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ABSTRACT

Object tracking refers to the problem of estimating a moving object’s time-varying

parameters that are indirectly observed in measurements at each time step. Increased

noise and clutter in the measurements reduce estimation accuracy as they increase

the uncertainty of tracking in the field of view. Whereas tracking is performed using

a Bayesian filter, a Bayesian smoother can be utilized to refine parameter state esti-

mations that occurred before the current time. In practice, smoothing can be widely

used to improve state estimation or correct data association errors, and it can lead

to significantly better estimation performance as it reduces the impact of noise and

clutter.

In this work, a single object tracking method is proposed based on integrating

Kalman filtering and smoothing with thresholding to remove unreliable measure-

ments. As the new method is effective when the noise and clutter in the measure-

ments are high, the main goal is to find these measurements using a moving average

filter and a thresholding method to improve estimation. Thus, the proposed method

is designed to reduce estimation errors that result from measurements corrupted with

high noise and clutter.

Simulations are provided to demonstrate the improved performance of the new

method when compared to smoothing without thresholding. The root-mean-square

error in estimating the object state parameters is shown to be especially reduced

under high noise conditions.
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Chapter 1

INTRODUCTION

1.1 Motivation

In applications such as tracking, monitoring and surveillance, the aim is to accurately

infer the trajectory of a moving object using sensor observations [1, 2]. For example,

in radar tracking, the radar measurements collected at the current time step is pro-

cessed to estimate the current position and velocity of a moving target [2, 3]. The

accuracy of a tracking algorithm depends on multiple factors, including the assumed

kinetic model, relevance of the measurements, prior knowledge of operational and

environmental conditions during tracking.

Tracking algorithms use Bayesian filtering methods to estimate the time-varying

state of a system [4, 5]. These methods use Bayesian statistics to estimate the prob-

ability density function (PDF) of the unknown state, together with sequential sensor

measurements and kinematics models to provide a physics-based description of the

system process. The Kalman filter (KF) is an example of Bayesian filtering that pro-

vides a recursive solution for linear systems under Gaussian noise assumptions [6, 7].

Modified versions of the KF for use with nonlinear systems include the extended KF

(EKF) which is based on linearization approaches [8, 9] and the unscented KF (UKF)

which is based on approximate filtering approaches [9–11]. For highly nonlinear or

non-Gaussian systems, sequential Monte Carlo methods, such as particle filtering,

provide higher tracking accuracy than the modified KFs approaches [12–14].

In realistic tracking scenarios, Bayesian smoothing may be required in addition

to Bayesian filtering to further improve tracking estimation. This is especially the
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case when tracking under high noise or heavy clutter conditions. Whereas Bayesian

filtering uses prior estimates to predict the unknown state before updating it with

incoming measurements, Bayesian smoothing makes use of posterior information. In

particular, smoothing makes predictions by estimating posterior information for the

current time step using measurements obtained after the time of interest [15–23].

Using both Kalman filtering and smoothing can results in overall better state estima-

tion, depending on the tracking scenario [4, 18, 21, 22, 24]. The two-filter smooth-

ing approach integrates the estimates obtained from forward filtering and backward

smoothing [21, 25, 26]. Kalman smoothing (KS), that is applicable to linear Gaus-

sian systems, performs a separate backward smoothing after the forward filtering

from the KF [16, 27]. The forward-backward pass algorithm used by the KS uses

the Rauch-Tung-Striebel (RTS) algorithm, which is an efficient algorithm for fixed

interval smoothing [17]. Extensions to nonlinear systems include extended Kalman

smoothing (EKS) and unscented Kalman smoothing (UKS) [8, 18, 22, 24]. Note that

smoothing has also been applied to particle filtering for nonlinear and non-Gaussian

systems [28, 29].

Many applications which are not required a real-time process, in practice, are used

to improve their performance with additional processing after collecting all measure-

ments since the estimation accuracy can be further improved using all measurements

than using only real-time measurements. For instance, when monitoring vital signs

in healthcare, a large probability of false alarm may only require additional testing

whereas a high probability of miss could lead to long term complications. Another

example is the use of ground penetrating radar in forensic investigations [30]. A high

probability of false alarm may result in further testing in order to locate a gravesite

whereas a high probability of miss may lead to unsolved murder cases. Our proposed

work was originated from this perspective, and designed to improve the tracking

2



accuracy by integrating the Bayesian filtering and smoothing method.

1.2 Proposed Work

In this thesis, we consider a nonlinear state space system formulation for tracking

a moving object using sensor measurements that are corrupted by high noise and

clutter. We propose a tracking approach that, in addition to Bayesian filtering and

smoothing, uses a thresholding to increase state estimation accuracy. In particular,

after the unknown state is sequentially estimated over all time steps using the UKF,

we use a process that is aimed to eliminate measurements that may have resulted from

false alarms. Such measurements could have been accepted as true detections during

matched filtering, even though they did not contain any information on the object

[31]. The method compares the estimated state at each time step to a neighborhood

of estimated states, both from previous and future time steps, using a distance-

based metric. If the metric threshold is exceeded at a particular time step, then the

measurement-updated state is replaced with the predicted value of the UKF process.

After thresholding, we use the UKS to further improve the state estimation accuracy.

We use simulations to compare the estimation mean-square error before and after

the proposed thresholding process for different tracking scenarios with high noise

and/or high clutter. We also studied the effect of varying the parameters that affect

the performance of the proposed method, such as the metric threshold and the size

of the neighborhood. Our simulations demonstrate that tracking improvement is

achieved in high noise tracking scenarios.

1.3 Thesis Organization

The remainder of the thesis is organized as follows. In Section 1.3, we provide a list of

mathematical symbols and acronyms that are used throughout the thesis. In Chapter
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2, we provide background information on sampling methods, Bayesian inference and

estimation, Bayesian filtering and Bayesian smoothing. In Chapter 3, formulate our

tracking problem and describe our new proposed approach. In Chapter 4, provide

simulations to demonstrate the performance of our proposed method. We compare the

performance between the original and the proposed method and discuss the results.

In Chapter 5, we provide concluding remarks and discuss future directions.
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1.4 Thesis Acronyms and Notation

In this section, we provide a list of the acronyms and a list of the mathematical

symbol notation that we used in the thesis. Note that, throughout the thesis, we use

lower case letters to denote scalars (e.g., x, t, α), boldface lower case letters to denote

vectors (e.g., x, φ), boldface upper case letters to denote matrices (e.g., X), upper

case calligraphy letters to denote sets (e.g., N ), and blackboard-bold form to denote

spaces (e.g., H ).

List of Mathematical Symbols

x, t, α, β Scalars

x, t,α, βα, βα, β Vectors

X,Y,F,H Matrices

X ,Y ,F ,H Sets

X,Y,F,H Spaces

A> Transpose of matrix

A−1 Inverse of matrix

A−> Inverse of transpose of matrix

|a| absolute value of scalar a

|A| Determinant of matrix A
√
P Matrix such that P =

√
P
√
P
>

E[x] Expectation of the random variable x

E[x|z] Conditional expectation of the random variable x

given z

Cov(x) Covariance of the random variable x,

E[(x− E[x])(x− E[x])>]
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p(x) Probability density function (PDF) of continuous

(or discrete) random variable x

p(x|z) Conditional probability density function x given z

N (·) Gaussian distribution(i.e., normal distribution)

U(·) Uniform distribution

a =∆ b a is defined to be equal to b

a ≈ b a is approximately equal to b

a ∝ b a is proportional to b

x1:K Set or sequence of the vectors {x1, . . . ,xK}

κ Parameter of the unscented transform

λ Parameter of the unscented transform

g(·) Dynamic transition function in a state space model

h(·) Measurement model function in a state space model

I Identity matrix

J(·) Jacobian matrix

K Kalman gain matrix

P Covariance of the Gaussian distribution

Pois(λ) Covariance of the Gaussian distribution

Q Covariance of the process noise

R Covariance of the measurement noise

Rn n-dimensional space of real numbers

S Innovation covariance of a Kalman filter

Wi ith weight in sigma-point approximation

6



x Random variable or state

X (·) Sigma point of x

z Random variable or measurement

Z(·) Sigma point of y

Z Normalization constant

7



List of Acronyms

EKF Extended Kalman filter

EM Expectation-maximization

ERTSS Extended Rauch-Tung-Striebel smoothing

FIR Finite impulse response

FISST Finite set statistics

FOV Field of view

HMM Hidden Markov model

HNHC High Noise and High Clutter

HNLC High Noise and Low Clutter

KF Kalman filter

LNHC Low Noise and High Clutter

MA Moving average

MAP Maximum a posteriori

MC Monte Carlo

MCMC Markov chain Monte Carlo

MH Metropolis-Hastings

ML Maximum likelihood

PF Particle filter

PPP Poisson point process

PS Particle smoothing

RFS Rapid finite set

RMSE Root mean squared error

RTSS Rauch-Tung-Striebel smoothing

SIR Sequential importance resampling

SIR-PS Sequential importance resampling particle smoothing
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SIS Sequential importance sampling

SMC Sequential Monte Carlo

T-UKF Unscented Kalman filter after thresholding process

T-UKS Unscented Kalman smoothing after thresholding process

UKF Unscented Kalman filter

UKS Unscented Kalman smoothing

URTSS Unscented Rauch-Tung-Striebel smoothing

UT Unscented transform
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Chapter 2

BAYESIAN PROCESSING

2.1 Monte Carlo Sampling Methods

Monte Carlo (MC) methods are used to approximate a solution to a problem by

randomly drawing samples [32]. MC integration methods are often used to estimate

the average value of a continuous function within an interval. Following the law of

large numbers in probability theory, the integral of a function over a given interval

can be approximated by taking the sample mean of independent uniform samples of

the function variable. A common use of the MC method is to estimate the value of π,

as demonstrated in Figure 2.1. The value was estimated by drawing a circle to fully

occupy a square, uniformly selecting points in the square, and counting the number

of points inside the circle. This corresponds to counting the points located within a

radius of the circle from the origin.

