

Power System Security Enhancement for Real-Time Operations

During Multiple Outages using Network Science

by

Reetam Sen Biswas

A Dissertation Presented in Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

Approved April 2021 by the

Graduate Supervisory Committee:

Anamitra Pal, Chair

 Vijay Vittal

John Undrill

Meng Wu

Yingchen Zhang

ARIZONA STATE UNIVERSITY

May 2021

 i

ABSTRACT

Ensuring reliable operation of large power systems subjected to multiple outages is

a challenging task because of the combinatorial nature of the problem. Traditional methods

of steady-state security assessment in power systems involve contingency analysis based

on AC or DC power flows. However, power flow based contingency analysis is not fast

enough to evaluate all contingencies for real-time operations. Therefore, real-time contin-

gency analysis (RTCA) only evaluates a subset of the contingencies (called the contin-

gency list), and hence might miss critical contingencies that lead to cascading failures.

This dissertation proposes a new graph-theoretic approach, called the feasibility test

(FT) algorithm, for analyzing whether a contingency will create a saturated or overloaded

cut-set in a meshed power network; a cut-set denotes a set of lines which if tripped sepa-

rates the network into two disjoint islands. A novel feature of the proposed approach is that

it lowers the solution time significantly making the approach viable for an exhaustive real-

time evaluation of the system. Detecting saturated cut-sets in the power system is important

because they represent the vulnerable bottlenecks in the network. The robustness of the FT

algorithm is demonstrated on a 17,000+ bus model of the Western Interconnection (WI).

 Following the detection of post-contingency cut-set saturation, a two-component

methodology is proposed to enhance the reliability of large power systems during a series

of outages. The first component combines the proposed FT algorithm with RTCA to create

an integrated corrective action (iCA), whose goal is to secure the power system against

post-contingency cut-set saturation as well as critical branch overloads. The second

 ii

component only employs the results of the FT to create a relaxed corrective action (rCA)

that quickly secures the system against saturated cut-sets.

The first component is more comprehensive than the second, but the latter is com-

putationally more efficient. The effectiveness of the two components is evaluated based

upon the number of cascade triggering contingencies alleviated, and the computation time.

Analysis of different case-studies on the IEEE 118-bus and 2000-bus synthetic Texas sys-

tems indicate that the proposed two-component methodology enhances the scope and speed

of power system security assessment during multiple outages.

 iii

This work is dedicated to

my loving and caring parents (Sumana Biswas and Tapas Kumar Sen)

 and maternal grandparents (Bithika Biswas and Ashish Baran Biswas).

 iv

ACKNOWLEDGMENTS

I express by sincerest gratitude to my advisor Dr. Anamitra Pal, for his support and

guidance throughout the course of this research work. Pursuing doctoral research has al-

ways been my long-cherished dream, and I am thankful to him for giving me this oppor-

tunity at the Arizona State University. During the years working with him, I have gained

extensive research experience and broadened my horizon in the power systems area.

I am grateful to Dr. Vijay Vittal for his help and support throughout my research. I

am indebted to Dr. John Undrill, for his continuous enthusiasm in my work. Dr. Undrill’s

insightful comments and constructive criticism contributed significantly to the betterment

of my research. I am grateful to Dr. Meng Wu and Dr. Yingchen Zhang for their genuine

interest in my work and providing their invaluable feedback during my Comprehensive

exam. I would also like to thank Dr. Yingchen Zhang for providing me the opportunity to

do exciting summer internships at the National Renewable Energy Laboratory (NREL),

Golden, Colorado. My experience at NREL has been enriching.

I convey a very special “thank you” to Dr. Trevor Werho. He has always extended

a helping hand whenever I needed it throughout the course of this research. I am also thank-

ful to Power Systems Engineering Research Center (PSERC) for funding this work through

PSERC grants S-74 and S-87.

Last, but not the least, I express my deepest gratitude towards my family members

for their unconditional love, support, and motivation during my doctoral research. Their

unwavering faith has been crucial in the successful completion of my dissertation.

 v

TABLE OF CONTENTS

 Page

LIST OF TABLES ..ix

LIST OF FIGURES ...xi

NOMEMCLATURE ... xvii

CHAPTER

1 INTRODUCTION ... 1

 1.1 Background .. 1

 1.2 Literature Survey ... 4

 1.2.1 Power Flow Studies .. 4

 1.2.2 Contingency Analysis .. 7

 1.2.3 Linear Sensitivity Distribution Factors .. 9

 1.2.4 Mitigation of Post-contingency Violations .. 10

 1.2.5 Cascading Failure Analysis ... 11

 1.2.6 Graph Theoretic Approach for Power System Vulnerability Analysis... 12

 1.3 Research Scope .. 14

 1.3.1 Graph Theoretic Terminologies Used in Power Systems 15

 1.3.2 Introduction to Saturated Cut-sets ... 16

 1.3.3 Working Principle for Detecting Saturated Cut-sets 17

2 DETECTION OF SATURATED CUT-SETS ... 20

 2.1 The Flow and Latent Capacity Graphs ... 20

 2.2 Saturated Branch and Saturated Paths .. 22

 vi

CHAPTER Page

 2.3 Breadth First Search (BFS) Graph Traversal ... 22

 2.3.1 Time Complexity of Shortest Path Graph Traversal Schemes 24

 2.4 Graph-theory based Network Flow Algorithm (NFA) 25

 2.4.1 Graph-theory based Network Flows on a Sample 5-bus Test System 27

 2.4.2 Existence of Multiple Valid Network Flow Solutions 33

 2.5 Feasibility Test (FT) algorithm ... 37

 2.5.1 Illustration of the FT Algorithm ... 39

 2.5.2 Application of the FT Algorithm on Different Network Flow Solution. 43

 2.6 Update Scheme (UPS) of the Network Flow Solution 46

 2.6.1 Illustration of the UPS Algorithm ... 46

 2.7 Shortlisting Assets (SA) Algorithm for Successive FT 51

 2.7.1 Illustration of the SA Algorithm ... 52

3 RESULTS: DETECTION OF SATURATED CUT-SETS..................................... 55

 3.1 Detection of Saturated Cut-sets in IEEE 39-bus System in the Base-case 55

 3.2 Detection of Saturated Cut-sets in IEEE 118-bus System During Outages 57

 3.2.1 Performance of the FT Algorithm ... 57

 3.2.2 Comparative Analysis with Different Methods .. 60

 3.2.2.1 Contingency Ranking Using PTDFs ... 60

 3.2.2.2 Contingency Ranking Using LODFs ... 61

 3.2.2.3 Cascading Simulation Analysis Using MATCASC 61

 3.2.2.4 Comparative Study on the IEEE 118-bus Test System 62

 3.2.3 Application of the FT Considering Different Asset Ratings 64

 vii

CHAPTER Page

 3.3 Time Comparisons of FT and RTCA on Different Test Systems 66

 3.4 Application of FT on a 17,941-bus Model of Western Interconnection 67

 3.4.1 Computational Efficiency of Graph-theory Based Network Analysis..... 67

 3.4.2 A Case-study During a Series of Outages in Western Interconnection ... 69

 3.5 Practical Utility of the FT algorithm ... 71

 3.6 The Limitation and Contribution of the FT algorithm 72

 3.6.1 FT is not Guaranteed to Detect all Post-contingency Branch Overloads 72

 3.6.2 FT is Guaranteed to Detect all Post-contingency Cut-set Saturation 74

4 MITIGATION OF SATURATED CUT-SETS IN POWER SYSTEMS 79

 4.1 RTCA and SCED for Real-time Power System Operations 79

 4.2 The First Component of the Proposed Methodology .. 80

 4.2.1 Branch Power Flows .. 82

 4.2.2 Power Injections ... 83

 4.2.3 Conservation of Energy ... 84

 4.2.4 Security Constraints 1: Post-contingency Branch Flows 84

 4.2.5 Security Constraints 2: Cut-set Power Transfer 85

 4.3 The Second Component of the Proposed Methodology.................................... 86

 4.4 Real-time Application of the Proposed Two-component Methodology 88

 4.5 The Modified Update Scheme (M-UPS) Algorithm ... 90

 4.5.1 Illustration of the M-UPS Algorithm .. 90

 4.6 The Modified Shortlisting Assets (M-SA) Algorithm 95

 4.6.1 Illustration of the M-SA Algorithm .. 96

 viii

CHAPTER Page

5 RESULTS: MITIGATION OF SATURATED CUT-SETS 100

 5.1 Mitigation of Saturated Cut-sets in the IEEE 118-bus Test System100

 5.1.1 A Detailed Case-study of the IEEE 118-bus Test System100

 5.1.2 Mitigation of Saturated Cut-sets Considering Different Asset Ratings 104

 5.1.3 Application of the Proposed Methodology to Different Case-studies ..106

 5.2 Mitigation of Saturated Cut-sets in the 2000-bus Synthetic Texas System ...108

 5.2.1 A Detailed Case-study of the 2000-bus Synthetic Texas system108

 5.2.2 The Computation Time of Different Approaches112

 5.2.3 Real-time Implementation of the Proposed Methodology113

6 CONCLUSION ..116

 6.1 Dissertation Summary ...116

 6.2 Future Work ...117

REFERENCES ..121

 APPENDIX

 A. BRANCH REACTANCE DATA OF A SAMPLE 5-BUS SYSTEM133

 B. BRANCH REACTANCE DATA OF A SAMPLE 10-BUS SYSTEM135

 C. DIFFERENT CASE-STUDIES ON IEEE 118-BUS TEST SYSTEM137

 D. MATLAB PSEUDO-CODE: THE FIRST COMPONENT140

 E. MATLAB PSEUDO-CODE: THE SECOND COMPONENT147

 F. MATLAB PSEUDO-CODE: USER DEFINED FUNCTIONS153

ix

LIST OF TABLES

Table Page

2.1 Power Transfer Across a Cut-set for Three Different Network Flow Solutions of a 5-

bus Power System...35

2.2 Power Transfer Across a Cut-set for Three Different Network Flow Solutions of a 10-

bus Power System...37

2.3 Information Recorded by the FT in the Base-case Scenario ...54

3.1 Identification of Limiting Critical Cut-sets in IEEE 118-bus Test System59

3.2 Ranking of Contingencies and Cascading Analysis in IEEE 118-bus Test System After

Different Outages ...63

3.3 Performance of the FT Considering Different Transmission Asset Ratings During

Multiple Outages ..65

3.4 Application of Graph-Theory Based Network Analysis in Western Interconnection .70

3.5 Power Transfer Capacity Across Different Cut-sets in the 5-bus Test System Associated

With Branch 3-4 ...76

4.1 Information of the FT Before the New Dispatch Solution is Obtained99

5.1 Comparative Analysis of the First Component and RTCA-SCED for a Sequence of

Outages in the IEEE 118-bus Test System .. 102

5.2 Comparative Analysis of the Second Component and DC-OPF for a Sequence of

Outages in the IEEE 118-bus Test System .. 103

5.3 Performance of the First Component (FT-RTCA-iCA) Considering Different Asset

Ratings During Multiple Outages in the IEEE 118-bus Test System 105

x

Table Page

5.4 Performance of the Second Component (FT-rCA) Considering Different Asset Ratings

During Multiple Outages in the IEEE 118-bus Test System .. 106

5.5 Performance of the First Component (FT-RTCA-iCA) on the 2000-bus Synthetic Texas

System During a Sequence of Outages .. 109

5.6 Performance of the RTCA-SCED on the 2,000-bus Synthetic Texas System During a

Sequence of Outages ... 109

5.7 Performance of the Second Component (FT-rCA) on the 2000-bus Synthetic Texas

System During a Sequence of Outages .. 111

5.8 Performance of DC-OPF on the 2000-bus Synthetic Texas System During a Sequence

of Outages .. 111

5.9 Time Comparisons of Different Approaches During a Sequence of Outages on the

2000-bus Synthetic Texas System .. 112

5.10 Real-time Application of the Two-component Methodology During a Sequence of

Outages on the 2000-bus Synthetic Texas System .. 115

xi

LIST OF FIGURES

Figure Page

1.1 Effect of a Contingency on a Cut-set of the Power Network ..15

1.2 Network Connectivity Between Two Buses ...18

2.1 (a) A Sample Flow Graph ℱ(𝑉, 𝐸), and (b) Latent Capacity Graph 𝒞(𝑉, 𝐸) for a Sample

5-bus Power System. This Flow Solution is Obtained from a DC power flow21

2.2 Step 1 of the Graph Traversal Using BFS ..23

2.3 Step 2 of the Graph Traversal Using BFS (the Latent Capacities of the Branches Along

Given Direction are Shown in Red) ..24

2.4 Step 3 of the Graph Traversal Using BFS (the Latent Capacities of the Branches Along

a Given Direction are Shown in Red) ...25

2.5 The Original Power Network is Divided into Two Disjoint Clusters 𝐶1 and 𝐶227

2.6 (a) Flow Graph, and (b) Latent Capacity Graph of a 5-bus Test System at the Beginning

of the Network Flow Algorithm ..28

2.7 Iteration 1-(a) Flow Graph, and (b) Latent Capacity Graph of a 5-bus Test System...29

2.8 Iteration 2- (a) Flow Graph and (b) Latent Capacity Graph of a 5-bus Test System...30

2.9 Iteration 3-(a) Flow Graph and (b) Latent Capacity Graph of a 5-bus Test System....31

2.10 Iteration 4-(a) Flow Graph and (b) Latent Capacity Graph of a 5-bus Test System .32

2.11 Final Graphs-(a) Flow Graph and (b) Latent Capacity Graph of a 5-bus Test System

 ...33

2.12 Final Graphs-(a) Flow Graph and (b) Latent Capacity Graph of a 5-bus Test System

 ...34

xii

Figure Page

2.13 (a) Case A: A Flow Graph Obtained From a DC Power Flow Solution, (b) Case B: A

Flow Graph Obtained From a Valid Graph-Theory Based Network Flow Solution, (c) Case

C: A Flow Graph Obtained From Another Valid Graph-Theory Based Network Flow So-

lution for the 5-bus Test System ..35

2.14 Case 1- A Flow Graph Obtained from a DC Power Flow Solution (the Numbers in

Blue Font on Each Branch Represent Flows) for a 10-bus Test System. The Rating for

Every Branch is 300 MVA ..36

2.15 Case 2- A Flow Graph Obtained from Another Graph-theory Based Network Flow

Solution (the Numbers in Blue Font on Each Branch Represent Flows) for a 10-bus Test

System. The Rating for Every Branch is 300 MVA. ...36

2.16 Case 3- Another Flow Graph Obtained from Another Graph-Theory Based Network

Flow Solution (the Numbers in Blue Font on Each Branch Represent Flows) for a 10-bus

Test System. The Rating for Every Branch is 300 MVA. ...36

2.17 (a) Flow Graph, and (b) Latent Capacity Graph for the 5-bus Test System Obtained

from the Graph Theory-based Network Flow Algorithm ..39

2.18 The Branch Which is to be Evaluated for an Outage by the FT is Removed from the

Latent Capacity Graph 𝒞′(𝑉, 𝐸) as the First Step ..40

2.19 An Updated Latent Capacity Graph 𝒞′(𝑉, 𝐸) After Adding a Flow of 30 MW Along

Path 𝒫 = {4 − 5 − 3} ..41

2.20 The Updated Latent Capacity Graph 𝒞′(𝑉, 𝐸) After Adding 150 MW of Flow Along

Path 𝒫 = {4 − 5 − 1− 3} ...42

xiii

Figure Page

2.21 The 4 Different Cut-sets Associated with Branch 3-4 (the Power Flows Correspond

to a DC Power Flow Solution)...44

2.22 Effect of the Outage of Branch 3-4 on (a) 𝐾1, (b) 𝐾2, (c) 𝐾3, and (d) 𝐾4 of the Flow

Graph of Fig. 2.13(a) ..44

2.23 (a) Power Transfer Across Cut-set 𝐾𝑐𝑟𝑖𝑡 for the Flow Graph of Fig. 2.14, (b) Power

Transfer Across Cut-set 𝐾𝑐𝑟𝑖𝑡 for the Flow Graph of Fig. 2.15, (c) Power Transfer Across

Cut-set 𝐾𝑐𝑟𝑖𝑡 for the Flow Graph of Fig. 2.16 ..45

2.24 (a) Flow Graph, and (b) Latent Capacity Graph of the 5-bus Power System Obtained

from the Graph-theory Based Network Flow Solution ..47

2.25 (a) Flow Graph, and (b) Latent Capacity Graph After Power Flow Through Branch 5-

3 is Re-routed Along Path 5-1-3 Using UPS Algorithm After Outage of Branch 5-3.......48

2.26 (a) Updated Flow Graph, and (b) Updated Latent Capacity Graph Obtained from a

DC Power Flow Solution After the Outage of Branch 5-3 ..50

2.27 (a) The Updated Flow Graphs Obtained from the UPS Algorithm, and (b) DC Power

Flow Solution After the Outage of Branch 5-3 ..50

2.28: (a) Rerouting the Flow on Branch 𝑒𝑙 Does Not Involve any Branch of the Indirect

Paths of 𝑒𝑚, and (b) Rerouting the Flow on Branch 𝑒𝑙 Involves Some Branches of the

Indirect Paths of 𝑒𝑚 ..51

2.29: A Flow Graph for a Sample 7-bus Power System ..53

2.30: With the Outage of Branch 2-1, the Flow is Re-routed Through Path 𝒫={2-3-6-1}54

xiv

Figure Page

3.1 Identification of Saturated Cut-sets in the IEEE 39-bus System for the Base-case Sce-

nario ...56

3.2 Real-time Identification of Limiting Critical Cut-sets on the IEEE 118-bus Test System

by the FT Algorithm During a Sequence of Outages ...58

3.3 (a) A Simplified Flowchart Showing how MATCASC Performs Cascading Failure

Analysis For Any Initial Branch Outage, and (b) Formation of Different Islands at the End

of the Cascade ...62

3.4 Comparative Analysis of the Computation Time of the FT and RTCA for Test Systems

of Different Sizes ..66

3.5 (a) Histogram of Number of Indirect Paths Traversed by the Graph Theory-Based FT,

and (b) Histogram of Maximum Number of Branches Contained in an Indirect Path68

3.6 Topology of a Sample 6-bus Power System (Branch Impedances are Represented in

Terms of a Variable 𝑧) ...73

3.7 Scenario 1-(a) A DC Power Flow Solution in Base-case, and (b) A DC Power Flow

Solution for the Outage of Branch 1-2 ..73

3.8: Scenario 2-(a) A DC Power Flow Solution in Base-case, and (b) A DC Power Flow

Solution for the Outage of Branch 1-2 ..73

3.9: 𝐾𝑖 is the 𝑖𝑡ℎ Cut-set (Among 𝑥 Cut-sets) Associated with Branch 𝑒𝑙 that Separates the

Network Into Two Disjoint Clusters ...75

3.10: Topology of a Sample Five-bus Power System (Branch Impedances are Represented

in Terms of a Variable 𝑧) ...76

xv

Figure Page

3.11 Power Transfer Across Four Different Cut-sets (𝐾1, 𝐾2,𝐾3, 𝐾4) Associated with

Branch 3-4 for Case 1...76

3.12 Power transfer Across Four Different Cut-sets (𝐾1, 𝐾2,𝐾3, 𝐾4) Associated with

Branch 3-4 for Case 2...77

4.1 RTCA and SCED for Real-time Power System Operations..80

4.2 The First Component: The Results from RTCA and FT are Used to Create an Integrated

Corrective Action (iCA)...81

4.3 The Second Component: The Results from FT are Only Utilized to Create a Relaxed

Corrective Action (rCA) ..87

4.4 (a) If the First Component Provides a Dispatch Solution Before the Scheduled Time

for the Next Redispatch, then the Solution Obtained from the First Component Should be

Implemented, (b) If the First Component Does not Provide a Dispatch Solution Before the

Scheduled Time for Next Redispatch, then the Solution Obtained from the Second Com-

ponent Should be Implemented. ..89

4.5 (a) Flow Graph and (b) Latent Capacity Graph for a sample 5-bus test system92

4.6 (a) Updated Flow Graph, and (b) Latent Capacity Graph Obtained After a Redispatch

Solution ...93

4.7 (a) Flow Graph, and (b) Latent Capacity Graph Obtained from a DC Power Flow So-

lution After Generation Redispatch ...94

4.8 (a) Flow Graph Obtained from the M-UPS Algorithm, and (b) Flow graph obtained

from a DC Power Flow Solution After Generation Redispatch ..95

xvi

Figure Page

4.9 (a) Updating the Flows in the Network for a Change in the Power Injections Does not

Involve any Branch in the Indirect Paths of Branch 𝑒𝑚; (b) Updating the Flows in the Net-

work for a Change in the Power Injections Involves Branches in the Indirect Paths of

Branch 𝑒𝑚 ...96

4.10 The Flow Graph of a Sample 7-bus Power System Before the Corrective Action has

been Implemented ..97

4.11 The Flow Graph of a Sample 7-bus Power System After the Corrective Action has

been Implemented ..98

5.1 Statistical Summary of Performance of Different Approaches for 41 Case-studies in the

IEEE 118-bus Test System ... 107

xvii

NOMENCLATURE

𝑐𝑙
𝐹𝑇 Directed weight associated with branch 𝑒𝑙 from bus 𝑣𝑙

𝐹 towards bus 𝑣𝑙
𝑇 in

the latent capacity graph (𝒞).

