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ABSTRACT

In contrast to traditional chemotherapy for cancer which fails to address tumor

heterogeneity, raises patients’ levels of toxicity, and selects for drug-resistant cells,

adaptive therapy applies ideas from cancer ecology in employing low-dose drugs to

encourage competition between cancerous cells, reducing toxicity and potentially

prolonging disease progression. Despite promising results in some clinical trials,

optimizing adaptive therapy routines involves navigating a vast space of combina-

torial possibilities, including the number of drugs, drug holiday duration, and drug

dosages. Computational models can serve as precursors to efficiently explore this space,

narrowing the scope of possibilities for in-vivo and in-vitro experiments which are

time-consuming, expensive, and specific to tumor types. Among the existing modeling

techniques, agent-based models are particularly suited for studying the spatial inter-

actions critical to successful adaptive therapy. In this thesis, I introduce CancerSim,

a three-dimensional agent-based model fully implemented in C++ that is designed to

simulate tumorigenesis, angiogenesis, drug resistance, and resource competition within

a tissue. Additionally, the model is equipped to assess the effectiveness of various

adaptive therapy regimens. The thesis provides detailed insights into the biological

motivation and calibration of different model parameters. Lastly, I propose a series of

research questions and experiments for adaptive therapy that CancerSim can address

in the pursuit of advancing cancer treatment strategies.
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Chapter 1

INTRODUCTION

Traditional chemotherapy aims to eliminate as many cancerous cells as possible by

exposing patients to high doses of cytotoxic drugs (Aston et al. 2017). This approach

presents several drawbacks, the foremost of which is the heightened cytotoxicity

resulting from the administration of chemotherapy drugs at high concentrations,

leading to a reduced therapeutic index (Tannock 1998). Additionally, this strategy

fails to consider the presence of intratumoral heterogeneity (Marusyk and Polyak 2010),

with biopsies detecting only a limited range of heterogeneous populations. Empirical

evidence suggests that achieving complete cancer eradication is clinically improbable,

frequently culminating in relapse due to the development of drug resistance within the

remaining small cluster of cancer cells (Farquhar et al. 2005). This selection for drug-

resistant cells leads to the emergence of more aggressive tumors and, tragically, often

results in patient fatality attributed to metastatic progression (Marusyk, Janiszewska,

and Polyak 2020).

In turn, cancer ecology and evolution present a new way to look at cancer develop-

ment and treatment (Adler and Gordon 2019). Each distinct clonal cell group within

the tumor micro-environment can be likened to a unique species within an ecosystem

(Aktipis and Nesse 2013). The interactions, both within and among these “species,”

shed light on the mechanisms underlying tumorigenesis and offer valuable insights

into therapeutic strategies that leverage these interactions to combat cancerous cells

(Korolev, Xavier, and Gore 2014). This approach implements a treatment for stability
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strategy, where the objective is to enable patients to coexist with cancer rather than

seeking complete eradication (F. Thomas et al. 2018).

One innovative treatment strategy, informed by cancer ecology, is adaptive therapy,

which aims to curtail the proliferation of drug-resistant cells by employing low-dose

drugs to facilitate competition between resistant and sensitive cells for vital resources,

thereby maintaining a manageable tumor size (Gatenby et al. 2009). This approach

operates under the assumption that developing drug resistance comes at a cost to the

cell’s other functions, reducing their overall fitness (Gatenby 2009). While the resistant

cells may gain a selective advantage during drug administration, this advantage is offset

in the absence of drugs, where sensitive cells exhibit greater efficiency in reproduction

(Enriquez-Navas et al. 2016). Furthermore, adaptive therapy advocates for the use of

significantly lower drug doses than the Maximum Tolerated Dose (MTD), reducing

the cytotoxicity experienced by the patient (Zhang et al. 2017).

Currently, ongoing human trials and mouse models are exploring the efficiency

of adaptive therapy in controlling cancer progression. One of the early human trials

focused on Abiraterone treatment for metastatic castrate-resistant cells (Zhang et

al. 2017). This trial reported a significantly longer Time to Progression (TTP) for

adaptive therapy protocols (at least 27 months) compared to standard dosing (median

TTP of 16.5 months) while also reducing drug use by 46% (Enriquez-Navas et al. 2016).

Additionally, several mouse models also seem to suggest this trend (Gatenby et al. 2009;

Kam et al. 2014; Enriquez-Navas et al. 2016).

