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ABSTRACT

In today’s world, robotic technology has become increasingly prevalent across various

fields such as manufacturing, warehouses, delivery, and household applications. Planning

is crucial for robots to solve various tasks in such difficult domains. However, most robots

rely heavily on humans for world models that enable planning. Consequently, it is not only

expensive to create such world models, as it requires human experts who understand the do-

main as well as robot limitations, these models may also be biased by human embodiment,

which can be limiting for robots whose kinematics are not human-like.

This thesis answers the fundamental question: Can we learn such world models au-

tomatically? This research shows that we can learn complex world models directly from

unannotated and unlabeled demonstrations containing only the configurations of the robot

and the objects in the environment.

The core contributions of this thesis are the first known approaches for i) task and

motion planning that explicitly handle stochasticity, ii) automatically inventing neuro-

symbolic state and action abstractions for deterministic and stochastic motion planning,

and iii) automatically inventing relational and interpretable world models in the form of

symbolic predicates and actions.

This thesis also presents a thorough and rigorous empirical experimentation. With ex-

periments in both simulated and real-world settings, this thesis has demonstrated the ef-

ficacy and robustness of automatically learned world models in overcoming challenges,

generalizing beyond situations encountered during training.
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Chapter 1

INTRODUCTION

Recent years have seen a sharp increase in the use of robots in various areas such as man-

ufacturing, household robots, warehouses, delivery, and many more. These complex tasks

require robots to take different actions that change the state of the robot and other objects

in the environment. Akin to humans, robots also have to use their actions in a sequence

to achieve these tasks and require planning and reasoning over a long horizon to come up

with such sequences of actions.

Robot actions usually consist of low-level continuous actions that control the joints of

the robots. Typically, sampling-based motion planners such as RRT (Lavalle, 1998) or

PRM (Kavraki et al., 1996) are used with such actions for composing them and achieving

different tasks. However, there are two major drawbacks to using them for solving complex

robot planning problems: 1) Motion planners cannot directly handle changing configura-

tion spaces which occur when robots interact with objects in the environment; 2) Motion

planners are designed to address large search spaces with continuous low-level actions and

continuous states by sampling. However, these approaches do not scale when the planning

horizon increases. These drawbacks restrict the use of motion planners for complex tasks

where robots need to interact with different objects in the environment.

Hierarchical planning systems (e.g., task and motion planning (Cambon et al., 2009;

Srivastava et al., 2014)) have been prepared for solving such tasks. Advancements in

symbolic planners such as Fast-Forward (FF) (Hoffmann, 2001) and Fast-Downward (FD)

(Helmert, 2006) allow efficiently solving symbolic planning problems. Task and motion

planners use these planners for computing high-level, symbolic solutions and refine them

using sampling-based motion planners into a sequence of actions that robots can execute.
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However, such hierarchical planners require world models to be able to compute solutions

for complex robot planning problems. These world models include symbolic predicates

that induce state abstractions and abstract actions. E.g., for a warehouse setting, symbolic

predicates would include predicates such as AtLoc and Holding that define the loca-

tion of the objects and what object a robot is holding, and symbolic actions would include

actions such as Pick or Move that either moves the robot from one location to another

location or allows a robot to pick items.

One of the major criticisms of hierarchical planning systems has been the following:

How should a robot develop these world models for planning? Today, typically, human

experts provide these abstractions. However, this process requires a domain expert who is

also familiar with the robot’s constraints. Moreover, these abstractions are heavily biased

by human intuition, and therefore, they usually only involve properties such as On(A, B)

and InGripper(R, A) and actions such as Pick and Place, and are only restricted

to human-like robots.

This thesis answers the above question by developing approaches that automatically

invent such world models. We develop approaches that use unannotated and unsegmented

low-level trajectories for learning symbolic and interpretable world models. These world

models are highly generalizable, i.e., they are zero-shot transferrable to new unseen envi-

ronments and problems. Additionally, we also develop approaches that efficiently use these

automatically invented world models for scalable and long-horizon robot planning. We

show the effectiveness and robustness of the invented world models through our theoretical

and empirical results using a wide range of robots and environments in both simulated and

real-world settings.

Recently, there has been advances in learning-based approaches (Devin et al., 2017;

Pathak et al., 2019; Martı́n-Martı́n et al., 2019; Huang et al., 2020b; Shah et al., 2023;

Vuong et al., 2023; Hafner et al., 2023) that use end-to-end deep neural networks. Some
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researchers have argued that these approaches implicitly learn abstract world models. How-

ever, these implicit world models are not interpretable and do not provide any guarantees of

correctness. Additionally, most of these approaches focus on significantly smaller horizon

problems compared to the problems this thesis aims to solve and require a huge amount

of training experience on the test tasks as well as dense and carefully crafted reward struc-

tures, or expert demonstrations of these tasks. Conversely, such approaches can be as com-

plimentary to the approaches developed as part of this thesis and can be used for learning

low-level primitive controllers for learning low-level controllers for automatically invented

world models.

Now, we discuss the scope of this thesis and the research directions advanced by it.

1.1 Approach and Thesis Scope

This thesis brings together various distant research areas of AI and robotics. In this

section, we introduce each of these major research areas and highlight the contribution of

this thesis in each of these areas. We also briefly discuss some state-of-the-art approaches

in these research directions. However, we discuss most of the related research in the most

relevant chapter.

Motion planning A motion planner computes a path that a robot can follow to reach a

final configuration from an initial configuration. Due to the large state space, sampling-

based motion planners are generally used to compute such motion plans. However, state-

of-the-art sampling-based motion planners rely on unguided uniform sampling. This thesis

introduces hierarchical motion planners that combine high-level symbolic planning with

sampling-based motion planning or deep reinforcement learning for guiding the motion

planning and efficiently computing motion plans while automatically inventing the hierar-

chies and reward functions. Through theoretical and empirical results, we show that the
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novel hierarchical motion planners proposed in this thesis significantly outperform existing

state-of-the-art sampling-based motion planners.

Abstractions Various abstraction methods have been long-used in automated planning.

Earlier symbolic planning approaches such as Sacerdoti (1974) and Knoblock (1990) use

symbolic abstractions for automatically learning heuristics. State-of-the-art symbolic plan-

ners such as FF (Hoffmann, 2001) and FD Helmert (2006) use predicate abstraction to re-

lax the planning problem. Several approaches have used abstractions for efficient planning.

Srivastava et al. (2001) use abstractions for efficiently solving a planning and scheduling

problem. Abstractions have also been used with robot planning problems to convert them

to symbolic planning problems. Marthi et al. (2007a) and Srivastava et al. (2016a) present

foundational concepts for defining and using abstractions for robot planning problems. The

central idea of this thesis is to use and automatically learn such abstractions for efficient

robot planning.

Task and motion planning Abstractions allow robot planning problems to be solved us-

ing symbolic planners. However, robots cannot use these symbolic plans directly as they

can only execute motion plans. Each symbolic action must be converted into an executable

motion plan. A naı́ve approach would be to first compute a symbolic plan and then compute

motion plans for actions in the plan. However, due to the lossy nature of the abstractions,

not every high-level action can be refined into a motion plan. Therefore, task and motion

planning approaches (Cambon et al., 2009; Kaelbling and Lozano-Pérez, 2011; Srivastava

et al., 2014) search for a high-level plan that has motion planning refinements for every

high-level action in the plan. Most of the recent task and motion planning approaches

focus on deterministic motion planning problems. This thesis presents the first known any-

time task and motion planning approach for stochastic robot planning problems, where a
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robot’s actions have multiple possible outcomes. Through our empirical evaluation, we

show that the anytime property of the approach allows the robot to start executing the so-

lution significantly faster without computing the full solution while avoiding the deadends

that may arise from the determinization of the problem.

Learning world models Learning symbolic world models (or abstractions) for robot

planning has been at the center of attention recently. This is also the main focus of this

thesis. A task and motion planner requires abstractions in mainly three forms: i) state ab-

stractions in the form of symbols or predicates that represent relations between different

objects in the environment and provide a finite state space, ii) actions that the robot can

perform in the form of symbolic high-level actions that provide a bounded branching factor

for symbolic planning, and iii) a set of pose generators that can be used to refine high-

level actions into motion plans for the robot to execute. Konidaris et al. (2018) focus on

inventing symbols for robot planning and learning symbolic representations for high-level

robot skills (actions). Silver et al. (2022) present a complementary approach for learn-

ing high-level actions that the robot can execute. However, existing approaches require

partial abstractions to be provided as input and do not learn all three components simul-

taneously. In this thesis, we present the first known approach for automatically inventing

symbolic predicates and high-level actions simultaneously – from unannotated and unseg-

mented robot trajectories. We show that these learned abstractions are not only effective

for hierarchical robot planning, but they are also robust and interpretable.

Now, we discuss the contribution of each chapter of the thesis.

1.2 Contributions of Each Chapter

Technical contributions made by this thesis are mainly divided into three blocks: (Ch. 3)

We present the first known approach for solving stochastic task and motion planning prob-
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lems, (Ch. 4 and Ch. 5) a novel approach for learning state and actions abstractions for

deterministic and stochastic motion planning problems, and (Ch. 6) a novel approach for

inventing relational world models that enable hierarchical robot planning. More details

about related research are reported in the most relevant chapters.

Chapter 2: “Formal Framework” This chapter revisits some key concepts and pro-

vides examples of motion planning, robot planning, symbolic abstractions, and symbolic

robot planning problems. It defines the core robot planning problem that various ap-

proaches developed as part of this dissertation solve. The material in this chapter draws

upon joint work with Deepak Kala Vasudevan, Kislay Kumar, Pranav Khamojhalla, Ab-

hyudaya Srinet, Jayesh Nagpal, Pulkti Verma, and Siddharth Srivastava (Shah et al., 2020;

Shah and Srivastava, 2021, 2022b, 2024; Shah et al., 2024).

Chapter 3: “Stochastic Task and Motion Planning” This chapter tackles a relatively

simpler problem of using hand-coded abstractions for robot planning and presents our novel

anytime approach for solving stochastic task and motion planning problems. This is the

first known approach that explicitly handles noise in the robot’s actions while computing

task and motion policies leading to policies that actively avoid deadends that may arise

due to the stochastic nature of the system. At the same time, the anytime algorithm allows

the robot to start executing the policy without having to wait for a complete solution. The

material in this chapter is based on joint work with Deepak Kala Vasudevan, Kislay Kumar,

Pranav Khamojhalla, and Siddharth Srivastava (Shah et al., 2020; Shah and Srivastava,

2021).

Chapter 4: “Automatically Learning Zero-Shot Abstractions For Deterministic Mo-

tion Planning” As highlighted in Sec. 1.2, robot planning approaches (such as the one

presented in Ch. 3) require humans to provide world models. However, these require human
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experts. This chapter presents the first known approach for automatically inventing world

models for motion planning problems in the form of neuro-symbolic state and action ab-

stractions. We present an approach for automatically generating a robot-specific neural net-

work architecture that predicts critical regions in unseen environments. Our approach uses

these critical regions for automatically inventing state and action abstractions. Lastly, we

present a novel hierarchical multi-source multi-directional planner that efficiently uses in-

vented abstractions for sampling-based motion planning for holonomic and non-holonomic

robots. We present strong theoretical results for holonomic robots and a strong empirical

evaluation that shows improved performance by order of magnitude over state-of-the-art

sampling-based motion planners. This work is based on joint work with Abhyudaya Srinet

and Siddharth Srivastava (Shah et al., 2021; Shah and Srivastava, 2022b).

Chapter 5: “Zero-Shot Option Invention for Stochastic Motion Planning Problems”

Motion planning typically assumes perfect actuation for robots. However, in most real-

world scenarios, robots do not possess perfect actuation. In such settings, robots require

motion policies instead of motion plans. This chapter presents the first known approach

for automatically inventing neuro-symbolic world models for stochastic motion planning

problems. We present an approach that invents options in a zero-shot fashion, i.e., invent-

ing options for unseen environments and problems while not requiring additional training.

Our approach combines two very distinct paradigms of AI: symbolic planning and deep

reinforcement learning. It provides strong theoretical guarantees for holonomic robots and

significantly improved empirical performance over existing sampling-based motion plan-

ners and deep reinforcement learning approaches. The content in this chapter is based on

joint work with Siddharth Srivastava (Shah and Srivastava, 2022a, 2024).
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Chapter 6: “Automatically Inventing Relational World Models For Robot Planning”

Real-world applications require robots to interact with different objects in the environment.

This chapter presents a novel approach for automatically inventing relational abstractions

in the form of symbolic predicates and high-level actions defined using invented predicates.

This is the first known approach that only uses a small set of unannotated and unsegmented

low-level robot trajectories for automatically and simultaneously inventing interpretable

state and action abstractions that support hierarchical robot planning. Through empirical

evaluation, we show that the automatically invented predicates and actions are interpretable,

and enable efficient hierarchical robot planning. This chapter is based on joint work with

Jayesh Nagpal, Pulkit Verma, and Siddharth Srivastava (Shah et al., 2024).

Chapter 7: “Other Applications” This chapter presents JEDAI – an application of the

approaches developed as part of this thesis designed to educate students and non-experts

with concepts of AI planning and robotics. This material is based on joint work with Trevor

Angle, Pulkit Verma, and Siddharth Srivastava (Shah et al., 2022).

1.3 List of Discussed Papers

We now present the list of works in reverse chronological order discussed in this thesis.

1. Shah, N., Nagpla, J., Verma, P., and Srivastava, S. 2024. From Reals to Logic and
Back: Learning Symbols and Generalizable Representations for Long-Horizon Plan-
ning. (In submission)

2. Shah, N. and Srivastava, S., 2024. Hierarchical Planning and Learning for Robots in
Stochastic Settings Using Zero-Shot Option Invention. In Proceedings of Association
for the Advancement of Artificial Intelligence (AAAI), 2024.

3. Shah, N. and Srivastava, S., 2022. An Anytime Hierarchical Approach for Stochastic
Task and Motion Planning (In submission)

4. Shah, N. and Srivastava, S., 2023. Learning to Create Abstraction Hierarchies for
Motion Planning Under Uncertainty. In IJCAI 2023 Workshop on Bridging the Gap:
Planning and Reinforcement Learning (PRL).
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stration track, Best Demo Award)

7. Shah, N. and Srivastava, S., 2022. Using Deep Learning to Bootstrap Abstractions
for Robot Planning. In Proceedings of International Foundation for Autonomous
Agents and Multi-Agent Systems (AAMAS), 2022.

8. Shah, N., Srinet, A. and Srivastava, S., 2020. Learning and Using Abstractions for
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ceedings of International Conference Robotics and Automation (ICRA), 2020. (Also
appeared in ICAPS 2019 workshop on Planning and Robotics (PlanRob))
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Chapter 2

FORMAL FRAMEWORK

This chapter defines the fundamentals to a robot planning problem. We first explain the

notion of a robot and the configuration space and then define a robot planning problem in

the continuous configuration space. We further relate a robot planning problem to the clas-

sical notion of a motion planning problem. Lastly, we describe an alternate representation

of the continuous robot planning problem and the notion of symbolic abstractions.

2.1 The Robot Planning Problem

A robot is a kinematic chain of rigid-body links and joints (LaValle, 2006). Each pair

of links is connected with a joint. Typically, the state of a robot is represented using a set

of joint values for each joint of the robot. A forward kinematic function can be used to

compute the poses of each point on the links given the geometry of the links and the joint

values. Conversely, an inverse kinematic function can be used to compute the set of joint

values for each joint given the target poses of the links.

We define the robot state-space X as a set of all configurations of the robot. Given a

collision function c, this state-space can be partitioned such that X = Xobs∪Xfree where Xobs

refers to the states where the robot is in a collision and Xfree refers to the set of states where

the robot is free of collisions.

An object o in a 3D environment is defined as a rigid body. The state of an object is

defined as a 6D pose of an object. A 6D pose represents the translation and the rotation of

an object with respect to a fixed frame of reference.

We now define a 3D environment for a robot planning problem as a first-order logic

model. A first-order logic model consists of a universe and a vocabulary (a set of relations
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or functions). The universe O = {o1, . . . on, r1, . . . rk} is a set of typed objects and robots in

the environment. Let T define the set of all object types.

We define the robot planning vocabulary V = {PW , T} as a set of two functions. T ∶

O → T ∶ o ↦ t maps each object o ∈ O to an object type t ∈ T . PW ∶ O → R6 defines

a 6D pose for each object o ∈ O in the world reference frame W . Without the loss of

generality, we overload PW to define the configuration of the robot. Given an absolute or

world reference frame W , we refer to pose of an object o, (PW(o)), as PWo . We omit the

superscriptW for brevity.

We assume a fully observable setting, i.e., states of all the objects (pose) and robots

(configurations) are known. The state-space of a robot planning problem can be computed

using the vocabulary V . Without loss of generality, we refer to the set of all possible poses

of the object oi as Xoi and the set of all possible configurations of the robot rj as Xrj . The

state-space for the robot planning problem is defined as a joint state-space and is repre-

sented as X = ⊕
oi
Xoi⊕

rj
Xrj for every object oi ∈ O and every robot rj ∈ O. Akin to the

configuration space of the robot, the robot planning state space can also be partitioned into

the set of collision-free states Xfree and in-collision states Xobs such that X = Xfree ∪ Xobs

given the collision function c. In the future, we will use X to refer to a robot planning state

space (the joint state-space for robots and objects) when referring to a robot planning prob-

lem or to a configuration space of the robot when referring to a motion planning problem

(defined is Sec. 2.2).

Primitive actions (low-level actions) are unit-cost and bounded actions that enable a

robot to change its state, i.e., the configuration of the robot. It also changes the pose of any

object that is grasped by the robot. This allows the robot to move around in the environment

and manipulate different objects in the environment. Formally, let ua define an intended

control signal associated with a primitive action a. Each primitive action a defines a func-

tion a ∶ X → X ∶ x ↦ µ(x + ua) where µ(x + ua) is a probability measure at the intended
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Figure 2.1: An example of a robot planning problem. The environment consists of an
object o of type can and a gripper g of type robot. The figure on the left shows an initial
state and the figure on the right shows a goal state.

target x + ua of the control action. Let A be the uncountably infinite set of primitive unit

cost deterministic actions.

Now, we define a robot planning problem as a stochastic shortest path problem and use

the set of actions as a transition function.

Definition 1 A robot planning problem is defined as a tupleM = ⟨O,T ,V ,A,X , xi,Xg⟩

where,

• O is a set of objects and robots.

• T is a set of object types.

• V = {P,T} is a robot planning vocabulary.

• A is an uncountably infinite set of primitive robot actions.

• X is an environment state space.

• xi ∈ X is an initial state.

• Xg ⊂ X is a set of goal states.
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Example 1 Consider a 2D environment shown in the Fig. 2.1. Fig 2.1(a) and (b) show

initial and goal states for a robot planning problem. Here, the environment includes the

object o1 and a gripper g of object types can and robot respectively. Therefore, T (o1) =

can and T (g) = robot. In the Fig. 2.1(a), PWg = [4,3] and PWo = [1,6] show the 2D

poses of the gripper g and object o respectively.

A solution to a robot planning problem is a partial policy π ∶ X → A that maps each

reachable state (when starting with x0 and executing the policy π) to a primitive action

from the set of actions. Typically, various sampling-based methods can be used to com-

pute such solutions. However, continuous action spaces and the infinite branching factor

make it infeasible for primitive actions to be used for long-horizon robot planning prob-

lems. Therefore, a complex robot planning problem is either divided into multiple motion

planning problems (defined in Sec. 2.2) or converted to a task and motion planning problem

using abstractions (explained in Sec. 2.3) to be efficiently solved.

2.2 The Motion Planning Problem

The traditional notion of a motion planning problem is defined as a special case of the

robot planning problem. A robot planning problem is a motion planning problem when the

start state xi ∈ Xfree and the goal state xg ∈ Xfree are connected by a continuous path within

a given configuration space of the robot. Formally, a motion planning problem for a robot

configuration space Xr is defined as follows.

Definition 2 A motion planning problem is a tuple ⟨Xr,A, xi, xg, c⟩ where,

• Xr = Xfree ∪ Xobs is the configuration space of the robot.

• A is an uncountably infinite set of primitive robot actions such that every action a ∈ A

defines a function a ∶ X → X ∶ x ↦ µ(x + ua) where x is a configuration of the robot

and ua is an intended control for the action.
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• c ∶ X → {T,F} is a collision function.

• xi ∈ Xfree is a collision-free initial configuration.

• xg ∈ Xfree is a collision-free goal configuration.

Example 2 Consider the environment shown in Fig. 2.1. An example of a motion planning

problem would be a robot planning problem such that the initial state is where PWg = [4,3]

and the goal state is where PWg = [3,2]while the pose of the object PWo remains unchanged.

Akin to a robot planning problem, a solution to a motion planning problem is a partial

policy πmp ∶ Xr → A ∶ x ↦ a that maps each reachable configuration from the robot

configuration space Xr to a primitive action a ∈ A. In a deterministic setting, this would

translate to a sequence of configurations πmp = [xi, . . . , xg] such that for all x ∈ πmp, c(x) =

0, i.e., every configuration in the motion plan is collision-free. Typically, a sampling-based

motion planner, such as RRT (LaValle, 1998) or PRM (Kavraki et al., 1996), are used to

solve deterministic problems.

As evident from what we have just discussed, a solution to a motion planning problem

only considers the state of a robot. It does not explicitly take various objects and changing

configuration spaces into account. Therefore, complex robot planning problems are usually

defined as task and motion planning problems.

Task and motion planning problems require a symbolic abstraction of the robot plan-

ning problem. Therefore, we start by defining a symbolic abstraction of a robot planning

problem and then define a task and motion planning problem.

2.3 Symbolic Abstraction of a Continuous Robot Planning Problem

Symbolic abstractions convert a continuous robot planning problem to a symbolic PDDL

(McDermott et al., 1998) problem. A symbolic planning problem is defined using symbolic
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predicates (or relations) instead of their continuous counterparts. We define a symbolic

predicate (relation) as follows.

Definition 3 A symbolic predicate (relation) psym(y1, . . . , yk) is a symbolic relation (func-

tion) iff all of its arguments y1, . . . , yk are symbolic.

Let P be a set of these symbolic predicates (relations). Each predicate p ∈ P is parame-

terized by typed parameters and represents a relation between these objects. Given a set

of objects in the environment, a predicate p ∈ P can be grounded using the objects in the

universe of the model. We refer to a predicate as p and a grounded predicate as p′. Each

grounded predicate p′ defines a Boolean classifier that evaluates true in a low-level state

x (denoted as p′x = 1) if the corresponding relation holds true between the objects used to

ground the predicate in the state x.

A symbolic state s is a logical structure or a model defined over the set of symbolic pred-

icates P . Intuitively, abstract states are defined as a set of grounded predicates that evaluate

true in a given low-level state. Typically, all abstract states only consist of grounded pred-

icates. However, for the context of this work, we also define a lifted abstract state which

is the set of lifted predicates such that at least one grounding of those predicates is true in

a given state. We refer to an abstract lifted state as s and an abstract grounded state as s′.

Lastly, we define an abstraction function α ∶ X → S ′ ∶ x↦ s′ that evaluates every grounded

predicate in a low-level state x and returns an abstract state s′.

We define symbolic lifted actions using the set of lifted predicates P . Each abstract

action ā ∈ Ā is parameterized with typed symbolic parameters. Each action ā is defined as

a tuple ⟨paraā,preā, effā⟩. Here, paraā is a list of typed parameters; preā is a conjunctive

formula of parameterized predicates from the set of predicates P; effa is the effect of the

action ā, and it is defined as a tuple effā = ⟨addā,delā⟩ where addā is a set of predicates that

are added to the state and delā is a set of predicates that are removed from the state when
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the action ā is executed. Each predicate in addā has a probability value associated with it

that represents the probability with which the predicate would be added when the action is

successfully executed. Similarly to the predicates, an action ā can be grounded using the

objects yielding a grounded action ā′. This also generates grounded precondition preā′ and

grounded effect effā′ . A grounded action ā′ is applicable in a grounded state s′ if and only

if preā′ ⊧ s′. Formally, every grounded action ā′ ∈ Ā′ defines a function ā′ ∶ S ′ → µS ′ that

maps each symbolic state s′ ∈ S ′ to a distribution of resultant symbolic states.

We define a symbolic robot planning problem as a stochastic shortest path problem

similar to a robot planning problem (Def. 1).

Definition 4 A symbolic robot planning problem is defined as a tuple M̄ = ⟨Ō,T ,P, Ā,

S ′, s′i,S ′g⟩ where,

• Ō is a set of symbolic references to objects and robots in the environment.

• T is a set of object types.

• P is a set of symbolic lifted predicates.

• S ′ is a set of abstract states.

• si ∈ S ′ is an initial state.

• S ′g ⊂ S ′ is a set of goal states.

Example 3 Fig. 2.2 shows an example of an abstract action defined using symbolic pred-

icates. The precondition specifies that there should exist a valid grasp pose, and a motion

plan from the current configuration of the robot to the grasp configuration, and the gripper

should be empty. The effect specifies that with probability 1.0, the gripper would be at the

grasp configuration, and with probability 0.8, the object would be grasped by the gripper.

Akin to a low-level robot planning problem, a solution to a symbolic planning problem

is a partial policy defined over grounded abstract actions. Formally, a partial policy π̄ ∶
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Pick(obj1, gripper1 config1, config2, grasp pose, traj1)

Precondition RobotAt(config1) , holding(obj1),

IsValidMP(traj1, config1, config2),

IsCollisionFree(traj1),

IsEmpty(gripper1),

IsValidGraspPose(obj1, config2, grasp pose)

Effect 1.0 ¬ holding(obj1),

¬ RobotAt(config1), RobotAt(config2),

at(gripper1, grasp pose)

0.8 ¬ IsEmpty(gripper1),

Holding(gripper1, obj1),

Figure 2.2: Specification of an abstract action that picks up an object (obj1) using a robot
(gripper1)

S ′ → Ā′ maps each reachable abstract state to a grounded symbolic action. Planners such

as FF (Hoffmann, 2001), FD (Helmert, 2006), and LAO* (Hansen and Zilberstein, 2001)

can be used to compute such solutions.

Symbolic solutions cannot be executed by a robot. They must be converted to a se-

quence of primitive actions that a robot can execute. Intuitively, a motion plan must be

computed for each high-level grounded action. Pose generators can be used to convert

each high-level action to a motion planning problem. Formally, a pose generator defines

an inverse abstraction function. Let γp be a pose generator for a lifted symbolic predicate

p ∈ P . For a grounded predicate p′, a pose generator γp′ = {x∣x ∈ X ∧ p′x = 1}. A pose

generator for a grounded state s′ is defined as ⋂p′∈s′ γp′ .

A naı́ve approach would be to compute a high-level plan first and then use pose genera-

tors to convert them to a motion plan. However, due to the lossy nature of the abstractions,

17



such a naı́ve approach typically does not work. Therefore, task and motion planning ap-

proaches such as Cambon et al. (2009) and Srivastava et al. (2014) interleave high-level

planning and refinement for searching a high-level symbolic plan that has motion planning

refinements for each action in the high-level plan.

We formally define a task and motion planning problem is defined as follows.