𝑐𝑙
𝑇𝐹 Directed weight associated with branch 𝑒𝑙 from bus 𝑣𝑙

𝑇 towards bus 𝑣𝑙
𝐹 in

the latent capacity graph (𝒞).

𝐶1 The set of buses contained in cluster 1.

𝐶2 The set of buses contained in cluster 2.

𝐶𝒫 Maximum extra flow that can be transferred along path 𝒫 from a source

towards a sink.

𝐶𝐴 Contingency Analysis

𝒞 A bi-directional latent capacity graph of the power network.

𝑒𝑙 𝑙𝑡ℎ branch in set 𝐸.

𝐸 A set containing all branches of the power network.

𝐸𝑣 A set containing critical branch contingencies, detected by RTCA that result

in post-contingency branch overloads.

𝐸𝑠 A set containing the special assets detected by the Feasibility Test (FT) al-

gorithm.

∆𝑓𝑙 Change in power flow on the 𝑙𝑡ℎ branch.

∆𝑓 Total power transferred from one specific bus (𝑖) to another specific bus (𝑗).

𝑓𝑙 A flow associated with branch 𝑒𝑙 .

𝑓𝑙
′ New flow corresponding to the changes in bus power injections in the sys-

tem.

xviii

𝑓𝑘
0 Original flow on the 𝑘𝑡ℎ branch before it was outaged.

𝑓𝑙
𝑐 Post-contingency flow on the 𝑙𝑡ℎ branch with the 𝑘𝑡ℎ branch out.

𝑓𝑙
𝑚𝑎𝑥 Rating of branch 𝑒𝑙 .

𝐹 The flow 𝑓𝑙 through branch 𝑒𝑙 is assigned to variable 𝐹 in the UPS algorithm

to update graph-theory based network flows for the outage of branch 𝑒𝑙 .

𝐹𝒫 The flow injected along path 𝒫.

FERC Federal Electricity Regulatory Commission

FT Feasibility Test.

ℱ A directional flow graph of the power network.

𝑔 The total number of generator buses in the system.

𝐺 A set containing the locations of generator buses.

𝐺𝑖 Active power generated at generator bus 𝑖 ∈ 𝐺.

∆𝐺𝑖 Change in active power generation at the generator bus 𝑖 ∈ 𝐺.

𝒢 An undirected weighted graph of the power network.

∆𝐼𝑝 Net increase in power injection at a bus 𝑣𝑝 ∈ 𝑉
𝑝.

∆𝐼𝑛 Net decrease in power injection at a bus 𝑣𝑛 ∈ 𝑉
𝑛.

𝑖𝐶𝐴 Integrated Corrective Action.

𝐽 Jacobian matrix obtained for an AC power flow solution.

𝑘 Total number of branches in cut-set 𝐾.

𝐾 Any cut-set in the power network.

𝐾𝑐𝑟𝑖𝑡 Limiting critical cut-set for branch 𝑒𝑙 ∈ 𝐸.

𝒦𝑐𝑟𝑖𝑡 A set containing all the limiting critical cut-sets detected by FT.

xix

𝐾𝐶𝐿 Kirchhoff’s Current Law

𝐾𝑉𝐿 Kirchhoff’s Voltage Law

𝐿 A set containing all the load buses.

𝐿𝑗 Active power demand at a bus 𝑗 in set 𝐿.

∆𝐿𝑗 Change in active power demand at bus 𝑗 in set 𝐿.

𝐿𝑂𝐷𝐹𝑙,𝑘 Line Outage Distribution Factor for branch 𝑒𝑙 corresponding to the outage

of branch 𝑒𝑘 in the system.

𝐿𝑂𝐼𝐹𝑘 Line Outage Impact Factor for a branch contingency 𝑒𝑘 .

𝑀 −𝑈𝑃𝑆 Modified Update Scheme.

𝑀 − 𝑆𝐴 Modified Shortlisting Assets.

𝑛 Total number of buses in a system.

NERC North American Electric Reliability Corporation

𝑝𝑗 Active power injection at the bus 𝑗 in the system.

∆𝑝 This set contains the active power mismatches for different buses in the it-

erations of an AC power flow solution.

𝑝𝑗,𝑘 Active power flowing from bus 𝑗 towards the bus 𝑘 through the correspond-

ing branch.

𝑃𝐺
1 Total active power generation in cluster 𝐶1.

𝑃𝐺
2 Total power generation in cluster 𝐶2.

𝑃𝐿
1 Total active power demand in cluster 𝐶1.

𝑃𝐿
2 Total power demand in cluster 𝐶2.

∆𝑃1 Net active power injection in cluster 𝐶1.

xx

∆𝑃2 Net active power injection in cluster 𝐶2.

𝑃𝐾 Total active power to be transferred across cut-set 𝐾.

𝒫 This is a path containing a sequence of branches from a source bus to a sink

bus in a connected graph.

𝑃𝑇𝐷𝐹𝑙,𝑖
𝑗

 Power Transfer Distribution Factor for the 𝑙𝑡ℎ branch when power is added

at the bus 𝑖 and withdrawn at the bus 𝑗.

𝑞𝑗 Reactive power injection at the bus 𝑗 in the power system.

∆𝑞 This set contains the reactive power mismatches for different buses in the

iterations of an AC power flow solution.

𝑟𝐶𝐴 Relaxed Corrective Action

𝑅𝐾 Total active power transfer capacity of cut-set 𝐾.

RTCA Real Time Contingency Analysis (RTCA)

SA Shortlisting Assets.

SCED Security Constrained Economic Dispatch

𝑇𝑙
𝑖 Transfer margin of the 𝑖𝑡ℎ saturated cut-set, associated with branch 𝑒𝑙 .

𝑇𝑙 Transfer margin of the limiting critical cut-set associated with branch 𝑒𝑙 .

𝒯𝑘 Electrical betweenness for a potential branch contingency 𝑒𝑘 .

𝒯𝑘
𝑝

 Positive electrical betweenness for a potential branch contingency 𝑒𝑘 .

𝒯𝑘
𝑛 Negative electrical betweenness for a potential branch contingency 𝑒𝑘 .

𝑇𝐶𝑙 Total additional active power transfer capability of the indirect paths of

branch 𝑒𝑙 .

𝑈𝑃𝑆 Update Scheme.

xxi

𝑣𝑙
𝐹 The “from bus” of branch 𝑒𝑙 .

𝑣𝑙
𝑇 The “to bus” of branch 𝑒𝑙 .

𝑉 A set containing different buses of the power system.

𝑉𝑝 A set containing buses where the net power injection has increased after the

corrective action, with respect to the original test case.

𝑉𝑛 A set containing buses where the net power injection has decreased after the

corrective action, with respect to the original test case.

𝒱𝑗 Voltage magnitude at bus 𝑗.

∆𝒱 A set containing the changes in bus voltage magnitude in different iterations

of an AC power flow solution.

𝑥 Total number of cut-sets associated with branch 𝑒𝑙 .

𝜒𝑗𝑘 Reactance of the branch joining bus 𝑗 to bus 𝑘

𝑦 Total number of saturated cut-sets associated with branch 𝑒𝑙 .

𝑌 The bus admittance matrix of the network.

𝑌𝑗𝑘
𝑟 Real component of the bus admittance corresponding to the 𝑗𝑡ℎ row and 𝑘𝑡ℎ

column of the 𝑌 matrix

𝑌𝑗𝑘
𝑖 Imaginary component of the bus admittance corresponding to the 𝑗𝑡ℎ row

and 𝑘𝑡ℎ column of the 𝑌 matrix

𝑧 A variable denoting impedance of a branch.

𝜃𝑗 Voltage angle at the bus 𝑗.

∆𝜃 A set containing the change in bus voltage angles in different iterations of

an AC power flow solution.

1

CHAPTER 1

INTRODUCTION

This Chapter presents the background and motivation for this research, followed by

a detailed literature survey, and the research scope for this dissertation.

1.1 Background

Maintaining un-interrupted supply of electricity is of paramount importance, to sat-

isfy the ever-increasing energy demands of the society. Failure of any element may have

a negative impact on the normal operations of electric power systems. Real-time system

monitoring is the first step to operate power systems reliably. Measurements are collected

from the remote terminal units (RTUs) or local control centers, which are used to perform

state estimation to determine the real-time status of the power system defined by the volt-

age magnitude and voltage angle of all buses in the system [1]-[2].

Phasor measurement units (PMUs) or synchrophasors built in the 1980s have im-

proved the real-time monitoring capabilities of modern power systems significantly [3]-

[4]. PMUs provide fast time synchronized measurements (typically 30 samples per second

[5]-[6]. Fast reporting rates of voltage and current phasor measurements from PMUs facil-

itate quick, reliable state estimation and system monitoring in power transmission and dis-

tribution systems [7]-[16]. Due to the high cost associated with the synchrophasor technol-

ogy significant research has been done on optimal PMU placement techniques to minimize

the number of PMUs required for accurate state estimation [17]-[24]. Going beyond the

advancements made in real-time state estimation and system monitoring, it is important to

2

enhance the state-of-the-art techniques of power system security assessment, which utilizes

the converged state estimation results to investigate the consequence of potential contin-

gencies in power systems.

The North American Electric Reliability Corporation (NERC) recommends that a

reliable electric grid should be able to withstand the loss of a single element of its bulk

power system (called N-1 reliability) [25]. Consequently, power system operators perform

real-time contingency analysis (RTCA) and security constrained economic dispatch

(SCED) successively at regular intervals [26]. RTCA evaluates the impact of a potential

contingency on the system’s static security (branch overloads and voltage violations). The

critical contingencies detected by RTCA are modeled as the security constraints in SCED

to provide a least-cost dispatch solution to eliminate the potential post-contingency over-

loads [27]-[28]. Despite RTCA-and-SCED trying to ensure N-1 reliability, cascading fail-

ures do occur in a power system. Severe instances of cascading failures could result in un-

intentional islanding and consequently, blackouts/brownouts [29]-[30]. Few examples of

the major system disturbances in North America are as follows: Northeast Blackout in 1965

[31], New York City blackout in 1977 [32], Western Electricity Coordinating Council

(WECC) blackout in 1996 [33], North East blackout in 2003 [34], power outages in Loui-

siana during Hurricane Gustav in 2008 [35], the US Southwest blackout in 2011 [36], and

large-scale power interruptions in Florida during Hurricane Irma in 2017 [37].

Analysis of some of the major blackouts that have happened in the past has indi-

cated that they often involve successive outages of power system assets [38]. For example,

the 1977 New York City blackout was caused by the loss of 11 transmission lines in 52

minutes [32]. The Federal Electricity Regulatory Commission (FERC) reported that one of

3

the causes of the blackout was “the failure to recognize that a critical interconnection to the

West was effectively unavailable” [39]. Werho et al. stated that a critical interconnection

does not necessarily refer to a single line whose status can be monitored [40]; i.e., a critical

interconnection might consist of multiple transmission lines. As such, real-time detection

of critical interconnections in the power system that is suffering from multiple outages is a

challenging task [41]. Moreover, considering the high speed with which some of the black-

outs/brownouts occur (the 2011 US Southwest blackout occurred within 11 minutes [36]),

it is clear that fast and robust assessment of power system security is extremely important

for real-time operations.

The traditional approaches for providing situational awareness during real-time op-

erations are based on steady-state contingency analyses techniques that solve AC or DC

power flows [42]-[46]. However, power flow-based contingency analysis (CA) is not fast

enough to perform an exhaustive N-1 RTCA [46]. The computational burden of the prob-

lem increases further for a more ambitious N-k contingency analysis [42]. Therefore, power

utilities select a subset of the contingencies for evaluation based on some pre-defined cri-

teria [44]-[45]. In [46], Huang et al. stated that the size of this subset has considerable

impact on RTCA solution: a large subset is computationally burdensome, while a small

subset might miss critical scenarios. This can be a problem for real-time operations during

extreme scenarios when multiple outages occur in rapid succession [40].

Furthermore, transmission system operators do not necessarily monitor their neigh-

boring systems in detail during state estimation or contingency analysis [40]. As a result,

situational awareness could be limited if all external contingencies are not evaluated by

RTCA. The US Southwest blackout of September 8, 2011 is a classic example of the

4

dangers that lack of situational awareness of critical events occurring in the neighboring

system, pose [36]. The event was initiated by the loss of a 500-kV line (Hassayampa-North

Gila) that was transporting power from Arizona to California through the Imperial Irriga-

tion District (IID) system. This event occurred at 3:27 PM. Two transformers in the IID

system (Coachella Valley and Ramon transformers) were overloaded and tripped offline.

The Coachella Valley transformers tripped at 3:28 PM, while the Ramon transformers

tripped at 3:32 PM. Following these initial triggering outages, a sequence of outages fol-

lowed in the next 11 minutes disconnecting the San Diego area (which was being supplied

power by the San Diego Gas & Electric (SDG&E) system) from the rest of the grid by 3:38

PM. Subsequent analysis of the blackout revealed that the neighboring entities had partial

visibility of the IID’s system, and as such could not observe that the Coachella Valley and

Ramon transformers would be overloaded for the outage of Hassayampa-North Gila trans-

mission line. Therefore, there is a genuine need to improve upon the existing methods of

power system security assessment by enhancing situational awareness of critical contin-

gencies in large power systems.

1.2 Literature Survey

1.2.1 Power Flow Studies

A power flow study forms the basis of steady-state analysis in an interconnected

power system. The transmission networks are normally assumed to be three-phase bal-

anced, and hence only the positive sequence network is modeled. The most commonly used

power flow models used in the literature are AC power flow model, and the simplified DC

power flow model [47].

5

 AC power flow model is a non-linear model because the bus power injection is a

function of the square of the bus voltages. The objective of the AC power flow problem is

to obtain complete voltage magnitude and angle information for every bus of the power

system for specified load and generation values. Depending upon the bus type, different

buses in the power system are associated with known and unknown quantities. The three

basic bus types are the PV, PQ, and slack bus.

 A PV bus is a generator bus; the active power and voltage magnitude is known at

the generator bus. A PQ bus is a load bus; active power and reactive power at all PQ buses

are known. The slack bus (also referred as the swing bus) is a generator bus which has a

large amount of generation capacity. The voltage magnitude and angle information at the

slack bus is known. For the PV buses, the generator reactive power output adjusts automat-

ically to maintain the specified voltage. However, reactive power capability of a generator

is associated with a minimum and maximum limit. Therefore, a PV bus might switch to a

PQ bus when the reactive power of the generator reaches its limit.

 Now, the non-linear power flow equations are given as follows:

 𝑝𝑗 = ∑𝒱𝑗𝒱𝑘(𝑌𝑗𝑘
𝑟𝑐𝑜𝑠𝜃𝑗𝑘 + 𝑌𝑗𝑘

𝑖 𝑠𝑖𝑛𝜃𝑗𝑘)

𝑛

𝑘=1

 (1.1)

 𝑞𝑗 = ∑𝒱𝑗𝒱𝑘(𝑌𝑗𝑘
𝑟𝑐𝑜𝑠𝜃𝑗𝑘 + 𝑌𝑗𝑘

𝑖 𝑠𝑖𝑛𝜃𝑗𝑘)

𝑛

𝑘=1

 (1.2)

where, 𝑝𝑗 and 𝑞𝑗 are the net active and reactive power injected at bus 𝑗 respectively, 𝑌𝑗𝑘
𝑟

and 𝑌𝑗𝑘
𝑖 denote real and imaginary parts of the bus admittance matrix 𝑌 respectively, cor-

responding to the 𝑗𝑡ℎ row and the 𝑘𝑡ℎ column, and 𝜃𝑗𝑘 denotes the difference between the

voltage angles between the buses 𝑗 and 𝑘; i.e., 𝜃𝑗𝑘 = 𝜃𝑗 − 𝜃𝑘. Considering that a system

6

has 𝑛 buses and 𝑔 generator buses, there are 2(𝑛 − 1) − (𝑔 − 1) unknowns in the system

[48]. This is because the voltage magnitude for all generator buses are known, and the

voltage magnitude and angle of the slack bus is also known.

 There are different methods for solving the set of non-linear equations described by

(1.1) and (1.2). The most commonly used method is the Newton Raphson method. It starts

with an initial guess of the unknown variables, following which a Taylor series approxi-

mation is used to linearize the system at the given operating point, which can be expressed

as follows:

 [
∆𝜃
∆𝒱
] = −𝐽−1 [

∆𝑝
∆𝑞

] (1.3)

where, ∆𝑝 and ∆𝑞 contain active and reactive power mismatches for different bus, and 𝐽 is

the Jacobian matrix obtained from the partial derivatives: 𝐽 = [

𝜕∆𝑝

𝜕𝜃

𝜕∆𝑞

𝜕𝒱
𝜕∆𝑞

𝜕𝜃

𝜕∆𝑞

𝜕𝒱

]. The linearized

equations (1.3) are solved to obtain the next guess of the unknown variables iteratively.

The iterations are repeated unless the mismatch in ∆𝑝 and ∆𝑞 is less than a specific toler-

ance.

 The Newton Raphson method of solving the power flow equations is computation-

ally expensive, because of the detailed network model, and due to the issue of the Jacobian

being re-computed in each iteration based upon the partial derivatives. Fast decoupled

power flow is a variation of the Newton-Raphson that exploits the approximate decoupling

of active and reactive power flows in power networks, and moreover fixes the value of the

Jacobian during different iterations to improve the computational efficiency [49].

7

 To enhance the computational speed of the network analysis further, a DC power

flow model is often used. Especially when reactive power and voltage magnitude are not

of major concern, an approximate DC model can be used for solving the power flow prob-

lem. The network conductance is assumed to be zero (considered negligible in comparison

with the reactance); i.e., the transmission line losses are ignored [47], [48]. Then the sim-

plified transmission line power flow is given by:

 𝑝𝑗,𝑘 =
𝜃𝑗 − 𝜃𝑘

𝜒𝑗𝑘
 (1.4)

where, 𝑝𝑗,𝑘 denotes the active power flow from bus 𝑗 towards bus 𝑘, 𝜒𝑗𝑘 denotes the trans-

mission line reactance, and 𝜃𝑗, 𝜃𝑘 denote the respective bus voltage angles. The approxi-

mate DC model helps to avoid the non-linearity of the AC power flow model. Therefore,

information regarding the active power and voltage angle could be easily obtained using

the DC power flow.

1.2.2 Contingency Analysis (CA)

Contingency analysis (CA) is a “what if” scenario simulator that evaluates the im-

pact of an unplanned outage on the electric power system [50]. A contingency denotes the

loss of a failure of a component of the power system. Generator contingency denotes the

outage of a generator. Transmission contingency refers to the outage of a transmission line

or a transformer. When generation is lost, much of the deficient power comes from tie lines,

and this can mean line flow limit or bus voltage limit violations [47]. When a transmission

line or a transformer fails, the flow on that line goes to zero and all flows nearby will be

affected, which might result in a line flow limit and bus voltage limit violation.

8

Transmission contingencies are more common than generation contingencies [51]. This

dissertation only relates to transmission contingencies occurring in a power system.