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
Estimate pi using Monte Carlo method, pi =: 3.14

Figure 2.1: Estimation of π using 20,000 Monte Carlo points.

MC sampling methods form a class of algorithms that can be used to randomly

sample a probability distribution [33–37]. Direct sampling methods can be used to

10



obtain samples from a probability density function (PDF) that can be written in

closed form, such as Gaussian or uniform PDFs. In most cases, however, samples

must be realized using simulation-based methods to approximate unknown PDFs

in practical problems. Bayesian processing methods are often used to estimate the

posterior PDF, which is the conditional PDF of unknown state parameters given

sensor measurements. This PDF can be estimated by generating samples from other

PDFs, such as the prior PDF and the likelihood function.

2.1.1 Rejection Sampling Method

The rejection sampling method is an example of an MC sampling. It can be used to

generate samples from a random variable Y , with PDF pY (y) = p(y), using a proposal

distribution q(y). Even though the PDF of Y cannot be written in closed form,

the rejection sampling method assumes that a constant number of samples M , ym,

m= 1, . . . ,M , can be generated from the proposal q(y) provided that M satisfies

p(y) ≤M q(y), ∀y .

The rejection sampler draws sample y from the proposal q(y) and then sample u

such that u < z, with z= p(y)/(M q(y)). Then, the generated two samples (y, z) are

uniformly distributed over p(y). Finally, u is rejected if u > z and accepted other-

wise [38]. These steps show that, even though we cannot sample directly from p(y),

samples of Y can be drawn from the function M q(y). The process is repeated until

sampled pairs approximately follow the desired distributionp(y). Thus, samples for

Y are generated from the proposal distribution q(y).

11
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target distribution

proposal distribution

(a) Target and proposal distribution (b) Rejection sampling results

Figure 2.2: Target Distribution and Rejection Sampling.

2.1.2 Markov Chain Monte Carlo Sampling Method

Markov chain Monte Carlo (MCMC) methods sample from a probability distribu-

tion by constructing a Markov chain whose equilibrium distribution approaches the

unknown distribution [32, 38–40]. A Markov chain is a discrete-time random process

that model a future event whose behavior only depends on the current event, and

not on past events [41]. The corresponding continuous-time process is called Markov

process. A first-order Markov chain of a discrete-time random process yk satisfies the

memoryless property. Specifically, given random samples y1, . . . , yk−1, the conditional

PDF of yk satisfies

p(yk | y1, . . . , yk−1) = p(yk | yk−1) .

The MCMC method allows sampling from a large class of distributions and can

overcome the limitations of rejection sampling and importance sampling in high di-

mensional spaces.

The Metropolis-Hastings (MH) method is the most popular MCMC method [42].

The MH computational steps for approximating a target distribution p(yk) from a

12



Algorithm 1 Metropolis-Hastings (MH) Algorithm

Input: Target distribution p(yk), proposal distribution q(xk), initial sample x0

for k = 0 to K do

Draw yk ∼ q(· | xk)

Compute α =
p(yk) q(xk | yk)
p(xk) q(xk | yk)

if α > 1 then

xk+1 = xk

else if α ≤ 1 then

Draw ε ∼ U(0, 1), where U(a, b) is a uniform distribution between a and b

if ε ≤ α then

xk+1 = yk

else

xk+1 = xk

end if

end if

end for

Output: MH samples x1:K

proposal distribution q(xk) are provided in Algorithm 1. In Figure 2.3, we provide a

simulation to demonstrate that the large number of 5,000 iterations closely approxi-

mate the target distribution.

2.2 Bayesian Inference for Dynamic Systems

2.2.1 Bayesian Estimation

Bayesian inference is a methodology based on Bayes’ theorem that can be used to

update the probability of a hypothesis as new information becomes available [43]. It is

13



-10 -5 0 5 10 15 20

x

0

0.02

0.04

0.06

0.08

0.1

0.12
Target distribution
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(a) Target distribution (b) Estimated distribution

Figure 2.3: MH Sampling to Estimate a Target Distribution Using 5,000 Iterations.

often combined with MCMC sampling to estimate the distribution of hidden parame-

ters given some measurements. Especially for parameters that do not vary with time,

maximum likelihood estimation (MLE) is used to estimate a parameter θ given the

set of measurements z1:k = {z1, . . . zk}, up to time step k. This involves maximizing

the likelihood function p(z1:k; θ) over all possible θ values [44]. Bayesian estimation

can also be used, assuming some prior knowledge on the parameter θ. Specifically,

using Bayes’ theorem, the posterior PDF of parameter θ given the measurements can

be given by

p(θ | z1:k) =
p(z1:k | θ) p(θ)

p(z1:k)
=

p(z1:k | θ) p(θ)∫
p(z1:k | θ) p(θ) dθ

(2.1)

where p(z1:k | θ) is the conditional likelihood PDF and p(θ) is the assumed known

prior PDF of the parameter. This method, referred to as maximum a posteriori

estimation (MAP), provides an estimate of θ by maximizing the posterior PDF in

Equation (2.1) over all possible θ values. If the measurements are independent, then

14



Figure 2.4: Bayesian Estimation.

the posterior PDF can also be written as

p(θ | z1:k) ∝ p(θ)
k∏
l=1

p(zl | θ)

As depicted in Figure 2.4, Bayesian estimation involves obtaining an estimate of

some unknown parameter using the prior PDF and the likelihood function. If the prior

PDF is not available, the estimate of the parameter can be first predicted using some

available knowledge. Then estimate is updated using the available measurements.

shows the Bayesian inference from the prior, likelihood and posterior distribution.

Specifically, the posterior PDF is computed by updating the prior belief using the

likelihood. Note that the wider the spread or variance of the prior PDF, the higher

the uncertainty and the harder it is to correctly make a prediction.

2.2.2 Dynamic State Space Representation

In a dynamic system, as unknown parameters vary with time, they have to be esti-

mated at each time step. If the dynamic system can be represented in a state space
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formulation, then Bayesian recursion can be used to estimate the unknown state pa-

rameter. The estimate is obtained recursively, at each time step, using a prediction

step and an update step with the measurements provided.

We consider a dynamic system with an unknown state parameter vector xk and

measurement vector zk at each time step k, k= 1, . . . , K. The state space represen-

tation of the system is given by

xk = g(xk−1) + qk−1 (2.2)

zk = h(xk) + rk (2.3)

The state transition equation in (2.2) originates from some known physics-based

model that relates the state at time step k − 1 to the state xk at time step k. This

model is described using the function g(·), and the random process qk is used to ac-

count for possible modeling errors. Equation (2.3) is the measurement equation that

provides the relationship between the state xk and the measurement zk at time step

k. The random process rk is measurement noise at time step k. It is often assumed

that the state xk only depends on the previous state, following the first order Markov

process assumption. Note that state and measurement vectors can have different di-

mensionality. Using Bayesian estimation, the posterior PDF of all the states, given

all the measurements can be given by

p(x0:k | z1:k) ∝ p(zk | xk) p(xk | xk−1) p(x0:k−1 | z1:k−1) (2.4)

where x0:k = {x0, x1, . . . , xk}. Equation (2.4) shows that the posterior density can

be derived recursively assuming knowledge of the initial prior PDF p(x0).

2.3 Bayesian Filtering

Bayesian filtering involves the estimation of the unknown state xk using the estimated

posterior PDF p(xk | zk) [7, 45]. The posterior is estimated recursively at each time
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step k. The recursion has two main steps. The prediction step uses the transition

model in (2.2) to obtain an estimate of xk from the prior PDF p(xk | xk−1). The

update step uses the likelihood function p(zk | xk) in Equation in (2.3) to improve

the estimate.

Bayesian filtering is based on the Markovian assumption that the state xk at

time step k depends only on previous state xk−1. Specifically, the current state xk is

conditionally independent of earlier states given previous state xk−1,

p(xk | x0:k−1) = p(xk | xk−1)

The following two assumptions are also made. It is assumed that the current state xk

is conditionally independent of past measurements z1:k−1 given the past state xk−1,

p(xk | xk−1, z1:k−1) = p(xk | xk−1) (2.5)

It is also assumed that the current measurement zk is conditionally independent of

past measurements, z1:k−1, given the current state xk

p(zk | xk, z1:k−1) = p(zk | xk) (2.6)

The recursive implementation of Bayesian filtering starts with some initial PDF

p(x0). After time step k − 1, we assume that the posterior PDF p(xk−1 | z1:k−1) was

recursively obtained. At time step k, the system model is used to predict forward

from p(xk−1 | z1:k−1) to p(xk | z1:k−1) using the Chapman-Kolmogorov equation [7],

p
(
xk | z1:k−1

)
=

∫
p
(
xk | xk−1, z1:k−1

)
p
(
xk−1 | z1:k−1

)
dxk−1

=

∫
p
(
xk | xk−1

)
p
(
xk−1 | z1:k−1

)
dxk−1 (2.7)

where we used p
(
xk | xk−1, z1:k−1

)
= p

(
xk | xk−1

)
from Equation (2.5). When the
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new measurement zk is available, then the estimate is updated as

p(xk | z1:k) =
p(zk | xk, z1:k−1) p(xk | z1:k−1)

p(zk | z1:k−1)

=
p(zk | xk) p(xk | z1:k−1)

p(zk | z1:k−1)

where we used p(zk | xk, z1:k−1) = p(zk | xk) from Equation (2.6), and

p(zk | z1:k−1) =

∫
p(zk | xk) p

(
xk | z1:k−1

)
dxk .

