 43.0 28.8 61.6 51.0 49.2

7.2 Effects of Types of Knowledge

We investigate the benefit of using different types of knowledge annotated in

V2C (Fang et al. 2020). The results are presented in Table 5. We can observe that

each type of knowledge all can produce positive impact on the caption generation.

Among them, using intention-type knowledge gives the best performance for CAVAN.

This observation also aligns with the conclusion in (Fang et al. 2020), where the

intention-type descriptions lead best generation scores. We analyze that this relates

to the annotating bias in ATOMIC dataset, where intentions of human activities are

more likely to be annotated correctly.

Table 5. Comparison of performances using different types of commonsense
knowledge in CAVAN on V2C testing split.
K. Type B@4 M R C SE

- 38.0 26.6 59.1 57.3 48.3
ATT. 38.3 26.7 59.3 57.9 48.9
EFF. 38.4 26.8 59.4 58.3 49.4
INT. 38.6 26.8 59.4 58.7 49.6

7.3 Human Evaluation

Human evaluation is critical to verify the quality of queried commonsense knowledge

and the performance of CAVAN. We conduct human evaluations by crowdsourcing
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ratings from workers on Amazon Mechanical Turk (AMT). To evaluate the quality of

retrieved commonsense-knowledge, the workers are provided with the ground-truth

caption and retrieved knowledge and asked to rate whether the retrieved knowledge

entails the caption from a scale of 1-5 (the higher the better, 1 denotes irrelevant

and 3 means valid.). We get an average score 3.6, 3.3, 3.1 for retrieved intention,

attribute and effect respectively on MSR-VTT (J. Xu et al. 2016), this verifies the

extracted commonsense-knowledge from ATOMIC is highly relevant to the video

content. To validate the performance of CAVAN, given the videos and generations

from CAVAN, the AMTurkers are required to watch and rate how well the generated

caption describes the video content from 1-5. The skilled workers report that CAVAN

achieves 3.65 on average versus 3.50 from the state-of-the-art captioning methods.

7.4 Discussions of CMS in Generations

Figure 5 shows examples of generations from CAVAN comparing with the baseline

model without commonsense knowledge. Comparing with model without CMS con-

strain, ours generation aligns better with the ground-truth annotation semantically.

As illustrated in the left example, the model without CMS constrain generates amusing

descriptions, whose keywords marked as red are totally misaligned with the ones in

ground-truth caption. CAVAN however has the capacity to rectify wrong semantics

and hit the correct keywords marked in blue. Moreover, even when both models

generate semantically correct descriptions, the probabilities of keywords marked in

orange are improved after applying CMS produces (right example in Figure 5). More

examples can be found in the appendix.

To further verify the effect of CMS supervision, we show the hit rate of top-20
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Figure 5. Qualitative Examples

Note: Caption generation examples using CAVAN on V2C dataset with
intention-type knowledge (KG). GT represents the ground-truth captions. w/o CMS
denotes the model (baseline+DFM) without CMS constrains.

Figure 6. Hit rate

Note: Keywords hit rate on MSR-VTT dataset with or without (intention-type)
commonsense knowledge.

most frequent keywords in Figure 6. Concretely, we extract out keywords from each

reference sentence based on their TF-IDF score. If the keywords appears in the

generated captions, it is then considered to be hit or otherwise missed. We observe

from Figure 6 that by applying CMS constrain improves the hit rate of keywords,

which is consistent with the outstanding performance on CIDEr metric that also

builds on TF-IDF weighting.
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Figure 7. Analysis of different weighting value for Lcms on MSR-VTT dataset.

7.5 Effect of Weighting Parameter β

The performance on CIDEr and SE metric with different values of the weighting

parameter β is shown in Fig. 7. The weight beta the degree of commonsense constrain:

if the value of β is too low, it plays a subtle role in increasing the semantic alignment

while if the value of β is too high, the model will be overwhelmed by too much

constrain and generate captions deviating from the content of the video itself.

7.6 Vocabulary Coverage of Generated Captions on V2C Dataset

As shown in Fig. 8, the designed CMS supervision leads to a clear improvement in

vocabulary coverage. The vocabulary coverage for baseline without CMS knowledge is

only 8.39% while for CAVAN with 3 types of CMS knowledge, it is obviously increased

to 11.10%, 9.76%, 11.10% respectively. Since the mechanism of proposed commonsense-

caption entailment metric is to punish the sentences semantically misaligned with

the reference sentence, meaningless words are punished and more informative words
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Figure 8. Vocabulary coverage of generated captions on V2C dataset.

are selected to be involved in the generations, which accounts for the increase in

vocabulary coverage.
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Chapter 8

CONCLUSION AND FUTURE DIRECTION

8.1 Conclusion

We present CAVAN, a novel training schema for video captioning leveraging

commonsense knowledge as anchors during model learning. CAVAN efficiently captures

higher-order interactions from multi-modal visual features using a carefully designed

fusion model, namely DFM, for a better understanding of video content. Moreover,

CAVAN is among the first which proposes to measure sentence-level semantics using

inferential-knowledge, and incorporate it over an end-to-end training as a supervision

signal. We conduct extensive experiments to verify the effectiveness of CAVAN on

both MSR-VTT (J. Xu et al. 2016), V2C (Fang et al. 2020) and VATEX (X. Wang

et al. 2019) dataset, where CAVAN achieves new state-of-the-art results respectively.

The observed success of CAVAN confirms the exciting research avenue by adopting

commonsense knowledge for high level cognitive vision tasks, including but not limited

to image/video captioning, Visual Question Answering, visual navigation, etc.

8.2 Future Direction

In this work, commonsense knowledge is applied as semantic anchors to form a

sentence-level supervision signal that guides the caption generation. We barely make

use of the commonsense knowledge in the decoding phase while encoding phase is

also an essential part for captioning task. It’s a good direction for us to project
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commonsense knowledge into an embedding space as semantic features and further

explore how to utilize the newly semantic features for generating semantically aligned

captions. More extensive experiments will be conducted to figure out the best way to

encode the semantic features and incorporate with visual features before decoding.
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APPENDIX A

QUALITATIVE EXAMPLES
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In Appendix, we provide more qualitative results on MSR-VTT (J. Xu et al. 2016)
dataset. For MSR-VTT dataset, we compare the captions generated by baseline +
DFM and CAVAN in Fig. 9. The keywords in the generated sentence, corresponding
with the ones in ground-truth captions, are marked blue with their probabilities
marked orange while the predicted keywords marked red are semantically misaligned
with the reference sentences.

A.1 Visualization Results on MSR-VTT Dataset

Figure 9. Qualitative examples on MSR-VTT dataset.
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Figure 10. Qualitative examples on MSR-VTT dataset.
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