Contingency analysis can be conducted in day-ahead or real-time [51]. Day-ahead

contingency analysis evaluates the effect of contingency on system reliability and identifies

the active network constraints for day-ahead scheduling. RTCA identifies the consequence

of contingencies that might occur in a very short time. RTCA helps operators to react

quickly to unexpected outages. This dissertation only relates to real-time power system

operations.

Contingencies could either be a single element contingency or a multi-element con-

tingency [51]. A single and a multi-element contingency is denoted by N-1 and N-k, re-

spectively. Contingency analysis has been traditionally limited to N-1 due to computational

burden. For every potential contingency a power flow simulation is performed to evaluate

the impact of the contingency. For very large power systems, the traditional RTCA-SCED

framework is not able to perform an exhaustive N-1 evaluation within a few minutes [27].

In practice, only a subset of the potential contingencies is fed as input to RTCA; these

selected contingencies form the contingency list [46]. The contingency list is determined

from offline studies [27]-[28], operator knowledge [26], [50], or contingency ranking tech-

niques [52]-[56]. Different contingencies in the contingency list are evaluated sequentially

by a power flow solution. The AC power flow solution checks for both post-contingency

branch overloads and bus voltage violations, while a DC power flow checks only for post-

contingency branch overloads.

9

1.2.3 Linear Sensitivity Distribution Factors

Evaluating thousands of possible outages becomes a challenging problem to solve,

if the results are to be presented within a few minutes [46]. One of the easiest ways to

present a quick indication of possible overloads is to use the linear sensitivity factors. These

sensitivity factors detect approximate changes in branch flows for generation changes or

branch outages in the network and originate from the simplified DC power flow model.

The two sensitivity factors commonly used in power system operations are [47], [53]-[57]:

1. Power Transfer Distribution Factor (PTDF)

2. Line Outage Distribution Factor (LODF)

The PTDF represents the sensitivity of the flow on branch 𝑒𝑙 to a shift of power

made from the bus 𝑖 to bus 𝑗 [47]. The PTDF is defined as follows:

 𝑃𝑇𝐷𝐹𝑙,𝑖
𝑗
=
∆𝑓𝑙

∆𝑓
 (1.5)

where, 𝑙 = branch index, ∆𝑓𝑙 = change in power flow on the 𝑙𝑡ℎ branch, and ∆𝑓 = total

power transferred from the bus 𝑖 to the bus 𝑗.

 If ∆𝐺𝑖 denotes the power which is injected at bus 𝑖 and withdrawn at the reference

bus 𝑟, the updated branch flow is obtained as follows:

 𝑓𝑙
′ = 𝑓𝑙

0 + 𝑃𝑇𝐷𝐹𝑙,𝑖
𝑟 ∆𝐺𝑖 (1.6)

where, 𝑟 denotes the location of the reference bus, 𝑓𝑙
0 denotes the previous flow, and 𝑓𝑙

′

denote the new flow after change in bus power injections.

 The LODF describes the redistribution of branch flows due to a branch outage. The

LODF is mathematically defined as follows [47]:

10

 𝐿𝑂𝐷𝐹𝑙,𝑘 =
∆𝑓𝑙

𝑓𝑘
0 (1.7)

where, 𝐿𝑂𝐷𝐹𝑙,𝑘 = Line outage distribution factor for the 𝑙𝑡ℎ branch after the outage of the

𝑘𝑡ℎ branch in the system, ∆𝑓𝑙 is the change in flow in the 𝑙𝑡ℎ branch, and 𝑓𝑘
0 is the original

flow in the 𝑘𝑡ℎ branch before it suffered an outage. Therefore, the post-contingency branch

flow on 𝑙𝑡ℎ branch for an outage of the 𝑘𝑡ℎ branch is given as follows:

 𝑓𝑙
𝑐 = 𝑓𝑙

0 + 𝐿𝑂𝐷𝐹𝑙,𝑘𝑓𝑘
0 (1.8)

where, 𝑓𝑙
0, 𝑓𝑘

0 denote pre-outage flows on branches 𝑙 and 𝑘 respectively, and 𝑓𝑙
𝑐 is the

post-contingency flow on 𝑙𝑡ℎ branch with the 𝑘𝑡ℎ branch out.

PTDFs and transmission line ratings were used for screening out critical contingen-

cies in [53]-[54], while LODFs were used for contingency screening in [55]. LODFs have

also been used for quickly detecting an island formation due to multiple element contin-

gencies [56]. A closed form expression of generalized LODFs under multiple line outages

was presented in [57]. In [58], the PTDFs and generalized LODFs were used to detect

island formation in power systems under multiple line outages. In [59], a dual computa-

tionally efficient method for calculating the PTDFs was proposed. In [60], contingency

screening was done using LODFs. A variation of a DC power flow based linear sensitivity

analysis was used to detect an island formation due to a potential contingency in [61].

1.2.4 Mitigation of Post-contingency Violations

Contingencies that result in post-contingency violations with regards to static secu-

rity (branch overloads and voltage violations) are called critical contingencies. The system

must be pre-positioned via appropriate actions to mitigate the impact of the critical

11

contingencies [51]. Otherwise, a cascading failure might be triggered by such contingen-

cies resulting in an unforeseen blackout. The commonly used approaches to handle post-

contingency violations are security constrained economic dispatch (SCED) [62], trans-

former tap adjustment [63], phase-shifter angle adjustment [63], transmission switching

[27]-[28], and load shedding [64]. DC power flow based SCED is used to relieve flow

violations for real-time operations of the power system [27]. Operators use tap changing

transformers and phase shifting transformers to control the voltage and active power, re-

spectively [63]. Load shedding is always used as the last option due to its adverse economic

and social impacts [51].

1.2.5 Cascading Failure Analysis

Cascading failure analysis is important because of the occurrence of black-

outs/brownouts all over the world at different points in time [65]. Cascading failure is a

sequence of dependent failures of individual components that weakens the power grid [66].

AC power flow-based cascade failure model has been used in [67]-[68], whereas DC power

flow-based cascade failure model was used in [69]-[70] for enhanced computational bene-

fits. Dobson et al. in [71]-[72] obtained statistics of cascading line outages from utilities to

understand how cascades initiate and propagate in the power system. In [73], Rezaei et al.

estimated the risk of cascading failure with an algorithm called random chemistry. In [74],

Rahnamay-Naeini et al. performed probabilistic analysis to understand the dynamics of

cascading failures. In [75], Hines et al. proposed an influence graph model to capture pat-

terns of cascading failures in power systems and validated the model using historical data.

Instead of relying on prior historical data, which may or may not be relevant for the present

12

scenario, the research presented in this dissertation will exploit knowledge of the current

network conditions to identify the system’s critical interconnections, the loss of which

might trigger a cascade. Despite different research initiatives on cascading failure analysis,

there are not many non-commercial publicly available tools for researchers to simulate

cascade failure analysis [76]. A DC power flow based non-commercial tool named

MATCASC was developed in [76] for cascading failure analysis. MATCASC has been

used in this dissertation to validate the results obtained herein.

1.2.6 Graph Theoretic Approach for Power System Vulnerability Analysis

Graph theoretic techniques have been widely used for quick assessment of power

system vulnerability [77]-[92]. With regards to vulnerability assessment, graph theoretic

approaches have focused on the topology and structure of the power system. Ishizaki et al.

summarized the applications of graph theory for power systems modeling, dynamics, co-

herency, and control [77]. In [78], Albert et al. studied the structural vulnerability of the

North American power grid using a metric called the node degree, which refers to the

number of lines connected to a bus. Use of betweenness indices, which refer to the number

of shortest paths traversing a given element, were explored in [79], [80]. These electrical

betweenness indices [80] aim to find the most important transmission links with respect to

the actual power flowing in the network and are governed by Kirchhoff’s laws. Arianos et

al. proposed a new metric called net-ability (a concept of distance between two nodes) to

evaluate the performance of power grids [81]. Crucitti et al. used a metric called global

efficiency of a power network to identify the critical components of the network [82]. The

metric global efficiency is derived from the shortest path lengths between any two nodes

13

in the network [83]. On the Italian power grid, a purely topological analysis was performed

by Crucitti et al. in [84]. The concept of graph resistance was exploited in [85] for detecting

power system vulnerabilities.

Modified centrality indices were used in [86] and [87] to assess the risk of black-

outs/brownouts and systemic vulnerabilities, respectively. Different statistical measures

such as the betweenness indices, node-degree, and geodesic distance have been used as

possible alternatives to power flow techniques to quantify power system vulnerability dur-

ing N-1 contingencies and cascading failures [88], [89]. In [90], Zhu et al. proposed a met-

ric called risk graph to better capture the cascade failure vulnerability of the power system.

More recently, Beyza et al. investigated the structural vulnerability of the power system

when successive N-1 contingencies progressively alter the network structure [91]. Many of

the methods discussed above represent the global vulnerability of the system with the help

of a single index. However, simply quantifying the global vulnerability does not provide

meaningful physical information to a system operator because it obscures the physical in-

terpretation of the vulnerability [40].

In [40], Werho et al. used a graph theory-based network flow algorithm to identify

the cut-set of minimum size between a source-sink pair. A cut-set denotes the minimum

set of branches which when removed separates the network into two disjoint islands; the

size of the cut-set refers to the number of branches present in it. If the number of branches

contained in the minimum sized cut-set progressively decreases, it indicates a structural

weakness between the selected source-sink pair. In [92], Beiranvand et al. presented a

novel topological sorting algorithm to screen out coherent cut-sets. Coherent cut-sets de-

note the set of branches that partition the network, such that the power flows in the same

14

direction through all the branches. However, coherent cut-sets may not be the only bottle-

necks in a power system, as there may be a cut-set in which the power flows are not unidi-

rectional, but a single outage limits the power transfer through it.

1.3 Research Scope

Building on the prior work on cut-sets in power systems [40], [92], this dissertation

is aimed towards finding if a contingency will create a saturated (or overloaded) cut-set in

the power network independent of the directions in which power flows through different

branches of the cut-set. The complexity of the problem lies in the fact that a power system

asset can be associated with innumerable cut-sets. Therefore, the research question being

explored here is: how to analyze the power transfer capability across all cut-sets associated

with a transmission asset (line or transformer), and quickly screen out the cut-set that will

become saturated by the largest margin as a consequence of the loss of the transmission

asset? Intelligent graph theoretic algorithms based on network science is developed in this

dissertation to precisely answer this research question. Followed by the identification of

saturated cut-sets due to a potential contingency, convex optimization techniques would be

used to make the power system secure against saturated cut-sets. Sub-section 1.3.1 intro-

duces the graph theoretic terminologies in the context of the power system that will be used

extensively in this research. Sub-section 1.3.2 introduces saturated cut-sets with the help

of an example. Finally, sub-section 1.3.3 presents the working principle for identifying

saturated cut-sets due to a potential contingency.

15

1.3.1 Graph Theoretic Terminologies Used in Power System

The power system is represented by a graph 𝒢(𝑉, 𝐸), with the buses contained in

set 𝑉, and all branches (transmission lines and transformers) contained in set 𝐸 [93]. The

sets 𝐺 and 𝐿 contain all the generator (source) buses and load (sink) buses, respectively.

Every transmission asset (line or transformer) is associated with a maximum power transfer

capability referred to as the asset rating. Hence, every branch 𝑒𝑙 ∈ 𝐸 is associated with a

weight 𝑓𝑙
𝑚𝑎𝑥, where 𝑓𝑙

𝑚𝑎𝑥 denotes the asset rating of branch 𝑒𝑙 . For example, in Fig. 1.1

branch 𝑒5 joining buses 4 and 5 has a flow of 15 MW from bus 4 towards bus 5 (i.e., 𝑓5 =

15), and the corresponding branch rating is 250 MW (i.e., 𝑓5
𝑚𝑎𝑥 = 250).

Fig. 1.1 Effect of a Contingency on a Cut-set of the Power Network

16

1.3.2 Introduction to Saturated Cut-sets

A cut-set is defined as the set containing minimum number of branches which when

removed splits the network into two disjoint islands [93]-[94]. Any cut-set which transfers

more power from one area to another than is permissible by the maximum power transfer

capability of the cut-set is called a saturated cut-set. Let branches 𝑒1, 𝑒2,…, 𝑒𝑘 belong to

cut-set 𝐾. If the flows through the different branches of cut-set 𝐾 are 𝑓1, 𝑓2,… 𝑓𝑘 , and the

ratings of those branches are 𝑓1
𝑚𝑎𝑥, 𝑓2

𝑚𝑎𝑥,… 𝑓𝑘
𝑚𝑎𝑥, cut-set 𝐾 is called a saturated cut-set if

the following equation holds true:

 ∑𝑓𝑙

𝑘

𝑙=1

>∑𝑓𝑙
𝑚𝑎𝑥

𝑘

𝑙=1

, ∀𝑒𝑙 ∈ 𝐾 (1.9)

where ∑ 𝑓𝑙
𝑘
𝑙=1 = 𝑃𝐾 is the actual power flow occurring through cut-set 𝐾 and ∑ 𝑓𝑙

𝑚𝑎𝑥𝑘
𝑙=1 =

𝑅𝐾 is the maximum power that can be transferred across cut-set 𝐾. The objective of this

research is to find if a contingency will create a saturated cut-set in the power system. If

the outage of any branch 𝑒𝑙 ∈ 𝐾 exhausts the power transfer capability of cut-set 𝐾, then

the loss of branch 𝑒𝑙 is said to saturate cut-set 𝐾. The transfer margin on cut-set 𝐾 for the

outage of branch 𝑒𝑙 is defined to be 𝑅𝐾 − 𝑃𝐾 . It must be noted that for a saturated cut-set

the transfer margin is negative.

 The concept of saturated cut-sets is explained with the help of Fig. 1.1. The cut-set

𝐾1 in Fig. 1.1 contains branches 𝑒4, 𝑒6, and 𝑒7; i.e., 𝐾1 = {𝑒4, 𝑒6, 𝑒7}. Total power trans-

ferred across this cut-set is 𝑃𝐾1 = 𝑓4 + 𝑓6 + 𝑓7 = 360 MW. The total power transfer ca-

pacity across this cut-set is 𝑅𝐾1 = 𝑓4
𝑚𝑎𝑥 + 𝑓6

𝑚𝑎𝑥 + 𝑓7
𝑚𝑎𝑥 = 580 MW. It is easy to observe

that the cut-set 𝐾1 is unsaturated as 𝑃𝐾1 < 𝑅𝐾1 . However, the loss of branch 3-4 would

17

saturate cut-set 𝐾1. This is because with the outage of branch 3-4, the power that must be

transferred from Area 1 to Area 2 (to satisfy the total load with total generation) is still 360

MW (i.e., 𝑃𝐾1 = 360 MW), but the total power transfer capability of cut-set 𝐾1 reduces to

330 MW (as now 𝑅𝐾1 = 𝑓6
𝑚𝑎𝑥 + 𝑓7

𝑚𝑎𝑥). Consequently, outage of branch 3-4 saturates cut-

set 𝐾1 by 30 MW (𝑅𝐾1 − 𝑃𝐾1 = 330 − 360 = −30 MW); in other words, the transfer

margin is -30 MW.

It must be noted here that a single branch, e.g., 3-4 in Fig. 1.1, can be associated

with multiple cut-sets, such as, 𝐾2={3-4,4-5},𝐾3={3-4,3-5,1-3,1-2}, and 𝐾4={3-4,3-5,1-

3,2-3}. This implies that to assess the impact of the loss of any asset on any cut-set of the

power system (to check whether it has become saturated or not), we must examine the

power transfer capability of all cut-sets associated with that asset. For a big system con-

taining thousands of buses, a single asset could be associated with hundreds of cut-sets.

Therefore, quantifying the impact of an outage on any cut-set of the power network is a

computationally intensive task.

1.3.3 Working Principle for Detecting Saturated Cut-sets

Detection of saturated cut-sets due to a potential contingency is based on the fol-

lowing idea. Let a branch 𝑒𝑙 (transmission line or transformer) connect buses 𝑣𝑙
𝐹 and 𝑣𝑙

𝑇 as

shown in Fig. 1.2. Since branch 𝑒𝑙 is a single element that joins bus 𝑣𝑙
𝐹 to 𝑣𝑙

𝑇 it is called a

direct path from bus 𝑣𝑙
𝐹 to 𝑣𝑙

𝑇. There could be many other electrical paths to transfer power

from bus 𝑣𝑙
𝐹to bus 𝑣𝑙

𝑇. Any path that contains multiple branches from 𝑣𝑙
𝐹 towards 𝑣𝑙

𝑇 is an

indirect path. If all the indirect paths combined do not have the capacity to re-route 𝑓𝑙 units

of power that was flowing through the direct path, it implies that the loss of branch 𝑒𝑙 would

18

inevitably result in post-contingency cut-set saturation. Based on this inference, a graph

theory-based network analysis tool is developed in this dissertation to quickly detect vio-

lations of the type where the set of indirect paths do not have extra capacity to carry the

power that was originally flowing through the direct path.

Fig. 1.2 Network Connectivity Between Two Buses

 Now, let branch 𝑒𝑙 be associated with 𝑥 cut-sets of the network, of which 𝑦 cut-sets

(𝑦 ≤ 𝑥) become saturated by a negative transfer margin when 𝑒𝑙 is lost (implying that 𝑦

cut-sets of the network are saturated). As the 𝑦 cut-sets may be saturated by different neg-

ative transfer margins, 𝑇𝑙
𝑖, 1 ≤ 𝑖 ≤ 𝑦, the objective here is to identify the cut-set that be-

comes saturated by the numerically largest negative transfer margin (i.e., 𝑇𝑙 =

max(|𝑇𝑙
𝑖|); 1 ≤ 𝑖 ≤ 𝑦); this cut-set is henceforth referred to as the limiting critical cut-set,

𝐾𝑐𝑟𝑖𝑡 . The detection of the limiting critical cut-set must be followed by a corrective action

to alleviate the saturation of the identified cut-set. The detection and corrective action

should be executed iteratively, such that there exists no saturated cut-sets in the network

due to any contingency. Note that this dissertation will identify the limiting critical cut-sets

based on the thermal ratings of the different assets and the active power flowing through

them (power factor is set to unity for the studies done here). However, the proposed net-

work analysis tool is generic enough to incorporate branch ratings obtained from other

analyses as well (such as, proxy limits based on power system stability criteria).

19

 In Section 1.2.1, we have seen that different methods of power flow analysis (AC

power flow, decoupled power flow, and DC power flow) involve different modeling detail

and approximations. The proposed research will investigate another level of approximation

in the power flow model to study the properties of cut-set power transfers. The approxima-

tion will involve relaxation of Kirchhoff’s voltage law (KVL) but will satisfy the law of

conservation of energy. The flow solution will be referred to as the graph-theory based

network flow solution (see Section 2.4). The relaxation of the KVL constraint will facili-

tate existence of multiple valid network flow solutions. However, the power transfer across

any cut-set of the network will remain constant because of conservation of energy. We will

observe that this relaxed graph-theory based network flow model can provide useful infor-

mation on different aspects of cut-set power transfer at a significantly enhanced computa-

tional speed.

The subsequent sections of this dissertation are organized as follows. Chapter 2

presents a new graph-theory based network analysis technique which can detect post-con-

tingency cut-set saturation. It describes the theoretical foundations of the proposed meth-

odology by virtue of which it can achieve high computational efficiency. Chapter 3 pre-

sents the results and discussions with the help of different case-studies in the context of

detecting saturated cut-sets in power networks. Chapter 4 presents a constrained optimiza-

tion formulation to secure the power system against post-contingency cut-set saturation.

Chapter 5 presents the results and discussion for the mitigation of saturated cut-sets with

the help of different case-studies. Finally, Chapter 6 presents the concluding statements

and the scope of future work.

20

CHAPTER 2

DETECTION OF SATURATED CUT-SETS

This Chapter presents different graph-theory based network flow algorithms to detect

saturated cut-sets in power systems at enhanced computational speed. The basis of the pro-

posed network analysis depends on intelligent graph traversal schemes on weighted graphs.

The theoretical arguments introduced in this Chapter, followed by different toy examples,

will demonstrate how a relaxed steady-state network analysis method can quickly evaluate

the impact of a transmission contingency on different cut-sets in a power system.