2.4 Kalman Filtering

2.4.1 Linear Dynamic System Representation

For many dynamic systems, the prediction step of Bayesian filtering in Equation (2.7)

is difficult to compute. For systems that have linear prior and measurement relations

and assume Gaussian random processes, the equation can be iteratively solved in

closed form using the Kalman filter (KF) [4, 5, 7]. The KF has been widely used as

an optimal solution in many tracking applications, though it is limited by the linearity

and Gaussian assumptions.

For the KF, the state space representation in Equations (2.2) and (2.3) can be

written using linear functions or in matrix form. Specifically,

xk = Fxk−1 + qk−1 (2.8)

zk = Hxk + rk (2.9)

If xk is the N × 1 state vector and zk is the M × 1 measurement vector, then F is

the N × N state transition matrix and H is the M × N measurement matrix. For

the KF, the random processes qk and rk are both assumed zero-mean Gaussian with
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corresponding covariance matrices E[qk q
>
k ] = Qk and E[rk r

>
k ] = Rk, respectively.

Here, E[·] denotes statistical expectation and q>k is the vector transpose of qk.

2.4.2 Derivation of Recursive Kalman Filter

The KF can be implemented recursively in closed form as derived next in detail.

We first assume that the state estimate x̂k−1 = x̂k−1|k−1 was recursively obtained at

time step (k − 1). Using this estimate, we can compute the N ×N error covariance

matrix as the correlation matrix Pk−1|k−1 = E[ek−1|k−1e
>
k−1|k−1], where ek−1|k−1 =

xk−1 − x̂k−1|k−1 is the state parameter error at time step (k − 1). Note that xk−1 is

assumed to be the true state parameter.

At time step k, we first use Equation (2.8) to predict a new estimate given by

x̂k|k−1 = F x̂k−1|k−1 . (2.10)

The predicted error covariance matrix

Pk|k−1 = E
[
(xk − x̂k|k−1) (xk − x̂k|k−1)>

]
can be obtained using xk = Fxk−1 + qk−1 in Equation (2.8) and x̂k|k−1 =F x̂k−1|k−1

in Equation (2.10) to obtain

Pk|k−1 = E[(xk − x̂k|k−1) (xk − x̂k|k−1)>]

= E
[(
Fxk−1 + qk−1 − F x̂k−1|k−1

) (
Fxk−1 + qk−1 − F x̂k−1|k−1

)>]
= E

[(
F(xk−1 − x̂k−1|k−1) + qk−1

) (
F(xk−1 − x̂k−1|k−1) + qk−1

)>]
= FPk−1|k−1 F

> + Qk−1 (2.11)
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Using the measurement zk at time step k, the updated state estimate x̂k|k can be

viewed as the predicted estimate x̂k|k−1 in Equation (2.10) with an update term

extracted from zk. Specifically,

x̂k|k = x̂k|k−1 + Kk

(
zk −Hx̂k|k−1

)
(2.12)

This update term is obtained from the measurement equation in (2.9) as the residual

measurement (or innovation)

bk|k−1 = zk −Hk x̂k|k−1 (2.13)

The update term is weighted by some factor Kk, which is derived next as the Kalman

gain. The error covariance at time step k is given by

Pk|k = E[ek|k e
>
k|k] = E[(xk − x̂k|k) (xk − x̂k|k)

>] (2.14)

If we replace x̂k|k from Equation (2.12) in the covariance matrix, then

Pk|k = E
[ [

(I−KkH)(xk − x̂k|k−1)−Kk rk|k−1

]
[
(I−KkH)(xk − x̂k|k−1)−Kk rk|k−1

]> ] (2.15)

where I is the identify matrix. Using E[rk|k−1 r
>
k|k−1] = Rk and expectation properties,

Equation (2.15) can be written as

Pk|k = (I−KkH) E
[
(xk − x̂k|k−1) (xk − x̂k|k−1)>

]
(I−KkH)> + KkRkK

>
k

= (I−KkH) Pk|k−1 (I−KkH)> + KkRkK
>
k

= Pk|k−1 −KkHPk|k−1 −Pk|k−1 H
>K>k + KkHPk|k−1 H

>K>k + KkRkK
>
k

= Pk|k−1 − 2KkHPk|k−1 + Kk (HPk|k−1 H
> + Rk)K

>
k

(2.16)

where Pk|k−1 is given in (2.11) and KkHPk|k−1 =P>k|k−1 H
>K>k =Pk|k−1 H

>K>k , us-

ing properties of a covariance matrix.
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To optimize the estimation accuracy, we want to find the Kalman gain Kk that

minimizes the mean-squared error, MSEk. We can obtain the MSE as the trace

T [Pk|k] of the error covariance matrix in Equation (2.16). Thus,

MSEk = T [Pk|k]

= T [Pk|k−1]− 2T [KkHPk|k−1] + T
[
Kk (HPk|k−1 H

> + Rk)K
>
k

]
(2.17)

To minimize the MSE, we take the derivative of Equation (2.17) with respect to Kk,

set the derivative to zero and solve for Kk. Considering the property of first order

derivatives of the trace of a matrix

d

dA
T [AB] = B>

for matrices A and B, we can obtain

d

dKk

T [Pk|k] = −2P>k|k−1 H
> + 2Kk(HPk|k−1 H

> + Rk) = 0

The solution of the Kalman gain is thus given by

Kk = Pk|k−1 H
> (HPk|k−1 H

> + Rk)
−1 (2.18)

If we define the innovation covariance as

Sk = HPk|k−1 H
> + Rk (2.19)

then Equation (2.18) becomes

Kk = Pk|k−1 H
> S−1

k (2.20)

If we substitute Kk from Equation (2.18) in Equation (2.16), then the error covariance
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Algorithm 2 Kalman Filtering (KF)

Input: Initial parameter state x̂0|0, sequential measurements zk, k= 1, . . . , K

state space model in Equations (2.8) and (2.9)

for k = 1 to K do

Use Equation (2.10) to predict estimate x̂k|k−1

Use Equation (2.11) to predict error covariance matrix Pk|k−1

Obtain innovation (zk −Hk x̂k|k−1) in Equation (2.13)

Use Equation (2.19) to compute innovation covariance matrix Sk

Use Equation (2.20) to compute Kalman gain Kk

Use Equation (2.12) to update state estimate x̂k = x̂k|k

Use Equation (2.21) to update error covariance Pk = Pk|k

end for

Output: State estimate x̂k and error covariance matrix Pk

matrix can be written as

Pk|k = Pk|k−1 − 2KkHPk|k−1 + Kk SkK
>

= Pk|k−1 −Pk|k−1 H
> S−1

k HPk|k−1

= Pk|k−1 −KkHPk|k−1

= (I−KkH)Pk|k−1 (2.21)

In summary, the KF recursion steps are summarized in Algorithm 2 and also depicted

in Figure 2.5.
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Figure 2.5: Depiction of Recursive Kalman Filtering.

2.5 Extended Kalman Filtering

The extended Kalman Filter (EKF) offers an alternative to the KF when the dynamic

system is nonlinear, which is often the case in many applications. We consider the

state space representation in Equations (2.2) and (2.3),

xk = g(xk−1) + qk−1

zk = h(xk) + rk

where we assume that g(xk) and h(xk) are nonlinear functions. The EKF uses the

Taylor series expansion and Jacobian matrix to linearize the functions around the

Gaussian’s mean of the estimated state. The Jacobian matrix that is a matrix of its

first-order partial derivatives of a multivariate function was introduced to describe

the best linearized approximation of the change of f around x [46, 47]. Consider a

function , where f : Rn → Rm can be described the Jacobian as follows.
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Jf =

[
∂f
∂x1

· · · ∂f
∂xn

]
=


∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...

∂fm
∂x1

· · · ∂fm
∂xn


In particular, using Taylor series expansion, we expand the two functions and

only keep the first two terms to obtain

g(xk−1) = g(x̂k−1|k−1) + Jg(x̂k−1|k−1) (xk−1 − x̂k−1|k−1)

h(xk) = h(x̂k|k−1) + Jh(x̂k|k−1) (xk − x̂k|k−1)

It is assumed that the contribution of higher orders in the expansions is negligible.

After linearization of the functions, we can proceed with the KF steps. The updated

estimate and error covariance matrix are given by

x̂k|k−1 ≈ g(x̂k−1|k−1)

Pk|k−1 = Jg(x̂k|k−1)Pk−1|k−1 J
>
g (x̂k|k−1) + Qk−1,

the update step is also derived as follows:

x̂k|k ≈ x̂k|k−1 + Kk

(
zk − h(x̂k|k−1)

)
Kk = Pk|k−1 J

>
h (x̂k|k−1)

(
Jh(x̂k|k−1)Pk|k−1J

>
h (x̂k|k−1) + Rk

)−1

Pk|k =
(
I−Kk Jh(x̂k|k−1)

)
Pk|k−1.

