
Representation Learning for Graph Structured Data using

Deep Neural Networks

by

Uday Shankar Shanthamallu

A Dissertation Presented in Partial Fulfillment
of the Requirement for the Degree

Doctor of Philosophy

Approved August 2021 by the
Graduate Supervisory Committee:

Andreas Spanias, Chair
Jayaraman J. Thiagarajan

Cihan Tepedelenlioglu
Visar Berisha

ARIZONA STATE UNIVERSITY

December 2021

ABSTRACT

Dealing with relational data structures is central to a wide-range of applications

including social networks, epidemic modeling, molecular chemistry, medicine, energy

distribution, and transportation. Machine learning models that can exploit the inher-

ent structural/relational bias in the graph structured data have gained prominence

in recent times. A recurring idea that appears in all approaches is to encode the

nodes in the graph (or the entire graph) as low-dimensional vectors also known as

embeddings, prior to carrying out downstream task-specific learning. It is crucial to

eliminate hand-crafted features and instead directly incorporate the structural induc-

tive bias into the deep learning architectures.

In this dissertation, deep learning models that directly operate on graph struc-

tured data are proposed for effective representation learning. A literature review on

existing graph representation learning is provided in the beginning of the disserta-

tion. The primary focus of dissertation is on building novel graph neural network

architectures that are robust against adversarial attacks. The proposed graph neural

network models are extended to multiplex graphs (heterogeneous graphs). Finally, a

relational neural network model is proposed to operate on a human structural connec-

tome. For every research contribution of this dissertation, several empirical studies

are conducted on benchmark datasets. The proposed graph neural network models,

approaches, and architectures demonstrate significant performance improvements in

comparison to the existing state-of-the-art graph embedding strategies.

i

DEDICATION

To my family

ii

ACKNOWLEDGEMENTS

Over the past several years, I have grown both professionally and personally, and

I need to thank a number of people for my growth. I owe an outstanding debt of

gratitude to my advisors Dr. Andreas Spanias and Dr. Jayaraman Thiagarajan,

for their constant support and guidance. This Ph.D. would not have been possible

without their encouragement and feedback. I am eternally thankful to them for

inscribing good research skills in me. I am grateful to Dr. Cihan Tepedelenlioglu and

Dr. Visar Berisha for their valuable time serving on my defense committee and their

insightful comments and helpful feedback.

Over the course of this Ph.D. I was fortunate to interact with Michael Stanley,

who has been an exceptional mentor. During my internship at NXP semiconductors,

Michael taught me that even bad results are significant results. I am grateful to

Lawrence Livermore National Laboratory and its scientists for providing me an op-

portunity to collaborate and work on advancing the research in graph representation

learning. The work I have done in collaboration with them forms the essence of this

dissertation.

I would like to recognize the invaluable assistance provided to me by the graduate

advisors and the School of Electrical, Computer and Energy Engineering at ASU. I

would like to thank my friends, peers, and colleagues at the SenSIP center for their

kind support, frequent discussions, and memorable days in the lab. I also like to

thank SenSIP industry partners for helping me develop my presentation skills.

Most importantly, none of this could have happened without my family. Their uncon-

ditional love and support have helped me achieve a great deal of success. In particular,

I like to thank my mother Renuka and my wife Chinmayi Lanka for motivating me

and sacrificing countless hours of their own time to help me accomplish my goals.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . viii

CHAPTER

1 INTRODUCTION . 1

1.1 Notation Summary . 3

1.2 Types of Graphs . 4

1.3 Machine Learning on Graphs . 5

1.3.1 Node Classification . 5

1.3.2 Link Prediction . 6

1.3.3 Graph Classification and Regression . 7

1.4 Node Embeddings . 8

1.4.1 Node Embeddings for Multi-layer Graphs 10

1.5 Problem Statement . 11

1.5.1 Study and Analysis of Attentions Inferred by GATs 11

1.5.2 Building Robust GNN Models to Defend Adversarial Attacks 12

1.5.3 Efficient Representation Learning for Multi-Layer Graphs . . . 12

1.5.4 Learning Node Embeddings from Random Features 13

1.5.5 Application of Graph Neural Networks to Healthcare Data . . 13

1.6 Contributions . 13

1.7 List of Publications . 15

1.8 Organization of the Dissertation . 16

2 LITERATURE REVIEW ON GRAPH REPRESENTATION LEARNING 17

2.1 Matrix Factorization Methods . 17

2.2 Encoder-Decoder Methods . 18

iv

CHAPTER Page

2.2.1 Random Walk Methods . 20

2.3 Graph Neural Network Methods . 22

2.3.1 Message Passing Framework . 22

2.3.2 Graph Convolutional Network . 23

2.3.3 Graph Attention Models . 25

2.4 Multi-layered Graph Analysis . 27

3 GRAPH ADVERSARIAL ATTACK AND DEFENSE 29

3.1 Problem Setup . 31

3.2 Proposed Approach . 32

3.2.1 Bayesian Uncertainty Estimation . 34

3.2.2 Algorithm . 35

3.3 Poisoning Attacks Used for Evaluation . 38

3.4 Empirical Evaluation. 40

3.4.1 Results . 43

3.5 Related Work . 45

3.6 Summary . 48

4 GrAMME: GRAPH ATTENTION MODELS FOR MULTI-LAYERED

EMBEDDINGS . 50

4.1 Graph Attention Networks . 51

4.2 Weighted Attention Mechanism . 52

4.3 Using Randomized Node Attributes . 54

4.4 Multi-layer Graph Notation . 55

4.5 Graph Attention Models for Multi-layered Embeddings (GrAMME) 55

4.5.1 GrAMME-Supra Graph . 56

v

CHAPTER Page

4.5.2 GrAMME-Fusion . 58

4.6 Empirical Studies and Results . 60

4.6.1 Datasets . 60

4.6.2 Baselines . 63

4.6.3 Experiment Setup . 64

4.6.4 Results . 65

4.7 Comparing GrAMME-SG and GrAMME-Fusion 66

4.8 Summary . 69

5 GNN APPLICATION TO HEALTHCARE DATA: HUMAN BRAIN

CONNECTOME . 72

5.1 Human Connectome Data . 75

5.2 Approach . 75

5.3 Empirical Evaluation. 77

5.4 Summary . 80

6 CONCLUSIONS. 82

6.1 Future Research Directions . 84

REFERENCES . 86

BIOGRAPHICAL SKETCH . 94

vi

LIST OF TABLES

Table Page

3.1 Summary of the Three Benchmark Citation Datasets Used in Our Ex-

perments. 40

3.2 Misclassification Rates from 100 Target Nodes with FGA attack. A

Lower Value Implies Improved Robustness. 48

4.1 Summary of the Datasets Used in Our Empirical Studies. 61

4.2 Semi-Supervised Learning Performance of the Proposed Multi-layered

Attention Architectures on the Benchmark Datasets. The Results Re-

ported Were Obtained by Averaging 20 Independent Realizations. 71

5.1 Estimating Region-specific Volumes Using the Structural Connectome.

For Each Case, We Report the R2 / Pearson Correlation Coefficient

Metrics. 78

vii

LIST OF FIGURES

Figure Page

1.1 Zackary’s Karate Club Social Network: 34 Members of the Social Net-

work and Their Interactions Visualized as a Graph. The Social Net-

work Was Split into Two Groups Due to a Conflict. The Coloring

Scheme Identifies the Clustering of the Two Groups. Image Obtained

From Jill Marie Hackett (Hackett, 2019). 1

1.2 Typical Machine Learning Tasks on Graph Data Structures: (A) Node

Classification: The Goal Is to Predict the Labels of the Unlabeled

Nodes given a Few Labeled Nodes. (B) Link Completion: The Goal Is

to Predict the Missing Links given the Incomplete Graph Connections. . 6

1.3 Learning Node Embeddings: Random Walk Based Node Embedding

Technique Applied on Zachary’s Karate Club Graph. Nodes in the

Graph Have Distinct Labels [Left] and the Learned 2-dimensional Node

Embeddings Preserve the Community Structure [Right]. Image Ob-

tained from (Perozzi et al., 2014). 8

1.4 AUCS Dataset: An Example of Multi-Layer Graphs. Image Obtained

From (Kim et al., 2016). 11

2.1 Encoder-Decoder Approach for Learning Node Embeddings. The En-

coder (Enc) Maps the Nodes into a Low Dimensional Space Such That

the Nearby Nodes in the Graph Have Short Distances in the Embed-

ding Space. 19

2.2 The Blue Node vi Updates Its Feature by First Aggregating Messages

from Its Neighboring Nodes (vj, vk, vl, vm) with the Help of a Message

Function M and Then Transforms the Aggregated Messages Using an

Update Function U . 22

viii

Figure Page

2.3 The Signal Defined on the Nodes of the Graph in Comparison to the

Signals Defined on the Regular Euclidean Grid (Images). The Red

Color Indicates That the Graph Signal Is Positive Where as Blue Color

Indicates a Negative Value. 24

3.1 A Small Imperceptible Perturbation by the Adversary Fools the GNN

Model to Make Wrong Predictions. 30

3.2 An Illustration of the Proposed UM-GNN with GNN Model M and Fully

Connected Neural Network F. We Achieve Robustness to Poisoning

Attacks Through an Uncertainty Matching Strategy. After the GNN

Model M Is Trained, We Use the Surrogate Model F to Make Predic-

tions for the Unlabeled Nodes. 33

3.3 Illustration of the Behavior of UM-GNN for Two Datasets Under Varying

Types and Levels of Poisoning Attacks. In Each Case, We Show the

Test Accuracy Curves Across the Training Epochs From Both the Gnn

and Surrogate Models. As the Noise Severity Increases, the Surrogate

Model F Demonstrates Improved Robustness. 37

3.4 Random Attack : UM-GNN Achieves Robustness to Random Attacks,

Providing Over 5 − 10% Improvements in the Test Accuracy, Even

When the Noise Ratio is 1.0. 41

3.5 DICE Attack : For All Datasets, UM-GNN Is Consistently More Robust in

This Challenging Scenario, Where the Attacker Both Adds and Deletes

Edges. The Performance Improvement with UM-GNN Is as High as ≈

15% (Citeseer). 41

ix

Figure Page

3.6 Mettack - This Gray-box Attack Is Known to Be Highly Effective at

Causing Performance Degradation in GNNs. However, UM-GNN Con-

sistently Provides 3− 5% Improvements in the Test Accuracy over the

Baselines. 43

3.7 PGD Attack - This Is Comparatively Very Severe, Since It Uses Gradi-

ents from a GCN Model (Same Architecture as M). While the Accuracy

Improvements Are Still Non-trivial (1% − 2%), the More Interesting

Observation Is the Reduced Variance of UM-GNN Across Trials. 46

3.8 Results from FGA Attacks on Two Benchmark Datasets - on the X-

axis, We Plot the Prediction Probabilities for the True Class Obtained

Using GCN on the Clean Graph G. On the Y-axis, We Show the

Prediction Probabilities Obtained after the Targeted Attack. Note,

for Each Method, We Show the Misclassified Nodes in Red and the

Correct Predictions in Green. 47

4.1 2−D Visualization of the Embeddings for the Single-Layer Cora Dataset

Obtained Using the Proposed Weighted Attention Mechanism. 53

4.2 GrAMME-SG Architecture: Proposed Approach for Obtaining Multi-

layered Graph Embeddings with Attention Models Applied to the Supra

Graph, Constructed by Introducing Virtual Edges Between Layers. 57

4.3 GrAMME-fusion Architecture: Proposed Approach for Obtaining Multi-

layered Graph Embeddings Through Fusion of Representations from

Layer-Wise Attention Models. 59

x

Figure Page

4.4 Boxplot Showing Absolute Differences of Each Method to the Best

Performing Method on Each Dataset for Different Train Test Split.

Lower Values Are Better. 66

4.5 Convergence Characteristics of the Proposed Gramme-Fusion Archi-

tecture with the Parameters T = 2, H = 1 and K = 5 Respectively. . . . 67

4.6 2D Visualization of the Embeddings, for Two Different Datasets, Ob-

tained Using the Gramme-Fusion Architecture with Parameters T = 2,

K = 1 and H = 5 Respectively. We Also Show the Initial Randomized

Features for Reference. 68

5.1 An Overview of the Proposed Approach. The T1 Scans Are Parcellated

into 84 Different Regions in the Brain, on Which, Tractography Is Per-

formed to Compute the Weighted Matrix Representing the Structural

Connectome. Our RGNN Model Is Used to Process the Connectome

for Prediction Tasks. 74

5.2 An Overview of Proposed Approach RGNN. The Information Is Pooled

from the Edges to a Single Node (Region in the Brain). 77

5.3 Left: Gender and Age Classification Results Obtained from Proposed

Approach and the Baselines. Right: Shapley Values Highlighting the

Importance of Different Regions in the Brain on Gender Classification. . 80

xi

Chapter 1

INTRODUCTION

Graphs form a ubiquitous data structure and offer a distinct advantage in model-

ing many real-world relational data. Graphs can inherently capture the rich relational

information between several entities and incorporate complex pairwise relationships

between them. In the simplest form, a graph data structure is a collection of enti-

ties or objects represented as nodes (or vertices), along with pairwise relationships

represented as edges. For example, individuals in a social network are represented

as nodes in graphs, and their friendship is encoded by the set of edges as shown in

Figure 1.1.

Figure 1.1: Zackary’s Karate Club Social Network: 34 Members of the Social Network

and Their Interactions Visualized as a Graph. The Social Network Was Split into

Two Groups Due to a Conflict. The Coloring Scheme Identifies the Clustering of the

Two Groups. Image Obtained From Jill Marie Hackett (Hackett, 2019).

Several other real-world data expressed as graphs are listed as follows:

1

• Social Networks (Eagle and Pentland, 2006) - Here, vertices/nodes are people,

and edges represent interactions between them.

• Technological Network - The Internet is the worldwide network of physical con-

nections between computers and other devices.

• Transportation Networks (Henderson et al., 2012) - Examples include airline

networks, road and rail networks

• Epidemic Networks(Simon et al., 2011) - Modeling spreading of infectious dis-

eases.

• Biological Networks - Human Brain connectome (Sporns et al., 2005), Interac-

tions at the cellular level, genome level, and protein level.

• Molecular Networks - Atoms represent nodes, and edges represent chemical

bonds (Irwin et al., 2012).

In scenarios where data is not readily available in a graph structure, a graph is

constructed from the available data. The data is often assumed to be independent

and identically distributed (i.i.d). Graph construction is performed without any

supervision. i.e. label information is not required while constructing the graphs.

An appropriate similarity metric that incorporates the domain knowledge is used to

construct a graph from data instances. Two common construction methods are the

k-nearest neighbor method and the ε neighborhood method. In the k-nearest neighbor

method, for a given node (a data sample), connections are established only to the

k nearest neighbors, where the closeness is quantitatively defined using a similarity

metric (for example, Gaussian kernel) or distance function (for example, Euclidean

distance). In ε- neighborhood-based graph construction, an undirected edge between

2

two nodes is added if the distance between them is smaller than ε, where ε > 0 is a

predefined constant.

1.1 Notation Summary

In this section, the notation used throughout this dissertation is summarized. The

notation followed here is similar to those seen in deep learning books (Goodfellow

et al., 2016).

x A scalar

x A vector

X A matrix

xi, The ith element of vector x

Xij, The element of matrix X at row i and column j

X A set

|X | Cardinality of the set X

Rn The set of n-dimensional vectors of real numbers

f(·) A function

〈x,y〉 Dot product or inner product of vectors x and y

P (·) Probability distribution

p(x) Probability density function

z ∼ P (·) Random variable z has probability distribution P

or z is sampled from P

M A neural network model

Θ Parameters of the neural network model

σ Non-linearity function (Sigmoid, tanh, ReLU etc)

O Big O notation

3

1.2 Types of Graphs

Formally, a simple graph is represented by the tuple G = (V , E), where V denotes

the set of nodes with cardinality |V| = N , and E denotes the set of edges with

cardinality |E| = M . Optionally, the complete graph can be represented by a N ×N

symmetric adjacency matrix A where Aij ∈ {1, 0}, A ∈ RN×N . The value of Aij is

1 if there is an edge connecting the nodes vi and vj , otherwise 0 (thus Aij = Aji).

Additionally, the edges can also encode strength and symmetry in the relationships.

Directed Graph: If the edges in the graphs are directed, that is the relationship

is not mutual then the adjacency matrix A is no longer symmetric (Aij 6= Aji). For

example, the Twitter network is based on follower-ship, and hence it is a directed

network.

Weighted Graph: For weighted graphs, the edges also encode the strength of con-

nectivity of the relationship. A weighted adjacency matrix W is used in place of A.

As before, if there is an edge e = (i, j) connecting nodes i and j, the entry Wij repre-

sents the weight associated with the edge; otherwise Wij = 0. For example, a human

brain connectome is represented by a weighted graph, where the edges represent the

strength of the structural connectivity between different voxels(regions) of the brain.

Multi-layer graph: A multi-layered graph is represented using a set of L inter-

dependent graphs G(l) = (V(l), E (l)), for l = 1, . . . , L, where there exists a node map-

ping between every pair of layers to indicate which vertices in one graph correspond

to vertices in the other. In our setup, we assume V(l) from all layers contain the same

set of nodes, while the edge sets E (l) (each of cardinality M (l)) are assumed to be

different.

Degree of a node: The number of neighbors of a node v is called the degree of v

and is denoted by d(v); d(vi) =
∑

j Aij for unweighted graphs and d(vi) =
∑

j Wij

4

for weighted graphs.

Graph Signal or Node Attribute: In addition to the network structure, each

node vi can be endowed with a set of attributes, xi ∈ RD, i ∈ [N]. For efficient

graph representation learning, one must incorporate the node attributes in addition

to structural information.

1.3 Machine Learning on Graphs

Although supervised and unsupervised machine learning (Shanthamallu et al.,

2017) are popular for other data structures such as images, machine learning prob-

lems on graphs often blur the boundaries between the traditional machine learning

categories. Some of the typical machine learning tasks are discussed here.

1.3.1 Node Classification

In many real-world graphs, nodes are associated with helpful information, often

treated as labels of these nodes. For example, in social networks, such information

can be demographic properties of users such as age, gender, occupation, or users’

interests and hobbies. The goal of node classification is as described follows: given

the ground truth for a small set of nodes, predict the labels for the rest of the nodes

in the graph.