2.1 The Flow and Latent Capacity Graphs

The flow graph, defined as ℱ(𝑉, 𝐸), contains information about power flowing

through different branches of the network. Fig. 2.1(a) shows a flow graph for a sample 5

bus power system obtained from a DC power flow solution (the branch reactances for this

system is available in Appendix A). The notation introduced in Section 1.3.1 is used to

describe the flow graph in Fig. 2.1(a). 𝑓𝑙 and 𝑓𝑙
𝑚𝑎𝑥 represent the flow and branch rating for

the respective branches. A latent capacity graph 𝒞(𝑉, 𝐸) is created from the flow graph

ℱ(𝑉, 𝐸). The latent capacity graph provides information regarding the following: for any

branch 𝑒𝑙 ∈ 𝐸, what is the extra power that could be transferred from bus 𝑣𝑙
𝐹 to 𝑣𝑙

𝑇, and

vice-versa (𝑣𝑙
𝐹 and 𝑣𝑙

𝑇 denote the “from bus” and “to bus” of branch 𝑒𝑙 , respectively). The

extra power transfer capability in a specific direction is called the “latent capacity” of the

branch in that direction; hence, the name latent capacity graph. Each branch of the graph

𝒞(𝑉, 𝐸) is associated with bidirectional weights: 𝑐𝑙
𝐹𝑇 and 𝑐𝑙

𝑇𝐹, such that 𝑐𝑙
𝐹𝑇 and 𝑐𝑙

𝑇𝐹 denote

21

the “latent capacity” of branch 𝑒𝑙 in the direction from 𝑣𝑙
𝐹 to 𝑣𝑙

𝑇 and 𝑣𝑙
𝑇 to 𝑣𝑙

𝐹, respectively.

The two weight components are given by:

𝑐𝑙
𝐹𝑇 = 𝑓𝑙

𝑚𝑎𝑥 − 𝑓𝑙
𝑐𝑙
𝑇𝐹 = 𝑓𝑙

𝑚𝑎𝑥 + 𝑓𝑙
} (2.1)

Fig. 2.1(b) shows the corresponding latent capacity graph for the flow graph in Fig.

2.1(a). Branch 𝑒1 is associated with a flow of 202.5 MW from bus 1 towards bus 2; i.e.,

𝑓1 = 202.5 (refer to Fig. 2.1(a)). Note that the maximum power transfer capacity of branch

𝑒1 is 210 MW. Therefore, the extra flow that can be transferred through branch 𝑒1 from

bus 1 towards bus 2 is 7.5 MW (= 𝑓1
𝑚𝑎𝑥 − 𝑓1 = 210 − 202.5). On the other hand, the

extra power that can be transferred from bus 2 towards bus 1 is 412.5 MW (= 𝑓1
𝑚𝑎𝑥 + 𝑓1 =

210 + 202.5). The same observation holds true for the latent capacities associated with

other branches in the network. The latent capacity graph will be traversed exhaustively to

detect saturated cut-sets in power systems.

Fig. 2.1 (a) A Sample Flow Graph ℱ(𝑉, 𝐸), and (b) Latent Capacity Graph 𝒞(𝑉, 𝐸) for a

Sample 5-bus Power System. This Flow Solution is Obtained from a DC power flow

22

2.2 Saturated Branch and Saturated Paths

The concept of saturated branch and saturated paths will be extensively used in

different graph-theoretic algorithms developed in this dissertation. Consider that a branch

𝑒𝑙 connects buses 𝑣𝑙
𝐹 and 𝑣𝑙

𝑇. If it cannot transfer additional power from 𝑣𝑙
𝐹 towards 𝑣𝑙

𝑇, it

is said to be saturated in the corresponding direction. In other words, if the latent capacity

for a branch is zero in a specific direction it is said to be saturated along that direction.

Now, a path contains a sequence of branches from a given source to a given sink. A satu-

rated path will contain at least one branch that has a latent capacity of zero along the spec-

ified direction. For example, let us consider a path from bus 4 to bus 2 in Fig. 2.1(b): 𝒫 =

{4 − 5 − 1 − 2}. In path 𝒫, none of the branches are saturated along the direction de-

scribed by the path from bus 4 towards bus 2 (see Fig. 2.1(b)). This implies that all branches

in path 𝒫 are unsaturated, and consequently path 𝒫 is an unsaturated path.

2.3 Breadth First Search (BFS) Graph Traversal

The two most popular techniques of graph traversal are the breadth first search (BFS)

algorithm [95] and the depth first search (DFS) algorithm [96]. For traversing the shortest

path from a specific source to another sink, BFS is advantageous to DFS. This is because,

when BFS is used to traverse the graph to reach the specified sink from a given source, the

path traced by BFS is already the shortest path. If there had been a shorter path, BFS would

have found it earlier. Moreover, the graph-theoretic algorithms that will be presented in the

later sections of this dissertation will mostly depend on finding the shortest unsaturated

path from a source bus to a sink bus in the network. Therefore, only unsaturated branches

are considered during the graph traversal from the source to the sink; thereby eliminating

23

the possibility of selecting saturated paths. This is explained with the help of the bidirec-

tional latent capacity graph 𝒞(V, E) shown in Fig. 2.1(b). Let us assume that the source bus

is 4 and the sink bus is 2. The BFS graph traversal takes place in the following steps:

Step 1: In the first step, the source bus is identified with a depth of “0”.

Fig. 2.2 Step 1 of the Graph Traversal Using BFS

Step 2: Buses 3 and 5 are adjacent to bus 4, and branches 4-3 and 4-5 have non-zero latent

capacities. Therefore, buses 3 and 5 are connected to bus 4 at a depth of “1” as shown in

Fig. 2.3.

Fig. 2.3 Step 2 of the Graph Traversal Using BFS (the Latent Capacities of the Branches

Along Given Direction are Shown in Red)

Step 3: Those buses which are adjacent to buses 3 and 5, but which have not been traversed

yet are identified in this stage. Since, bus 3 is connected to buses 1 and 2, and bus 5 is

connected to bus 1, they are added at a depth level of “2” as shown in the Fig. 2.4 below.

It must also be noted that each of the branches 3-1, 3-2 and 5-1 are associated with non-

zero latent capacities. Since the sink bus “2” is reached in this step, the process is not

24

repeated and the path from the source bus to the sink bus is back tracked to obtain the

shortest unsaturated path, which is given by 𝒫 = {4 − 3 − 2}.

Fig. 2.4 Step 3 of the Graph Traversal Using BFS (the Latent Capacities of the Branches

Along a Given Direction are Shown in Red)

In this research, we have used the BFS scheme for traversing the bi-directional la-

tent capacity graph 𝒞(V, E). The BFS function can be found in MATLAB’s graph theory

toolbox. If the graph 𝒞(V, E) is to be traversed from a source bus to a sink bus, the algorithm

starts at the source bus, and explores all the neighboring buses at the present depth prior to

moving on to the buses at the next depth. Once the sink is reached the algorithm stops.

2.3.1 Time Complexity of Shortest Path Graph Traversal Schemes

Apart from BFS, other commonly used graph traversal methods for finding the short-

est path between a source-sink pair are Bellman-Ford algorithm [97], and Dijkstra algo-

rithm [98]. If |𝐸| denotes the total number of branches, and |𝑉| denotes the total number

buses, the time-complexity of the Bellman-Ford algorithm is O(|E||V|) [99]. The time-com-

plexity of Dijkstra algorithm implemented using binary heap is 𝑂(|𝐸| + |𝑉|𝑙𝑜𝑔|𝑉|) [100].

25

Lastly, the time-complexity of the BFS algorithm is 𝑂(|𝐸| + |𝑉|) [101], which is the best

among the three shortest-path graph traversal techniques. Therefore, we have used the BFS

graph traversal scheme to develop different algorithms to determine if contingencies create

saturated cut-sets in power networks.

2.4 Graph-theory based Network Flow Algorithm (NFA)

The graph theory-based network flow algorithm is based on the following assump-

tions: (1) power injections are known, and (2) losses are negligibly small. Subject to these

assumptions, the goal is to generate network flows that can help detect if a contingency

saturates a cut-set. The graph theoretic network flow algorithm is based on the following

principle: utilize the available generation of the sources (generators) to satisfy the total

demand of the sinks (loads), without violating the asset ratings. The network flows are

obtained using Algorithm I described below. At the start of the algorithm, branches in

ℱ(𝑉, 𝐸) do not have any weight, while the bidirectional weights of the branches in 𝒞(𝑉, 𝐸)

are equal to the corresponding asset ratings.

The graph theory-based network flow algorithm obeys the law of conservation of

energy, but it relaxes KVL as it does not use impedances directly while building the net-

work flows; the impedances are accounted for indirectly through the asset ratings. The flow

solution is also non-unique because depending on the order in which the sources and sinks

are selected, there could be multiple valid flow solutions. However, the power transfer

across any cut-set of the network is the same for all valid graph-theory based network flow

solutions. This is explained as follows.

26

Algorithm I: Graph theory-based Network Flow Algorithm (NFA)

i. Randomly select a source bus 𝑣𝑖 ∈ 𝐺 and a sink bus 𝑣𝑗 ∈ 𝐿.

ii. Search 𝒞(𝑉, 𝐸) to traverse the shortest unsaturated path 𝒫 from 𝑣𝑖 to 𝑣𝑗 using breadth

first search (BFS) [95].

iii. Use 𝒞 to find the maximum extra flow, 𝐶𝒫, that could be transferred from 𝑣𝑖 to 𝑣𝑗

through path 𝒫.

iv. Obtain the flow 𝐹𝒫 to be injected in ℱ(𝑉, 𝐸) along path 𝒫 from 𝑣𝑖 to 𝑣𝑗 as 𝐹𝒫 =

min(𝐺𝑖, 𝐿𝑗, 𝐶𝒫); where 𝐺𝑖 is the active power generated at source 𝑣𝑖 and 𝐿𝑗 is the active

power demand at sink 𝑣𝑗.

v. Update the weights of branches in ℱ(𝑉, 𝐸) as 𝑓𝑙 = 𝑓𝑙 + 𝐹𝒫 , and in graph 𝒞(𝑉, 𝐸) as

𝑐𝑙
𝐹𝑇 = 𝑐𝑙

𝐹𝑇 − 𝐹𝒫 and 𝑐𝑙
𝑇𝐹 = 𝑐𝑙

𝑇𝐹 + 𝐹𝒫 for all branches that belong to path 𝒫.

vi. Update the available generation and unsatisfied demand at buses 𝑣𝑖 and 𝑣𝑗 as 𝐺𝑖 ∶=

𝐺𝑖 − 𝐹𝒫 and 𝐿𝑗 ∶= 𝐿𝑗 − 𝐹𝒫 .

vii. Depending upon the values of 𝐺𝑖 and 𝐿𝑗, update the source and sink buses in accord-

ance with the following logic:

a. if 𝐺𝑖 ≠ 0 & 𝐿𝑗 ≠ 0, the source and sink buses are not changed.

b. if 𝐺𝑖 = 0 & 𝐿𝑗 ≠ 0, a new source, 𝑣𝑖, is selected from 𝐺, keeping the sink, 𝑣𝑗, un-

changed.

c. if 𝐺𝑖 ≠ 0 & 𝐿𝑗 = 0, a new sink, 𝑣𝑗, is selected from 𝐿, keeping the source, 𝑣𝑖, un-

changed.

viii. Repeat Steps (ii) through (vii) until the total power generation satisfies the total power

demand.

27

Let the network graph 𝒢(𝑉, 𝐸) be split into two clusters 𝐶1 and 𝐶2 such that 𝐶1 ∪

𝐶2 = 𝑉 and 𝐶1 ∩ 𝐶2 = ∅ as shown in Fig. 2.5. If 𝑃𝐺
1(𝑃𝐺

2) and 𝑃𝐿
1(𝑃𝐿

2) be the total generation

and total demand in 𝐶1(𝐶2), then the net generation in 𝐶1 is given by ∆𝑃1 = 𝑃𝐺
1 − 𝑃𝐿

1 , while

the net generation in 𝐶2 is given by ∆𝑃2 = 𝑃𝐺
2 − 𝑃𝐿

2. Now, cut-set 𝐾 between clusters 𝐶1

and 𝐶2 would include only those branches whose one end belongs to 𝐶1 and the other end

belongs to 𝐶2; let the number of branches in cut-set 𝐾 be 𝑘. Also, let 𝑓1
𝐴, 𝑓2

𝐴,…, 𝑓𝑘
𝐴 denote

network flows through different branches of cut-set 𝐾 for a valid graph-theory based flow

solution 𝐴, and 𝑓1
𝐵, 𝑓2

𝐵,…, 𝑓𝑘
𝐵 denote the network flows through the same branches for a

valid graph-theory based flow solution 𝐵. Then, by the law of conservation of energy, total

power transfer across cut-set 𝐾 for each of the flow solutions 𝐴 and 𝐵 must be equal to

∆𝑃1 = −∆𝑃2, i.e.,

 ∑𝑓𝑙
𝐴

𝑘

𝑙=1

=∑𝑓𝑙
𝐵

𝑘

𝑙=1

= ∆𝑃1 = −∆𝑃2 , ∀ 𝑒𝑙 ∈ 𝐾 (2.2)

Fig. 2.5 The Original Power Network is Divided into Two Disjoint Clusters 𝐶1 and 𝐶2

2.4.1 Graph-theory based Network Flows on a Sample 5-bus Test System

For the sample 5-bus system depicted in Fig. 2.1 the sets 𝐺 (containing source lo-

cations) and 𝐿 (containing sink locations) comprise of: 𝐺 = {1,4,5} and 𝐿 = {2,3}. At the

start of the solution, the network flows through different branches of the system are

28

initialized to zero. The corresponding flow and latent capacity graphs 𝒞(V, E) are depicted

in Fig. 2.6(a) and Fig. 2.6(b) respectively.

Fig. 2.6 (a) Flow Graph and (b) Latent Capacity Graph of the 5-bus Test System at the

Beginning of the Network Flow Algorithm

Iteration 1:

Step i: A source is selected from set 𝐺 randomly, say, 𝑣𝑖 = 5. A sink is selected from set 𝐿

randomly, say, 𝑣𝑗 = 3. Therefore, power generation at the source and sink buses are 150

MW and 240 MW, respectively, i.e., 𝐺𝑖 = 150 MW and 𝐿𝑗 = 240 MW.

Step ii: The shortest unsaturated path from the source bus 5 towards sink bus 3 is given by

𝒫 = {5 − 3}.

Step iii: The maximum power that could be transferred through path 𝒫 from source bus 5

towards sink bus 3 is limited by 180 MW, i.e., 𝐶𝒫 = 180 (see Fig. 2.6(b)).

Step iv: Now, the flow 𝐹𝒫 that will be injected along path 𝒫 of the flow graph ℱ(𝑉, 𝐸)

from source bus 5 towards sink bus 3 is given as follows.

 𝐹𝒫 = 𝑀𝑖𝑛(𝐺𝑖 , 𝐿𝑗, 𝐶𝒫) = 𝑀𝑖𝑛(150,240,180) = 150 (2.1)

29

Step v: The flow and latent capacity graphs (see Fig. 2.7) are updated for an injection of

150 MW of flow along path 𝒫.

Step vi: Accordingly, the available generation and the unsatisfied power demand at the

source bus 5 and sink bus 3 are given as follows:

𝐺𝑖 = 𝐺𝑖 − 𝐹𝒫 = 150 − 150 = 0
𝐿𝑗 = 𝐿𝑗 − 𝐹𝒫 = 240 − 150 = 90

} (2.2)

After Step vi, the flow and latent capacity graphs are shown in Fig. 2.7.

Fig. 2.7 Iteration 1-(a) Flow Graph, and (b) Latent Capacity Graph of the 5-bus Test System

Step vii: Since 𝐺𝑖 = 0 and 𝐿𝑗 ≠ 0, a new source 𝑣𝑖 is selected keeping the sink 𝑣𝑗 un-

changed. Let the new source be bus 4, i.e., 𝑣𝑖 = 4 and 𝑣𝑗 = 3. The new values of 𝐺𝑖 and 𝐿𝑗

are 210 MW and 90 MW respectively.

Iteration 2:

Step ii: The shortest unsaturated path, which is selected from the source bus 4 to the sink

bus 3 is given by path 𝒫 = {4 − 3}.

Step iii: The maximum power that could be transferred from the source to the sink through

path 𝒫 is 250 MW, i.e., 𝐶𝒫 = 250 (see Fig. 2.7(b)).

30

Step iv: Now, the flow 𝐹𝒫 that will be injected along path 𝒫 is given by (2.3).

𝐹𝒫 = 𝑀𝑖𝑛(𝐺𝑖, 𝐿𝑗, 𝐶𝒫) = 𝑀𝑖𝑛(210,90,250) = 90 (2.3)

Step v: The flow and latent capacity graphs are updated for an injection of 90 MW of flow

along path 𝒫 (see Fig. 2.8).

Fig. 2.8 Iteration 2- (a) Flow Graph and (b) Latent Capacity Graph of the 5-bus Test System

Step vi: The flow 𝐹𝒫 injected through path 𝒫 of the flow graph, and the bidirectional

weights of the latent capacity graphs are now updated. Accordingly, the available genera-

tion and the unsatisfied power demand at the source and sink buses are as follows:

𝐺𝑖 = 𝐺𝑖 − 𝐹𝒫 = 210 − 90 = 120

𝐿𝑗 = 𝐿𝑗 − 𝐹𝒫 = 90 − 90 = 0
} (2.4)

Step vii: Since 𝐺𝑖 ≠ 0 and 𝐿𝑗 = 0, a new sink is selected from the set 𝐿 keeping the source

unchanged. Let the new sink be bus 2, i.e., 𝑣𝑖 = 4 and 𝑣𝑗 = 2. The new values for 𝐺𝑖 and

𝐿𝑗 are 120 and 300 MW, respectively.

31

Iteration 3:

Step ii: The shortest unsaturated path from the source bus 4 to the sink bus 3 is given by

path 𝒫 = {4 − 3 − 2} (see Fig. 2.8(b)).

Step iii: The maximum flow that could be transferred from the source to the sink through

path 𝒫 is 150 MW, i.e., 𝐶𝒫 = 150, because branch 3 − 2 has a latent capacity of 150 MW

in the direction from bus 3 towards bus 2 (see Fig. 2.8(b)).

Step iv: Now, the flow 𝐹𝒫 that will be injected in the flow graph along path 𝒫 is as follows:

 𝐹𝒫 = 𝑀𝑖𝑛(𝐺𝑖, 𝐿𝑗, 𝐶𝒫) = 𝑀𝑖𝑛(120,300,150) = 120 (2.5)

Step v: The flow and latent capacity graphs are updated for an injection of 120 MW of flow

along path 𝒫 (see Fig. 2.9).

Fig. 2.9 Iteration 3-(a) Flow Graph and (b) Latent Capacity Graph of the 5-bus Test System

 Step vi: Accordingly, the available generation and the unsatisfied power demand at the

source and sink buses are given as follows:

𝐺𝑖 = 𝐺𝑖 − 𝐹𝒫 = 120 − 120 = 0

𝐿𝑗 = 𝐿𝑗 − 𝐹𝒫 = 300 − 120 = 180
} (2.6)

32

Step vii: Since 𝐺𝑖 = 0 and 𝐿𝑗 ≠ 0, the source is updated while keeping the sink unchanged.

Therefore, the source and sink buses for the next iteration are buses 1 and 2, respectively,

i.e., 𝑣𝑖 = 1 and 𝑣𝑗 = 2.

Iteration 4:

Step ii: The shortest unsaturated path from the source bus 1 to the sink bus 2 in the latent

capacity graph 𝒞(V, E) is given by path 𝒫 = {1 − 2} (see Fig. 2.9(b)).

Step iii: The maximum power that could be transferred from source bus 1 towards sink bus

2 is 210 MW, i.e., 𝐶𝒫 = 210, because the branch 1 − 2 has a latent capacity of 210 MW,

in the direction from bus 1 towards bus 2 (see Fig. 2.9(b)).

Step iv: Now, the flow 𝐹𝒫 that will be injected in the flow graph along path 𝒫 is given as

follows:

 𝐹𝒫 = 𝑀𝑖𝑛(𝐺𝑖, 𝐿𝑗, 𝐶𝒫) = 𝑀𝑖𝑛(180,180,210) = 180 (2.7)

Step v: The flow and latent capacity graphs are updated for an injection of 180 MW of flow

along path 𝒫 = {1 − 2} (see Fig. 2.10).