The derivation of the EKF is similar to that of the KF; it can be found in [48].

2.6 Unscented Kalman Filtering

2.6.1 Unscented Transform

The unscented transform (UT) is a method used to estimate the distribution

of a random vector that undergoes a nonlinear transformation. Instead of applying
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the nonlinear transformation to the random vector, it uses the nonlinear function

to approximate the distribution of the transformed random vector [4, 27, 49]. In

particular, the UT can be used to estimate the joint PDF of random vectors x and

z, where x has a Gaussian distribution with mean x̂ and covariance matrix P, and

z = g(x) is related to x via the nonlinear function g(·). Specifically,

z = g(x), for x ∼ N (x̂,P)

The UT directly approximates the mean and covariance of the target distribution

using a finite number of sigma points to capture the mean and covariance of the

original distribution [4]. Assuming 2n + 1 sigma points X (i), i= 0, 1, . . . 2n + 1, for

random vector x, then each sigma point is propagated through the nonlinear function

obtain the corresponding sigma points for z [4]. In particular,

Z(i) = g(X (i)), i = 0, . . . , 2n,

The UT selects sigma points X differently from Monte Carlo estimation. The points

are obtained as

X (0) = x̂

X (i) = x̂ +
√
n+ λ

[√
P
]
i

X (i+n) = x̂−
√
n+ λ

[√
P
]
i
, i = 1, . . . , n

where x̂ and P are the mean and covariance of x ∼ N (x̂,P), the matrix square root

is such that
√
P
√
P> = P [10], and [P]i denotes the ith column of matrix P. The

UT two UT parameters, α and κ are used to determine the scaling parameter λ as

λ = α2(n+ κ)− n

Note that parameter α determines the spread of the sigma points around x̂ and is

usually set to a small positive value, whereas parameter κ is a secondary scaling

parameter which is usually set to 0 [4].
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The mean and covariance of z are then approximated using the corresponding

weighted mean and covariance of the posterior sigma points [10]. Specifically,

E[g(x)] ' ẑ =
2n∑
i=0

w(i)
m Z(i)

Cov(g(x)) ' CZ =
2n∑
i=0

w(i)
c

(
Z(i) − ẑ)(Z(i) − ẑ

)>
where the constant weights w

(i)
m and w

(i)
c are obtained as [10]

w(0)
m =

λ

n+ λ

w(0)
c =

λ

n+ λ
+ (1− α2 + β)

w(i)
m =

1

2(n+ λ)
, i = 1, . . . , 2n,

w(i)
c =

1

2(n+ λ)
, i = 1, . . . , 2n,

(2.22)

and β is used to incorporate prior knowledge of the distribution of x [10]. The

estimated cross-covariance of x and z is approximated as

CX ,Z =
2n∑
i=0

w(i)
c

(
X (i) − x̂)(Z(i) − ẑ

)>
The joint PDF of x and z can be approximated using concatenated pairs of sigma

points X and Z. Specifically,

[x z]> ∼ N
(

[x̂ ẑ]>,Cx, z

)
where

Cx, z =

 P CX ,Z

C>X ,Z CZ


The UT method is summarized in in Algorithm 3 [4, 10].
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Algorithm 3 Unscented Transform (UT)

Input: Mean and covariance at time k, x̂k, Pk, nonlinear function g(·)

Form a set of 2n+ 1 sigma points:

X (0)
k = x̂k

X (i)
k = x̂k +

√
n+ λ[

√
Pk]i,

X (i+n)
k = x̂k −

√
n+ λ[

√
Pk]i, i = 1, . . . , n.

Assign weights that correspond to each sigma point:

w
(0)
m = λ

n+λ
, w

(0)
c = λ

n+λ
+ (1− α2 + β)

w
(i)
m = λ

2(n+λ)
, w

(i)
c = λ

2(n+λ)
, i = 1, . . . , 2n

Transform the sigma points through the nonlinear function g(·):

Z(i)
k = g(X (i)

k ), i = 1, . . . , n.

Compute the transformed mean and covariance from the sigma points:

ẑk =
2n∑
i=0

w(i)
m Z

(i)
k ,

CZk
=

2n∑
i=0

w(i)
c (Z(i)

k − ẑk)(Z(i)
k − ẑk)

>

CXk,Zk
=

2n∑
i=0

w(i)
c (X (i)

k − x̂k)(Z(i)
k − x̂k)

>.

Output: The predicted mean, covariance and cross-covariance ẑk,CZk
,CXk,Zk

.

2.6.2 Unscented Kalman Filter Algorithm

The EKF performance is adequate for dynamic systems that are almost linear,

but the performance deteriorates with the degree of nonlinearity. As an alternative to

the EKF for nonlinear systems, the UT in Section 2.6.1 is applied to the KF, resulting

in the unscented Kalman filter (UKF) [4, 49, 50]. The UKF assumes that the state

parameter x is Gaussian with a known mean and covariance. The main algorithm is

summarized next.

At time step k − 1, we have the estimated state x̂k−1|k−1 and its corresponding
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error covariance matrix Pk−1|k−1 from the previous iteration. During the prediction

step, sigma points are first obtained using x̂k−1|k−1 and Pk−1|k−1 as

X (0)
k−1|k−1 = x̂k−1|k−1

X (i)
k−1|k−1 = x̂k−1|k−1 +

√
n+ λ

[√
Pk−1|k−1

]
i

X (i+n)
k−1|k−1 = x̂k−1|k−1 −

√
n+ λ

[√
Pk−1|k−1

]
i
, i = 1, . . . , n

The sigma points are then propagated using the nonlinear transition function g(·) as

X (i)
k|k−1 = g(X (i)

k−1|k−1), i = 0, . . . , 2n.

The predicted mean and covariance of the state can then be computed using

x̂k|k−1 =
2n∑
i=0

w(i)
m X

(i)
k|k−1

Pk|k−1 =
2n∑
i=0

w(i)
c

(
X (i)
k|k−1 − x̂k|k−1

)(
X (i)
k|k−1 − x̂k|k−1

)>
+ Qk−1

where the weights are defined in Equation (2.22).

For the innovation step, as in Equation (2.13) for the KF, the sigma points are

first updated

X (0)
k−1|k = x̂k−1|k

X (i)
k−1|k = x̂k−1|k +

√
n+ λ

[√
Pk−1|k

]
i

X (i+n)
k−1|k = x̂k−1|k −

√
n+ λ

[√
Pk−1|k

]
i
, i = 1, . . . , n

and then propagate through the nonlinear measurement equation h(·) as

Z(i)
k|k−1 = h(X (i)

k|k−1), i = 0, . . . , 2n
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The corresponding mean and covariance for Z(i)
k|k−1 are found as

ẑk|k−1 =
2n∑
i=0

w(i)
m Z

(i)
k|k−1

CZk|k−1
=

2n∑
i=0

w(i)
c

(
Z(i)
k|k−1 − ẑk|k−1

)(
Z(i)
k|k−1 − ẑk|k−1

)>
+ Rk

CXk|k−1,Zk|k−1
=

2n∑
i=0

w(i)
c

(
X (i)
k|k−1 − x̂k|k−1

)(
Z(i)
k|k−1 − ẑk|k−1

)>
,

where ẑk|k−1 is the predicted mean, CZk|k−1
is the predicted covariance of the mea-

surement, and CXk|k−1,Zk|k−1
is the cross-covariance of the state and the measurement

[4]. Using the measurement zk at time step k, we compute the innovation term

bk|k−1 = zk −Hx̂k|k−1 = zk − ẑk|k−1

and obtain the Kalman gain as

Kk = CXk|k−1,Zk|k−1
(CZk|k−1

)−1 .

Using these two terms, we can compute the updated state estimate as

x̂k|k = x̂k|k−1 + Kk

(
zk −Hx̂k|k−1

)
and the updated error covariance as

Pk|k = Pk|k−1 −KkCZk|k−1
K>k .

The steps of the UKF method are provided in Algorithm 4, 3 [4, 10]. Note that the

UT algorithm parameters α, which determines the spread of the sigma points around

the mean, β, which incorporates prior information, and λ, a scaling (spreading) pa-

rameter, are selected based on the application.
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Algorithm 4 Unscented Kalman Filter (UKF) Algorithm

Input: Mean and covariance x̂0, P0, measurements z1:K , dynamic system equations,

covariance of process and measurement noise Qk and Rk

for k = 1 to K do

Prediction Step:

{x̂k|k−1Pk|k−1} = UT

(
x̂k−1,Pk−1, g(·),Qk−1, n, λ

)
from Algorithm 3

x̂k|k−1 =
2n∑
i=0

w(i)
m X

(i)
k|k−1

Pk|k−1 =
2n∑
i=0

w(i)
c (X (i)

k|k−1 − x̂k|k−1) (X (i)
k|k−1 − x̂k|k−1)> + Qk−1

Update Step:

{x̂k|k,Pk|k,Kk} = UT

(
x̂k|k−1, zk,Pk|k−1, h(·),Rk, n, λ

)
ẑk|k−1 =

2n∑
i=0

w(i)
m Z

(i)
k|k−1

CZk
=

2n∑
i=0

w(i)
c (Z(i)

k|k−1 − ẑk|k−1) (Z(i)
k|k−1 − ẑk|k−1)> + Rk

CXk,Zk
=

2n∑
i=0

w(i)
c (X (i)

k|k−1 − x̂k|k−1)(Z(i)
k|k−1 − ẑk|k−1)>

Kk = CXk,Zk
C−1
Zk

x̂k|k = x̂k|k−1 + Kk(zk − ẑk|k−1)

Pk|k = Pk|k−1 −KkCZk
K>k

end for

Output: Filtered Kalman gain, mean and covariance {x̂k|k,Pk|k,Kk}k=1:K
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2.7 Particle Filtering

The particle filter (PF) is based on the idea of approximating the PDF of the observa-

tions zk given the state xk using sequential Monte Carlo (SMC) method. If we can not

solve the integrals required for a Bayesian recursive filter analytically, we represent

the posterior probability composed of a set with randomly chosen weighted samples.