Definition 5 A task and motion planning problem is defined as a tuple ⟨M, α,M̄α⟩ where

M is a robot planning problem, α is an abstraction function, and M̄α is a symbolic robot

planning problem for the robot planning problemM obtained using the abstraction func-

tion α.

2.4 Conclusion

This section defines a robot planning problem, a motion planning problem, and a task

and motion planning problem. The central focus of this thesis is to learn world models

in the form of abstractions that convert the given robot planning problem into a task and

motion planning problem. However, before we discuss our approach to learning such ab-

stractions, we must discuss approaches that use symbolic world models for task and motion

planning.
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Chapter 3

STOCHASTIC TASK AND MOTION PLANNING

Figure 3.1: Left: YuMi robot uses HPlan (Sec. 3.1) to build a 3π structure (2 π structures
stacked on top of a π structure) with Keva planks despite uncertainty in their initial loca-
tions. Right: A stochastic variant of the cluttered table domain where the robot is instructed
to pick up the black can, but pickups may fail and crush the cans requiring them to be dis-
posed of.

A long-standing goal in robotics is to develop robots that can operate autonomously in

real-world environments and solve complex tasks such as cleaning a room or organizing a

table. This chapter presents an approach for using a hand-provided entity abstractions – a

novel abstraction method for abstracting robot planning problems – to compute solutions

for such complex problems in stochastic settings.

We develop a hierarchical anytime approach that uses symbolic abstractions in the form

of abstract predicates and actions (as discussed in Sec. 2.3) for a robot planning problem

(Def. 1) and computes a refined task and motion policy. Our anytime algorithm (Sec. 3.1)

is guaranteed to find a solution, if it exists, as well as ensure a quick solution that the robot

can begin to execute without waiting for a full policy computation.

This chapter first explains the nature of input abstractions (Sec. 3.1). Then, it describes

our algorithm – HPlan – for computing task and motion policy (Sec. 3.1) for a task and

motion planning problem (Def. 5), and lastly, it provides a strong empirical evaluation of
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our approach in several settings where complex planning solutions are required to solve the

task (Sec. 3.3).

3.1 Entity Abstraction

We define a specific abstraction (entity abstraction) as the abstraction function α to

provide interpretations for symbolic predicates as discussed in Sec. 2.3. Let Ol (Oh) be

the universe for the first-order logic vocabulary Vl (Vh) such that ∣Oh∣ ≤ ∣Ol∣. Here Ol

and Vl are low-level concrete universes and vocabularies respectively and Oh and Vh are

their abstract counterparts. Let ρ ∶ Uh → 2Ul be a collection function that maps elements

in Uh to the collection of Ul elements that they represent, e.g., ρ(Table) = {loc∣ ∧i loc ⋅

BoundaryV ectori < 0}. Here ρ binds the symbolic reference Table ∈ Uh to a set of

locations in Ul that are enclosed by some polygonal boundary.

We define entity abstraction αρ using the collection function ρ as JrKαρ(Vl)(õ1, . . . , õn) =

True iff ∃ o1, . . . , on such that oi ∈ ρ(õi) and Jψαρ
r (o1, . . . , on)KSl

= True. Here, r and ψr

are formulas defined over vocabularies Vl and Vh respectively. We omit the subscript ρ

when it is clear from the context. Entity abstractions define the truth values of predicates

over abstracted entities as a disjunction of the corresponding concrete predicate instantia-

tions. E.g., an object is in the abstract region “kitchen” if it is at one of any locations in

that region and an object is on “table” if it is at any location on the table-top. Such ab-

stractions have been used for efficient generalized planning (Srivastava et al., 2008) as well

as answer set programming (Saribatur et al., 2019). These types of abstractions introduce

terms that may not be recognizable (or evaluable) at the high level which makes these ab-

stractions lossy and high-level models obtained by these abstractions inaccurate. E.g., the

exact location of the table or the trajectory used to reach a configuration from the current

configuration.

We define a pose generator for each predicate using the collection function of the argu-
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Algorithm 1: HPlan Algorithm
Input: modelM, abstraction function α, concretization function γ, abstract model

M̄α, symbolic planner P
Output: anytime, contingent policy that is executable inM

1 Initialize PRG with a node with an abstract policy π̄ for G computed using P;
2 while solution of desired quality not found do
3 u ← GetPRNode();
4 M̄u ← GetAbstractModel(u);
5 π̄u ← GetAbstractPolicy(M̄u, G, P , u);
6 Choice ← NDChoice{RefinePolicy, RefineAbstraction};
7 if Choice = RefinePolicy then
8 while π̄u has an unrefined RTL path and resource limit is not reached do
9 path ← GetUnrefinedRTLPath(π̄u);

10 if explore// non-deterministic
11 then
12 replace a suffix of refined partial path with a random action;
13 Search for a feasible concretization of path;

14 if Choice = RefineAbstraction then
15 path ← GetUnrefinedRTLPath(π̄u);
16 σ ← ConcretizeFirstUnrefinedAction(path);
17 failure reason ← GetFailedPrecondition(σ );
18 M̄′ ← UpdateAbstraction(M̄, failure reason) ;
19 π̄′ ← merge(π̄, GetAbstractPolicy(M̄′, G, solver));
20 generate new pr node(π̄′, M̄′);
21 recompute p/c ratio for unrefined RTL paths;

ments of the predicate. E.g., a pose generator for a predicate On(A, Table) with a sym-

bolic reference Tablewith a collection function ρ(Table) = {loc ∣ ∧i loc⋅BoundaryV ectori <

0}, the pose generator is defined as Γ = {loc∣loc ∈ ρ(Table)}.

3.2 Computing Task and Motion Policies

We extend the idea of planning with abstractions briefly discussed by Srivastava et al.

(2016b) to perform task and motion planning in stochastic environments using abstraction

hierarchies. The goal is to find a valid high-level policy that also has valid low-level re-

finements for each of its actions. We propose the HPlan algorithm (Alg. 1) that performs

hierarchical planning with arbitrary abstraction and concretization functions.
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Figure 3.2: Plan refinement graph (PRG) used to maintain separate abstract models. Each
plan refinement node (PRN) contains an abstract model, partially refined policy, and current
state of refinement. Each edge contains refinement for a partial policy (σij) and a failure
reason (pk).

HPlan (Alg. 1) uses a policy refinement graph (PRG) to keep track of different abstract

models and their corresponding policies. As shown in Fig. 3.2, each node u in a PRG

contains an abstract model M̄u, an abstract policy π̄u, and the current state of refinement

for each action āj ∈ π̄u. An edge (u, v) in a PRG from a node u to a node v consists of

a partial refinement of the policy (σuv) and a failed precondition of the first action from

π̄u that lacks valid motion planning refinement. Our approach combines two processes: 1)

concretizing the abstract policy, and 2) refining the abstract model.

HPlan (Alg. 1) interleaves these two steps. The algorithm starts by initializing the PRG

with a node containing this abstract model M̄, and an abstract policy π̄ computed using

an off-the-shelf symbolic solver that achieves the goal G (line 1). Each iteration of the

main loop (line 2) selects a policy refinement node (PRN) u from the PRG using a defined

strategy (line 3). Arbitrary strategies can be used to make this selection. HPlan uses an

off-the-shelf task planner to compute a high-level policy for the current abstract model

if the selected PRN does not already have a high-level policy (line 5). Once a policy is

computed (or obtained), HPlan non-deterministically decides (line 6) to either refine the

high-level policy in the selected PRN by instantiating abstract arguments of actions in the

policy (lines 7-13) or to update the high-level abstractions to compute accurate high-level
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policies (lines 14-20). The algorithm carries out these interleaved steps as follows:

a) Concretizing the abstract policy Lines 8-13 search for a valid concretization (re-

finement) of the high-level policy selected/computed on line 5 by concretizing the abstract

actions with actions from the concrete domainM using the concretization function Γα as

explained in Sec. 3.1. To refine a high-level policy, a root-to-leaf (RTL) path is selected that

has at least one unrefined action. Each unrefined action is concretized using a local back-

tracking search (line 13) (Srivastava et al., 2014). A concretization c0, a1, c1, . . . , ak, ck is

a valid concretization of an RTL path s̄0, ā1, s̄1, . . . , āk, s̄k is valid iff ci+1 ∈ ai+1(ci) and

ci ⊧ precon(ai + 1) for i = 0, . . . , k − 1. A policy is refined when concretization for each

action in every RTL path in the policy is computed. However, due to the lossy nature of

the abstraction, it may be that no valid concretization exists for the policy π̄u. For example,

consider the Pick action shown in Fig. 2.2, and consider an abstraction which drops In-

Collision predicate that checks whether a trajectory is in collision with some object while

trying to pick the object. Such high-level actions would not have any valid concretization

if all the trajectories were being obstructed by some object at the low level.

b) Refining the abstract model Lines 15-20 fix a concretization for the partially refined

policy selected on line 5 and identify the earliest abstract state in the selected policy whose

subsequent action’s concretization is infeasible. The abstract model is refined by adding

the true form of the violated precondition at the low level. Continuing the same example,

if all the trajectories from the current state to the state with gripper at the grasp pose of the

object are in collision with some object, the concrete precondition InCollision(traj, objx)

is violated at the concrete level and is added to the current abstract model. The rest of the

policy after this abstract state is discarded. Lines 19-20 use the new model to compute a

new policy. The symbolic planner is invoked to compute a new policy from the updated
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state; its solution policy is unrolled as a tree of bounded depth and appended to the partially

refined path. This allows the time horizon of the policy to be increased dynamically.

Theorem 3.2.1 If there exists a proper policy – the probability of reaching the goal is 1.0 –

that reaches the goal within horizon h, and has feasible low-level concretization for each of

its actions, and the probability measure of these refinements under the probability density

of the pose generators is non-zero, then Alg. 1 will find it with probability 1.0 in the limit of

infinite samples.

Proof 3.2.1 Let πp be the proper policy that achieves the goal with horizon h and has

valid low-level concretization for each of its actions. Consider a policy πi inside a PRN i

at an intermediate step of Alg. 1; let k denote the minimum depth up to which πp and πi

match. Here, k denotes a measure of correctness. When PRN i is selected for refinement,

eventually Alg. 1 would try to compute low-level concretization for an action at depth k +1

that does not match with the proper policy πp. In this case, there is a chance that Alg. 1

would select the correct action (that matches with πp at depth k + 1) under the explore

condition (lines 10-12) of Alg. 1 and then generates a plan that reaches the goal state. A

finite number of discrete actions in the abstract model and the fixed horizon ensures that in

time bounded in expectation, HPLan will generate a policy with the measure of correctness

k+1 and eventually with the measure of correctness h. Once the algorithm finds the policy

with the measure of correctness h, it stores it in the PRG and is guaranteed to find feasible

refinements with probability one if the measure of these refinements under the probability

density of the generators is non-zero.

3.2.1 HPlan for STAMP

We enhance the basic Alg. 1 in two primary directions to facilitate stochastic task and

motion planning (STAMP) problems. These optimizations allow Alg. 1 to compute any-
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Figure 3.3: Left: Backtracking from node B invalidates the concretization of subtree
rooted at A. Right: Replanning from node B

time solutions for STAMP problems and improve the search of concretization of abstract

policies.

Search for concretizations Sampling-based backtracking search performed by Alg. 1

(line 13) to concretize the abstract actions suffers from a few limitations in stochastic set-

tings that are not present in the deterministic settings. Fig. 3.3 illustrates the problem. The

gray nodes in the image show the actions which are concretized. White nodes represent

actions that are yet to be concretized. Sibling nodes represent the non-deterministic action

outcomes. Now, if the action in nodeB does not accept any valid concretization, backtrack-

ing to node A and changing its action’s concretization would invalidate concretization for

the entire subtree rooted at node A. Alg. 1 handles such scenarios by non-deterministically

selecting whether to perform backtracking searching or not (line 6) and by maintaining

different abstract models through PRG and employing a resource limit (line 8) to explore

them simultaneously.

Anytime computation for task and motion policies The main computational challenge

for Alg. 1 in stochastic settings is that the number of root-to-leaf (RTL) branches grows ex-

ponentially with the time horizon and the number of contingencies in the domain. In most

scenarios, not all contingencies are equally probable. Each RTL path has a certain proba-

bility of being encountered; refining it incurs a computational cost. Waiting for a complete
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(:action pick 
:parameters (?obj ?gp1 ?traj1)
:precondition (and 

(IsValidGP ?gp1 ?obj)
(isValidiTraj ?gp1 ?traj1)
(isCollisionFree ?traj1))

:effect (and 
(probabilistic 

0.8 (a ?obj1)
)))

(b)

Table

G

(a)

Done

Pick 
Red

Done

Pick 
Red

Pick 
Red

PRN1

0.04

0.008 0.002

Pick 
Red

Pick 
Blue

Done

Pick 
Blue

Pick 
Blue

PRN2

0.0008

0.00006

Done

0.00002

Pick 
Red

Pick 
Green

Done

Pick 
Green

Pick 
Green

PRN3

0.0008

0.00006

Done

0.00002

(c)

Figure 3.4: A working example for Alg. 1. (a) shows the initial environment configuration.
The goal for the robot is to pick up the “Red” object which is surrounded by “Blue”,
“Green”, “Orange”, and “Black” objects. G is the end-effector of a robot. (b) shows a
high-level, abstract task specification of the “pick” action. (c) shows the policy refinement
graph (PRG) which is generated incrementally by Alg. 1. Each green box represents a
policy refinement node (PRN). The tree in each PRN represents a high-level policy. Each
node in a high-level policy is a state-action pair. For brevity, we only show high-level action
in the node. Trees with dotted lines are partial policies. The red number represents p/c ratio
for each RTL path in a policy.

refinement of the policy tree wastes a lot of time as most of the situations have a very low

probability of being encountered. The optimal selection of the paths to refine within a fixed

computational budget can be reduced to the knapsack problem. Unfortunately, we do not

know the precise computational costs required to refine an RTL path. However, we can

approximate this cost depending on the number of actions in an RTL path and the size of

the domains of the arguments of those actions. Furthermore, the knapsack problem is NP-

hard. Luckily, we can compute provably good approximate solutions to this problem using

a greedy approach: we prioritize the selection of a path to refine based on the probability

of encountering that path p and the estimated cost of refining that path c. We compute p/c

ratio for all the paths and select the unrefined path with the largest ratio for refinement (line

26



Figure 3.5: Top: Cluttered Table: The Fetch mobile manipulator uses a STAMP policy to
pick up a target bottle while avoiding those likely to be crushed. It replaces a bottle that was
not crushed (left), discards a bottle that was crushed (center) and picks up the target bottle
(right). Bottom: Building Structures with Keva Planks: ABB YuMi builds Keva structures
using a STAMP policy: 12-level tower (left), twisted 12-level tower (center), and 3-towers
(right).

9 and 15). The p/c ratio for each path is updated after each iteration of the main loop (line

21). Intuitively, our approach works as follows:

Example Fig. 3.4 illustrates our approach for solving a STAMP problem using Alg. 1.

Fig. 3.4(a) shows a low-level configuration of an environment. Here, a robot with an ef-

fector G is asked to pick up the red object which is surrounded by green, blue, orange,

and black objects. Fig. 3.4(b) shows a high-level specification of the pick action in the

PPDDL format. Fig. 3.4(c) shows the policy refinement graph (PRG) that is generated

incrementally by Alg. 1.

As explained earlier in the section, Alg. 1 starts with a single node in the PRG – in this

case, PRN1. Initially, PRN1 does not have a high-level policy. Alg. 1 uses the abstract ac-

tion descriptions (abstract model M̄) and an off-the-shelf high-level SSP solver to compute

a high-level symbolic policy that reaches the abstract goal (line 5) and computes p/c ratios
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Figure 3.6: Top: Aircraft Inspection: UAV inspects faulty parts of an aircraft in an airplane
hangar and alerts the human about the location of the fault. UAV’s movements and sensors
are noisy, so it may drift from its location or fail to locate the fault. Bottom: Find the
can: Fetch searches for a can in drawers. The can can be placed in one of the drawers
stochastically.

for each RTL path in this abstract policy. To compute this ratio, we estimate the cost of

refining each high-level action as follows: Suppose that the generators used to concretize

the pick actions samples four grasp poses in four cardinal directions to pick up the object

and five motion planning trajectories between the robot’s current configuration to the grasp

pose, then the approximate cost of refining this action would 4×5 = 20. We use this approx-

imate cost to compute p/c ratios (red numbers in Fig. 3.4). The next step for Alg. 1 is to

non-deterministically decide between refining the computed high-level policy and refining

the abstraction. Assume Alg. 1 non-deterministically decides to refine the high-level policy

(line 6). After deciding to refine the high-level policy, Alg. 1 selects an RTL path using the

p/c ratio and tries to refine each action on this path by instantiating each symbolic argu-

ment. Here in this example, the first RTL path would only have a single high-level action

pick(Red, gp1, traj1) that needs refinement. To instantiate the high-level pick action, it first

uses a generator to sample one of the possible grasp poses for the red object and then uses
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a low-level motion planner to generate a trajectory that would take the robot end-effector

G to the selected grasp pose from its current pose. As the red object is surrounded by other

objects, all the trajectories that take the end-effector to the grasp pose, are in collision with

at least one object. This violates the precondition of the pick action making the refinement

infeasible. Alg 1 continues trying to refine this action using the local and global back-

tracking search for a fixed amount of time before again making a non-deterministic choice

between refining the high-level policy or the high-level abstraction.

Suppose this time Alg. 1 decides to refine the high-level abstraction. To do so, it would

identify the failing precondition preventing a valid refinement for the high-level policy and

generate a set of child nodes in the PRG – PRN2 and PRN3 in this case corresponding to

failing preconditions Obstructs(traj1, Blue) and Obstructs(traj1, Green). Once these nodes

are generated, Alg. 1 would move on to the next iteration of the approach where it would

select one of these newly generated plan refinement nodes and repeat the entire process

until a complete task and motion policy is computed.

Theorem 3.2.2 Let t be the time since the start of the algorithm at which the refinement of

any RTL path is completed. If path costs are accurate and constant then the total proba-

bility of unrefined paths at time t is at most 1 − opt(t)/2, where opt(t) is the best possible

refinement (in terms of the probability of outcomes covered) that could have been achieved

in time t.

Proof 3.2.2 (Sketch) The proof follows from the fact that the greedy algorithm achieves

a 2-approximation for the knapsack problem. In practice, we estimate the cost as ĉ, the

product of measures of the true domains of each symbolic argument in the given RTL. Since,

ĉ ≥ c modulo constant factors, the priority queue never can only underestimate the relative

value of refining a path, and the algorithm’s coverage of high-probability contingencies

will be closer to optimal than the bound suggested in the theorem above. This optimization
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gives a user the option of starting execution when the desired value of the probability of

covered contingencies has been reached.

3.3 Empirical Evaluation

We use a total of five domains with varying configurations to evaluate our approach.

All these five domains had a mix of deterministic and stochastic actions. We use an im-

plementation of LAO* (Hansen and Zilberstein, 2001) from the MDP-Lib (Pineda, 2014)

repository for computing policies for SSPs. We use OpenRAVE (Diankov, 2010) robot

simulation system with its collision checkers to represent 3D environments and perform

collision checking. We also use CBiRRT’s (Berenson et al., 2009) implementation from

the PrPy (Koval, 2015) suite for computing motion plans. In practice, fixing the horizon H

for the SSP solver apriori is infeasible and renders some problems unsolvable. Instead, we

implemented a variant that dynamically increases the horizon until the goal is reached with

a probability p > 0. 1

Lagriffoul et al. (2018) propose several framework-independent benchmark domains

for task and motion planning systems. While these benchmarks are proposed for determin-

istic TAMP systems, characteristics of the domains can still be used to evaluate STAMP

systems. Table 3.1 shows the criteria fulfilled by every domain used to evaluate our ap-

proach. We include the average number of branches in the policy tree as an additional

criterion to depict the complexity of stochastic problems.

Problem 1: cluttered table In this problem, we have a table cluttered with cans, each

having different probabilities of being crushed when grasped by the robot incurring a high

cost (probability for crushing was set to 0.1, 0.5 & 0.9 in different experiments in Fig.

3.8(a)), while others are normal cans that cannot be crushed. The goal of the robot is
1The source code of the framework along with the videos of our experiments can be found at https:

//aair-lab.github.io/stamp.html
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Figure 3.7: Setting up a dining table: Fetch uses STAMP policy to set up a dining table. A
tray is available to carry multiple items at a time but carrying more than two items on the
tray may break the items. Left: The initial state. Right: The goal state.

to pick up a specified can. We used different numbers of cans (15, 20, 25) and different

random configurations of cans to extensively evaluate the proposed framework. We also

used this scenario to evaluate our approach in the real world (Fig. 3.5) using the Fetch

robot Wise et al. (2016).

Problem 2: aircraft inspection In this problem, an unmanned aerial vehicle (UAV) is

employed to inspect possibly faulty parts of an aircraft in an airplane hangar. The goal for

the agent is to locate the fault and notify the human supervisor about it. Fig. 3.6 shows

the simulated environment. The UAV’s sensors are inaccurate and may fail to locate the

fault with some non-zero probability (failure probability was set to 0.05, 0.1, and 0.15 for

experiments in Fig. 3.8) while inspecting the location; it may also drift to another location

while flying from one location to another or while inspecting the parts. The UAV has a

limited amount of battery charge. A charging station is available for the UAV to dock and

charge itself. All movements use some amount of battery charge depending on the length

of the trajectory, but the high-level planner cannot determine whether the current level of

charge is sufficient for the action or not as it lacks details such as current battery level,

length of previous and next trajectories, etc. This makes it necessary to have an interleaved

approach that searches for a high-level policy that has valid low-level refinements.

31



Criteria Cluttered
Table

Aircraft
Inspection

Building Keva
Structures Kitchen Find

the can
Infeasible Tasks ✓ ✓

Large task spaces ✓ ✓ ✓ ✓
Motion/task trade-off ✓ ✓ ✓ ✓

Non-monotonicity ✓ ✓ ✓
#branches O(2d) O(4h) O(2n) 2 2

Table 3.1: Critera defined by Lagriffoul et al. (2018) evaluated in each of the test domains.

Problem 3: building structures with keva planks In this problem, the YuMi robot (ABB,

2015) is used to build different structures using Keva planks. Keva planks are laser-cut

wooden planks with uniform geometry. Fig. 3.5 and Fig. 3.1 show the target structures.

Planks are placed one at a time by a user after each pickup and placement by the YuMi.

Each new plank may be placed at one of a few predefined locations, which adds uncertainty

to the planks’ initial location. For our experiments, two predefined locations were used to

place the planks with a probability of 0.8 for the first location and a probability of 0.2 for

the second location. In this problem, handwritten goal conditions are used to specify the

desired target structure. The YuMi needs a task and motion policy for successively pick-

ing up and placing planks to build the structure. There are infinitely many configurations in

which one plank can be placed on another, but the abstract model blurs out different regions

on the plank. The generator that samples put-down poses for planks on the table uses the

target structure to concretize each plank’s target put-down pose. The number of branches

in a solution tree grows exponentially with the number of planks in the structure and can

quickly become huge. For example, a solution tree for a structure with just 10 planks would

have a total of 1024 branches. Due to the large state space, the state-of-the-art SSP solver

used for other domains failed to compute a high-level policy for these problems. Our obser-

vation shows that most SSP solvers fail to compute a high-level solution for structures that

have greater than 6 planks. However, these structure-building problems exhibit repeating

substructures every 1-2 layers that reuse minor variants of the same abstract policy. We
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used this observation and used a generalized SSP solver (Karia et al., 2022) that computes

generalized policies for SSPs with such repeating patterns. Other approaches for gener-

alized planning (Srivastava et al., 2008; Bonet et al., 2009; Hu and De Giacomo, 2011;

Srivastava et al., 2011) can also be used to automatically extract and utilize such patterns

in other problems with repeating structures.

Problem 4: setting up a dining table In this problem, the Fetch robot arranges a dining

table with two plates and two glasses (Fig. 3.7). A tray is available for the robot to use for

carrying multiple items at once. If the robot tries to carry more than two objects on a tray

at once, the objects can fall from the tray with a probability of 0.2 and that would break

the objects. While using the tray can reduce the number of trips between tables, breaking

the objects would render the problem unsolvable. As our approach considers all possible

outcomes of stochastic actions, it successfully computes a policy that prevents any object

from breaking compared to determinization-based approaches that only consider the most

likely outcome for stochastic actions that may fail to solve such problems as most-likely

scenarios might fail to capture dead ends in the domain.

Problem 5: find the can In this problem, the Fetch robot searches for a can that may be

present in one of the drawers. Fig. 3.6 shows the simulated environment for the problem.

The can is placed in one of the drawers with a given prior distribution. The robot does

not have access to the can’s location apriori and has to open the drawer to check whether

the can is present in the drawer or not. In our experiments, the can is placed in the upper

drawer with a probability of 0.6 and in the bottom drawer with a probability of 0.4.
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Figure 3.8: Anytime performance of ATM-MDP, showing the time in seconds (x-axis) vs.
probability mass refined (y-axis).

3.3.1 Analysis of the results

Nature of the solutions The most distinct characteristic of the solutions generated through

our framework is that they capture all possible contingencies that may arise while execut-

ing the policy. E.g., solutions generated for setting up the dinner table (problem 4) avoid

placing more than two items on the tray to eliminate the possibility of incurring higher
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Problem % Solved Avg. Time (s)
Cluttered-15 100 1120.21 ± 1014.54
Cluttered-20 83 1244.32 ± 990.65
Cluttered-25 75 1684.54 ± 890.78
Aircraft Inspection 100 2875.01 ± 103.65
3π 100 1356.34 ± 75.8
Tower-12 100 2232.36 ± 104.84
Twisted-Tower-12 80 3249.92 ± 773.69
Setting up a dining table 100 1287.23 ± 321.32
Find the can 100 36.74 ± 0.13

Table 3.2: Summary of times taken to solve the STAMP problems. Timeout: 4000 seconds.

expected cost, and solutions for picking up a can from the cluttered table (problem 1) avoid

picking up a delicate can for similar reasons.

Quality of the solutions over time While our approach computes refinements for every

action in the policy, the anytime property allows the agent to start executing the actions

before all the actions are refined. Our approach computes anytime policies with respect to

the possible outcomes handled by a policy at any point in time. Fig. 3.8 shows the anytime

property of our approach in stochastic test domains. The y-axis shows the probability with

which the policy available at any point of time during the algorithm’s computation will be

able to handle all possible outcomes, and the x-axis shows the time (in seconds) required to

compute task and motion policies that handle these outcomes. The results show that with

time, the likelihood with which the solution would be able to handle any scenario increases.

The agent can use this observation to decide a threshold at which it can start executing the

actions. For our experiments, we use a threshold of 60% of all possible outcomes to start

the execution of the policy. Our experiments show that in most cases, the problem was

solved significantly faster compared to starting execution after refining the entire policy

tree (Fig. 3.2).

Impact of prioritized RTL path selection The results presented in Fig. 3.8 indicate that

when RTL paths are selected using the p/c ration (blue line), the framework can quickly
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handle outcomes with most likely outcomes, compared to a randomized selection of RTL

paths for refinements (red line). In most cases, 80% of probable executions are covered

within about 30% of the total computation time. This characteristic is most evident in the

aircraft inspection problem due to a large number of possible outcomes and differences

in the probability of different outcomes. Such a prioritization does not make a significant

impact if all the outcomes are equally probable. E.g., such impact is the least evident in the

cluttered table problem with the probability of crushing the objects set to 0.5 given each

outcome becomes equally probable and the sequence in which they are handled does not

make any difference.