Fig. 2.10 Iteration 4-(a) Flow Graph and (b) Latent Capacity Graph of the 5-bus Test Sys-

tem

33

Step vi: Accordingly, the available generation and the unsatisfied demand at the source and

sink buses are given as follows:

𝐺𝑖 = 𝐺𝑖 − 𝐹𝒫 = 180 − 180 = 0

𝐿𝑗 = 𝐿𝑗 − 𝐹𝒫 = 180 − 180 = 0
} (2.8)

Step vii: Since 𝐺𝑖 = 0 and 𝐷𝑗 = 0, and the total load is satisfied by the total available gen-

eration, the final flow and the latent capacity graphs are depicted in Fig. 2.11.

Fig. 2.11 Final Graphs-(a) Flow Graph and (b) Latent Capacity Graph of the 5-bus Test

System

2.4.2 Existence of Multiple Valid Network Flow Solutions

It must be pointed out here that using the graph-theory based network flow algo-

rithm described above, there will be multiple valid graph-theoretic network flow solutions.

The base-case network flow depends upon the generators and loads that were selected in

the different iterations of the network flow algorithm. For example, another valid graph-

theoretic flow solution for the same system is given in Fig. 2.12(a). Fig. 2.12(b) shows the

34

corresponding latent capacity graph. The flow solution of Fig. 2.12 is obtained from the

following iterations:

Fig. 2.12 Final Graphs-(a) Flow Graph and (b) Latent Capacity Graph of the 5-bus Test

System

Iteration 1- 150 MW of power generation at source bus 5 is used to satisfy 150 MW of

power demand at the sink bus 2 via path 5-1-2.

Iteration 2- 60 MW of power generation at the source bus 1 is used to satisfy 60 MW of

power demand at the sink bus 2 via path 1-2.

Iteration 3- 90 MW of power generation at the source bus 1 is used to satisfy remaining 90

MW of power demand at the sink bus 2 via path 1-3-2.

Iteration 4- 30 MW of remaining power generation from source bus 1 is used to satisfy 30

MW of power demand at the sink bus 3 via path 1-3.

Iteration 5- 210 MW of power generation from source bus 4 is used to satisfy the remaining

210 MW of power demand at the sink bus 3 via path 4-3.

 Fig. 2.13 compares the three valid flow graphs for the same system. Fig. 2.13(a)

shows a flow solution obtained from DC power flow solution. The corresponding branch

35

reactance that were used in the DC power flow solution is available in Appendix A. Fig.

2.13(b) shows a valid graph theory-based network flow solution. Fig. 2.13(c) shows an-

other valid graph-theory based network flow solution. We can see that the individual

branch flows are different for different flow solutions. However, the total power transferred

across any cut-set in the network is constant. For example, the total power transferred

across cut-set 𝐾 is 360 MW, for each flow graphs as enumerated in Table 2.1.

Fig. 2.13 (a) Case A: A Flow Graph Obtained From a DC Power Flow Solution, (b) Case

B: A Flow Graph Obtained From a Valid Graph-Theory Based Network Flow Solution, (c)

Case C: A Flow Graph Obtained From Another Valid Graph-Theory Based Network Flow

Solution for the 5-bus Test System

Table 2.1 Power Transfer Across a Cut-set for Three Different Network Flow Solutions

of a 5-bus Power System

Branches in 𝐾1 Case A: Flow (MW) Case B: Flow (MW) Case C: Flow (MW)

4-3 195 210 210

5-3 90 150 0

5-1 75 0 150

Total Power Trans-

fer across cut-set 𝐾1

360 360 360

Another example that demonstrates how any graph-theory based network flow al-

gorithm generates constant flows across a cut-set independent of different branch flows is

presented here. Fig. 2.14 presents a DC power flow solution for a 10-bus test system.

36

Branch reactance information of this 10-bus power system is presented in Appendix B. Fig.

2.15 and Fig. 2.16 present two valid graph-theory based network flow solution for the sys-

tem. The ratings for each branch for this 10-bus power system is 300 MVA. Let us consider

cut-set 𝐾1 ={4-1,9-2,9-3}. Table 2.2 enumerates that the total power transferred across this

cut-set is 380.86 MW independent of the fact that the individual branch flows are different

for the respective flow solutions.

Fig. 2.14 Case 1- A Flow Graph Obtained from a DC Power Flow Solution (the Numbers

in Blue Font on Each Branch Represent Flows) for a 10-bus Test System. The Rating for

Every Branch is 300 MVA.

Fig. 2.15 Case 2- A Flow Graph Obtained from Another Graph-theory Based Network

Flow Solution (the Numbers in Blue Font on Each Branch Represent Flows) for a 10-bus

Test System. The Rating for Every Branch is 300 MVA.

37

Fig. 2.16 Case 3- Another Flow Graph Obtained from Another Graph-Theory Based Net-

work Flow Solution (the Numbers in Blue Font on Each Branch Represent Flows) for a

10-bus Test System. The Rating for Every Branch is 300 MVA.

Table 2.2 Power Transfer Across a Cut-set for Three Different Network Flow Solutions

of a 10-bus Power System

Branches in cut-set

𝐾1
Case 1:

Power flow (MW)

Case 2:

Power flow (MW)

Case 3:

Power flow (MW)

4-1 172.51 208 35.86

9-2 121.96 0 72.86

9-3 86.39 172.86 272.14

Total power flow

through the cut-set
380.86 380.86 380.86

2.5 Feasibility Test (FT) Algorithm

Once the graph-theory based network flows are obtained, the next step is to find out

the “special assets” from the graphs ℱ(𝑉, 𝐸) and 𝒞(𝑉, 𝐸). In the proposed research, the

“special assets” are defined as follows: a transmission line or a transformer is classified

as special if there is no way to reroute the power flowing through it via the set of indirect

paths. The detection of the special assets is performed by the Feasibility Test (FT) algo-

rithm, which checks for the feasibility of re-routing the power flowing through any

38

transmission asset via the set of indirect paths. For branch 𝑒𝑙 , let 𝑓𝑙 units of power flow

from 𝑣𝑙
𝐹 to 𝑣𝑙

𝑇. The steps of the FT algorithm for branch 𝑒𝑙 are given in Algorithm II.

Algorithm II: Graph theory-based Feasibility Test (FT)

i. Define 𝒞′(𝑉, 𝐸) = 𝒞(𝑉, 𝐸). Remove branch 𝑒𝑙 from 𝒞′. Initialize a variable 𝑇𝐶𝑙 to zero

(i.e., 𝑇𝐶𝑙 ≔ 0).

ii. Search 𝒞′ to obtain the shortest unsaturated path 𝒫 from 𝑣𝑙
𝐹 to 𝑣𝑙

𝑇 using breadth first

search (BFS) [95]; path 𝒫 is considered unsaturated if it has capacity to reroute addi-

tional flow.

iii. Find the maximum extra flow, 𝐶𝒫, that can be rerouted through path 𝒫 from 𝑣𝑙
𝐹 to 𝑣𝑙

𝑇.

iv. Update 𝑇𝐶𝑙 as 𝑇𝐶𝑙 ≔ 𝑇𝐶𝑙 + 𝐶𝒫 , and the weights of 𝒞′ as follows: 𝑐𝑙
𝐹𝑇 = 𝑐𝑙

𝐹𝑇 − 𝐶𝒫 and

𝑐𝑙
𝑇𝐹 = 𝑐𝑙

𝑇𝐹 + 𝐶𝒫. Note that this step saturates path 𝒫 in 𝒞′.

v. Repeat Steps (ii) through (iv) until there exists no unsaturated path in 𝒞′ from 𝑣𝑙
𝐹 to

𝑣𝑙
𝑇.

vi. Due to outage of branch 𝑒𝑙 , compute the transfer margin, 𝑇𝑙 , as: 𝑇𝑙 = 𝑇𝐶𝑙 − 𝑓𝑙 . If 𝑇𝑙 for

branch 𝑒𝑙 is negative, 𝑒𝑙 is a special asset.

vii. To identify 𝐾𝑐𝑟𝑖𝑡 , traverse the saturated graph 𝒞′ from 𝑣𝑙
𝐹 towards 𝑣𝑙

𝑇. All the buses

that can be reached from 𝑣𝑙
𝐹 without traversing a saturated branch are grouped into

cluster 𝐶1. Similarly, the buses that cannot be reached from 𝑣𝑙
𝐹 without traversing a

saturated branch are grouped into cluster 𝐶2. Cut-set 𝐾𝑐𝑟𝑖𝑡 contains the branches whose

one end is in 𝐶1 and the other end is in 𝐶2.

39

2.5.1 Illustration of the FT Algorithm

Let us consider a valid graph-theory based network flow solution of the 5-bus test

system (shown in Fig. 2.17). The FT is an iterative graph search algorithm applied on the

latent capacity graph. The original latent capacity graph 𝐶(𝑉, 𝐸) is assigned to 𝐶′(𝑉, 𝐸),

because the FT will make incremental changes to the latent capacity graph to evaluate the

impact of the contingency. Consider that the outage of branch 3-4 is to be analyzed by the

FT. From the flow graph of Fig. 2.17(a), it can be realized that the flow through branch 3-

4 is 210 MW, i.e., 𝑓𝑙 =210. The working of the FT algorithm through the different itera-

tions is explained below.

Fig. 2.17 (a) Flow Graph, and (b) Latent Capacity Graph for the 5-bus Test System Ob-

tained from the Graph Theory-based Network Flow Algorithm

Iteration 1:

Step i: The branch 3-4 has been removed from the latent capacity graph (see Fig. 2.18).

The variable 𝑇𝐶𝑙 is initialized to zero, i.e., 𝑇𝐶𝑙 = 0.

40

Step ii: The shortest unsaturated path in the latent capacity graph from bus 4 to bus 3 is

given by path 𝒫 ={4-5-3}.

Step iii: The maximum power that could be transferred through path, 𝒫 is 30 MW (i.e.,

𝐶𝒫 = 30), which is limited by branch 5-3 (see Fig. 2.18).

Fig. 2.18 The Branch Which is to be Evaluated for an Outage by the FT is Removed from

the Latent Capacity Graph 𝒞′(𝑉, 𝐸) as the First Step

Step iv: Next, 𝑇𝐶𝑙 is updated as follows:

 𝑇𝐶𝑙 = 𝑇𝐶𝑙+𝐶𝒫 = 0 + 30 = 30 (2.9)

Moreover, the weights of the latent capacity graph 𝒞′(𝑉, 𝐸) are updated for branches along

path 𝒫 to account for an injection of 30 MW of flow along the path 𝒫. In this example,

branches 4-5 and 5-3 belong to path 𝒫. The original latent capacities (in Fig. 2.18) are

𝑐5
45 = 250, 𝑐5

54 = 250, 𝑐7
53 = 30, 𝑐7

35 = 330. As per Algorithm II, these weights are up-

dated as follows: 𝑐5
45 = 𝑐5

45 − 𝐶𝒫 = 250 − 30 = 220, 𝑐5
54 = 𝑐5

54 + 𝐶𝒫 = 250 + 30 =

41

280, 𝑐5
53 = 𝑐5

53 − 𝐶𝒫 = 30 − 30 = 0, and 𝑐5
35 = 𝑐5

35 + 𝐶𝒫 = 330 + 30 = 360. These

updated weights are shown in the updated latent capacity graph in Fig. 2.19.

Fig. 2.19 An Updated Latent Capacity Graph 𝒞′(𝑉, 𝐸) After Adding a Flow of 30 MW

Along Path 𝒫 = {4 − 5 − 3}

Iteration 2:

Step ii: The next shortest unsaturated path in the latent capacity graph 𝒞′(V, E) from bus 4

to bus 3 is given by path 𝒫 = {4 − 5 − 1 − 3}.

Step iii: The maximum power that could be re-routed through path 𝒫 is 150 MW (i.e., 𝐶𝒫 =

150 MW), which is limited by branches 5-1 and 1-3 (see Fig. 2.19).

Step iv: 𝑇𝐶𝑙 is updated as follows:

 𝑇𝐶𝑙 = 𝑇𝐶𝑙+𝐶𝒫 = 30 + 150 = 180 (2.10)

The weights of the latent capacity graph 𝒞′(𝑉, 𝐸) is updated for an injection of 𝐶𝒫 units of

flow along path 𝒫 (see Fig. 2.20).

42

Fig. 2.20 The Updated Latent Capacity Graph 𝒞′(𝑉, 𝐸) After Adding 150 MW of Flow

Along Path 𝒫 = {4 − 5 − 1 − 3}

Step v: Since there exist no other unsaturated indirect paths from bus 4 to bus 3, the itera-

tions are terminated.

Step vi: Now, the transfer margin, 𝑇𝑙 for the potential outage of branch 3-4 is given by:

 𝑇𝑙 = 𝑇𝐶𝑙 − 𝑓𝑙 = 180 − 210 = −30 (2.11)

Step vii: The last step of the FT algorithm identifies the limiting critical cut-set. The latent

capacity graph of Fig. 2.20 is traversed from bus 4 towards bus 3. The only other bus which

can be reached from bus 4 without traversing a saturated branch in Fig. 2.20 is bus 5.

Therefore, buses 4 and 5 are grouped in the first cluster, while buses 1, 2, and 3 are grouped

into the second cluster. The branches which connect these two clusters are 1-5, 3-4 and 3-

5. Therefore, the limiting critical cut-set is 𝐾𝑐𝑟𝑖𝑡 ={1-5,3-4,3-5}. This cut-set is said to be

saturated by a margin of 30 MW for the outage of branch 3-4.

43

2.5.2 Application of the FT Algorithm on Different Network Flow Solutions

If the FT algorithm is applied to any of the three flow graphs (Fig. 2.13(a) or Fig.

2.13(b) or Fig. 2.13(c)) of the sample 5-bus power system to evaluate the outage of branch

3-4, the following conclusion will be reached independent of which flow graphs is used for

the analysis: the outage of branch 3-4 (𝑒4) would maximally saturate cut-set 𝐾1 (where

𝐾1={3-4,3-5, 1-5}) by a margin of 30 MW, i.e. 𝐾𝑐𝑟𝑖𝑡 = 𝐾1 and 𝑇𝑙 = −30 MW. This is

verified as follows. Note that branch 3-4 is associated with 4 cut-sets as shown in Fig. 2.21.

Fig. 2.22 depicts the power transfer across all four cut-sets associated with branch 3-4 for

the flow graph obtained from a DC power flow solution. Consider cut-set 𝐾3 in Fig. 2.22(c).

The total power transfer across 𝐾3 is 540 MW (𝐹𝐾3 = 𝑓1 + 𝑓2+𝑓4 + 𝑓7) and the maximum

power that can be transferred across 𝐾3 after the outage of 3-4 is also 540 MW (𝑅𝐾3 =

𝑓1
𝑚𝑎𝑥 + 𝑓2

𝑚𝑎𝑥 + 𝑓7
𝑚𝑎𝑥). As such, outage of 3-4 saturates 𝐾3 by 0 MW (𝑅𝐾3 = 𝐹𝐾3). Simi-

larly, it was observed that the outage of branch 3-4 creates a negative margin of 30 MW in

cut-set 𝐾1 (see Fig. 2.22(a)), positive margin of 40 MW in 𝐾2 (see Fig. 2.22(b)), and a

positive margin of 240 MW in 𝐾4 (see Fig. 2.22(d)). Therefore, it is validated using Fig.

2.22 that the FT algorithm correctly identifies the cut-set which gets saturated by the larg-

est (negative) margin.

Identical results were obtained when the FT was applied to the flow graphs of Fig.

2.13(b) and Fig. 2.13(c). Lastly, it must also be pointed out that the margin computed by

the FT is indicative of the minimum amount of power transfer that must be reduced across

cut-set 𝐾𝑐𝑟𝑖𝑡 to alleviate its saturation due to the contingency.

44

Fig. 2.21 The 4 Different Cut-sets Associated with Branch 3-4 (the Power Flows Corre-

spond to a DC Power Flow Solution)

Fig. 2.22 Effect of the Outage of Branch 3-4 on (a) 𝐾1, (b) 𝐾2, (c) 𝐾3, and (d) 𝐾4 of the

Flow Graph of Fig. 2.13(a).

45

Fig. 2.23 (a) Power Transfer Across Cut-set 𝐾𝑐𝑟𝑖𝑡 for the Flow Graph of Fig. 2.14, (b)

Power Transfer Across Cut-set 𝐾𝑐𝑟𝑖𝑡 for the Flow Graph of Fig. 2.15, (c) Power Transfer

Across Cut-set 𝐾𝑐𝑟𝑖𝑡 for the Flow Graph of Fig. 2.16

Now, let us consider the sample 10-bus test system of Fig. 2.14. If branch 4-1 is

evaluated by FT with respect to any of the flow graphs (Fig. 2.14 or Fig. 2.15 or Fig. 2.16),

following observation is made: branch 4-1 is a special asset as it fails FT, and is associated

with a limiting critical cut-set containing branches 4-1 and 6-7 (i.e., 𝐾𝑐𝑟𝑖𝑡 ={4-1,6-7}) with

a transfer margin 𝑇𝑙 =-35.86 MW. The implication of the above statement is explained

with the help of Fig. 2.23(a), (b), and (c) which present the power transfer across cut-set

𝐾𝑐𝑟𝑖𝑡 for the three different flow graphs of the same system shown in Fig. 2.14, 2.15, and

2.16, respectively. From Fig. 2.23 it is clear that although the individual flows on different

branches of the cut-set are different, FT finds that, for all three flow graphs, if the branch

46

4-1 is lost, the cut-set 𝐾𝑐𝑟𝑖𝑡 will have a power transfer capability shortage of 35.86 MW

from cluster 𝐶1 to cluster 𝐶2. For example, in Fig. 2.23(a), when branch 4-1 is lost, the flow

in branch 6-7 becomes (208+127.86) MW = 335.86 MW, which exceeds its rating (of 300

MW) by 35.86 MW. In summary, the FT: (a) detects special assets, (b) identifies the lim-

iting critical cut-set associated with each special asset, and (c) computes the power trans-

fer margin across the identified limiting critical cut-set.

2.6 Update Scheme (UPS) of the Network Flow Solution

During major power system disturbances, multiple outages can occur in rapid suc-

cession. Therefore, the FT results would also change following the outage of a branch. To

identify the set of special assets following an outage, it is important to first update the graph

theory-based network flows to account for the outage of any branch. The advantage of

graph theory-based flows is that rerouting of the flow upon the loss of a branch can be

achieved extremely fast. The technique of updating the flow graph ℱ(𝑉, 𝐸) and latent ca-

pacity graph 𝒞(𝑉, 𝐸) when branch 𝑒𝑙 suffers an outage is done in accordance with Algo-

rithm III, which describes the graph theory-based update scheme (UPS).

2.6.1 Illustration of the UPS Algorithm

A graph theory-based network flow solution of the sample 5-bus system is pre-

sented in Fig. 2.24. We now want to find the updated flow and latent capacity graphs if

branch 5-3 is lost. The steps involved in the UPS are explained below.

47

Algorithm III: Graph theory-based update scheme (UPS)

i. Let the flow to be rerouted be given by 𝐹 = 𝑓𝑙 , where 𝑓𝑙 refers to the flow through

branch 𝑒𝑙 from bus 𝑣𝑙
𝐹 to 𝑣𝑙

𝑇.

ii. Remove branch 𝑒𝑙 from ℱ(𝑉, 𝐸) and 𝒞(𝑉, 𝐸).

iii. Search 𝒞(𝑉, 𝐸) to obtain the shortest unsaturated path 𝒫 from 𝑣𝑙
𝐹 to 𝑣𝑙

𝑇 using breadth

first search (BFS) [95].

iv. Find the maximum extra flow, 𝐶𝒫, that can be rerouted through path 𝒫.

v. If 𝐹 > 𝐶𝒫, inject 𝐶𝒫 units of flow through path 𝒫 and update 𝐹 as 𝐹 ≔ 𝐹 − 𝐶𝒫. If 𝐹 ≤

𝐶𝒫, inject 𝐹 units of flow through path 𝒫 and set 𝐹 ≔ 0. Update the weights of ℱ and

𝒞 accordingly.

vi. Repeat Steps (ii) through (v) until 𝐹 = 0.