In the previous description, a randomly chosen method follows the MC method. An

increasing number of samples makes the prediction converge to the true PDF.

2.7.1 Sequential Importance Sampling

The sequential importance sampling (SIS) is a basic framework for most PF based

algorithms. Usually we can not draw samples x
(i)
k from the target distribution p(·)

directly. Assume we sample directly from a different importance function q(·). Our

approximation is still correct if

w
(i)
k−1 ∝

p(x
(i)
0:k−1 | z1:k−1)

q(x
(i)
0:k−1 | z1:k−1)

.

We can take the advantage of it by choosing q(·) we want. If the importance function

is chosen to factorize such that

q(x0:k | z1:k) = q(xk | x0:k−1, z1:k)q(x0:k−1 | z1:k−1),

then we can augment old particles xi0:k−1 by xk ∼ q(xk | x0:k−1, z1:k) to get new

particles xi0:k. We have the case of state space modeling where the weights are updated

as follows:

w
(i)
k ∝

p(zk | x(i)
k )p(x

(i)
k | x

(i)
k−1)

q(x
(i)
k | x

(i)
0:k−1, z1:k)

w
(i)
k−1. (2.23)

Furthermore, if q(xk | x0:k−1, z1:k) = q(xk | xk−1, z1:k) which means the importance

function is only dependent on the last state and observations, then we do not need
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to preserve trajectories x
(i)
0:k−1 and observations z1:k−1.

p(xk | z1:k) ≈
Ns∑
i=i

w
(i)
k δ(xk − x

(i)
k )

The SIS algorithm is provided in Algorithm 5 [4].

Algorithm 5 Sequential Importance Sampling (SIS) Algorithm

Input: Weighted set of particles {x(i)
k−1, w

(i)
k−1}

Ns
i=1, measurements zk, target and im-

portance distributions p(·), q(·)

Draw Ns samples from the importance distributions

x
(i)
0 ∼ p(x0), and set w

(i)
0 = 1/N i = 1, . . . , N.

for k = 1 to K do

Draw x
(i)
k ∼ q(xk | x(i)

0:k−1, z1:k), i = 1, . . . , N.

Update weights according to Equation (2.23) and normalize the weights.

Compute estimate State x̂k =
Ns∑
i=1

w
(i)
k x

(i)
k

end for

Output: an updated weighted set of particles {x(i)
k , w

(i)
k }

Ns
i=1

Therefore, the SIS is a set of recursively propagated weighted points through

sequentially received measurements [12]. However, the SIS has a degeneracy problem

in that most particles have negligible weight, which means the weight is concentrated

on a few particles only after a few iterations. The amount of degeneracy can be

estimated based on the variance of weights [51]. The variance of the weights
{
w

(i)
k

}Ns

i=1

will increase with time k. The degeneracy problem can be solved with a method known

as resampling, which is outlined next part.
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Resampling

Resampling method can be reduced the effects of degeneracy. The basic concept of

resampling is to get rid of particles that have small weights and to concentrate on

particles with large weights [12]. In other word, the idea of the resampling procedure is

to remove particles with very small weights and duplicate particles with large weights

[4]. The resampling steps generate a new set of particles by drawing new Ns samples

from the discrete distribution that each weight w
(i)
k as the probability of obtaining

the sample index. Next, we replace the old sample set with the newly received

samples with all constant weight, w
(i)
k = 1/Ns [4]. Even though the resampling

method can reduce the effects of the degeneracy problem, there are still a number

of potential problems with the resampling method. First, it limits the opportunity

to parallelize because all particles must be combined [12]. Next, a problem is called

sample impoverishment or weight degeneracy. This can happen if most of the weights

are placed on a single particle and leads to a loss of diversity among the particles.

Another problem is the propagated states are drawn from the prior distribution,

p(xk | xk−1), without accounting for the next observation, zk [13].

Sequential Importance Resampling

The SIS algorithm with a resampling step leads to sequential importance resampling

(SIR) [26, 34, 52]. The SIR algorithm is usually referred to as the PF. The SIR works

the same as the SIS method except that the resampling process happens at the time

step if it is actually needed. The SIR method can solve the degeneracy problems

by introducing a resampling step to eliminate samples with low importance ratios

and multiply samples with high importance ratios. The SIS algorithm is described

in Algorithm 6 [4]. In Algorithm 6, Neff is the ”effective” number of particles and we
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resample if the variance of the particle weights is less then Neff [53]. [4] introduces an

example, where Neff = N/10, to perform a resampling algorithm.

2.8 Bayesian Smoothing

Bayesian filtering methods, as discussed in Section 2.3, use measurements as they

are sequentially observed to estimate the state parameter xk at each time step k,

k= 1, . . . , K. Bayesian smoothing in dynamic systems, on the other hand, is a post

processing method, as it assumes knowledge of all measurements z1:K [4, 16–18, 20–

22, 54, 55]. In particular, smoothing is used to improve the accuracy of the estimated

state parameter xk by approximating the posterior PDF using measurements observed

after k [20]. It is considered an a posteriori estimation that uses measurements after

time step k to improve the estimate at time k, assuming the estimates are not needed

in real time.

A commonly used smoothing approach is the Rauch-Tung-Striebel (RTS) forward-

backward algorithm [17]. It involves a first estimation pass that moves forward in

time to obtain estimates xk+1|k and xk+1|k+1, for k= 1, . . . , K. It is then followed by a

second estimation pass that goes backward in time to compute xk|K for k= 1, . . . , K.

Algorithm 6 Sequential Importance Resampling (SIR)

Input: Weighted set of particles {x(i)
k−1, w

(i)
k−1}

Ns
i=1, measurements zk, target and im-

portance distribution p(·), q(·)

{xk, w(j)
k }

Ns
j=1 = SIS({x(i)

k−1, w
(i)
k−1}

Ns
i=1, zk)

if 1∑N
i=1(w

(i)
k )2

< Neff then

resample({x(i)
k , w

(i)
k }

Ns
i=1)

end if

Output: a resampled weighted set of particles {x(i)
k , w

(i)
k }

Ns
i=1
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Using the dynamic system representation in Equations (2.2) and (2.3), the smoothing

PDF is given by

p(xk | z1:K) = p(xk | z1:k)

∫
p(xk+1 | xk) p(xk+1 | z1:K)

p(xk+1 | z1:k)
dxk+1 (2.24)

where p(xk | z1:k) is the estimated posterior PDF from filtering. The smoothing PDF

can be computed as the marginal of the conditional joint PDF [56]

p(xk | z1:K) =

∫
p(xk,xk+1 | z1:K) dxk+1

=

∫
p(xk | xk+1, z1:K) p(xk+1 | z1:K) dxk+1

where, from the Markov assumption, p(xk | xk+1, z1:K) = p(xk | xk+1, z1:k) and

p(xk | xk+1, z1:k) =
p(xk,xk+1 | z1:k)

p(xk+1 | z1:k)
(2.25)

Using filtering steps, we can obtain the numerator of Equation (2.25) as

p(xk,xk+1 | z1:k) = p(xk+1 | xk) p(xk | z1:k)

and the denominator of Equation (2.25) as

p(xk+1 | z1:k) =

∫
p(xk+1 | xk) p(xk | z1:k) dxk .

2.9 Kalman Smoothing

Similar to the KF in Section 2.4, a Kalman smoother (KS) algorithm exists in closed

form for linear system systems with Gaussian PDFs. In particular, p(xk | z1:K) can

be obtained as a Gaussian PDF with mean x̂
(s)
k and covariance matrix P

(s)
k ; here, the

superscript (s) is used to denote the result of smoothing. The backward recursion

equations for the KS are provided in Algorithm 7 [4, 23]. Note that, due to the
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backwards computation, the initial values of the recursive algorithm are x̂
(s)
K = x̂K

and P
(s)
K = PK .

Algorithm 7 Kalman Smoothing (KS)

Input: Filtered mean and covariance x̂k, Pk, k = 1 . . . , K, dynamic model F, co-

variance Qk

Initialize: x̂
(s)
K = x̂K and P

(s)
K = PK

for k = K − 1 to 1 do

x̂k+1|k = Fkx̂k|k

Pk+1|k = FkPk|kF
>
k + Qk

Kk = Pk|kF
>
k [Pk+1|k]

−1

x̂
(s)
k = x̂k|k + Kk(x̂

(s)
k+1 − x̂k+1|k)

P
(s)
k = Pk|k + Kk(P

(s)
k+1 −Pk+1|k)K

>
k

end for

Output: Estimation smoothing mean x̂
(s)
k and covariance P

(s)
k , k = 1, . . . , K

2.10 Extended Kalman Smoothing

Extended KS (EKS) based on an analogous approximation to the EKF is used to

form Gaussian approximations by making nonlinear state-space models linearize. The

EKS can be obtained from the KS equations by replacing the prediction equations

with first-order approximations [4]. The difference between the EKS and the KS is

the same as the difference between the EKF and KF, which is the state transition

matrix is replaced with Jacobian [55]. Like the KS, the EKS also form a Gaussian

approximation to a smoothing distribution p(xk | z1:K) ' N (xk | x̂(s)
k ,P

(s)
k ).
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2.11 Unscented Kalman Smoothing

Unscented KS (UKS) is a Gaussian approximation based smoothing where the non-

linearity is approximated using the UT [4]. T he UKS is derived as follows. First,

the sigma points are formed for the random variable (xk,qk) as follows:

X (0)
k = x̂k

X (i)
k = x̂k +

√
n+ λ

[√
Pk

]
i
,

X (i+n)
k = x̂k −

√
n+ λ

[√
Pk

]
i
, i = 1, . . . , n.