Scalability of the framework Fig. 3.2 shows the time taken by our approach to compute

complete STAMP solutions by concretizing every action in the entire policy for the given

test problems respectively. We combine results for different variants of the test problem as

variations in the probabilities of outcomes do not affect the time required to concretize all

actions in the entire policy. Values in Fig. 3.2 are averages of 50 runs with standard devia-

tion. Our empirical evaluation shows that solving a STAMP problem requires significantly

more time than an equivalent TAMP problem. E.g., the stochastic variant of the aircraft

inspection problem takes nearly 15 times more time than the deterministic version as the

stochastic variant had 780 branches in the solution tree compared to a single branch in

the deterministic variant. These results reinforce our hypothesis that an anytime approach

that prioritizes high-probability scenarios over low-probability situations but still consid-

ers all possible outcomes suits better than an approach that does not consider all possible

outcomes while showing the scalability of our approach to solve large problems. Results

for larger problems such as Twisted-Tower-12 and Cluttered-25 show the scalability of our

system. Even though our approach needs a significant time to compute solutions for such

huge problems due to a large number of RTL paths in the policy trees, it was able to solve
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almost all problems in these problem settings.

Now, we present a discussion on related approaches.

3.4 Related Work

Stochastic task and motion planning combines hierarchical planning, task planning,

planning under uncertainty, motion planning, and task and motion planning together. In

this section, we discuss some of the related approaches in these areas of research.

3.4.1 Stochastic Task Planning

Many approaches have been developed for classical planning efficiently in recent years

(Blum and Furst, 1997; Bonet and Geffner, 2001; Hoffmann, 2001). Similarly, numerous

approaches have been developed to solve stochastic shortest-path problems. Dynamic pro-

gramming algorithms such as value iteration and policy iteration can be used to compute

policies for SSPs. Real-time dynamic programming (RTDP) (Barto et al., 1993) generalizes

Korf’s Learning-Real-Time-A* algorithm to a trial-based dynamic programming method

that ignores a large part of the state-space by only expanding states encountered in trials

to solve SSPs faster. LAO* (Hansen and Zilberstein, 2001) uses heuristics to expand the

partial policy tree along with local value iteration to compute policies for SSPs. Labeled

RTDP (Bonet and Geffner, 2003) extends RTDP by labeling states that have converged

greedy policy to reduce the number of states considered for expansion to decrease policy

computation time. Muise et al. (2012) use state relevance to guide the search to reduce

the time to compute the policy. Abdelhadi and Cherki (2019) provide a method that de-

composes an SSP into multiple smaller SSPs and combines the solution to handle dead

ends.
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3.4.2 Hierarchical Planning

Hierarchical approaches (Sacerdoti, 1974; Knoblock, 1990; Erol et al., 1995; Seipp and

Helmert, 2018) use abstractions to generate different hierarchies of relaxed planning prob-

lems to compute a solution for a complex planning problem. State abstraction generates

hierarchies by removing certain predicates (in relational domains) or variables (in factored

domains) from the domain vocabulary. ABSTRIPS (Sacerdoti, 1974) is one of the earliest

hierarchical planning approaches which assigns a rank to each literal using a predefined

order and the complexity of achieving that literal in the STRIPS planning process. Ab-

straction hierarchy is generated by dropping literals from the precondition of actions in the

domain in the order specified by the rank of literals. The planning hierarchy generated

using ABSTRIPS is common for all problems in the given domain and it is not tailored to

independent problems.

ALPINE (Knoblock, 1990) uses ordered monotonicity to overcome this issue by gener-

ating abstraction hierarchies tailored to each problem for the given domain. Seipp and

Helmert (2013, 2018) use counter-example guided abstraction refinement (CEGAR) to

solve a complex planning problem hierarchically using Cartesian abstraction – a variant of

predicate abstraction. This CEGAR-based approach starts with a naı̈ve abstraction for the

problem and computes an optimal plan for the abstract model. It tries to execute this plan

in the original model. If it fails to execute the plan successfully, it computes a flaw in the

current plan and uses it to refine the current abstract model. This approach requires a pre-

image of each grounded operator and a bounded branching factor for the search tree. Such

approaches are not conducive to task and motion planning setups because they require dis-

crete action and state spaces while task and motion planning operates in continuous states

and action spaces.

Temporal abstractions generate high-level actions that are compositions of multiple
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low-level actions. Some hierarchical planning approaches employ temporal abstraction

to create relaxed problems. Multiple approaches Kambhampati et al. (1998); Bacchus and

Kabanza (2000); Bercher et al. (2014) have used hierarchical task networks (HTNs) (Erol

et al., 1995) to compute plans efficiently for complex tasks. HTNs use temporal abstrac-

tions to define tasks over primitive actions. The goal is to compute a final plan which is a

composition of the high-level tasks that are achieved through the partial order planning of

the primitive actions. Marthi et al. (2007b) compute hierarchical domain descriptions based

on angelic semantics using temporal abstractions. They use a top-down forward search al-

gorithm to refine the high-level actions into a sequence of primitive actions. While this

approach and HTN-based approaches efficiently perform top-down planning using tem-

poral abstraction, they fail to compute accurate plans in the models that do not fulfill the

downward refinement property. Additionally, they do not handle stochasticity.

Several approaches utilize abstraction for solving MDPs (Gopalan et al., 2017; Hostetler

et al., 2014; Bai et al., 2016; Li et al., 2006; Singh et al., 1995). However, these approaches

assume that the full, unabstracted MDP can be efficiently expressed as a discrete MDP.

Marecki et al. (2006) consider continuous-time MDPs with finite sets of states and actions.

In contrast, our focus is on MDPs with high-dimensional and uncountable state and action

spaces. Recent work on deep reinforcement learning (e.g., (Hausknecht and Stone, 2016;

Mnih et al., 2015)) presents approaches for using deep neural networks in conjunction with

reinforcement learning to solve short-horizon MDPs with continuous state spaces. These

approaches can be used as primitives in a complementary fashion with task and motion

planning algorithms, as illustrated in recent promising work by Wang et al. (2018).

Task planning efficiently computes solutions for complex goals. However, it can not

handle manipulation problems with continuous domains that have an infinite branching

factor. Though PDDL 2.1 (Fox and Long, 2003) allows using continuous variables, it still

struggles to handle an infinite branching factor.
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3.4.3 Motion Planning

Recent research resulted in significant improvements in sampling-based motion plan-

ners. Probabilistic roadmaps (PRM) (Kavraki et al., 1996) randomly sample from the C-

space to generate a roadmap that can be lazily used to generate motion plans. Rapidly-

exploring random trees (RRT) (Lavalle, 1998) computes a collision-free path from an ini-

tial robot configuration to the target configuration by connecting randomly sampled robot

configurations from the C-space. Bidirectional RRT (BiRRT) (Kuffner and LaValle, 2000)

updates existing RRT to initiate search trees from the initial and goal configurations to

boost the speed of motion planning. Constrained BiRRT (CBiRRT) (Berenson et al., 2009)

extends the BiRRT technique constraining the search space by using projection techniques

to explore configurations spaces and finds bridges between them.

3.4.4 Integrated Task and Motion Planning

Most of the prior work in the field of integrated task and motion planning has focused

on solving deterministic task and motion planning problems. Most of these approaches can

be classified into three categories: 1) approaches that use symbols to guide the low-level

motion planning, 2) approaches that extend high-level representations to simultaneously

search high-level plans along with continuous parameters, and 3) approaches that use in-

terleaved search for valid high-level plans with low-level refinements for its actions. Our

approach falls under the last category. Garrett et al. (2021) present an exhaustive survey of

these approaches; we discuss only the most closely related approaches here.

Approaches that use symbols to guide the motion planning: Cambon et al. (2009)

introduced one of the earliest approaches named aSyMov. ASyMov uses symbolic knowl-

edge to guide planning in geometric space using location references. Plaku and Hager

(2010) use a similar approach to allow combined task and motion planning for robots with
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constrained manipulators. Such approaches employ task planning as a heuristic for plan-

ning in the C-space, which may not always be efficient due to a lack of knowledge of

geometric constraints at the task-planning level. To overcome this limitation, we interleave

the process of computing motion plans and updating the high-level specification.

Approaches that extend high-level representations: Another class of approaches (Her-

tle et al., 2012; Garrett et al., 2015, 2020) extends the high-level representation to allow the

high-level planner to validate preconditions of the high-level actions in the geometric space

while computing the high-level plan. Hertle et al. (2012) do so by developing semantic at-

tachments for PDDL representations that check the validity of each high-level action using

a motion planner in the low level. FFRob (Garrett et al., 2015) uses pre-sampled robot

configurations to discretize the problem and build a roadmap to evaluate the preconditions

of the high-level action. PDDLStream (Garrett et al., 2020) uses optimistic samplers to

sample continuous arguments in the PDDL descriptions. Their optimistic samplers are

analogous to “generators” used by our approach that are used to instantiate abstract actions

and serve the same purpose. Our approach and PDDLStream use these samplers to sample

concrete values for symbolic abstract arguments.

Approaches that perform an interleaved search: The last group of approaches per-

forms an interleaved search to find a high-level solution that also has valid motion planning

refinements at the low level. These approaches incrementally update the high-level models

using the feedback from the low-level while searching for the refinements. Srivastava et al.

(2014) implement a modular approach that uses a planner-independent interface layer to

allow communication between a task planner and a motion planner. Dantam et al. (2018)

develop a constraint-based approach that incrementally adds constraints to the high-level

specification of the problem discovered while trying to refine a high-level plan generated
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using an SMT-based planner. Because these approaches commit to a single high-level

model, it is not clear how they would be able to avoid dead ends. Additionally, all these

approaches work only for deterministic problems and do not handle stochastic settings.

To the best of our knowledge, the only approaches designed to handle stochastic task

and motion planning problems were presented by Kaelbling and Lozano-Pérez (2011),

Hadfield-Menell et al. (2015), and Garrett et al. (2020). These approaches consider a

partially observable formulation of the problem. Kaelbling and Lozano-Pérez (2011) uti-

lize regression modules on belief fluents to develop a regression-based solution algorithm.

Hadfield-Menell et al. (2015) extend the work on deterministic task and motion planning by

Srivastava et al. (2014) for partially observable settings. They use maximum likelihood ob-

servations (Platt Jr et al., 2010) to obtain a determinized high-level representation. Garrett

et al. (2020) develop an online algorithm that uses observational actions to gather beliefs

about partially-observable environments and performs task and motion planning using dis-

cretized actions. These approaches address a more general class of partially observable

problems. However, they do not address the computation of branching policies, which is

the key focus of our approach.

3.5 Conclusion

In this chapter, we present a novel anytime approach for task and motion planning when

the robot’s actions may have multiple outcomes. We provide the nature of abstractions

required for our approach and strong theoretical guarantees about the probabilistically-

completeness of the algorithms. We show a thorough empirical evaluation of the approach

in various settings with simulated and physical robots where approaches that do not explic-

itly handle stochasticity would have failed to find the solution.
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Chapter 4

AUTOMATICALLY LEARNING ZERO-SHOT ABSTRACTIONS FOR

DETERMINISTIC MOTION PLANNING

(a) (b) (c)

Figure 4.1: (a) An illustrative environment for a motion planning problem. The robot
(R) is tasked to reach the kitchen (K). Red regions (b) show predicted critical regions in
the environment. Lastly, (c) shows a projection of the computed state abstraction. Each
colored cell represents an abstract state. Arrows show examples of abstract actions, defined
as transitions between abstract states.

Chapter 3 shows the effectiveness of abstractions in computing solutions for complex

robot planning problems. However, constructing such abstractions requires experts who

understand the domain as well as the robot’s constraints. This chapter presents our ap-

proach for automatically learning such hierarchical state and action abstraction for motion

planning problems.

We use the concept of critical regions (Sec. 4.1) for automatically inventing state and

action abstractions. Intuitively, critical regions are regions in the environment that are

important for solving different robot planning problems. They can be bottleneck states

like corridors or hubs such as the center of the room. We then describe our approach for

inventing state and action abstractions using critical regions (Sec. 4.2) and later explain our

approach – HARP – for using these hierarchical abstractions for robot planning (Sec. 4.3).

Sec. 4.4 shows the evaluation of our approach in twenty different environments with four
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different holonomic and non-holonomic robots. Lastly, we discuss some approaches that

are closely related to our approach (Sec. 4.5).

4.1 Critical Regions

We use the concept of critical regions for autonomously inventing state abstractions.

Intuitively, critical regions generalize and unify the notions of hubs (e.g., the center of a

room from which multiple locations are accessible) and bottlenecks (e.g., a doorway that

forces the robot to follow a narrow path). Formally, given a robot r with a configuration

space X , Molina et al. (2020a) define critical regions as follows.

Definition 6 Given a robot R, a configuration space X , and a class of motion planning

problems M , the measure of criticality of a Lebesgue-measurable open set r ⊆ X is defined

as limsn→+r
f(r)
v(sn)

, where f(r) is the fraction of observed motion plans solving tasks from

M that pass through sn, v(sn) is the measure of sn under a reference density (usually

uniform), and→+ denotes the limit from above along any sequence {sn} of sets containing

r (r ⊆ sn, ∀n).

Fig. 4.1(b) shows an example of critical regions. We develop an approach that automat-

ically generates a robot-specific, but environment and problem-independent deep neural

network architecture and trains it in a self-supervised manner to learn to predict critical

regions for unseen environments and problems. We now describe our approach to learning

to predict the critical regions.

4.1.1 Learning to Predict Critical Regions

We now present our approach for learning a model Φ that predicts critical regions for

a given environment. We first explain how our approach can generate a robot-specific

architecture of the network and then describe the training process.
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Figure 4.2: Our overall network architecture. Our approach uses the number of degrees of
the robot to automatically generate a network architecture that can be used for learning to
predict critical regions in unseen test environments.

Deriving robot-specific network architecture

We use the standard fully convolutional UNet architecture (Ronneberger et al., 2015) as our

base network. Fig. 4.2 includes network architecture for this network. We use the robot’s

geometry and its number of DOFs to derive a robot-specific architecture as follows:

Let n be the number of DOFs of the robot and let k be the number of DOFs that are

not determined by the location of the robot’s end-effector in the workspace. For manipula-

tion problems, we consider the gripper of the robot as its end-effector, and for navigational

problems, we consider the robot’s base link as its end-effector. First, we use these param-

eters to update the base UNet architecture. We use the last layer of the base architecture

to predict critical regions for the end-effector’s location and include k additional convolu-

tional layers to predict critical regions for each of the k DOFs that are not determined by

the location of the robot’s end-effector.

The input to the network is a tensor of dimension four. The size of the first three dimen-

sions of the input tensor depends on the number of bins used to discretize the environment

(which can be arbitrary). The number of channels in the input tensor is determined using
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the parameter n. If the robot has n DOFs, then the input tensor would have a total of n + 1

channels. The first channel in the input represents the occupancy matrix of the environ-

ment. It is generated by performing a raster scan of the environment. The rest of the n

channels represent goal values for each DOF of the robot – one for each DOF of the robot.

Similarly, each label is a tensor of dimension four. The size of the first three dimensions

is similar to the input tensor. The number of channels in the label tensor is also computed

using the robot’s geometry. For a robot with k DOFs that are not determined by the location

of the robot’s end effector in the workspace, the label tensor would have a total of k + 1

channels. The first channel represents critical regions for the end-effector’s location in the

workspace and the rest of the k channels represent critical regions for the k DOFs that are

not determined by this location – one channel for each of the k DOFs of the robot.

E.g, consider a 5-DOF hinged robot. The robot’s 5 DOFs are (x, y, z, θ, ω) where x,

y, and z represent the location of the robot’s base link in the workspace, θ represents the

rotation of the base link, and ω represents the hinged angle. So for this robot, n would

equal to 5 and k would equal to 2 as only the base rotation θ and the hinged angle ω are

not determined by the location of the robot’s end-effector (base link in this case) in the

workspace. So according to the previous discussion, the network would contain k = 2

additional layers to predict critical regions for θ and ω. The input tensor would have a total

of n + 1 = 6 channels and the label tensor would have a total of k + 1 = 3 channels.

Generating training data

To generate training data for each training environment E, we randomly sample a set of

100 configurations G, which would serve as goal states for the motion planning problems.

For each goal configuration gi ∈ G, we sample a set of 50 initial states I . We use an off-the-

shelf motion planner to compute motion plans for these initial and goal states and combined

solutions to generate critical regions for each goal state. We use these motion plans to
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compute critical regions for the given pair of environment E and the goal configuration

g using the Def. 6. We use OpeanRAVE robot simulator (Diankov, 2010) and OMPL’s

implementation of BiRRT (Kuffner and LaValle, 2000) to generate the training data.

To generate the input vector, we discretize the environment into nd bins. This also

implies that the degrees of freedom of the robot that are determined by the robot’s end-

effector’s location in the workspace are also discretized into nd bins. We discretize the rest

of the degrees of freedom that are not determined by the robot’s end-effector’s location into

p bins to generate input and label tensors as mentioned earlier. We augment the computed

tensors by rotating them by 90○, 180○, and 270○ to obtain more training samples. We

also omit an additional dimension from the tensors for navigational problems as we fix the

robot’s z-axis for these problems. The table below shows the training details for each robot.

We use 20 training environments to generate training data for navigational problems

(robots R, Car, and H) and 6 training environments for manipulation problems (Fetch

robot). More details on our empirical evaluation are presented in Sec. 4.4. The following

table shows input and label tensor shapes as well as the number of training trajectories used

for each robot.

Robot nd p
Input

Shape

Label

Shape
∣E∣ # Samples

R, Car 224 4 (224,224,4) (224,224,2) 20 8000

H 224 5 (224,224,3) (224,224,21) 20 8000

Fetch 64 10 (64,64,64,11) (64,64,64,9) 6 720

Training the network

The layer predicting critical regions for the end-effector’s locations in the workspace, (Ll),

uses the sigmoid activation as the task is similar to element-wise classification. The layers
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predicting critical regions for the rest of the degrees of freedom that are not determined

by the end-effector’s location (Li) use the softmax activation as the task corresponds to

multi-class classification. The loss function is defined as follows:

L = LL1 +
k

∑
i=0

LLi
.

where LL1 is weighted log loss and LLi
is softmax cross entropy loss for ith degree of

freedom not determined by end-effecot’s location in the workspace. We use ADAM Opti-

mizer (Kingma and Ba, 2014) with learning rate 10−4. We implement the UNet architecture

shown in Fig. 4.2 using Tensorflow (Abadi et al., 2016) and train it for 50,000 epochs.

The next section discusses our approach for using automatically predicted critical re-

gions for automatically generating abstract states and actions.

4.2 Inventing State and Action Abstractions

We begin to describe our approach for inventing state and action abstractions with an

example. Fig. 4.1(b) shows a set of critical regions for a given environment. Ideally, we

would like to predict these critical regions and generate state and action abstractions similar

to the one shown in Fig. 4.1(c). The state abstraction shown in Fig. 4.1(c), similar to a

Voronoi diagram, generates cells around each critical region such that the distance from

each point in a cell to its corresponding critical region is less than that from every other

critical region. We call this structure a region-based Voronoi diagram (RBVD). Each cell in

this region-based Voronoi diagram is considered an abstract state and transitions between

these Voronoi cells (abstract states) define abstract actions.

Let ρ be the set of critical regions for the given configuration space X . First, we

introduce the distance metrics dc and dr. Here, dc defines the distance between a low-

level configuration x ∈ X and a critical region r ∈ ρ such that dc(x, r) = minxi∈r d(x,xi)

and dr defines the distance between two critical regions r1, r2 such that the distance dr =
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minxi∈r1,xj∈r2 d(xi, xj) where d is the Euclidean distance. Now, we define the region-based

Voronoi diagram as follows:

Definition 7 Let ρ = {r1, ..., rk} be a set of critical regions for the configuration space X .

A region-based Voronoi diagram (RBVD) is a partition Ψ(ρ,X) = {ψ1, ..., ψm} of X such

that for every ψi ∈ Ψ there exists a critical regions r such that for all x ∈ ψi and for all

rj ≠ r, dc(x, r) ≤ dc(x, rj) and each ψi is strongly connected.

State abstraction We define abstract states as the Voronoi cells of an RBVD. Given an

RBVD Ψ, the labeling function ℓ ∶ Ψ→ S maps each cell in the RBVD to a unique abstract

state s ∈ S where ∣S∣ = ∣Ψ∣. We use this to define the state abstraction function α as follows:

Definition 8 LetR be the robot and X = Xfree∪Xobs be the configuration space of the robot

R with a set of critical regions ρ. Let Ψ(ρ,X) = {ψ1, ..ψk} be an RBVD for the robot R,

configuration space X , and the set of critical regions ρ and let gS = {s1, .., sk} be a set of

high-level, abstract states. We define abstraction function α ∶ Xfree → S such that α(x) = s

where x ∈ ψ and ℓ(ψ) = s.

We extend this notation to define membership in abstract states as follows: Given a

configuration space X = Xfree ∪ Xobs and its set of abstract states S as defined above, a

configuration x ∈ Xfree is said to be a member of an abstract state s ∈ S (denoted x ∈ s) iff

α(x) = s. We also extend the notion of strong connectivity to abstract states as follows: An

abstract state s ∈ S is strongly connected iff ℓ−1(s) is strongly connected. We now define

adjacency for Voronoi cells in a region-based Voronoi diagram as follows. Recall that C

denotes Euclidean connectivity for configurations.

Definition 9 Let ψi, ψj be Voronoi cells of an RBVD Ψ. Voronoi cells ψi and ψj are adja-

cent iff there exist configurations xi, xj such that xi ∈ ψi, xj ∈ ψj , C(xi, xj) = 1, and there

exists a trajectory π between xi and xj such that ∀t ∈ [0,1], π(t) ∈ ψi or π(t) ∈ ψj .

49



We extend the above definition to define the neighborhood for an abstract state. Two

abstract states si, sj ∈ S are neighbors iff ℓ−1(si) and ℓ−1(sj) are adjacent.

We define abstract actions as transitions between abstract states. Let S be the set of

abstract states. We define the set of abstract actionsA using S such that Ā = {aij ∣∀ (si, sj) ∈

S × S}.

We now use this formulation of RBVD and state abstraction to prove the soundness of

the generated abstractions.

Theorem 4.2.1 Let X = Xfree ∪ Xobs be a configuration space and ρ be a set of critical

regions for X . Let Ψ be an RBVD for the critical regions ρ and the configuration space X

and let S be the set of abstract states corresponding to Ψ with a mapping function ℓ. Let x0

and xg be the initial and goal configurations of a holonomic robot R. If every state s ∈ S

is strongly connected and there exists a sequence of abstract states P = ⟨sψ0 , ..., sψg⟩ such

that x0 ∈ sψ0 , xg ∈ sψg , and all consecutive states sψi
, sψi+1

∈ P are neighbors, then there

exists a motion plan for R that reaches xg from x0 with a trajectory π such that π(0) = x0,

π(1) = xg, and ∀xi ∈ π,xi ∈ sψk
such that sψk

∈ P .

Proof 4.2.1 For two consecutive abstract states si, si+1 ∈ P , let ψi, ψi+1 ∈ Ψ be Voronoi

cells such that ℓ−1(si) = ψi and ℓ−1(si+1) = ψi+1. If si and si+1 are neighbors, then ac-

cording to Def. 9 there exists a pair of low-level configurations xi, xi+1 ∈ Xfree such that

there exists a collision free trajectory between xi to xi+1. Def. 7 defines every Voronoi

cell as a strongly connected set. Thus, for every low-level configuration xj ∈ si, there

exists a collision-free trajectory between xj and xi and for every low-level configuration

xk ∈ si+1, there exists a collision-free trajectory between xk and xi+1. For a holonomic

robot R these trajectories should be realizable as all degrees of freedom of R can be con-

trolled independently. This implies that there exists a motion plan for R between each pair

of configurations in sψi
and sψi+1

.
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Algorithm 2: Hierarchical Abstraction-guided Robot Planner (HARP)
Input: Configuration space X , a region predictor Φ, an initial configuration

x0 ∈ X , goal configuration xg ∈ X , a custom heuristic h, low-level
sampling-based motion planner MP

Output: A motion plan π
1 ρ ← predict critical regions(Φ, X , x0, xg)
2 S,A ← generate state action abstractions(ρ, X )
3 s0, sg ← get HL state(S , ρ, x0), get HL state(S , ρ, xg)
4 P ← multi-source bi-directional beam search(S , A, s0, sg)
5 π ← refine path(P , MP)
6 h← update heuristic(π, S)

7 return π

Theorem 4.2.1 proves that the computed abstractions would be sound as well as satisfy

the downward refinement property for holonomic robots. The proof does not hold for non-

holonomic robots as the low-level trajectories may not be realizable given their motion

constraints. However, the algorithm developed below is probabilistically complete for all

robots and performed well for non-holonomic robots in our empirical evaluation.

4.3 Hierarchical Abstraction-Guided Robot Planner (HARP)

In this section, we describe our approach – Hierarchical Abstraction-guided Robot

Planner (HARP) – for generating abstract states and actions and using them to efficiently

perform hierarchical planning. A naı́ve approach would be to generate a complete RBVD

and then extract abstract states and actions from it. This would require iterating over all

configurations in the configuration space and computing a large number of motion plans to

identify executable abstract actions. This is expensive (and practically infeasible) for con-

tinuous low-level configuration spaces. Instead, we use the RBVD as an implicit concept.

We generate abstractions on-the-fly by computing membership of low-level configurations

in abstract states only when needed.

Vanilla high-level planning using the set of all abstract actions A would be inefficient
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as it may yield plans for which low-level refinement may not exist as we do not know the

applicability of these abstract actions at the low level. To overcome this challenge, we de-

velop a hierarchical multi-source bi-directional planning algorithm that performs high-level

planning from multiple abstract states. Generally, a multi-source approach would not work

for robot planning because it is not clear what the intermediate states are. HARP, on the

other hand, uses critical regions as abstract intermediate states and utilizes a multi-source

search. This utilizes learned information better than single source and single direction

beam search. Our high-level planner generates a set of candidate high-level plans from the

abstract initial state to the abstract goal state using a custom heuristic (which is continually

updated). These paths are then simultaneously refined by a low-level planner to compute a

trajectory from the initial low-level configuration to the goal configuration while updating

the heuristic function.

Algorithm 2 describes our approach for generating and using hierarchical abstractions.

Given the configuration space X and initial and goal configurations (x0 and xg) of the

robot R, HARP uses a learned DNN Φ to generate a set of critical regions ρ (line 1).

The remainder of Alg. 2 can be broken down into three important steps: 1) computing a

set of candidate high-level plans, 2) refining candidate high-level plans into a low-level

trajectory, and 3) updating the heuristic for abstract states. We now explain each of these

steps in detail.