Definition 1.3.1 Node classification: Given a graph G = (V , E) and labels for the

subset of nodes Vlabel ⊂ V, predict the labels for each of the nodes in the set v ∈

V \ Vlabel.

The goal of the node classification task is to learn a mapping function by leveraging

the graph structure G and labels of nodes in Vlabel. Note that Vlabel∪Vunlabel = V and

Vlabel ∩ Vunlabel = ∅ where Vunlabel = {v ∈ V \ Vlabel}. Figure 1.2a shows an example

5

(a) Node Classification

(b) Link Prediction

Figure 1.2: Typical Machine Learning Tasks on Graph Data Structures: (A) Node

Classification: The Goal Is to Predict the Labels of the Unlabeled Nodes given a Few

Labeled Nodes. (B) Link Completion: The Goal Is to Predict the Missing Links given

the Incomplete Graph Connections.

of node classification (or node-label prediction) where we know the labels for a small

subset of nodes.

1.3.2 Link Prediction

While node classification is helpful in inferring information of a node based on

its relationship with other nodes in the graph, the goal of the link prediction is to

infer the missing relationships (edges) in the graph. For example, if we know some

protein-protein interaction happening inside a biological cell, is it possible to infer the

unseen or unknown interactions? Link prediction is often referred to by other terms

such as relation prediction, graph completion, or recommendation, depending on the

application.

6

Definition 1.3.2 Link Prediction: Given an incomplete graph G with a set of nodes

V and an incomplete set of edges between these nodes Etrain ⊂ E, infer the missing

edges E \ Etrain.

Figure 1.2b shows a typical example of link prediction. By utilizing the available

partial information, new interactions can be identified.

1.3.3 Graph Classification and Regression

Similar to the node classification task, the graph classification task deals with

identifying the labels for the entire graph rather than the individual nodes. For

example, consider a chemical molecule represented as a 2D graph; one can build a

machine learning model to predict the biological activity (actively binding or not) to

a specific receptor. Similar to graph level classification, one can also build a regression

model over the entire graph (for example, identifying the solubility of a molecule).

Definition 1.3.3 Graph classification: Given a set of T training graphs {(Gt, yt)}Tt=1

where yi is the label of the graph Gi and yi assumes one of the C pre-defined classes,

the goal is to learn a mapping function f : G 7→ Y where G is in the input graph space

and Y is the output space.

In graph classification or regression tasks, the central idea is to learn over the

entire graph data, but instead of making node-level predictions, we are instead given a

dataset of multiple different graphs, and our goal is to make independent predictions

specific to each graph. That is, we want to learn a mapping function over graphs

instead of nodes.

7

Figure 1.3: Learning Node Embeddings: Random Walk Based Node Embedding

Technique Applied on Zachary’s Karate Club Graph. Nodes in the Graph Have

Distinct Labels [Left] and the Learned 2-dimensional Node Embeddings Preserve the

Community Structure [Right]. Image Obtained from (Perozzi et al., 2014).

1.4 Node Embeddings

Despite the variability in graph-based machine learning tasks, a recurring idea

that appears in almost all of these applications is to obtain low-dimensional vectors,

also known as embeddings for nodes, edges, or even the entire graph, before carry-

ing out the downstream learning task. We want those embeddings to preserve the

structural information or the local neighborhood information (relationships). This is

the fundamental premise in graph-based machine learning and graph representation

learning, i.e., to learn to represent or encode the graph structure into embeddings

so that the downstream task-specific machine learning models can exploit it. An

example of such embedding algorithm on Zachary’s karate club graph (Girvan and

Newman, 2002) is shown in Figure 1.3.

In the simplest form, the adjacency matrix indicating the connectivities can be

treated as na ”ive embeddings for the nodes. However, it is well known that such

cursed, high-dimensional representations can be ineffective for subsequent learning.

8

Hence, there has been a long-standing interest in constructing low-dimensional em-

beddings that best represent the network topology. However, the main challenge in

graph-based machine learning is that the structure of the graph/network is irregular

when compared with images, or audio, or text. Images, speech, and other time-series

data are structured by Euclidean grids. On the other hand, graphs are non-Euclidean;

simple operations like convolution, translation, and downsampling can not be explic-

itly defined on graphs.

Traditional graph-based machine learning approaches make use of graph Laplacian

structure and regularization methods that involve matrix decomposition - examples

include Spectral Clustering (Ng et al., 2002), stochastic factorization of the adjacency

matrix (Ahmed et al., 2013), decomposition of the modularity matrix (Newman, 2006;

Chen et al., 2014) etc. The unprecedented success of deep learning with data defined

on regular domains, e.g., images and speech, has motivated its extension to arbitrarily

structured graphs. For example, Yang et al. (Yang et al., 2016) and Thiagarajan et

al. (Thiagarajan et al., 2016) have proposed stacked auto-encoder style solutions that

directly transform the objective measure into an undercomplete representation. An al-

ternate class of approaches utilize the distributional hypothesis, popularly adopted in

language modeling (Harris, 1954), where co-occurrence of two nodes in short random

walks implies a strong notion of semantic similarity to construct embeddings – ex-

amples include DeepWalk (Perozzi et al., 2014) and Node2Vec (Grover and Leskovec,

2016).

While the approaches above effectively preserve network structure, semi-supervised

learning with graph-structured data requires feature learning from node attributes to

effectively propagate labels to unlabeled nodes. Since convolutional neural networks

(CNNs) have been the mainstay for feature learning with data defined on regular

grids, the natural idea is to generalize convolutions to graphs. Existing work on

9

this generalization can be categorized into spectral approaches (Bruna et al., 2013;

Defferrard et al., 2016a), which operate on an explicit spectral representation of the

graphs, and non-spectral approaches that define convolutions directly on the graphs

using spatial neighborhoods (Duvenaud et al., 2015; Niepert et al., 2016). More re-

cently, attention models (Velickovic et al., 2017) have been introduced as an effective

alternative for graph data modeling which mainly rely on attention mechanisms for

feature learning.

Graph Attention Networks (GATs): The attention mechanism in neural net-

works focuses on the most relevant part of the data to make decisions. In contrast

to graph spectral approaches, graph attention models do not require the construc-

tion of an explicit Laplacian operator and can be readily applied to non-Euclidean

data. Velickovic et al., make use of attention heads to perform node classification

in semi-supervised learning. An attention head parameterizes the local dependencies

to determine the most relevant parts of the graph to focus on while computing the

features for a node. Further, GATs are easily scalable to large networks. Details of

attention head and its construction is provided in Chapter 2.

1.4.1 Node Embeddings for Multi-layer Graphs

Modern data analysis pipelines are becoming increasingly complex due to the

presence of multi-view information sources. While graphs are effective in modeling

complex relationships, in many scenarios, a single graph is rarely sufficient to repre-

sent all interactions succinctly, and hence multilayered graphs have become popular.

For example, in a social network setting, multiple aspects of relationships can be rep-

resented by a multilayer graph comprised of multiple interdependent graphs. Each

graph represents an aspect of the relationships. One such network is shown in Figure

1.4 which is obtained from the AUCS dataset (Kim and Lee, 2015). Here, multi-

10

Figure 1.4: AUCS Dataset: An Example of Multi-Layer Graphs. Image Obtained

From (Kim et al., 2016).

ple layers represent different aspects of the relationship among 61 employees at a

University.

Though multilayer graphs lead to richer representations, extending solutions from

the single-graph case is not straightforward. Until recently, the majority of existing

work has focused on analysis and inferencing from a single network. Consequently,

there is a strong need for novel solutions to solve classical problems, such as node

classification, in the multilayered case. Our definition of multilayered graphs assumes

complementary views of connectivity patterns for the same set of nodes, thus requiring

the need to model complex dependency structures across the views. The heterogeneity

in the relationships, while providing richer information, makes statistical inferencing

challenging. Note that alternative definitions for multi-view networks exist in the

literature (Li et al., 2018), wherein the node sets can be different across layers (e.g.,

interdependent networks).

1.5 Problem Statement

1.5.1 Study and Analysis of Attentions Inferred by GATs

With the widespread adoption of attention models in language modeling and com-

puter vision, it has become imperative to study and understand the functioning and

11

robustness of attention mechanisms. Though GATs have successfully achieved state-

of-the-art performance in semi-supervised node classification, a detailed analysis of

the attention mechanism is not yet available. In particular, the robustness of the

attention mechanism in the presence of adversaries(for example, noisy nodes) needs

to be studied.

1.5.2 Building Robust GNN Models to Defend Adversarial Attacks

Graph Neural Networks (GNNs), a generalization of neural networks to graph-

structured data, are often implemented using message passes between entities of a

graph. While GNNs are effective for node classification, link prediction, and graph

classification, they are vulnerable to adversarial attacks. GNNs inherit both advan-

tages and disadvantages of DNNs. A small perturbation to the structure can lead to

non-trivial performance degradation. The adversary can generate graph adversarial

perturbations by manipulating the graph structure or node features to fool the GNN

models. This limitation of GNNs has arisen immense concerns on adopting them in

safety-critical applications such as financial systems and risk management.

1.5.3 Efficient Representation Learning for Multi-Layer Graphs

Multilayer graphs can encode multiple aspects of relationships compared to a

simple graph. In spite of having rich information, it is challenging to learn vector

representations by effectively combining information from both with-in-layer connec-

tions and cross-layer connections. A vast majority of existing work in graph-based

semi-supervised learning is concentrated on single-layered graphs. Is it possible to

extend existing tools to a multiplex-graph?

12

1.5.4 Learning Node Embeddings from Random Features

One of the key assumptions in the recently proposed graph-spectral approaches

(Defferrard et al., 2016b) is the availability of the node attributes in addition to the

network structure. Latent representations for nodes are learned in a task-specific

manner, where node attributes are used along with the graph structure to propagate

labels to unlabeled nodes effectively. In practice, graph datasets often comprise only

the edge sets without any additional information (especially in multilayer datasets).

There is a need to employ a randomized initialization strategy for creating node

attributes.

1.5.5 Application of Graph Neural Networks to Healthcare Data

For biological data such as the data from the human brain connectome, many

classical approaches have relied on hand-engineering statistical descriptors from struc-

tural or functional connectomes to build predictive models. However, there is growing

interest in leveraging deep learning techniques. Though the human connectome is of-

ten viewed as a graph defined with each node indicating to a brain region, and the

edges representing neural connections, we argue that existing graph neural network

solutions that are built on the assumption of information diffusion are not directly

applicable.

1.6 Contributions

• Qualitative and Quantitative analysis of attention mechanisms in the Graph

attention networks is provided in detail. The vulnerability of the existing at-

tention models in the presence of adversaries (structural noise) is discussed in

(Shanthamallu et al., 2020). A robust GAT variant is proposed that analyzes

13

the distribution of the attention coefficients. Performance improvements of the

Robust GAT are demonstrated with experiments using citation networks.

• Uncertainty Matching GNN (UM-GNN) architecture (Shanthamallu et al., 2021)

is proposed for improving the robustness of GNN models, particularly against

poisoning attacks to the graph structure (Chapter 3). UM-GNN leverages epis-

temic uncertainties from the message passing framework. More specifically, we

propose to build a surrogate predictor that does not directly access the graph

structure but systematically extracts reliable knowledge from a standard GNN

through a novel uncertainty-matching strategy. Interestingly, this uncoupling

makes UM-GNN immune to evasion attacks by design and achieves significantly

improved robustness against poisoning attacks. Using empirical studies with

standard benchmarks and a suite of global and target attacks, we demonstrate

the effectiveness of UM-GNN when compared to existing baselines, including the

state-of-the-art robust GCN.

• Attention models are developed for multilayered graphs in semi-supervised learn-

ing problems (Shanthamallu et al., 2019b). Two architectures are proposed that

perform layer-wise attention modeling and fuses information from different lay-

ers. Proposed approaches are evaluated on several benchmark datasets and

show that they outperform existing network embedding strategies (Chapter 4).

• Randomized initialization strategy is employed for creating node attributes

(Shanthamallu et al., 2019b). Random initialization has been highly successful

in making word representations for Natural Language Programming tasks, and

in many scenarios, its performance matches or even surpasses pre-trained word

embeddings (Chapter 4).

14

• We develop a structured network architecture termed (RGNN) (Shanthamallu

et al., 2019a) that uses the connectome to constrain the message passing be-

tween two network layers representing edges and nodes, respectively (Chapter

5). Using connectomes from the Human Connectome Project (HCP), we show

that the proposed approach can effectively predict meta-information such as

age and gender, and accurately recover the volumes of different brain regions,

which are known to be encoded in the connectomes.

1.7 List of Publications

In this section, I provide the list of publications that have allowed me to publish my

research contributions in graph representation learning space, including adversarial

attacks and defense on GNN models:

• Uday Shankar Shanthamallu, Jayaraman J. Thiagarajan, and Andreas Spanias.

“A regularized attention mechanism for graph attention networks.” ICASSP

2020-2020 IEEE International Conference on Acoustics, Speech, and Signal Pro-

cessing (ICASSP). IEEE, 2020.

• Uday Shankar Shanthamallu, Jayaraman J. Thiagarajan, and Andreas Spanias.

“Uncertainty-Matching Graph Neural Networks to Defend Against Poisoning

Attacks.” Proceedings of the AAAI Conference on Artificial Intelligence. Vol.

35. No. 11, February 2021.

• Uday Shankar Shanthamallu, Jayaraman J. Thiagarajan, Huan Song, Andreas

Spanias. “Gramme: Semisupervised learning using multilayered graph atten-

tion models”. IEEE Transactions on neural networks and learning systems,

31(10), 3977-3988, November 2019. U.S. Non-Provisional Patent Application

Serial No. 16/739,824.

15

• Uday Shankar Shanthamallu, Qunwei Li, Jayaraman J. Thiagarajan, Rushil

Anirudh, Timo Bremer. “Modeling Human Brain Connectomes using Struc-

tured Neural Networks”. NeurIPS workshop on Graph Representation Learn-

ing, December 2019.

• Uday Shankar Shanthamallu, Andreas Spanias, Cihan Tepedelenlioglu, Mike

Stanley. “A brief survey of machine learning methods and their sensor and IoT

applications.” 2017 8th International Conference on Information, Intelligence,

Systems & Applications (IISA). IEEE, August 2017.

1.8 Organization of the Dissertation

The organization of the rest of the dissertation is given below. Chapter 2 provides

a detailed literature review on graph representation learning methods in the context

of graph-based machine learning. It covers a multitude of embedding techniques

including Laplacian (Belkin and Niyogi, 2003), shallow embedding techniques like

Node2Vec (Grover and Leskovec, 2016), and graph neural networks (Wu et al., 2019b).

Chapter 3 highlights the vulnerabilities of GNN models to adversarial attacks and a

novel architecture is introduced to defend against such attacks. Chapter 4 deals with

approaches for extending graph neural networks to multivew graphs which consist

of more than one aspect of relationships. These multi-layer graphs are composed of

many adjacency matrices for representing the relationships. Chapter 5 deals with the

application of graph neural networks to biological data such as human connectome.

Chapter 6 provides the concluding remarks of this dissertation and summarizes future

research directions.

16

Chapter 2

LITERATURE REVIEW ON GRAPH REPRESENTATION LEARNING

In this chapter, prior work on graph representation learning in the context of

machine learning is reviewed. Representation learning approaches on graphs can be

broadly classified into three distinct methods: matrix factorization, encoder-decoder

including random walk, and graph neural networks. We begin with the traditional

representation learning approaches for single-layer graphs that use graph Laplacian

embedding, regularization methods, and matrix factorization. We then discuss sev-

eral shallow embedding approaches that learn low-dimensional vector embeddings for

graph structure in an unsupervised way. Next, we introduce graph neural network

approaches that use graph structure either directly or indirectly in neural networks.

We then discuss the attention model on graphs that use attention head units to learn

hidden representations for each node. Lastly, we review the existing methodologies

that can be applied to multi-layer graph analysis.

2.1 Matrix Factorization Methods

Since many of the real-world networks are rather sparse, embedding techniques

involved matrix factorization of graph adjacency matrix to find an appropriate low-

rank matrix for the original graph. The factorization method corresponds to the

structure-preserving dimensionality reduction process. In spectral graph theory, the

spectral properties of the graphs are studied via matrix decomposition of the associ-

ated graph matrices such as adjacency matrix - A and the graph Laplacian matrix -

L and its variants. In particular, the graph properties are understood through the

lens of eigenvalues and eigenvectors obtained from the associated graph matrices.

17

The Laplacian allows a natural link between discrete representations (graphs) and

continuous representations (vector spaces). As an example, spectral clustering is the

solution obtained for the graph partitioning problem. The graph Laplacian Matrix

is obtained from adjacency matrix and the degree matrix D, where D is a diagonal

matrix with the degree of each node as its diagonal elements. The Laplacian matrix

is obtained as

L = D−A (2.1)

L is generally referred to as unnormalized graph Laplacian. There are two other

normalized versions of the Laplacian:

• Symmetric normalized Laplacian

Lsym = D−
1
2 LD−

1
2

• Random walk Laplacian

LRW = D−1L

Given any variant of graph Laplacian, the k dimensional embedding for each node

is obtained by first performing Eigen-decomposition of the Laplacian and selecting

the first k Eigenvectors (corresponding to the k smallest Eigenvalues). Laplacian

eigenmaps (Belkin and Niyogi, 2003) is one of the popular methods that build upon

the spectral clustering approach.

2.2 Encoder-Decoder Methods

In this section, node embedding techniques that are based upon the encoder-

decoder framework are discussed. In this style of learning, the encoder maps the

nodes of the graph into a low-dimensional vector space (a.k.a embedding) as seen in

Figure 2.1. Then a decoder model takes the low-dimensional node embeddings and

18

uses them to reconstruct information about each node’s neighborhood in the original

graph. Note that the simplest form of such an encoder can be a look-up table.

Figure 2.1: Encoder-Decoder Approach for Learning Node Embeddings. The Encoder

(Enc) Maps the Nodes into a Low Dimensional Space Such That the Nearby Nodes

in the Graph Have Short Distances in the Embedding Space.

