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ABSTRACT

The use of spatial data has become very fundamental in today’s world. Ranging

from fitness trackers to food delivery services almost all application record users’

location information and require clean geospatial data to enhance various features of

the application. As spatial data flows in from heterogeneous sources various problems

arise. The study of entity matching has been a fervent step in the process of producing

clean usable data. Entity matching in an amalgamation of various sub processes

including blocking and matching. At the end of an entity matching pipeline we get

deduplicated records of the same real world entity. Identifying various mentions of the

same real-world locations is known as spatial entity matching. While entity matching

received significant interest in the field of relational entity matching, the same cannot

be said about spatial entity matching.

In this dissertation, I build an end-to-end Geospatial Entity Matching framework,

GEM that explores spatial entity matching from a novel perspective. In the current

state-of-the-art systems spatial entity matching is only done on one type of geomet-

rical data variant. Instead of confining to matching spatial entities of only point

geometry type, I work on extending the boundaries of spatial entity matching to

match the more generic polygon geometry entities as well. I propose a methodology

to provide support for three entity matching scenarios across different geometrical

data types : point × point, point × polygon, polygon × polygon. As mentioned

above entity matching consists of various steps but blocking, feature vector creation,

and classification are the core steps of the system. GEM comprises an efficient and

lightweight blocking technique, GeoPrune, that uses the geohash encoding mechanism

to prune away the obvious non-matching spatial entities. Geohashing is a technique

to convert a point location coordinates to an alphanumeric code string. This tech-
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nique proves to be very effective and swift for the blocking mechanism. I leverage

the Apache Sedona engine to create the feature vectors. Apache Sedona is a spatial

database managment system that holds the capacity of processing spatial SQL queries

with multiple geometry types without compromising on their original coordinate vec-

tor representation. In this step, I re-purpose the spatial proximality operators (SQL

queries) in Apache Sedona to create spatial feature dimensions that capture the prox-

imity between a geospatial entity pair. The last step of an entity matching process is

matching or classification. The classification step in GEM is a pluggable component,

which consumes the feature vector for a spatial entity pair and determines whether

the geolocations match or not. The component provides 3 machine learning models

that consume the same feature vector and provide a label for the test data based on

the training. I conduct experiments with the three classifiers upon multiple large-

scale geospatial datasets consisting of both spatial and relational attributes. Data

considered for experiments arrives from heterogeneous sources and we pre-align its

schema manually. GEM achieves an F-measure of 1.0 for a point × point dataset with

176k total pairs, which is 42% higher than a state-of-the-art spatial EM baseline. It

achieves F-measures of 0.966 and 0.993 for the point × polygon dataset with 302M

total pairs, and the polygon × polygon dataset with 16M total pairs respectively.
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Chapter 1

INTRODUCTION

The past decade has witnessed a spatial data deluge, thanks to a plethora of

applications that are constantly collecting geospatial location data. Examples of such

applications include but are not restricted to social media check-ins, fitness trackers,

cab services, e-bikes, etc. As geospatial data flows in from different sources, various

hurdles arise such as data inconsistency, data redundancy, incorrect or incomplete

data, discrepancy between old and new data and much more. To make it useful,

such data needs to be curated before being passed to applications. Entity matching

(EM) is a prominent data integration technique Elmagarmid et al. (2006), the goal

of which is to match different mentions of the same real-world entity Meduri et al.

(a) Point (b) Polygon

Figure 1.1: Point and Polygon Examples of Sun Devil Fitness Complex at Arizona

State University
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(2020) across diverse data sources. These real-world entities can be of any type such

as personal data, object data, location data or more.

EM on spatial data is known as spatial entity matching, which is the task of

determining whether the given spatial entities map to the same geolocation Isaj et al.

(2019). Given a spatial entity pair s1 and s2, with n attributes each, an EM system can

classify the pair as a match or a non-match. Entity s1, for instance, can be represented

as a record with the following attributes name: ”Ike’s”, location: ”33.423, -111.939”,

ratings: ”3.7”, category: ”salad, cafe, bread” while s2 respectively can be ”Ike’s Love

and Sandwich” , ”33.43, -111.92” , ”4” , ”store, sandwich, restaurant”. This pair

should be classified as a match since both records refer to the same location (i.e., Ike’

s restaurant), despite not having the same values for some of the attributes. EM on

relational data (aka. relational EM), has been a fervent area of research for a few

decades now Elmagarmid et al. (2006); Christen (2012); Barlaug and Gulla (2021).

Relational EM predominantly assumes that the attributes in a record pair can be

represented as a collection of strings and thus leverages string similarity functions from

string matching libraries to derive numerical feature vectors for a record pair Monge

et al. (1996); Monge and Elkan (1997). Unlike relational data, we cannot simply

assume that a string-based representation suffices for spatial EM. Treating spatial

coordinates (i.e., latitude and longitude) as strings will result in a significant loss of

semantic information and poor matching performance.

Existing works on spatial EM Sehgal et al. (2006); Karam et al. (2010); Morana

et al. (2014); Berjawi et al. (2014); Barret et al. (2019); Isaj et al. (2019) match only

a single type of geometrical spatial data, i.e., a point to a point, which falls short in

catering to diverse geometric data types that geospatial data comes in, i.e., point,

polygon, multi-polygon, and more. Surprisingly, none of the spatial EM work so

far recognizes that a point can be matched to a polygon or that a polygon can be
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matched to another polygon. One such example is shown in Figure 1.1 where a record

s1: (name: ”SDFC”, location: ”(33.4152, -111.9310)”, ratings: ”5”, category: ”gym,

pool, football ground”) representing a point is potentially matched to a polygon de-

picted respectively by s2: (”Sun Devil Fitness Complex” , ”33.4159312, -111.9331601;

. . . . . . .; 33.4158702, -111.9326267; 33.41587, -111.9327201; 33.4158436, -111.9327202”,

”4.5”, ”fitness building, ASU, gym”). While s1 contains the point coordinates of the

fitness center at Arizona State University (Figure 1.1a), s2 contains the coordinates of

a multi-vertex polygon that encompasses the whole building (Figure 1.1b). Although

their spatial extent is different, they should be classified as a ‘match’ since they refer

to the same real-world location. A spatial EM system capable of matching diverse

geometries is essential for several applications such as (a) unification of check-ins for

an event from various social media platforms, (b) information integration about the

same place from multiple datasets (e.g., Yelp and Open Street Maps), (c) location

disambiguation among proximal, but different spatial entities, (d) matching addresses

to the same venue.

In this dissertation, I introduce an end-to-end Geospatial Entity Matching system

called GEM , which can match a pair of spatial entities regardless of their geometry

types. Note that the entities are represented as records containing both relational and

spatial attributes. I also talk about a lightweight blocking mechanism, GeoPrune,

to prune away the obvious non-matches by leveraging the geohash encoding tech-

nique Wikipedia contributors (2020). Our system leverages Apache Sedona TheA-

pacheFoundation (2020a) which is a scalable geospatial data processing engine to

create feature vectors for a pair of spatial entities. I re-purpose the spatial query op-

erators in Apache Sedona to create numerical dimensions for spatial attributes that

capture the spatial proximity between a geospatial entity pair. In order to create

numerical feature dimensions for relational attributes, the Simmetrics library TheA-
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pacheFoundation (2004) is utilized. Thus, GEM encodes the information about both

relational similarity and spatial proximality between a spatial entity pair which is

converted into a numerical feature vector, that is passed to a binary classifier to gen-

erate a match or non-match label for the entity pair.

Following are our contributions in this thesis:

• An end-to-end Geospatial EM system called GEM that can provide seamless

support to match a point with a point, a point with a polygon and a polygon

with another polygon.

• A new lightweight spatial blocking mechanism called, GeoPrune, that uses the

geohash encoding technique to prune the obvious non-matching entity pairs.

• To build numerical feature vectors at scale, the system leverages a scalable

geospatial data processing engine, namely Apache Sedona, to encode the spatial

proximity between the locations in an entity pair as well as the Simmetrics

framework to encode the similarity between the relational attributes.

• It supports binary classifier variants of three out-of-the-box ML classifiers, i.e.,

Random decision forests (RF), Support Vector Machines (SVM), and feed-

forward neural network (NN) to be plugged into the classification module of

GEM that consumes a feature vector for a pair of geospatial locations and

classifies them as matching or not.

The remainder of this article is structured as follows. Chapter 2 summarizes the

related work. The detailed problem definition and a description of the state-of-the-art

baselines from both relational and spatial EM that I have adapted towards solving the

problem in Chapter 3. The system architecture of GEM in Chapter 4, followed by

experimental results in Chapter 5. I conclude and provide future scope in Chapter 6.
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Chapter 2

LITERATURE REVIEW

Entity matching problems and challenges have received a lot of attention since the

beginning of the big data surge. This chapter attempts to give a brief overview of the

state-of-the art approaches for entity matching. It starts with providing definitions

and understanding of entity matching, then talks about various art approaches for

entity matching in relational databases. In the second section there is literature

supporting the surge of spatial databases and various challenging work done in this

area. Furthermore it briefly discusses the outline of entity matching process and

describes the current state of the art systems that claim to support spatial entity

matching AKA entity matching or deduplication in spatial data. The next section

talks about geohashes and the extent of exploration they have been subjected to.