Fig. 2.24 (a) Flow Graph, and (b) Latent Capacity Graph of the 5-bus Power System Ob-

tained from the Graph-theory Based Network Flow Solution

48

Step i: Since 150 MW of power flows through branch 5-3 from bus 5 towards bus 3 (see

Fig. 2.11), the amount of power that must be rerouted when branch 5-3 is lost is 𝐹 = 150

MW.

Step ii: The branch 5-3 is removed from both the flow graph and the latent capacity graph

as shown in Fig. 2.25 below.

Step iii: The shortest unsaturated path from bus 5 to bus 3 is obtained using BFS. The path

is given as follows: 𝒫 = {5 − 1 − 3}.

Step iv: The maximum power that could be rerouted through path 𝒫 is 150 MW (i.e., 𝐶𝒫 =

150).

Step v: Since in this situation 𝐹 = 𝐶𝒫 , 150 MW of power is rerouted through path 𝒫. The

flow and the latent capacity graphs are updated as shown in Fig. 2.25. Finally, 𝐹 is updated

as follows: 𝐹 = 𝐹 − 𝐶𝒫 = 150 − 150 = 0.

Step vi: Since 𝐹 = 0, the steps (ii) through (v) are not repeated and the graphs shown in

Fig. 2.25 are the updated flow and latent capacity graphs of the system. For large power

systems it can be shown that the rerouting of the flow through the indirect paths actually

occurs through a very small subgraph of the entire network. This will be discussed with the

help of a case-study in the next Chapter.

49

Fig. 2.25 (a) Flow Graph, and (b) Latent Capacity Graph After Power Flow Through

Branch 5-3 is Re-routed Along Path 5-1-3 Using UPS Algorithm After Outage of Branch

5-3

We observed from the above example that the UPS algorithm creates an updated

flow graph utilizing the set of shortest indirect paths to re-route the flows after a branch

outage. This is possible because in the context of detecting saturated cut-sets, the net power

transfer across any cut-set of the network is important, rather than the individual branch

flows. This is explained with the help of another flow solution obtained from the DC power

flow after the branch outage. Fig. 2.26(a) and (b) present the flow and latent capacity graphs

obtained from a DC power flow after the outage of branch 5-3. Further Fig. 2.27(a) and (b)

compares the flow graphs obtained from the UPS algorithm and the DC power flow solu-

tions respectively. Despite the individual branch flows being different, the power transfer

across any cut-set of the network remains the same (compare Fig. 2.27(a) and (b)). For

example, the total power transfer across cut-set 𝐾1 is 360 MW in both the graphs. Conse-

quently, the FT uniquely determines post-contingency cut-set saturation (independent of

whichever flow graphs are used for the network analysis). For instance, it detects that

50

outage of branch 4-3 will saturate cut-set 𝐾1 by 210 MW. This is because the power trans-

fer capacity of cut-set 𝐾1 reduces to only 150 MW after the outage of branch 4-3.

Fig. 2.26: (a) Updated Flow Graph, and (b) Updated Latent Capacity Graph Obtained from

a DC Power Flow Solution After the Outage of Branch 5-3

Fig. 2.27: (a) The Updated Flow Graphs Obtained from the UPS Algorithm, and (b) DC

Power Flow Solution After the Outage of Branch 5-3

51

2.7 Shortlisting Assets (SA) Algorithm for Successive FT

In the base-case scenario when the flow graph is built for the first time all transmis-

sion assets would be investigated by the FT. However, in the event of a branch outage,

when the UPS provides an updated flow graph, it is not necessary to evaluate all the assets

by the FT once again to identify the special assets. By intelligently exploiting the infor-

mation provided by FT in the base-case scenario and using the UPS to reroute the flow for

the branch that is out, the FT can be performed on only a subset of the assets to evaluate

the impact of a second contingency. This is explained through Fig. 2.28.

Fig. 2.28 (a) Rerouting the Flow on Branch 𝑒𝑙 Does Not Involve any Branch of the Indirect

Paths of 𝑒𝑚, and (b) Rerouting the Flow on Branch 𝑒𝑙 Involves Some Branches of the

Indirect Paths of 𝑒𝑚

Let it be known from the base-case FT that the flow through branch 𝑒𝑚 can be

rerouted through path 𝒫1, while the loss of branch 𝑒𝑙 alters flow through path 𝒫2. Then, in

Fig. 2.28(a), when branch 𝑒𝑙 goes out, the flow through 𝑒𝑙 is rerouted through 𝒫2 by the

UPS. Now, since 𝒫1 and 𝒫2 do not involve common branches, the rerouting of power

52

through 𝒫2 by UPS does not necessarily modify the flows through 𝒫1; therefore, the FT

need not be repeated for 𝑒𝑚. However, if 𝒫1 and 𝒫2 have common branches, as seen in Fig.

2.28(b); i.e., rerouting of the flow of branch 𝑒𝑙 affects the flow through 𝒫1, then 𝑒𝑚 must

be evaluated by FT once again after the outage of 𝑒𝑙 . This rationale of screening the assets

to be evaluated by the FT in the event of an outage is called the shortlisting asset (SA)

algorithm. The SA algorithm is explained with an example in the following section.

2.7.1 Illustration of the SA Algorithm

Let us consider a flow graph for a 7-bus power system shown in Fig. 2.29. The

information obtained from the FT for every branch (in the base-case) is recorded in the

form of a list as shown in Table 2.3. All branches passed the FT in the base-case scenario.

Let us consider the FT result for the outage of branch 1-6. Table 2.3 indicates that 30 MW

of power flowing through branch 1-6 can be rerouted through the path 1-3-6 by the UPS if

the branch 1-6 is lost. Similarly, the 100 MW of power flowing through branch 3-1 can be

rerouted through the indirect paths 3-6-1, 3-4-6-1, and 3-4-5-6-1, respectively, by the UPS,

if the branch 3-1 is lost. The set of indirect paths for the other branches through which the

power flows could be rerouted is given in the second column of Table 2.3.

Now, consider that the branch 2-1 suffers an outage at a particular time instant. By

using the UPS algorithm, the flow through the branch 2-1 is rerouted through path 𝒫 =

{2 − 3 − 6 − 1}, as shown in Fig. 2.30. The updated base-case network flow solution is

obtained by the UPS. Only specific transmission assets whose indirect paths involve

branches 2-3, 3-6, and 6-1 must be re-evaluated by the FT. From the second column of

Table 2.3 it is observed that indirect paths of branches 5-6, 4-5, 4-7, 7-6, and 7-5, through

53

which rerouting can occur do not involve branches 2-3, 3-6, or 6-1. Therefore, the FT need

not be performed for all the 11 branches. The FT must be performed for only six branches,

namely, 1-6, 3-2, 3-1, 3-6, 4-3, and 4-6, whose indirect paths involve branches 2-3, 3-6, or

6-1. This is how the shortlisting of assets is achieved in a power network. By this rationale,

even for a very large system, the FT needs to only evaluate a very small subset of assets,

following a branch outage.

Fig. 2.29 A Flow Graph for a Sample 7-bus Power System

54

Fig. 2.30 With the Outage of Branch 2-1, the Flow is Re-routed Through Path 𝒫={2-3-6-

1}

Table 2.3: Information Recorded by the FT in the Base-case Scenario

Branch evaluated by FT Indirect paths through which rerouting of flow can

occur

Branch 1-6 Indirect Path 1: 1-3-6

Branch 2-1 Indirect Path 1: 2-3-6-1

Branch 3-2 Indirect Path 1: 3-6-1-2

Branch 3-1 Indirect Path 1: 3-6-1

Indirect Path 2: 3-4-6-1

Indirect Path 3: 3-4-5-6-1

Branch 3-6 Indirect Path 1: 3-4-6

Indirect Path 2: 3-4-5-6

Branch 4-3 Indirect Path 1: 4-6-3

Indirect Path 2: 4-5-6-3

Branch 4-6 Indirect Path 1: 4-3-6

Indirect Path 2: 4-5-6

Branch 5-6 Indirect Path 1: 5-4-6

Branch 4-5 Indirect Path 1: 4-6-5

Branch 4-7 Indirect Path 1: 4-5-7

Branch 7-6 Indirect Path 1: 7-5-6

Branch 7-5 Indirect Path 1: 7-4-5

55

CHAPTER 3

 RESULTS: DETECTION OF SATURATED CUT-SETS

This Chapter presents the case-studies for different test systems. The proposed FT

algorithm is applied on the IEEE 39-bus test system in the base-case scenario. The perfor-

mance of the FT is compared with other contingency ranking methods on the IEEE 118-

bus system, during successive outages. The scalability and computational efficiency of the

FT algorithm is validated on the 17,941-bus model of the Western Interconnection. This

Chapter also contains detailed discussions on the capabilities and limitations of the FT

algorithm with a variety of examples and comparative studies.

3.1 Detection of Saturated Cut-sets in IEEE 39-bus System in Base-case

The system data for the IEEE 39-bus test system is obtained from MATPOWER

[102]. When every transmission asset was investigated by the FT in base-case scenario,

four saturated cut-sets were identified which are depicted by dotted lines in Fig. 3.1. The

detailed information obtained from the graph theory-based FT is summarized below:

i. Outage of 11-10 saturates cut-set 𝐾𝑐𝑟𝑖𝑡
1 = {11-10,13-10} by 61 MW. Similarly, outage

of 13-10 saturates the same cut-set 𝐾𝑐𝑟𝑖𝑡
1 by the same margin, because the branches

11-10 and 13-10 have the same rating of 600 MVA, and the total power transferred

across cut-set 𝐾𝑐𝑟𝑖𝑡
1 is 661 MW.

ii. Outage of 6-11 saturates cut-set 𝐾𝑐𝑟𝑖𝑡
2 = {6-11,14-13} by 52 MW. However, outage of

14-13 saturates the same cut-set 𝐾𝑐𝑟𝑖𝑡
2 by 172 MW. This is because branches 6-11 and

14-13 have ratings of 480 MVA and 600 MVA, respectively, and the total power

transferred across cut-set 𝐾𝑐𝑟𝑖𝑡
2 is 652 MW.

56

iii. Outage of 21-22 saturates cut-set 𝐾𝑐𝑟𝑖𝑡
3 = {21-22,24-23} by 393 MW, and the outage

of 24-23 saturates 𝐾𝑐𝑟𝑖𝑡
3 by 93 MW. This is because branches 21-22 and 24-23 have

ratings of 900 MVA and 600 MVA, respectively, and the total power transferred

across cut-set 𝐾𝑐𝑟𝑖𝑡
3 is 993 MW.

iv. Outage of 16-21 saturates cut-set 𝐾𝑐𝑟𝑖𝑡
4 = {16-21,24-23} by 119 MW. Similarly, outage

of 24-23 has the same effect on 𝐾𝑐𝑟𝑖𝑡
4 . This is because both lines have the same rating

of 600 MVA, and the total power transferred across 𝐾𝑐𝑟𝑖𝑡
4 is 719 MW.

It is important to note that the proposed analysis not only identifies the saturated

cut-sets, but also indicates the minimum amount of power transfer that must be reduced

across the cut-set to alleviate its saturation. The performance of FT during a series of out-

ages is studied in the next section.

Fig. 3.1 Identification of Saturated Cut-sets in the IEEE 39-bus System for the Base-case

Scenario

57

3.2 Detection of Saturated Cut-sets in IEEE 118-bus System During Outages

3.2.1 Performance of the FT Algorithm

The utility of the proposed FT algorithm for enhanced situational awareness is ex-

plained with a case-study on the IEEE 118-bus system. Due to a hurricane, let the following

transmission asset outages occur one after another: 15-33, 19-34, 37-38, 49-66, and 47-69

(marked 𝑂1 through 𝑂5 in Fig. 3.2). From Fig. 3.2 and Table 3.1, following information is

obtained when the algorithm is applied as outages manifest:

1) Base-case: In the base-case scenario, branch 26-30 fails the graph theory-based FT and

is classified as a special asset. The loss of 26-30 would saturate the limiting critical cut-

set 𝐾𝑐𝑟𝑖𝑡
0 by a margin of -77 MW, i.e., 𝑇𝑙

0= -77 MW.

2) 1st Outage: When 15-33 is lost, no additional special assets are identified.

3) 2nd Outage: When 19-34 is lost, no additional special assets are identified.

4) 3rd Outage: When 37-38 is lost, the asset 42-49 fails the FT and is classified as a special

asset. The loss of 42-49 would saturate the limiting critical cut-set 𝐾𝑐𝑟𝑖𝑡
3 by a margin of

-186 MW, i.e., 𝑇𝑙
3= -186 MW.

5) 4th Outage: When 49-66 is lost, no additional special assets are identified.

6) 5th Outage: When 47-69 is lost, the assets 59-56, 63-59, 63-64, and 64-65 are classified

as special assets. The loss of these four assets would saturate the limiting critical cut-

sets, 𝐾𝑐𝑟𝑖𝑡
5𝑎 , 𝐾𝑐𝑟𝑖𝑡

5𝑏 , 𝐾𝑐𝑟𝑖𝑡
5𝑐 , and 𝐾𝑐𝑟𝑖𝑡

5𝑑 , by margins of -64, -191, -191, and -219 MW, respec-

tively (i.e., 𝑇𝑙
5𝑎= -64 MW, 𝑇𝑙

5𝑏= -191 MW, 𝑇𝑙
5𝑐= -191 MW, 𝑇𝑙

5𝑑= -219 MW).

58

F
ig

.
3

.2
 R

ea
l-

ti
m

e
Id

en
ti

fi
ca

ti
o

n
 o

f
L

im
it

in
g

 C
ri

ti
ca

l
C

u
t-

se
ts

 o
n

 t
h

e
IE

E
E

 1
1

8
-b

u
s

T
es

t
S

y
st

em
 b

y
 t

h
e

F
T

 A
lg

o
ri

th
m

D
u

ri
n

g
 a

 S
eq

u
en

ce
 o

f
O

u
ta

g
es

59

The value of the information obtained above can be realized by considering the

following scenario: after the occurrence of the fifth outage, the FT algorithm would inform

the power system operators that if any of the four assets identified in the last row, second

column of Table 3.1 is lost next (as the 6th outage), the corresponding cut-set identified in

the third column would be saturated by the margin mentioned in the fourth column . If this

anticipated overload is to be avoided, the operator must preemptively reduce the power

flowing through the identified cut-set by at least the amount mentioned in the last column

of Table 3.1. Thus, the proposed network analysis tool is an enhanced power system con-

nectivity monitoring scheme that improves the power system operators’ situational aware-

ness by augmenting their visualization in real-time. Also, it must be noted that this insight

is very different from what a traditional contingency analysis scheme may provide.

Table 3.1: Identification of Limiting Critical Cut-sets in IEEE 118-bus Test System

Event
New Special

Asset
Limiting Critical Cut-set

Transfer

margin

(MW)

Base-case
26-30

(345 kV line)
𝐾𝑐𝑟𝑖𝑡
0 = {26-30,25-27,25-23} 𝑇𝑙

0=-77

Outage 1 (15-33) - - -

Outage 2 (19-34) - - -

Outage 3 (37-38)
42-49

(138 kV line)
𝐾𝑐𝑟𝑖𝑡
3 = {42-49,44-45} 𝑇𝑙

3= -186

Outage 4 (49-66) - - -

Outage 5 (47-69)

59-56

(138 kV line)
𝐾𝑐𝑟𝑖𝑡
5𝑎 = {59-56,59-54,59-55,69-49} 𝑇𝑙

5𝑎= -64

63-59

(345/138 kV

transformer)
𝐾𝑐𝑟𝑖𝑡
5𝑏 = {63-59,61-59,60-59,69-49} 𝑇𝑙

5𝑏= -191

63-64

(345 kV line)
𝐾𝑐𝑟𝑖𝑡
5𝑐 = {63-64,61-59,60-59,69-49} 𝑇𝑙

5𝑐= -191

64-65

(345 kV line)
𝐾𝑐𝑟𝑖𝑡
5𝑑 = {64-65,66-62,66-67,69-49} 𝑇𝑙

5𝑑= -219

60

3.2.2 Comparative Analysis with Different Methods

This section provides a brief review of two other contingency ranking techniques

proposed in prior literature. Subsequently, the FT is compared with these contingency rank-

ing techniques. Moreover, the results from FT are validated using an independent cascad-

ing simulation analysis.

3.2.2.1 Contingency Ranking Using PTDFs

The power transfer capacity from a source (generator) bus 𝑣𝑖 to a sink (load) bus 𝑣𝑗

is as follows [53]:

𝐶𝑖
𝑗
= 𝑀𝑖𝑛 {

𝑓1
𝑚𝑎𝑥

|𝑃𝑇𝐷𝐹1,𝑖
𝑗
|
, … ,

𝑓𝑙
𝑚𝑎𝑥

|𝑃𝑇𝐷𝐹𝑙,𝑖
𝑗
|
, … ,

𝑓𝑚
𝑚𝑎𝑥

|𝑃𝑇𝐷𝐹𝑚,𝑖
𝑗
|
} (3.1)

where, 𝑓𝑙
𝑚𝑎𝑥 denotes the asset ratings, 𝑃𝑇𝐷𝐹𝑙,𝑖

𝑗
 denotes the power transfer distribution

factor for a power injection at bus 𝑖 and power withdrawal at bus 𝑗, and 𝑚 denotes total

number of transmission assets. Now, [53] defines the electrical betweenness for a potential

branch contingency 𝑒𝑘 as follows:

 𝒯𝑘 = max[𝒯𝑘
𝑝|𝒯𝑘

𝑛], (3.2)

where, 𝒯𝑘 denotes the electrical betweenness for a branch contingency 𝑒𝑘 . 𝒯𝑘
𝑝

 and 𝒯𝑘
𝑛 rep-

resent the positive and negative electrical betweenness of the branch 𝑒𝑘 , which are obtained

as follows:

 𝒯𝑘
𝑝
= ∑ ∑ 𝐶𝑖

𝑗
𝑃𝑇𝐷𝐹𝑙,𝑖

𝑗

 ∀𝑣𝑗(𝑣𝑗≠𝑣𝑖)∈𝐿∀𝑣𝑖∈𝐺

, 𝑖𝑓 𝑃𝑇𝐷𝐹𝑙,𝑖
𝑗
> 0 (3.3)

 𝒯𝑘
𝑛 = ∑ ∑ 𝐶𝑖

𝑗
𝑃𝑇𝐷𝐹𝑙,𝑖

𝑗

 ∀𝑣𝑗(𝑣𝑗≠𝑣𝑖)∈𝐿∀𝑣𝑖∈𝐺

, 𝑖𝑓 𝑃𝑇𝐷𝐹𝑙,𝑖
𝑗
< 0 (3.4)

61

The electrical betweenness 𝒯𝑘 presented in (3.2) can be used to rank different transmission

contingencies [53].

3.2.2.2 Contingency Ranking Using LODFs

Contingency ranking by LODFs was proposed in [55]. A metric called the line out-

age impact factor (LOIF) was computed using the LODF matrix. For a single branch con-

tingency 𝑒𝑘 , the impact of the contingency on all other transmission assets is quantified as

follows:

 𝐿𝑂𝐼𝐹𝑘 = ∑ 𝐿𝑂𝐷𝐹𝑙,𝑘
∀𝑒𝑙∈𝐸

 (3.5)

where, 𝐿𝑂𝐼𝐹𝑘 denotes the LOIF for a potential branch contingency 𝑒𝑘 . LOIF can be used

to perform contingency ranking [55].

3.2.2.3 Cascading Simulation Analysis Using MATCASC

 MATCASC is an open-source MATLAB based tool, that evaluates the conse-

quence of cascading failures in power systems due to branch overloads [76]. The use of

MATCASC for cascade failure analysis is explained here with the help of a flowchart in

Fig. 3.3(a). Any branch outage is considered an input to MATCASC as an initial triggering

contingency. Following this initial outage, it solves DC power flows to check for overloads

beyond the emergency rating of transmission lines. The transmission lines that have over-

loads beyond the emergency rating are tripped following which a DC power flow is solved

again. The steps are repeated unless there are no successive overloads in the system. At the

end of the cascade, the power system might have already been split into multiple islands

due to the branch outages at different stages of the cascade, as shown in Fig. 3.3(b). If the

total power supplied is greater than the power demand of an island, there is no unsatisfied

62

power demand in the island. On the other hand, if the total power supply is less than the

total demand, then a fraction of the power is not satisfied in the island. Therefore, to find

the contingencies that will trigger a cascade and result in unsatisfied power demand, every

possible initial triggering branch outage is evaluated in MATCASC. Additional details of

MATCASC could be found in [76].