More formally,

ENC : V −→ Rd

The embeddings for all the nodes in the graph can be represented by the matrix

Z ∈ R|V|×d. On the other hand, the decoder tries to reconstruct the graph from

the embeddings generated by the encoder. For example, one can employ a pairwise

decoder to reconstruct the edge (if any) connecting vi and vj from the embeddings zi

and zj respectively. Formally,

DEC : Rd × Rd −→ R+

DEC
(
ENC(vi),ENC(vj)

)
= DEC(zi, zj) ≈ Aij (2.2)

19

The encoder-decoder framework can be optimized by minimizing the discrepancy

between the decoder reconstruction objective given in equation 2.2 and the graph

adjacency matrix. In summary, the encoder and decoder are trained so that the pair-

wise node relationships can be effectively encoded in the embeddings. Such encoder-

decoder methods can be seen in GraRep(Cao et al., 2015), HOPE (Ou et al., 2016).

2.2.1 Random Walk Methods

Random-walk methods perform a large number of random walks of fixed length

where the starting node is chosen randomly. These short random walks provide the

strength of connectedness between different nodes. Nodes that frequently co-occur in

a random walk should be closely embedded in the embedding space. Also, random

walks can capture the global structure of the graphs in addition to the local struc-

ture. DeepWalk (Perozzi et al., 2014) and node2vec (Grover and Leskovec, 2016)

algorithms, which are random-walk based methods, utilizes neural optimization tech-

niques originally designed for language modeling to obtain dense, low-dimensional

embeddings for nodes in a graph. In language modeling, the goal is to learn a low-

dimensional vector representation for natural words, based on the context, from a

large corpus. The latent representations reveal rich semantic information and esti-

mate the likelihood of a specific sequence of words appearing in the corpus. Similar

to word embeddings in the NLP literature, the distances in latent dimensions pro-

vide a convenient metric for understanding similarities between nodes in the network.

Furthermore, such continuous vector spaces enable the definition of smooth decision

boundaries between different communities and groups with homogeneous behavior.

Given a graph G and the binary adjacency matrix of size |V| × |V|, the goal is to

generate latent representations, Z ∈ R|V|×d, where d is the number of dimensions of

the embedding and |V| indicates the cardinality of the vertex set.

20

Formally, a random walk is a stochastic process with a set of random variables

defined as vertices chosen at random from the neighbors of each vertex in the sequence.

The ability of random walk to reveal the local structure makes it a natural tool for

extracting information from graphs. Let us consider a random walk Wt in step t,

which is rooted at the vertex vi. The transition probability between the nodes vi and

vj can be expressed as

P (Wt+1 = vj|Wt = vi) = f(‖zi − zj‖2) (2.3)

where ‖zi−zj‖2 indicates the similarity metric between the two vertices in the latent

space to be recovered, and f is a linking function that connects the vertex similarity

to the actual co-occurrence probability. Interestingly, with an appropriate choice of

length of the walks, the true metric can be recovered accurately from the co-occurrence

statistics constructed using random walks. Furthermore, in (Perozzi et al., 2014),

the authors note that the frequency in which vertices appear in the short random

walks follows a power-law distribution, similar to words in natural language corpora.

This naturally motivates the use of ideas from neural language modeling. While

DeepWalk performs an unbiased random walk based on the depth-first sampling,

node2vec performs a biased random walk that allows visiting the previously visited

nodes.

Though the encoder-decoder approaches have achieved many successes in repre-

sentation learning for nodes, these shallow embedding techniques suffer some crucial

drawbacks. Firstly, a unique embedding is learned for each node as the encoder does

not share parameters. This makes the approach computationally inefficient as the

number of parameters grows as O(|V|). Secondly, the node attributes or the sig-

nal defined on each node are not incorporated while learning the embeddings. The

rich feature information on the nodes can provide additional insights into the node

21

neighborhood structure.

2.3 Graph Neural Network Methods

Some of the limitations seen in the previous methods can be overcome by utilizing

graph neural networks (GNN), an extension of neural networks for graph-structured

data. The central idea of GNN formalism is to construct efficient representation for

each node (or edge or graph) from the graph structure as well as node attributes (or

edge attributes) by allowing parameter sharing. The fundamental premise of GNN lies

in the message passing mechanism in which (i) node feature information is exchanged

between nodes, (ii) messages are aggregated and transformed using a non-linearity

using neural networks.

Figure 2.2: The Blue Node vi Updates Its Feature by First Aggregating Messages

from Its Neighboring Nodes (vj, vk, vl, vm) with the Help of a Message Function M

and Then Transforms the Aggregated Messages Using an Update Function U .

2.3.1 Message Passing Framework

The message passing framework repeatedly applies the following two functions on

every node of the graph.

• Message Function: The message function M is an arbitrary differentiable func-

22

tion (neural networks, for example). The message received by the node vi is

formally given as

mi =
∑
j∈Ni

M(hi,hj, eij) (2.4)

Here, hi, hj denote the current hidden representations of node vi and vj respec-

tively. In a nutshell, the message function generates a message based on the

node’s neighborhood.

• Update Function: The update function uses hi, the current representation of the

node vi, and the received message mi to generate the transformed representation

h+
i as shown below:

h+
i = U(hi,mi) (2.5)

Note that the update function can also be any arbitrary differentiable function

with learnable parameters.

An example of the message passing framework is given in Figure 2.2. The message

passing framework can be applied repeatedly on each node, which facilitates messages

from nodes other than the local neighborhood. In other words, if the message passing

framework is applied 3 times, then the messages can be received from nodes in the

3-hop neighborhood.

2.3.2 Graph Convolutional Network

Given the success of convolutional neural networks(CNNs) in feature learning

from data defined on regular grids (e.g., images), the next generation of graph neural

networks focused on generalizing convolutional neural networks to graphs with node

23

attributes. Node attributes are nothing but the data defined on the graph at each

vertex. Collectively, these are termed graph signals. An example of a graph with

signals defined on the nodes is shown in Figure 2.3. The generalization of CNNs to

graphs is not straightforward because convolution and pooling(downsampling) op-

erations are defined for regular grids. In graph convolutional neural networks, the

feature learning is carried out to transform signals defined at nodes into meaningful

latent representations, akin to filtering of signals (Shuman et al., 2013). The most

challenging task in generalizing CNNs to graphs is defining a localized graph filter.

CNNs extract the local stationarity property of the input data or signals by revealing

local features that are shared across the data domain.

Figure 2.3: The Signal Defined on the Nodes of the Graph in Comparison to the

Signals Defined on the Regular Euclidean Grid (Images). The Red Color Indicates

That the Graph Signal Is Positive Where as Blue Color Indicates a Negative Value.

Since the spatial convolution operation cannot be directly defined on arbitrary

graphs, various spectral domain and neighborhood-based techniques have been de-

veloped. As the name suggests, spectral approaches operate using the spectral rep-

resentation of graph signals, defined using the eigenvectors of the graph Laplacian.

For example, in (Bruna et al., 2013), convolutions are realized as multiplications in

the graph Fourier domain; however, since the filters cannot be spatially localized

24

on arbitrary graphs, this relies on the explicit computation of the spectrum based

on matrix inversion. Consequently, special families of spatially localized filters have

been considered. Examples include the localization technique in (Henaff et al., 2015),

and Chebyshev polynomial expansion based localization in (Defferrard et al., 2016a).

Building upon this idea, Kipf and Welling (Kipf and Welling, 2016) introduced graph

convolutional neural networks (GCN) using a localized first-order approximation of

spectral graph convolutions, wherein the filters operate within a one-step neighbor-

hood, thus making it scalable to even large networks.

On the other hand, with non-spectral approaches, convolutions are defined directly

on graphs and can work with different-sized neighborhoods. For example, localized

spatial filters with different weight matrices for varying node degrees are learned in

(Duvenaud et al., 2015). Whereas, in approaches such as (Niepert et al., 2016) neigh-

borhood for each node is normalized to achieve a fixed size neighborhood. More re-

cently, attention models, commonly used to model temporal dependencies in sequence

modeling tasks, were generalized to model neighborhood structure in graphs. More

specifically, graph attention networks (Velickovic et al., 2017) employ dot-product-

based self-attention mechanisms to perform feature learning in semi-supervised learn-

ing problems.

2.3.3 Graph Attention Models

In this section, we discuss in detail the recently proposed graph attention model (Velick-

ovic et al., 2017), which uses an attention mechanism to learn node embeddings. The

attention mechanism is a widely adopted strategy in sequence-to-sequence modeling

tasks. A parameterized function is used to determine relevant parts of the input

to focus on to make decisions. A recent popular implementation of the attention

mechanism in sequence models is the Transformer architecture by Vaswani et al.

25

(Vaswani et al., 2017), which employs scalar dot-product attention to identify depen-

dencies. Furthermore, this architecture uses a self-attention mechanism to capture

dependencies within the same input and employs multiple attention heads to enhance

the modeling power. These important components have been subsequently utilized

in a variety of NLP tasks (Yang et al., 2017; Barone et al., 2017) and clinical model-

ing (Song et al., 2017).

An attention head in the graph attention layer learns a latent representation for

each node by aggregating the features from its neighbors. More specifically, the fea-

ture at a node is computed as the weighted combination of features from its neighbors,

where the weights are obtained using the attention function. Following our notations,

each node vi is endowed with a D−dimensional attribute vector xi, and hence the

input to graph attention layer is denoted by the set of attributes {x1,x2, · · · ,xN}

or X ∈ R|V|×D denoted in matrix form. The attention layer subsequently produces

d−dimensional latent representations {z1, z2, · · · , zN} represented in matrix form as

Z ∈ R|V|×d.

An attention head is constructed as follows: First, a linear transformation is

applied to the features at each node, using a shared and trainable weight matrix

Θ ∈ Rd×D, thus producing intermediate representations,

X̃ = XΘT (2.6)

Subsequently, a scalar dot-product attention function is utilized to determine atten-

tion weights for every edge in the graph, based on features from the incident neigh-

bors. Formally, the attention weight for the edge eij connecting the nodes vi and vj

is computed by performing dot-product attention mechanism as shown below

aij = 〈a, x̃i||x̃j〉 (2.7)

where a ∈ R2d denotes the parameters of the attention function, and || represents

26

concatenation of the transformed features of nodes vi and vj respectively. The atten-

tion weights aij are computed with respect to every node in the neighborhood of vi,

i.e., for vj ∈ Ni ∪ {vi}, where Ni represents the neighborhood of vi. Note that, we

include the self-edge for every node while implementing the attention function. The

weights are then normalized across all neighboring nodes using a softmax function,

thus producing the normalized attention coefficients.

αij = Softmaxj(aij) =
exp(aij)∑

k∈Ni∪{vi} exp(aik)
(2.8)

Finally, the normalized attention coefficients are used to compute the latent represen-

tation at each node, through a weighted combination of the node features. Note that

a non-linearity function σ is also utilized at the end to improve the approximation.

zi = σ

(∑
j∈Ni∪{vi}

αijx̃j

)
(2.9)

An important observation is that the attention weights are not required to be sym-

metric. For example, if a node vi has a strong influence on node vj, it does not imply

that node vj also has a strong influence on vi and hence αij 6= αji. The operations

from equations (2.6) to (2.9) constitute a single head. While this simple parame-

terization enables effective modeling of relationships in a graph while learning latent

features, the modeling capacity can be significantly improved by considering multiple

attention heads. Following the Transformer architecture (Vaswani et al., 2017), the

output latent representations from the different heads can be aggregated using either

concatenation or averaging operations.

2.4 Multi-layered Graph Analysis

Prior work on multi-layered graphs focuses extensively on unsupervised commu-

nity detection and they can be broadly classified into methods that obtain a consensus

27

community structure for producing node embeddings (Dong et al., 2012), (Dong et al.,

2014), (Kim et al., 2017), (Tagarelli et al., 2017), and methods that infer a separate

embedding for a node in every layer while exploiting the inter-layer dependencies,

and produce multiple potential community associations for each node (Mucha et al.,

2010), (Bazzi et al., 2016).

Analysis and inferencing with multi-layered graphs is a challenging yet crucial

problem in data mining. With each layer characterizing a specific kind of relationship,

the multi-layered graph comprehensively represents every type of relationship between

nodes, which can be utilized to gain insights into complex datasets. Even though the

multi-layered graph is more comprehensive than the single-layer graph, a question

that naturally arises is how to fuse the information effectively. Most existing work in

the literature focuses on community detection, and an important class of approaches

tackles this problem through joint factorization of the multiple graph adjacency matri-

ces to infer embeddings (Tang et al., 2009; Dong et al., 2012). In (Gligorijević et al.,

2016), the symmetric non-negative matrix tri-factorization algorithm is utilized in

order to factorize the adjacencies into non-negative matrices, including a shared clus-

ter indicator matrix. Other alternative approaches include subgraph pattern mining

(Zeng et al., 2006; Boden et al., 2012) and information-theoretic optimization based

on Minimum Description Length (Papalexakis et al., 2013). A comprehensive survey

studying the algorithms and datasets on this topic can be found in (Kim and Lee,

2015). A unified optimization framework is developed in (Li et al., 2018) to model

within-layer connections and cross-layer connections simultaneously to generate node

embeddings for interdependent networks. Recently, Song and Thiagarajan (Song and

Thiagarajan, 2018) proposed to generalize the DeepWalk algorithm to the case of

multi-layered graphs through optimization with proxy clustering costs and showed

the resulting embeddings produce state-of-the-art results.

28

Chapter 3

GRAPH ADVERSARIAL ATTACK AND DEFENSE

Representation learning methods, in particular deep learning, have produced state-

of-the-art results in image analysis, language modeling, and more recently with graph-

structured data (Torng and Altman, 2019). In particular, graph neural networks

(GNNs) (Kipf and Welling, 2017; Hamilton et al., 2017) have gained prominence

due to their ability to effectively leverage the inherent structure to solve challeng-

ing tasks, including node classification, link prediction, and graph classification (Wu

et al., 2020).

Despite their widespread use, GNNs are known to be vulnerable to various adver-

sarial attacks, similar to standard deep models. In other words, a small imperceptible

perturbation intentionally designed in the graph structure can lead to non-trivial per-

formance degradation as seen in (Zügner et al., 2018). This is shown in Figure 3.1.

This limits their application to high-risk and safety-critical domains. For example,

the popular graph convolutional networks (GCN), which rely on aggregating message

passes from a node’s neighborhood, are not immune to poisoning attacks, wherein an

attacker adds fictitious edges to the graph before the model is trained.

Though there exists a vast literature on adversarial attacks on images (Goodfel-

low et al., 2014; Szegedy et al., 2013) and their countermeasures (Ren et al., 2020;

Chakraborty et al., 2018), designing attack strategies for graphs is a more recent topic

of research. In general, designing graph attacks poses several challenges: (i) the ad-

versarial search space is discrete; (ii) nodes in the graphs are non-i.i.d., and (iii) lack

of effective metrics to measure structural perturbations. Following the progress in

graph adversarial attacks, designing defense mechanisms or building robust variants

29

Figure 3.1: A Small Imperceptible Perturbation by the Adversary Fools the GNN

Model to Make Wrong Predictions.

of GNNs have become critical (Zhu et al., 2019).

In this chapter, we propose a new approach UM-GNN aimed at improving the ro-

bustness of GNN models, particularly against challenging poisoning attacks to the

graph structure. Our approach jointly trains a standard GNN model (implemented

using GCN) and a surrogate predictor, which accesses only the features, using a novel

uncertainty matching strategy. The surrogate demonstrates significantly improved

robustness to challenging attacks through a systematic knowledge transfer from the

GNN model. The key contributions of this work are summarized as follows:

• A novel architecture for semi-supervised learning, UM-GNN, that can be built

upon any existing GNN model and is immune to evasion attacks by design;

• An uncertainty matching-based knowledge transfer strategy for achieving ro-

bustness to structural perturbations;

• Across a suite of global poisoning attacks, UM-GNN consistently outperforms

existing methods, including the recent Robust GCN (Zhu et al., 2019);

• UM-GNN achieves significantly lower misclassification rate (> 50% improvement)

against targeted attacks.

30

3.1 Problem Setup

In this work, we are interested in building graph neural networks robust to adver-

sarial attacks on the graph structure. We represent an unweighted graph using the

tuple G = (V , E), where each node vi may be endowed with a D-dimensional node

attribute vector xi ∈ RD. Alternately the graph data may be represented using an

adjacency matrix A and the node attribute matrix X. We focus on a transductive

learning setting as seen in definition 1.3.1, where the goal is to perform node classifi-

cation. In particular, we assume that we have access to labels for a subset of nodes

VL ⊂ V and we need to predict the labels for the remaining nodes (v ∈ V \ VL) in

mathsfG. Each node vi is associated with a label yi ∈ Y = [1, · · · , C].

While a variety of approaches currently exist to solve this semi-supervised learning

problem, we restrict our study to the recently successful solutions based on graph

neural networks (GNNs). Different flavors of GNNs are reviewed in section 2.3. One

of the popular technique is the standard graph convolutional network (GCN) (Kipf

and Welling, 2017), which combines message function (equation 2.4) and update

function (equation 2.5) in to one as follows

hi = σ

(∑
j∈Ni

cijhjΘ

)
(3.1)

Here, the message computation is scaled by cij = 1√
didj

, a symmetric normalization

constant.

As mentioned earlier, our goal is to defend against adversarial attacks on the graph

structure. Formally, we assume that an adversary induces structural perturbations to

the graph, i.e., Ĝ = (Â,X) such that ‖A− Â‖0 ≤ ∆. Here, ∆ is used to ensure that

the adversarial attack is imperceptible. Note that one can optionally also consider

the setting where the features X are also perturbed. While different classes of attacks

currently exist (see Section 3.5), we focus on poisoning attacks, wherein the graph is

31

corrupted even before the predictive model is trained. This is in contrast to evasion

attacks, which assume that the model is trained on clean data and the perturbations

are introduced at a later stage. We consider different popular poisoning attacks from

the literature (see Section 3.3) and study the robustness of our newly proposed UM-GNN

approach.

3.2 Proposed Approach

In this section, we present the proposed approach, Uncertainty Matching-GNN

(UM-GNN), and provide details on the model training process.