Relational EM assumes that the attributes to be matched across records are pre-

dominantly textual in nature. Thus, it uses string similarity functions (e.g., Jaccard

similarity) to compare the pre-aligned attributes of an entity pair, and generate nu-

merical similarity scores which are used as dimensions in a feature vector. Prior works

on blocking Papadakis et al. (2016) compare one or more of these attribute similar-

ity scores with predefined thresholds to prune away the obvious non-matching pairs.

Full feature vector are created only on the surviving post-blocking pairs which are

subsequently passed to a heuristic matcher or a binary classifier.

Entity matching is a very vital data integration procedure. It is defined as a

core data cleaning activity that aims to find data instances that refer to the same

real-world entity Meduri et al. (2020)Köpcke and Rahm (2010)Konda et al. (2016).

Entity resolution, de-duplication, record linkage, data matching, tuple matching are
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Figure 2.1: Entity Matching Flow

all synonymous with entity matching. The subject of record linkage has received

copious attention in the relational database community. Although relational EM

has seen a substantial amount of work, the same cannot be said about spatial EM.

Some recent work exists for spatial data integration Walter and Fritsch (1999); Balley

et al. (2004) and testing spatial EM algorithms Morana et al. (2014); Barret et al.

(2019); Berjawi et al. (2014). Going further the chapter reviews various techniques,

algorithms and machine learning models that claim to achieve state of the art results

in the task of entity matching- both with relational data and some with spatial data.

I first summarize the work on relational EM, followed by that on spatial EM.

Entity matching scenarios generally consist of 2 tuples X and Y, are put through

a set of steps and algorithms to annotate them whether they are the same real-world

entity or not i.e. are they a match or a non-match. The generic entity resolution

process has a skeleton of steps like the pairing step, blocking step, and the matching

step as shown in the Figure 2.1. This pair of tuples could be product information,

location-based information, personal information, restaurant rating information, or

any other kind of data information.

Entity matching has been a very popular and heavily-researched subject mat-

ter Christen (2012)Elmagarmid et al. (2006)Getoor and Machanavajjhala (2012)Pa-

padakis et al. (2016). Art work in the area of entity matching on relational databases
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ranges from initial intuitive approaches of using similarity values and weighted aver-

age of the computed similarity values Jaro (1989)Landau and Vishkin (1989)Monge

et al. (1996)Monge and Elkan (1997), though many of these initial work assume that

the data is well structured and mostly noise-free which is a very ideal scenario far

from the nature of obtained data nowadays. Later, there have been articles using su-

pervised and semi-supervised learning methods alongside active-learning techniques

Meduri et al. (2020)Cochinwala et al. (2001)Monge and Elkan (1997)Bansal et al.

(2004)Domingos (2004)Tejada et al. (2001)Tejada et al. (2002). Numerous early ap-

proaches rely on string similarity scores of one primary attribute pair to infer the

possibility of linkage between the given entities Elmagarmid et al. (2006). Other

approaches considered multiple attributes similarity scores and calculated the result

using a weighted scoring function Christen et al. (2004); Jaro (1989); Landau and

Vishkin (1989); Monge and Elkan (1997); Monge et al. (1996). More recent rela-

tional EM approaches apply various machine learning(ML) techniques to the match-

ing step. Verykios et al. (2000) use unsupervised ML techniques, whereas Cochinwala

et al. (2001); Bansal et al. (2004); Tejada et al. (2001); Domingos (2004) use semi-

supervised and supervised ML algorithms. End-to-end EM systems which support all

the steps in the EM pipeline exist for both supervised learning Konda et al. (2016);

Christen (2012) and active learning Meduri et al. (2020). Mudgal et al. (2018) apply

deep learning techniques for relational EM. All the above methods and algorithms

proposed are for relational databases and they all work with the basic assumption of

considering the data fields as string and processing them. In spatial data the most

important piece of information are the location coordinates- latitude and longitude

and considering them string or text deteriorates their value. Due to this loophole

many pioneer entity matching methods that work flawlessly for relational databases

or large structured databases might not work as well for spatial data. I describe how
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Konda et al. (2016) and Mudgal et al. (2018) are adapted to spatial EM in Chapter 3.

Data with location information AKA spatial attributes has been around for a

long time, but recently since the last decade there has been a surge of spatial data

and analysis around it. This is termed as spatial data deluge Sarwat and TheA-

pacheFoundation (2020). Such data includes spatial-temporal data, socioeconomic

data, geo-tagged social media, satellite imagery data, data gathered through various

mobile devices/sensors and much more. Spatial data has started being a part of al-

most all the latest trending analysis ranging from news posts about various protests

in India, tweets about blast in Beirut,Lebanon ; US presidential elections, COVID-19

data etc.

Since the early 2000s we started having many different apps and platforms col-

lecting spatial data in the forms of geolocation check-ins, taxi trip information, GPS

enabled vehicles, GPS and wifi enabled bicycles, traffic light sensors etc. Hence over-

time spatial data also became a part of big data and started being used for enhancing

personalized user experience. Data deduplication done on spatial objects (only loca-

tion information) is generally referred to as spatial data integration. Artwork such

as Balley et al. (2004); Walter and Fritsch (1999) discusses the integration of various

forms of spatial data.

Due to easy availability of voluminous data this area has witnessed some great

scientific experiments, conclusions and systems over time. As geospatial data contin-

ues to grow it becomes very important to have a scalable, reliable and efficient system

in place which can help researchers working with large spatial data to program and

progress with efficiency and ease. Apache Sedona is a cluster computing system which

extends Apache Spark and Spark SQL to support spatial geometrical operations at

scale Yu (2020).

Treating attributes like spatial coordinates (latitude and longitude) as strings
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can prove to be detrimental for spatial EM. Existing works such as Balley et al.

(2004); Walter and Fritsch (1999) assume that the spatial objects to be matched only

contain spatial information. Unlike them, a spatial data point, also referred to as a

spatial entity in this paper, can contain both relational attributes (like name, ratings,

description, address, ..) and location coordinates representing diverse geometries.

Most of the following works do assume that a spatial entity can contain both relational

and spatial attributes. However, they only cater to point×point matching and do not

consider polygons except Ruiz-Lend́ınez et al. (2017). In the area of entity resolution

in geospatial data, there has been prior research and experiments attempting entity

resolution in spatial data using similarity measures of non-spatial and spatial features

and using the weighted average of these values to provide an label Sehgal et al. (2006).

They work with both spatial and non-spatial attributes and calculator similarity

values namely 3 attributes - Location name, Coordinates and Location type. The

author then calculates the weighted average of the similarity values and derives a

label for the pair X and Y. Sehgal et al. (2006) provide a matching algorithm based

on distance measure for spatial features and string similarity scores for relational

(non-spatial) features. Interestingly, this system solves the complementary problem

of discovering non-matches instead of matches via a distance function. This approach

works with an assumption that the data is clean, well populated and absolutely error

free, which is a strong assumption to work with given the current nature of available

data. In a scenario where tuple A : ‘Name: Tazzo Cars, Coordinates: 33.427, -111.917,

Type: Car repair shop’ and tuple B:’Name: Tazzo Bar, Coordinates: 33.435, -111.924,

Type: sports bar and food’ ; according to weighted similarity this tuple pair will pass

the threshold be classified as ‘same’ but in reality this is ‘not same’. Hence this

approach there is a high possibility of increased false positives and false negatives

because a single combination of weights and a rigid threshold cannot do justice to
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Figure 2.2: Workflow of Geobench system

Figure 2.3: Workflow of Geoalign System

each and every tuple for various other data sources.

Some other research approaches work around on the point of interest(POI) such

as restaurants, hotels, parks etc Morana et al. (2014)Barret et al. (2019). Figures 2.2

and 2.3 depicts the workflows of the two systems. Interestingly there has been sub-

stantial research and advancement in the area of available tools for testing spatial

data matching algorithms but a lack of benchmark does not facilitate accurate com-

parison between various spatial matching algorithms Morana et al. (2014). Morana

et al. (2014); Barret et al. (2019) build benchmark tools with usable interfaces to

support spatial EM techniques. Morana et al. (2014) segregate locations into various

types based on which they find points of interest (POIs) similar to the current loca-

tion. Despite being a testing tool, Morana et al. (2014) describe an EM flow that has

a blocking function with predefined threshold values corresponding to each location

‘type’ and a matching function that can handle both relational and spatial attributes.

Geobench assists users in doing so and the integration of corresponding spatial
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entities which you can download as CSV files for future use. They work with an

assumption that a specific set of attributes(classified as primary and secondary) have

to be present in a contestant dataset for it to be eligible for testing through the system.