These trials highlight the advantages of adaptive therapy over traditional chemother-

apy, however, several factors need to be considered before suggesting treatment de-

cisions (West et al. 2023). Identifying adaptive therapy routines that effectively

exploit cancer ecology involves navigating a vast space of combinatorial possibilities,
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including the number of drugs, drug holiday duration, and drug dosages (Metzcar

et al. 2019). Ultimately, conducting in-vivo and in-vitro experiments would provide

the most accurate results when exploring this extensive array of potential regimens.

However, they are time-consuming, costly, and often specific to tumor types and

sub-types (Trisilowati and Mallet 2012). In this context, computational models can

serve as valuable tools to narrow the scope of laboratory experiments (McDonald

et al. 2023).

In this thesis, we present CancerSim, a three-dimensional agent-based model

designed to simulate angiogenesis and neoplastic progression along with spatial com-

petition for resources between different cell populations in the presence and absence

of drugs. This model can be used to examine ecological hypotheses about the dynam-

ics of cooperation and competition among diverse cell populations within a tumor,

particularly under the influence of distinct drug treatment protocols.

In Chapter 2, we survey existing computational models for cancer treatment. In

Chapter 3, we define our model and biologically align/calibrate its parameters in

Chapter 4. In Chapter 5, we present some research questions that CancerSim is

well-suited to answer. Lastly, we conclude this study with directions for future work

in Chapter 6.
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Chapter 2

RELATED WORK

Computational models assist in reducing the scope of in-vivo and in-vitro experi-

ments, allowing observation at different levels of abstraction and flexible parameter

changes (Trisilowati and Mallet 2012; Metzcar et al. 2019). In cancer research, they

address different aspects of tumorigenesis like interactions between pre-cancerous cells

and host immune cells, hypoxia in breast cancer, and the turnover rate’s impact on

treatment outcomes (Mallet and De Pillis 2006; Norton et al. 2017; Strobl et al. 2021).

These models can efficiently explore parameter landscapes, particularly for challenging

biological characteristics (Yu and Bagheri 2020).

The sheer number of possibilities for an adaptive therapy protocol makes it a good

candidate for pre-clinical trials on computational models. The model by Gatenby

et al. 2009 highlighted the effectiveness of a treatment-for-stability approach and was

validated through subsequent in-vivo experiments (Gatenby et al. 2009). Various other

adaptive therapy models, like those using Ordinary Differential Equations (ODE),

explore growth and resistance development in different tumor microenvironments

(Bacevic et al. 2017; Strobl et al. 2021; Angelini et al. 2022). However, ODEs, assume

well-mixed cell populations (Beerenwinkel et al. 2015), which may not accurately

represent solid tumors (Swanton 2012). In fact, spatial diversification of resistant cells

has a significant impact on treatment outcomes and thus is an important modeling

attribute (Wu et al. 2022).

Agent-based models (ABMs) are ideal for capturing spatial distributions in com-

putational modeling (McDonald et al. 2023). These models center on individual
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agents (cells) in a simulated space and govern their interactions based on specific

rules, unveiling complex system behaviors and emergent effects (Bonabeau 2002).

ABMs have been used to explore various factors influencing adaptive therapy out-

comes, such as spatial distribution of resistant cells (Strobl et al. 2022), multi-drug

adaptive therapy (D. S. Thomas et al. 2022), and dose modulation efficiency (Gallaher

et al. 2018). While ABMs provide real-time insights into tumor dynamics, they

come with application-specific strengths and limitations, from tumor type restrictions

(Norton et al. 2017) to the focus on two-dimensional models overlooking distinctions

from three-dimensional counterparts (Baker and Chen 2012).

CancerSim1.0 was originally introduced to study the acquisition of hallmarks of

cancer (Hanahan and Weinberg 2011) by cells in a tissue and their progression to

metastatic tumors (Abbott, Forrest, and Pienta 2006). It was a three-dimensional

ABM that handled angiogenesis and spatial heterogeneity in the distribution of

resources. However, it had some limitations, including biological inconsistencies,

and a lack of resource conservation from the vasculature. Additionally, it did not

model drug resistance or drug delivery, making it inadequate for effective adaptive

therapy modeling. CancerSim2.0 (referred to as CancerSim in this thesis), builds off

CancerSim1.0 and addresses these issues, as we will discuss in the following sections.
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Chapter 3

MODEL DESIGN

In this chapter, we present the model design for CancerSim, a three-dimensional

ABM, designed to simulate interactions between vasculature and cells in a tissue

in the presence of different drug combinations and dosage regimens, encompassing

tumorigenesis and drug distribution dynamics.