While there exist very few GNN formulations for specifically defending against

adversarial attacks, the recent robust GCN (RGCN) approach (Zhu et al., 2019) has

been the most effective when compared to standard GCN and GAT models. At

its core, RGCN relies on using the aleatoric uncertainties in the graph structure to

weigh the neighborhood. Since there exists no a priori knowledge about the structural

uncertainties, in practice, simple priors such as the normal distribution (zero mean,

unit variance) are placed on the node features and propagated through the network to

estimate uncertainties at the output of each layer. Finally, a modified message passing

is utilized, wherein neighboring nodes with low feature variance are emphasized during

message computation to produce robust features. Despite its empirical benefits, this

approach suffers from three main challenges: (i) the choice of the prior is critical

to its success; (ii) since the estimated uncertainties are not calibrated, the fidelity

of the uncertainty estimates themselves can be low, thus leading to only marginal

improvements over GCN in practice; (iii) the model (epistemic) uncertainties are not

considered, which can impact the generalization of the inferred parameters to the

test nodes. In order to alleviate these challenges, we propose UM-GNN, a new GNN

formulation that uses an uncertainty matching-based knowledge transfer strategy for

32

Figure 3.2: An Illustration of the Proposed UM-GNN with GNN Model M and Fully

Connected Neural Network F. We Achieve Robustness to Poisoning Attacks Through

an Uncertainty Matching Strategy. After the GNN Model M Is Trained, We Use the

Surrogate Model F to Make Predictions for the Unlabeled Nodes.

33

achieving robustness to graph perturbations. In contrast to RGCN, UM-GNN utilizes

epistemic uncertainties from the GNN and does not require any modifications to the

message passing module. As we will show in our empirical studies, our approach

provides significant improvements in defending against well-known poisoning attacks.

Figure 3.2 provides an illustration of UM-GNN, which jointly trains a GNN model

M(Θ) and a surrogate model F(Φ) that is trained solely using the features X without

any knowledge of the graph structure. Here Θ and Φ denote the learnable model

parameters. Since we expect the graph structure to be potentially corrupted (though

severity or type of corruption is unknown), the predictions from the GNN model

could be unreliable due to the presence of noisy edges. We reformulate the problem

of making M robust into systematically transferring the most reliable knowledge to

the surrogate F so that F can make robust predictions. When compared to existing

regularization strategies such as GraphMix (Verma et al., 2019), we neither use the

(solely) feature-based model F to regularize the training of M nor are the weights

shared between the networks. Instead, we build a surrogate predictor that selectively

extracts the most reliable information from the “non-robust” M with the hope of being

more robust to the noise in the graph structure. Interestingly, by design, the model

F does not rely on the graph structure and hence is oblivious to evasion attacks.

As shown in Figure 3.2, after training, we only use the surrogate F to obtain the

predictions for unlabeled nodes.

3.2.1 Bayesian Uncertainty Estimation

Quantifying the prediction uncertainties in the graph neural network M is at the

core of UM-GNN. We propose to utilize Bayesian Neural Networks (BNNs) (Blundell

et al., 2015), in particular its scalable variant based on Monte Carlo dropout (Sri-

vastava et al., 2014). In general, dropout variational inference is used to estimate

34

the epistemic uncertainties: A deep network is trained with dropout. Even at test

time, the dropout is used to generate samples from the approximate posterior through

Monte Carlo sampling. Interestingly, it was showed in (Gal and Ghahramani, 2016)

that the dropout inference minimizes the KL divergence between the approximated

distribution and the posterior of a deep Gaussian process. The final prediction can

then be obtained by marginalizing over the posterior, using Monte Carlo integration.

In our formulation, the node classification task is transductive in nature and does

not require test-time inferencing. Hence, we propose to leverage the prediction un-

certainties in the training loop itself. More specifically, we obtain the prediction for

each node vi as

p(yi = c; xi,A) = Softmax

(
1

T

T∑
t=1

M(xi,A; Θ̃)

)

Here, we make T forward passes for xi with different masked weights Θ̃ (using dropout

inference) and compute the final prediction using a sample average. Note, we assume

that the predictive model produces logits, i.e., no activation in the final prediction

layer, and hence compute the Softmax of the average predictions. We then use

the entropy of the resulting prediction p(yi = k; xi,A) as an estimate of the model

uncertainty for node vi.

Unc(vi) = Entropy

(
p(yi = c; xi,A)

)
= −

C∑
c=1

p(yi = c) log p(yi = c) (3.2)

3.2.2 Algorithm

We now present the algorithm to train an UM-GNN model given a poisoned graph

Ĝ = (Â,X). As described earlier, our architecture is composed of a graph neural

network M(Θ) and a surrogate model F(Φ) that takes only the features X as input.

35

While we implement M using graph convolution layers as defined in equation (3.1),

it can be replaced using any other message passing strategy, e.g, graph attention

layers (Veličković et al., 2018). Given that all datasets we consider in our study

contain vector-values defined at the nodes, we implement F as a fully connected

network. The optimization problem used to solve for the parameters Θ and Φ is

given below:

minimize
Θ,Φ

Lce + λmLm + λsLs. (3.3)

Here, the first term Lce corresponds to the standard cross-entropy loss over the set of

labeled nodes computed using the predictions from the GNN model M.

The second term Lm is used to align the predictions between the surrogate F

and GNN model M so that the resulting classifiers are consistent. Directly distilling

knowledge from the GNN model enables F to actually make meaningful predictions

for the nodes, even without accessing the underlying graph structure. However, using

a poisoned graph to build M can lead to predictions with high uncertainties. Such

noisy examples may lead to unreliable gradients, thus making the knowledge transfer

unstable. Hence, we propose to attenuate the influence of samples with high predic-

tion uncertainty. We refer to this process as uncertainty matching and implement

it using the KL divergence. However, this can be readily replaced using any general

divergence or the Wasserstein metric. Formally,

Lm =

|V|∑
i=1

βi KLDiv(M(xi,A; Θ),F(xi; Φ)) (3.4)

where the weight βis are computed as

βi =
exp(−αi)∑
j exp(−αj)

; where αi = log
1

1 + Unc(vi)
(3.5)

KLDiv denotes KL divergence loss measure provided by PyTorch framework. When

the prediction uncertainty for a sample is low, it is given higher attention during

36

(a) Citeseer with Random Attack

(b) Pubmed with DICE Attack

Figure 3.3: Illustration of the Behavior of UM-GNN for Two Datasets Under Varying

Types and Levels of Poisoning Attacks. In Each Case, We Show the Test Accuracy

Curves Across the Training Epochs From Both the Gnn and Surrogate Models. As the

Noise Severity Increases, the Surrogate Model F Demonstrates Improved Robustness.

matching. This loss is evaluated using both labeled and unlabeled nodes since it does

not need access to the true labels. Finally, the third term Ls corresponds to a label

smoothing regularization that attempts to match the predictions from F to a uniform

distribution (KL divergence). This is included to safeguard the surrogate model from

being misguided by the graph network when the latter’s confidences are not well-

calibrated due to the poisoned graph. In all our experiments, we set λm = 0.3 and

λs = 0.001. Figure 3.3 illustrates the behavior of UM-GNN for two different datasets

under varying levels of poisoning. As the severity of the corruption increases, the

surrogate model achieves significantly higher test performance when compared to the

37

graph-based model M. In cases where no explicit node attributes are available, F

may be implemented as a GNN, and the uncertainty matching strategy will still be

applicable, and this is part of our future work.

3.3 Poisoning Attacks Used for Evaluation

While there is a broad class of adversarial attacks designed to be applied during

the testing phase of the model, we focus on the more challenging poisoning attacks.

Poisoning attacks are intended to disrupt the model training by injecting carefully

crafted corruptions into the training data. In particular, it is well known that they are

highly effective at degrading the performance of GNNs. More importantly, existing

robust modeling variants such as RGCN provide only marginal improvements over the

standard GNN models when presented with poisoned graphs. Hence, we evaluate the

proposed UM-GNN using several widely-adopted poisoning attacks. Here, we briefly

describe those attacks and provide our implementation details. For each type of

attack, we evaluate the model performance by varying the ratio of noisy edges with

respect to the total number of existing edges. Any edge that is added or perturbed

is referred to as noisy edge in this setup.

Random Attack

This is a purely black-box attack, where the attacker does not know ground truth

labels or the model information. More specifically, new edges are randomly introduced

in this attack between two nodes that were not previously connected. Though being

simple, this attack is known to be effective, particularly at higher noise ratios and

sparse graphs. We varied the ratio of noisy edges between 10% and 100% of the total

number of edges in the original graph for our experiments.

38

DICE Attack (Waniek et al., 2018)

This is a gray-box attack where the attacker has information about the node labels

but not the model parameters. This attack uses a modularity-based heuristic to Dis-

connect Internally (nodes from the same community) and Connect Externally (DICE)

(nodes from different communities). For a given budget, an attacker randomly deletes

edges that connect nodes from the same class; and adds edges between randomly cho-

sen node pairs of samples from different classes. Similar to the random attack, we

varied the perturbation ratio between 10% and 100% of the total number of existing

edges.

Meta-Gradient Attack

(Mettack) (Zügner and Günnemann, 2019) Mettack is a more challenging gray-box

attack where the attacker utilizes the graph structure and labels to construct a surro-

gate model, which is then utilized to generate the attacks. More specifically, Mettack

formulates a bi-level optimization problem of maximizing the classification error on

the labeled nodes after optimizing the model parameters on the poisoned graph. In

other words, the graph structure is treated as the hyper-parameter to optimize, and

this is solved using standard meta-learning strategies. Since the surrogate model

is also designed based on GCNs (similar architectures as our predictive model) and

trained with the entire graph (transductive setting), this gray-box attack is powerful

in practice. Hence we used lower noise ratios for our experiments, i.e., between 1%

to 10% of the total existing edges compared to Random and DICE attacks.

Projected-Gradient Attack

(PGD) (Xu et al., 2019) PGD is a first-order topology attack that attempts to de-

termine the minimum edge perturbations in the global structure of the graph, such

39

Dataset # Nodes # Edges # Features # Classes

Cora 2708 5278 1433 7

Citeseer 3327 4614 3703 6

Pubmed 19717 44325 500 3

Table 3.1: Summary of the Three Benchmark Citation Datasets Used in Our Exper-

ments.

that the generalization can be maximally affected. Since PGD cannot access the true

model parameters, we use a surrogate GNN model to generate the attacks. Similar to

Mettack, we varied the perturbation ratio between 1% and 10% in this case as well.

Fast Gradient Attack

(FGA) (Chen et al., 2018) FGAs are created based on gradient information in GNNs,

and they belong to the category of targeted attacks. The goal of a targeted attack is

to mislead the model into classifying a target node incorrectly. In FGA, the attacker

adds an edge between node pairs characterized by the largest absolute difference in

their gradients. We choose FGA to show the superior performance of UM-GNN even

against targeted attacks.

The implementations for Mettack, PGD, and FGA were based on the publicly

available DeepRobust (Jin et al., 2020) library. Due to the lack of computationally

efficient implementations, we could not generate these attacks on large-scale graphs

such as Pubmed.

3.4 Empirical Evaluation

In this section, we evaluate the robustness of UM-GNN against the graph poisoning

methods discussed in the previous section. As mentioned in Section 3.3, non-targeted

40

Figure 3.4: Random Attack : UM-GNN Achieves Robustness to Random Attacks, Pro-

viding Over 5−10% Improvements in the Test Accuracy, Even When the Noise Ratio

is 1.0.

Figure 3.5: DICE Attack : For All Datasets, UM-GNN Is Consistently More Robust in

This Challenging Scenario, Where the Attacker Both Adds and Deletes Edges. The

Performance Improvement with UM-GNN Is as High as ≈ 15% (Citeseer).

poisoning attacks are far more challenging and pose a more realistic threat to graph-

based models.

41

Datasets

We consider three benchmark citation networks extensively used in similar studies:

Cora, Citeseer, and Pubmed (Sen et al., 2008). Nodes represent the documents, and

citations among the documents are encoded as undirected edges. We follow the typical

transductive node classification setup (Kipf and Welling, 2017; Veličković et al., 2018)

while using the standard train, test, and validation splits for our experiments (see

Table 3.1).

Baselines

We compare the proposed approach with three important baseline GNN models,

which adopt different message-passing formalisms and have been successfully used in

semi-supervised node classification tasks. Note that the performance of a feature-only

classifier (MLP) which ignores the graph structure, produces trivial performances with

the following accuracies: 55.1% for Cora, 46.5% for Citeseer, and 71.4% for Pubmed.

GCN : We use the GCN model, proposed by Kipf & Welling, based on the message

passing formulation in equation (3.1).

GAT (Veličković et al., 2018): This model uses a multi-head attention mechanism

to learn the hidden representations for each node through a weighted aggregation of

features in a closed neighborhood where the weights are trainable.

RGCN (Zhu et al., 2019): This is a recently proposed approach that explicitly en-

hances the robustness of GCNs. RGCN models node features as distributions as

opposed to deterministic vectors in GCN and GAT models. It employs a variance-

based attention mechanism to attenuate the influence of neighbors with large variance

(potentially corrupted). Following (Zhu et al., 2019), we set hidden dimensions at 16

and assume a diagonal covariance for each node.

42

Figure 3.6: Mettack - This Gray-box Attack Is Known to Be Highly Effective at

Causing Performance Degradation in GNNs. However, UM-GNN Consistently Provides

3− 5% Improvements in the Test Accuracy over the Baselines.

We set the number of layers (2 layers) and other hyper-parameter settings for all

baselines as specified in their original papers. We set the number of hidden neurons

to 16 for both GCN and GAT baselines. In addition, we set the number of attention

heads to 8 for GAT. We implemented all the baselines and the proposed approach

using the Pytorch Deep Graph Library (version 0.5.1) (Wang et al., 2019). In our

implementation of UM-GNN, the GNN model M was designed as a 2−layer GCN similar

to the baseline, and the surrogate F was a 3−layer FCN with configuration 32−16−K,

where K is the total number of classes.

3.4.1 Results

We evaluated the classification accuracy on the test nodes for the datasets against

each of the attacks under varying perturbation levels. For random and DICE attacks,

we varied the ratio of noisy edges to clean edges between 0.1 and 1. Since Mettack

43

and PGD attacks are more powerful, we used noise ratios in the range (0.01, 0.1). For

all the 4 global attacks, we repeated the experiment for 20 random trials (different

corruption) for each noise ratio and reported the expected accuracies along with their

standard deviations.

(i) Random Attack : The results for random attacks for all three datasets are shown

in Figure 3.4. As discussed earlier, RGCN provides only a marginal improvement

over the vanilla GCN and GAT. However, UM-GNN consistently outperforms the base-

lines by a large margin even when the ratio of noisy edges to clean edges is high. In

addition, UM-GNN has the least variance in performance compared to the baselines.

In comparison, GAT appears to be the most sensitive to random structural pertur-

bations, and its low performance strongly corroborates with the findings in Zhu et al.

(2019).

(ii) DICE Attack : In this challenging attack, where the attacker can both delete and

add edges, all baseline methods suffer from severe performance degradation when

compared to random attacks. Surprisingly, UM-GNN is significantly more robust and

achieves performance improvements as high as ≈ 15% (Figure 3.5, Citeseer, noise

ratio = 1.0). This clearly evidences the ability of UM-GNN to infer the true modular

structure, even when the graph is poisoned.

(iii) Mettack Attack : Since mettack uses a surrogate model and its parameters to

generate attacks, it is one of the more challenging attacks to defend. Nevertheless,

UM-GNN consistently outperforms all the baselines by a good margin, as illustrated in

Figure 3.6. Interestingly, under this attack, both GCN and RGCN perform poorly

when compared to the GAT model. However, the large variance makes GAT unreli-

able in practice, particularly when the attack is severe.

(iv) PGD Attack : This is comparatively the most severe, since the GCN model used

to generate the attack has the same architecture as our model

44

mathsfM , thus in actuality making it a white-box attack. From Figure 3.7, we

observe 1% − 2% improvements in mean performance over the baselines. More im-

portantly, the lower variance of UM-GNN across trials makes it a suitable choice for

practical scenarios.

(v) FGA Attack : For this targeted attack, we selected 100 test nodes with correct

predictions in a baseline GCN as our targets. Out of the 100 target nodes, 25 nodes

were those with the highest margin of classification, 25 nodes were those with the low-

est margin, and the remaining 50 were chosen randomly. Further, we set the number

of perturbations allowed on each target node to be equal to its degree (so that it is

imperceptible). The FGA attack was generated for each target node independently.

We checked if the targeted attack was defended successfully or not, i.e., whether the

targeted node was classified correctly using the poisoned graph. The overall misclas-

sification rates for the different models are shown in Table 3.2. We find that UM-GNN

provides dramatic improvements in defending against FGA attacks through its sys-

tematic knowledge transfer between the GNN M and the surrogate F. In Figure 3.8,

we plot the prediction probabilities for the true class (indicates a model’s confidence)

for all target nodes obtained using the original and poisoned graphs G and Ĝ respec-

tively. As it can be observed, UM-GNN improves the confidences considerably for all

samples, while the baseline methods demonstrate vulnerability to FGA.

3.5 Related Work

Semi-supervised learning based on graph neural networks (GNNs) enables repre-

sentation learning using both the graph structure and node features (Wu et al., 2020).

While GNNs based on spectral convolutional approaches (Bruna et al., 2013; Deffer-

rard et al., 2016a; Kipf and Welling, 2017) have been widely adopted, there also exists

models that implement convolutions directly using spatial neighborhoods (Duvenaud

45

Figure 3.7: PGD Attack - This Is Comparatively Very Severe, Since It Uses Gradients

from a GCN Model (Same Architecture as M). While the Accuracy Improvements

Are Still Non-trivial (1% − 2%), the More Interesting Observation Is the Reduced

Variance of UM-GNN Across Trials.

et al., 2015; Atwood and Towsley, 2016; Hamilton et al., 2017).

Graph Adversarial Attacks The vulnerability of GNNs to adversarial attacks

was first studied in (Zügner et al., 2018). Since then, several graph adversarial attacks

have been proposed (Jin et al., 2020; Sun et al., 2018). Adversarial attacks on graphs

can be broadly categorized as follows:

(i) Attacker knowledge: based on the level of access an attacker has to the model

internals, namely white-box (Xu et al., 2019; Wu et al., 2019a), gray-box (Zügner

et al., 2018; Zügner and Günnemann, 2019) and black-box attacks (Bojchevski and

Günnemann, 2019).