They have a blocking and matching mechanism in place as a part of the process. The

blocking mechanism works with a pre-decided fixed radius threshold value depending

on the type of POI and for matching they calculate similarity scores on some of the

attributes and rely upon a weighted score for the decision. This system involves a

lot of manual intervention. It starts with taking input for POI and a value K, using

Geonames, Here and Google Maps data they perform blocking and matching. The

displayed top K results need to be validated by the user and then they go ahead

and integrate the results using Levensteins score of the ‘Title’ attribute. Again post

this there needs to be user validation and then the final tuple is represented with

integrated information from all available sources about the POI entered by the user.

On the other hand, Barret et al. (2019) build a dedicated testing tool which of-

fers a host of similarity metrics and parameter settings that can be fine-tuned as per

the user preferences. GeoAlign allows users to customize and fine tune the combi-

nation function. The graphical user interface assists the visualization and merging

of detected correspondencesBarret et al. (2019). Four cartographic providers namely

- Open Street Map, Geonames, Here and Bing Maps are available in the system.

GeoAlign provides various categories of similarity metrics for different attributes and

settings to fine tune their weight according to the user’s need. The user is expected

to enter the POI and tune their similarity values after which GeoAlign processes and

generates best possible results on the graphical map interface.

The GeoBench system works with some very rigid assumptions. Both the systems

work with a defined set of data sources which ceases the possibility of trying the system

on new datasets. Moreover GeoBench and GeoAlign are very productive research
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contributions in the field of tools and systems for testing existing spatial algorithms

in contrast to experimentally proving a fresh algorithm and its performance to be

effective for spatial entity deduplication.

Isaj et al. (2019) build an end-to-end spatial EM system that has a spatial blocking

step and a matching step. They employ a modified quadtree algorithm as the blocking

mechanism and a heuristic of multiple skylines to classify the pairs. It comprises

a blocking algorithm and a classification technique for spatial entity linkage. The

blocking algorithm has the concept and complexity of the quadtree algorithm at the

core of it Isaj et al. (2019). The variations proposed to the traditional quadtree

algorithm to make it more compatible with spatial scenarios are as follows:

• Two point will only be considered if the distance between given 2 points has to

be less than the diagonal of the rectangular quadtree child

• One point can be a part of more than one children of the quadtree; modifying

the recursive working of quadtree to accommodate more points that are closer

rather than splitting them randomlyIsaj et al. (2019)

Further they compute similarity scores of various attributes and using those sim-

ilarity values generate a label for a particular pair. These pairs are represented as

points in a space of n dimensions with 4 string similarity values, where n is the num-

ber of attributes. The labelling technique, SkyEx, uses Pareto optimality principle

combined with a multiple skyline approach. They work with the assumption that

the true positives or the positive matches are a minority and hence lie as outliers

on the graph. Hence they propose to explore k skyline to ensure that all the possi-

ble true positives have been recorded. While the technique is a unique combination

of functions, there is not much clarity provided on the determination of k and how

experimental results varied with various values of k. Furthermore the blocking tech-
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Approaches
Support for spatial data

Spatial

Blocking

Different geometry

support

Feature

generation
Training Inference

Magellan Konda et al. (2016) No N/A No No No

Deepmatcher Mudgal et al. (2018) No N/A No No No

GeoBench Morana et al. (2014) Yes Point Yes N/A No

GeoAlign Barret et al. (2019) No Point Yes N/A No

QuadSky Isaj et al. (2019) Yes Point Yes N/A Yes

Table 2.1: State-of-the-art Approaches

nique proves to be very computationally heavy and did not scale well when exposed

to large data. While carrying out experiments on the QuadSky system with various

data sources, we noticed that the system needs a weighted value of the similarity

scores, termed as ‘preference function’ to carry out the labelling step. Moreover we

observed that the system exhibits large amounts of FP and FN which compromises

the F1-score in case of large noisy data, probably because the systems relies heavily

on similarity score and in case of inaccurate score the preference function gets com-

promised which results in poor performance. Also in scenarios where the diagonal

length threshold is manipulated the system proves to be performing well only for a

certain value which contradicts the establishment of the threshold as the density of

the area does not affect the length in turn casting no shadow on the overall perfor-

mance. Since their system can only support point matching, we describe how we

adapt it towards matching polygon pairs in Chapter 3. Ruiz-Lend́ınez et al. (2017)

build a system that matches two polygons, but it is not an EM system. They treat

spatial data in an image format rather than the original coordinates vector. Unlike

these techniques, we treat spatial geometries in their native format and leverage a

spatial DBMS like Apache Sedona to enable the EM task.

A comparative study of various state of the art algorithms has been shown in
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Table 2.1. It depicts the performance of these systems over various crucial features

that a good spatial algorithm should possess. First up we have the most important

measure of efficiency with spatial data, next we talk about the scalability of the

system and blocking technique. As we talked about the increasing size of data and

data deluge it is very important for a spatial system to be scalable. The blocking

technique is a very crucial step of the entity matching pipeline. An easy technique

which is low in its implementation complexity can give a scientist lots of freedom to

experiment and increase the performance of the algorithm’s training step. We talk

about various systems but sadly not many have a good blocking algorithm. We then

talk about how compatible are the existing algorithms with the various kinds of the

geometric shapes in which spatial data is available, namely, points, polygons, lines.

We observe that all the available art can only deal with a node or point and fails for

enclosed shapes. Lastly we compare the complexity of the two large but principal

steps of any algorithm - training and inference. The legend for these columns are -

high, low and medium. When we say the step complexity is high we mean that it is

difficult to break down or understand the inner workings which leads to less to none

scope of improving the algorithm. Moreover high complexity also denotes that these

systems take long hours even days to execute over chunks of comparatively small

data.

The geohashing technique of converting point coordinates into a 12 character

alphanumeric code has been well-known for its proximity searching use case Geo-

hashPubnub (2020). Research has been done on how geohashing is a flexible and

efficient way of converting latitude/longitude coordinates to string codes and vice

versaMoussalli et al. (2015). Geohash code technique has been used for quite a few

applications like object tagging along with universally unique identifiers for gaining

spatio-temporal identifiers for all the data availableBalkić et al. (2012), indexing for
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spatial data management in distributed memoryLiu et al. (2014). Geohashing has

also been used as an encoding and decoding technique used to generate frequent

itemsets in demographic prediction experiments Roy and Pebesma (2017). Astonish-

ingly enough, geohashing technique has not been explicitly addressed or experimented

as a potential classifying technique or blocking mechanism for spatial entity linkage.

In summary, note that there are numerous approaches to solve the relational

EM problem but they need to be adapted towards solving the spatial EM problem.

Spatial data needs to be handled distinctively, and hence there is a need for spatial

EM systems. Most of the existing spatial data integration tools work on the testing

of a spatial entity linkage algorithm. However, as depicted in Table 2.1, all the

current EM artwork in the spatial community only supports the matching of a point

to another point. Although some of the existing works on spatial EM can tackle

both relational and spatial attributes, they miss out on catering to the diverse spatial

geometry which includes polygons. GEM is a system that enables this vision of

matching diverse spatial geometries while accommodating both relational and spatial

attributes. I categorize the distinctive features of various state-of-the-art EM systems

in Table 2.1. In the next chapter, I will introduce the problem statement and describe

the state-of-the-art baselines I implemented for my thesis.
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Chapter 3

PROBLEM DEFINITION AND BASELINE APPROACHES

In the first half of this Chapter, I define our problem. The later half, discusses

non-trivial details of how I implemented a few state-of-the-art baselines from both

relational and spatial EM as shown in Figure 3.2.

3.1 Problem Definition

In this thesis, I attempted to solve the spatial EM problem. Consider two spatial

datasets Sleft and Sright. Tuples in these datasets are well-defined spatial entities that

have both spatial features like coordinates and relational (non-spatial) attributes. The

EM task here is to match spatial entities from Sleft to that of Sright. Datasets Sleft and

Sright can have spatial data of either geometry type: point or polygon. We assume

that the schema of the datasets, Sleft and Sright, is pre-aligned. Tpoint is a spatial

data tuple of geometry type point which has one pair of coordinates (i.e. latitude

and longitude), and Tpolygon is a spatial data tuple of geometry type polygon which

has multiple coordinate pairs. We consider all the possible scenarios that can occur

within entity matching of multiple geometry types: point and polygon. GEM my EM

system provides support for the following entity matching scenarios:

• Sleft × Sright, where Sleft ∈ Tpoint and Sright ∈ Tpoint

• Sleft × Sright, where Sleft ∈ Tpoint and Sright ∈ Tpolygon

• Sleft × Sright, where Sleft ∈ Tpolygon and Sright ∈ Tpolygon

Figure 3.1 provides an example for each of these cases. Consider an entity pair

s1 and s2, where s1 ∈ Sleft and s2 ∈ Sright. The pair contains one spatial attribute:
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(a) Point × Polygon (b) Polygon × Polygon

(c) Point × Point

Figure 3.1: Illustrative Examples of Spatial Entity Matching Across Diverse

Geometries

coordinates and three relational attributes: name, address and category. s1 and s2 in

fig 3.1a are classified as a match based on the coordinates and the similarity between

name and address . In contrast, the pair in Figure 3.1b is marked as a non-match

because all the attributes are different. Even though address and category are similar

in Figure 3.1c, the entity pair is classified as a non-match because of different name

and coordinates. Also, Figure 3.1 depicts the three possible matching scenarios w.r.t.

diverse spatial geometries - point× point, point× polygon and, polygon× polygon.