3.1 Modeling Space

In CancerSim, the simulated space takes on a spherical shape whose volume is

determined by the desired number of cell locations (N). Cell and capillary locations

within this sphere are represented as spheres in a face-centered cubic lattice (FCC),

where each lattice location, excluding boundary spaces, has 12 equidistant neighbors.

Within this environment, each lattice location can contain a single cell or remain

unoccupied, while capillaries can co-locate with cells. Figure 1 illustrates a sample

tissue in CancerSim where the blue cells are the sensitive cells, and the green cells are

the resistant cells. The vasculature is represented by the tree in the center with black

edges, and the nodes representing the capillary locations. Also, for a sense of scale, the

distance between adjacent cells corresponds to 15 µm in real-world terms. This three-

dimensional spatial framework is essential for understanding spatial heterogeneity,

resource distribution, and the organization of sensitive and resistant cells, which play

important roles in the success of adaptive therapies (Strobl et al. 2022).

Because of the shape of the face-centered cubic lattice, the radius R of the tissue
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Figure 1. CancerSim Tissue

is given by:

R = ceil

 3

√
3 ·N ·

√
2

π

2

 (3.1)

3.2 Modeling Time

CancerSim employs a discrete event model combined with discrete time steps to

systematically schedule events at predefined future time intervals. This modeling

approach treats the system’s operation as a sequence of distinct events occurring

at specific points in time, marking changes in the system’s state (Robinson 2004).

Additionally, the system state between two time steps remains fixed and each time

step corresponds to 1 hour of real time.
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This discrete event model handles three types of events: drug events (3.4), capillary

events (3.5), and cell events (3.6).

3.3 Resource Dynamics

3.3.1 Diffusion and Resource Flow

CancerSim models resources (i.e., nutrients, drugs, and angiogenesis factor) being

released by point sources and being absorbed by point sinks according to the diffusion

equation, or Fick’s second law:

∂C(x⃗, t)

∂t
= D · ∇2C(x⃗, t), (3.2)

where C(x⃗, t) is the concentration of a given resource at location x⃗ at time t, D > 0

is the resource’s diffusion constant, and ∇2 is the Laplacian generalizing the one-

dimensional second derivative for our three-dimensional setting. The time scale of

diffusion is much faster than our hour-long time steps, so we analyze diffusion at

steady-state in the inhomogeneous case when S(x⃗) are the fixed rates of concentration

production at locations x⃗. This is written as a Poisson equation:

∇2C(x⃗, t) = −S(x⃗)

D
. (3.3)

We are particularly interested in S(x⃗) as a collection of point sources and sinks at

locations (s⃗1, . . . , s⃗m) that release or absorb resources at fixed rates (C1, . . . , Cm),

respectively. These sources and sinks can be represented as Dirac delta functions δ:

∇2C(x⃗, t) = − 1

D
·

m∑
i=1

Ci · δ(s⃗i). (3.4)
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Resource Source Sink

Nutrients Capillaries Cells

Drugs (when active) Capillaries Cells

Angiogenesis Factor Cells (when starving) None

Table 1. Resource Interactions in CancerSim

The solution to this equation is given by a superposition of Green’s functions:

C(x⃗, t) =
1

D
·

m∑
i=1

Ci

4π · ||x⃗− s⃗i||2
. (3.5)

implying that resource concentration at a given location is determined by its proximity

to point sources and sinks, leading to spatial heterogeneity in resource distribution.

This solution is analogous to the “steady-source” version of the heat equation with

multiple sources or sinks; see Chapter XV of (Carslaw and Jaeger 1959). A summary

of sources and sinks for different resources in CancerSim is provided in Table 1.

3.3.2 Stochastic Thresholds

Various capillary and cellular processes like mitosis, angiogenesis, and drug-induced

death depend on the concentration of resources at the cell/capillary’s location. These

processes are triggered based on stochastic thresholds using the sigmoidal function:

f(x;m, k) =
1

1 + e−k(x−m)
(3.6)

where f(x;m, k) ∈ (0, 1) is the probability of a process being triggered at the concen-

tration x, k is the steepness of the function and m is the concentration value at which

the probability of having a process triggering is exactly 1/2. While the likelihood of
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an event occurring increases with rising resource concentrations, the introduction of

stochastic thresholds mirrors the inherent noise in biological systems.

CancerSim models three processes using stochastic thresholds. The likelihood of a

cell mitosis is determined with a stochastic threshold function fn(xn;mn, kn), where

xn is the concentration of nutrients at the cell’s location. Similarly, the likelihood of

drug death in a cell is decided by the stochastic threshold fd(xd;md, kd), where xd is

the drug concentration at the cell’s location. Lastly, a capillary performs angiogenesis

when fa(xa;ma, ka) function returns true, where xa is the concentration of angiogenesis

factor (AF) at the capillary’s location. The calibration for the mean and steepness

constants for these functions is addressed in Chapter 4.