(ii) Attacker capability : based on whether the attacker perturbs the graph before Liu

et al. (2019) or after (Dai et al., 2018) the model is trained.

46

(a) Cora dataset

(b) Citeseer dataset

Figure 3.8: Results from FGA Attacks on Two Benchmark Datasets - on the X-axis,

We Plot the Prediction Probabilities for the True Class Obtained Using GCN on the

Clean Graph G. On the Y-axis, We Show the Prediction Probabilities Obtained after

the Targeted Attack. Note, for Each Method, We Show the Misclassified Nodes in

Red and the Correct Predictions in Green.

(iii) Attack strategy : based on whether the attacker corrupts the graph structure or

node features. While structural perturbations can be induced by deleting, adding,

or re-wiring edges, new nodes could also be injected into the graph (Shanthamallu

et al., 2020).

(iv)attacker’s goal : based on whether the attack is aimed at degrading the model’s

overall performance (Waniek et al., 2018) or targeting specific nodes either directly

or indirectly for their misclassification (Chen et al., 2018).

47

Model Cora Citeseer

GCN 0.78 0.73

GAT 0.71 0.74

RGCN 0.73 0.76

UM-GNN 0.21 0.23

Table 3.2: Misclassification Rates from 100 Target Nodes with FGA attack. A Lower

Value Implies Improved Robustness.

Graph Adversarial Defense As graph adversarial attacks continue to be studied,

efforts to design suitable defense strategies have emerged recently. For example,

Feng et al. adapted the conventional adversarial training approach to the case of

graphs in order to make GNNs more robust Goodfellow et al. (2014); Feng et al.

(2019). On the other hand, methods that rely on graph pre-processing have also

been proposed. For example, in Wu et al. (2019a), edges with low Jaccard similarity

between the constituent nodes were removed before training a GNN. Similarly, in Jin

et al. (2019), explicit graph smoothing was performed by training on a family of graphs

to defend against evasion attacks. Entezari et al. obtained a low-rank approximation

of the given graph and showed that it could defend against specific types of graph

attack Zügner et al. (2018). Recently, Zhu et al. (Zhu et al., 2019) introduced a robust

variant of GCN based on a variance-weighted attention mechanism and showed it to

be effective against different types of attacks.

3.6 Summary

In this work, we presented UM-GNN an uncertainty matching-based architecture

to explicitly enhance the robustness of GNN models. UM-GNN utilizes epistemic un-

48

certainties from a standard GNN M and does not require any modifications to the

message passing module. Consequently, our architecture is agnostic to the choice of

GNN to implement M. By design, the surrogate model F does not directly access

the graph structure and hence is immune to evasion-style attacks. Our empirical

studies evidenced the effectiveness of UM-GNN in defending against several graph poi-

soning attacks, thereby outperforming existing baselines. Furthermore, we showed

dramatic improvements in defense against targeted attacks (FGA). Future work in-

cludes studying the performance bounds of UM-GNN and developing extensions for

inductive learning settings.

49

Chapter 4

GRAMME: GRAPH ATTENTION MODELS FOR MULTI-LAYERED

EMBEDDINGS

With the emergence of multi-view datasets in real-world scenarios, commonly

represented as multi-layered graphs, conventional inferencing tasks have become more

challenging. Though multi-layered graphs lead to richer representations, extending

solutions from the single-graph case is not straightforward. Consequently, there is a

strong need for novel solutions to solve classical problems, such as node classification,

in the multi-layered case.

In this chapter, we present a novel approach, GrAMME (Graph Attention Mod-

els for Multi-layered Embeddings), for constructing multi-layered graph embeddings

using attention models. In contrast to the existing literature on community detec-

tion, we propose to perform feature learning in an end-to-end fashion with the node

classification objective and show that it is superior to employing separate stages of

network embedding (e.g., DeepWalk) and classifier design. First, we argue that even

in datasets that do not have explicit node attributes, using random features is a highly

effective choice. Second, we show that attention models provide a powerful framework

for modeling inter-layer dependencies and can easily scale to a large number of layers.

To this end, we develop two architectures, GrAMME-SG and GrAMME-Fusion, that

employ deep attention models for semi-supervised learning. While the former ap-

proach introduces virtual edges between the layers and constructs a Supra Graph to

parameterize dependencies, the latter approach builds layer-specific attention models

and subsequently obtains consensus representations through fusion for label predic-

tion. Using several benchmark multi-layered graph datasets, we demonstrate the

50

effectiveness of random features. We show that the proposed approaches significantly

outperform state-of-the-art network embedding strategies such as DeepWalk. The

main contributions of this work can be summarized as follows:

• For the first time, we develop attention model architectures for multi-layered

graphs in semi-supervised learning problems;

• We propose the use of random attributes at nodes of a multi-layered graph for

deep feature learning;

• We introduce a weighting mechanism in graph attention to better utilize com-

plementary information from multiple attention heads;

• The GrAMME-SG architecture that uses attention models to parameterize vir-

tual edges in a Supra Graph;

• The GrAMME-Fusion architecture that performs layer-wise attention modeling

and effectively fuses information from different layers;

• We evaluate the proposed approaches on several benchmark datasets and show

that they outperform existing network embedding strategies.

4.1 Graph Attention Networks

An attention head in graph attention network (GAT) (Velickovic et al., 2017)

parameterizes the local dependencies to determine the most relevant parts of the

neighborhood to focus on while computing the features for a node. Details of At-

tention head and Graph Attention Model are provided in Chapter 2. To quickly

summarize, an attention head is comprised of the following steps:

Step 1: Feed-forward layer that transforms each xi ∈ RD into x̃i ∈ Rd.

51

Step 2: A shared trainable dot-product attention mechanism which learns coeffi-

cients for each existing edge in the graph. This is carried out using the transformed

attributes of the connected neighbors, aij = 〈a, x̃i||x̃j〉, where a ∈ R2d denotes the

parameters of the attention function, and || represents concatenation of features from

nodes vi and vj respectively.

Step 3: A softmax layer for normalizing the learned attention coefficients across the

closed neighborhood, αij = Softmaxj(aij;∀j ∈ Nc(i)),Nc(i) denotes closed neighbor-

hood and
∑

j αij = 1. For simplicity, we represent the normalized attention coeffi-

cients for the entire graph as the matrix A ∈ RN×N . Note that this is different from

the adjacency matrix A.

Step 4: A linear combiner that performs weighted combination of node features

with the learned attention coefficients followed by a non-linearity: z̃i = σ(zi), where

zi =
∑

j∈Nc(i)
αijx̃j.

The modeling capacity of GATs are improved by using multiple attention heads.

Following the Transformer architecture (Vaswani et al., 2017), the output latent

representations from the different heads can be aggregated using either concatenation

or averaging operations.

4.2 Weighted Attention Mechanism

From the discussion of GATs in Chapter 2, it is clear that latent representations

from the multiple attention heads can provide complementary information about

the node relationships. Hence, it is crucial to utilize that information to produce

reliable embeddings for label propagation. When simple concatenation is used, as

done in (Velickovic et al., 2017), an attention layer results in features of dimension K×

d, where K is the number of attention heads. While this has been effective, one can

gain improvements by performing a weighted combination of the attention heads, such

52

30 20 10 0 10 20 30 40

40

20

0

20

40

Figure 4.1: 2−D Visualization of the Embeddings for the Single-Layer Cora Dataset

Obtained Using the Proposed Weighted Attention Mechanism.

that different heads can be assigned varying levels of importance. This is conceptually

similar to the Weighted Transformer architecture proposed by Ahmed et al. (Keskar

and Socher, 2017). For a node vi, denoting the representations from k different

heads as z1
i · · · zK

i , the proposed weighted attention combines these representations

as follows:

ẑi =
K∑
k=1

βkz
k
i , (4.1)

where βk denotes the scaling factor for head k and are trainable during the optimiza-

tion. Note that the scaling factors are shared across all nodes, and they are con-

strained to be non-negative. Optionally, one can introduce the constraint
∑

k βk = 1

into the formulation. However, we observed that its inclusion did not result in signif-

icant performance improvements in our experiments. Given a set of attention heads

for a single graph layer, we refer to this weighting mechanism as a fusion head.

53

Interestingly, we find that this modified attention mechanism produces robust em-

beddings when compared to the graph attention layer proposed in (Velickovic et al.,

2017), even with a lesser number of attention heads. For example, let us consider

Cora, a single-layered graph dataset containing 2708 nodes (publications) belonging

to one of 7 classes. With the regular graph attention model, comprised of two at-

tention layers with 8 heads each, we obtained a test accuracy of 81.5% (140 training

nodes). In contrast, our weighted attention, even with just 2 heads, produces state-

of-the-art accuracy of 82.7%. Naturally, this leads to a significant reduction in the

computational complexity of our architecture, which is more beneficial when dealing

with multi-layered graphs. Figure 4.1 illustrates a 2−D visualization (obtained using

t-SNE) of the embeddings from our weighted graph attention model.

4.3 Using Randomized Node Attributes

With graph attention models and other recent graph convolution approaches, it

is required to have access to node attributes (or features), which are then used to

obtain the latent representations in task-specific objectives. However, in practice,

multi-layered graph datasets (even single-layered graphs) are often comprised of only

the edge sets, without any additional information. Consequently, in existing graph

inferencing approaches (e.g., community detection), it is typical to adopt an unsu-

pervised network embedding strategy. The objective is to ensure that the learned

representations preserve the network topology (i.e., neighborhoods). However, such

an approach is not optimal for semi-supervised learning tasks since the model param-

eters can be more effectively tuned using the task-specific objective in an end-to-end

fashion.

In order to address this challenge, we propose to employ a randomized initial-

ization strategy for creating node attributes. Interestingly, random initialization has

54

been highly successful in creating word representations for NLP tasks, and in many

scenarios, its performance matches or even surpasses pre-trained word embeddings.

With this initialization, the graph attention model can obtain latent representations

that maximally support label propagation in the input graph. Unlike fully supervised

learning approaches, the embeddings for nodes that belong to the same class can still

be vastly different since the attention model fine-tunes the initial embeddings using

only the locally connected neighbors. As we will show in our experiments, this sim-

ple initialization is effective, and our end-to-end training approach produces superior

performance.

4.4 Multi-layer Graph Notation

A multi-layered graph is represented using a set of L inter-dependent graphs

G(l) = (V(l), E (l)), for l = 1, . . . , L, where there exists a node mapping between ev-

ery pair of layers to indicate which vertices in one graph correspond to vertices in the

other. In our setup, we assume V(l) from all layers contain the same set of nodes with

cardinality |V| = N , while the edge sets E (l) (each of cardinality M (l)) are assumed

to be different.

4.5 Graph Attention Models for Multi-layered Embeddings (GrAMME)

This section discusses the two proposed approaches for constructing multi-layered

graph embeddings in semi-supervised learning problems. As described at the be-

ginning of the chapter, the relationships between nodes are encoded using multiple

edge sets in multi-layered graphs. Consequently, while applying attention models

for multi-layered graphs, a node vi in layer l needs to update its hidden state using

the knowledge from its neighborhood in that layer and the shared information from

other layers. Note that we assume no prior knowledge of the dependency structure

55

in our proposed approaches and solely rely on attention mechanisms to uncover the

structure.

4.5.1 GrAMME-Supra Graph

In this approach, we begin with the initial assumption that information is shared

between all layers in a multi-layered graph and use attention models to infer the

actual dependencies to improve label propagation performance. More specifically,

we introduce virtual edges (also referred to as pillar edges (Kim and Lee, 2015))

between every node in a layer and its counterparts in other layers, resulting in a

supra graph, Gsup. The block diagonals of the adjacency matrix for Gsup contain the

individual layers, while the off-diagonal entries indicate the inter-layer connectivities.

As illustrated in Figure 4.2, the virtual edges are introduced between nodes with the

same ID across layers. This is a popularly adopted strategy in the recent community

detection approaches (Song and Thiagarajan, 2018), however, with a difference that

the nodes across layers are connected only when they share similar neighborhoods.

In contrast, we consider all possible connections for information flow and rely on

the attention model to guide the learning process. Note that it is possible that

some of the layers can only contain a subset of the nodes. Given a multi-layered

graph with L layers, the resulting supra graph Gsup is comprised of (at most) N × L

nodes. Furthermore, the number of edges in the supra graph is upper bounded by

(N2L + NL2), assuming that there are edges between every pair of nodes in every

layer, as opposed to N2L in the original multi-layered graph. The flexibility gained

in modeling dependencies comes at the price of increased computational complexity

since we need to deal with a much larger graph.

Following this, we generate random features of dimension D at each of the nodes

in Gsup and build a stacked attention model for feature learning and label prediction.

56

Figure 4.2: GrAMME-SG Architecture: Proposed Approach for Obtaining Multi-

layered Graph Embeddings with Attention Models Applied to the Supra Graph, Con-

structed by Introducing Virtual Edges Between Layers.

Our architecture comprises T graph attention layers, which in turn contains K at-

tention heads and a fusion head to combine the complementary representations. As

discussed earlier, an attention head first performs a linear transformation on the input

features and parameterizes the neighborhood dependencies to learn locally consistent

features. The neighborhood size for each node can be different, and we also include

self-edges while computing the attention weights. Since we are using the supra graph

in this case, the attention model also considers nodes from the other layers. This

exploits the inter-layer dependencies and produces latent representations that can

be influenced by neighbors in the other layers. Following the expression in equation

(2.9), the latent feature at a node vi in layer l can be obtained using an attention

head as follows:

z
(l)
i = σ

(∑
j∈N (l)

i ∪{v
(1)
i ···v

(L)
i }

α
(l)
ij x̃j

)
, (4.2)

where x̃j denotes the linearly-transformed feature vector for the node vj. This is

repeated with K attention heads with different parameters, and subsequently, a fusion

head is used to combine those representations. Note that a fusion head is defined using

K scaling factors, denoting the importance for each of the heads. This operation can

57

be formally stated as follows:

ẑ
(l)
i =

K∑
k=1

βkz
k
i(l) . (4.3)

Consequently, we obtain latent features of dimension d for each node in Gsup, which

are then sequentially processed using additional graph attention layers. Since the

overall goal is to obtain a single label prediction for each node, there is a need to

aggregate features for a node from different layers. For this purpose, we perform an

across-layer average pooling and employ a feed-forward layer with softmax activation

for the final prediction.

4.5.2 GrAMME-Fusion

While the GrAMME-SG approach provides complete flexibility in dealing with

dependencies, the complexity of handling large supra graphs is an inherent challenge.

Hence, we introduce another architecture, GrAMME-Fusion, which builds only layer-

wise attention models, and introduces a supra fusion layer that exploits inter-layer

dependencies using only fusion heads. As described in Section 4.2, a fusion head

computes a simple weighted combination and hence is computationally cheap. For

simplicity, we assume that the same attention model architecture is used for every

layer, although that is not required. This approach is motivated by the observation

that attention heads in our feature learning architecture and the different layers in a

multi-layered graph both provide complementary views of the same data and hence

they can be handled similarly using fusion heads. In contrast, GrAMME-SG considers

each node in every layer as a separate entity. Figure 4.3 illustrates the GrAMME-

Fusion architecture.

Initially, each graph layer l is processed using an attention model comprised of T

stacked graph attention layers, each of which implements K attention heads and a

fusion head to construct layer-specific latent representations. Though the processing

58

Figure 4.3: GrAMME-fusion Architecture: Proposed Approach for Obtaining Multi-

layered Graph Embeddings Through Fusion of Representations from Layer-Wise At-

tention Models.

of the L layers can be parallelized, the computational complexity is dominated by the

number of heads K in each model. Next, we construct a supra fusion layer, which

is designed extensively using fusion heads in order to parameterize the dependen-

cies between layers. In other words, we create H fusion heads with scaling factors

γ(h) ∈ RL,∀h = 1 · · ·H, in order to combine the representations from the L layer-

specific attention models. Note that we use multiple fusion heads to allow different

parameterizations for assigning importance to each of the layers. This is conceptually

similar to using multiple attention heads. Finally, we use an overall fusion head, with

scaling factors κ ∈ RH , to obtain a consensus representation from the multiple fusion

59

heads. One can optionally introduce an additional feed-forward layer prior to em-

ploying the overall fusion to improve the model capacity. The output from the supra

fusion layer is used to make the prediction through a fully connected layer with soft-

max activation. The interplay between the hyper-parameters K (layer-wise attention

heads) and H (fusion heads in the supra fusion layer) controls the effectiveness and

complexity of this approach.

4.6 Empirical Studies and Results

In this section, we evaluate the proposed approaches by performing semi-supervised

learning with benchmark multi-layered graph datasets. Our experiments study the be-

havior of our approaches, with varying amounts of labeled nodes, and cross-validated

with different train-test splits. Though the proposed approaches can be utilized for

inductive learning, we restrict our experiments to transductive tasks. For each dataset

and experiment, we select labeled nodes uniformly at random while fixing the number

of labeled nodes. We begin by describing the datasets considered for our study and

briefly discussing the baseline techniques based on deep network embeddings.

4.6.1 Datasets

We describe in detail the multi-layered graph datasets used for evaluation. A

summary of the datasets can be found in Table 4.1.

(i) Vickers-Chan: The Vickers-Chan (Vickers and Chan, 1981) dataset represents

the social structure of students from a school in Victoria, Australia. Each node

represents a student studying in 7th grade, and the three graph layers are constructed

based on student responses for the following three criteria: (i) whom did they get along

within the class?, (ii) who are their best friends in the class?, and (iii) whom do they

prefer to work with?. The dataset comprises 29 nodes, and their gender value is used

60

Table 4.1: Summary of the Datasets Used in Our Empirical Studies.

Dataset Type # Nodes # Layers # Total edges # Classes

Vickers-Chan
Classroom social

structure

29 3 740 2

Congress Votes
Bill voting structure

among senators

435 4 358,338 2

Leskovec-Ng Academic collaboration 191 4 1,836 2

Reinnovation
Global innovation

index similarities

145 12 18,648 3

Mammography Mammographic Masses 961 5 1,979,115 2

Balance Scale Psychological assessment 625 4 312,500 3

as the label in our learning formulation.