Since a few decades relational EM has been a hot research topic, spatial EM has

come to the limelight very recently. As mentioned in section 2 the current spatial EM
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systems are confined to work with only the point geometry type. It is surprising that

the vast EM community hasn’t considered matching spatial data of other geometries.

While there is no prior artwork on point × polygon spatial matching, Ruiz-Lend́ınez

et al. (2017) attempts matching a polygon with polygon using spatial image data.

This system considers the spatial coordinates of different geometries and process

them using Apache Sedona. Details about the working of GEM has been deferred to

Chapter 4. A system that matches points with polygons and polygons with polygons

can be useful in disambiguating various mentions of an event across different datasets.

This is an end-to-end spatial EM system that supports entity matching across multiple

spatial geometries. In the next half of this chapter I discuss various implementation

details and parameters for the current state-of-the-art EM systems, both- relational

and spatial that I consider as baselines and evaluate my system against.

3.2 Baseline Approaches

Among the approaches we describe below, Magellan and DeepMatcher are rela-

tional EM systems, whereas QuadSky is a spatial EM system. Figure 3.2 highlights

their system workflow.

3.2.1 Magellan

Magellan Konda et al. (2016) is relational EM system consisting of all the expected

steps in an end-to-end EM pipeline such as blocking, feature vector generation, model

training and matching. Each of these building blocks are pluggable with multiple op-

tions to pick from. Among the various options for each component, I pick the default

or best working option as highlighted by Konda et al. (2016). I use the overlap blocker
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Figure 3.2: Baseline Relational & Spatial Entity Matching Approaches

among the various blocking options. Data labeling in this system is done manually,

but as the post-blocking set grew to the order of a few millions I employed our semi-

manual labelling technique. I defer experimental details to Chapter 5.5. As mentioned

before, Magellan employs various string similarity functions like Jaro distance, Co-

sine similarity for feature vector generation. Hence, it treats the spatial attributes

as text and calculates string similarity on them. It provides two types of matchers -

learning-based and rule-based classifiers. Although rules are interpretable, rule-based

classifiers are significantly more expensive to train than the learning-based classifier.

Therefore, I choose Random Decision Forests as the matching component for Mag-
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ellan. Additionally Random Forests are one of the three classifiers that I provide in

the pluggable classification component of GEM and hence it would be an exciting

experiment to compare the perfomace of GEM against relational EM state-of-the-art

system Magellan Konda et al. (2016) I feed Magellan with pre-aligned spatial data

sources.

3.2.2 DeepMatcher

DeepMatcher Mudgal et al. (2018) is a deep learning (DL) based approach for

relational EM, which was specifically designed towards handling long text in the

attributes. It thus focuses on deriving a suitable representation for the long textual

attributes in the input entity pair using Recurrent Neural Networks (RNNs) and word

embeddings generated using FastText FacebookOpenSource (2020) library, instead of

the conventional string similarity functions. The system has three steps:

• feature embedding: Converts attributes of two data tuples into sequence of word

embeddings.

• feature similarity representation: captures the similarity of the two entities and

puts them into a feature vector

• classification: performs classification using a multi-layer neural network

The learned embeddings for entity pairs are passed as input to a multi-layer per-

ceptron (MLP) which derives their classification outcome. Since DeepMatcher is a

classifier and not on end-to-end system like Magellan, it does not have a blocking step

or a labeling step where a human is asked to generate the labels for training. Since

DeepMatcher and Magellan are a part of the same overarching EM project, I resort
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to using Magellan’s overlap blocker to generate post-blocking pairs for DeepMatcher.

I pre-generate the training, validation and test sets for DeepMatcher and input them

along with the raw text files to enable the feature vector generation and subsequent

classification. Similar to Magellan, one major limitation while adapting relational

EM to spatial EM is that spatial attributes are treated as strings, that can lead to

substandard performance which I empirically validate in Chapter 5.5. Additionally,

in DeepMatcher the feature vector creation is done as a part of the package, so it

prohibits equipping or amending the feature vector with spatial information, that

can assist the model to perform adequately on spatial data.

3.2.3 QuadSky

Isaj et al. (2019) build QuadSky as an end-to-end spatial EM system that matches

spatial entities comprising both spatial and relational attributes. QuadSky consists

of spatial blocking, feature vector generation and classification as the steps in its

EM pipeline similar to GEM . However, QuadSky proposes skyline-based heuristics

instead of an ML classifier to label the spatial entity pairs as matching or not. Also,

unlike traditional EM systems that have a left and a right dataset, QuadSky takes

a single dataset as input upon which Cartesian product is computed to generate the

pool of candidate entity pairs that need be matched. We union Sleft and Sright into a

single dataset and feed it to QuadSky. For example is if Sleft and Sright have 300 and

400 tuples respectively, I create a new dataset Smerged with 300+400 = 700 tuples and

perform a self product of those 700 tuples. Hence ideally if the data was considered

in two data sets the number of total pairs will be equal to the Cartesian product of

Sleft×Sright which is equal to 300× 400 = 120, 000, whereas for the QuadSky system
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the total number of pairs will be 244,650.

The spatial system leverages the quadtree index in its blocking step to prune

away the obvious non-matches. It creates feature vectors using four string similarity

scores for relational attributes and spatial distance for coordinates. It uses a heuristic

based on multiple skylines to discover the matches. QuadSky only matches point

geometries. To adapt it for polygon matching, I reduce the polygon to a point with

its centroid coordinates. Doing so leads to poor EM performance which we will show

in Chapter 5.5. Note that I could not compare GEM to GeoBench or GeoAlign due

to their restrictive web interfaces and lack of source code.
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Chapter 4

SYSTEM ARCHITECTURE

This section presents the details of GEM and how it can match spatial entities with

diverse geometry types.

4.1 Overview

Spatial entity matching is not as explored as relational entity matching; most of

the state-of-the-art spatial EM systems only match tuples of geometry type point.

Astonishingly, no investigation has been done in the area of EM of a polygon to

another polygon or matching a point to a polygon geometry type tuple. Deduplicating

data across various datasets, mapping social media check-ins from multiple platforms

without the barrier of geometry type are just some of the many applications of this

fundamental functionality. Analyzing the various state of the art entity matching

algorithms, I understood that all the existing systems either read the spatial attributes

as strings (relational EM) or need to be fed the polygon spatial coordinates in the

form of a point, i.e., the centroid of the polygon (spatial EM). I propose a unique way

to handle spatial EM on multiple spatial geometries with the assistance of Apache

Sedona TheApacheFoundation (2020a); Yu et al. (2015, 2019). Apache Sedona is a

Figure 4.1: System Architecture Overview of GEM
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cluster computing system that can load and process spatial SQL queries on big spatial

data with efficiency and resilience. Furthermore, the expeditious and scalable nature

of the system makes the feature vector creation process entirely scalable and swift.

Let us assume that we have two data sources Sleft and Sright whose schema was

manually pre-aligned, i.e., the matching attributes from the data sources were mapped

to each other with the help of domain experts. It is required that the spatial coordi-

nates of each entity pair are non-null, although the non-spatial attributes are allowed

to have null values. The spatial blocking step prunes away the obviously non-matching

pairs from the pool of Cartesian product pairs. Figure 4.1 gives an overview of the

GEM system architecture. It consists of a pre-processing step which performs a

sanity check to ensure that the entity pairs do not have unaligned attributes or null

spatial coordinates. The clean pairs from the Cartesian product are then passed to

a spatial blocking step which filters out the obviously non-matching pairs. This is

required because, it avoids the feature vector generation and classification expendi-

ture on such obvious mismatches. Furthermore, for spatial blocking, the geohashing

technique is employed that works with the spatial features of the data. Geohash-

ing is a flexible and efficient way of encoding coordinate information into a string of

12 characters Moussalli et al. (2015). Procedural details of spatial blocking will be

explained in Chapter 4.2.