3.4 Drugs

Drug events in CancerSim update a specific drug at a specific dosage at a specific

time step. A drug routine in turn maintains a list of such events and is provided as an

input to the simulation. CancerSim supports the inclusion of multiple drugs, which

can be administered together or separately with their respective doses. These features

enable diverse adaptive therapy strategies, including drug modulation (changing the

concentration of the drug over time), holidays (discontinuing drug administration for a

given period), cycling (switching between multiple drugs), drug cocktails (administering

multiple drugs at the same time), and any combination thereof.

Active drugs can eliminate sensitive cells before they can perform mitosis, with cell

death likelihood determined by a stochastic threshold function fd(xd;xd, kd) ∈ (0, 1)

on drug concentration (Eq. 3.6). Drug resistance in cells is explained further in Section

3.6.
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3.5 Vasculature

In CancerSim, the vasculature supplies all nutrients and drugs to the rest of

the tissue. It is composed of capillaries organized as a branching tree rooted at a

source capillary located at the center of the tissue. During a vasculature event, a

leaf capillary in this tree attempts angiogenesis which, if successful, will cause the

capillary to elongate into an adjacent position or branch into two adjacent positions.

A vasculature event is thus an opportunity for the given capillary to perform

angiogenesis, and improve the distribution of resources in the simulation space.

A capillary executing a vasculature event needs to determine whether it should

perform angiogenesis based on the outcome of the stochastic threshold fa(xa;ma, ka) ∈

(0, 1) where the likelihood of performing angiogenesis increases with the AF concen-

tration (xa) at that capillary location. At this point, if the capillary does not perform

angiogenesis, it schedules another event tcap time steps in the future.

If it passes the stochastic AF threshold for angiogenesis, the capillary faces the

second decision: whether to branch or elongate. This choice depends on a probability

pb ∈ (0, 1), where pb represents the probability of branching, and 1− pb represents the

probability of elongation.

After this choice, the capillary determines the direction for new capillary growth

based on the surrounding AF concentration. Since AF is produced by starving

cells, it forms a concentration gradient that points toward the direction of maximum

nutrient demand. Thus, the direction of angiogenesis is determined through a weighted

probability based on the AF concentration at each neighboring location i.

Pr(direction = i) ∝ xai∑12
i=1 xai

(3.7)
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where xai is the AF concentration at the location of neighbor i. For branching, this

decision process is performed twice (for two branches).

After branching or elongation, each newly formed capillary schedules a future

capillary event tcap time steps in the future. However, each capillary is limited to

branching or elongating only once, preventing the parent capillary from undergoing

angiogenesis again.

When a capillary with a point source concentration of C0 divides, it remains a point

source for C0 · ε concentration, with the remaining 1− ε fraction distributed among

its descendants. In elongation, the new capillary has a point source concentration of

C0 · (1− ε), while in branching, each branch has a concentration of C0 · (1−ε)
2

. This

ensures that the sum of the relative concentration of all capillaries consistently equals

1. This branching and elongation model conserves the total concentration of nutrients

and drugs entering the system, regardless of the number of capillaries.

3.6 Cells

In CancerSim, cells possess a phenotype defined by a set of cancer hallmarks

(Hanahan and Weinberg 2011) and drug resistances that determine their fitness

and drive competition. It is important to note that drug resistances are specific to

individual drugs, meaning a cell may be resistant to one drug but sensitive to another.

Every time a scheduled cell event is executed in CancerSim, the cell undergoes

a cycle. First, the cell checks if it is actually alive. It could have been exposed

to non-specific causes of death or exhausted its telomeres. Additionally, it could

have reached a (stochastic) threshold concentration of drugs it is sensitive to. Drug

resistance is then modeled by increasing the md parameter for fd(xn;md, kn), which
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increases the amount of concentration required to trigger drug death, serving as a

fitness advantage. Following these checks, if the cell is not dead, then it proceeds with

the rest of the cell cycle.

The cell exits its G0 resting phase and enters the G1 phase where it checks if it

has sufficient nutrients for mitosis. Different types of cells have different nutrient

requirements based on the number of drug resistances they have because gaining drug

resistance comes at the cost of higher nutrient requirements. If a cell has r ≥ 0 drug

resistances, then its nutrient requirement increases by r units. In case it does not have

sufficient nutrients, it becomes an AF source, reenters the G0 phase, and schedules a

later event tcell time steps in the future. If the cell has the Sustained Angiogenesis

hallmark, then it always produces AF, which is modeled in CancerSim by making

them constant sources of AF regardless of whether they have sufficient nutrients.