Then, the sigma points are propagated through the dynamic model as follows:

X (i)
k+1|k = g(X (i)

k|k), i = 0, . . . , 2n.

Then, we can compute the predicted mean x̂k+1|k by adding the whole weighted sigma

points, the predicted covariance Pk+1|k, and the cross-covariance CXk+1
as follows [4]:

x̂k+1|k =
2n∑
i=0

w(i)
m X

(i)
k+1|k,

Pk+1|k =
2n∑
i=0

w(i)
c (X (i)

k+1|k − x̂k+1|k)(X (i)
k+1|k − x̂k+1|k)

>

CXk+1
=

2n∑
i=0

w(i)
c (X (i)

k|k − x̂k|k)
(
X (i)
k+1|k − x̂k+1|k

)>
,

We can then compute the smoothing gain Kk, the estimation smoothing mean x̂
(s)
k ,

and the covariance P
(s)
k as follows [4]:

Kk = CXk+1
[Pk+1|k]

−1,

x̂
(s)
k = x̂k|k + Kk[x̂

(s)
k+1 − x̂k+1|k],

P
(s)
k = Pk|k + Kk[P

(s)
k+1 −Pk+1|k]K

>
k .

The UKS algorithm is provided in Algorithm 8 [23].
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Algorithm 8 Unscented Kalman Smoothing (UKS) Algorithm

Input: Filtered mean x̂k and covariance Pk, k = 1, . . . , K, measurements z1:K

dynamic model g(·), covariance of process noise Qk

Initialize: x̂
(s)
K = x̂K and P

(s)
K = PK

for k = K − 1 to 1 do

{x̂k+1|k,Pk+1|k} = UT

(
x̂k|k,Pk|k, g(·),Qk−1, n, λ

)
from Algorithm 3

x̂k+1|k =
2n∑
i=0

w(i)
m X

(i)
k+1|k

Pk+1|k =
2n∑
i=0

w(i)
c (X (i)

k+1|k − x̂k+1|k)
(
X (i)
k+1|k − x̂k+1|k

)>
+ Qk−1

CXk+1
=

2n∑
i=0

w(i)
c (X (i)

k|k − x̂k|k)(X (i)
k+1|k − x̂k+1|k)

>

Gk = CXk+1
[Pk+1|k]

−1

x̂
(s)
k = x̂k|k + Gk(x̂

(s)
k+1 − x̂k+1|k)

P
(s)
k = Pk|k + Gk(P

(s)
k+1 −Pk+1|k)G

>
k

end for

Output: The smoothing mean, covariance and gain {x̂(s)
k ,P

(s)
k ,Gk}k=1:K
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Chapter 3

PROPOSED TRACKING METHOD

3.1 Detection Formulation

In our problem formulation, sensor observations are first processed to determine the

presence of an object before estimating the object’s parameters as they change with

time. As a fixed time step, and for a fixed probability of false alarm, we want to

determine whether the received noisy observations y[n], n= 0, . . . , N − 1, include

information on the object of interest. We formulate a binary detection hypothesis as

H0 : y[n] = v[n], n = 0, 1, . . . , N − 1

H1 : y[n] = s[n;θ] + v[n], n = 0, 1, . . . , N − 1

where s[n], n= 0, 1, . . . , N − 1, is the transmit signal, and θ is a vector that consists

of unknown changes to the transmit signal due to transmission in the medium. For

example, for radar detection, θ may include amplitude fading, time delay and Doppler

shift. Under hypothesis H0, the received signal is assumed to consist only of white

Gaussian noise samples v[n] and under hypothesis H1, the received signal consists of

both the transmit signal and noise. Using the Neyman-Pearson detector, we want

to find a detection statistic that maximizes the probability of detection for a given

probability of alarm PFA [31]. Once the presence of the transmit signal is detected, the

received signal can be used to estimate the unknown parameter vector θ. This vector

is then processed to provide a measurement vector z that can be used in tracking.

For a radar tracking application, for example, z can include the distance between the

radar receiver and the object and the changein the object’s velocity.
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3.2 Tracking Formulation

For the tracking problem formulation, multiple signal transmissions are considered

at different time steps k. Assuming the signal is detected at time step k, k= 1, . . . , K,

then the resulting measurement vector zk is used in the tracking problem formulation

to estimate the unknown state parameter vector xk of the moving object. As discussed

in Chapter 2, the the dynamic tracking system can be modeled using the state-space

representation

xk = g(xk−1) + qk−1 (3.1)

zk = h(xk) + rk . (3.2)

Here, rk is the measurement noise vector consisting of zero-mean white Gaussian sam-

ples that are independent and identically distributed with known variance. The ran-

dom vector qk is used to account for modeling errors in the state transition equation.

The function g(xk) models the transition of the unknown state vector between time

steps and h(xk) provides the relationship between the measurement and unknown

state. The unknown state parameter is obtained by estimating the state posterior

probability density function (PDF) p(xk | zk). This can be achieved recursively using

Bayesian filtering, as discussed in Chapter 2. At each time step k, first the object

state xk is predicted using the prior PDF p(xk | xk−1) in Equation (3.1). Second, the

likelihood PDF p(zk | xk) in Equation (3.2) is used to update the object state xk.

Assuming that the probabilistic models for qk in Equation (3.1) and rk and Equation

(3.2) are known, the posterior PDF can be estimated recursively. Different approaches

for Bayesian filtering were discussed Chapter 2, depending on the characteristics of

the dynamic system. Such methods include the Kalman filter (KF), extended KF

(EKF), unscented KF (UKF) and sequential Monte Carlo methods such as particle
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filtering [12, 34].

3.3 Tracking Scenario

We consider a tracking scenario under low signal-to-noise-ratio (SNR) conditions and

high clutter. We assume that the motion model in Equation (3.1) is matched to

the scenario, and thus the modeling error process qk has low variance. As a result,

any large errors in the estimated state parameters after Bayesian filtering may be

attributed to high noise observations that are incorrectly processed due to, for ex-

ample, a high probability of false alarm. The selection of an acceptable probability

of false alarm depends on a few factors in a given radar tracking application. For

example, when monitoring vital signs in healthcare, a large probability of false alarm

may only require additional testing whereas a high probability of miss could lead to

long term complications. Another example is the use of ground penetrating radar in

forensic investigations [30]. a high probability of false alarm may result in further

testing in order to locate a gravesite whereas a high probability of miss may lead to

unsolved murder cases. Note that, in both of these radar tracking examples, the esti-

mated parameters are not required in real time. As a result, the estimation accuracy

can be further improved with additional processing after collecting all measurements.

Scenarios that allow for high probability of false alarm can thus benefit from further

processing to improve estimation performance.

Our proposed method is designed to improve the tracking accuracy of an esti-

mated at a time step k by making use of all available measurements available after

time k. In particular, the new method integrates both Bayesian filtering and Bayesian

smoothing with a thresholding technique. The thresholding helps to identify and re-

move high-noise measurements from the estimation process.
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3.4 Integration of thresholding With Bayesian Filtering and Smoothing

3.4.1 Integrated Tracking Algorithm

Our proposed tracking method uses both Bayesian filtering and Bayesian smoothing,

as discussed in Sections 2.3 and 2.8, respectively. To allow for nonlinear dynamic

systems, we select the unscented Kalman filter (UKF) and the unscented Kalman

smoother (UKS), as they were shown to perform better than their extended Kalman

counterparts/ The UKF and UKS methods are described in Sections 2.6 and 2.11,

respectively.

Using the system representation in Equations (3.1) and (3.2), we first use the

UKF to sequentially estimate the state parameter xk, for all time steps, k= 1, . . . , K.

We then use a distance-based metric to compare the estimated state at each time

step to a neighborhood of estimated states, both from previous and future time steps.

Thresholding is then applied to determine the validity of the estimate. This process is

aimed to identify large deviations in the estimate at time k from its nearest neighbors.

When such a deviation occurs, we decide to replace that estimate with its predicted

value from the UKF. In essence, the process is aimed to eliminate measurements that

may have resulted from false alarms and accepted as true detections during detection.

The thresholding process is described next.