Computing high-level plans To compute high-level plans that reach the goal configura-

tion xg from the initial configuration x0, first we determine abstract initial and goal states

s0 and sg corresponding to the initial and goal configurations x0 and xg (line 3). To do

this efficiently, we store sampled points from each critical region in a K-D tree and query

it to determine the abstract state for the given low-level configurations without explicitly

constructing the complete RBVD. This allows us to dynamically and efficiently determine
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Algorithm 3: Multi-source Bi-directional beam search
Input: Set of states S , set of actions A, initial state s0, goal state sg, distance

function h′, beam width w, number of high-level plans N
Output: A set of N paths from s0 to sg

1 fringe = PriorityQueue()
2 fringe.add(s0), fringe.add(sg)
3 S̄ ← sample states(S)
4 solutions = Set()
5 foreach s ∈ S̄ do
6 fringe.add(0,(s,None,Set()))
7 while N > 0 and fringe is not empty do
8 working fringe ← select top w nodes from the fringe
9 empty fringe(fringe)

10 while working fringe is not empty do
11 current, path, visited ← working fringe.pop()
12 if current = sg then
13 add path to solutions
14 N ← N − 1

15 else
16 path.add(current)
17 visited.add(current)
18 foreach node ∈ current.successors do
19 if node ∉ visited then
20 p← h′(current,node) +min{h′(node, s0), h′(node, sg)}
21 fringe.add(p, (current, path, visited))

high-level states for low-level configurations.

Once we determine initial and goal states s0 and sg, we use our high-level planner

to compute a set of candidate high-level plans going from s0 to sg (line 4). To compute

these candidate high-level plans, we develop a multi-source bi-directional variant of beam

search (Lowerre, 1976) that yields multiple high-level candidate plans. We call this multi-

source bi-directional beam search. Alg. 3 presents the pseudocode for multi-source bi-

directional beam search.

Intuitively, this algorithm works as follows: we use a priority queue to maintain a fringe

to keep track of the current state of the search. We initialize this fringe with multiple
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randomly sampled abstract states (line 5) to allow the beam search to start from multiple

sources. We select and expand these nodes in a specific order (line 11) to compute high-

level plans that reach from the initial state to the goal state.

Formally, the nodes in the fringe are expanded as follows: Let n be a node in the fringe.

We select the node to expand using f(n) = g(n) + h(n), where g(n) is the cost of the path

heading to n (unit cost for each action) and h(n) is a custom heuristic that is defined as

follows. Let m be the parent of n and let sn and sm be the abstract states corresponding to

the nodes n and m. The heuristic h(n) is computed as:

h(n) = h′(sm, sn) +min{h′(sn, si), h′(sn, sg)}.

Here, h′(s1, s2) = ϵ12dr(r1, r2) defines the estimated distance between abstract high-level

states s1 and s2 with corresponding critical regions r1 and r2 respectively. si is the initial

abstract state and sg is the goal abstract state.

ϵij ∈ (0,1] is a constant that accounts for imprecise abstract actions. Alg. 2 dynamically

changes it to update the heuristic function (HARP line 6) and making it more accurate. Ini-

tially, ϵij is set to 1 for all i and j. Once a low-level trajectory π is computed (explained

later), we compute the abstraction π̄ of this trajectory. For each consecutive pair of abstract

states ⟨si, sj⟩ in π̄, we decrease the value of ϵij by ϵij/2 . This allows HARP to use experi-

ence from previously computed trajectories to prioritize abstract actions that have low-level

refinements to compute accurate high-level plans.

After an abstract state sj is selected from the fringe (Alg. 3, line 8), its successors are

created by applying abstract actions on it and adding these successors to the fringe (Alg. 3

lines 18-21). This process continues until N high-level plans are found.

Once we generate a set of candidate high-level plans from multi-source bi-directional

beam search, we use a low-level planner to refine these plans into a low-level collision-free

trajectory from initial low-level configuration x0 to goal configuration xg (line 5).
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Refining high-level plans While any probabilistically complete motion planner can be

used to refine the computed high-level plans into a low-level trajectory between given two

configurations, we use Learn and Link Planner (LLP) (Molina et al., 2020b) as a low-

level planner in HARP (MP in Alg. 2) as it allows us to easily use the abstract states and

their critical regions to efficiently compute motion plans. LLP is a sampling-based motion

planner that initializes exploration trees rooted at N samples from the configuration space

and extends these exploration trees until they connect and form a single tree. Once a single

tree is formed, the planner uses Dijkstra’s Algorithm (Dijkstra, 1959) to compute a path

from the initial state to the goal state.

To use LLP to refine a set of candidate high-level plans simultaneously, we first select

a subset of critical regions ρ̄ ⊆ ρ that includes all critical regions corresponding to all high-

level states in candidate plans. We use this subset of critical regions ρ̄ to provide initial

samples to initialize exploration trees of LLP. In this work, we generate M samples from

the set of critical regions ρ̄ and generate the rest of the N −M samples using uniform

random sampling. Similarly, to expand these exploration trees, we generate a fixed number

of samples from the set critical regions ρ and then continue with uniform sampling.

We use these characteristics of our algorithm to show that our approach is probabilistic

complete.

Theorem 4.3.1 If the low-level motion planner (MP in Alg. 2) is probabilistically com-

plete, then HARP is probabilistically complete.

Proof 4.3.1 (Sketch) While refining high-level plans to a low-level motion plan (line 5 in

Alg. 2), HARP uses a fixed number of samples from the critical regions along the high-

level plans to initialize a low-level motion planner. This does not reduce the set of support

(regions with a non-zero probability of being sampled) of the sampling distribution being

used by the motion planner.
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(A) (B) (C) (D)

(E) (F) (G)

(I) (J)

Figure 4.3: Test environments for our approach. Dimensions of environments (A)-(D) are
5m × 5m and dimensions of environments (E)-(G) are 25m × 25m. (A)-(G) are used for
navigational problems while (H) and (I) are used for manipulation problems.

4.4 Empirical Evaluation

We extensively evaluate our approach in twenty different scenarios with four differ-

ent robots. All experiments were conducted on a system running Ubuntu 18.04 with

8-core i9 processor, 32 GB RAM, and an Nvidia 2060 GPU (our approach uses only a

single core) OpenRAVE robot simulator (Diankov, 2010). We compare our approach

with state-of-the-art motion planners such as RRT (LaValle, 1998), PRM (Kavraki et al.,

1996), and BiRRT (Kuffner and LaValle, 2000). As LLP is implemented using Python, we

use the Python implementation of the baseline algorithms available at https://ompl.

kavrakilab.org/ for comparison. Our training data, python implementation, trained

models, and results are available at https://aair-lab.github.io/harp.html.
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3-DOF rectangular robot (R) For the first set of experiments, the objective is to solve

motion planning problems for a 3-DOF rectangular robot. The robot can move along the x

and y axes, and it can rotate around the z axis.

3-DOF non-holonomic rectangular car robot (Car) For the second set of experiments,

we evaluated our approach with a rectangular non-holonomic robot similar to a simple car.

Controls available to operate the robot were linear velocity v ∈ [−0.2,0.2] and the steering

angle θ ∈ [−π4 , π4 ] while three degrees of freedom (location along x-axis, location along

y-xis, and rotation around z-axis) were required to represent the robot’s transformation.

4-DOF hinged robot (H) For the third set of experiments, we used a robot with a hinge

joint to evaluate our approach. The robot’s 4 DOFs are its location along x and y axes,

rotation along z-axis (θ), and the hinge joint (ω) with the range [−π2 , π2 ].

8-DOF fetch robot For the last set of experiments, we used our approach with a mobile

manipulator named Fetch (Wise et al., 2016) to perform arm manipulation. The goal of

this experiment is to evaluate the scalability of our approach to robots with high degrees of

freedom.

Evaluating the approach Figures 4.3 show the test environments (unseen by the model

while training) for our system. Environments shown in Fig. 4.3 are inspired by the indoor

office and household environments. Our training data consisted of 20 environments similar

to the ones shown in Fig. 4.3(A)-(D) with dimensions 5m×5m. We investigate the scalabil-

ity of our approach by conducting experiments in environments shown in Fig. 4.3(E)-(G)

with dimensions 25m×25m (much larger than training environments). To handle such large

environments without making any changes to the DNN, we use the standard approach of

sliding windows with stride equal to window-width (Tang et al., 2020; Birgui Sekou et al.,
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2018; Lu et al., 2015; Hou et al., 2016). This crops the larger environment into pieces of

the size of the training environments. Individual predictions are then combined to generate

a set of critical regions for arbitrarily large environments. We also evaluate the applicability

of our approach to non-holonomic robots in environments shown in Fig. 4.3(A)-(D).

4.4.1 Analysis of the Results

The main objective of our empirical evaluation is to show whether 1) state and action

abstractions can be derived automatically and 2) whether auto-generated state and action

abstractions can be efficiently used in a hierarchical planning algorithm. Additionally, we

also investigate 3) does dynamically updating the heuristic function (line 6 in Alg. 2)

improve Alg. 2’s efficiency?

State and action abstractions Our approach learns critical regions for each DOF of the

robot. Fig. 4.4 and Fig. 4.5 show critical regions predicted by our learned model for

the hinged robot H . We can see that our model was able to identify critical regions in

the environment such as doorways and narrow hallways. Fig. 4.4(a) and 4.5(a) show the

test environments; Fig. 4.4(b) and Fig. 4.5(b) show the predicted critical regions for the x

and y location of the base of the robot and Fig. 4.4(c) and Fig. 4.5(c) critical regions for

orientation of the robot’s base link (captured by DOF θ). The blue regions in the figure

represent the horizontal orientation of the robot and the green regions represent the vertical

orientation of the robot. Fig. 4.5(d) shows critical regions for the hinge joint ω for the robot

H . Here, blue regions show that the network predicted the hinge joint to be flat (close to 0○)

and green regions represent configurations where the model predicted ”L” configurations

of the robot (ω close to 90○ or 270○). Fig. 4.4 shows that our approach was able to predict

the correct orientation of the robot accurately most of the time.
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(a) (b) (c) (d)

Figure 4.4: Predicted critical regions and computed state abstractions for 3-DOF rectan-
gular (R) and Car robots. (a) Input to the environment. (b) Critical regions for the location
of the robot’s base link in the workspace. (c) Critical regions for the rotation of the robot’s
base link of the robot. Blue regions are locations where the network predicted the robot
to be horizontal and green regions are the regions where the network predicted the robot
to be vertical. (d) 2D projections of state abstraction generated by our approach. State
abstractions are strictly for visualization as our approach does not require generating them.
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(a) (b) (c) (d) (e)

Figure 4.5: Predicted critical regions and generated state abstractions for a 4-DOF hinged
robot. (a) Input to the environment. (b) Critical regions for the location of the robot’s
base link in the workspace. (c) Critical regions for the orientation of the robot’s base link.
Blue regions are locations where the network predicted the robot to be horizontal and green
regions are the regions where the network predicted the robot to be vertical. (d) Critical
regions for the hinge joint. Blue regions show that the network predicted it to be closer
to 180○ and green regions show that the network predicted the hinge angle close to 90○ or
270○. (e) 2D projections of state abstraction generated by our approach. State abstractions
are strictly for visualization as our approach does not require to generate this explicitly.
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(a) (b)

Figure 4.6: Predicted critical regions for an 8-DOF Fetch robot. The green region in (a)
shows the goal location for the end effector. (b) shows the critical regions generated by the
learned model. Although the network predicts critical regions for all the joints, only critical
regions or end-effector’s location in the workspace are shown.

Our approach was able to scale to robots with a high number of degrees of freedom.

Fig. 4.6(a) shows one of the test environments used for these experiments and Fig. 4.6(b)

shows the predicted critical regions. This shows that our model was able to learn critical

regions in the environment that can be used to generate efficient abstractions.

Now we answer the second question on whether using abstractions to compute motion

plans helps improve the planner’s efficiency by qualitatively comparing our approach with

a few existing sampling-based motion planners.

Efficiency of planning with learned abstractions We compare our approach against

widely used SBMPs such as RRT (LaValle, 1998), PRM (Kavraki et al., 1996), and BiRRT

(Kuffner and LaValle, 2000).

Fig. 4.7 shows the comparison of our approach with other sampling-based motion plan-

ners. The x-axis shows the time limit in seconds and the y-axis shows the percentage of
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Figure 4.7: Each plot shows the fraction of 100 independently generated motion planning
tasks solved (y-axis) in the given time (x-axis) for all the test environments and robots.
The title of each subplot represents the robot and the environment. E.g., “R - A” stands for
rectangular robot in environment A (Fig. 4.3(A)) and “H - A” stands for hinged robot in
environment A.

motion planning problems solved in that time limit. For each time limit on the x-axis, we

randomly generate 100 new motion planning problems to thoroughly test our approach and

reduce statistical inconsistencies. Fig. 4.7 shows that our approach significantly outper-

forms all of the existing sampling-based motion planners. Specifically for environments C,

D, and E, uniform sampling-based approaches were not able to solve a single problem in

a time threshold of 600s.

Our approach also outperforms the learning-based planner LLP (Molina et al., 2020b)

(Fig. 4.7), which uses learned critical regions but does not use state and action abstractions

and does not perform hierarchical planning. This illustrates the value of learning abstrac-

tions and using them efficiently for hierarchical planning.

Similarly, we also evaluate our approach against TogglePRM (Denny and Amato, 2013).
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(a) (b)

Figure 4.8: (a) Solving 20 randomly generated problems repeatedly 110 times. The x-
axis shows the problem iteration and the y-axis shows the average time over 20 problem
instances. (b) Time taken to solve 100 randomly generated problem instances. The X-axis
shows the problem number and the y-axis shows the taken to solve each problem.

TogglePRM is written in C++ and accepts only discrete SE2 configuration space for a sim-

ple dot robot. We created discrete variants of environments shown in Fig. 4.3(A) and

4.3(B) with a total of 50176 states and compared the total number of nodes sampled. For

100 random trials, on an average, our approach generated 631 ± 278 and 496 ± 175 states

compared to TogglePRM which generated 4234 ± 532 and 19234 ± 4345 states for discrete

variants of the environments shown in Fig. 4.3(A) and 4.3(B) respectively. Our approach

was able to outperform TogglePRM since these environments do not have α-ϵ-separable

passages (Denny and Amato, 2013).

Effectiveness of dynamically updating the heuristic We carried out two sets of experi-

ments. In the first set of experiments, we generated 20 random motion planning problems

and solved each problem repeatedly for 10 times while updating the heuristic function. We

maintained separate copies of high-level heuristic functions for each problem. Fig. 4.8(a)

shows the results for this set of experiments in the environment E (Fig. 4.3(E)) with the

4-DOF hinged robot. The x-axis shows the planning iteration and the y-axis shows the av-

erage time over randomly generated 20 problem instances. We can see how planning time

reduces drastically once costs for abstract actions are updated.
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In the second set of experiments, we generated 100 random pairs of initial and goal

states and computed motion plans for each of them. This time, we maintained a single

heuristic function across all problems and updated it after each motion planning query.

Fig. 4.8(b) shows the result of the experiment in the environment E (Fig. 4.3(E)) with

the 4-DOF hinged robot H . The x-axis shows the problem number and the y-axis shows

the time taken by our approach to compute a solution. The red line in the plot shows

the moving average of planning time. Fig. 4.8(b) shwows that dynamically updating the

heuristic function for high-level planning helps to increase the efficiency of HARP and

decrease motion planning times.

Empirical evaluation using these experiments validates our hypothesis that learning

abstractions and effectively using them improves motion planning efficiency.

Now, we discuss closely related approaches.

4.5 Related Work

Much of the prior work on the topic is focused on decomposing a motion planning

problem into smaller subproblems to reduce its complexity. Several approaches have been

proposed that use state decomposition to reduce the complexity of a motion planning prob-

lem. Vertical cell decomposition (Chazelle, 1985) partitions the state space into a collection

of vertical cells and computes a roadmap that passes through all of these cells. Brock and

Kavraki (2001) propose a hierarchical method that uses wavefront expansion to compute

the decomposition of the state space. While these approaches establish the foundation of

decomposition-based motion planning, partitions generated through such approaches are

arbitrary and do not provide any guarantees of completeness. Şimşek et al. (2005) use

graph cut over local transition graph to identify interface points between highly dense re-

gions. They use these interface points to learn options that take the agent from one region

to another region. One of the major distinctions between theirs and our approach is that
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our approach operates with continuous state and action spaces, but their approach requires

discrete actions. Their approach also requires collecting local experience for every new

environment while our approach learns the model that identifies critical regions once and

uses the same model for every new environment. Additionally, their approach is dual to our

approach as it aims to identify interface points between regions while our approach aims to

directly identify these regions in the environment using a pre-trained network and does not

need to identify interface points.

Zhang et al. (2018) use rejection sampling to reject unrelated samples to speed up

SBMPs.They use reinforcement learning to learn a policy that decides to accept or reject

a new sample to expand the search tree. While their approach reduces the search space to

compute the path, it still needs to process samples generated from regions that are irrele-

vant to the current problem. On the other hand, our hierarchical approach refines abstract

plans into low-level motion plans which reduces the number of unnecessary samples. Tog-

glePRM (Denny and Amato, 2013) maintains roadmaps for free space and obstacle space

in the configuration space to estimate the narrow passages and sample points from these

narrow passages. This approach works well for environments with α-ϵ-separable passages,

even though it does not compute high-level abstractions.

Multiple approaches have used statistical learning to boost motion planning. Wang

et al. (2021) present a comprehensive survey of methods that utilize a variety of learning

methods to improve the efficiency of SBMPs. Multiple approaches discussed by Wang

et al. (2021) use end-to-end deep learning to learn low-level reactive policies. End-to-end

approaches are attractive given if they succeed, they can compute solutions much faster than

traditional approaches, but it is not exactly clear under which conditions these algorithms

would succeed. Formally, these end-to-end deep learning-based approaches lack the guar-

antees of completeness and soundness that our approach provides. Wang et al. (2021) also

discuss approaches that use learning to aid sampling-based motion planning. We discuss
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a few of these approaches that are relevant to this work. Kurutach et al. (2018) uses Info-

GAN (Chen et al., 2016) to learn state-space partitioning for simple SE2 robots. While their

empirical evaluation shows promising results, similar to previous decomposition-based ap-

proaches, they do not provide any proof of completeness. It is also not clear how their

approach would scale to configuration spaces that had more than two dimensions. On the

other hand, our approach provides formal guarantees of completeness and soundness (for

holonomic robots) and scales to high-dimensional spaces.

Ichter et al. (2018) and Kumar et al. (2019) use a conditional variational autoencoder

(CVAE) (Sohn et al., 2015) to learn sampling distributions for the motion planning prob-

lems. Ichter et al. (2020) use betweenness centrality (Şimşek et al., 2005) to learn critical-

ity score for low-level configurations. They uniformly sample a set of configurations from

the environment and use configurations with higher criticality from this set to generate a

roadmap. Their results show significant improvement over vanilla PRM but it is unclear

how their approach would perform if the environment had regions that are important to

compute motion plans yet difficult to sample under uniform sampling. On the other hand,

our approach would identify such important regions to overcome these challenges. While

these approaches (Ichter et al., 2018; Kumar et al., 2019; Ichter et al., 2020) focus on bias-

ing the sampling distribution towards narrow areas in the environment, our approach aims

to build more general high-level abstractions for the configuration space.

Molina et al. (2020b) use an image-based approach to learn and infer the sampling dis-

tribution using demonstrations. They use top-view images of the environment with critical

regions highlighted in the image to learn to identify critical regions. While they develop a

method for predicting critical regions and using them with a low-level motion planner, they

do not use these critical regions for learning abstractions and performing hierarchical plan-

ning. Our empirical results (Sec. 4.4) show that our hierarchical approach is much more

effective than their non-hierarchical approach and yields significantly better performance.
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Additionally, their approach is also restricted to navigational problems and does not scale

to configuration spaces with more than two degrees of freedom (DOFs).

Deep learning has also been used for learning heuristics for high-level symbolic plan-

ning. Shen et al. (2020) use hypergraph networks for learning heuristics for symbolic

planning in the form of delete-relaxation representation of the actual planning problems.

Karia and Srivastava (2021) learn generalizable heuristics for high-level planning without

explicit action representations in symbolic logic. In contrast, we focus on learning criti-

cal regions and creating high-level abstractions along with algorithms that work with these

learned high-level abstractions.

Liu et al. (2020) use semantic information to bias the sampling distribution for nav-

igational problems in partially known environments. Compared to it, our approach is not

navigational problems and does not require semantic information explicitly but aims to

learn such a notion in the form of critical regions. SPARK and FLAME (Chamzas et al.,

2020) use state decomposition to store past experience and use it when queried for similar

state decompositions. While their approach efficiently uses the experience from previous

iterations, it requires carefully crafted state decompositions to cover a large number of sce-

narios, whereas our approach generates state abstraction automatically using the predicted

critical regions.

4.6 Conclusion

In this chapter, we presented a probabilistically complete approach, HARP, that uses

deep learning to identify abstractions for the input configuration space. It invents state and

action abstractions in a bottom-up fashion and uses them to perform efficient hierarchical

robot planning. We develop a novel multi-source bi-directional planning algorithm that

uses learned state and action abstractions along with a custom dynamically maintained

cost function to generate candidate high-level plans. A low-level motion planner refines
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these high-level plans into a trajectory that achieves the goal configuration from the initial

configuration.

Our approach provides a way to generate sound abstractions that satisfy the downward

refinement property for holonomic robots. Our empirical evaluation on a large variety

of problem settings shows that our approach can significantly outperform state-of-the-art

sampling and learning-based motion planners. Through our empirical evaluation, we show

that our approach is robust and can be scaled to large environments and to robots that

have high degrees of freedom. Our work presents a foundation for learning high-level,

abstractions from low-level trajectories. Currently, our approach works for deterministic

robot planning problems.
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Chapter 5

ZERO-SHOT OPTION INVENTION FOR STOCHASTIC MOTION PLANNING

PROBLEMS

Figure 5.1: Our overall approach for automatically inventing high-level options. (a) shows
the input to our system. (b) shows the zero-shot abstraction process along with the raster
scan of the input environment (left), critical regions predicted by the learned network (cen-
ter), and the zero-shot state abstraction (right). The top image in (c) shows a subset of
automatically invented interface options and the bottom image shows a subset of automat-
ically invented centroid options. Lastly, these learned options are used for hierarchical
planning and learning. The red arrows in (d) show an example of a high-level plan over
centroid options given an initial configuration (orange area) and a goal configuration (green
area). Policies for these options are learned using deep reinforcement learning and the auto-
generated dense pseudo-reward function.

Motion planning assumes perfect controllers that can control a robot ideally without

any stochasticity. However, in the real world, controllers are often stochastic and noisy.

Therefore, it is infeasible to accurately follow a single motion plan and instead, the robot

requires a motion policy that takes the robot to the goal configuration while handling the

stochasticity. In this chapter, we present our approach to automatically inventing abstrac-

tions for computing such motion policies.

Fig. 5.1 shows our overall approach. To generate state abstractions, our approach uses

methods developed in Ch. 4 off-the-shelf and uses these state abstractions for autonomously

inventing high-level options. The next sections in the chapter outline our approach for
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Algorithm 4: OptionInventor
Input: robot R, training environments Etrain, test environment Etest
Output: set of option O, cost function C

1 Θ ← get critical region predicter(R);
2 if Θ is not trained then
3 train Θ using Etrain

4 Φ ← predict critical regions(Etest,Θ);
5 Ψ, S , V ← construct RBVD(Etest,Φ);
6 O, C ← construct options(Ψ,S ,V);
7 foreach o ∈ O do
8 mpo ← compute motion plan(o);
9 Go ← compute option guide(o,mpo);

10 return O, C

automatically inventing high-level options (Sec. 5.1) and a novel approach for combining

symbolic planning with hierarchical RL (Sec. 5.2) along with strong theoretical guarantees.

Sec. 5.3 provides a thorough empirical evaluation of our approach. Lastly, we discuss some

closely related approaches (Sec. 5.4).

5.1 Zero-Shot Option Inventors

Our overall approach for solving long-horizon, stochastic robot planning problems is

to zero-shot invent a set of options for the given problem (Alg. 4) and then to carry out

hierarchical planning using these options (Alg. 5). In this section, we outline our approach

for automatically identifying options (OptionInventor, Alg. 4) for a given environment.

Given a stochastic motion planning problem (Def. 1), Alg. 4 creates a zero-shot state

abstraction (lines 1-5) using the methods presented in Sec. 4.2. Fig. 5.1(a) and (b) show this

process in an example environment. Once abstract states are constructed, we define abstract

actions as options (line 6) with their initiation set in one abstract state and the termination

set in a different abstract state (discussed in Sec. 5.1.1). These options (action abstractions)

are independent of problem instances, i.e., they are constructed once per environment and

robot and reused for different problems (pairs of initial and goal configurations). However,
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we still need to learn policies for executing such options. As defined, option termination

sets turn out to be insufficient for efficiency: they result in a sparse-reward setting, which

makes it difficult to scale RL algorithms for policy learning. To address this limitation,

lines 7-9 also create in zero-shot fashion (without collecting additional experience from the

environment), an option guide: a dense pseudo-reward function for the invented options

(discussed in Sec. 5.1.2).

5.1.1 Zero-Shot Option Endpoints

Given a set of zero-shot abstract states S created using the predicted critical regions

for a new environment (Def. 7), a neighborhood function V , and an abstraction function α,

we define two types of options: (1) centroid options that take the robot from the centroid

of one critical region to another, and (2) interface options that take the robot across an

abstract state, i.e., from the boundary between si and sj to the boundary between si and

sk. Both forms of options can be composed to solve long-horizon problems (this process is

discussed in the next section).

First, we discuss centroid options. Intuitively, these options define abstract actions that

transition between a pair of critical regions. Formally, they are defined as follows:

Definition 10 Let si ∈ S be an abstract state in the RBVD Ψ with the corresponding critical

region ϕi ∈ Φ. Let d be the Euclidean distance measure and let t define a threshold distance.

Let ci be the centroid of the critical region ri. A centroid region of the critical region ri

with the centroid ci is defined as a set of configurations: {x∣x ∈ si ∧ d(x, ci) < t}.

We use this definition to define the endpoints for the centroid options as follows:

Definition 11 Let si, sj ∈ S be neighboring abstract states such that V(si, sj) = 1 in an

RBVD Ψ constructed using the set of critical regions Φ. Let ϕi, ϕj ∈ Φ be the critical

regions for the abstract states si and sj and let ci and cj be their centroids regions. The
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endpoints for a centroid option are defined as a pair ⟨Iij, βij⟩ such that Iij = ci and

βij = cj .

Interface options serve as dual to centroid options. Rather than defining high-level

actions that move from the “center” of one abstract state to the “center” of another, they

define high-level actions for going across an abstract state, from one boundary to another.

To formally define interface options, we first need to define “interface” regions between a

pair of neighboring abstract states:

Definition 12 Let si, sj ∈ S be a pair of neighboring states such that V(si, sj) = 1 and ϕi

and ϕj be their corresponding critical regions. Let dc(x,ϕ) define the minimum Euclidean

distance between configuration x ∈ X and some point in a region ϕ ⊂ X . Let p be a

configuration such that dc(p, ϕi) = dc(p, ϕj) that is, p is on the border of the Voronoi cells

that define si and sj . Given the Euclidean distance measure d and a threshold distance

t, an interface region for a pair of neighboring states (si, sj) is defined as a set {x∣(x ∈

si ∨ x ∈ sj) ∧ d(x, p) < t}.