On passing the G1 phase, it reaches the G1 Checkpoint. Biologically, at this point,

the cell requires sufficient nutrients and the presence of self-growth factors to continue

with mitosis. CancerSim represents self-growth signals inside a central spherical region,

and cells with Sustained Proliferative Signaling (SPS) hallmark can expand beyond

this region, unlike normal cells. Thus, if a cell has sufficient nutrients and is in the

self-growth signal region (or has the SPS hallmark), it enters the S phase.

During the S Phase, the cell’s DNA is replicated, and at this point each hallmark

or resistance that the cell does not already have is obtained with probability pm.

If a cell has the Genetic Instability hallmark, then it mutates with the probability

pm = min(pm ∗ g, 1), for some g > 1. Note that in CancerSim, cells accumulate

hallmarks and resistances, but do not lose them, and these phenotypes are always

inherited by their descendants.

After the S phase, the cell must pass the first part of the G2 checkpoint that checks

13



for DNA damage that might have occurred during the S Phase. The probability of

a hallmark or drug resistance being detected is controlled by the parameter pd. If a

hallmark or drug resistance is detected, the cell undergoes apoptosis. If the cell has

the Evading Apoptosis hallmark, then it always passes this check and all hallmarks or

drug resistances go undetected.

On passing the first part of the G2 checkpoint, the cell reaches the second part of

the G2 checkpoint where it looks for sufficient space to divide. For a cell to divide, it

needs at least one empty neighboring location in the lattice for one of the daughter

cells, while the other takes the position of the parent. If the cell has an empty

neighboring location, it proceeds to the M phase. On the other hand, if the cell

does not have an empty neighboring location but has the Evading Contact Inhibition

hallmark, it can kill a neighboring cell with probability pr to make space for the new

daughter cell and clear the G2 checkpoint.

During the M Phase, the cell divides into two cells, and schedules later cell events

for both the daughter cells. At this point, if the cells have the Replicative Immortality

hallmark, they do not exhaust their telomeres and can keep dividing indefinitely,

while, if they do not have the Replicative Immortality hallmark, then their telomeres

decrease in length.
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Chapter 4

CALIBRATION

CancerSim must be calibrated to ensure a reasonable level of biological accuracy and

relevance of its predictions. This chapter details the reasoning behind all calibration

decisions and parameter values. A summary of all the parameters and their calibrations

is given in Table 2.

4.1 Event and Simulation Intervals

Recall from Section 3.2 that our fundamental unit of time is a time step representing

one hour of real-time. In these units, we have the following durations:

• At the end of a cell cycle, the cell schedules its next event for tcell ∼ N (µ =

48, σ = 8) steps in the future, a normally distributed random value with a

48-hour mean and 8-hour standard deviation. This is calibrated based on an

average cell cycle length of 1–3 days.

• When a new capillary is formed or an existing one has insufficient AF to initiate

angiogenesis, it schedules its next vasculature event for tcap ∼ N (µ = 96, σ = 8)

steps in the future, a normally distributed random value that is twice the

duration of the average cell cycle.

• The total simulation time is T = 43,830 steps, which is approximately equal

to five years, the duration of some longer-running clinical trials for adaptive

therapy (Zhang et al. 2017).
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Parameter Description Value / Computation

R Radius of the simulated tissue Calculated during runtime
using Eq. 3.1

tcell Duration of a cell life cycle N (µ = 48, σ = 8) timesteps

tcap Duration of a capillary life cycle N (µ = 96, σ = 8) timesteps

mn Midpoint for cell mitosis stochastic
threshold function

−0.1

kn Steepness constant for cell mitosis
stochastic threshold function

45.95

ε Retention Factor; the fraction of point
source concentration retained by a par-
ent capillary after angiogenesis

Computed during runtime
based on Eq. 4.7

Cn Nutrient concentration that is sufficient
to provide nutrients to all the cells in
the simulation

Computed during runtime
based on Eq. 4.1

Dn Nutrient Diffusion Constant 1

ms
d Midpoint for the stochastic threshold

function for drug death in sensitive cells
−0.459

mr
d Midpoint for the stochastic threshold

function for drug death in resistant cells
4.82

kd Steepness constant for the stochastic
threshold function for drug death

14.33

Dd Drug Diffusion Constant 1

ma Midpoint for AF stochastic threshold
function

11.425

ka Steepness constant for AF stochastic
threshold function

0.40

Da AF Diffusion Constant 0.12

Table 2. Parameters in CancerSim
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4.2 Nutrient Diffusion

In this section, we calibrate parameters controlling the diffusion of nutrients

released by the vasculature and absorbed by the cells. Specifically, we must calibrate

the midpoint mn and steepness kn of cells’ stochastic threshold for mitosis, the fraction

of resources ε retained by capillaries during angiogenesis, the diffusion constant Dn of

nutrients, and the total concentration of nutrients provided by the vasculature Cn.