For each UKF estimated state xk, we define an L size neighborhoods of xk as the

set of 2L+ 1 estimated states

Xk = {xk−L,xk−(L−1), . . . ,xk+(L−1),xk+L} , k = L+ 1, . . . , K − L (3.3)

The estimates in this L-neighborhood are used to compute the moving average of the
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differences of consecutive estimated states. In particular, at times step k, we compute

Dk,L =
1

2L

L−1∑
m=−L

|xk+m+1 − xk+m| =
1

2L

L−1∑
m=−L

dk+m+1,k+m (3.4)

where the difference between two consecutive estimated states is given by

dk+m+1,k+m = |xk+m+1 − xk+m|

We then compute the decision metric criterion

Dk,L =
Dk,L

Dk,1

=
1

L

L−1∑
m=−L

|xk+m+1 − xk+m|(
|xk − xk−1|+ |xk+1 − xk|

) (3.5)

From the decision metric criterion in Equation (3.5), a high denominator would indi-

cate a large estimation error in xk due to the large difference between xk and its two

immediate neighbors, xk−1 and xk−1. The increased denominator value thus implies

that the UKF estimate xk was updated using an unacceptable measurement zk, either

due to high noise or high clutter. If we select a threshold α such that 0 < α < 1, then,

if Dk,L < α, the UKF estimate should be replaced with its predicted value g(xk−1)

from the state transition equation in (3.1). As a result, thresholding yields a new

estimate x̃k accoriding to

x̃k =

 g(xk−1, Dk,L < α

xk, otherwise
k = L+ 1, . . . , K − L (3.6)

As we cannot form L size neighborhoods for the UKF state estimates xk when k <

L+ 1 and k > K − L, then x̃k = xk.

Note that we refer to this new method of integrating UKF with thresholding as T-

UKF. The overall steps of the method are provided in Algorithm 9. To further increase

tracking performance, we also consider the T-UKS method, where the estimates of

the T-UKF are further smoothed using the UKS.
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Algorithm 9 Thresholding of UKF State Parameter Estimates

Input: UKF estimated state xk, k= 1, . . . , K, transition function g(·)

threshold α, neighborhood size L

for k < L+ 1 or k < K − L do

Set x̃k = xk

end for

for k = L+ 1 to K − L do

Obtain L neighborhood of xk in Equation (3.3)

Compute Dk,L and Dk,1 using Equation (3.4)

Compute Dk,L using Equation (3.5)

Use decision criterion in in Equation (3.6) to select new state estimate x̃k

end for

Output: Thresholded state estimate x̃1:K

Algorithm 10 Smoothing of the Thresholded UKF State Parameter Estimates

Input: T-UKF estimated state parameters x̃k, k = 1, . . . , K from Algorithm 9

Use UKS in Algorithm 8

Output: State estimates after filtering, thresholding and smoothing

3.5 Thresholding Demonstration With Varying Parameters

The tracking performance of the proposed T-UKF and T-UKS methods highly depend

on two parameters. The parameters are the neighborhood size L and the decision

threshold α in Equation (3.6). If the neighborhood size is too small, we do not

expect to see an increase in performance; on the other hand, if L is too large, valid

measurements could be removed. A similar behavior in performance can be observed

with the threshold α. In the next chapter, we fix one parameter at a time and vary the

other one in order to select an adequate pair to increase performance for a particular
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tracking scenario.

In order to demonstrate the effect of the thresholding process in Equation (3.6),

we simulate a simple random process

xk = xk−1 + wk, w ∼ N (0, 1002),

where xk is time-varying variable and w is observation noise that zero-mean white

Gaussian noise with high variance 10,000. Figure 3.1a shows a simulation of xk, for

k= 1, . . . , 100, with the observation noise added xk values marked. We set the initial

state x0 = 0. We apply the thresholding algorithm following the steps in Algorithm 9.

For this demonstration, we selected L = 6 and α = 0.6. The estimated xk values after

thresholding are shown superimposed on the true values in Figure 3.1b. As indicated

in the figure, five values of the estimated xk were thresholded and moved closer to the

true values. These values occurred at k = 4, 20, 45, 56, 65. The thresholding process

assumes that the estimates at these times came from measurements that should not

have resulted in valid detection.

In subsequent simulations, we varied the values of L and α. In Figure 3.2, the

threshold value is fixed to α = 0.6 and L was varied as L = 3, 4, 5. When the neigh-

borhood size is L = 4, 7 points were thresholded, whereas 6 points were thresholded

for L = 5 and L = 6. The overall comparison of the three L values is shown in the

bottom right figure. As it can be seen, for this example, the larger L value resulted in

better estimation performance. This is also shown in Table 3.1, where estimation root

mean-squared error (RMSE) results are shown after 10,000 Monte Carlo simulations.

Since the state without the observation noise is supposed to be 0, and we want to

know how the thresholding process can decrease the effect of the observation noise w,

the RMSE is computed as

√√√√ 1
100

( 100∑
k=1

(xk − 0)2

)
. The table shows the lowest RMSE

is when L = 4 when the threshold was fixed to α = 0.5, and when α = 0.6 when the

45



L is fixed to L = 4.

In Figure 3.3, the neighborhood size is fixed to L = 6 and and the threshold

varied α = 0.5, 0.6, 0.7. The number of corresponding points thresholded is shown on

the plots as 4, 9 and 14. Both Table 3.1 and the bottom right figure show that in this

case, the higher α = 0.7 resulted in better performance from L = 6. It is important

to note that the overall performance is as summarized in Table 3.1 as 10,000 Monte

Carlo runs were used. The demonstrations in Figures 3.2 and 3.3 are only from one

run.

As future work, we will develop methods to adaptively select the best algorithm

parameters based on the particular tracking scenario.

L = 4 L = 5 L = 6

RMSE in samples for α = 0.6 580 583 590

α = 0.5 α = 0.6 α = 0.7

RMSE in samples for L = 6 545 586 600

Table 3.1: RMSE in Samples For Varying L and α Values
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(a) True Values of xk as a Function of Time Step k.

(b) Estimated Values of xk Superimposed with True Values. The Five Circled Points Un-

derwent Thresholding to Improve Estimation Performance.

Figure 3.1: Result of True and Thresholded States
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Figure 3.2: Thresholding for Fixed α = 0.6 and Varying L = 3, 4, 5.
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Figure 3.3: Thresholding for Varying α = 0.5, 0.6, 0.7 and Fixed L = 6.
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Chapter 4

SIMULATIONS AND DISCUSSION

4.1 Simulation Parameters

In this chapter, we simulate various tracking scenarios to estimate the position of an

object using radar measurements of range and bearing. We use the simulations to

compare the performance of our proposed thresholding-based method with methods

that only rely on either Bayesian filtering or on both Bayesian filtering and smoothing.

We assume a dynamic system with two-dimensional (2-D) turning motion. The

transition equation is given by

xk = [xk yk ẋk ẏk ωk]
> = F(ωk)xk−1 + qk−1

where (xk, yk) and (ẋk, ẏk) are 2-D Cartesian coordinates of position and velocity,

respectively, ωk is the turn rate in radians per second. We selected a simplified

transition matrix

F(ωk) =



1 0 ∆t 0 0

0 1 0 ∆t 0

0 0 cos(ωk ∆t) − sin(ω∆t) 0

0 0 sin(ωk ∆t) cos(ωk ∆t) 0

0 0 0 0 1


where ∆t is the time between any two steps. The initial state was [x0 y0 ẋ0 ẏ0 ω0] =

[0 0 4 10 0.02]. The modeling error covariance Qk = Q = σ2I, where I is the 5× 5

identity matrix and with negligible σ2. The tracking field-of-view (FOV) consists of

an 1,600 m by 800 m rectangular area. We simulate K = 100 time steps with ∆t = 1

50



s. The measurement equation is given by

zk =


h(xk) + rk

z
(c)
k + rk

(4.1)

where

h(xk) = [φk rk]
> =

[
arctan (yk/xk)

√
x2
k + y2

k

]>
with bearing angle φk in in radians and range rk meters. The measurement noise

covariance is given by

Rk = ρk

1 0

0 5


with time-varying noise intensity ρk that varies between two values with equal prob-

ability. For high noise (HN), it varies between 4 and 8; for low noise (LN), it varies

between 2 and 4. In Equation (4.1), z
(c)
k is clutter that is modeled as a Poisson point

process with rate parameter λ false alarms per scan of uniform clutter in the FOV.

We use λ = 10 for low clutter (LC) and λ = 50 for high clutter (HC). Unless oth-

erwise stated, we obtain estimation root mean-squared error (RMSE) performance

by running 10,000 Monte Carlo (MC) runs. The detection probability is 0.98. For

all simulations, we assume that all measurements are due to valid detections; some

of these detections however, are a result of a high probability of false alarm. We

also assume that the object is always present in the FOV. The actual 2-D Cartesian

coordinates (xk, yk) of the object is shown in Figure 4.1.

We compute performance using estimation root mean-squared error (RMSE) for

the number of runs for which thresholding has occurred. This is because the UKF

estimate only changes if Dk,L < α in Equation (3.6). As a result, we do not include

the runs when the UKF estimate remains the same.
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Figure 4.1: Actual 2-D Cartesian Coordinates of Moving Object.

4.2 UKF and T-UKF Estimation Methods

The T-UKF estimation method integrates UKF with thresholding in Algorithm 9.

The comparison of the UKF results and the proposed T-UKF method is given in
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Figure 4.2. In the figure, UKF is shown in blue and T-UKF is shown in red. High

noise measurements can be seen at time step 25 and 39; they can also be seen in

the bottom graph of Figure 4.2(b) with blue stars. These errors in the UKF are

thresholded using the T-UKF.

4.2.1 UKS and T-UKS Estimation Methods

In this process, we estimate each state given all the measurements we have obtained

using the Bayesian smoothing method. Especially, in this nonlinear scenario, we use

the UKS which is the closed form smoothing solution to get the result. The only

difference between UKS and T-UKS process is using the T-UKF states instead of the

states of the UKF. Figure 4.3 shows the comparison between the results of the UKS

and T-UKS. If the result of the T-UKF is better than the UKF, The T-UKS is better

than the UKS probabilistically. The result of the T-UKS restrains the distortion of

the trajectory from the thresholding process. The accuracy of the result does not

always show the proposed method better, this is the reason to find proper threshold

parameters.
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(a) Estimated (xk, yk) Using UKF and T-UKF.