(ii) Congress Votes: The Congress votes (Schlimmer, 1987) dataset is obtained

from the 1984 United States Congressional Voting Records Database. This includes

votes from every congressman from the U.S House of representatives for 4 different

bills, which results in a 4-layered graph. The dataset is comprised of 435 nodes, and

they are labeled as either democrats or republicans. For every layer, we establish an

edge between two nodes in the corresponding layer if those two congressmen voted

similarly (“yes” or “no”).

(ii) Leskovec-Ng: This dataset (Chen and Hero, 2017) is a temporal collaboration

61

network of professors Jure Leskovec and Andrew Ng. The 20 year co-authorship

information is partitioned into 5-year intervals in order to construct a 4-layered graph.

Two researchers are connected by an edge in any layer if they co-authored at least

one paper in the considered 5-year interval. Each researcher is labeled as affiliated to

either Leskovec’s or Ng’s group.

(iv) Reinnovation: This dataset describes the Global Innovation Index for 144

countries, which form the nodes of the graph. For each node, the label represents

the development level of that corresponding country. There are 3 levels of develop-

ment, thus representing the 3 classes. Each layer in a graph is constructed based on

similarities between countries in different sectors. The sectors include infrastructure,

institutions, labor market, financial market, etc. This graph contains 12-layers in

total.

(v) Mammography: This dataset contains information about mammographic mass

lesions from 961 subjects. We consider different attributes, namely the BI-RADS

assessment, subject age, shape, margin, and density of the lesion, in order to construct

the different layers of the graph. This data is quite challenging due to the presence

of 2 million edges. Conventional network embedding techniques that rely on the

sparsity of the graphs can be particularly ineffective in these scenarios. Finally, the

lesions are either marked as benign or malignant to define the labels.

(vi) Balance Scale The final dataset that we consider is the UCI Balance scale

dataset, which summarizes the results from a psychological experiment. Using 4

different attributes characterizing the subject, namely left weight, the left distance,

the right weight, and the right distance, we constructed a 4−layered graph. Each

subject (or node) is classified as having the balance scale tip to the right, tip to the

left, or be balanced.

62

4.6.2 Baselines

Given that the datasets considered do not contain specific node attribute to per-

form feature learning, the natural approach is to obtain embeddings for each node

and subsequently build a classifier model. We compare our proposed architectures

with the following state-of-the-art single-layered and multi-layered graph embedding

techniques.

DeepWalk: DeepWalk Perozzi et al. (2014) is a random-walk-based embedding tech-

nique that uses a deep neural network. Random walks on a graph are analogous to

sentences in a document, and hence co-occurring nodes are embedded together.

Node2Vec: Node2Vec Grover and Leskovec (2016) is similar to DeepWalk, but

it introduces bias in random walks with two additional parameters that trade-off

between depth-first and breadth-first walks.

LINE: LINE Tang et al. (2015) is similar to DeepWalk but adds information from

second hop friends in its random walks. This enables nodes with shared neighborhoods

to have similar embeddings.

PMNE: This method Liu et al. (2017) uses different merge strategies to combine

embeddings from each of the layers in a multi-layered network. We consider the

results aggregation strategy since it often outperforms other variants.

MNE: This recent multiplex network embedding Zhang et al. (2018a) technique uses

a unified network embedding model that generates, for each node, a high-dimensional

common embedding and low dimensional embedding for each aspect of the relation-

ship.

63

4.6.3 Experiment Setup

This section describes the experimental setup in detail for both the baseline meth-

ods and the proposed models. We run our experiments in a transductive learning

setting. We choose a fixed amount of labeled nodes uniformly at random for each

dataset, while the remaining nodes are used for performance evaluation. In order to

study the sensitivity of the proposed approaches over varying levels of labeled data

availability, we varied the percentage of train nodes from 10% to 30%. We repeated

the experiments over 20 independent realizations of train-test splits, and we report the

average performance in all cases. The performance of the algorithms was measured

using the overall accuracy score.

Since the first three baseline methods (DeepWalk, Node2Vec, LINE) are single-

layer graph embedding techniques, we treat each layer in the multi-layered graph

data independently and obtain embeddings for the layers separately. Subsequently,

we average the embeddings for each node and build a logistic regression classifier

to perform label prediction. For DeepWalk and Node2Vec, we set the embedding

dimension to 128, the window size to 10, and the number of random walks to 80.

For LINE, we fixed the embedding dimension at 100. Among the three variants

of PMNE Liu et al. (2017), namely network aggregation, Co-analysis, and result

aggregation, we report the results only for the result aggregation method, as it often

outperforms other variants. The hyper-parameter values for this method were chosen

following the original paper. For MNE, a common embedding size of 200 and a

layer-specific embedding size of 10 were used.

For both of the proposed approaches, we considered architectures with T = 2

attention layers and fixed the input feature dimension D = 64. The number of

hidden dimensions was fixed at 32. For the GrAMME-SG architecture, we used

64

K = 2 attention heads and a single fusion head. On the other hand, in GrAMME-

Fusion, we set K = 2 for each layer, and in the supra fusion layer, we used H = 5

fusion heads. All networks were trained with the Adam optimizer, with the learning

rate fixed at 0.001.

4.6.4 Results

Table 4.2 summarizes the performance of our approaches on the 7 multi-layered

graph datasets, along with the baseline results. Figure 4.5 illustrates the convergence

characteristics of the proposed GrAMME-Fusion architecture under different training

settings for the Mammography dataset. As it can be observed, even with the complex

graph structure (around 2 million edges), the proposed solutions demonstrate good

convergence characteristics.

From the reported results, we make the following observations: In all the datasets,

the proposed attention-based approaches consistently outperform the baseline tech-

niques, providing highly robust models even when the training size was fixed at 10%.

For example, with the Vickers-Chan dataset, both our approaches produce an im-

provement of over 25% when compared to a weaker baseline such as DeepWalk, and

about 14% improvement over the state-of-the-art MNE technique. Even with chal-

lenging datasets such as Reinnovation and Mammography datasets, the proposed ap-

proaches achieve improvements of 4%− 10% over the baseline methods. This clearly

demonstrates the effectiveness of our multi-layered graph embedding approaches in

scenarios with heterogeneous relationships. Note that Balance Scale dataset is the

only case where we found the PMNE baseline to be superior to the proposed ap-

proaches, however by a minimal margin.

Note that the GrAMME-Fusion has the best performance on almost all the datasets

for different train-test splits. Results summarized in Table 4.2 are shown in a different

65

perspective in Figure 4.4. Here we show the boxplot of the absolute differences be-

tween every method and the best performing method for all datasets. A large range

in the boxplot indicates that the method is performing badly for some datasets.

GrAMME-Fusion has the lowest value and the smallest range.

Figure 4.4: Boxplot Showing Absolute Differences of Each Method to the Best Per-

forming Method on Each Dataset for Different Train Test Split. Lower Values Are

Better.

Finally, we visualize the multi-layered graph embeddings to qualitatively under-

stand the behavior of the proposed approach. More specifically, we show the 2−D

t-SNE visualizations of the hidden representations for Congress Votes and Mam-

mography datasets, obtained using GrAMME-Fusion. Figure 4.6 shows that initial

random features and the learned representations, wherein the effectiveness of the

attention mechanism in revealing the class structure is clearly evident.

4.7 Comparing GrAMME-SG and GrAMME-Fusion

GrAMME-SG operates under the assumption that information is shared between

all layers in a multi-layered graph and uses attention models to infer the actual de-

66

0 25 50 75 100 125 150 175 200
Epoch

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Train
Test

(a) 10% Train Nodes

0 25 50 75 100 125 150 175 200
Epoch

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Train
Test

(b) 20% Train Nodes

0 25 50 75 100 125 150 175 200
Epoch

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Train
Test

(c) 30% Train Nodes

Figure 4.5: Convergence Characteristics of the Proposed Gramme-Fusion Architec-

ture with the Parameters T = 2, H = 1 and K = 5 Respectively.

pendencies. GrAMME-Fusion, on the other hand, builds only layer-wise attention

models and introduces a supra fusion layer that exploits the most relevant inter-

layer dependencies using only fusion heads. Though GrAMME-Fusion outperforms

GrAMME-SG in most of the datasets considered in our evaluation, we believe this

is because GrAMME-SG over-parametrizes inter-layer dependencies and can some-

times produce noisy edges. Consequently, in scenarios where strong dependencies

exist between layers, GrAMME-SG will be more appropriate. For example, with the

re-innovation dataset, different layers represent each country’s performance in diverse

sectors such as infrastructure, institutions, labor market, etc. A country with excel-

lent infrastructure and is financially stable can be expected to have a superior labor

market and high-quality institutions. As our experiments results show, in that case,

GrAMME-SG produces the best performance.

We now present an analysis of the time complexity for the proposed methods. At

their core, an attention layer that takes in a single-layered graph with D dimensional

attributes and produces d dimensional embeddings incurs a computational complex-

ity of O(NDd + Md). The first term corresponds to the linear feed-forward layer,

while the second term accounts for the attention computation. Note, in cases where

67

10.0 7.5 5.0 2.50.0 2.5 5.0 7.5 10.010

5

0

5

10

Republicans
Democrats

(a) Congress Votes – Initial

20 10 0 10 2020

10

0

10

20 Republicans
Democrats

(b) Congress Votes – Final

15 10 5 0 5 10 15

15
10

5
0
5

10
15

Benign
Malignant

(c) Mammography – Initial

20 10 0 10 20

20
10

0
10
20
30 Benign

Malignant

(d) Mammography – Final

Figure 4.6: 2D Visualization of the Embeddings, for Two Different Datasets, Ob-

tained Using the Gramme-Fusion Architecture with Parameters T = 2, K = 1 and

H = 5 Respectively. We Also Show the Initial Randomized Features for Reference.

the graph is densely connected, the second term can dominate the complexity. For

GrAMME-SG, we explicitly construct a supra-graph consisting a total of NL nodes

and NL2 +
∑L

l=1M
(l) edges. Here, the first term corresponds to virtual pillar edges

introduced across layers, while the second terms is the sum of layer-specific edges.

The computational complexity of an attention head in GrAMME-SG can hence be

expressed as O(NLDd+NL2d+d
∑L

l=1M
(l)). Consequently, in this case, the number

of nodes N plays a more dominant role when compared to the single-layered case.

The flexibility gained in modeling dependencies across layers comes at the price of

increased computational complexity since we need to deal with a much larger graph.

On the other hand, GrAMME-Fusion is computationally efficient since it employs

multiple fusion heads (supra fusion layer), while simplifying the layer-wise attention

68

models. The complexity of an attention head in this case is given as O(NDd+ M̄d),

where M̄ indicates max(M (l)). Note that the time complexity is similar to that

of the single-layered graph. Interestingly, with the GrAMME-Fusion architecture,

increasing the number of attention heads K does not lead to significant performance

improvements, demonstrating the effectiveness of supra fusion layers. Note that an

attention head is computationally expensive when compared to a fusion head in the

supra-fusion layer. Consequently, restricting K = 1 and increasing the number of

fusion heads H leads to a graceful increase in the overall complexity.

More importantly, compared to classical network embedding techniques, this ap-

proach is scalable to large-scale graphs, both in terms of N and L, since we do not

have to deal with the explicit decomposition of Laplacian matrices. Finally, similar

to existing attention models, both the proposed approaches incur O(1) sequential

computations and hence can be entirely parallelized.

4.8 Summary

This chapter introduced two novel architectures, GrAMME-SG and GrAMME-

Fusion, for semi-supervised node classification with multi-layered graph data. Our

architectures utilize randomized node attributes and effectively fuse information from

both within-layer and across-layer connectivities through a weighted attention mech-

anism. While GrAMME-SG provides complete flexibility by allowing virtual edges

between all layers, GrAMME-Fusion exploits inter-layer dependencies using fusion

heads, operating on layer-wise hidden representations. Experimental results show

that our models consistently outperform existing node embedding techniques. As

part of future work, the proposed solution can be naturally extended to the cases of

multimodal networks and interdependent networks. Furthermore, studying the effec-

tiveness of simple and scalable attention models in other challenging graph inferencing

69

tasks such as multi-layered link prediction and influential node selection remains a

significant open problem.

70

Table 4.2: Semi-Supervised Learning Performance of the Proposed Multi-layered At-

tention Architectures on the Benchmark Datasets. The Results Reported Were Ob-

tained by Averaging 20 Independent Realizations.

Baselines% Nodes

(Train) DeepWalk Node2Vec LINE PMNE(r) MNE

GrAMME

SG

GrAMME

Fusion

Vickers-Chan Dataset

10% 72 51.07 76.60 50.87 85.76 98.94 99.21

20% 83.55 51.97 87.06 53.28 88.37 98.94 99.21

30% 89.97 52.88 89.97 53.88 91.72 98.94 99.21

Congress Votes Dataset

10% 98.96 98.46 97.03 98.88 95.62 100 100

20% 99.69 99.50 98.80 99.75 97.56 100 100

30% 99.99 99.55 99.70 99.77 98.37 100 100

Leskovec-Ng Dataset

10% 91.16 81.76 68.54 85.58 73.34 91.56 93.32

20% 96.35 85.41 77.39 89.71 85.79 96.25 97.62

30% 98.31 86.99 83.58 91.35 89.90 98.30 98.73

Reinnovation Dataset

10% 72.02 72.18 51.98 70.76 72.51 76.42 75.28

20% 73.13 74.04 55.21 73.45 75.40 80.72 79

30% 76.02 76.13 60.13 75.29 74.72 83.16 80.95

Mammography Dataset

10% 75.72 76.38 76.39 76.48 75.13 82.27 82.63

20% 73.99 77.41 75.40 76.91 76.72 83.01 83.28

30% 74.13 77.82 76.16 75.51 77.59 83.06 83.75

CKM (Social) Dataset

10% 97.31 95.70 90.88 97.42 92.86 96.65 98.66

20% 98.12 97.92 94.35 98.20 95.27 99.14 98.91

30% 99.08 98.34 96.32 98.34 96.83 99.19 99.68

Balance Scale Dataset

10% 81.07 80.58 54.08 81.85 77.71 77.67 80.15

20% 86.15 86.22 58.95 88.74 80.31 78.67 86.58

30% 87.27 88.61 64.44 89.87 83.34 79.10 88.72

71

Chapter 5

GNN APPLICATION TO HEALTHCARE DATA: HUMAN BRAIN

CONNECTOME

Inspired by the effectiveness of deep learning methods in vision, speech, and lan-

guage processing, there is growing interest in extending those techniques to high-

impact application domains such as healthcare. While much of demonstrated success

has been on dealing with clinical images/volumes and textual reports, more recent ef-

forts have focused on challenging data sources, including multi-modal health records,

knowledge graphs, etc. These efforts have relied on generalizing the foundational for-

malisms such as convolutional neural nets to arbitrarily structured data. For example,

graph neural networks (GNNs) (Wu et al., 2019b) are known to have strong expressive

capability with graph-structured data. They have been found to be highly effective

with population graphs in clinical diagnosis, e.g., autism (Anirudh and Thiagarajan,

2019).

In this work, we study the use of deep neural networks to analyze brain connec-

tomes, a comprehensive map of neural connections in the human brain. Recently,

the Human Connectome Project (HCP) (Van Essen et al., 2013) has made significant

strides in producing elaborate structural and functional connectivity of neural path-

ways in the brain. By leveraging the corresponding neuroimaging data of a human

subject, it is now possible to construct a connectivity matrix encoding the neural

connections (e.g., number of fibers) between brain regions. Commonly referred to

as the structural connectome, this connectivity matrix is known to contain signa-

tures relevant to population characteristics such as gender and age Ingalhalikar et al.

(2014), and more importantly, information pertinent to determining the volumes of

72

different brain regions. For the first time, we propose to utilize deep neural networks

to process the structural connectome directly and test the hypotheses on the pre-

dictability of population characteristics and region-specific volumes. This study is

a critical first step towards building predictive models from functional connectomes

that can reliably predict behavioral traits and cognitive states.

Though it seems natural to interpret the structural connectome for each subject

as a graph and employ off-the-shelf graph processing tools, there is a fundamental

difference between the connectome and conventional graph datasets such as social

networks. With information diffusion-style networks that we typically deal with in

practice, an edge between two nodes indicates the likelihood of information exchange

between those two nodes. However, even if two nodes are not directly connected by an

edge, information exchange can still happen through diffusion from related nodes. In

contrast, connectomes encode neural connections as a relational structure and do not

allow information diffusion (Zhang et al., 2018b). In other words, a missing edge indi-

cating the absence of connections between two brain regions is a neurological pattern.

Consequently, we require network architectures to directly utilize the connectome as

a structural prior and infer mappings to the target variables. Similar ideas have been

explored in the context of relational reasoning and causal processes (Santoro et al.,

2017; Kilbertus et al., 2017).

We develop a relational graph neural network (RGNN) designed to incorporate

the relational structure of the neural connections and infer effective latent representa-

tions for the connectomes. First, we utilize the edge attribute (e.g., number of fibers)

as the input edge feature and construct node representations through constrained

message passing with learnable weights. More specifically, we design two network

layers that explicitly correspond to the edges and nodes and constrain the message

passing between the two layers using the connectome. In other words, the represen-

73

Figure 5.1: An Overview of the Proposed Approach. The T1 Scans Are Parcellated

into 84 Different Regions in the Brain, on Which, Tractography Is Performed to

Compute the Weighted Matrix Representing the Structural Connectome. Our RGNN

Model Is Used to Process the Connectome for Prediction Tasks.

tation for each node can only depend on the edges involving that node. Interestingly,

this architecture is effective for even densely connected graphs. Another interesting

feature of our approach is that we can produce interpretable explanations (e.g., Shap

analysis (Lundberg and Lee, 2017)) both at the coarse-grained node level and the

fine-grained edge level simultaneously.

From our experiments, we find that state-of-the-art approaches, including GNN

and random walk-based embedding techniques such as DeepWalk, are very ineffective

at recovering the region-specific volumes. Surprisingly, even a simple fully connected

network on the edge attributes outperforms the graph network baselines. In com-

parison, the proposed RGNN accurately estimates the region-specific volumes and

summary quantities such as total gray matter and total white matter. Furthermore,

our prediction results on gender prediction strongly corroborate with the findings in

the neuroscience community (Ingalhalikar et al., 2014). This evidences the effective-

ness of RGNN as a learning strategy for connectomes, and we believe this can be

74

suitable for studying functional connectomes.