We parameterize the sigmoid function fn(x;mn, kn) ∈ (0, 1) defining the stochastic

threshold for mitosis such that a sensitive cell has a 99% chance of mitosis when the

concentration of nutrients at its position is zero (i.e., the cell has exactly the nutrients

it requires) and a 50% chance of mitosis when the concentration is −0.1 (i.e., 90% of

sufficient nutrients). This yields midpoint mn = −0.1 and steepness kn ≈ 45.95.

Next, we calibrate the capillary retention factor ε. Precisely adjusting ε is essential

for achieving a resource distribution in the system that facilitates competition among

cells, avoiding both resource scarcity and excessive nutrient availability. Typically,

capillaries can effectively support cells within 50–100 µm depending on tissue density

and vasculature structure. We calibrate ε such that, even if the entire tissue is filled

with cells acting as nutrient sinks, (1) the source capillary at the tissue’s center

provides sufficient nutrients for mitosis to any cell within a 100 µm radius and (2) a

capillary at the tissue’s boundary provides sufficient nutrients for mitosis to any cell

within a 50 µm radius. Following the steady-state concentrations given by Eq. 3.5

and letting x⃗100 be the position of any cell exactly 100 µm from the center, the first

condition can be formulated as:

1

Dn

 ε · Cn

4π · ||x⃗100||2
−

∑
x̸⃗=x⃗100

1

4π · ||x⃗100 − x⃗||2

 = 0. (4.1)

Analogously, letting x⃗bnd be the position of any capillary at the tissue’s boundary and
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x⃗50 be the position of any cell exactly 50 µm from this capillary, the second condition

can be formulated as:

1

Dn

 (1− ε)R · Cn

Gn(R, pb) · 4π · ||x⃗50 − x⃗bnd||2
−

∑
x̸⃗=x⃗50

1

4π · ||x⃗50 − x⃗||2

 = 0, (4.2)

where R is the radius of the tissue, (1− ε)R ·Cn is the total point source concentration

of nutrients summed over all capillaries at depth R in the vasculature, and Gn(R, pb)

is the expected number of capillaries at depth R in the vasculature given a branching

probability pb. Throughout, we set pb = 0.25 (i.e., the vasculature branches every four

capillaries, on average) since this does not overcrowd the system with branches but

also ensures branching does occur reasonably often, even within smaller system sizes.

With our fundamental unit of space (one cell location) equaling 15 µm, we have

||x⃗100||2 = (100/15) and ||x⃗50 − x⃗bnd||2 = (50/15). Dividing Eq. 4.1 by Eq. 4.2 after

rearranging terms, we obtain

ε

(1− ε)R
= α :=

2 ·
∑

x̸⃗=x⃗100

1
||x⃗100−x⃗||2

Gn(R, pb) ·
∑

x̸⃗=x⃗50

1
||x⃗50−x⃗||2

. (4.3)

The right-hand side α of Eq. 4.3, although cumbersome, can be computed given the

number of cell locations N and the branching probability pb. The left side, however,

cannot be solved algebraically. We instead apply a second-order approximation:

ε

(1− ε)R
≈ ε · eR(ε+ε2/2) = ε · eε(R+Rε/2). (4.4)

Our goal is to fit this approximation to a form xex = y so that we can use the principal

branch of a Lambert W function to obtain a value x ≈ W0(y). Applying Eq. 4.4 to

Eq. 4.3 and multiplying both sides,

α ·
(
R +

R · ε
2

)
≈ ε ·

(
R +

R · ε
2

)
· eε(R+Rε/2). (4.5)
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Setting x = ε · (R +Rε/2) and observing that x → 1 as ε → 0 implies

ε ·
(
R +

R · ε
2

)
≈ W0(α ·R), (4.6)

and rearranging terms, we finally obtain:

ε ≈
√

R2 + 2 ·R ·W0(α ·R)

R
− 1 (4.7)

Total Nutrient Requirement (Cn) represents the total nutrient concentration needed

to support all cells in the system, assuming they are all sensitive and occupy the entire

tissue. This is calculated by solving Eq. 4.1, which takes the form:

Cn =

 ∑
x̸⃗=x⃗100

1

||x⃗100 − x⃗||2

 · ||x⃗100||2
ε

(4.8)

Nutrient Diffusion Constant (Dn) is a measure of how quickly nutrients spread or

diffuse through a medium in unit time. From Eq. 4.1 and Eq. 4.2, we can conclude

that Dn can have any positive value to match our constraints, and for the sake of

simplicity, we set Dn = 1.