We use this definition of interface regions to define endpoints for the interface options as

follows:

Definition 13 Let si, sj, sk ∈ S be abstract states such that V(si, sj) = 1 and V(sj, sk) = 1.

Let ϕ̂ij and ϕ̂jk be the interface regions for pairs of high-level states (si, sj) and (sj, sk).

The endpoints for an interface option are defined as a pair ⟨Ioijk , βoijk⟩ such that Ioijk = ϕ̂ij

and βoijk = ϕ̂jk.

Recall that the RBVD Ψ induces a neighborhood function V ∶ S × S → {0,1}. We can

now utilize these definitions to define, in zero-shot fashion, the complete set of centroid

options and interface options for a new environment. The set of centroid options is defined
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as Oc = {oij ∣∀si, sj ∈ S, V(si, sj) = 1 ∧ Iij = ci ∧ βij = cj}, where ci represents the centroid

of the critical region ri for the abstract state si.

Similarly, the set of interface options is defined as Oi = {oijk∣∀si, sj, sk ∈ S, V(si, sj) =

1 ∧ V(sj, sk) = 1 ∧ Iij = ϕ̂ij ∧ βij = ϕ̂jk}, where ϕ̂ij represents an interface region for a

pair of neighboring abstract states si and sj . Fig. 5.1(c) shows an example of automatically

invented centroid and interface options for the environment shown in Fig. 5.1(a). These op-

tions can be used for hierarchical planning and learning as shown in Fig. 5.1(d) (explained

in Sec. 5.2).

5.1.2 Zero-Shot Option Guides

Given an option defined using the methods discussed above, we define an option guide

as a dense pseudo-reward function. We will use the option guide to improve sample effi-

ciency while learning policy for an option in sparse reward settings.

Intuitively, option guides are defined using conceptual envelopes around determinis-

tic motion plans that can be computed relatively easily using existing methods. Formally,

we define an δ-clear motion plan as a motion plan in which every configuration has an

δ-neighborhood that is collision-free. With a slight abuse of the notation, we use the ab-

straction function with a set of low-level configurations rather than a single configuration

such that for a set A, α(A) = {α(x)∣∀x ∈ A}.

Let oi be an option with endpoints ⟨Ii, βi⟩, and centroids cIi and cβi for Ii and βi

respectively.

Given a threshold distance t, an arbitrary neighborhood radius ϵ, and a Euclidean dis-

tance measure d, an ϵ-clear motion plan G for an option o is defined as G = ⟨p0, . . . , pn⟩ such

that p0 = cI , pn = cβ , every point in pi ∈ G has an ϵ-clear neighborhood, and for every pair

of points pi, pi+1 ∈ G, d(pi, pi+1) < t(< 2ϵ). In practice, we found that any sampling-based

motion planner with ϵ-inflated obstacles can be used to construct such motion plans.
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We define the option guide for oi as a dense pseudo-reward defined using Gi as follows.

Intuitively, the option guide is a dense pseudo-reward function that provides the robot with

a large positive reward when it reaches the termination set of the goal, a penalty for drifting

to a different abstract state, and a smoothened reward for making progress on the option

guide. Formally, this is defined as follows:

Definition 14 Let oi be an option with endpoints ⟨Ii, βi⟩ and let Gi = ⟨p1, . . . , pm⟩ be an

ϵ-clear motion plan for a given ϵ. Given a configuration x ∈ X , let n(x) = pi define the

closest point on Gi. The option guide Ri(x) is defined as:

Ri(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

rt if x ∈ βi
if α(x) ∈

rp S ∖ {α(Ii), α(βi)}
−(d(x,n(x))

+d(n(x), pm))
otherwise.

The next section uses these concepts to present our approach to solving a stochastic

motion planning problem.

5.2 Hierarchical Stochastic Motion Planning Using Zero-Shot Options

The SHARP algorithm (Alg. 5) presents our overall approach for using the zero-shot

options defined above for hierarchical motion planning under uncertainty. It takes as input

an SMP problem P = ⟨X ,U , xi, xg⟩, a simulator, and an occupancy matrix of the environ-

ment, and produces a partial policy Π ∶ X → U that maps each reachable robot configuration

to a control action. The algorithm starts by invoking the OptionInventor in line 2 to con-

struct zero-shot state and action abstractions (in the form of options) if they have not been

constructed for the given robot R and the environment Etest pair (Sec. 10).

Lines 4-19 use these options as high-level actions for computing high-level plans.

Line 5 uses an incremental plan generator that takes the set of invented options along with

the abstract initial and goal states as input and generates a high-level plan using A∗ search.
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Algorithm 5: Stochastic Hierarchical Abstraction-guided Robot Planner
(SHARP)

Input: Training environments Etrain, test environment Etest, initial and goal
configurations xi and xg

Output: A policy Π composed of options
1 if abstraction is not constructed then
2 O, C ← OptionInventor(R,Etrain,Etest);
3 si, sg ← get abstract states(xi,xg);
4 while not refined do
5 p← get new high level plan(si,sg,O,C);
6 if p = ∅ then
7 break;
8 Π = empty list;
9 π0 ← lear ll policy(xi,Io1);

10 Π.add(π0);
11 foreach o ∈ p do
12 if πo does not exist then
13 if Go = ∅ then
14 flag o infeasible;
15 break;
16 πo ← learn ll policy(Io,βo,Go);
17 adjust the option cost Co;
18 Π.add(πo);
19 refined ← True;
20 if refined then
21 πn+1 ← learn ll policy(βon ,xg);
22 Π.add(πn+1);
23 return Π;
24 else
25 return failure;

This module considers the initiation and termination sets of the invented options as precon-

ditions and effects. It uses the Euclidean distance between the termination set of the option

and the goal configuration as the heuristic and the Euclidean distance between the initiation

and termination sets as an initial approximation to the cost of the option.

Once a plan in the form of a sequence of options is obtained in line 5, SHARP starts

refining each option in the plan by computing option policies. However, before computing

the policy for the first option in the plan, it generates an additional option o0 such that
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Io0 = xi and βo0 = Io1 and learns its policy (line 9). If a policy exists for the option from

the previous invocation of the algorithm, then our approach uses the same policy. Before

computing a policy for an option, Alg. 5 checks for its option guide. If an option guide does

not exist, the option is marked as infeasible and a new high-level plan is computed from

the initial abstract state (line 14). Once an option guide is computed for an option, line 16

uses an off-the-shelf low-level policy learner to compute a policy for it. After computing

(or reusing) policies for all the options in the plan, line 21 generates an additional option

on+1 such that Ion+1 = βon and βon+1 = xg and learns its policy.

Finally, we compute a composed policy by composing policies for every option in this

high-level plan (lines 18 and 22). A composed policy, Π, for a high-level plan is a finite

state controller with one state for each option in the plan. For a controller state qi, Π(x) =

πi(x) where πi represents the policy for option oi ∈ O. The controller makes a transition

qi → qi+1 when the robot reaches a configuration x ∈ Ioi+1 .

To aid transferability, SHARP only synthesizes options once per environment and robot.

It efficiently transfers the learned option policies by updating the option costs (C) using the

average number of steps from initiation sets to the termination sets of the options in multiple

rollouts of the learned option policies (line 17).

5.2.1 Theoretical Results

Recall that a controller implicitly defines a transition function with a probability dis-

tribution µ(x + u) for the control action u (see Ch. 2). Then, a δ-compliant controller is

defined as one whose set of support for µ(x + u) is Bδ(x + u). Here, we refer to δ as the

support radius for the given controller. We now present the theoretical properties of Alg. 5.

Let Bδ(x) for δ > 0 define the δ-neighborhood of x ∈ X under the Euclidean metric. Our

formal guarantees do not require knowledge of µ other than an upper bound on the support

radius.
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The following theoretical results characterize the formal properties of the presented

approach. The main result ( Thm. 5.2.1) shows that the construction process of the options

ensures that the zero-shot options are indeed composable and can be used for high-level

deterministic planning.

Theorem 5.2.1 For a given stochastic motion planning problem P = ⟨X ,U , x1, xn⟩, let Φ

be the set of identified critical regions and Ψ be the RBVD that induces the set of abstract

state S and a neighborhood function V . If there exists a sequence of distinct abstract states

⟨s1, . . . , sn⟩ such that V(si, si+1) = 1 then there exists a composed policy Π such that the

resulting configuration after the termination of every option in Π is the goal configuration

xn.

Thm. 5.2.3 asserts that when used with an optimal low-level policy learner, SHARP is

probabilistically complete for holonomic robots.

Lemma 5.2.1 Let X be the configuration space of the robot R and let Φ and Ψ be the

set of critical regions and RBVD respectively inducing the set of abstract states S and the

neighborhood function V . If there exists a pair of neighboring abstract states si, sj ∈ S

such that V(si, sj) = 1 then there exists a pair of option endpoints Iij and βij such that

Iij ⊂ si and βij ⊂ sj .

Proof 5.2.1 The proof is straightforward and directly follows from the Alg. 5 itself. Our

approach for creating options considers all pairs of neighboring abstract states and creates

options that transition between them. For more details, refer to Sec. 10.

Recall the definition of a δ-clear motion plan from Sec. 5.1.2. Then we have:

Proposition 5.2.1 Let R be a holonomic robot using a δc-compliant controller. For an

option o with a pair of endpoints ⟨Io, βo⟩, if there exists an option guide between Io and
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βo in the form of a δ-clear motion plan such that δc < δ then there exists a proper partial

policy for the option o.

Proof 5.2.2 Let Go = ⟨p1, . . . , pn⟩ be an option guide for the option o as defined in Sec. 5.1.2.

Here, each pi ∈ Go refers to a collision-free configuration xi ∈ Xfree that has a collision-free

δ-neighborhood represented with Bδ(pi). Now, given that the robot uses a δc-compliant

controller such that δc < δ, an optimal partial proper policy can be defined using a func-

tion that gives the next closest point on the option guide moving towards the termination

set of the option o. Let No ∶ X → X ∶ x ↦ pi such that ∀j > i, d(pj, x) > d(pi, x) and

d(pi, βo) < d(x,βo). An optimal policy is such that πo(x) = No(x) given a δ-clear Gi.

Given that the robot is using δc-compliant controller with the support radius δc < δ, the

robot would always end up in the Bδc neighborhood of a point in the option guide which is

a subset of Bδ collision-free neighborhood. This ensures the existence of a proper policy

for the option o.

Lemma 5.2.2 Let R be a holonomic robot using a δc-compliant controller. If there exists a

pair of option endpoints Ii and βi with an option guide Gi in the form of a δ-clear motion

plan between Ii and βi such that δc < δ, and if the low-level policy learner is optimal, then

Alg. 5 will learn an option oi = ⟨Ii, βi,Gi, πi⟩.

Proof 5.2.3 The proof is straightforward. Proposition 5.2.1 proves existence of a proper

policy πi for an option with endpoints Ii, βi and a holonomic robot R using δc-compliant

controller if there exists δ-clear option guide Gi such that δc < δ. The rest of the proof

relies on the optimality of the low-level learning. The option guide Gi also induces a dense

pseudo-reward function Ri (Sec. 5.1.2) that provides a smooth reward function that guides

the robot to the termination set. Given that the πi is an optimal policy (proposition 5.2.1)

and the low-level policy learner is optimal, it should compute πi.
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Theorem 5.2.2 For a given stochastic motion planning problem P = ⟨X ,U , x1, xn⟩, let Φ

be the set of identified critical regions and Ψ be the RBVD that induces the set of abstract

state S and a neighborhood function V . If there exists a sequence of distinct abstract states

⟨s1, . . . , sn⟩ such that V(si, si+1) = 1 then there exists a composed policy Π such that the

resulting configuration after the termination of every option in Π is the goal configuration

xn.

Proof 5.2.4 The proof directly derives from the definition of the endpoints for the centroid

and interface options. Given a sequence of adjacent abstract states ⟨s1, . . . , sn⟩, Def. 11

and 13 ensures a sequence of options ⟨o1, . . . , on⟩ such that βi = Ii+1. This implies that

an option can be executed once the previous option is terminated. Given this sequence

of options ⟨o1, . . . , on⟩, according to the definition of the composed policy, there exists a

composed policy Π such that for every pair of consecutive options oi, oj ∈ Π, Ioj = βoi .

Thus, we can say that if every option in Π terminates, then the resulting configuration

would be the goal configuration.

Theorem 5.2.3 Given a stochastic motion planning problem P = ⟨X ,U , xi, xg⟩ for a holo-

nomic robot R using a controller with a support radius δc < δ, a motion planner that can

compute δ-clear motion plans, and an optimal low-level policy learner, if there exists a

δ-clear motion plan for the robot R from x1 to xn that forms a sequence of distinct ab-

stract states, then Alg. 5 will find a proper policy for the given stochastic motion planning

problem.

Proof 5.2.5 Let T = ⟨xi, . . . , xg⟩ be the δ-clear motion plan from the initial configuration

xi to goal configuration xg. This δ-clear motion plan forms a non-repeating sequence of

abstract states. Let p = ⟨s1, . . . , sn⟩ be this sequence of distinct abstract states. Given that

Alg. 5 explores all possible sequences of high-level states between a given pair of initial

and goal abstract states (line 10), we can say that eventually, it would find this sequence of
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Figure 5.2: Our test environments and robots.

abstract states p and the corresponding sequence of options for it. We can also deduce that

for every pair of consequent abstract states sj, sj+1 ∈ p, there exists a pair of consequent

configurations xj, xj+1 ∈ T such that xj ∈ sj and xj+1 ∈ sj+1 and V(sj, sj+1) = 1 and that

there exists a δ-clear motion plan between abstract states sj and sj+1. Now, lemmas 5.2.1

and 5.2.2 show that given a motion planner that computes a δ-clear motion plan and an

optimal low-level policy learner, Alg. 5 would be able to learn options with proper policies

for every pair of neighboring states. This implies that our approach would be able to learn

options for each pair of consequent states in p. Lastly, Theorem 5.2.2 proves that if there

exists a sequence of distinct abstract states then there exists a composed policy of learned

options that when executed successfully in xi terminates in xg i.e., a solution for the given

problem.

These results provide the foundations for analyzing such approaches and show a com-

pleteness result for the presented approach. However, our approach generalizes beyond the

sufficient (and not necessary) conditions used in the theorems above. In fact, our empirical

evaluation (Sec. 5.3) is conducted on non-holonomic robots that violate the premises of

these results. Furthermore, we use default controllers with unknown support radii.
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Figure 5.3: (Higher values are better) Times taken (averaged over 5 trials) by our approach
(SHARP) and baselines to compute solutions in the test environments. The X-axis shows
the time and the y-axis shows the fraction of the problems solved in the given time.

5.3 Empirical Results

We present the salient aspects of our implementation, setup, and observations here;

additional results, code, and data are available in the supplementary material.

Our evaluation is organized to address the following key questions: (1) Does the pre-

sented approach of zero-shot option invention followed by hierarchical planning and re-

finement improve performance in terms of computational efficiency and solution quality?;

and (2) Can zero-shot options be transferred to new problems in the same environment?

Results across an extensive evaluation suite indicate that the presented approach creates

and uses zero-shot options effectively. In larger environments (L1-L3), ours is the only

approach that shows significant learning, and it achieves a significantly higher solution

quality than all baselines. We now present our evaluation framework and results in detail.

Evaluation framework and metrics We organized the overall evaluation of the pre-

sented approach as follows. Given a previously unseen environment Etest and a problem
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instance ⟨xi, xg⟩, SHARP (Alg. 5) zero-shot invents options for Etest and uses them to com-

pute a policy for the test problem instance. The total solution time recorded for SHARP

includes the time taken to run OptionInventor (which includes predicting critical regions,

creating state abstractions, inventing option signatures, and computing option guides), and

to execute hierarchical planning and refinement process listed under the SHARP algorithm

(Alg. 5).

We evaluated the computational efficiency of all considered approaches in terms of the

number of problems solved in a given amount of time. For learning-based approaches, a

problem is considered to be solved in these experiments when the current learned policy

yields an average reward of +500 over 10 rollouts. For RRT-replan, a problem is considered

to be solved when the robot reaches the 0.2m neighborhood of the goal configuration. All

approaches were assigned a uniform timeout per problem of 2400 or 9000 seconds.

In addition, we use two metrics to evaluate solution quality since it is often easy to

compute meaningless policies in a short time frame: The average solution cost is defined

as the average number of steps taken while executing a computed solution; solution relia-

bility is defined as the likelihood of solving the given problem by executing the computed

solution. Both metrics are computed over 20 independent trials of the computed solution

on the input problem instance.

Figs. 5.3 and 5.4 summarize the results of our evaluation in terms of these metrics across

a wide range of robots, environments, and test problems. We discuss the details of this

evaluation including notes on our implementation, environment, and baseline selection,

and our main observations below.

Our implementation We implemented two variants of our approach: SHARP-centroids

and SHARP-interfaces, which invent and use centroid options and interface options, re-

spectively. Both implementations use PyBullet and PyTorch (Paszke et al., 2019). PyBul-
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Figure 5.4: (Smaller bars and darker circles are better) An average number of steps taken
in successful executions of the learned policies and success rates for our approach and the
baselines. The pie chart over each bar represents the success rate (shaded black area) while
executing the learned policy.

let does not feature stochasticity robot movements. We introduced stochasticity by adding

random perturbations (unknown to Alg. 5) in control targets of actions during training and

execution. We used default robot controllers to evaluate the learned policies. We used

HARP (Shah and Srivastava, 2022b) with ϵ = 0 for computing zero-shot option guides.

We used 2−layered neural networks with 256 neurons in each layer for representing lo-

cal policies for the learned options. Inputs to these networks were the current configuration

of the robot and a vector to the nearest point on the option guide for the current option. We

used +1000 as a pseudo reward for reaching the termination set of each option and -100 as

a penalty for drifting to a different abstract state. We use SAC (Haarnoja et al., 2018) as a

low-level policy learner in lines 9, 16, and 21 of Alg. 5.

Test environments and robots We evaluated our approach across 7 test environments

(Fig. 5.2) (not included in training the critical region predictor), 3 non-holonomic robots

(Fig. 5.2) and a total of 60 navigation and manipulation problems. Dimensions of the en-

vironments are as follows: S1, S2: 15m × 15m; L1, L2, L3: 75m × 75m. Problem-specific

timeouts were set at 2400s for small environments and manipulation problems and 9000s

for larger environments. For each environment, we generated 5 problem instances by ran-

domly sampling different initial and goal configuration pairs. We used the following robots:

the ClearPath Husky (3-DOF), the AgileX Limo (3-DOF), and the Fetch manipulator robot
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(7-DOF). The Husky is a 4-wheeled differential drive robot that can move in one direction

and rotate in place; the Limo is also a 4-wheeled omnidirectional robot with an Ackermann

dynamics; the Fetch is an 8-DOF manipulator robot.

Baseline selection We considered and evaluated several learning and planning

approaches (LaValle, 1998; Haarnoja et al., 2018; Kulkarni et al., 2016; Lillicrap et al.,

2016; Levy et al., 2019; Bagaria and Konidaris, 2020) as potential baselines for this work.

Of these, only RRT-Replan (LaValle, 1998) and SAC (Haarnoja et al., 2018) solved any

problem instances within the timeouts discussed above. Therefore, we compared our ap-

proach against SAC and RRT-Replan. SAC is an off-policy deep reinforcement learning

approach that learns a single policy for the overall stochastic motion planning problem. We

used the same network architecture as ours for SAC’s neural policy. We used a terminal

reward of +1000 and a step reward of −1 to train the SAC agent. RRT-Replan is a version of

the popular RRT algorithm that recomputes a plan from the robot’s current configuration if

the robot fails to successfully reach the goal after executing the initial plan. All approaches

considered used the same input robot models, simulators, and low-level controllers as our

approach.

5.3.1 Analysis of Results

Computational Efficiency Fig. 5.3 shows the fraction of problem instances solved in

a given amount of time by both variants of SHARP and the baselines. In our case, this

includes the time taken to create the abstract states and actions as well as to compute the

solutions. Each subsequent problem uses learned high-level actions (policies and options)

from the previous problem instances when available. Results show SHARP shows signifi-

cantly greater scalability and computational efficiency. In most cases, baselines take 2× the

time taken by SHARP to compute a solution. These differences increase for larger environ-
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Env S1 Env S2 Env S3 Env S4
Figure 5.5: Test environments of the size 15m × 15m with the identified abstract states.
These images show 2D projections of high-dimensional region-based Voronoi diagrams.
Each colored partition represents an abstract state. Top: The white circles represent cen-
troids of the predicted critical regions used to synthesize centroid options. Bottom: The
white circles represent the interface regions for each pair of abstract states used to synthe-
size interface options.ere

ments, where baselines were able to solve less than 50% of the environments that SHARP

solved within the same timeouts.

These results illustrate the impact of learning to zero-shot invent and utilize options:

even when the time for predicting critical regions, building abstractions, computing high-

level plans, and learning low-level policies is included, SHARP significantly outperforms

the baselines. Manipulation environments show a relatively smaller difference between

the performance of all the approaches owing to smaller horizons. This reinforces the key

contribution of our approach of creating problems with smaller horizons using options to

solve problems with significantly large horizons.

Solution quality Fig. 5.4 shows solution cost and solution reliability (as defined above)

for solutions computed by all considered approaches. These results show that SHARP’s
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Env L1 Env L2 Env L3
Figure 5.6: Test environments of the size 75m × 75m with the identified abstract states.
These images show 2D projections of high-dimensional region-based Voronoi diagrams.
Each colored partition represents an abstract state. Top: The white circles represent cen-
troids of the predicted critical regions used to synthesize centroid options. Bottom: The
white circles represent the interface regions for each pair of abstract states used to synthe-
size interface options.

planning over zero-shot options results in lower cost solutions: they require significantly

fewer steps during execution compared to baselines, with the differences frequently span-

ning orders of magnitude. We acknowledge that RRT-Replan is not an optimal planning

approach. However, the solution quality also represents the amount of time RRT-Replan

had to re-compute and re-execute the solution.

Computing policies that account for stochasticity makes SHARP’s solution reliability

uniformly above 90%, nearly 3× that of RRT-Replan (the best-performing baseline) on the

larger test environments. RRT-Replan’s solutions had an execution success rate of ∼50%

in the smaller navigation (S1, S2) and manipulation (M1, M2) environments, and a success

rate of less than 33% in the larger environments (L1-L3). SAC’s solution reliability was
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S1 S2 L1 L2 L3 M1 M2

Interface

Options
43% 33% 37% 33% 42% 50% 75%

Centroid

Options
50% 50% 39% 36% 50% 65% 75%

Table 5.1: Percentage of options that our approach reused from the task they were com-
puted to every subsequent task they were needed across 5 test tasks in each environment.

lower, indicating limited scalability of end-to-end learning in long-horizon problems.

Zero-shot option invention and reuse Fig. 5.5 and Fig. 5.6 show the predicted criti-

cal regions, 2D projections of the RBVDs, and synthesized option endpoints for our test

environments. These results show that our approach is able to zero-short invent options

for new, unseen test environments. When new problem instances come from a common

environment, our approach is able to transfer these zero-shot options and their policies to

new problem instances. Centroid options showed greater reuse rates on average across all

environments (52%) than interface options (45%). Detailed re-use rates are available in

Table 5.1.

Now, we discuss some of the closely related approaches.

5.4 Related Work

To the best of our knowledge, this is the first approach that uses a data-driven method

for synthesizing transferable and composable options and leverages these options with a hi-

erarchical algorithm to compute solutions for stochastic path planning problems. It builds

upon the concepts of abstraction, stochastic motion planning, option discovery, and hierar-

chical reinforcement learning and combines reinforcement learning with planning. Here,

we discuss related work in these areas.
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Motion planning is a well-researched area. Numerous approaches (Kavraki et al., 1996;

LaValle, 1998; Kuffner and LaValle, 2000; Pivtoraiko et al., 2009; Saxena et al., 2022)

have been developed for motion planning in deterministic environments. Kavraki et al.

(1996); LaValle (1998); Kuffner and LaValle (2000) develop sampling-based techniques

that randomly sample configurations in the environment and connect them for computing a

motion plan from the initial and goal configurations. Holte et al. (1996); Pivtoraiko et al.

(2009); Saxena et al. (2022) discretize the configuration space and use search techniques

such as A∗ search to compute motion plans in the discrete space.

Stochastic motion planning Multiple approaches (Du et al., 2010; Kurniawati et al.,

2012; Vitus et al., 2012; Huynh et al., 2016; Berg et al., 2017; Hibbard et al., 2022) have

been developed for performing motion planning with stochastic dynamics. Alterovitz et al.

(2007) build a weighted graph called stochastic motion roadmap (SMR) inspired by the

probabilistic roadmaps (PRM) (Kavraki et al., 1996) where the weights capture the prob-

ability of the robot making the corresponding transition. Huynh et al. (2016) extend SMR

for computing stochastic policies through value iteration over motion trees constructed

using RRT (LaValle, 1998). Sun et al. (2016) use linear quadratic regulator – a linear con-

troller that does not explicitly avoid collisions – along with value iteration to compute a

trajectory that maximizes the expected reward. However, these approaches require an an-

alytical model of the transition probability of the robot’s dynamics. Tamar et al. (2016)

develop a fully differentiable neural module that approximates value iteration (VI) and can

be used for computing solutions for stochastic path planning problems. However, these

approaches (Alterovitz et al., 2007; Sun et al., 2016; Tamar et al., 2016) require discretized

actions. Du et al. (2010); Van Den Berg et al. (2012) formulate a stochastic motion plan-

ning problem as a POMDP to capture uncertainty in robot sensing and movements. Mul-

tiple approaches (Jurgenson and Tamar, 2019; Eysenbach et al., 2019; Jurgenson et al.,
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2020) design end-to-end reinforcement learning approaches for solving stochastic motion

planning problems. These approaches only learn policies to solve one path-planning prob-

lem at a time and do not transfer knowledge across multiple problems. In contrast, our

approach does not require discrete actions and it learns options that are transferrable to

different problems.

Subgoal discovery Several approaches have considered the problem of learning task-

specific subgoals. Kulkarni et al. (2016); Bacon et al. (2017); Nachum et al. (2018, 2019);

Czechowski et al. (2021) use intrinsic reward functions to learn a two-level hierarchi-

cal policy. The high-level policy predicts a subgoal that the low-level goal-conditioned

policy should achieve. The high-level and low-level policies are then trained simultane-

ously using simulations in the environment. Paul et al. (2019) combine imitation learning

with reinforcement learning for identifying subgoals from expert trajectories and boot-

strap reinforcement learning. Levy et al. (2019) learn a multi-level policy where each

level learns subgoals for the policy at the lower level using Hindsight Experience Replay

(HER) (Andrychowicz et al., 2017) for control problems rather than long-horizon motion

planning problems in deterministic settings. Kim et al. (2021) randomly sample subgoals

in the environment and use a path planning algorithm to select the closest subgoal and learn

a policy that achieves this subgoal.