The post-blocking pairs, Sblocking, is passed to the feature vector creation module,

which is divided into three parts as shown in Figure 4.1 - labeling, spatial feature

creation and relational feature creation. While spatial feature creation uses Apache

Sedona TheApacheFoundation (2020a) to infer the spatial proximity among the enti-

ties, relational feature creation augments the spatial features with relational features

created using the Simmetrics TheApacheFoundation (2004) library to create the full

feature vector. The ability to preserve and utilize the location information provided
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in the data makes spatial EM different from relational EM; this is witnessed the most

in the feature vector creation. Note that we are not reducing the polygon’s coordi-

nate information into a mere point because Apache Sedona is exceptionally equipped

to handle polygons with multiple coordinates. We provide set Sblocking and datasets

Sleft and Sright in their original form to Sedona and compute various spatial proximal

queries TheApacheFoundation (2020b) depending on the type of spatial geometry

EM scenario

The labelling of pairs from Sblocking is done in a semi-manual fashion to create the

ground truth labels for the feature vectors. I work on manually generating Boolean

DNF (Disjunctive Normal Form) rules for matching through trial-and-error method

on various samples of the data. The predicate rules are a conjunction of multiple rela-

tional and spatial conditions. These rules and their frequency can vary from dataset

to dataset. An example rule for point × point dataset could look like ‘(Euclidean

distance between 2 points ≤ 3meters
∧

Jaccard similarity between name attribute

≥ 0.9
∧

Cosine similarity between address attribute ≥ 0.95)
∨

(Jaccard similarity be-

tween address ≥ 0.95
∧

Levenstein distance between name ≥ 0.98’). The outcome of

such rules is evaluated on each pair and helps determine its label. These rules are ap-

proximate as they are based on manual examination of several samples, which is why

extensive manual effort was spent to verify and correct the mis-labelled pairs. This

label correction step is done by sampling an ambiguous space of entity pairs whose

labels are likely to go wrong. Ambiguous ranges are defined based on a similarity

score that is neither too less, nor too high (for instance, overall attribute similarity

≥ 0.75 but ≤ 0.9).

Simmetrics library comprises around 21 string similarity functions such as Jaccard

similarity, Cosine similarity and others, each of which is applied to the pair of rela-

tional attributes to generate similarity scores. These scores are used as non-spatial
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feature dimensions in the numerical feature vector. Apache Sedona TheApacheFoun-

dation (2020a) is a cluster computing system that provides a host of spatial SQL op-

erators to support distributed query processing over big spatial data and can support

diverse spatial geometries. In this work, seven such query operators from Apache

Sedona are utilized that can compute spatial proximality between a pair of spa-

tial geometries. These include ST Contains, ST Intersects, ST Within, ST Equals,

ST Crosses, ST Touches and ST Overlaps, each of which consumes a pair of spatial

geometries and outputs a Boolean value indicating whether the spatial proximity con-

straint met or not. Spatial proximity can be understood as the equivalent metric for

spatial similarity, analogous to how string similarity is used in the context of rela-

tional EM. The Boolean output from these proximal evaluation are used as numeric

dimensions (1/0 for constraint met or not) in the feature vectors. Spatial feature

dimensions augmented with non-spatial feature dimensions produce the final feature

vector that is then passed to the machine learning models for training and evaluation.

More details about feature vector creation are provided in Section 4.3.

Three classifiers are employed to match the feature vectors: Random Forests,

SVM, and feed-forward neural networks. This is possible because the matcher (clas-

sifier) in GEM is a pluggable component that can support any binary classifier. This

allows for plug and play of ML models in a seamless fashion for extensive experi-

mental adaptation. All the models are trained on 80% of the feature vectors and are

evaluated on the remaining 20%. Further in this chapter, I talk in detail about the

system and highlight how every step will adapt, and procedure will take place in case

of each of the three spatial geometry entity matching scenarios stated in Chapter 3.
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4.2 Spatial Blocking

Blocking function determines how many spatial entity pairs within the Cartesian

product can be pruned away. Intuitively, this implies that there is an implicit tradeoff

between the pruned pairs and matching quality. If too many pairs are pruned out,

there may be several matching pairs among them which were deemed as non-matching

and this will lead to an increase in False Negatives. Conversely, if the blocking function

is too conservative and prunes too few pairs, there will still be several pairs remaining

among the post-blocking pairs and although this may not deteriorate the quality of

the classifier, it will have an adverse affect on the feature vector creation, training

and test latencies of the classifier. Therefore, it is important the blocking function

can prune just enough pairs to speed up the execution of the matching phase.

Another issue here is the choice of the blocking function. Given that there are sev-

eral spatial SQL operators in Apache Sedona, we could have picked a combination of

their Boolean evaluations as the blocking function. However, combining the outcomes

of several Boolean predicates (such as ST Contains, ST Intersects, ..) is a non-trivial

exercise and has an exponential search space in terms of the number of combinations

of the spatial SQL operators. Therefore, instead I resort to using geohash which is

a lightweight indexing technique, as a blocking function. I call the blocking function

GeoPrune. It is intuitive knowledge that the granularity of the blocking function

can substantially influence evaluation measures, the quality of resultant matching

pairs, and the standard of eliminated pairs. Nevertheless, what is equally important

is that the spatial blocking function needs to be lightweight, supple, and inexpen-

sive in terms of processing. The most intuitive and greedy approach would be to

relay all the p possible pairs and perform a combination of various spatial proximal

queries like ST Touches, ST Overlaps, ST Contains, ST Intersects, and others avail-
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able in Apache Sedona. The resultant pairs that survive the processing will count

towards the post-blocking candidate set C. This method indeed preserves the essence

of the system (using spatial features for blocking) but 1. SQL query computation

is inherently more expensive on the processor than string matching (Geohash code).

Furthermore, the different proximal query results need to be combined with the help

of boolean functions before they can be embedded to the feature vector. For instance

using the seven spatial operators for a point × polygon tuple pair then one possible

Boolean combination is ST Touches∩ST Overlaps∪ST Contains∪ST Intersects∩

ST Within ∪ ST Crosses ∪ ST Equals 2. It is practically impossible for humans

to compute an efficient Boolean relation, in comparison to what an ML model can

enumerate. The Boolean relations that we, as humans, can compute are far inferior

to what a machine learning model can enumerate. the proximal query Undoubtedly

this approach will yield a more decadent post-blocking candidate set with a higher

ratio of negative:positive pairs. However, the arguments mentioned above propelled

us to adopt an alternative method.

Algorithm 1 describes how GeoPrune works. It consists of two steps - geohash

computation and blocking. Geohash is an existing geocoding system that encodes

the geographic location of a point, i.e., latitude and longitude Wikipedia contributors

(2020). It is a short string of alphanumeric characters which depicts an area on the

map. Geohash assumes that the globe is partitioned into a hierarchical grid of 32 cells

and annotates them using Base-32 encoding. The first character of the code uniquely

identifies a coarse-grained region (cell) on the grid. Each cell is hierarchically divided

into 32 cells of a finer granularity (fanout=32) with a maximum allowed tree height

of 12, i.e., at most 12 levels can exist in the hierarchy. Hence, a geohash code for a

location can have maximum of 12 characters. The more the characters in a geohash,

the more precise is the location GeohashPubnub (2020).
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Algorithm 1: GeoPrune (Spatial blocking)

Input 1: Two spatial datasets Sleft and Sright

Input 2: blocking threshold k

Output: Post blocking candidate set Sblocking

1 geoPrune:

2 S ′left ← computeGeohash(Sleft)

3 S ′right ← computeGeohash(Sright)

4 Sblocking ← blocking(S ′left, S
′
right, k)

5 return Sblocking

6 def computeGeohash(Sdata):

7 if Sdata geometry type Polygon then

8 // compute centroid

9 Sdata ← centroid(polygon’s coordinates)

10 end if

11 foreach tuple t in Sdata do

12 // point coordinates for Point

13 // centroid coordinates for Polygon

14 S ′data ← geohash code using coordinates

15 end foreach

16 return S ′data
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Algorithm 2: GeoPrune (Spatial blocking)

17 def blocking(S ′left, S
′
right, k):

18 foreach tuple i ← S ′left do

19 foreach tuple j ← S ′right do

20 if initial k characters of i’s and j’s geohash codes are same then

21 // qualify pair to post blocking

22 Sblocking ← (i, j)

23 end if

24 end foreach

25 end foreach

26 return Sblocking

Consider a spatial entity pair (s1, s2) with geohash codes Gs1 and Gs2 respectively.

We determine a granularity, k, up until which we will be matching the geohash codes

of a given pair. For instance, if k=5 then, every spatial entity pair whose initial

5 out of 12 characters in the geohash codes Gs1 and Gs2 are same, will qualify to

the post-blocking candidate set Sblocking as shown in Algorithm 1. For example, (Gs1 ,

Gs2): (9tbqhgn36wp7, 9tbqh1ma6xz5) will qualify, in contrast to another pair (Gs1 ,

Gs2): (9tbqhgn36wp7, 9tbq41ma6xz5) whose prefixes are different. This granularity

measure, k, is different for different datasets. As mentioned before, if the value of k

is too high (close to 12), we prune away too many pairs, thereby inducing too many

False Negatives. On the other hand, a lower value of k (close to 1) prunes too few

pairs, which in turn results in inefficiency and a slower execution of the EM pipeline.

The discussion about a precise setting for k is deferred to Chapter 5.