5.1 Human Connectome Data

We used data from the Human Connectome Project - Young Adult dataset1, which

included about 900 subjects. In order to generate the structural connectome for each

subject, we performed the following steps: First, we segmented the T1 images into

five tissue types (MRtrix2 command 5ttgen) (Smith et al., 2012). Then we used the

diffusion MRI data along with the tissue segmented volume to produce tissue-specific

response functions (MRtrix command dwi2response) (Jeurissen et al., 2014). Sub-

sequently, this response was used to construct fiber orientation distributions using

the spherical deconvolution (MRtix command dwi2fod) (Tournier et al., 2004) and

tractography was carried out using the iFOD2 technique (MRtrix command tckgen)

(Tournier et al., 2010). Finally, we employed the SIFT2 method to compute stream-

line weights (MRtrix command tcksift2) (Smith et al., 2015), and the weighted

streamline counts were used along with the Desikan parcellation to compute the con-

nectome matrix (MRtrix command tck2connectome) (Desikan et al., 2006).

5.2 Approach

We describe the RGNN architecture that leverages the relational structure of con-

nectomes. Though the focus of this work is on structural connectomes, our approach

applies to functional connectomes as well. Our approach uses constrained message

passing kernels, with learnable parameters, on the connectome edges to obtain node

(region) representations. To this end, we design two neural network layers: the first

layer representing the neuron connections takes as input the vectorized set of edge

weights of size N × N , where N is the total number of regions in the connectome.

1https://www.humanconnectome.org/study/hcp-young-adult
2MRtrix version 3.0, https://www.mrtrix.org

75

The second layer corresponds to the N nodes (or regions). The relational structure

from the connectome is directly used to construct messaging passing kernels between

the two layers. In other words, the feature for each node in the second layer should

depend only on the edges involving that node, i.e.,

hi = σ(
n∑

j=1

Wijθj) (5.1)

where hi is the learned representation for node vi, Wij is the connectome edge weight

between node vi and vj, θi ∈ RN = [θ1, θ2 · · · θN]T are the learnable parameters of the

kernel associated with node vi, and σ is a non-linearity function (e.g. ReLU).

From another perspective, we pool all information from the edges involving a node

to constructing its representation. Furthermore, we allow the use of multiple kernels

for the same node, akin to multiple heads in attention models, and we refer to this as

the pooling size P . In the case of multiple kernels, we concatenate the P representa-

tions for each node, thus producing a node-level representation of dimensions P and

graph level feature of effective size N × P .

hi = ‖Pp=1h
(p)
i and H = ‖Ni=1hi

where ‖ indicates concatenation. Though the constrained message-passing kernel

can be implemented differently, we adopt a simple strategy where a fully connected

layer is used to produce a weighted sum of edge connectivities, and the network

parameters are optimized using backpropagation. Note, we use different kernels for

each of the nodes, and their weights are not shared. Finally, we pass the node

representations hi through a classifier or a regressor implemented using additional

fully connected layers. All volume estimation models are trained with the smooth L1

loss, while the age/gender prediction uses the cross-entropy loss. Figure 5.2 shows a

representative architecture of RGNN.

76

Figure 5.2: An Overview of Proposed Approach RGNN. The Information Is Pooled

from the Edges to a Single Node (Region in the Brain).

5.3 Empirical Evaluation

We validate the suitability of RGNN to analyze connectomes by attempting to

estimate the region-specific volumes in different parts of the brain and predict meta-

information, such as age and gender, directly based on the neural connections. This

empirical study was motivated by existing works in the neuroscience literature, which

have hypothesized that specific signatures that can predict the volume statistics and

gender/age information are encoded in the connectome. Consequently, we expect an

appropriate neural network architecture to adhere to these hypotheses.

In all experiments with RGNN, we set the pooling size to 5 and the hidden layer

size at 16. For comparison, we consider the following popularly adopted solutions:

77

Table 5.1: Estimating Region-specific Volumes Using the Structural Connectome. For

Each Case, We Report the R2 / Pearson Correlation Coefficient Metrics.

Region DeepWalk GCN FCN RGNN

Total gray matter 0.4444 / 0.675 -0.0116 / 0.1829 0.6515 / 0.8197 0.7219 / 0.8577

Total white matter 0.3753 / 0.62 -0.0132 / 0.1459 0.7011 / 0.8559 0.8029 / 0.9078

Left hemisphere

cortical white matter

0.3849 / 0.6281 -0.0133 / 0.1561 0.7022 / 0.8572 0.8027 / 0.9082

Right hemisphere

cortical white matter

0.3731 / 0.6173 -0.0132 / 0.1351 0.6967 / 0.8534 0.7975 / 0.9047

Left hemisphere

cortical gray matter

0.4342 / 0.6688 -0.0102 / 0.1092 0.6231 / 0.8017 0.6987 / 0.8449

Right hemisphere

cortical gray matter

0.4525 / 0.6817 -0.0114 / 0.2206 0.6491 / 0.8159 0.7172 / 0.8580

Intracranial 0.3627 / 0.6084 -0.0175 / 0.1469 0.5987 / 0.7920 0.6652 / 0.8239

a) FCN : In this simple baseline, we ignore the network structure and vectorize the

connectivity matrix for each subject to produce a feature vector of 7056 dimensions

(84×84). Subsequently, we build a fully connected network with a single hidden layer

of 16 units and ReLU non-linearity.

b) DeepWalk Perozzi et al. (2014): For this random-walk baseline, we first build a

supra graph, whose adjacency is constructed by stacking the connectomes as block

diagonals. We run the DeepWalk algorithm on this supra graph and extract 64-d

features for each node. Note, for better results, we sparsified each connectome by

retaining only the top 75% values. Finally, the representation for each connectome is

obtained by concatenating all its node embeddings, and the prediction is carried out

78

using XGBoost.

c) Message Passing GCN Kipf and Welling (2016): By treating each connectome as

a graph, we build a 2-layer GCN model based on weighted message passing. Since

the nodes do not have explicit attributes, the message passing with edge weights

does not produce meaningful features. Hence, the performance of GCN is poor in

regression experiments compared to DeepWalk. We experimented with different ini-

tializations for the node attributes, including a constant attribute at each node and

the eigenfunctions. Finally, we concatenate the transformed node features to ob-

tain the connectome representation and utilize a fully connected layer for the actual

prediction.

Volume Estimation: In this experiment, we considered the prediction of volumes in

the following regions: cortical white matter and cortical gray matter volumes in the

left and right hemispheres of the brain, and finally, the summary total gray matter

and total white matter volumes. Table 5.1 reports the performance of the volume

estimation experiment. All the results reported were obtained using an 80% − 20%

train-test split of 900 subjects and by aggregating the performance from 20 random

trials. We use the R2 statistic and the Pearson correlation coefficient as performance

metrics. As it can be observed, RGNN consistently outperforms all baseline methods

by a significant margin, and more importantly, the GCN based on a diffusion-network

assumption fails. In comparison, even the näıve FCN baseline produces meaningful

estimates. This clearly demonstrates the need for specific architectures that can

leverage the relational structure of connectomes.

Predicting Age/Gender: In this experiment, we use RGNN to identify patterns

from the connectome that can effectively discriminate subjects by their gender or

age characteristics. Following the observation in Ingalhalikar et al. (2014), we find

that RGNN can effectively predict the meta-information based on the structural con-

79

Figure 5.3: Left: Gender and Age Classification Results Obtained from Proposed

Approach and the Baselines. Right: Shapley Values Highlighting the Importance of

Different Regions in the Brain on Gender Classification.

nectome. Further, we perform sensitivity analysis (using SHAP), Figure 5.3 shows

node-level importance, and so the regions corresponding to the Right part of the

brain carry crucial information. Edge-level sensitivity analysis indicates that within

hemispheric connectivities are of importance for gender prediction, and our results

corroborate with the findings in Ingalhalikar et al. (2014). Similarly, with age pre-

diction (Table 3), RGNN produces highly accurate predictions compared to baseline

methods.

These two empirical studies clearly establish RGNN as a potential choice for pro-

cessing structural and functional connectomes in order to perform more challenging

tasks, such as predicting behavioral traits and cognitive states.

5.4 Summary

For biological graph data such as human brain connectome, many classical ap-

proaches have relied on hand-engineering statistical descriptors from structural or

functional connectomes to build predictive models that are sub-optimal. We develop

a structured network architecture termed (RGNN) that uses the connectome to con-

80

strain the message passing between two network layers representing edges and nodes,

respectively (Chapter 5). Using connectomes from the Human Connectome Project

(HCP), we show that the proposed approach can effectively predict meta-information

such as age and gender and accurately recover the volumes of different brain regions,

which are known to be encoded in the connectomes.

81

Chapter 6

CONCLUSIONS

Representation learning is critical to a wide range of applications that involve net-

work analysis and inference. Machine learning models that can exploit the inherent

structure in data have gained prominence in recent times. However, the main chal-

lenge in graph-based machine learning is that the structure of the graph/network is

irregular when compared with images, or audio, or text. Networks are non-Euclidean

and have complex topological structures. Simple operations like convolution, trans-

lation, and downsampling can not be explicitly defined on graphs. Despite the chal-

lenges, there is a surge in deep learning solutions for graph-structured data due to its

widespread applicability in several fields. Graph attention networks (GAT), a recent

addition to the broad class of feature learning models in graphs, utilize the attention

mechanism to efficiently learn continuous vector representations for semi-supervised

learning problems.

With the widespread adoption of attention models in language modeling and com-

puter vision, it has become imperative to study and understand the functioning and

robustness of attention mechanisms. Though GATs have successfully achieved state-

of-the-art performance in semi-supervised node classification, a detailed analysis of

the attention mechanism is not provided. In particular, the robustness of the at-

tention mechanism in the presence of adversaries(for example, noisy nodes) needs to

be studied. In this research area, we performed a detailed analysis of GAT models

and presented exciting insights into their behavior. In particular, we showed that

the models are vulnerable to adversaries (rogue nodes) and hence proposed novel reg-

ularization strategies to improve the robustness of GAT models. Using benchmark

82

datasets, we demonstrated performance improvements on semi-supervised learning

using the proposed robust variant of GAT.

Graph Neural Networks (GNNs), a generalization of neural networks to graph-

structured data, are often implemented using message passes between entities of a

graph. While GNNs are effective for node classification, link prediction, and graph

classification, they are vulnerable to adversarial attacks. GNNs inherits both advan-

tages and disadvantages of DNNs. A small perturbation to the structure can lead to

non-trivial performance degradation. Uncertainty Matching GNN (UM-GNN) architec-

ture is proposed for improving the robustness of GNN models, particularly against

poisoning attacks to the graph structure. UM-GNN leverages epistemic uncertainties

from the message passing framework. More specifically, we employed a surrogate pre-

dictor that does not directly access the graph structure but systematically extracts

reliable knowledge from a standard GNN through a novel uncertainty-matching strat-

egy. Interestingly, this uncoupling makes UM-GNN immune to evasion attacks by design

and achieves significantly improved robustness against poisoning attacks.

Even with the available GNN architectures, extending solutions from the single-

graphs to multiplex graphs is not straightforward. During my research, attention

models are developed for multi-layered graphs in semi-supervised learning problems.

Two architectures GrAMME-SG and GrAMME-Fusion that exploit the inter-layer

dependencies for building multi-layered graph embeddings were developed. Using em-

pirical studies on several benchmark datasets, we evaluated the proposed approaches

and demonstrated significant performance improvements in comparison to state-of-

the-art network embedding strategies. The results also show that using simple random

features is an effective choice, even when explicit node attributes are not available.

For biological data such as the human brain connectome, many classical ap-

proaches have relied on hand-engineering statistical descriptors from structural or

83

functional connectomes to build predictive models. However, there is growing inter-

est in leveraging deep learning techniques. Though the human connectome is often

viewed as a graph defined with each node indicating a brain region, and the edges rep-

resenting neural connections, we argue that existing graph neural network solutions

that are built on the assumption of information diffusion are not directly applicable.

We developed a structured network architecture termed relational graph neural net-

work (RGNN) that uses the connectome to constrain the message passing between

two network layers representing edges and nodes. Using connectomes from the Hu-

man Connectome Project (HCP), we show that the proposed approach can effectively

predict meta-information such as age and gender and accurately recover the volumes

of different brain regions, which are known to be encoded in the connectomes.

6.1 Future Research Directions

Graph Neural Networks have become a de facto standard for representation learn-

ing on graphs. In the context of machine learning, GNNs are used in various super-

vised, semi-supervised, and even unsupervised tasks. GNNs can be readily applied to

data that have explicit structural relationships. For non-structural data, where the re-

lational structure is implicit or absent, an explicit graph structure can be constructed.

In images and texts, dependency trees and scene graphs are usually constructed for

advanced reasoning.

Many long-standing traditional problems can such as graph matching, can be ad-

dressed by employing GNNs. In physics, GNNs are used for particle state simulation

(Kipf et al., 2018). Any physical system or framework can be modeled as intercon-

nected objects exhibiting pair-wise relationships between them. Classic recommenda-

tion problems can be framed as a link prediction problem between two sets of nodes

in a bipartite graph. In the financial sector, GNNs are used for credit monitoring and

84

fraud detection.

In biology and medicinal chemistry, GNNs are exclusively used compared to other

contemporary deep learning networks. Molecular fingerprints of a chemical molecule

represented as 2d graphs can be obtained using GNNs. GNNs can uncover gene-

disease association from gene expression data for a single cell. In protein-protein in-

teractome (PPI) networks, many of the unknown drug-protein interactions, unknown

drug-drug interactions can be predicted with the help of GNNs. In drug development

and discovery, generative GNN models produce drug analogs for targeted proteins.

85

REFERENCES

Ahmed, A., N. Shervashidze, S. Narayanamurthy, V. Josifovski and A. J. Smola,
“Distributed large-scale natural graph factorization”, in “Proceedings of the 22nd
international conference on World Wide Web”, pp. 37–48 (ACM, 2013).

Anirudh, R. and J. J. Thiagarajan, “Bootstrapping graph convolutional neural net-
works for autism spectrum disorder classification”, in “ICASSP 2019”, pp. 3197–
3201 (2019).

Atwood, J. and D. Towsley, “Diffusion-convolutional neural networks”, in “Advances
in neural information processing systems”, pp. 1993–2001 (2016).

Barone, A. V. M., J. Helcl, R. Sennrich, B. Haddow and A. Birch, “Deep architectures
for neural machine translation”, arXiv preprint arXiv:1707.07631 (2017).

Bazzi, M., M. A. Porter, S. Williams, M. McDonald, D. J. Fenn and S. D. Howison,
“Community detection in temporal multilayer networks, with an application to
correlation networks”, Multiscale Modeling & Simulation 14, 1, 1–41 (2016).

Belkin, M. and P. Niyogi, “Laplacian eigenmaps for dimensionality reduction and
data representation”, Neural computation 15, 6, 1373–1396 (2003).

Blundell, C., J. Cornebise, K. Kavukcuoglu and D. Wierstra, “Weight uncertainty in
neural networks”, arXiv preprint arXiv:1505.05424 (2015).

Boden, B., S. Günnemann, H. Hoffmann and T. Seidl, “Mining coherent subgraphs in
multi-layer graphs with edge labels”, in “Proceedings of the 18th ACM SIGKDD
international conference on Knowledge discovery and data mining”, pp. 1258–1266
(ACM, 2012).

Bojchevski, A. and S. Günnemann, “Adversarial attacks on node embeddings via
graph poisoning”, in “International Conference on Machine Learning”, pp. 695–
704 (PMLR, 2019).

Bruna, J., W. Zaremba, A. Szlam and Y. LeCun, “Spectral networks and locally
connected networks on graphs”, arXiv preprint arXiv:1312.6203 (2013).

Cao, S., W. Lu and Q. Xu, “Grarep: Learning graph representations with global
structural information”, in “Proceedings of the 24th ACM international on confer-
ence on information and knowledge management”, pp. 891–900 (2015).

Chakraborty, A., M. Alam, V. Dey, A. Chattopadhyay and D. Mukhopadhyay, “Ad-
versarial attacks and defences: A survey”, arXiv:1810.00069 (2018).

Chen, J., Y. Wu, X. Xu, Y. Chen, H. Zheng and Q. Xuan, “Fast gradient attack on
network embedding”, arXiv:1809.02797 (2018).

Chen, M., K. Kuzmin and B. K. Szymanski, “Community detection via maximiza-
tion of modularity and its variants”, IEEE Transactions on Computational Social
Systems 1, 1, 46–65 (2014).

86

Chen, P.-Y. and A. O. Hero, “Multilayer spectral graph clustering via convex layer ag-
gregation: Theory and algorithms”, IEEE Transactions on Signal and Information
Processing over Networks 3, 3, 553–567 (2017).

Dai, H., H. Li, T. Tian, X. Huang, L. Wang, J. Zhu and L. Song, “Adversarial attack
on graph structured data”, arXiv:1806.02371 (2018).

Defferrard, M., X. Bresson and P. Vandergheynst, “Convolutional neural networks on
graphs with fast localized spectral filtering”, in “Advances in Neural Information
Processing Systems”, pp. 3844–3852 (2016a).

Defferrard, M., X. Bresson and P. Vandergheynst, “Convolutional neural networks on
graphs with fast localized spectral filtering”, in “Advances in Neural Information
Processing SystemsNIPS”, pp. 3837–3845 (2016b).

Desikan, R. S., F. Ségonne, B. Fischl, B. T. Quinn, B. C. Dickerson, D. Blacker, R. L.
Buckner, A. M. Dale, R. P. Maguire, B. T. Hyman, M. S. Albert and R. J. Killiany,
“An automated labeling system for subdividing the human cerebral cortex on MRI
scans into gyral based regions of interest”, Neuroimage 31, 3, 968–980 (2006).

Dong, X., P. Frossard, P. Vandergheynst and N. Nefedov, “Clustering with multi-
layer graphs: A spectral perspective”, IEEE Transactions on Signal Processing 60,
11, 5820–5831 (2012).

Dong, X., P. Frossard, P. Vandergheynst and N. Nefedov, “Clustering on multi-layer
graphs via subspace analysis on grassmann manifolds”, IEEE Transactions on signal
processing 62, 4, 905–918 (2014).