Option discovery Numerous approaches (Stolle and Precup, 2002; Şimşek et al., 2005;

Brunskill and Li, 2014; Kurutach et al., 2018; Eysenbach et al., 2019; Bagaria and Konidaris,

2020; Bagaria et al., 2021) perform hierarchical learning by identifying task-specific op-

tions through experience collected in the test environment and then use these options (Sut-

ton et al., 1999) along with low-level primitive actions. Stolle and Precup (2002); Şimşek

et al. (2005) lay the foundation for discovering options in discrete settings. They collect
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trajectories in the environment and use them to identify high-frequency states in the en-

vironment. These states are used as termination sets of the options and initiation sets are

derived by selecting states that lead to these high-frequency states. Once options are iden-

tified, they use Q-learning to learn policies for these options independently to formulate

Semi-MDPs (Sutton et al., 1999). Bagaria and Konidaris (2020) learn options in a reverse

fashion. They compute trajectories in the environment that reaches the goal state. In these

trajectories, they use the last K points to define an option. These points are used to define

the initiation set of the option and the goal state is used as a termination set. They continue

to partition the rest of the collected trajectories similarly and generate a fixed number of

options.

Several approaches (Watter et al., 2015; Levine et al., 2016; Finn et al., 2016; Gal

et al., 2016; Henaff et al., 2017; Tamar et al., 2017; Ebert et al., 2018; Amos et al., 2018;

Hafner et al., 2019) have explored vision-based model predictive control for robot planning

problems. These approaches learn latent representations of the kinematic and dynamics

model of the robot and use them to perform model-based control for the given robot control

problem. These approaches focus on stochastic optimal control problems. In contrast, our

approach focuses on relatively long-horizon robot planning problems and can be used with

arbitrary controllers for short-horizon control (∼ 5 seconds).

Planning with options Approaches for combining symbolic planning with reinforcement

learning (Silver and Ciosek, 2012; Yang et al., 2018; Jinnai et al., 2019; Lyu et al., 2019;

Kokel et al., 2021; Konidaris et al., 2018; Silver et al., 2021) use pre-defined abstract mod-

els to combine symbolic planning with reinforcement learning. In contrast, our approach

learns such options (including initiation and termination sets) as well as their policies and

uses them to compute solutions for stochastic path planning problems with continuous state

and action spaces.
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Conclusion

This chapter presents the first approach that uses a data-driven process to learn to create

state and action abstractions for unseen environments and problem instances. We provide

theoretical results as well as a thorough empirical evaluation of the presented methods.

These results show that the presented approach effectively learns to create abstractions that

provide strong performance and quality advantages on a broad set of problems that are

currently beyond the scope of known methods.
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Chapter 6

AUTOMATICALLY INVENTING RELATIONAL WORLD MODELS FOR ROBOT

PLANNING

Figure 6.1: Our overall approach. We start with a set of demonstrations on relatively sim-
ple tasks using a simple robot and learn a symbolic model in the form of a set of predicates
and high-level actions. This symbolic model can be used with any off-the-shelf planner for
solving unseen complex long-horizon planning problems with other similar robots.

Solving complex robot planning problems requires robots to interact with different ob-

jects in the environment (Ch. 2). However, abstractions learned in Ch. 4 and Ch. 5 do not

account for objects in the environment or changing configuration spaces. In this chapter,

we present our novel approach for learning relational abstractions for robot planning prob-

lems that capture relations between robots and objects as well as different relations between

objects.

Fig 6.1 provides a high-level summary of our approach. Our approach starts with a

small set of training demonstrations and learns a symbolic world model that supports ef-

ficient planning. Here, a world model is represented in terms of state and action abstrac-

tions represented in PDDL comprised of symbolic predicates and actions defined using

these predicates (Sec. 2.3). Our approach uses the concept of relative poses (described in
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Figure 6.2: An illustration for computing relative poses

Sec. 6.1). Sec. 6.2 discusses our approach for automatically inventing predicates and high-

level actions; Sec. 6.3 provides an algorithm for using invented abstraction for planning

while continually updating them; Sec. 6.4 provides a thorough empirical evaluation of our

approach; Sec. 6.5 discusses some of the related approaches.

6.1 Relative Poses

Our approach extensively uses relative poses. Every object in the environment also

defines a frame of reference. A relative pose defines the pose of an object in the reference

frame of another object. Basis transformations from linear algebra can be used to compute

relative transformations of objects with reference to other objects in the environment.

Let o be an object in the environment and g be a gripper. Let PW
o represent the pose

of the object o in the world reference frame. Similarly, let PW
g represent the pose of the

gripper g in the world reference frame. These poses are also called absolute poses of the

object o and gripper g.

Relative poses are defined between a pair of objects. The relative pose of an object

defines a pose for the objects in the reference frame defined by another object. E.g., the

relative pose of object o w.r.t. to gripper g defines the pose of the object relative to the

gripper.
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Concepts from the basis transformations from linear algebra can be used to compute

these relative poses. In this case, we can re-write the equation for the absolute pose of the

object o as follows,

PW
o = PW

g P g
o

Using this, we can derive the following equation for the relative pose of the object o in

the reference frame of the gripper g that only uses absolute poses of the objects as follows.

P g
o = P g

WP
W
o

P g
o = (PW

g )
−1
PW
o

We refer to the pose of an object o1 relative to an object o2 as P o2
o1 . Let X̃ o2

o1 define a

relative state-space for the pair of objects o1 and o2, i.e., the set of all poses of the object o1

in the relative frame of the object o2, and X̃ define the set of relative state spaces such that

X̃ = {X̃ oi
oj ∣oi, oj ∈ O ∧ oi ≠ oj}. Lastly, we define a transformation function ξ ∶ X → X̃ that

computes the relative state for each absolute state of the environment.

6.2 Learning World Models

This work’s central idea is to automatically learn world models in the form of state and

action abstractions that can be transferred to settings with different robots and goals. In

this context, different goals are characterized by different numbers and configurations of

the objects. We formally define the abstraction learning problem as follows.

Definition 15 Let Ttrain be a set of training problems and Dtrain be a set of demonstrations

that successfully solve the training problems. We define the abstraction learning problem

as learning 1) a predicate vocabulary P , 2) a set of high-level actions Ā, and 3) a set of

generators Γ for each learned predicate.
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Algorithm 6: LAMP: Learning Abstract Model for Planning
Input: A set of demonstrations Dtrain for training tasks Ttrain, a set of objects O, a

set of types of objects T , an initial state xi ∈ Xfree, a goal state xg ∈ Xfree, a
motion planner MP, k

Output: PDDL DomainM
/* Prepare data */

1 Use ξ to compute trajectories with relative poses of each object
/* Invent predicates */

2 Compute sets of relative critical regions Ψ for each pair of object types τi, τj ∈ T
3 i← 0;
4 Ψ← discover new goal specific relation(xg, i);
5 R← discover relations(Ψ,O, T )
6 R̃ ← discover auxilary relations(R);
7 P ← generate predicate vocabulary(R,Ψ)
/* Invent actions */

8 Ā ← invent actions(D, P);
9 M← generate PDDL(T ,O,R,Ā);

10 result ← Plan(xi, xg,M, MP, Γ, k);
11 if result = failure & not all goal-specific relations are not added to Ψ then
12 go to 4
13 returnM, result;

The core contribution of this work is the first known approach for simultaneously in-

venting a predicate vocabulary and abstract actions that solve unseen test problems Ttest

with similar robots and types of objects but significantly varying goals. We now present

our approach – Learning Abstract Model for Planning (LAMP) – that automatically learns

these abstractions in a continual fashion and represents them as a PDDL domain. The

next section (Sec. 6.2.1) presents our approach for automatically inventing a predicate vo-

cabulary and generators and then we present our approach for inventing symbolic actions

(Sec. 6.2.2).

6.2.1 Inventing Predicates

We now discuss our approach for automatically discovering a predicate vocabulary only

using the set of training demonstrations Dtrain for solving the set of training problems Ttrain.

Def. 6 define critical regions in the configuration space of a robot. However, these
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Figure 6.3: An example of relational critical regions. The gripper g is tasked to grasp the
object o. Stages 1 and 3 show an initial configuration of the gripper g and stages 2 and 4
show the final configuration. The inset figures show the pose of the gripper for stages 2
and 4 in the relative reference frame of the object and the blue region shows the identified
relative critical region.

critical regions fail to capture relationships between different objects in the environment.

E.g., consider a simple task of grasping an object in a 2D setting with a gripper shown

in Fig. 6.3. Here, every problem instance would have a different initial state and hence a

different pose of the object o. This would require a different configuration of the gripper

to grasp the object for every problem, and therefore the critical regions in the configuration

space of the robot (as defined by Shah and Srivastava (2022b)) would fail to identify any

useful abstractions.

Relational Critical Regions

In this work, we propose the concept of relational critical regions (RCR) that overcome

shortcomings of critical regions. Relational critical regions extend the notion of critical

regions to the relative spaces between two objects to capture salient relationships between

objects that only exist in these spaces. E.g., in Fig. 6.3, the absolute poses of the gripper g

and object o do not have a specific relationship, however, the relative poses of the object and

the gripper display a “holding” relationship. The inset images in Fig 6.3 show the “holding”

96



relation between the object and the gripper and its corresponding relational critical region

(blue regions in the inset images). Given a pair of objects o1 and o2 and the relative state

space X o1
o2 , relational critical regions can be defined similarly to critical regions (Def. 6)

by considering the relative spaces between two objects (X o1
o2 ) instead of the configuration

space of the robot (Xr). Formally, given a criticality threshold υ, relational critical regions

can be defined as follows.

Definition 16 Let T be a robot planning problem and DT be a set of solution trajectories

for the planning problem T. Let o1, o2 ∈ O be a pair of objects and let X o1
o2 define the relative

state space for object o2 in the relative reference frame of the object o1. The measure of crit-

icality of a Lebesgue-measurable open set ρ ⊆ X o1
o2 , µ(ρ), is defined as limsn→+ρ

f(r)
v(sn)

where

f(ρ) is a fraction of observed solution trajectories solving for the planning problem T that

contains a relative pose P o1
o2 such that P o1

o2 ∈ ρ, v(sn) is the measure of sn under a reference

density (usually uniform), and →+ denotes the limit from above along any sequence {sn}

of sets containing ρ (ρ ⊆ sn, ∀n).

Now, we describe our approach for learning a set of relational critical regions.

Learning relational critical regions Alg. 6 describes our approach to learning symbolic

abstractions. We start with the set of demonstrations Dtrain that solves the set of training

problems Ttrain. Recall the function ξ defined in Sec. 6.1. Our approach uses the function ξ

to convert training demonstrations Dtrain containing absolute poses of the objects and robot

to relative demonstrations in relative state space X̃ (line 1) and use these trajectories to

identify relational critical regions (Def. 16).

Our approach assumes that objects of similar types interact similarly. E.g., the relational

critical region between the object o and the gripper g generalizes to every similar object

and gripper in the environment. Therefore, Alg. 6 accumulates demonstrations for similar
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types of objects and then identifies critical regions between two types of objects. Alg. 6

first identifies task-specific relational critical regions and then combines them to construct

the complete set of relational critical regions. Let Ψ be this set of automatically identified

relational critical regions.

Inventing critical regions from the goal Our approach uses a limited set of demonstra-

tions, and it may fail to capture relations for specific goals. Therefore, to invent goal-

specific relational critical regions, we use the relative poses of the objects in the goal and

update the existing set of relational critical regions Ψ with the new goal-specific regions.

However, this can lead to exponentially many goal-specific critical regions. Therefore, we

use an iterative approach that iteratively updates the set of critical regions with goal-specific

regions based on their frequency in the goal. We start with the most frequent goal-specific

region and use the decreasing order of the frequency for updating the set of relational criti-

cal regions.

Once a set of relational critical regions Ψ is constructed, our approach uses Gaussian

parameters to parameterize the hypotheses space of the relational critical regions. Formally,

let Ψij ⊂ Ψ be a set of relational critical regions between the pair of object types τi and τj .

Given a pre-defined threshold ϵ, our approach uses Gaussian mixture model (GMM) to

estimate Gaussian parameters µψ and Σψ for every relational critical region ψ ∈ Ψij such

that support for every pose P ∈ ψ is greater than epsilon, i.e., for every pose P ∈ ψ, for every

relational critical region ψ ∈ Ψij , support for every pose P ∈ ψ is Pr (P ;N (µψ,Σψ)) > ϵ.

Now, we describe our approach to inventing relations using the learned relational criti-

cal regions.
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Representing Invented Critical Regions as Relations

We use the identified relational critical regions to define a set of relations between objects

in the environment. Let τi, τj be a pair of object types from the set of types T and let

Ψij = {ψ1, . . . , ψn} ⊂ Ψ be the set of critical regions for the type of objects τi and τj .

For each pair of object types τi, τj ∈ T , we define a parameterized functional relation

rij ∶ Oτi ×Oτj ×Ψij → {T,F}. Given a pair of low-level objects oi and oj of object types τi

and τj respectively and a relation critical region ψk ∈ Ψij , a grounded relation rij (oi, oj, ψk)

is true in a low-level state x ∈ X if P oi
oj ∈ ψk. Additionally, we define a relation such that

for a given pair of objects oi and oj , rij(oi, oj, ψ0) Ô⇒ [∀ψk ∈ Ψij,¬rij(oi, oj, ψk)]. E.g.,

Fig. 6.3 shows low-level states where the relation rog(o, g,ψ0) is true for configurations 1

and 3 and the relation rog(o, g,ψ1) is true for configurations 2 and 3. Let R be the set of all

relations between each pair of types of objects.

We define an auxiliary relation for each relation r ∈ R using a key geometrical property

of the relational critical regions. Intuitively, this relation captures the number of objects

that a relational critical region can occupy. Auxiliary relations are defined using the free

volume of the critical region and the volume of the objects that are supposed to occupy

the region. Formally, let ψk ∈ Ψij define a relational critical region for object types τi and

τj . Let ρ(ψk) (or ρ(oi)) define the total volume of the region ψk (or object oi) and let

ρfree(ψk) define the free volume of the region ψk given a current state x ∈ X . For every

relation rij ∈ R, we define an auxiliary relation r̃ij ∶ Oτi × Ψk → {0,1} such that given

a pair of objects oi and oj of types τi and τj and a relational critical region ψk ∈ Ψij ,

r̃ij(oi, ψk) Ô⇒ ρfree(ψk) > ρ(oj). Let R̃ be the set of these auxiliary relations.

A critical advantage of inventing relations in such a bottom-up fashion is that the pose

generators (Sec. 2.3) do not have to be explicitly defined. Instead, automatically learned

relational critical regions also serve as learned pose generators. This is explained in detail
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Algorithm 7: Inventing Symbolic Actions
Input: Set of demonstrations Dtrain, learned predicates P
Output: Set of lifted actions Ā

1 D̄′train ← get abstract demonstrations(Dtrain,P);
2 D̄train ← lift demonstrations(D̄′train);
3 changed predicates ← [];
4 foreach dk ∈ D̄ do
5 foreach consecutive state si, sj ∈ dk do
6 +Ck

ij ← sj ∖ si; −Ck
ij ← si ∖ sj;

7 Ck
ij ← ⟨+Ck

ij,
−Ck

ij⟩;
8 changed predicates.add(Ck

ij);

9 C ← create clusters(D̄train, changed predicates);
10 Ā ← [];
11 foreach (Si → Sj),C ∈ C do
12 eff← ⟨add = +C, del = −C⟩;
13 pre← ∩s∈Si

s;
14 pre←prune precondition(pre);
15 param← extract params(Si → Sj);
16 Ā.add(create action(param,pre, eff));

17 return Ā

in Sec. 6.3.

Generating predicate vocabulary Relations invented by our approaches can be easily

translated into PDDL representation (or any other representation). For a given pair of object

types τi, τj ∈ T , let Ψij ⊂ Ψ be the set of critical regions. For each relational critical region

ψk ∈ Ψij , each relation rij can be translated into a binary predicate (pψk

ij ?yi ?yj) where

?yi is a typed parameter of type τi and ?yj is a typed parameter of type τj . Similarly, each

auxiliary predicate r̃ij can be translated to a unary predicate (~pψk

ij ?yi) where ?yi is a typed

parameter of type τi. Let P be a set of predicates for all relations (line 7).

Now, we describe our approach for inventing high-level actions using the identified

predicates.
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6.2.2 Inventing Symbolic Actions

In this work, we aim to learn relational actions that can be used efficiently for transfer

and generalization. To achieve this, our approach invents high-level lifted actions, each

of which corresponds to at least one change in the abstract state represented using the

predicates discovered earlier (Sec. 6.2.1). Alg. 7 explains our approach for inventing high-

level actions. This corresponds to line 6 in Alg. 6.

Identifying High-Level Actions

The first step in inventing high-level actions is to first identify these actions. In order to

identify high-level actions, we first abstract every training demonstration in d = ⟨x0, x1, . . . ,

xn⟩, where d ∈ Dtrain, to an abstract demonstration ⟨s′0, s′1, . . . , s′n⟩ using the invented pred-

icates P such that s′i ∈ 2P
′ (line 1) and then to a lifted demonstration ⟨s0, s1, . . . , sn⟩ such

that si ∈ 2P (line 2). Given the set of abstract demonstrations D̄train, line 7 computes a set

of changed predicates C for each transition in every lifted demonstration in D̄train. Pre-

cisely, for a demonstration dk ∈ D̄train and a pair of consecutive lifted states si, sj ∈ dk, let

+Ck
ij = sj∖si and −Ck

ij = si∖sj and let Ck
ij be ⟨+Ck

ij,
−Ck

ij⟩. Line 9 uses these sets of changed

predicates and cluster transitions such that each cluster has all the transitions correspond-

ing to the same set of changed predicates. Let C denote these clusters where each cluster

c = ⟨Si → Sj,Cij⟩ is a tuple where each element is a set of transitions (Si → Sj) that corre-

spond to the similar changed predicates Cij . Each cluster ci ∈ C induces a high-level action

āi ∈ Ā. This approach is similar to Verma et al. (2022) and Silver et al. (2022). However,

they use grounded states to identify actions while our approach uses lifted predicates (lines

10-15). Next, we discuss our approach for learning effects, preconditions, and parameters

for each invented action and explain it in detail in with an example (Ex. 4).
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Learning Symbolic Action Model

Once a set of high-level actions Ā is identified, we use associative learning to learn a

symbolic model for each automatically identified action ā ∈ Ā. A symbolic model for an

action is represented in terms of its symbolic effects, symbolic preconditions, and action

parameters. Our approach also learns the symbolic model for each high-level action using

the set of training demonstrations Dtrain as follows.

Learning effects In our setting, effect of an action ā is represented as effā = ⟨addā,delā⟩

(Sec. 2.3). Each cluster ci ∈ C is generated by clustering transitions in D̄ over the sets of

changed predicates. These changed predicates correspond to added and removed predicates

as an effect of executing the action induced by the cluster. Therefore, for an action āi

induced by the cluster ci with a set of changed predicates Ci = ⟨+Ci,−Ci⟩, addāi =+Ci and

delāi =−Ci (line 12).

Learning preconditions To learn the precondition of an action, we take the intersection

of all states where the action is applicable. Given a possible set of predicates, this approach

generates a maximal precondition that is conservative yet sound (Wang, 1994; Stern and

Juba, 2017). To do this, given an action ā ∈ Ā corresponding to a cluster c = ⟨Si → Sj,Cij⟩,

preā = ∩s∈Si
s (line 13).

Each action can have spurious preconditions corresponding to static relations that do

not change on applying the action but are still true in all the pre-states s ∈ Si. Therefore,

we remove predicates (line 14) from the learned precondition that (i) are not parameterized

by any of the objects that are changed by the action, and (ii) are not changed at any point

in any of the demonstrations. This removes any predicate from the precondition that is

spurious with respect to the data.
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Learning action parameters Once the precondition and effect of an action are learned,

the final step is to learn the parameters of the action, that can be replaced with objects to

ground the action. In this step, the predicates in precondition and effect are processed in

order. These predicates are processed in alphanumeric order and each of their parameters is

added to the action’s parameter list, if not added already. This process leads to an ordered

list of parameters of the action, which can be grounded with compatible objects (line 15).

Example 4 Let the set of predicates invented in Sec. 6.2.1 be the following:

• (table-can0 ?table ?can): The can is not on the table.

• (table-can1 ?table ?can): The can is on the table.

• (can-gripper1 ?can ?gripper): The gripper is at the grasp pose (not

holding/grasping yet).

• (can-gripper2 ?can ?gripper): The gripper has grasped the object.

• (base-gripper0 ?base ?gripper): The Robot’s base link and the robot’s

gripper link do not have any relation.

• (base-gripper1 ?base ?gripper): The robot’s arm is tucked so there is a

specific relative pose between the robot’s base link and the robot’s gripper link.

• (base-table1 ?base ?table): The robot’s base link is located in a way

such that the robot’s arm can reach objects on the table.

Now, consider the two trajectories T1 and T2 as shown in Fig. 6.4 and Fig. 6.5, respec-

tively. Here T1 corresponds to the Fetch robot picking a yellow cup, and T2 corresponds to

the robot picking up a green cup (kept at a different location on the table compared to that

of the yellow cup). Here these two trajectories are expressed in terms of grounded objects.
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𝑆!": Gripper in grasp pose and
      not holding the yellow cup.

𝑆#" : Gripper in grasp pose and
     holding the yellow cup.

𝑆$" : Gripper holding the yellow
      cup, which is not on table.

𝑆%" : Gripper holding the yellow
      cup. Robot’s arm is tucked.

t=1 t=2 t=3 t=4

Figure 6.4: Trajectory T1 = ⟨S
′

1, S
′

2, S
′

3, S
′

4⟩ corresponding to the process of picking up a
yellow cup from the table. The state description below each image explains that image in
English. These state descriptions are added here for ease of understanding only.

𝑆!": Gripper in grasp pose and
      not holding the green cup.

𝑆#" : Gripper in grasp pose and
     holding the green cup.

𝑆$" : Gripper holding the green
      cup, which is not on table.

𝑆%" : Gripper holding the green
      cup. Robot’s arm is tucked.

t=1 t=2 t=3 t=4

Figure 6.5: Trajectory T2 = ⟨S
′

1, S
′

2, S
′

3, S
′

4⟩ corresponding to the process of picking up a
green cup from the table. The state description below each image explains that image in
English. These state descriptions are added here for ease of understanding only.

These are converted to a lifted form using line 2 of Alg. 7 in terms of the predicates shown

earlier. For T1 and T2 both, the lifted states will be:

• S1 ∶ {(table-can1 ?table ?can), (can-gripper1 ?can ?gripper), }

{(base-gripper0 ?base ?gripper), (base-table1 ?base ?table)}.

• S2 ∶ {(table-can1 ?table ?can), (can-gripper2 ?can ?gripper), }

{(base-gripper0 ?base ?gripper), (base-table1 ?base ?table)}.

• S3 ∶ {(table-can0 ?table ?can), (can-gripper2 ?can ?gripper), }

{(base-gripper0 ?base ?gripper), (base-table1 ?base ?table)}.

• S4 ∶ {(table-can0 ?table ?can), (can-gripper2 ?can ?gripper), }

{ (base-gripper1 ?base ?gripper), (base-table1 ?base ?table)}.
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Note that we only show partial states here for brevity. The actual states will also have

predicates like (table-can1 ?table ?can2), (table-can1 ?table ?can3),

(table-can1 ?table ?can4), (table-can1 ?table ?bowl1), (table-can1

?table ?bowl2), (table-can1 ?table ?bowl3), etc. corresponding to other

objects kept on the table.

Learning effects Alg. 7 creates the following three clusters (lines 4-9) based on these

states.

• C12 = ⟨+C12 = {(can-gripper2 ?can ?gripper)},−C12 = {(can-gripper1

?can ?gripper)}⟩.

• C23 = ⟨+C23 = {(table-can0 ?table ?can)},−C23 = {(table-can1 ?table

?can)}⟩.

• C34 = ⟨+C34 = {(base-gripper1 ?base ?gripper)},−C34 = {(base-gripper0

?base ?gripper)}⟩.

Learning preconditions Learning preconditions involve taking the intersection of states

in which all the actions in the same cluster were executed. Here S1 to S3 mentioned below

will remain the same for the three clusters. For e.g., precondition ofC12 = {(table-can1

?table ?can), (can-gripper1 ?can ?gripper), (base-gripper0 ?base

?gripper), (base-table1 ?base ?table)}. Alg. 7 will prune out (base-table1

?base ?table) from the precondition as (i) it is unchanged between S1 and S2, and

(ii) none of its parameters (?base and ?table) are part of any other predicate that is

changed. Using this, the precondition for each action will be:

• pre(C12) = {(table-can1 ?table ?can), (can-gripper1 ?can ?gripper),

(base-gripper0 ?base ?gripper)}.
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• pre(C23) = {(table-can1 ?table ?can), (can-gripper2 ?can ?gripper),

(base-gripper0 ?base ?gripper), (base-table1 ?base ?table)}.

• pre(C34) = {(table-can0 ?table ?can), (can-gripper2 ?can ?gripper),

(base-gripper0 ?base ?gripper), (base-table1 ?base ?table)}.

Learning parameters Learning parameters from an action’s precondition and effect is

straightforward. All the unique parameters in predicates in the precondition and effect

are added to the parameter list of an action representing a cluster. Using this notion, the

parameters for the three clusters will be the following:

• param(C12) =(?table ?can ?gripper ?base).

• param(C23) =(?table ?can ?gripper ?base).

• param(C34) =(?table ?can ?gripper ?base).

Now, we describe our approach for using the learned abstractions with any off-the-shelf

task and motion planner while continually learning new relations and actions.

6.3 Planning with Learned Abstractions and Continual Learning

This section discusses our approach to using the symbolic model learned using Alg. 8

for solving new unseen long-horizon planning problems. Planning (Alg. 8) starts with the

learned symbolic model M = ⟨T ,P, Ā⟩, a set of learned generators Γ, a motion planner

MP, an initial state xi ∈ Xfree, and a set of goal states Xg ⊆ Xfree. Line 1 uses the set of

learned predicates P to compute the symbolic initial state si.

After computing the abstract initial state, line 2 utilizes the set of goal states Xg and the

learned predicate vocabulary P to create a relation graph G corresponding to the specified

goal states. A relation graph is a directed graph with objects in the environment as nodes
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Algorithm 8: Planning with Learned Model
Input: an initial state xi ∈ Xfree, a goal state xg ∈ Xfree, learned symbolic modelM,

a motion planner MP, a set of generators Γ, k, training demonstrations Dtrain
Output: A plan of primitive actions π, updated modelM

1 si ← get abstract state(xi);
2 G← create relation graph(xg,P);
3 update model ← False;
4 π ← [] ;
5 Rmissing ← {};
6 Ainaccurate ← {};
7 while solution not found or G has no edges do
8 sg ← create symbolic goal(G);
9 Π̄← compute k symbolic plans(M, O, si, sg, k);

10 if Π̄ = ∅ then
11 p← relax the relation graph G;
12 Pmissing.add(p);
13 update model ← True;
14 continue;

15 foreach π̄ ∈ Π̄ do
16 foreach ā ∈ π̄ do
17 a← refine action(ā, Γ);
18 if refinement fails then
19 Ainaccurate.add(ā);
20 update model ← True;
21 goto to next symbolic plan;
22 π.append(a);

23 if update model then
24 Pnew ← P ∪Pmissing;
25 generate a trajectory Dπ using π;
26 M← learn actions(D ∪ {Dπ},Pnew);
27 return π,M
28 return failure,M

and predicates between objects as edges. Given the relation graph, lines 8 and 9 generate

a PDDL goal and use a top-k-planner to compute a set of distinct high-level plans Π̄. Once

high-level plans are generated, any off-the-shelf task and motion planner can be used to

refine one of these plans and generate a sequence of primitive actions π.
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Learning pose generators Typically, a task and motion planner requires pose generators

to be provided as input. However, because Alg. 6 invents predicates in a bottom-up manner

using relational critical regions, the relational critical regions can serve as sampling-based

pose generators for the learned predicates. Given a predicate (pψk

ij?yi?yj) defined using

a relation between object types τi and τj with a relational critical region ψk ∈ Ψij , a pose

generator Γr can be implemented as a sampler that samples a relative pose P from the

distribution N (µψk
,Σψk

). A pose P is a valid sample iff Pr (P ;N (µψk
,Σψk

)) > ϵ. Here

each pose generator defines a relative pose. The grounded generator for a given low-level

state x ∈ X . It can be computed using concepts of basis transformations as outlined in

Sec. 6.1

Updating abstractions Our approach relies on associative learning from passively col-

lected data to invent symbolic predicates and actions, and to learn the action models. There-

fore, it is possible that learned abstractions are incorrect. Our approach uses continual

learning for continuously updating the set of predicates, the set of actions, and the action

model.