Computing the geohash code is fairly straightforward for points. In the case of
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polygons, the geohash code of the centroid is used for spatial blocking as shown in

Algorithm 1. Reducing the polygon to a point during blocking is a convenient ap-

proximation which will not lead to a high inaccuracy, as compared to doing so during

the actual matching phase. This is because, blocking applies this approximation only

to filter out the obvious non-matches. For example if the centroids of two polygons

are reasonably far, this can be detected by GeoPrune, that prunes away such poly-

gon pairs. While just because two centroids are reasonably close, deeming them to be

matching can lead to inaccuracies. Note that if a spatial entity pair qualifies blocking,

it means that this pair is not an obvious mismatch. Whether this pair is a match or

not can only be determined after creating its feature vector and using a sophisticated

classifier to predict its label. Concentrating the polygon’s coordinate information in

a centroid will help make the spatial blocking function lightweight, swift and efficient.

Moreover, it has been observed empirically that shrinking the polygon to a centroid

does not greatly affect the accuracy as far as it is confined to the spatial blocking step

and not done for feature vector creation or classification. Once I perform the spatial

blocking step, the candidate set, Sblocking, of post-blocking pairs is ready. Next the

semi-manual labelling of the post blocking pairs takes place followed by creation fea-

ture vectors for the pairs in Sblocking and then classification as a match or non-match

using a binary classifier.

4.3 Feature Vector Creation

Once the set of post-blocking pairs, Sblocking, is obtained I generate the ground

truth in a semi-automated fashion (refer Section 4.1) by using human intervention for

the datasets that do not have their own ground truth. Thereby, we have a labelled

post-blocking candidate set Slabelled, and datasets Sleft and Sright with pre-aligned

schema. This section discusses the creation of feature vectors (FV) for the spatial
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Figure 4.2: Feature Vector Skeleton

entity pairs in Slabelled. This step is the most salient functioning of the entire system

as it generates the spatial dimensions in a geometry-aware fashion. The prime focus

of the proposed EM algorithm is to use the spatial information of various geometries

in their genuine form and minimize information loss; in this step, it is fulfilled the

most. Apache Sedona offers support for diverse geometries including polygons with

multiple coordinates; hence I do not have to resort to approximations such as reducing

the polygon coordinates to a point. Instead, I apply the seven spatial SQL opera-

tors individually to the geometry pair in order to derive their spatial proximity. The

seven Boolean dimensions are each depicted in the full feature vector as numbers 1

for qualifying the operator’s constraint and 0 for not qualifying. Note that the spatial

operators such as ST Contains, ST Within etc., are fully aware of the geometry type

of the objects whose proximity is being estimated. These spatial operators provide

proximality approximation information like polygon contains point, point intersects

polygon, polygon touches polygon, and much more with the help of various proximal

SQL queries offered by Apache Sedona. Similarity scores like Jaccard similarity, Co-

sine similarity and others preserves the similitude of attributes, proximity measures

i.e. the output of the proximal SQL queries like ST Contains, ST Within and more,

preserves the spatial knowledge of an entity tuple pair. These spatial dimensions
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are further augmented with the relational attribute similarity evaluations obtained

using the Simmetrics library, to generate the full feature vectors as shown in Algo-

rithm 3. As mentioned earlier, we concentrate the polygon to a centroid only for the

spatial blocking step because we have observed empirically that it does not affect the

performance of system.

Let us assume that we are provided with a schema pair of data sources Sleft and

Sright which has a total of n attributes, out of which one attribute is spatial, i.e.,

it consists of coordinates. The other n-1 are relational (non-spatial) attributes. As

illustrated in Algorithm 3 the feature vector is a concatenation of the spatial and

relational dimensions. The spatial attribute i.e. coordinates is processed through

all the proximality operators TheApacheFoundation (2020b) that Apache Sedona

offers. The output of these seven operators is represented as Boolean dimensions in

the feature vector. We put a ‘1’ if the proximal operator evaluates to TRUE and

‘0’ if it evaluates to FALSE. The relational attribute similarity evaluation is done

by computing 21 string similarity scores like Jaccard similarity, Cosine similarity,

Levenshtein distance and more using the Simmetrics TheApacheFoundation (2004)

library and normalizing the values to lie between 0 and 1.

In order to assert the dominance of the spatial information and to bias the classifier

label more towards the spatial dimensions in the feature vector, I replicate the seven

Boolean spatial feature dimensions by a replication constant x. This creates a ratio

of 60:40 for spatial:relational values in the final feature vector as shown in Figure 4.2.

I also append the ground truth to the feature vector. For example consider we have 4

attributes, n = 4, among which 1 is spatial (coordinates) and 3 are relational (name,

address, category). In the feature vector, we have 21×(n−1) = 63 similarity values for

relational attributes and 7 (# proximality operators) values from spatial attributes.

To assert spatial dominance, I replicate each of the 7 operator outputs approximately
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Algorithm 3: Feature Vector creation

Input 1: Two spatial datasets Sleft and Sright

Input 2: labelled post-blocking set Slabelled

Output: Set of feature vectors Sfv

1 fullFVCreation:

2 Sfv ← spatialFeatureCreation(Sleft, Sright, Slabelled) +

relationalFeatureCreation(Sleft, Sright, Slabelled)

3 return Sfv

4 def relationalFeatureCreation(Sleft, Sright, Slabelled):

5 load non-spatial attributes of pairs in Slabelled from Sleft and Sright

6 compute 21 different string similarity metrics

7 normalized attribute similarity scores

8 Sfv ← relational feature values

9 return Sfv

10 def spatialFeatureCreation(Sleft, Sright, Slabelled):

11 load Sleft, Sright and Slabelled in Apache Sedona

12 execute all spatial proximal opreators on coordinates

13 convert output to boolean features

14 mutiply boolean features by replication factor x to assert 60:40

15 Sfv ← spatial feature values

16 return Sfv

34



x = 14 times. Hence in the final vector we will 7× 14 = 98 spatial attributes values,

63 relational similarity values and 1 dimension for 1/0 (match/non-match) label as

shown in Figure 4.2.

Information about datasets, spatial blocking threshold k, experimental results,

and various other details are deferred to Chapter 5.

4.4 Classification

Classification is the final step of our spatial EM pipeline. We offer three types of

classifiers that are easily pluggable into GEM . They all take the same resource input

Fv, i.e., the feature vector shown in Figure 4.2 and provide a prediction output of 1 for

matching tuple pair and 0 for non-matching pair. We borrow the implementations of

the classifiers’ supervised variant for linear classifier: Support Vector Machine (SVM),

tree-based classifier: Random Decision Forests (RF), and non-linear classifier: Neu-

ral Nets (NN) from Meduri et al. (2020). The NN implementation adopts a simple

feed forward neural network with a single hidden layer and uses Apache SystemDS

TheApacheFoundation (2015) for execution. I train the NN for 100 epochs. Regu-

larization techniques like batch normalization and dropout regularization assisted in

making the neural network stable. A feature vector, Fv from Sfv, holds information

about a tuple pair’s spatial and non-spatial features and its ground-truth label which

is held out from the classifier at test time. Random decision trees and SVM use the

Weka WaikatoUniversity (2020) library for implementation. We use an ensemble of

20 decision trees in our Random forest classifier.

Entity matching is known to suffer from label skew (fewer available positive la-

bels or matches as compared to negative labels or non-matches). Hence, it becomes

imperative to have a cost-sensitive classifier that can handle the bias well to produce

more meaningful and precise results. Therefore, the SVM implementation considers
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a 2 × 2 dimensional cost matrix similarly to Meduri et al. (2020), in order to record

the penalties associated with the detection of True Positives, True Negatives, False

Positives and False Negatives as the four entry values in the matrix. These penalties

are used at training time to inform the classifier that it needs to pay more atten-

tion to avoiding a specific type of mis-classification errors. While True Positives and

True Negatives are not penalized, I assign a higher penalty to False Negatives than

False Positives to encourage finding more matches, as they are fewer in number. Cost-

sensitive classifiers have proved to work better in EM pipelines than normal classifiers

Ji and Carin (2007); Turney (1994); Parambath et al. (2014). The cost matrix trains

the classifier in a skew-aware manner, thereby enhancing its accuracy.

36



Chapter 5

EXPERIMENTAL EVALUATION

This section discusses the experimental results. I start by providing details about

the setup and datasets. Then, discuss the performance of various classifiers in GEM ,

evaluate the GeoPrune blocking mechanism w.r.t. variation in k (the spatial blocking

threshold), and then compare GEM against the baselines from Section 3.2.

5.1 Experimental Setup

The experiments were conducted on an Intel Xeon E5-2687WV4 CPU (12 cores,

3.0 GHz per core) machine with 100 GB RAM and a 4 TB hard drive. I used Java 1.8,

Scala 2.12 and Python 3.7 for implementation. I also installed Apache Sedona 0.1.0

along with Apache Spark 3.0.1 and Apache Hadoop 2.7.2. To calculate the geohash

codes of a location, the pygeohash package PyPi (2016) was utilized.