4.3 Diffusion of Drugs

In this section, we calibrate parameters controlling the diffusion of drugs released by

the vasculature and absorbed by the cells. Specifically, we must calibrate the midpoint

mn and steepness kn of cells’ stochastic threshold for drug death, the diffusion constant

Dd of drugs, and the maximum total dose of drugs provided by the vasculature CMTD.

We parameterize the sigmoid function fd(xd;md, kd) ∈ (0, 1) defining the stochastic

threshold for cell drug death, utilizing Table 2 of Nowacka et al. 2021 to derive

midpoints md depending on whether a cell is resistant. In that study, the IC50 values
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for Paclitaxel are reported as µs ± σs = 3,737± 1,055 (ng/ml)2 for sensitive cells and

µr ± σr = 40,382± 4,110 (ng/ml)2 for resistant cells.

We normalize the sensitive cells’ normal distribution into our range of [−1, 0] (i.e.,

the range of a cell absorbing no nutrients to absorbing a lethal dose) by mapping

0 → −1 and µs + 3σs → 0, yielding the sigmoid midpoint µs → ms
d ≈ −0.459 and

steepness kd ≈ 14.33 for sensitive cells. For resistant cells, we keep the same steepness

but shift the midpoint mr
d = (µr/µs) · (ms

d + 1)− 1 ≈ 4.82.

We know from Eq. 4.1 and Eq. 4.2 that the value of the diffusion constant can be

any arbitrary positive value, and thus we set Dd = Dn = 1. While drug concentration

can vary depending on the dosage, we estimate the maximum tolerated dose (MTD)

of drugs as whatever concentration could effectively kill 10% of all cells since 10%

weight loss is a standard approximation of MTD (van Berlo et al. 2022). Since all

cells have unit sink concentration, we set CMTD = (0.1) · Cn.

4.4 Diffusion of Angiogenesis Factor

In this section, we calibrate parameters controlling the diffusion of AF released

by the cells and sensed (but not absorbed) by the capillaries. Specifically, we must

calibrate the midpoint ma and steepness ka of capillaries’ stochastic threshold for

angiogenesis, and the diffusion constant Da of AF.

We parameterize the sigmoid fa(xa;ma, ka) ∈ (0, 1) defining the stochastic thresh-

old for angiogenesis. The literature is not conclusive on angiogenesis thresholds, so we

instead implement a heuristic based on the number of cells within one unit distance

outside the 100 µm support range of a capillary; in CancerSim’s FCC lattice, this

count is N>100 = 914. We choose the sigmoid’s parameters such that when 25% (resp.,
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12.5%) of the N>100 cells are secreting AF, the capillary has a 99% chance (resp., 50%)

of angiogenesis. This yields ma = N>100 · 12.5% · 0.1 = 11.425 and ka ≈ 0.40.

Each cell source of AF secretes a unit amount of concentration, cAF = 1. We

calibrate the AF diffusion constant Da such that a cell secreting AF from just beyond

a capillary’s 100 µm support range contributes 0.1 concentration to that capillary’s

gradient value. Note that any concentration contribution ≪ 1 would suffice here, as it

just updates the Da required, as shown in the below calculations.

cAF

Da · 4π · (100/15)
= 0.1 ⇒ Da =

1

0.1 · 4π · (100/15)
⇒ Da ≈ 0.12 (4.9)
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Chapter 5

EXPERIMENTS

In this chapter, we present different experiments and related research questions

regarding adaptive therapy that CancerSim is well-suited to answer with its three-

dimensional modeling of resource competition, angiogenesis, and neoplastic progression.

5.1 Experiments

5.1.1 Optimal Drug Duration - Drug Holiday Periods in an Adaptive Therapy

Protocol

Drug holidays help mitigate the cytotoxic effects of treatment and allow the

sensitive cells to recover and compete with drug-resistant counterparts for vital

resources (Garattini et al. 2021). However, it is important to find the right balance

for the duration of these drug holidays. An excessively long drug holiday is akin to

discontinuing therapy, while a too-short duration does not give sensitive cells sufficient

recovery time and hampers their competition against drug-resistant counterparts

(Enriquez-Navas et al. 2016). Conversely, prolonged drug administration can lead to

the rapid eradication of sensitive cells, accelerating the emergence of drug resistance

as is the case with traditional chemotherapy.