Duvenaud, D. K., D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel, A. Aspuru-
Guzik and R. P. Adams, “Convolutional networks on graphs for learning molecular
fingerprints”, in “Advances in neural information processing systems”, pp. 2224–
2232 (2015).

Eagle, N. and A. S. Pentland, “Reality mining: sensing complex social systems”,
Personal and ubiquitous computing 10, 4, 255–268 (2006).

Feng, F., X. He, J. Tang and T.-S. Chua, “Graph adversarial training: Dynamically
regularizing based on graph structure”, IEEE Transactions on Knowledge and Data
Engineering (2019).

Gal, Y. and Z. Ghahramani, “Dropout as a bayesian approximation: Represent-
ing model uncertainty in deep learning”, in “International Conference on Machine
Learning”, pp. 1050–1059 (2016).

Girvan, M. and M. E. Newman, “Community structure in social and biological net-
works”, Proceedings of the national academy of sciences 99, 12, 7821–7826 (2002).

Gligorijević, V., Y. Panagakis and S. Zafeiriou, “Fusion and community detection
in multi-layer graphs”, in “Pattern Recognition (ICPR), 2016 23rd International
Conference on”, pp. 1327–1332 (IEEE, 2016).

87

Goodfellow, I., Y. Bengio and A. Courville, Deep learning (MIT press, 2016).

Goodfellow, I. J., J. Shlens and C. Szegedy, “Explaining and harnessing adversarial
examples”, arXiv:1412.6572 (2014).

Grover, A. and J. Leskovec, “node2vec: Scalable feature learning for networks”, in
“Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining”, pp. 855–864 (ACM, 2016).

Hackett, J. M., “Zachary’s karate club”, URL
https://studentwork.prattsi.org/infovis/labs/zacharys-karate-club/
(2019).

Hamilton, W., Z. Ying and J. Leskovec, “Inductive representation learning on large
graphs”, in “Advances in Neural Information Processing Systems”, pp. 1024–1034
(2017).

Harris, Z. S., “Distributional structure”, Word 10, 2-3, 146–162 (1954).

Henaff, M., J. Bruna and Y. LeCun, “Deep convolutional networks on graph-
structured data”, arXiv preprint arXiv:1506.05163 (2015).

Henderson, K., B. Gallagher, T. Eliassi-Rad, H. Tong, S. Basu, L. Akoglu, D. Koutra,
C. Faloutsos and L. Li, “Rolx: structural role extraction & mining in large graphs”,
in “Proceedings of the 18th ACM SIGKDD international conference on Knowledge
discovery and data mining”, pp. 1231–1239 (ACM, 2012).

Ingalhalikar, M., A. Smith, D. Parker, T. D. Satterthwaite, M. A. Elliott, K. Ru-
parel, H. Hakonarson, R. E. Gur, R. C. Gur and R. Verma, “Sex differences in the
structural connectome of the human brain”, Proceedings of the National Academy
of Sciences 111, 2, 823–828 (2014).

Irwin, J. J., T. Sterling, M. M. Mysinger, E. S. Bolstad and R. G. Coleman, “Zinc:
a free tool to discover chemistry for biology”, Journal of chemical information and
modeling 52, 7, 1757–1768 (2012).

Jeurissen, B., J.-D. Tournier, T. Dhollander, A. Connelly and J. Sijbers, “Multi-tissue
constrained spherical deconvolution for improved analysis of multi-shell diffusion
MRI data”, Neuroimage 103, 411–426 (2014).

Jin, M., H. Chang, W. Zhu and S. Sojoudi, “Power up! robust graph convolu-
tional network against evasion attacks based on graph powering”, arXiv:1905.10029
(2019).

Jin, W., Y. Li, H. Xu, Y. Wang and J. Tang, “Adversarial attacks and defenses on
graphs: A review and empirical study”, arXiv:2003.00653 (2020).

Keskar, K. A. A. N. S. and R. Socher, “Weighted transformer network for machine
translation”, CoRR abs/1711.02132, URL http://arxiv.org/abs/1711.02132
(2017).

88

Kilbertus, N., M. R. Carulla, G. Parascandolo, M. Hardt, D. Janzing and
B. Schölkopf, “Avoiding discrimination through causal reasoning”, in “Advances in
Neural Information Processing Systems”, pp. 656–666 (2017).

Kim, J. and J.-G. Lee, “Community detection in multi-layer graphs: A survey”, ACM
SIGMOD Record 44, 3, 37–48 (2015).

Kim, J., J.-G. Lee and S. Lim, “Differential flattening: A novel framework for com-
munity detection in multi-layer graphs”, ACM Transactions on Intelligent Systems
and Technology (TIST) 8, 2, 1–23 (2016).

Kim, J., J.-G. Lee and S. Lim, “Differential flattening: A novel framework for com-
munity detection in multi-layer graphs”, ACM Transactions on Intelligent Systems
and Technology (TIST) 8, 2, 27 (2017).

Kipf, T., E. Fetaya, K.-C. Wang, M. Welling and R. Zemel, “Neural relational infer-
ence for interacting systems”, in “International Conference on Machine Learning”,
pp. 2688–2697 (PMLR, 2018).

Kipf, T. N. and M. Welling, “Semi-supervised classification with graph convolutional
networks”, arXiv preprint arXiv:1609.02907 (2016).

Kipf, T. N. and M. Welling, “Semi-supervised classification with graph convolutional
networks”, in “International Conference on Learning Representations (ICLR”,
(2017).

Li, J., C. Chen, H. Tong and H. Liu, “Multi-layered network embedding”, in “Pro-
ceedings of the 2018 SIAM International Conference on Data Mining”, pp. 684–692
(SIAM, 2018).

Liu, W., P.-Y. Chen, S. Yeung, T. Suzumura and L. Chen, “Principled multilayer
network embedding”, in “2017 IEEE International Conference on Data Mining
Workshops (ICDMW)”, pp. 134–141 (IEEE, 2017).

Liu, X., S. Si, X. Zhu, Y. Li and C. Hsieh, “A unified framework for data poisoning
attack to graph-based semi-supervised learning”, arXiv:1910.14147 (2019).

Lundberg, S. M. and S.-I. Lee, “A unified approach to interpreting model predictions”,
in “Advances in Neural Information Processing Systems”, pp. 4765–4774 (2017).

Mucha, P. J., T. Richardson, K. Macon, M. A. Porter and J.-P. Onnela, “Community
structure in time-dependent, multiscale, and multiplex networks”, science 328,
5980, 876–878 (2010).

Newman, M. E., “Finding community structure in networks using the eigenvectors of
matrices”, Physical review E 74, 3, 036104 (2006).

Ng, A. Y., M. I. Jordan and Y. Weiss, “On spectral clustering: Analysis and an
algorithm”, in “Advances in neural information processing systems”, pp. 849–856
(2002).

89

Niepert, M., M. Ahmed and K. Kutzkov, “Learning convolutional neural networks for
graphs”, in “International conference on machine learning”, pp. 2014–2023 (2016).

Ou, M., P. Cui, J. Pei, Z. Zhang and W. Zhu, “Asymmetric transitivity preserv-
ing graph embedding”, in “Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining”, pp. 1105–1114 (2016).

Papalexakis, E. E., L. Akoglu and D. Ience, “Do more views of a graph help? commu-
nity detection and clustering in multi-graphs”, in “Information fusion (FUSION),
2013 16th international conference on”, pp. 899–905 (IEEE, 2013).

Perozzi, B., R. Al-Rfou and S. Skiena, “Deepwalk: Online learning of social represen-
tations”, in “Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining”, pp. 701–710 (ACM, 2014).

Ren, K., T. Zheng, Z. Qin and X. Liu, “Adversarial attacks and defenses in deep
learning”, Engineering (2020).

Santoro, A., D. Raposo, D. G. Barrett, M. Malinowski, R. Pascanu, P. Battaglia
and T. Lillicrap, “A simple neural network module for relational reasoning”, in
“Advances in Neural Information Processing Systems 30”, edited by I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan and R. Garnett, pp.
4967–4976 (Curran Associates, Inc., 2017).

Schlimmer, J. C., “Concept acquisition through representational adjustment”, (1987).

Sen, P., G. Namata, M. Bilgic, L. Getoor, B. Galligher and T. Eliassi-Rad, “Collective
classification in network data”, AI magazine 29, 3, 93 (2008).

Shanthamallu, U., Q. Li, J. J. Thiagarajan, R. Anirudh and P. Bremer, “Modeling
human brain connectomes using structured neural networks”, Tech. rep., Lawrence
Livermore National Lab.(LLNL), Livermore, CA (United States) (2019a).

Shanthamallu, U. S., A. Spanias, C. Tepedelenlioglu and M. Stanley, “A brief sur-
vey of machine learning methods and their sensor and iot applications”, in “2017
8th International Conference on Information, Intelligence, Systems & Applications
(IISA)”, pp. 1–8 (IEEE, 2017).

Shanthamallu, U. S., J. J. Thiagarajan, H. Song and A. Spanias, “Gramme: Semisu-
pervised learning using multilayered graph attention models”, IEEE transactions
on neural networks and learning systems 31, 10, 3977–3988 (2019b).

Shanthamallu, U. S., J. J. Thiagarajan and A. Spanias, “A regularized attention
mechanism for graph attention networks”, in “ICASSP 2020 - 2020 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP)”, pp.
3372–3376 (2020).

Shanthamallu, U. S., J. J. Thiagarajan and A. Spanias, “A regularized attention
mechanism for graph attention networks”, in “ICASSP 2020 - 2020 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP)”, pp.
3372–3376 (2020).

90

Shanthamallu, U. S., J. J. Thiagarajan and A. Spanias, “Uncertainty-matching graph
neural networks to defend against poisoning attacks”, in “Proceedings of the AAAI
Conference on Artificial Intelligence”, vol. 35, pp. 9524–9532 (2021).

Shuman, D. I., S. K. Narang, P. Frossard, A. Ortega and P. Vandergheynst, “The
emerging field of signal processing on graphs: Extending high-dimensional data
analysis to networks and other irregular domains”, IEEE Signal Processing Maga-
zine 30, 3, 83–98 (2013).

Simon, P. L., M. Taylor and I. Z. Kiss, “Exact epidemic models on graphs using graph-
automorphism driven lumping”, Journal of mathematical biology 62, 4, 479–508
(2011).

Smith, R. E., J.-D. Tournier, F. Calamante and A. Connelly, “Anatomically-
constrained tractography: improved diffusion MRI streamlines tractography
through effective use of anatomical information”, Neuroimage 62, 3, 1924–1938
(2012).

Smith, R. E., J.-D. Tournier, F. Calamante and A. Connelly, “SIFT2: Enabling
dense quantitative assessment of brain white matter connectivity using streamlines
tractography”, Neuroimage 119, 338–351 (2015).

Song, H., D. Rajan, J. J. Thiagarajan and A. Spanias, “Attend and diagnose: Clin-
ical time series analysis using attention models”, arXiv preprint arXiv:1711.03905
(2017).

Song, H. and J. J. Thiagarajan, “Improved community detection using deep embed-
dings from multi-layer graphs”, arXiv preprint (2018).

Sporns, O., G. Tononi and R. Kötter, “The human connectome: a structural descrip-
tion of the human brain”, PLoS Comput Biol 1, 4, e42 (2005).

Srivastava, N., G. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov,
“Dropout: a simple way to prevent neural networks from overfitting”, The journal
of machine learning research 15, 1, 1929–1958 (2014).

Sun, L., Y. Dou, C. Yang, J. Wang, P. S. Yu and B. Li, “Adversarial attack and
defense on graph data: A survey”, arXiv:1812.10528 (2018).

Szegedy, C., W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow and R. Fer-
gus, “Intriguing properties of neural networks”, arXiv pre. arXiv:1312.6199 (2013).

Tagarelli, A., A. Amelio and F. Gullo, “Ensemble-based community detection in
multilayer networks”, Data Mining and Knowledge Discovery 31, 5, 1506–1543
(2017).

Tang, J., M. Qu, M. Wang, M. Zhang, J. Yan and Q. Mei, “Line: Large-scale infor-
mation network embedding”, in “Proceedings of the 24th International Conference
on World Wide Web”, pp. 1067–1077 (International World Wide Web Conferences
Steering Committee, 2015).

91

Tang, W., Z. Lu and I. S. Dhillon, “Clustering with multiple graphs”, in “Data
Mining, 2009. ICDM’09. Ninth IEEE International Conference on”, pp. 1016–1021
(IEEE, 2009).

Thiagarajan, J. J., P. Sattigeri, K. N. Ramamurthy and B. Kailkhura, “Robust
local scaling using conditional quantiles of graph similarities”, in “Data Mining
Workshops (ICDMW), 2016 IEEE 16th International Conference on”, pp. 762–769
(IEEE, 2016).

Torng, W. and R. B. Altman, “Graph convolutional neural networks for predicting
drug-target interactions”, Journal of Chemical Information and Modeling 59, 10,
4131–4149 (2019).

Tournier, J. D., F. Calamante and A. Connelly, “Improved probabilistic stream-
lines tractography by 2nd order integration over fibre orientation distributions”,
18 (2010).

Tournier, J.-D., F. Calamante, D. G. Gadian and A. Connelly, “Direct estimation
of the fiber orientation density function from diffusion-weighted MRI data using
spherical deconvolution”, Neuroimage 23, 3, 1176–1185 (2004).

Van Essen, D. C., S. M. Smith, D. M. Barch, T. E. Behrens, E. Yacoub, K. Ugur-
bil, W.-M. H. Consortium et al., “The wu-minn human connectome project: an
overview”, Neuroimage 80, 62–79 (2013).

Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser
and I. Polosukhin, “Attention is all you need”, in “Advances in Neural Information
Processing Systems”, pp. 5998–6008 (2017).

Velickovic, P., G. Cucurull, A. Casanova, A. Romero, P. Lio and Y. Bengio, “Graph
attention networks”, arXiv preprint arXiv:1710.10903 (2017).

Veličković, P., G. Cucurull, A. Casanova, A. Romero, P. Liò and Y. Bengio, “Graph
Attention Networks”, International Conference on Learning Representations URL
https://openreview.net/forum?id=rJXMpikCZ (2018).

Verma, V., M. Qu, A. Lamb, Y. Bengio, J. Kannala and J. Tang, “Graph-
mix: Regularized training of graph neural networks for semi-supervised learning”,
arXiv:1909.11715 (2019).

Vickers, M. and S. Chan, “Representing classroom social structure”, Victoria Institute
of Secondary Education, Melbourne (1981).

Wang, M., L. Yu, D. Zheng, Q. Gan, Y. Gai, Z. Ye, M. Li, J. Zhou, Q. Huang,
C. Ma, Z. Huang, Q. Guo, H. Zhang, H. Lin, J. Zhao, J. Li, A. J. Smola and
Z. Zhang, “Deep graph library: Towards efficient and scalable deep learning on
graphs”, ICLR Workshop on Representation Learning on Graphs and Manifolds
URL https://arxiv.org/abs/1909.01315 (2019).

92

Waniek, M., T. P. Michalak, M. J. Wooldridge and T. Rahwan, “Hiding individuals
and communities in a social network”, Nature Human Behaviour 2, 2, 139–147
(2018).

Wu, H., C. Wang, Y. Tyshetskiy, A. Docherty, K. Lu and L. Zhu, “Adversarial
examples on graph data: Deep insights into attack and defense”, arXiv:1903.01610
(2019a).

Wu, Z., S. Pan, F. Chen, G. Long, C. Zhang and S. Y. Philip, “A comprehensive
survey on graph neural networks”, IEEE Transactions on Neural Networks and
Learning Systems (2020).

Wu, Z., S. Pan, F. Chen, G. Long, C. Zhang and P. S. Yu, “A comprehensive survey
on graph neural networks”, arXiv preprint arXiv:1901.00596 (2019b).

Xu, K., H. Chen, S. Liu, P.-Y. Chen, T.-W. Weng, M. Hong and X. Lin, “Topol-
ogy attack and defense for graph neural networks: An optimization perspective”,
arXiv:1906.04214 (2019).

Yang, L., X. Cao, D. He, C. Wang, X. Wang and W. Zhang, “Modularity based
community detection with deep learning.”, in “IJCAI”, pp. 2252–2258 (2016).

Yang, Z., W. Chen, F. Wang and B. Xu, “Improving neural machine translation with
conditional sequence generative adversarial nets”, arXiv preprint arXiv:1703.04887
(2017).

Zeng, Z., J. Wang, L. Zhou and G. Karypis, “Coherent closed quasi-clique discovery
from large dense graph databases”, in “Proceedings of the 12th ACM SIGKDD
international conference on Knowledge discovery and data mining”, pp. 797–802
(ACM, 2006).

Zhang, H., L. Qiu, L. Yi and Y. Song, “Scalable multiplex network embedding.”, in
“IJCAI”, pp. 3082–3088 (2018a).

Zhang, Z., G. I. Allen, H. Zhu and D. Dunson, “Relationships be-
tween human brain structural connectomes and traits”, bioRxiv URL
https://www.biorxiv.org/content/early/2018/01/31/256933 (2018b).

Zhu, D., Z. Zhang, P. Cui and W. Zhu, “Robust graph convolutional networks against
adversarial attacks”, in “Proceedings of the 25th ACM SIGKDD International Con-
ference on Knowledge Discovery & Data Mining”, pp. 1399–1407 (2019).

Zügner, D., A. Akbarnejad and S. Günnemann, “Adversarial attacks on neural net-
works for graph data”, in “Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining”, pp. 2847–2856 (2018).

Zügner, D. and S. Günnemann, “Adversarial attacks on graph neural networks via
meta learning”, arXiv:1902.08412 (2019).

93

BIOGRAPHICAL SKETCH

Uday Shankar Shanthamallu is currently pursuing his Ph.D. degree with the school
of Electrical, Computer and Energy Engineering at Arizona State University. He
received his Master’s degree in electrical engineering from Arizona State University
(ASU) in 2018 and a Bachelor’s degree in electronics and communication engineering
from the National Institute of Engineering, India, in 2011. His research interests
include representation learning for graphs using machine learning and deep learning
techniques. He also has experience on sensor data analytics for anomaly detection. His
internship with NXP Semiconductors (2016) focused on algorithm development for
sensor data analytics. He also interned with Lawrence Livermore National Laboratory
during the summer of 2019 and 2020 where he built predictive models for human brain
connectomes.

94