5.2 Datasets

All the datasets assume that the spatial attribute (coordinates) is not null. Ta-

ble 5.1 shows the left and a right tables, # pairs in the Cartesian product and # post-

blocking pairs in each dataset. There are four restaurant datasets for the point×point

scenario. None of the datasets originally had location coordinates; so I auto-generated

them from the given address using the ‘googlemaps’ package PyPi (2021). The left and

right datasets of Zomato1-Yelp1 (R1), Zomato2-Yelp2 (R2), and Yelp-Yellow Pages

(R3) are borrowed from Konda et al. (2016)’s data repository and Fodors-Zagats (FZ)

from Tejada (2003). In the point× polygon scenario, there is an Yelp-OSM dataset in

which Open Street Map (OSM) OSM-Data (2021) data contains polygon coordinates
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Dataset #left #right #total pairs #post-blocking

Point-Point

Fodors-Zagats (FZ) 533 331 176.4k 1314

Zomato1-Yelp1 (R1) 3013 5882 17.7M 3063

Zomato2-Yelp2 (R2) 7689 4055 31.1M 6864

Yelp-Yellow Pages (R3) 9947 28787 286.3M 30912

Polygon-Point Yelp-OSM 4979 60803 302.7M 229377

Polygon-Polygon AZ-Maricopa 4979 3357 16.7M 35864

Table 5.1: Details of the Spatial Datasets

and the Yelp data Kaggle (2021) contains the point coordinates for various business

establishments in Arizona. In the case of polygon× polygon, the left dataset contains

polygon coordinates for buildings in Arizona and the right dataset contains polygon

coordinates for buildings in the Maricopa County in Arizona. While FZ dataset has

its own ground truth Tejada (2003), the ground truth for other datasets is determined

using the semi-manual technique described in Section 4.1. I pre-align the schemata

of the left and right datasets with the help of a domain expert.

The labeled post-blocking entity pairs is split into 80% train and 20% test. The

most important factor that is considered before splitting a spatial dataset is main-

taining spatial equivalence (maintaining the distribution of tuple pairs in each region)

across the train and test sets. I also maintain the post-blocking pairs’ class skew (ratio

of matching to non-matching tuple pairs) in the train-test splits. The following sub-

sections provides details on the attributes of the datasets and further pre-processing

details.

5.2.1 Point × Point

The four restaurant datasets considered for the Point × Point experiment have

both relational and spatial attributes. The left and the right data set came with only
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relational attributes when borrowed from Konda et al. (2016)’s data repository. I

auto-generated the latitude and longitude information using the ‘googlemaps’ python

package. While the Fodors-Zagats data set came with its own ground truth provided

by Tejada (2003), I generated the ground truth for all the other datasets using a semi-

manual mechanism. The ground truth generation is basically a disjunction of several

conjunctive predicates which evaluate string similarity distance and spatial distance

between the given data features. All the four datasets have different number of total

tuples in the left and right tables and different number of attributes. The Fodors-

Zagats (FZ) dataset originally has 6 attributes and I add the coordinates making it 7

features namely: id, name, addr, city, phone, type, coordinates. All the Point×Point

sets are perfect oracles with no null values, as Magellan Konda et al. (2016) cannot

handle null values. Out of the other three datasets Zomato1-Yelp1 (R1) originally

has 4 attributes and in total it has id, name, phonenumber, address, coordinates as

attributes. The Zomato2-Yelp2 (R2) has a total of 11 attributes namely id, name,

votes, rating, phone, address, city, state, zip, cuisine, coordinates. Lastly the Yelp-

Yellow Pages (R3) dataset has a total 10 attributes: id, name, address, telephone,

website, priceRange, category, ratingValue, neighborhood, coordinates .

5.2.2 Point × Polygon and Polygon × Polygon

The Point× Polygon and Polygon× Polygon datasets have been carefully gen-

erated to encompass various building and establishments of the Arizona state. While

Yelp datasets consists of details about restaurants, businesses and establishments in

a ‘Point’ geometry type, OSM provides multi-vertex polygon coordinates for busi-

nesses and buildings in Arizona. For the Point× Polygon experiment I try and find

matches between the Yelp datasets and OSM dataset. Both the Point×Polygon and

Polygon×Polygon datasets have total 5 attributes namely: id, name, address, cate-
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Figure 5.1: Latency Comparisons of the Three Classifiers Across All the Datasets

gories, coordinates .WhereasforthePolygon ×Polygon experiment I process the two

OSM datasets. While the left dataset is information about the business in Arizona,

the right dataset is establishments and business in the Maricopa County in Arizona.

The fact that both the datasets are from OSM make the manual process of schema

alignment easier. Moreover their is much more homogeneity in the representation of

the location information as both the geometry data types are same (polygon).

5.3 Comparison of Classifiers

Random Forest SVM Neural Network
Datasets

Precison Recall F1-Measure Precision Recall F1-Measure Precision Recall F1-Measure

FZ 1 1 1 1 1 1 1 1 1

R1 0.967 0.967 0.967 0.948 1 0.973 0.88 1 0.93

R2 0.99 0.993 0.992 0.973 0.993 0.983 0.932 1 0.965
Point-Point

R3 0.983 0.989 0.986 0.969 0.997 0.983 0.908 0.997 0.95

Point-Polygon Yelp-OSM 0.96 0.972 0.966 0.906 0.987 0.944 0.691 1 0.817

Polygon-Polygon AZ-Marizopa 0.997 0.99 0.993 0.971 0.983 0.977 0.901 0.99 0.95

Table 5.2: Test Performance Evaluation of GEM Across Various Classifiers and

Datasets
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Figure 5.2: Evaluation of Random Forest Classifier for Various Values of K in

Fodors-zagats Dataset

Three pluggable ML classifiers are provided for the classification step in GEM .

Here I compare the performance of Random decision Forests with an ensemble of 20

trees, SVM with a cost-sensitive matrix and a feed-forward neural network with a sin-

gle hidden layer (see Section 4.4 for details on the classifiers). In the cost matrix, there

are no penalties for True Positives and True Negatives but for False Positive:False

Negative I exercise a penalty ratio of 1:4. I fix the spatial blocking threshold to an

appropriate value, k, which is optimal for that dataset. Results to illustrate the im-

portance of blocking threshold k are shown in Section 5.4. Figure 5.1 shows the time

taken by each classifier for training and testing on different datasets. The training

time for RF and SVM are almost the same, while NN takes more time. Table 5.2

contains the values of test precision, recall and F1-measure for all datasets over the

three classifiers. I observed that F1-measure for the point × point datasets over all

the classifiers ≥ 0.95. Additionally, RF and SVM are highly accurate with F1-scores

of 0.97 and above. The reported results are the best numbers from 5 consecutive

executions. All the executions varied with an error rate of 10−5. For point× polygon
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and polygon × polygon cases as well, both RF and SVM have similar F1-scores. RF

works with a committee of 20 relatively uncorrelated decision trees that captures the

nonlinear dependencies among attributes. Unlike SVM, RF can handle non-separable

cases effectively.

It is surprising that SVM being a linear classifier performs at par with RF which

indicates that the data has very less noise possibly due to effective blocking procedure.

Moreover, the cost matrix helps SVM to learn and adapt to class skew. Neural

networks in general take longer to train as compared to RF and SVM. Even though

the NN I adapt has a simple architecture, it produces competitive scores for most of

the datasets and outperforms the more involved NN like Mudgal et al. (2018) in both

F1-score and test latency (see Figure 5.1b for NN test latency). I will delve into the

comparative study of our system against baselines in the later subsections.

5.4 Evaluation of Blocking

As discussed in section 4.2, the spatial blocking mechanism, GeoPrune, is used

to prune away the obvious non-matches to reduce the search space for mapping same

locations. I compute the geohash codes of the locations to assist in the blocking step.

While computing the geohash code for a point is fairly simple, it is non-trivial for a

polygon. For a polygon, the centroid of the polygon is used for the spatial blocking

algorithm (see Section 4.2). Geohash is a 12 character code which is unique for every

location on the Earth. Given a blocking threshold, k, I prune away all those pairs

whose first k out of 12 characters do not match. This section studies the influence

of k on performance of the system. Note that this retrospective evaluation of k is

only for empirical purposes. This is because, spatial blocking happens before feature

vector creation and choosing an optimal k value is typically done by using validation

sets upon which several values of k are tried and evaluated. The process of deciding
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an appropriate threshold value for each datasets goes through various iterations and

analysis of factors such as latency and class skew. I use the same method to determine

k for all datasets. In this subsection, I chose FZ dataset to discuss the effect of k (see

Figure 5.2) because it provides its own ground truth.