Fig. 3.3 (a) A Simplified Flowchart Showing how MATCASC Performs Cascading Failure

Analysis for Any Initial Branch Outage, and (b) Formation of Different Islands at the End

of the Cascade

3.2.2.4 Comparative Study on the IEEE 118-bus Test System

 The output of the proposed FT algorithm is compared with those obtained from

two power system vulnerability assessment techniques, namely, the metrics developed in

[53] and [55] (described in the sub-sections 3.2.2.1 and 3.2.2.2, respectively). The analysis

was performed on the IEEE 118-bus system for the same sequence of outages that were

described in Table 3.1. Further, in order to validate the severity of different contingencies

63

identified by the FT, an independent cascading failure simulation was run in MATCASC

(discussed in sub-section 3.2.2.3). The amount of load shed at the end of the cascade indi-

cates the severity of the contingency. The results of the comparison are shown in Table 3.2.

Table 3.2 Ranking of Contingencies and Cascading Analysis in IEEE 118-bus Test

System After Different Outages

Event

Cascading Analysis Rank by

[53]

Rank by

[55] New

contingency

Load shed

Base-case 26-30

(345 kV line)

12.20% 20 42

Outage 1 (15-33) - - - -

Outage 2 (19-34) - - - -

Outage 3 (37-38) 42-49

(138 kV line)

29.87% 16 58

Outage 4 (49-66) - - - -

Outage 5 (47-69)

64-65

(345 kV line)

28.92% 6 167

63-59

(345/138 kV

transformer)

28.26% 8 70

63-64

(345 kV line)

28.26% 9 73

56-59

(138 kV line)

25.27% 15 119

Column 2 of Table 3.2 shows the contingencies identified by MATCASC that result

in load shed as different events manifest in the IEEE 118-bus system. The ranking of these

load-shed-causing-contingencies, obtained by the techniques developed in [53] and [55]

are provided in Columns 4 and 5, respectively. It can be observed from Table 3.2 that the

contingencies that result in loss of load were not the top ranked contingencies identified by

the metrics developed in [53] and [55]. For instance, after the fifth outage, if any of the

four new contingencies identified in Column 2 were to occur (as the sixth outage), then it

would result in load shedding in excess of 25%. However, none of these four high load-

64

shed-causing-contingencies appeared in the top four ranked contingencies of [53] or [55].

On the other hand, all the load-shed-causing-contingencies were detected as special assets

by the proposed FT algorithm (compare Column 2 of Table 3.2 with Column 2 of Table

3.1). This shows the usefulness of the FT in detecting critical contingencies.

3.2.3 Application of the FT Considering Different Asset Ratings

In the Section 3.2.2 the detailed performance of FT considering normal (or contin-

uous) transmission asset (line or transformer) ratings were presented for the IEEE 118-bus

test system. However, the power carrying capacities of transmission lines are influenced

by several factors such as the air temperature, solar radiation, wind magnitude and wind

direction, etc. [103]-[106]. The proposed FT algorithm is generic enough to detect saturated

cut-sets based upon asset ratings determined by any criterion. To demonstrate this, we pre-

sent the application of the FT for two different scenarios in the IEEE 118-bus test system:

(a) Scenario 1: asset ratings with 95% of the normal value, and (b) Scenario 2: asset ratings

with 105% of the normal value.

Column 1 of Table 3.3 lists the sequential outages. Columns two through four pre-

sent the results of Scenario 1, whereas columns five through seven present the results cor-

responding to that of Scenario 2. Comparing the FT results for the two scenarios after dif-

ferent outages we observe that the violations detected by the FT algorithm are more severe

for Scenario 1 as compared to Scenario 2 (because of more conservative asset ratings used

in the former). For instance, the number of special assets identified by the FT is more in

Scenario 1 than in Scenario 2 (compare the second and fifth columns of Table 3.3). Further,

the transfer margin for the outage of a special asset on the respective limiting critical cut-

65

set is higher for Scenario 1 as compared to Scenario 2 (compare the fourth and seventh

columns of Table 3.3).

Table 3.3: Performance of the FT Considering Different Transmission Asset Ratings

During Multiple Outages

Event

Scenario 1:

Rating: 95%×Normal

Scenario 2:

Rating: 105%×Normal

New

Special

Asset

Limiting

Critical

Cut-set

Transfer

margin

(MW)

New

Special

Asset

Limiting

Critical

Cut-set

Transfer

margin

(MW)

Base-case 26-30
{26-30,25-

27,25-23}
-99

- - -

Outage 1:

(15-33)
- - -

- - -

Outage 2:

(19-34)
- - -

- - -

Outage 3:

 (37-38)
42-49

{42-49,

44-45}
-197

42-49 {42-49,

44-45}

-175

Outage 4:

(49-66)

63-59

{63-59,61-59,

60-59, 69-49,
47-69}

-15

-

-

-

63-64

{63-64,61-59,

60-59, 69-49,

47-69}

-15

64-65

{64-65,62-66,

66-67, 49-69,47-
69}

-43

Outage 5:
(47-69)

63-59
{63-59,61-59,
60-59, 69-49} -224

63-59

{63-59,61-
59, 60-59,

69-49}

-158

63-64

{63-64,61-59,

60-59, 69-49} -224

63-64

{63-64,61-

59, 60-59,

69-49}

-158

64-65

{64-65,62-66,

66-67, 49-69} -252

64-65

{64-65,62-

66, 66-67,
49-69}

-186

56-59
{59-56, 59-54,
59-55, 69-49}

-97

56-59

{59-56, 59-

54, 59-55,

69-49}

-31

59-60
{60-59,61-59,

63-59, 69-49}
-6

59-61
{61-59,60-59,

63-59, 69-49}
-6

49-69
{69-49,61-59,
63-59, 60-59}

-6

66

 3.3 Time Comparisons of FT and RTCA on Different Test Systems

In this section, a statistical comparison of the computation time of the FT algorithm

(after an outage) and traditional RTCA is presented for test systems of varying size (IEEE

118-bus, Texas 2000-bus, Polish 3375-bus, and the 9241-bus European transmission sys-

tems). Both the FT and RTCA were implemented in MATLAB on the same computer

(Core i7, 3.60 GHz CPU processor with 16 GB RAM). For each test system the computa-

tion time of the FT and RTCA was monitored for different transmission outages (top 100

of the highest loaded transmission assets were considered as possible contingencies). Fig.

3.4 compares the computation time of the FT and RTCA for the four specified test systems.

It can be clearly observed that the FT is at least an order of magnitude faster than an ex-

haustive RTCA. Further, it can be observed that the FT takes slightly less time for the 3375-

bus system as compared to the 2000-bus system. This happens because the computation

time of FT not only depends on the system size, but also the topological structure of the

network and the current operating condition of the system.

Fig. 3.4 Comparative Analysis of the Computation Time of the FT and RTCA for Test

Systems of Different Sizes

67

3.4 Application of FT on a 17,941-bus Model of Western Interconnection

The proposed FT algorithm is applied on a 17,941-bus model of the Western Inter-

connection to test the scalability and computational speed of the proposed network analysis

scheme. Sub-section 3.4.1 presents some statistics of graph theory-based FT and UPS

which highlight the computational advantage of the proposed methodology. Sub-section

3.4.2 describes how the proposed network analysis scheme provides useful information

when a sequence of outages occurs in this system.

3.4.1 Computational Efficiency of the Graph-theory Based Network Analysis

It takes 6 min to run an exhaustive N-1 FT for this system in the base-case scenario

on a computer with Core i7, 3.60 GHz CPU processor and 16 GB RAM. When FT evalu-

ates branch 𝑒𝑙 for an outage, the indirect paths of 𝑒𝑙 are traversed by BFS. However, the

saturation of the set of indirect paths may occur when a small number of indirect paths are

traversed by the graph theory-based FT. Moreover, since BFS always identifies the shortest

path from the source to the sink, the number of branches contained in an indirect path

would be relatively small. For every non-radial branch of this system, the number of indi-

rect paths required to saturate the graph and the maximum number of branches contained

in an indirect path is computed. The statistics of the FT algorithm is summarized in Fig.

3.5(a) and Fig. 3.5(b).

68

Fig. 3.5 (a) Histogram of Number of Indirect Paths Traversed by the Graph Theory-Based

FT, and (b) Histogram of Maximum Number of Branches Contained in an Indirect Path

Fig. 3.5(a) plots the histogram for the number of indirect paths utilized by the BFS

to saturate the latent capacity graph. The largest number of indirect paths required was 58.

Fig. 3.5(b) plots the histogram of maximum number of branches contained in an indirect

path traced by the BFS; the maximum was 111. Thus, the histogram plots demonstrate that

the graph theory-based FT essentially uses a small subgraph to detect post-contingency

cut-set saturation; this is the fundamental reason why the graph theory-based FT is com-

putationally efficient. Moreover, it is important to note that in the base-case scenario all

transmission assets were evaluated by the FT. But during a sequence of outages only a

shortlisted number of transmission assets will be evaluated by the FT (utilizing the UPS

and SA algorithms), which will further increase the computation speed.

69

3.4.2 A Case-study During a Series of Outages on Western Interconnection

This sub-section demonstrates the usefulness and scalability of the proposed ap-

proach through a N-1-1 event analysis of this system. The loss of 500 kV Hassayampa-

North Gila (H-NG) transmission line was the first event, while the second event was the

loss of 230/92 kV Coachella Valley transformers. Before the analysis was done for the

outage of the events, it took approximately 0.5 s to build the flow graph and the latent

capacity graph for the base-case. As mentioned earlier, it takes approximately 6 min to run

FT on all transmission assets in the base-case. Whether events 1 and 2 resulted in any

additional special asset was investigated as follows:

Event 1: Once the 500 kV H-NG transmission line was lost, graph theory-based UPS took

only 0.20 s to reroute the flow to obtain a new flow graph. The SA scheme took 0.06 s to

identify 271 branches that were to be examined by FT for this new graph. Time required

by FT to examine all the 271 branches for an outage was 32 s. Among the 271 branches, 4

branches failed FT and were classified as special assets as shown in Table 3.4. For the 4

special assets, the FT found the corresponding limiting critical cut-set, 𝐾𝑐𝑟𝑖𝑡; |𝐾𝑐𝑟𝑖𝑡| in

Table 3.4 denotes the number of branches contained in 𝐾𝑐𝑟𝑖𝑡. Moreover, FT provided in-

formation regarding the impact of the loss of a special asset on the associated limiting

critical cut-set. For example, if the transmission corridor 936-1192 is lost next, the limiting

critical cut-set would be saturated by a margin of 441 MW. The total time required to per-

form this network analysis and identify all the limiting critical cut-sets after the outage of

H-NG was 32.26 s (i.e., total time taken by UPS, SA, and FT). On the other hand, if FT

were to be run on all transmission assets (as was done in the base-case), the time required

70

would be 6 min. Therefore, intelligently performing FT on a shortlisted set of transmission

assets reduced the computation time from 6 min to 32.26 s.

Table 3.4 Application of Graph-Theory Based Network Analysis in the Western

Interconnection

Event 2: When 230/92 kV Coachella Valley transformers are tripped, the UPS took only

0.06 s to obtain the updated network flow solution. Time required by the SA scheme to

shortlist the branches to be evaluated by FT was 0.07 s; 82 new branches were shortlisted.

Time required by FT to examine all the 82 shortlisted branches was 10 s. Among the 82

branches examined, 10 branches failed FT and were classified as special assets (see Table

3.4). Total time required to identify the set of special assets after the outage of Coachella

Events

Time

of

UPS

SA for FT FT on shortlisted assets

Total

Time

#Bran

ch
Time

New special

assets
|𝐾𝑐𝑟𝑖𝑡 |

𝑇𝑙
(MW)

Time

Line out-

age: Has-

sayampa-

North

Gila

0.20 s 271 0.06 s

936-1192

(500 kV line)
57 −441

32 s

(0.20+0

.06+32)

=32.26

s

1192-1217

(500 kV line)
49 −1258

2873-2902

(500 kV line)
18 −419

2902-2903

(500/230 kV

transformer)

21 −309

Trans-

former

outage:

Coachell

a Valley

0.06 s 82 0.07 s

2416-2488

(92 kV line)
8 −35.35

10 s

(0.06+0

.07+10)

=

10.13 s

2421-2487

(230 kV line)
2 −2

2421-3293

(230 kV line)
2 −2

2438-2606

(230 kV line)
5 −55

2487-2488

(230/90 kV

transformer)

8 −35

2712-2878

(230 kV line)
9 −35

71

Valley transformers was 10.13 s. Therefore, it is again observed that the use of UPS and

SA reduces the time required by the FT analysis after an outage.

3.5 Practical Utility of the FT Algorithm

After the 2011 U.S. Southwest blackout, the FERC reported the following finding

[36]: “Affected TOPs (transmission operators) have limited visibility outside their systems,

typically monitoring only one external bus. As a result, they lack adequate situational

awareness of external contingencies that could impact their systems. They also may not

fully understand how internal contingencies could affect SOLs (system operating limits) in

their neighbors’ systems.” The recommendation of FERC to TOPs was to “review their

real-time monitoring tools, such as state estimator and RTCA, to ensure that such tools

represent critical facilities needed for the reliable operation of BPS (bulk power system)”.

Now, modeling all “critical facilities” over a large area (across different utilities)

could significantly increase the number of contingencies to be evaluated by RTCA, which

would then increase the solution time considerably [40], [46]. In this regard, the ability of

the proposed network analysis to analyze the effects of any outage on very large systems

and provide meaningful quantifiable information in a matter of seconds gives it a distinct

advantage. Moreover, the special assets detected by the FT can be suitable candidates for

detailed analysis by a more precise CA tool. Thus, the proposed research can complement

real-time operations by extending an operator’s visibility to external contingencies, while

alleviating the associated computational burdens.

72

3.6 The Limitation and Contribution of the FT algorithm

3.6.1 FT is not Guaranteed to Detect all Post-contingency Branch Overloads

As per the FT when all the indirect paths do not have sufficient capacity to reroute

the power flowing through a branch, it implies that it would inevitably result in post-con-

tingency branch overloads. However, the converse is not true. This is illustrated using the

test system shown in Fig. 3.6, and the corresponding flows shown in Fig. 3.7 and Fig. 3.8.

Fig. 3.7(a) presents a DC power flow solution, when 100 MW of power is injected

at bus 1, and 100 MW is withdrawn at bus 2 (Scenario 1). The numbers in non-bold fonts

indicate flows, while the numbers in bold font denote ratings. The proposed FT algorithm

identifies branch 1-2 as a special asset because the indirect paths of branch 1-2 do not have

sufficient capacity to reroute the flow through the direct path, namely, branch 1-2. A post-

contingency DC power flow shown in Fig. 3.7(b) validates that such an outage results in

overloads along Indirect path 1.

Fig. 3.8(a) presents a DC power flow solution, when 85 MW of power is injected

at bus 1, and the same is withdrawn at bus 2 (Scenario 2). In this scenario, the proposed FT

algorithm does not identify branch 1-2 as a special asset because the set of indirect paths

have sufficient capacity to reroute the flow of the direct path. However, a post-contingency

DC power flow solution shown in Fig. 3.8(b) indicates that the Indirect path 1 is still over-

loaded, due to lower impedance of Indirect path 1 compared to Indirect path 2.

73

Fig. 3.6 Topology of a Sample 6-bus Power System (Branch Impedances are Represented

in Terms of a Variable 𝑧)

Fig. 3.7 Scenario 1-(a) A DC Power Flow Solution in Base-case, and (b) A DC Power Flow

Solution for the Outage of Branch 1-2

Fig. 3.8 Scenario 2-(a) A DC Power Flow Solution in Base-case, and (b) A DC Power Flow

Solution for the Outage of Branch 1-2

74

From this illustration, the following conclusions can be drawn: when the set of in-

direct paths do not have the capacity to reroute the power flowing through the direct path

(see Fig. 3.7), no additional information is required to conclude that there would be a post-

contingency overload. The FT takes advantage of this observation to identify violations

quickly. At the same time, the FT is not able to capture the overload occurring in Fig. 3.8.

This is because the graph theory-based network flow algorithm ignores the effects of im-

pedances when creating the flows. Thus, the proposed approach may not detect all possible

post-contingency branch overloads.

3.6.2 FT is Guaranteed to Detect all Post-contingency Cut-set Saturation

The discussion presented in Section 3.6.1 reveals that the graph theory-based FT is

not guaranteed to identify all contingencies that create post-contingency branch overloads.

However, the FT does guarantee detection of all contingencies that create a saturated cut-

set in the network. This is explained as follows. Let us examine if the outage of branch 𝑒𝑙

of Fig. 3.9 would create a saturated cut-set in the system using the proposed FT. Branch 𝑒𝑙

could be associated with multiple cut-sets in the system. With reference to Fig. 3.9 the 𝑖𝑡ℎ

cut-set associated with branch 𝑒𝑙 is denoted as follows:

 𝐾𝑖 = {𝑒𝑙 , 𝑒𝑙1 , 𝑒𝑙2 , … , 𝑒𝑙(𝑘−1)} for 1 ≤ 𝑖 ≤ 𝑥 (3.6)

where, 𝑘 is the total number of branches in cut-set 𝐾𝑖 , and 𝑥 is the total number of cut-sets

associated with branch 𝑒𝑙 . When the transfer margin, 𝑇𝑙 , computed by the FT is negative it

implies that the outage of branch 𝑒𝑙 saturates at least one cut-set, among the 𝑥 cut-sets that

branch 𝑒𝑙 is associated with. On the other hand, if the transfer margin, 𝑇𝑙 , computed by the

FT is positive, it implies that the outage of branch 𝑒𝑙 does not saturate any of the 𝑥 cut-sets

75

that it is associated with. Therefore, the FT will not miss a single contingency that would

create a saturated cut-set. This is further illustrated using the test system shown in Fig.

3.10, and the corresponding flows shown in Fig. 3.11 and Fig. 3.12.

Fig. 3.9 𝐾𝑖 is the 𝑖𝑡ℎ Cut-set (Among 𝑥 Cut-sets) Associated with Branch 𝑒𝑙 that Separates

the Network into Two Disjoint Clusters

Fig. 3.11 presents a DC power flow solution when the total load and generation in

the system is 594 MW (Case 1). The FT algorithm finds that the outage of 3-4 saturates

cut-set 𝐾2 ={3-4,3-5,1-5} by 31 MW. To validate this inference, the power transfer capa-

bility across each cut-set associated with branch 3-4 is enumerated from the DC power

flow solution. As shown in Fig. 3.11, branch 3-4 is associated with four cut-sets: 𝐾1,𝐾2, 𝐾3,

and 𝐾4. The power transfer capabilities across the four cut-sets of the test system when

branch 3-4 is lost are summarized in Table 3.5, where 𝑃𝐾 , denotes the total flow that is to

be transferred across the cut-set, and 𝑅𝐾 denotes the total capacity of all the branches be-

longing to the cut-set (excluding branch 3-4 itself). It is observed that 𝑃𝐾 is greater than

𝑅𝐾 only for cut-set 𝐾2 by 31 MW. This verifies that for Case 1, the outage of branch 3-4

would saturate cut-set 𝐾2 by 31 MW.