We hypothesize that there exists an optimal drug administration duration (td)

- drug holiday duration (th) period pair that maximizes the Time to Treatment

Progression (TTP) which is a measure for treatment failure, defined as when 90%
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of the simulation space is occupied by cells. This is biologically equivalent to tumor

metastasis.

To explore this hypothesis, CancerSim can be employed to conduct numerous

trials with different td and th values for one drug, facilitating a comparison of their

performance based on TTP values. The simulation also provides visualizations to help

analyze the dynamics of resistant and sensitive cell populations throughout the trials.

5.1.2 Optimal Number of Drugs in an Adaptive Therapy Protocol

Existing computational models have already hinted at the potential advantages of

dose modulation in adaptive therapy protocols involving two drugs, showcasing an

extended TTP compared to standard treatment (ST) at the Maximum Tolerated Dose

(MTD) (D. S. Thomas et al. 2022). To expand upon this, we can use CancerSim to

explore whether there exists an optimal number of drugs within the system. Specifically,

we can investigate whether cycling through a certain number of drugs can maximize

the TTP. Additionally, this experiment can be performed using a combination of

multiple drugs in a cocktail setting, where these drugs are administered simultaneously

for the same duration.

Our hypothesis suggests that there is an optimal number of drugs within the setup

for an adaptive therapy routine. Beyond this optimum, the number of drugs may not

improve the TTP.

CancerSim accommodates multiple drugs in adaptive therapy routines, either in

combination with other drugs or as standalone treatments. It also models multi-drug

resistance, with the fitness costs varying based on the number of resistances a cell

possesses. To address this hypothesis, we can maintain constant values for td and th
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and manipulate the number of drugs (nd) in the adaptive therapy cycle. By observing

the dependent variable, TTP, we can estimate the efficiency of different numbers of

drugs.

5.1.3 Relation between Spatial Distribution of Resistant Cells and the Success of

an Adaptive Therapy Protocol

The emergence of drug resistance is a multifaceted phenomenon within the tumor

microenvironment, potentially influenced by factors such as hypoxia (Tredan et al. 2007)

and the spatial distribution of drug-resistant cells (Strobl et al. 2022). The distribution

of cells surrounding a given cell can significantly impact resource availability. Resistant

cells located amidst sensitive cells face stronger spatial competition compared to those

scattered throughout the tissue, where they may thrive with limited competition from

chemo-sensitive counterparts, leading to their rapid proliferation (Strobl et al. 2022).

In relation, we hypothesize that an adaptive therapy protocol is more likely to

succeed if the resistant cell populations are surrounded by sensitive cell populations.

CancerSim can visualize cell populations and distinguish between resistant and

sensitive cells. Its visualizer provides insights into tumor dynamics influenced by

spatial competition. Additionally, at the end of the simulation, CancerSim can supply

data related to the average number of sensitive neighbors for resistant cells. Analyzing

the relationship between the TTP and the average number of sensitive cells around

resistant cells provides a means to address this research question.
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Chapter 6

CONCLUSION

In summary, CancerSim, a three-dimensional agent-based model designed for simu-

lating spatial competition and drug delivery, can serve as a valuable tool for visualizing

and analyzing diverse adaptive therapy strategies in the context of cancer. Its ability

to model the diffusion of nutrients, drugs, and angiogenic factors, while accurately

maintaining their concentrations, strongly positions it as a platform for simulating

the spatial competition dynamics of resources in the tumor microenvironment.

Furthermore, we aim to expand the scale of CancerSim simulations. Presently,

most runs have employed tissue systems containing 10,000 to 50,000 cells. We aspire to

significantly increase the number of cells to approximately 1,000,000, thereby achieving

tissue sizes that closely resemble tumors ranging from 1 mm3 to 1 cm3 in volume. This

scaling up will allow for more realistic and clinically relevant simulations. However,

the primary bottleneck in running simulations on a larger scale is the increased

computational time for updating the concentration of resources across the tissue. To

address it, we would want to look into approximation algorithms that increase the

efficiencies of the concentration update operations.

Looking ahead, our future work involves developing experimental designs to execute

the experiments outlined in Chapter 5 and using the results to support or challenge

our hypotheses.
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