(b) UKF and T-UKF Estimates, True Values and Measurements of

xk and yk.

Figure 4.2: Comparison of UKF and T-UKF Performance.
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(a) Estimated (xk, yk) Using UKS and T-UKS

(b) UKS and T-UKS Estimates, True Values and Measurements of

xk and yk.

Figure 4.3: Comparison of UKS and T-UKS Performance.
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4.3 Simulation Results

We simulated 10,000 MCs for each scenario of high noise and high clutter (HNHC),

high noise and low clutter (HNLC), low noise and high clutter (LNHC). Each simu-

lation derives two figures; first, the RMSE according to the number of MCs, second,

the RMSE of 10,000 MCs according to 1 to 100 time steps. The RMSE is used to

compute the distance between a set of true states and state estimations and has been

widely adopted to estimate an average of the squares of errors of the object tracking.

Figure 4.4, 4.5, 4.6 show the 10,000 MCs results of nonlinear single object filtering

and smoothing for each environment. From the simulation, we expect that the pro-

posed method performs better than the original method probabilistically, especially

when it comes to the case of high noise. Since the proposed method does not perform

better always, however, if we divide the total MCs into two cases, which are the cases

the proposed method works or not respectively, we know that the only cases of the

threshold process works show the difference compared to the original method. In the

cases that it does not work, in other words, the proposed method decides that if there

is no state estimation with high noise to eliminate, it does not show the different re-

sults between the two methods. The important thing is that the performance of the

proposed method depends on the proper threshold parameter we choose because too

low threshold makes too many measurements missed detections, and too high thresh-

old makes no difference in between. The simulation result shows that the proposed

method either makes the result the same as the original method or performs better

by neglecting high noise measurement.

Figure 4.4a shows the T-UKS performs better than the UKS under HNHC. In

addition, with the parameter we set, around thresholding process operates around

1,580 times when we simulate 10,000 MCs. In other words, the thresholding process
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(a) The RMSE According to the Number of the MCs under HNHC

(b) RMSE According to the Entire Time Step under HNHC

Figure 4.4: RMSE under High Noise and High Clutter

does not find and work for 8,420 MCs.
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(a) The RMSE According to the Number of the MCs under HNLC

(b) The RMSE According to the Entire Time Step under HNLC

Figure 4.5: RMSE under High Noise and Low Clutter

Figure 4.5a shows the T-UKS performs better than the UKS under HNLC, like

the case of HNHC. In addition, with the parameter we set, around thresholding

process operates around 942 times when we simulate 10,000 MCs. In other words,

the thresholding process does not find and work for 9058 MCs. Also, regardless of

the number of clutter we set, the proposed and conventional methods perform well.
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(a) RMSE vs Number of MC Runs Under LNHC

(b) RMSE as a Function of Time Step Under LNHC

Figure 4.6: RMSE for Low Noise and High Clutter

Figure 4.6a shows the performance of the UKS and T-UKS is almost similar since

the UKS, which has low uncertainty from low noise, estimates the states accurate

enough and has no significant difference compared to the T-UKS. Thus, we find

out the thresholding process does not derive considerable results for the scenario

with low noise, whether it works or not. To summarize the simulation, the proposed

method performs better when noise is high and similar when low than the conventional

method.

In the simulation, we set relatively high noise covariance to the HNLC and HNLC

cases.
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HNHC HNLC LNHC

UKF 31.77 30.55 16.43

T-UKF 31.06 29.80 15.93

UKS 33.31 34.07 12.09

T-UKS 31.34 31.64 12.25

Table 4.1: The RMSE of Three Scenario

HNHC HNLC LNHC

Thresholding 15.8% 9.4% 9.6%

Operated Cases (1,580/10,000) (942/10,000) (956/10,000)

T-UKF 71.5% 71.8% 79.2%

Outperformed Cases (1,130/1,580) (676/942) (757/956)

T-UKS 45.6% 45.3% 48.6%

Outperformed Cases (720/1,580) (427/942) (465/956)

Table 4.2: Number of Outperformed MCs

Table 4.1 shows the RMSE of 10,000 MCs of the UKF, T-UKF, UKS, T-UKS

of each scenario. Table 4.2 shows how many times that thresholding process works

among the entire MCs per scenario. Also, Table 4.2 shows how many times the T-

UKF and T-UKS perform better than the UKF and UKS. In Table 4.2, we notice that

the proposed method does not always perform better due to the uncertainty of the

true trajectory, noise, clutter and so on. Finding a probable threshold is important

because the threshold we set is not optimal. In other words, parameters are all

varied depending on the characteristics of the object so that the performance can

be better depending on the proper parameters. If the thresholding process does not

operate, we only can compare the result of the UKF and UKS. The RMSE of the UKS

performs better than the UKF, unlike the result of Table 4.2, and it means when the
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thresholding stage does not find any suspicious high-noise contained measurement,

the smoothing usually performs better than the filter. Thus, finding a fitted threshold

to each scenario increases MC cases that show better performance of the T-UKF and

T-UKS and avoids the case of not having high noise.

4.3.1 Simulation for Cross-Validation

As we discussed, the process parameters are selected heuristic-based so that the

performance is changed based on the parameter selection. Thus, we can find param-

eters that perform better by simulating them many times with varied parameters.

Since we have two parameters in the thresholding process, α, L, we can find the bet-

ter parameters by keeping α fixed, and varying L. Next, do the same simulation with

varied α while keeping the parameter L of what we find from the previous validation.

A recursively performed cross-validation process can find the optimal parameters for

the scenario, and it results in the optimal parameters based on varied tracking sce-

narios.

With the same tracking environment that we simulated, we try to find better

parameters by simulating cross-validation. First, we find the parameter L, and α

respectively. In this work, we focus on the RMSE of the T-UKS since we want to

enhance its performance compared to the result of the UKS.

Figure 4.7 shows the result of finding the best parameter among L = 4, 5, 6 with

the parameter α fixed as 0.4. Through the cross-validation simulation, we found out

that the results of the thresholding process of both filtering and smoothing are better

when the parameter L = 6. Then, we proceed the varied α using the computed

parameter L.

Figure 4.8 shows the result of finding the best parameter among α = 0.36, 40, 44

with the parameter L fixed as 6 as what we found in the previous simulation.
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Figure 4.7: RMSE for Varied L = 4, 5, 6

Table 4.3 shows the RMSE of varied parameters respectively while we do the cross-

validation. We can simulate this process recursively to find the optimal parameters

and later set the proper parameters from the optimal parameters that we trained.

RMSE in samples for α = 0.4 L = 4 L = 5 L = 6

UKS 35.2 35.2 34.4

T-UKS 34.5 35.0 34.2

RMSE in samples for L = 6 α = 0.36 α = 0.40 α = 0.44

UKS 33.3 34.4 37.1

T-UKS 32.9 34.3 37.0

Table 4.3: RMSE in Samples For Varying L and α Values
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Figure 4.8: RMSE for Varied L = 4, 5, 6
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Chapter 5

CONCLUSIONS

5.1 Conclusion

In this thesis, we considerd a nonlinear state space system formulation for tracking

a moving object using sensor measurements with high noise and clutter due to high

probability of false alarm conditions. We proposed a new tracking method that

integrates Bayesian filtering and smoothing with a thresholding process to increase

estimation accuracy for off line processing. In particular, after the unknown state is

sequentially estimated over all time steps using the unscented Kalman filter (UKF),

we use a process that is aimed to eliminate measurements that may have resulted

from false alarms. The method compares the estimated state at each time step to a

neighborhood of estimated states, both from previous and future time steps, using a

distance-based metric. If the metric threshold is exceeded at a particular time step,

then the measurement-updated state is replaced with the predicted value of the UKF

process. After thresholding, we use unscented Kalman smoothing (UKS) to further

improve the state estimation accuracy. Using simulations, we demonstrated that

the proposed method works well in high noise conditions. The thresholding process

performed well in finding and removing corrupted measurements due to high noise.

On the other hand, the method does not improve performance under high clutter and

low noise conditions.
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5.2 Future Work

5.2.1 High-noise Attenuated Multi-object Smoothing

Many methods of multi-object filtering and smoothing have been studied and sug-

gested for almost a century, and it is still a state-of-art topic in the field of signal

processing in order to utilize it in practice, since not only considering the probable

parameters such as survival, death, birth, detection, and a miss detection but man-

aging and restraining uncertainty is a key factor in evaluating whether the method

performs well.

The multi-object smoothing has been suggested relatively currently due to the

low feasibility in practice. Recently, the generalized labeled multi-Bernoulli tracker

with partial smoothing [23] was suggested to filter and smooth the multi-object case.

With each labeled target, the tracker[23] smoothes each object partially and com-

bines them. Based on the partial smoothing, applying the state estimations after a

thresholding process can make the result better, as we suggest in this thesis, and we

can extend it to multi-object tracking that uses the methods such as the cardinalized

probability hypothesis density, generalized labeled multi-Bernoulli filter. Multi-object

implies varied characteristics for each object, and we should find the proper threshold

algorithm for each object. For instance, we expect an optimization algorithm to find

the threshold for each object. Also, the object that is generated by clutter could be

eliminated by a proper object lifetime threshold.
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