One potential issue arises if the invented actions are insufficient to achieve the goal,

leading the top-k-planner to fail in computing any high-level plan (see line 10). In this

case, Alg. 8 relaxes the relation graph G by removing an edge from the relation graph at

random. It uses the relaxed relation graph to generate a new goal and compute high-level

solutions for it. Every time Alg. 8 relaxes the relation graph G by removing an edge from

the graph, it stores the corresponding predicate in the set of missing predicates Pmissing

(line 12). These predicates are used to update the symbolic model. This process is repeated

until at least one high-level plan is found or the relation graph G does not have any edges.

An inaccurate action model can also cause task and motion planning failures leading

to unrefineable high-level plans. If refinement of an action fails, Alg. 8 flags the action as
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inaccurate (line 19) and moves to the next symbolic plan to find a refineable high-level plan

from the set of high-level plans Π̄ (line 21).

Finally, if Alg. 8 had failed to find high-level plans without relaxing the relation graph or

computing refinement for an action, we update the symbolic modelM using the predicates

in the set of missing predicates Pmissing. Let Dπ be the trajectory induced by the solution π.

To update the model, Alg. 8 simply re-invents the actions and re-learns the actions models

using predicates P ∪ Pmissing and training demonstrations Dtrain ∪ {Dπ}.

We now present a thorough evaluation of our approach in various settings with different

robots.

6.4 Empirical Evaluation

We present the salient aspects of our implementation, setup, and observations here.

Our empirical evaluation is designed to answer the following key questions: 1) Are the

learned abstractions sound and generalizable to unseen complex planning problems?; 2)

Are the learned abstractions transferable to different similar robots – robots with similar

geometries for end-effectors?; and 3) How close the learned abstractions are to human

intuition?

Results across various environments show that the presented approach learns powerful

abstractions that are effective in solving new unseen problems that are far more complex

than the demonstrations used to learn these abstractions. We now present our evaluation

framework and results in detail.

Evaluation framework We evaluate our approach as follows. Given an environment E,

we use a set of training demonstrations for learning a symbolic modelME = ⟨T ,P, Ā⟩ if

the model is not already learned. Once a symbolic model is learned, we evaluate the model

using a set of test problems where each problem is defined as a pair ⟨O, xi,Xg⟩ where O
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Figure 6.6: Different relations invented by our approach and their corresponding critical
regions. Each image shows one binary predicate and its semantic interpretation. The red
dots show sampled possible poses for the object in the relational critical region.

is the set of objects, xi is an initial state and Xg is a set of goal states such that each test

problem can have a different number of objects, different initial poses of the objects, and/or

different target poses of the object.

We measure the generalizability of our domain by evaluating the success rate of solving

unseen test problems using the learned model. We consider a test successful when Alg. 8

successfully computes a sequence of low-level actions using the learned symbolic model.

In a subset of test environments (detailed later), we use different robots to learn the sym-

bolic model and evaluate it to test the transferability of the learned abstract model. This

allows us to use simpler robots at the time of training to generate demonstrations. Lastly,

we also evaluate the semantic interpretation of the learned model by carrying out a man-

ual analysis of learned predicates and actions. We now discuss the test environments and

robots used to evaluate our approach.
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Test environments and robots We evaluate our approach in the following different en-

vironments.

(i) Building Keva structures (Keva): The first environment uses a robot and Keva

planks to construct 3D structures. The robot can pick and place the planks to con-

struct these 3D structures. Building these complex structures requires long-horizon

planning with a large number of objects and actions that achieve various configura-

tions of the planks. Appendix A.1 shows the structures used to learn the model and

evaluate our approach. We use two different robots to learn and evaluate the abstrac-

tions in this environment showing the transferability of the learned abstractions. We

use a simple disembodied gripper to learn symbolic abstractions and use the ABB

YuMi robot with a 7-DOF arm in test tasks to evaluate the leaned abstractions.

(ii) Delivering items in a cafe (CafeWorld): A fetch robot is tasked to deliver items

to different tables. The fetch robot is a mobile manipulator with an omnidirectional

base and an 8-DOF arm. We use this environment to show the effectiveness of our

learned abstractions in mobile manipulation tasks where different actions involve

moving the robot base or its arm.

(iii) Packing cans in a box (Packing): This is a popular task and motion planning test

environment where a robot is tasked to pack multiple objects in a small box. We

use a disembodied gripper for this environment that works as a suspended robot in a

factory picking objects from the top.

Baseline selection This is the first known approach that automatically invents symbolic

predicate vocabularies, symbolic actions, and models for high-level planning directly from

raw demonstrations. Therefore, there are no suitable baselines that input the same in-

formation and generate the same output. Nevertheless, we compare our approach with
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Figure 6.7: An automatically invented high-level action by our approach. The top figure
shows the states before and after executing the high-level action. The bottom part shows
the automatically learned precondition and effect of the high-level action.

Code-as-policies (CoP) (Liang et al., 2023). CoP takes input the high-level actions that the

robot can execute and Python code snippets to execute these actions and uses a pre-trained

LLM to compute a high-level plan. We also compare our approach with the oracle abstrac-

tions generated by an expert used with an off-the-shelf task and motion planner (Srivastava

et al., 2014). We set a timeout of 3600 seconds for our approach and baselines to compute

high-level plans and refine them into a sequence of primitive actions.

We now discuss the analysis of the results on our test setup.

6.4.1 Analysis of Results

We analyze the invented abstractions for the following properties: Interpretability, scal-

ability, effectiveness, robustness, and transferability.

Interpretability The core contribution of this work is autonomously learning symbolic

abstractions for robot planning problems. However, for these abstractions to be useful, they

need to be meaningful to a human. Therefore, we carefully examine the invented predicates

112



as well as high-level actions.

Notably, our approach autonomously invented meaningful relations despite the absence

of annotations or labels in the training demonstrations, demonstrating its capability to de-

rive semantic interpretations automatically. This does not only make abstractions invented

by our approach effective, but also makes them interpretable. Fig. 6.6 illustrates a subset

of invented relations by our approach. These predicates include predicates invented in the

initial model using training demonstrations shown in Fig. 6.1 as well as All these predi-

cates are invented while solving the set of test problems with an initial model constructed

using training demonstrations shown in Fig. 6.1. Red regions depict approximations of the

learned relational critical regions for corresponding objects using sampled poses. It can

be seen from Fig. 6.6 that our approach autonomously captures crucial relations between

objects in terms of the invented predicates. E.g., our approach automatically invents pred-

icates that represent robot near the table and gripper at the grasp pose of the object in the

mobile manipulation domain CafeWorld, and it invents relations between different planks

such as parallel, on top vertically, and on top horizontally in the Keva domain.

Our approach also learns meaningful and human interpretable actions. E.g., Fig. 6.7

shows one of the automatically invented high-level actions. On careful examination, we can

say that it corresponds to a high-level action that places a plank parallel to an already placed

plank. More specifically, when grounded with the objects in the figure, the grounded action

(a9 plank2 plank1 gripper) is placing plank2 parallel to plank1 using the

gripper. Fig. 6.7 also shows preconditions and effects for the automatically invented

“place parallel” action. The learned preconditions include: (i) plank1 should have been

placed, (ii) gripper should be holding plank2, (iii) plank1 and plank2 should not

be parallel, (iv) no plank should be parallel to plank1, and (v) plank2 should not be

already placed. Similarly, the effects include relations corresponding to (i) plank1 and

plank2 are parallel and (ii) plank2 is placed. This highlights the ability of our approach

113



to learn effective, yet, intuitive high-level actions. We provide full auto-generated PDDL

domains for all test domains in the appendix.

Domain ∣Dtrain∣ ∣Otrain∣ ∣Otest∣ ∣P∣ ∣Ā∣
Used
∣P∣

Used
∣Ā∣

Success
rate

Avg.
plan

length

Avg.
planning

time
(seconds)

Avg.
refinement

time
(seconds)

CafeWorld 500 1 3-8 22 12 21 11 1.0 74 0.17 658.23
Keva 50 1-2 3-24 24 12 17 8 1.0 50 1.92 92.89
Packing 50 1 2-4 8 5 8 5 0.96 20 0.11 476.82

Table 6.1: Detailed statistics about the empirical evaluation and invented abstractions. The
success rate is an average of 50 independent test tasks with 5 random seeds.

Scalability Table 6.1 presents key observations for our empirical evaluation. It reports the

number of training trajectories (∣Dtrain∣), number of objects in the training demonstrations

(∣Otrain∣), and number of objects in the test tasks (∣Otrain∣), number of invented predicates

(∣P∣) and actions (∣Ā∣), number of predicates and actions that were used in one of the test

problems, number of objects in the training demonstrations (∣Otrain∣), and number of objects

in the test tasks, success rate averaged over 50 randomly generated test tasks, and average

plan length in test tasks. We also report average times (in seconds) needed to compute high-

level plans using off-the-shelf planner task planner (Speck et al., 2020) and times taken by

an off-the-shelf task and motion planner (Srivastava et al., 2014) to refine a high-level plan.

It is evident from table 6.1 that our approach can invent effective abstractions from a few

demonstrations that generalize to significantly difficult test problems with significantly high

numbers of objects as well as large branching factor and long horizons. E.g., our approach

was able to automatically invent abstractions using only 50 demonstrations (including ∼

50% random demonstrations that do not achieve the goal) that included not more than 2

planks and a gripper and use it to compute successful solutions for test tasks than contained

up to 24 planks, highlighting scalability of the invented abstractions.
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Solver

Domain ∣Dtrain∣ LAMP (our approach) Code as
Policies TAMP

20% 40% 60% 80% 100%

CafeWorld 500 0.00 ± 0.00 0.98 ± 0.04 0.98 ± 0.04 0.98 ± 0.04 1.00 ± 0.00 0.00 ± 0.00 1.0 ± 0.0
Keva 50 0.00 ± 0.00 0.92 ± 0.00 0.95 ± 0.04 0.95 ± 0.04 1.00 ± 0.00 0.00 ± 0.00 1.0 ± 0.0
Packing 50 0.10 ± 0.11 0.92 ± 0.04 0.96 ± 0.05 0.92 ± 0.08 0.90 ± 0.13 0.00 ± 0.00 0.95 ± 0.07

Table 6.2: Ablation study of our approach with decreased training demonstrations and
comparison with baseline approaches. The success rate for our approach and baselines
averaged over 10 different unseen test tasks and 5 random executions. The percentages
represent the fraction of training demonstrations used for learning the initial state and action
abstractions.

Effectiveness In Table 6.2, we present the percentage of successfully solved test tasks

using abstractions learned by our method, alongside the performance of two recent ap-

proaches that use expert-crafted abstractions as discussed above. These values are averaged

across 10 diverse test tasks and through 5 random executions of our approach. Notably, the

test tasks are more demanding than the training tasks, each involving at least three times the

number of objects compared to any task in the training set used for learning initial symbolic

abstractions. Snippets of the execution of solutions computed by LAMP (our approach) for

various test tasks are provided in Appendix A.1. We can see from Table 6.2 that our ap-

proach significantly outperformed CoP and performed as good as the TAMP oracle. CoP

used human-crafted high-level actions as well as needed manual effort to resolve syntacti-

cal errors in the output code. Yet, it failed to solve a single task from the set of test tasks

across every domain.

Robustness Table 6.2 also illustrates the number of training demonstrations utilized for

different evaluations of our approach, emphasizing the scalability and generalizability of

our method even with limited data. With a modest number of training demonstrations, our

approach outperformed the baselines in complex problems. It successfully tackled most

tasks with abstractions learned in a few-shot manner. Specifically, our approach achieved

a 100% success rate in tasks involving building structures with Keva planks and packing
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cans in a box, needing only 50 trajectories. This underscores the data-efficiency of our

approach and its ability to generalize effectively from a small number of demonstrations.

Despite the non-trivial nature of learning abstractions for a mobile manipulation problem,

our method efficiently solved 100% of these tasks in a cafe setting. However, for more

intricate trajectories, such as grasping cans from different sides while positioning the robot

on various sides of the table, our approach required a relatively higher number of trajecto-

ries (500). These training demonstrations, as noted above, also include ∼ 50% randomly

demonstrations that do not achieve the goal.

Transferability Our approach invents abstractions in a portable fashion. The invented

abstractions can also be transferred between different robots. To evaluate the transferability

of the invented abstractions, we use different robots to learn the abstractions and evaluate

them. For the tasks involving building structures with Keva planks, we use a disembodied

gripper as a robot in the training demonstrations. Fig. 6.1 and Fig. 6.6 show the disem-

bodied gripper used to learn the abstractions. However, all the test tasks were solved using

an ABB YuMi robot with a constrained 7-DOF arm, shown in Fig. 6.1. This underscores

our approach’s ability to invent abstractions that can be transferred between robots with

different kinematic constraints but similar geometries.

6.5 Related Work

The presented approach directly relates to various concepts in task and motion planning,

model learning, and abstraction learning. However, to the best of our knowledge, this is

the first work that automatically invents generalizable symbolic predicates and high-level

actions simultaneously using a set of low-level trajectories.

Task and motion planning approaches (Srivastava et al., 2014; Dantam et al., 2018;

Garrett et al., 2020; Shah et al., 2020) develop approaches for autonomously solving long-
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horizon robot planning problems. These approaches are complementary to the presented

approach as they focus on using provided abstractions for efficiently solving the robot plan-

ning problems. Shah and Srivastava (2022b, 2024) learn state and action abstractions for

long-horizon motion planning problems. An orthogonal research direction (Mishra et al.,

2023; Cheng et al., 2023; Fang et al., 2023) learns implicit abstractions (low-level gener-

ators or high-level skills) for task and motion planning in the form of generative models.

However, these approaches do not learn generalizable relational representations as well as

complex high-level relations and actions which is the focus of our work.

Several approaches invent symbolic vocabularies given a set of high-level actions (or

skills) (Konidaris et al., 2014; Ugur and Piater, 2015; Konidaris et al., 2015; Andersen

and Konidaris, 2017; Konidaris et al., 2018; Bonet and Geffner, 2019; James et al., 2020).

Ahmetoglu et al. (2022); Asai et al. (2022); Liang and Boularias (2023) learn symbolic

predicates in the form of latent spaces of deep neural networks and use them for high-level

symbolic planning. However, these approaches assume high-level actions to be provided

as input. On the other hand, the approach presented in this work automatically learns high-

level actions along with symbolic predicates.

Numerous approaches (Yang et al., 2007; Cresswell et al., 2009; Zhuo and Kambham-

pati, 2013; Aineto et al., 2019; Verma et al., 2021) have focused on learning preconditions

and effects for high-level actions, i.e., action model. A few approaches (Čertický, 2014;

Lamanna et al., 2021) have also focused on continually learning action models while col-

lecting experience in the environment. Bryce et al. (2016) and Nayyar et al. (2022) focus

on updating a known model using inconsistent observations. However, these approaches

require a set of symbolic predicates and/or high-level action signatures as input whereas

our approach automatically invents these predicates and actions. Several approaches (Sil-

ver et al., 2021; Verma et al., 2022; Chitnis et al., 2022; Silver et al., 2022; Kumar et al.,

2023; Silver et al., 2023) have been able to automatically invent high-level actions that are
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induced by state abstraction akin to the presented approach. However, unlike our approach,

these approaches do not automatically learn symbolic predicates and/or low-level samplers

and require them as input.

LLMs for robot planning Recent years have also seen significantly increased interest

in using foundational models such as LLM (large language model), VLM (visual language

model), and transformers for robot planning and control owing to their success in other

fields such as NLP, text generation, and vision. Several approaches (Brohan et al., 2022;

Goyal et al., 2023; Shridhar et al., 2023; Vuong et al., 2023) use transformer architecture

for learning reactive policies for short-horizon robot control problems. Problems tackled

by these approaches are analogous to individual actions learned by our approach.

Several directions of research explore the use of LLMs as high-level planners to gen-

erate sequences comprising of high-level, expert-crafted actions (Yu et al., 2023; Liang

et al., 2023; Huang et al., 2022; Rana et al., 2023; Lin et al., 2023; Huang et al., 2023b;

Ahn et al., 2023). These methods make progress on the problem of near-natural language

communication with robots and are complementary to the proposed work. However, there

is strong evidence against the soundness of LLMs as planners. Valmeekam et al. (2023)

show that LLMs are only ∼ 36% accurate as planners even in simple block stacking settings

not involving more than 5 object.

On the other hand, approaches that utilize LLMs to translate user requirements to for-

mal specifications (Yu et al., 2023; Ding et al., 2023; Liu et al., 2023b,a; Kwon et al.,

2023; Huang et al., 2023a) are complimentary to our approach. These approaches input a

set of symbolic predicates and use LLMs for automatically generating symbolic goals from

natural language specifications. These goals can be further used by existing planners.
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Conclusion

This chapter presents the first known approach for using the unsegmented and unan-

notated continuous low-level demonstration to invent symbolic state and action abstrac-

tions that generalize to different robots and unseen problem settings. Thorough evaluation

in simulated and real-world settings shows that the learned abstractions are efficient and

sound, as well as generate comprehensible abstractions.
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APPENDIX

A.1 Test Environments

We show snippets of some of our different simulated and real-world experiments.

i) Building structures with Keva planks using a total of 20 random training demonstrations.

ii) Delivering items in a cafe
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iii) Packing cans in a box

A.2: Learned PDDL Domains

Domain: Keva

(define (domain Keva)

(:requirements :strips :typing :equality :conditional-effects

:existential-preconditions :universal-preconditions)

(:types

goalLoc

plank

gripper

)

(:constants

goalLoc_Const - goalLoc

)

(:predicates

(gripper_plank_0 ?x - gripper ?y - plank)

(gripper_plank_1 ?x - gripper ?y - plank)
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(gripper_plank_2 ?x - gripper ?y - plank)

(gripper_plank_3 ?x - gripper ?y - plank)

(gripper_plank_4 ?x - gripper ?y - plank)

(plank_plank_0 ?x - plank ?y - plank)

(plank_plank_1 ?x - plank ?y - plank)

(goalLoc_plank_0 ?x - goalLoc ?y - plank)

(goalLoc_plank_1 ?x - goalLoc ?y - plank)

(aux3_gripper_plank_0 ?x - gripper)

(aux3_gripper_plank_1 ?x - gripper)

(aux3_plank_plank_1 ?x - plank)

(aux3_gripper_plank_2 ?x - gripper)

(aux3_gripper_plank_3 ?x - gripper)

(aux3_gripper_plank_4 ?x - gripper)

)

(:action a1

:parameters ( ?plank_p1 - plank ?gripper_p1 - gripper )

:precondition (and

(gripper_plank_2 ?gripper_p1 ?plank_p1)

(aux3_gripper_plank_1 ?gripper_p1)

(aux3_gripper_plank_3 ?gripper_p1)

(aux3_gripper_plank_4 ?gripper_p1)

)

:effect (and

(gripper_plank_1 ?gripper_p1 ?plank_p1)

(not (gripper_plank_0 ?gripper_p1 ?plank_p1))
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(not (gripper_plank_3 ?gripper_p1 ?plank_p1))

(not (gripper_plank_4 ?gripper_p1 ?plank_p1))

(not (gripper_plank_2 ?gripper_p1 ?plank_p1))

(aux3_gripper_plank_2 ?gripper_p1)

(not (aux3_gripper_plank_1 ?gripper_p1))

)

)

(:action a2

:parameters ( ?gripper_extra_p1 - gripper ?plank_p1 - plank )

:precondition (and

(gripper_plank_1 ?gripper_extra_p1 ?plank_p1)

(goalLoc_plank_0 goalLoc_Const ?plank_p1)

)

:effect (and

(goalLoc_plank_1 goalLoc_Const ?plank_p1)

(not (goalLoc_plank_0 goalLoc_Const ?plank_p1))

)

)

(:action a3

:parameters ( ?plank_p1 - plank ?gripper_p1 - gripper )

:precondition (and

(gripper_plank_0 ?gripper_p1 ?plank_p1)

(aux3_gripper_plank_1 ?gripper_p1)

(aux3_gripper_plank_2 ?gripper_p1)
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(aux3_gripper_plank_3 ?gripper_p1)

(aux3_gripper_plank_4 ?gripper_p1)

)

:effect (and

(gripper_plank_2 ?gripper_p1 ?plank_p1)

(not (gripper_plank_0 ?gripper_p1 ?plank_p1))

(not (gripper_plank_3 ?gripper_p1 ?plank_p1))

(not (gripper_plank_1 ?gripper_p1 ?plank_p1))

(not (gripper_plank_4 ?gripper_p1 ?plank_p1))

(aux3_gripper_plank_0 ?gripper_p1)

(not (aux3_gripper_plank_2 ?gripper_p1))

)

)

(:action a4

:parameters ( ?plank_p1 - plank ?gripper_p1 - gripper )

:precondition (and

(goalLoc_plank_1 goalLoc_Const ?plank_p1)

(gripper_plank_2 ?gripper_p1 ?plank_p1)

(aux3_gripper_plank_0 ?gripper_p1)

(aux3_gripper_plank_1 ?gripper_p1)

(aux3_gripper_plank_3 ?gripper_p1)

(aux3_gripper_plank_4 ?gripper_p1)

)

:effect (and

(gripper_plank_0 ?gripper_p1 ?plank_p1)
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(not (gripper_plank_3 ?gripper_p1 ?plank_p1))

(not (gripper_plank_1 ?gripper_p1 ?plank_p1))

(not (gripper_plank_4 ?gripper_p1 ?plank_p1))

(not (gripper_plank_2 ?gripper_p1 ?plank_p1))

(aux3_gripper_plank_2 ?gripper_p1)

(not (aux3_gripper_plank_0 ?gripper_p1))

)

)

(:action a5

:parameters ( ?plank_p2 - plank ?plank_p1 - plank ?

gripper_p1 - gripper )

:precondition (and

(not (= ?plank_p2 ?plank_p1))

(plank_plank_0 ?plank_p2 ?plank_p1)

(gripper_plank_4 ?gripper_p1 ?plank_p1)

(gripper_plank_2 ?gripper_p1 ?plank_p2)

(plank_plank_1 ?plank_p1 ?plank_p2)

(goalLoc_plank_1 goalLoc_Const ?plank_p2)

(goalLoc_plank_1 goalLoc_Const ?plank_p1)

(aux3_gripper_plank_0 ?gripper_p1)

(aux3_gripper_plank_1 ?gripper_p1)

(aux3_gripper_plank_3 ?gripper_p1)

)

:effect (and

(gripper_plank_0 ?gripper_p1 ?plank_p1)
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(gripper_plank_0 ?gripper_p1 ?plank_p2)

(not (gripper_plank_3 ?gripper_p1 ?plank_p1))

(not (gripper_plank_2 ?gripper_p1 ?plank_p2))

(not (gripper_plank_1 ?gripper_p1 ?plank_p1))

(not (gripper_plank_4 ?gripper_p1 ?plank_p1))

(not (gripper_plank_2 ?gripper_p1 ?plank_p1))

(not (gripper_plank_4 ?gripper_p1 ?plank_p2))

(not (gripper_plank_1 ?gripper_p1 ?plank_p2))

(not (gripper_plank_3 ?gripper_p1 ?plank_p2))

(aux3_gripper_plank_2 ?gripper_p1)

(aux3_gripper_plank_4 ?gripper_p1)

(not (aux3_gripper_plank_0 ?gripper_p1))

)

)

(:action a6

:parameters ( ?plank_p1 - plank ?gripper_p1 - gripper )

:precondition (and

(goalLoc_plank_1 goalLoc_Const ?plank_p1)

(gripper_plank_2 ?gripper_p1 ?plank_p1)

(aux3_gripper_plank_1 ?gripper_p1)

(aux3_gripper_plank_3 ?gripper_p1)

(aux3_gripper_plank_4 ?gripper_p1)

)

:effect (and

(gripper_plank_0 ?gripper_p1 ?plank_p1)
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(not (gripper_plank_3 ?gripper_p1 ?plank_p1))

(not (gripper_plank_1 ?gripper_p1 ?plank_p1))

(not (gripper_plank_4 ?gripper_p1 ?plank_p1))

(not (gripper_plank_2 ?gripper_p1 ?plank_p1))

(aux3_gripper_plank_2 ?gripper_p1)

)

)

(:action a7

:parameters ( ?plank_p1 - plank ?gripper_p1 - gripper )

:precondition (and

(gripper_plank_1 ?gripper_p1 ?plank_p1)

(goalLoc_plank_1 goalLoc_Const ?plank_p1)

(aux3_gripper_plank_2 ?gripper_p1)

(aux3_gripper_plank_3 ?gripper_p1)

)

:effect (and

(gripper_plank_2 ?gripper_p1 ?plank_p1)

(not (gripper_plank_0 ?gripper_p1 ?plank_p1))

(not (gripper_plank_3 ?gripper_p1 ?plank_p1))

(not (gripper_plank_1 ?gripper_p1 ?plank_p1))

(not (gripper_plank_4 ?gripper_p1 ?plank_p1))

(aux3_gripper_plank_1 ?gripper_p1)

(not (aux3_gripper_plank_2 ?gripper_p1))

)

)
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(:action a8

:parameters ( ?plank_p1 - plank ?gripper_p1 - gripper )

:precondition (and

(gripper_plank_0 ?gripper_p1 ?plank_p1)

(aux3_gripper_plank_1 ?gripper_p1)

(aux3_gripper_plank_2 ?gripper_p1)

(aux3_gripper_plank_3 ?gripper_p1)

(aux3_gripper_plank_4 ?gripper_p1)

)

:effect (and

(gripper_plank_2 ?gripper_p1 ?plank_p1)

(not (gripper_plank_0 ?gripper_p1 ?plank_p1))

(not (gripper_plank_3 ?gripper_p1 ?plank_p1))

(not (gripper_plank_1 ?gripper_p1 ?plank_p1))

(not (gripper_plank_4 ?gripper_p1 ?plank_p1))

(not (aux3_gripper_plank_2 ?gripper_p1))

)

)

(:action a9

:parameters ( ?plank_p2 - plank ?plank_p1 - plank

?gripper_p1 - gripper )

:precondition (and

(not (= ?plank_p2 ?plank_p1))