As per the discussion and results in Section 5.3 Random Forest classifier proves

to be accurate and efficient for majority of the datasets. Hence to study the best

threshold k for the FZ dataset I will fix RF as the classifier. I use the 112 matching

pairs out of 176,423 total Cartesian product pairs provided by Tejada (2003) while

labelling the ground truth. While choosing an appropriate threshold k, the most

crucial step is to pick a value which is neither too low nor too high. A low value

will allow a lot of pairs into the post-blocking set thereby increasing training and test

latency whereas, a high value will qualify very less pairs thereby leading to a lot of

False Negatives (FN) over the Cartesian product i.e matches deemed to be mismatches

and matches that are missed out. We study only the #FN here because the other

paramters of the Confusion matrix (i.e. FP, TP and TN) do not get affected by the

quality of post-blocking set. As mentioned earlier, the reason to show this valuation

is to help understand the effect of blocking threshold k on final test F1-score. In

actual experiments the selection of k is done manual using trail and error method on

holdout sets from training data before the feature vector creation step. Figures 5.2a

and 5.2b respectively shows the number of FNs and number of post-blocking pairs for

all values of k (1-12). As it can be observed, with increase in the value of k the #FNs

also increases which leads to decrease in Recall. While the #post-blocking pairs

decrease with the increase in k which implies that low values of blocking threshold

k will lead to high training and test latencies. Hence it is empirically deduced that

the most optimal blocking threshold for the FZ dataset is k=6, which produces test

F1-measure of 1.0 (see table 5.2).

43



5.5 Comparison with Baselines

I will be comparing the performance of GEM against various state-of-the-art base-

line systems. Discussion on how each of these systems have been adapted has already

been provided in section 3.2. While Magellan Konda et al. (2016) and QuadSky Isaj

et al. (2019) are implemented as end-to-end EM systems with their own blocking

mechanism, Deepmatcher Mudgal et al. (2018) is only a classifier. Hence for it I

use post-blocking pairs generated by Magellan Konda et al. (2016). Figure 5.3 pro-

vides the results of all the systems for various spatial datasets. Alongside comparing

F1-scores, we also discuss the scalability of the systems in this section.

The ‘percentage of data’ column in Tables 5.3 5.4 5.5 indicates the maximum

fraction of the left and right datasets that a system is able to handle. 100% implies it

was able to process the entire set of pairs in the Cartesian product, while 20% implies

that it was only able to handle a maximum of 20% of the left and 20% of the right

dataset before the system gave timeout or out-of-memory errors.

All the methods perform well for the FZ dataset in point× point scenario. While

GEM performs the best on point× point dataset, Konda et al. (2016), Mudgal et al.

(2018) and Isaj et al. (2019) have an F1-score of 0.983, 0.84 and 0.70 respectively

for the Fodors-Zagats dataset (refer Table 5.1). Although, the baseline systems are

not able to sustain their performance for the datasets of the other two spatial EM

scenarios. While Magellan Konda et al. (2016) is able to scale for the entire set

of pairs in the Cartesian product, due to its coarse post-blocking set and treating

spatial attributes as strings, it scores a final F1-measure of only 0.88 and 0.905 for the

Yelp-OSM and AZ-Maricopa datasets respectively. On the other hand, DeepMatcher

Mudgal et al. (2018) being a complex neural network classifier is not able to scale for

either point×polygon or polygon×polygon datasets, which is illustrated by ‘TimeOut’
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in Figure 5.3. It is only able to process 0.04 of the Yelp-OSM data and performs poorly

with an F1-score of 0.0221 (see Table 5.4), mainly because it treats every attribute as

long-text and the geometric diversity in terms of point and polygon coordinates only

makes the matching process more sub-optimal. Though it can only scale upto 0.25

of the polygon× polygon dataset (AZ-Maricopa) it performs relatively better with an

F1-score of 0.77 (see Table 5.5) because both left and right datasets have a uniform

representation of polygon’s spatial coordinates that allows for textual matching to

work occasionally.

Figure 5.3: Comparison of GEM with Baselines Across 3 Spatial Datasets with

Different Geometries

QuadSky Isaj et al. (2019) is an end-to-end spatial EM system, but as mentioned
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Approaches percentage of data #total-pairs #post-blocking F1-measure

Deepmatcher 100%(left)× 100%(right) 176.4k 450 0.847

QuadSky 100%× 100% 372.8k 7746 0.70

Magellan 100%× 100% 176.4k 450 0.983

GEM 100%× 100% 176.4k 1314 1

Table 5.3: Comparison with Baselines for Point-point Case

Approaches percentage of data #total-pairs #post-blocking F1-measure

Deepmatcher 20%(left)× 20%(right) 12.1M 123.7k 0.0201

QuadSky 15%× 15% 48M 3878 0.66

Magellan 100%× 100% 302.7M 3.11M 0.88

GEM 100%× 100% 302.7M 229.3k 0.966

Table 5.4: Comparison with Baselines for Point-polygon Case

Approaches percentage of data #total-pairs #post-blocking F1-measure

Deepmatcher 50%(left)× 50%(right) 9.4M 129.06k 0.77

QuadSky 100%× 100% 34.7M 3436 0.86

Magellan 100%× 100% 16.7M 225.4k 0.905

GEM 100%× 100% 16.7M 35864 0.99

Table 5.5: Comparison with Baselines for Polygon-polygon Case
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in sec 3.2 it takes a single dataset as input and does self-product to create the total

pairs as depicted in the ‘#total-pair’ column. Hence it can be noticed in table 5.3 that

all the systems support 100% of the data but ‘#total-pairs’ for QuadSky is 372.8k

while for others it is 176.4k. For the point × point case, the QuadSky system scores

an F1-measure of 0.70 while GEM performs 42% better with an F1-score of 1.0.

The state-of-the-art end-to-end spatial EM system, QuadSky Isaj et al. (2019),

provides support only for the point×point data and it suffers due to the approximation

of a polygon to its centroid (point). Doing so in the crucial step of feature vector

creation results in significant information loss and compromised F1-scores. Hence

for the AZ-Maricopa dataset, QuadSky produces and F1-score of 0.86 (see Table 5.5)

while GEM performs 15% better with an F1-score of 0.99. The state-of-the-art spatial

EM system is not able to scale for the Yelp-OSM dataset and hence is denoted by

a ‘TimeOut’ in Figure 5.3. It is only able to process 0.0225 of this dataset and

produces an F1-score of 0.66 (see Table 5.4). As it can be observed from Figure 5.3

GEM performs the best under all the 3 scenarios (see Section 3.1). It provides the

best trade-off between precision and recall, and the best F1-scores of 1, 0.966 and

0.993 for the three datasets respectively.
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Chapter 6

CONCLUSION AND FUTURE WORK

In this dissertation, I proposed an end-to-end Geospatial EM system GEM that

can match spatial entities of diverse geometries such as point and polygon. GEM

provides EM support for three scenarios: point×point, point×polygon and polygon×

polygon. The proposed lightweight and efficient GeoPrune blocking mechanism uses

geohash codes and a blocking threshold to prune the obviously non-matching pairs.

Next, for the feature vector creation we use Apache Sedona’s capabilities to create

spatial feature dimensions that capture the proximity between a geospatial entity

pair. Lastly, for the classification we provide three machine learning classifier: Ran-

dom Forest, SVM and Neural network. Experiments on varying the threshold, k,

for the GeoPrune blocking mechanism established the tradeoff between quality and

latency. While lower values of k resulted in high latencies due to more post-blocking

pairs, higher values of k resulted in several False Negatives. The comparison of clas-

sifiers revealed that RF and SVM prove to be the most efficient. The experiments on

large-scale datasets showed that GEM achieved F1-scores of 1, 0.96 and 0.99 for FZ,

Yelp-OSM and AZ-Maricopa datasets respectively, emphasizing that the system pro-

viding native support for diverse geometry types can outperform geometry-agnostic

spatial EM baselines. Possible directions for future work include extending GEM

to complex spatial objects such as multi-polygons, handling null spatial attributes,

and transfer learning for cross-domain EM where a matcher learned from a label-rich

source domain is applied to a label-scarce target domain.
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Isaj, S., E. Zimányi and T. B. Pedersen, “Multi-source spatial entity linkage”, in “Pro-
ceedings of the 16th International Symposium on Spatial and Temporal Databases”,
pp. 1–10 (2019).

Jaro, M. A., “Advances in record-linkage methodology as applied to matching the
1985 census of tampa, florida”, Journal of the American Statistical Association 84,
406, 414–420 (1989).

Ji, S. and L. Carin, “Cost-sensitive feature acquisition and classification”, Pattern
Recognition 40, 5, 1474–1485 (2007).

Kaggle, “Kaggle yelp dataset”, URL https://www.kaggle.com/yelp-dataset/
yelp-dataset (2021).

Karam, R., F. Favetta, R. Kilany and R. Laurini, “Integration of similar location
based services proposed by several providers”, in “International Conference on Net-
worked Digital Technologies”, pp. 136–144 (Springer, 2010).

Konda, P., S. Das, P. Suganthan GC, A. Doan, A. Ardalan, J. R. Ballard, H. Li,
F. Panahi, H. Zhang, J. Naughton et al., “Magellan: Toward building entity match-
ing management systems”, Proceedings of the VLDB Endowment 9, 12, 1197–1208
(2016).
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