(plank_plank_0 ?plank_p1 ?plank_p2)
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(plank_plank_0 ?plank_p2 ?plank_p1)

(gripper_plank_0 ?gripper_p1 ?plank_p1)

(goalLoc_plank_0 goalLoc_Const ?plank_p2)

(gripper_plank_1 ?gripper_p1 ?plank_p2)

(goalLoc_plank_1 goalLoc_Const ?plank_p1)

(aux3_gripper_plank_2 ?gripper_p1)

(aux3_gripper_plank_3 ?gripper_p1)

(aux3_plank_plank_1 ?plank_p2)

(aux3_plank_plank_1 ?plank_p1)

(aux3_gripper_plank_4 ?gripper_p1)

)

:effect (and

(gripper_plank_4 ?gripper_p1 ?plank_p1)

(goalLoc_plank_1 goalLoc_Const ?plank_p2)

(plank_plank_1 ?plank_p1 ?plank_p2)

(not (gripper_plank_3 ?gripper_p1 ?plank_p1))

(not (plank_plank_0 ?plank_p1 ?plank_p2))

(not (gripper_plank_0 ?gripper_p1 ?plank_p1))

(not (gripper_plank_1 ?gripper_p1 ?plank_p1))

(not (gripper_plank_2 ?gripper_p1 ?plank_p1))

(not (goalLoc_plank_0 goalLoc_Const ?plank_p2))

(aux3_gripper_plank_0 ?gripper_p1)

(not (aux3_gripper_plank_4 ?gripper_p1))

(not (aux3_plank_plank_1 ?plank_p1))

)

)

129



)

Domain: CafeWorld

(define (domain CafeWorld)

(:requirements :strips :typing :equality :conditional-effects

:existential-preconditions :universal-preconditions)

(:types

goalLoc

freight

can

gripper

surface

)

(:constants

goalLoc_Const - goalLoc

)

(:predicates

(gripper_can_0 ?x - gripper ?y - can)

(gripper_can_1 ?x - gripper ?y - can)

(gripper_can_2 ?x - gripper ?y - can)

(freight_surface_0 ?x - freight ?y - surface)

(freight_surface_1 ?x - freight ?y - surface)

(freight_gripper_0 ?x - freight ?y - gripper)

(freight_gripper_1 ?x - freight ?y - gripper)
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(freight_can_0 ?x - freight ?y - can)

(freight_can_1 ?x - freight ?y - can)

(can_surface_0 ?x - can ?y - surface)

(can_surface_1 ?x - can ?y - surface)

(aux3_can_surface_1 ?x - can)

(aux3_freight_can_1 ?x - freight)

(aux3_freight_surface_1 ?x - freight)

(aux3_freight_surface_0 ?x - freight)

(aux3_can_surface_0 ?x - can)

(aux3_gripper_can_2 ?x - gripper)

(aux3_freight_gripper_1 ?x - freight)

(aux3_gripper_can_1 ?x - gripper)

(aux3_gripper_can_0 ?x - gripper)

(aux3_freight_gripper_0 ?x - freight)

(aux3_freight_can_0 ?x - freight)

)

(:action a1

:parameters ( ?can_p1 - can ?freight_p1 - freight ?

surface_extra_p1 - surface ?gripper_p1 - gripper )

:precondition (and

(can_surface_1 ?can_p1 ?surface_extra_p1)

(gripper_can_0 ?gripper_p1 ?can_p1)

(freight_can_0 ?freight_p1 ?can_p1)

(freight_surface_1 ?freight_p1 ?surface_extra_p1)

(freight_gripper_0 ?freight_p1 ?gripper_p1)
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(aux3_gripper_can_2 ?gripper_p1)

(aux3_gripper_can_1 ?gripper_p1)

)

:effect (and

(gripper_can_1 ?gripper_p1 ?can_p1)

(not (gripper_can_0 ?gripper_p1 ?can_p1))

(not (gripper_can_2 ?gripper_p1 ?can_p1))

(aux3_gripper_can_0 ?gripper_p1)

(not (aux3_gripper_can_1 ?gripper_p1))

)

)

(:action a2

:parameters ( ?gripper_extra_p1 - gripper ?can_p1 - can

?freight_extra_p1 - freight ?surface_p1 - surface )

:precondition (and

(freight_surface_1 ?freight_extra_p1 ?surface_p1)

(gripper_can_2 ?gripper_extra_p1 ?can_p1)

(freight_gripper_0 ?freight_extra_p1 ?gripper_extra_p1)

(can_surface_1 ?can_p1 ?surface_p1)

)

:effect (and

(can_surface_0 ?can_p1 ?surface_p1)

(not (can_surface_1 ?can_p1 ?surface_p1))
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(aux3_can_surface_1 ?can_p1)

)

)

(:action a3

:parameters ( ?gripper_p1 - gripper ?surface_p1 - surface

?freight_p1 - freight )

:precondition (and

(freight_gripper_1 ?freight_p1 ?gripper_p1)

(freight_surface_0 ?freight_p1 ?surface_p1)

(aux3_freight_surface_1 ?freight_p1)

)

:effect (and

(freight_surface_1 ?freight_p1 ?surface_p1)

(not (freight_surface_0 ?freight_p1 ?surface_p1))

(not (aux3_freight_surface_1 ?freight_p1))

)

)

(:action a4

:parameters ( ?surface_extra_p2 - surface

?gripper_p1 - gripper ?surface_p1 - surface

?freight_p1 - freight )

:precondition (and

(not (= ?surface_extra_p2 ?surface_p1))

(freight_surface_1 ?freight_p1 ?surface_p1)
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(freight_surface_0 ?freight_p1 ?surface_extra_p2)

(freight_gripper_1 ?freight_p1 ?gripper_p1)

)

:effect (and

(freight_surface_0 ?freight_p1 ?surface_p1)

(not (freight_surface_1 ?freight_p1 ?surface_p1))

(aux3_freight_surface_1 ?freight_p1)

)

)

(:action a5

:parameters ( ?gripper_extra_p1 - gripper ?can_p1 - can

?freight_extra_p1 - freight ?surface_p1 - surface )

:precondition (and

(freight_surface_1 ?freight_extra_p1 ?surface_p1)

(gripper_can_2 ?gripper_extra_p1 ?can_p1)

(can_surface_0 ?can_p1 ?surface_p1)

(freight_gripper_0 ?freight_extra_p1 ?gripper_extra_p1)

(aux3_can_surface_1 ?can_p1)

)

:effect (and

(can_surface_1 ?can_p1 ?surface_p1)

(not (can_surface_0 ?can_p1 ?surface_p1))

(not (aux3_can_surface_1 ?can_p1))

)
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)

(:action a6

:parameters ( ?can_p1 - can ?freight_p1 - freight

?surface_extra_p1 - surface ?gripper_p1 - gripper )

:precondition (and

(gripper_can_2 ?gripper_p1 ?can_p1)

(freight_can_1 ?freight_p1 ?can_p1)

(freight_gripper_1 ?freight_p1 ?gripper_p1)

(freight_surface_1 ?freight_p1 ?surface_extra_p1)

(aux3_freight_can_0 ?freight_p1)

(aux3_freight_gripper_0 ?freight_p1)

)

:effect (and

(freight_can_0 ?freight_p1 ?can_p1)

(freight_gripper_0 ?freight_p1 ?gripper_p1)

(not (freight_gripper_1 ?freight_p1 ?gripper_p1))

(not (freight_can_1 ?freight_p1 ?can_p1))

(aux3_freight_can_1 ?freight_p1)

(aux3_freight_gripper_1 ?freight_p1)

(not (aux3_freight_can_0 ?freight_p1))

(not (aux3_freight_gripper_0 ?freight_p1))

)

)

(:action a7
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:parameters ( ?can_p1 - can ?gripper_p1 - gripper

?surface_extra_p1 - surface ?freight_p1 - freight )

:precondition (and

(can_surface_1 ?can_p1 ?surface_extra_p1)

(freight_can_0 ?freight_p1 ?can_p1)

(gripper_can_1 ?gripper_p1 ?can_p1)

(freight_surface_1 ?freight_p1 ?surface_extra_p1)

(freight_gripper_0 ?freight_p1 ?gripper_p1)

(aux3_gripper_can_0 ?gripper_p1)

(aux3_gripper_can_2 ?gripper_p1)

)

:effect (and

(gripper_can_2 ?gripper_p1 ?can_p1)

(not (gripper_can_0 ?gripper_p1 ?can_p1))

(not (gripper_can_1 ?gripper_p1 ?can_p1))

(aux3_gripper_can_1 ?gripper_p1)

(not (aux3_gripper_can_2 ?gripper_p1))

)

)

(:action a8

:parameters ( ?can_p1 - can ?gripper_p1 - gripper

?surface_extra_p1 - surface ?freight_p1 - freight )

:precondition (and

(freight_can_0 ?freight_p1 ?can_p1)

(gripper_can_1 ?gripper_p1 ?can_p1)
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(freight_surface_1 ?freight_p1 ?surface_extra_p1)

(freight_gripper_0 ?freight_p1 ?gripper_p1)

(aux3_gripper_can_0 ?gripper_p1)

(aux3_gripper_can_2 ?gripper_p1)

)

:effect (and

(gripper_can_0 ?gripper_p1 ?can_p1)

(not (gripper_can_2 ?gripper_p1 ?can_p1))

(not (gripper_can_1 ?gripper_p1 ?can_p1))

(aux3_gripper_can_1 ?gripper_p1)

(not (aux3_gripper_can_0 ?gripper_p1))

)

)

(:action a9

:parameters ( ?can_p1 - can ?gripper_p1 - gripper

?surface_extra_p1 - surface ?freight_p1 - freight )

:precondition (and

(freight_surface_1 ?freight_p1 ?surface_extra_p1)

(gripper_can_2 ?gripper_p1 ?can_p1)

(freight_can_0 ?freight_p1 ?can_p1)

(freight_gripper_0 ?freight_p1 ?gripper_p1)

(aux3_gripper_can_0 ?gripper_p1)

(aux3_gripper_can_1 ?gripper_p1)

)

:effect (and
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(gripper_can_1 ?gripper_p1 ?can_p1)

(not (gripper_can_0 ?gripper_p1 ?can_p1))

(not (gripper_can_2 ?gripper_p1 ?can_p1))

(aux3_gripper_can_2 ?gripper_p1)

(not (aux3_gripper_can_1 ?gripper_p1))

)

)

(:action a10

:parameters ( ?gripper_p1 - gripper ?surface_extra_p1 - surface

?freight_p1 - freight )

:precondition (and

(freight_surface_1 ?freight_p1 ?surface_extra_p1)

(freight_gripper_0 ?freight_p1 ?gripper_p1)

(aux3_freight_gripper_1 ?freight_p1)

)

:effect (and

(freight_gripper_1 ?freight_p1 ?gripper_p1)

(not (freight_gripper_0 ?freight_p1 ?gripper_p1))

(aux3_freight_gripper_0 ?freight_p1)

(not (aux3_freight_gripper_1 ?freight_p1))

)

)

(:action a11

:parameters ( ?gripper_p1 - gripper ?surface_extra_p1 - surface

138



?freight_p1 - freight )

:precondition (and

(freight_gripper_1 ?freight_p1 ?gripper_p1)

(freight_surface_1 ?freight_p1 ?surface_extra_p1)

(aux3_freight_gripper_0 ?freight_p1)

)

:effect (and

(freight_gripper_0 ?freight_p1 ?gripper_p1)

(not (freight_gripper_1 ?freight_p1 ?gripper_p1))

(aux3_freight_gripper_1 ?freight_p1)

(not (aux3_freight_gripper_0 ?freight_p1))

)

)

(:action a12

:parameters ( ?can_p1 - can ?freight_p1 - freight

?surface_extra_p1 - surface ?gripper_p1 - gripper )

:precondition (and

(gripper_can_2 ?gripper_p1 ?can_p1)

(can_surface_0 ?can_p1 ?surface_extra_p1)

(freight_surface_1 ?freight_p1 ?surface_extra_p1)

(freight_can_0 ?freight_p1 ?can_p1)

(freight_gripper_0 ?freight_p1 ?gripper_p1)

(aux3_freight_can_1 ?freight_p1)

(aux3_freight_gripper_1 ?freight_p1)

)
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:effect (and

(freight_gripper_1 ?freight_p1 ?gripper_p1)

(freight_can_1 ?freight_p1 ?can_p1)

(not (freight_can_0 ?freight_p1 ?can_p1))

(not (freight_gripper_0 ?freight_p1 ?gripper_p1))

(aux3_freight_can_0 ?freight_p1)

(aux3_freight_gripper_0 ?freight_p1)

(not (aux3_freight_can_1 ?freight_p1))

(not (aux3_freight_gripper_1 ?freight_p1))

)

)

)

Domain: Packing

(define (domain Packing)

(:requirements :strips :typing :equality :conditional-effects

:existential-preconditions :universal-preconditions)

(:types

can

gripper

surface

)

(:predicates

(gripper_can_0 ?x - gripper ?y - can)
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(gripper_can_1 ?x - gripper ?y - can)

(gripper_can_2 ?x - gripper ?y - can)

(can_surface_0 ?x - can ?y - surface)

(can_surface_1 ?x - can ?y - surface)

(aux3_gripper_can_1 ?x - gripper)

(aux3_gripper_can_2 ?x - gripper)

(aux3_gripper_can_0 ?x - gripper)

)

(:action a1

:parameters ( ?can_p1 - can ?gripper_p1 - gripper )

:precondition (and

(gripper_can_0 ?gripper_p1 ?can_p1)

(aux3_gripper_can_2 ?gripper_p1)

(aux3_gripper_can_1 ?gripper_p1)

)

:effect (and

(gripper_can_2 ?gripper_p1 ?can_p1)

(not (gripper_can_0 ?gripper_p1 ?can_p1))

(not (gripper_can_1 ?gripper_p1 ?can_p1))

(aux3_gripper_can_0 ?gripper_p1)

(not (aux3_gripper_can_2 ?gripper_p1))

)

)

(:action a2
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:parameters ( ?can_p1 - can ?surface_extra_p1 - surface

?gripper_p1 - gripper )

:precondition (and

(gripper_can_2 ?gripper_p1 ?can_p1)

(can_surface_1 ?can_p1 ?surface_extra_p1)

(aux3_gripper_can_0 ?gripper_p1)

(aux3_gripper_can_1 ?gripper_p1)

)

:effect (and

(gripper_can_0 ?gripper_p1 ?can_p1)

(not (gripper_can_2 ?gripper_p1 ?can_p1))

(not (gripper_can_1 ?gripper_p1 ?can_p1))

(aux3_gripper_can_2 ?gripper_p1)

(not (aux3_gripper_can_0 ?gripper_p1))

)

)

(:action a3

:parameters ( ?can_p1 - can ?gripper_p1 - gripper )

:precondition (and

(gripper_can_2 ?gripper_p1 ?can_p1)

(aux3_gripper_can_0 ?gripper_p1)

(aux3_gripper_can_1 ?gripper_p1)

)

:effect (and

(gripper_can_1 ?gripper_p1 ?can_p1)
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(not (gripper_can_0 ?gripper_p1 ?can_p1))

(not (gripper_can_2 ?gripper_p1 ?can_p1))

(aux3_gripper_can_2 ?gripper_p1)

(not (aux3_gripper_can_1 ?gripper_p1))

)

)

(:action a4

:parameters ( ?can_p1 - can ?surface_extra_p1 - surface

?gripper_p1 - gripper )

:precondition (and

(can_surface_1 ?can_p1 ?surface_extra_p1)

(gripper_can_1 ?gripper_p1 ?can_p1)

(aux3_gripper_can_0 ?gripper_p1)

(aux3_gripper_can_2 ?gripper_p1)

)

:effect (and

(gripper_can_2 ?gripper_p1 ?can_p1)

(not (gripper_can_0 ?gripper_p1 ?can_p1))

(not (gripper_can_1 ?gripper_p1 ?can_p1))

(aux3_gripper_can_1 ?gripper_p1)

(not (aux3_gripper_can_2 ?gripper_p1))

)

)

(:action a5
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:parameters ( ?can_p1 - can ?gripper_extra_p1 - gripper

?surface_p1 - surface )

:precondition (and

(can_surface_0 ?can_p1 ?surface_p1)

(gripper_can_1 ?gripper_extra_p1 ?can_p1)

)

:effect (and

(can_surface_1 ?can_p1 ?surface_p1)

(not (can_surface_0 ?can_p1 ?surface_p1))

)

)

)
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Chapter 7

OTHER APPLICATIONS

This chapter presents JEDAI – an application of approaches developed as part of this

thesis. JEDAI uses various concepts of planning and robotics to educate non-experts about

planning in AI and robotics. It also allows non-experts to interact with robot systems in a

simulator and enables them to learn about planning in robotics.

7.1 Motivation

AI systems are increasingly common in everyday life, where they can be used by layper-

sons who may not understand how these autonomous systems work or what they can and

cannot do. This problem is particularly salient in cases of taskable AI systems whose func-

tionality can change based on the tasks they are performing. In this work, we present an AI

system JEDAI (JEDAI Explains Decision-Making AI) that can be used in outreach and ed-

ucational efforts to help laypersons learn how to provide AI systems with new tasks, debug

such systems, and understand their capabilities.

The research ideas brought together in JEDAI address three key technical challenges:

(i) abstracting a robot’s functionalities into high-level actions (capabilities) that the user can

more easily understand; (ii) converting the user-understandable capabilities into low-level

motion plans that a robot can execute; and (iii) explaining errors in a manner sensitive to

the user’s current level of knowledge so as to make the robot’s capabilities and limitations

clear.

JEDAI utilizes recent work in explainable AI and integrated task and motion planning to

address these challenges and provides a simple interface to support accessibility. Users se-

lect a domain and an associated task, after which they create a plan consisting of high-level
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Figure 7.1: JEDAI system with a Blockly-based plan creator on the left and a simulator
window on the right.

actions (Fig. 7.1 left) to complete the task. The user puts together a plan in a drag-and-drop

workspace, built with the Blockly visual programming library Google (2017). JEDAI vali-

dates this plan using the Hierarchical Expertise Level Modeling algorithm (HELM) Sreed-

haran et al. (2018, 2021). If the plan contains any errors, HELM computes a user-specific

explanation of why the plan would fail. JEDAI converts such explanations to natural lan-

guage, thus helping to identify and fix any gaps in the user’s understanding. Whereas, if

the plan given by the user is a correct solution to the current task, JEDAI uses a task and

motion planner ATM-MDP Shah et al. (2020); Shah and Srivastava (2021) to convert the

high-level plan, that the user understands, to a low-level motion plan that the robot can

execute. The user is shown the execution of this low-level motion plan by the robot in a

simulated environment (Fig. 7.1 right).

Prior work on the topic includes approaches that solve the three technical challenges

mentioned earlier in isolation. This includes tools for: providing visualizations or ani-
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Figure 7.2: Architecture of JEDAI showing interaction between the four core components.

mations of standard planning domains Magnaguagno et al. (2017); Chen et al. (2019);

Aguinaldo and Regli (2021); Dvorak et al. (2021); De Pellegrin and Petrick (2021); Roberts

et al. (2021); making it easier for non-expert users to program robots with low-level ac-

tions Krishnamoorthy and Kapila (2016); Weintrop et al. (2018); Huang et al. (2020a);

Winterer et al. (2020); and generating explanations for plans provided by the users Grover

et al. (2020); Karthik et al. (2022); Brandao et al. (2021); Kumar et al. (2022). In addition,

none of these works make the instructions easier for the user, have the ability to automat-

ically compute user-aligned explanations, and work with real robots (or their simulators)

at the same time. JEDAI addresses all three challenges in tandem by using 3D simula-

tions for domains with real robots and their actual constraints and providing personalized

explanations that inform a user of any mistake they make while using the system.

7.2 Architecture

Fig. 7.2 shows the four core components of the JEDAI framework: (i) user interface,

(ii) task and motion planner, (iii) personalized explanation generator, and (iv) natural lan-

guage templates. We now describe each component in detail.
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User interface JEDAI’s UI (Fig. 7.1) is made to be unintimidating and easy to use. The

Blockly visual programming interface is used to facilitate this. JEDAI generates a separate

interconnecting block for each high-level action, and action parameters are picked from

drop-down selection fields that display type-consistent options for each parameter. Users

can drag-and-drop these actions and select different arguments to create a high-level plan.

Personalized explanation generator Users will sometimes make mistakes when plan-

ning, either failing to achieve goal conditions or applying actions before the necessary

preconditions are satisfied. For inexperienced users in particular, these mistakes may stem

from an incomplete understanding of the task’s requirements or the robot’s capabilities.

JEDAI assists users in apprehending these details by providing explanations personalized

to each user.

Explanations in the context of this work are of two types: (i) non-achieved goal condi-

tions, and (ii) violation of a precondition of an action. JEDAI validates the plan submitted

by the user to check if it achieves all goal conditions. If it fails to achieve any goal condi-

tion, the user is informed about it. JEDAI uses HELM to compute user-specific contrastive

explanations in order to explain any unmet precondition in an action used in the user’s plan.

HELM does this by using the plan submitted by the user to estimate the user’s understand-

ing of the robot’s model and then uses the estimated model to compute the personalized

explanations. In case of multiple errors in the user’s plan, HELM generates explanation for

one of the errors. This is because explaining the reason for more than one errors might be

unnecessary and in the worst case might leave the user feeling overwhelmed Miller (2019).

An error is selected for explanation by HELM based on optimizing a cost function that in-

dicates the relative difficulty of concept understandability which can be changed to reflect

different users’ background knowledge.

148



Natural language templates Even with a user-friendly interface and personalized expla-

nations for errors in abstract plans, domain model syntax used for interaction with ATM-

MDP presents a significant barrier to a non-expert trying to understand the state of an en-

vironment and the capabilities of a robot. To alleviate this, JEDAI uses language templates

that use the structure of the planning formalism for generating natural language descrip-

tions for goals, actions, and explanations. E.g., the action “pickup (plank i gripper left)”

can be described in natural language as “pick up plank i with the left gripper”. Currently,

we use hand-written templates for these translations, but an automated approach can also

be used.

Task and motion planner JEDAI uses ATM-MDP to convert the high-level plan sub-

mitted by the user into sequences of low-level primitive actions that a robot can execute.

ATM-MDP uses sampling-based motion planners to provide a probabilistically com-

plete approach to hierarchical planning. High-level plans are refined by computing feasible

motion plans for each high-level action. If an action does not accept any valid refinement

due to discrepancies between the symbolic state and the low-level environment, it reports

the failure back to JEDAI. If all actions in the high-level plan are refined successfully, the

plan’s execution is shown using the OpenRAVE simulator Diankov (2010).

Implementation Any custom domain can be set up with JEDAI. We provide five built-

in domains, each with one of YuMi ABB (2015) or Fetch Wise et al. (2016) robots. Each

domain contains a set of problems that the users can attempt to solve and low-level environ-

ments corresponding to these problems. Source code for the framework, an already setup

virtual machine, and the documentation are available at: https://github.com/aair-l

ab/AAIR-JEDAI. A video demonstrating JEDAI’s working is available at: https://you

tu.be/MQdoikcnhbY.
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7.3 Conclusion

We demonstrated a novel AI tool JEDAI for helping people understand the capabilities

of an arbitrary AI system and enabling them to work with such systems. JEDAI converts

the user’s input plans to low level motion plans executable by the robot if it is correct, or ex-

plains to the user any error in the plan if it is incorrect. JEDAI works with off-the-shelf task

and motion planners and explanation generators. This structure allows it to scale automat-

ically with improvements in either of these active research areas. JEDAI’s vizualization-

based interface could also be used to foster trust in AI systems Beauxis-Aussalet et al.

(2021).

JEDAI uses predefined abstractions to verify plans provided by the user. In the future,

we plan on extending it to learn abstractions automatically (Shah and Srivastava, 2022b).

JEDAI could also be extended as an interface for assessing an agent’s functionalities and

capabilities by interrogating the agent (Verma et al., 2021; Nayyar et al., 2022; Verma

et al., 2022) as well as to work as an interface that makes AI systems compliant with

Level II assistive AI – systems that makes it easy for operators to learn how to use them

safely Srivastava (2021). Extending this tool for working in non-stationary settings, and

generating natural language descriptions of predicates and actions autonomously are a few

other promising directions of future work.
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Chapter 8

CONCLUSION AND FUTURE WORK

This thesis has addressed the crucial challenge of automating the creation of world

models for robot planning, a task traditionally reliant on human expertise and intuition.

By leveraging unannotated and unsegmented low-level trajectories, our approaches have

successfully learned symbolic and interpretable world models, which are not only effective

but also generalizable across diverse environments and problems.

We have introduced innovative methodologies across various chapters, each contribut-

ing significantly to the advancement of robot planning:

Stochastic task and motion planning (Chapter 3) Our novel anytime approach has rev-

olutionized policies for stochastic task and motion planning problems, effectively handling

the inherent noise in robot actions and ensuring efficient execution even before a complete

solution is computed.

Automatically learning zero-shot abstractions (Chapter 4) By automating the invent-

ing state and action abstractions for deterministic motion planning, we have eliminated the

need for human-provided world models. Our approach, coupled with a hierarchical multi-

source multi-directional planner, has demonstrated remarkable performance improvements

over existing methods.

Zero-shot option invention for stochastic motion planning (Chapter 5) Addressing

the imperfections in real-world robot actuation, our methodology for inventing options in

a zero-shot manner has significantly enhanced the efficacy of stochastic motion planning.

The integration of symbolic planning and deep reinforcement learning has yielded promis-

151



ing theoretical guarantees and empirical results.

Automatically inventing relational world models (Chapter 6) Our approach to auto-

matically inventing relational abstractions has paved the way for interpretable and efficient

hierarchical robot planning. By utilizing minimal input data in the form of unannotated and

unsegmented robot trajectories, we have demonstrated the practicality and effectiveness of

our methodology across various scenarios.

Furthermore, we have presented an application, JEDAI (Chapter 7), aimed at educat-

ing students and non-experts about AI planning and robotics, showcasing the real-world

applicability and broader impact of our research.

In essence, this thesis marks a significant step towards autonomous and adaptable robot

planning systems, with contributions spanning from theoretical advancements to practi-

cal implementations. The developed methodologies offer promising avenues for future

research and applications in the field of robotics and artificial intelligence.

Future Work Now, we highlight a few future directions that we aim to explore.

Probabilistic world models Our approach for learning relational world models currently

assumes a deterministic setting, i.e., learned actions only have a single possible outcome.

However, as mentioned earlier, in most real-world scenarios, the robot’s actions are stochas-

tic. Therefore, as part of the future work, we aim to learn world models for stochastic

settings.

Stronger guarantees on learned world models Currently, our approach relies on asso-

ciative learning with passively collected data for learning action models, which are prone

to making errors. This can lead to inaccurate models and a lack of strong theoretical guar-

antees on the learned models. We aim to use active learning to learn accurate models and
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provide guarantees on learned action models.

Learning in the observation space and partial observability Our approach assumes

full observability. This means that the poses of each object in the environment and the

configurations of each robot are precisely known while learning abstractions and using

them in the real world. However, in practice, accurate poses of the objects are difficult to

obtain. Therefore, we aim to develop approaches that do not rely on perfect perception and

handle partial and imperfect observability in high-dimensional observation space.
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