76

Fig. 3.10 Topology of a Sample Five-bus Power System (Branch Impedances are Repre-

sented in Terms of a Variable 𝑧)

Fig. 3.11 Power Transfer Across Four Different Cut-sets (𝐾1, 𝐾2,𝐾3, 𝐾4) Associated with

Branch 3-4 for Case 1

Table 3.5 Power Transfer Capacity Across Different Cut-sets in the 5-bus Test System

Associated With Branch 3-4

Cut-set

Case 1 Case 2

Flow

 (𝑃𝐾)

Capacity

(𝑅𝐾)

Flow

(𝑃𝐾)

Capacity

 (𝑅𝐾)

𝐾1 231 MW 250 MW 189 MW 250 MW

𝐾2 231 MW 200 MW 189 MW 200 MW

𝐾3 594 MW 820 MW 486 MW 820 MW

𝐾4 264 MW 820 MW 216 MW 820 MW

77

Fig. 3.12 presents a DC power flow solution when the total load and total generation

of the system is 486 MW (Case 2). In this case, the FT algorithm detects that the indirect

paths of branch 3-4 have positive transfer margins indicating that they have the capacity to

carry additional power, if need be. To validate this observation, the power transfer capa-

bility across each cut-set associated with branch 3-4 is enumerated from the DC power

flow solution (see Table 3.5). It is observed that 𝑃𝐾 is less than 𝑅𝐾 for 𝐾1, 𝐾2, 𝐾3, 𝐾4. This

proves that for Case 2, outage of branch 3-4 does not saturate any cut-set that is associated

with it.

Fig. 3.12 Power transfer Across Four Different Cut-sets (𝐾1, 𝐾2,𝐾3, 𝐾4) Associated with

Branch 3-4 for Case 2

Furthermore, note that in Fig. 3.11, the power flowing through different branches

of the limiting critical cut-set, 𝐾2 ={3-4,3-5,1-5}, are not in the same direction. This im-

plies that cut-set 𝐾2 is not a coherent cut-set (in a coherent cut-set power flows in the same

direction in all the branches of the cut-set [92]). Therefore, such types of critical

78

interconnections cannot be detected by the algorithm presented in [92]. It is also important

to highlight here that enumerating the power transfer capability across different cut-sets by

a DC power flow solution requires previously defining all the cut-sets. On the other hand,

the graph theory-based FT can investigate the power transfer capability of different cut-

sets without the cut-sets being pre-defined. This is a unique advantage of the proposed

network analysis, because listing all possible cut-sets for a large power network containing

thousands of buses especially during extreme event scenarios is not practically feasible.

79

CHAPTER 4

MITIGATION OF SATURATED CUT-SETS IN POWER SYSTEMS

This Chapter presents a two-component methodology to enhance the reliability of

large power systems during a series of outages. The proposed research is specifically aimed

at minimizing the risk of cascade triggering contingencies in power systems by enhancing

the N-1 security after an outage has occurred. The first component demonstrates how the

detection and mitigation schemes for alleviating saturated cut-sets can be integrated with

the traditional RTCA-SCED framework. As such, this component enhances the scope of

existing methods of power system security assessment. The second component proposes

an alternative, computationally efficient approach to secure power systems against post-

contingency cut-set saturation quickly. The two components are implemented in parallel

with the understanding that the solution of the second component will be used only when

the more comprehensive first component cannot provide a solution before the next redis-

patch occurs.

4.1 RTCA and SCED for Real-time Power System Operations

RTCA and SCED are usually employed by power system operators to operate the

system in a secure manner [27]-[28]. Fig. 4.1 shows a schematic of state-of-the-art RTCA-

SCED framework that takes its inputs from the state estimator. SCED finds a least cost

redispatch solution to eliminate the potential post-contingency branch overloads identified

by RTCA. The solution obtained by SCED is fed back into the RTCA to ensure that the

new solution does not create additional overloads. When no additional violations are de-

tected, the redispatch solution is implemented in the power system.

80

It was explained in Section 1.2.2 that a subset of the contingencies (selected from

operator experience or day ahead studies) are evaluated by RTCA. As the contingency list

is not exhaustive, it is possible that an important contingency is left out from this list, due

to which it is not detected by RTCA (and hence not corrected by SCED) until it is too late.

This is a serious limitation especially during extreme event scenarios when successive out-

ages occur quickly. Further, when multiple outages have already occurred, a larger number

of post-contingency overloads manifest, because the system is in a stressed operating con-

dition. Therefore, SCED takes longer time to find a solution due to the increased number

of security constraints that it has to model. Nevertheless, the SCED employs different

rounding conventions of PTDFs and approximations in the dispatch model to enhance the

computation speed [107]. The increased solution time under extreme scenarios might en-

courage power system operators to use larger approximations in the model, which would

then affect the solution quality. Thus, both the scope as well as the speed of traditional

power system security assessment must be enhanced during multiple outage scenarios.

Fig. 4.1: RTCA and SCED for Real-time Power System Operations

4.2 The First Component of the Proposed Methodology

The proposed first component aims to make the power system secure against post-

contingency cut-set saturation as well as critical branch overloads by integrating the results

81

from FT and RTCA to create an integrated corrective action (iCA) as shown in Fig. 4.2.

The objective of the iCA is to find a least cost re-dispatch solution to ensure that the critical

contingencies detected by RTCA do not create post-contingency branch overloads and the

special assets identified by FT do not create saturated cut-sets. During multiple outage sce-

narios, it is possible that a re-dispatch solution is not able to mitigate all the identified

overloads. Under such circumstances, controlled load shedding will be implemented. Since

disconnecting the loads incur high economic and social costs [108], load-shedding will be

used as the last resort during redispatch.

Fig. 4.2 The First Component: The Results from RTCA and FT are Used to Create an

Integrated Corrective Action (iCA)

Consider that the generator at bus 𝑖 ∈ 𝐺 in the system is associated with a quadratic

cost curve as shown below:

 𝐹𝑖(𝐺𝑖) = 𝑎𝑖 + 𝑏𝑖𝐺𝑖 + 𝑐𝑖𝐺𝑖
2 (4.1)

where, 𝐺𝑖 is the power produced (in MW) by the generator at bus 𝑖, and 𝑎𝑖 , 𝑏𝑖, and 𝑐𝑖 are

the fixed cost coefficient (in $), the linear cost coefficient (in $/MW), and the quadratic

cost coefficient (in $/MW2), respectively, for the corresponding generator. Let 𝐺𝑖
𝑜 and 𝐺𝑖

𝑛

82

denote the power produced before and after the new dispatch. The change in generation

cost as a function of change in power generation, ∆𝐺𝑖(= 𝐺𝑖
𝑛 − 𝐺𝑖

𝑜), is given by,

∆𝐹𝑖(∆𝐺𝑖) = {𝑎𝑖 + 𝑏𝑖𝐺𝑖
𝑛 + 𝑐𝑖(𝐺𝑖

𝑛)2} − {𝑎𝑖 + 𝑏𝑖𝐺𝑖
𝑜 + 𝑐𝑖(𝐺𝑖

𝑜)2}

 = 𝑏𝑖(𝐺𝑖
𝑛 − 𝐺𝑖

𝑜) + 𝑐𝑖{(𝐺𝑖
𝑛)2 − (𝐺𝑖

𝑜)2}

 = 𝑏𝑖(𝐺𝑖
𝑛 − 𝐺𝑖

𝑜) + 𝑐𝑖(𝐺𝑖
𝑛 + 𝐺𝑖

𝑜)(𝐺𝑖
𝑛 − 𝐺𝑖

𝑜)

 = 𝑏𝑖(∆𝐺𝑖) + 𝑐𝑖(2𝐺𝑖
𝑜 + ∆𝐺𝑖)(∆𝐺𝑖)

 = 𝑏𝑖(∆𝐺𝑖) + (2𝑐𝑖𝐺𝑖
𝑜 + 𝑐𝑖∆𝐺𝑖)∆𝐺𝑖

 = 𝑐𝑖∆𝐺𝑖
2 + (𝑏𝑖 + 2𝑐𝑖𝐺𝑖

0)∆𝐺𝑖 (4.2)

where, 𝑑𝑖 = (2𝑐𝑖𝐺𝑖
𝑜 + 𝑏𝑖). Now, the cost of shedding the load at bus 𝑗 ∈ 𝐿 can be written

as follows:

 ∆𝐹𝑗(∆𝐿𝑗) = 𝑚𝑗∆𝐿𝑗 (4.3)

where, ∆𝐿𝑗 denotes the amount of load-shed, and 𝑚𝑗 is the cost coefficient of load-shed (in

$/MW); 𝑚𝑗 is chosen to be significantly higher compared to the generator cost coefficients,

because the goal is to use load-shed only when generation redispatch alone cannot mitigate

all violations. The convex optimization problem that minimizes the total cost of change in

generation and load-shed is given by:

Minimize: ∑ (𝑐𝑖∆𝐺𝑖
2 + 𝑑𝑖∆𝐺𝑖)

∀𝑖∈𝐺

+ ∑(𝑚𝑗∆𝐿𝑗)

∀𝑗∈𝐿

 (4.4)

The constraints to be applied to (4.4) are as follows.

4.2.1 Branch Power Flows

To model the branch power flow limits PTDFs are used. It has been explained in

Section 1.2.3 that PTDFs are linear sensitivity factors that approximate the change in flow

83

through a branch caused by a change in power injection in the system. Let 𝑃𝑇𝐷𝐹𝑙,𝑖
𝑟 denotes

the change in flow in branch 𝑒𝑙 , for one unit of power added at bus 𝑖 and one unit of power

withdrawn from the reference bus of the system. Then, the change in flow, ∆𝑓𝑙, through

𝑒𝑙 for the change in bus power injections can be obtained as follows:

 ∆𝑓𝑙 = ∑ 𝑃𝑇𝐷𝐹𝑙,𝑖
𝑟

∀𝑖 ∈ 𝐺

∆𝐺𝑖 − ∑ 𝑃𝑇𝐷𝐹𝑙,𝑗
𝑟

∀𝑗 ∈ 𝐿

∆𝐿𝑗 (4.5)

Consequently, the constraint equation for the maximum and minimum power flows is given

as follows:

∑ 𝑃𝑇𝐷𝐹𝑙,𝑖
𝑟 ∆𝐺𝑖

∀𝑖∈𝐺

− ∑ 𝑃𝑇𝐷𝐹𝑙,𝑗
𝑟 ∆𝐿𝑗

∀𝑗∈𝐿

≤ 𝑓𝑙
𝑚𝑎𝑥 − 𝑓𝑙

0 , ∀𝑒𝑙 ∈ 𝐸 (4.6)

∑ 𝑃𝑇𝐷𝐹𝑙,𝑖
𝑟 ∆𝐺𝑖

∀𝑖∈𝐺

− ∑ 𝑃𝑇𝐷𝐹𝑙,𝑗
𝑟 ∆𝐿𝑗

∀𝑗∈𝐿

≥ 𝑓𝑙
𝑚𝑖𝑛 − 𝑓𝑙

0, ∀𝑒𝑙 ∈ 𝐸 (4.7)

where, 𝑓𝑙
𝑜, 𝑓𝑙

𝑚𝑎𝑥 and 𝑓𝑙
𝑚𝑖𝑛 denote the original power flow, maximum power flow limit,

and the minimum power flow limits, respectively.

4.2.2 Power Injections

The maximum and minimum power production constraints for the generators are

given as follows:

 ∆𝐺𝑖 ≤ 𝐺𝑖
𝑚𝑎𝑥 − 𝐺𝑖

0 , ∀𝑖 ∈ 𝐺 (4.8)

 ∆𝐺𝑖 ≥ 𝐺𝑖
𝑚𝑖𝑛 − 𝐺𝑖

0 , ∀𝑖 ∈ 𝐺 (4.9)

where, 𝐺𝑖
𝑜, 𝐺𝑖

𝑚𝑎𝑥, and 𝐺𝑖
𝑚𝑖𝑛 denote the original power production, maximum power pro-

duction and minimum power production of the generator at bus 𝑖, respectively. Similarly,

84

the constraints for the minimum and maximum power demand at a load bus 𝑗 are given as

follows:

 ∆𝐿𝑗 ≤ 𝐿𝑗
𝑚𝑎𝑥 − 𝐿𝑗

0, ∀𝑗 ∈ 𝐿 (4.10)

 ∆𝐿𝑗 ≥ 𝐿𝑗
𝑚𝑖𝑛 − 𝐿𝑗

0, ∀𝑗 ∈ 𝐿 (4.11)

4.2.3 Conservation of Energy

To ensure the conservation of energy, the aggregate change in generation dispatch

must equal the net change in power demand in the system.

 ∑ ∆𝐺𝑖
∀𝑖∈𝐺

= ∑ ∆𝐿𝑗
∀𝑗∈𝐿

 (4.12)

4.2.4 Security Constraints 1: Post-contingency Branch Flows

The post-contingency branch flow constraints can be efficiently modeled with the

LODFs [109]. Consider that LODF𝑙,𝑘 represents the percentage of change in flow through

branch 𝑒𝑘 that will appear on branch 𝑒𝑙 for an outage of branch 𝑒𝑘 (refer to Section 1.2.3).

The post-contingency flow through 𝑒𝑙 for a potential outage of branch 𝑒𝑘 is given as:

 𝑓𝑙
𝑐 = 𝑓𝑙

𝑛 + 𝐿𝑂𝐷𝐹𝑙,𝑘𝑓𝑘
𝑛 (4.13)

where, 𝑓𝑙
𝑛 and 𝑓𝑘

𝑛 denote the new flows corresponding to the iCA solution through

branches 𝑒𝑙 and 𝑒𝑘 respectively. Equation (4.13) could be re-written as follows:

 𝑓𝑙
𝑐 = (𝑓𝑙

0 + ∆𝑓𝑙) + 𝐿𝑂𝐷𝐹𝑙,𝑘(𝑓𝑘
0 + ∆𝑓𝑘) (4.14)

where, 𝑓𝑙
0 and 𝑓𝑘

0 denote the original flows through branches 𝑒𝑙 and 𝑒𝑘 respectively. Sim-

ilarly, ∆𝑓𝑙 and ∆𝑓𝑘 represent the incremental change in branch-flows 𝑒𝑙 and 𝑒𝑘 as obtained

from the redispatch. Substituting ∆𝑓𝑙 and ∆𝑓𝑘 from (4.5) into (4.14), and using the

85

respective branch flow limits, we obtain the equations for the post-contingency branch flow

constraints:

{

 ∑(𝑃𝑇𝐷𝐹𝑙,𝑖

𝑟 + 𝐿𝑂𝐷𝐹𝑙,𝑘𝑃𝑇𝐷𝐹𝑘,𝑖
𝑟)∆𝐺𝑖

∀𝑖∈𝐺

−

∑(𝑃𝑇𝐷𝐹𝑙,𝑗
𝑟 + 𝐿𝑂𝐷𝐹𝑙,𝑘𝑃𝑇𝐷𝐹𝑘,𝑗

𝑟)∆𝐿𝑗
∀𝑗∈𝐿 }

≤ 𝑓𝑙
𝑚𝑎𝑥 − (𝑓𝑙

0 + 𝐿𝑂𝐷𝐹𝑙,𝑘𝑓𝑘
0)

∀𝑒𝑘 ∈ 𝐸𝑣 , ∀𝑒𝑙 ∈ 𝐸 (4.15)

{

 ∑(𝑃𝑇𝐷𝐹𝑙,𝑖

𝑟 + 𝐿𝑂𝐷𝐹𝑙,𝑘𝑃𝑇𝐷𝐹𝑘,𝑖
𝑟)∆𝐺𝑖

∀𝑖∈𝐺

−

∑(𝑃𝑇𝐷𝐹𝑙,𝑗
𝑟 + 𝐿𝑂𝐷𝐹𝑙,𝑘𝑃𝑇𝐷𝐹𝑘,𝑗

𝑟)∆𝐿𝑗
∀𝑗∈𝐿 }

≥ 𝑓𝑙
𝑚𝑖𝑛 − (𝑓𝑙

0 + 𝐿𝑂𝐷𝐹𝑙,𝑘𝑓𝑘
0)

 ∀𝑒𝑘 ∈ 𝐸𝑣 , ∀𝑒𝑙 ∈ 𝐸 (4.16)

where, set 𝐸𝑣 contains the critical contingencies detected by RTCA. The constraints (4.15)

and (4.16) are modeled for all post-contingency branch overloads for the critical contin-

gencies detected by RTCA [109].

4.2.5 Security Constraints 2: Cut-set Power Transfer

This type of security constraints is designed for the special assets detected by the

FT algorithm. The objective here is to reduce the total power transfer across the limiting

critical cut-set 𝐾𝑐𝑟𝑖𝑡 by the respective transfer margin 𝑇𝑙 as follows:

 ∑ ∆𝑓𝑙
∀𝑒𝑙∈ 𝐾𝑐𝑟𝑖𝑡

≤ 𝑇𝑙 , (4.17)

where, ∆𝑓𝑙 denotes the change in flow through branch 𝑒𝑙 . Now, substituting ∆𝑓𝑙 from (4.5)

to (4.17), the constraints for cut-set power transfer are obtained as follows:

∑ (∑ 𝑃𝑇𝐷𝐹𝑙,𝑖
∀𝑒𝑙 ∈ 𝐾𝑐𝑟𝑖𝑡

) ∆𝐺𝑖
∀𝑖 ∈ 𝐺

− ∑ (∑ 𝑃𝑇𝐷𝐹𝑙,𝑗
∀𝑒𝑙 ∈ 𝐾𝑐𝑟𝑖𝑡

) ∆𝐿𝑗 ≤ 𝑇𝑙
∀𝑗 ∈ 𝐿

 ∀ 𝐾𝑐𝑟𝑖𝑡 ∈ 𝒦𝑐𝑟𝑖𝑡 (4.18)

86

where, the set 𝒦𝑐𝑟𝑖𝑡 contains the limiting critical cut-sets detected by the FT corresponding

to different special assets.

Note that a SCED essentially solves the same optimization problem as the iCA with

all constraints modeled except the cut-set power transfer constraints [64]. By considering

both post-contingency branch overloads as well as post-contingency cut-set saturation, the

iCA creates a more comprehensive corrective action than the SCED.

4.3 The Second Component of the Proposed Methodology

The first component of Section 4.2 (or the traditional RTCA-SCED framework of

Section 4.1) are likely to take more time because of the larger number of security con-

straints modeled in the optimization problem for iCA (or SCED). For example, if the num-

ber of critical contingencies detected by RTCA is |𝐸𝑣|, and the total number of transmission

assets is |𝐸 |, the number of post-contingency branch flow constraints (see security con-

straints 1 in Section 4.2.4) that must be modeled is |𝐸𝑣| × |𝐸|. For a large power system,

containing thousands of branches, |𝐸| is large. Moreover, for a stressed power system that

has suffered multiple outages, |𝐸𝑣| is also large. Consequently, the proposed first compo-

nent (or the RTCA-SCED) will not be able to suggest corrective actions at high speeds.

To provide a high-speed corrective action, a second component is proposed, which

only utilizes the results from FT to create a relaxed corrective action (rCA) as shown in

Fig. 4.3. The rCA solves the same optimization problem (given by (4.4)), but without mod-

eling the post-contingency branch flow constraints (described by (4.15) and (4.16)). How-

ever, the cut-set power transfer constraints, described by (4.18), are retained in rCA, i.e.,

the rCA utilizes the results from FT to only secure the system against post-contingency

87

cut-set saturation. Note that if the optimization problem given by (4.4) is solved without

modeling any security constraints (neither security constraints 1, nor security constraints

2), it reduces to a simple DC optimal power flow (DC-OPF) problem. Therefore, by con-

sidering the cut-set power transfer constraints (security constraints 2), the rCA adds a re-

laxed criterion of power system security onto an OPF problem.

Fig. 4.3 The Second Component: The Results from FT are Only Utilized to Create a Re-

laxed Corrective Action (rCA)

If the set 𝐸𝑠 contains the special assets detected by FT, the number of cut-set power

transfer equations modeled by the rCA is |𝐸𝑠|. Now, as the number of cut-set violations

identified will be smaller than the total number of branches of a power system, |𝐸𝑠| ≪ |𝐸|,

and consequently, |𝐸𝑠| ≪ |𝐸𝑣| × |𝐸|. This implies that the number of security constraints

modeled by the rCA is significantly less compared to the number of security constraints

modeled by the iCA (or SCED) and is the primary reason for the very high speed of rCA.

It should however be noted that the solution obtained using the second component

is secure against pre-contingency branch overloads and post-contingency cut-set satura-

tion, but not post-contingency branch overloads. Conversely, the solution obtained from

the first component is secure against post-contingency cut-set saturation, as well as pre-

contingency and post-contingency branch overloads. Naturally, the solution quality of the

first component is better than the second.

88

At the same time, it is important to note that if generation redispatch alone cannot

provide a feasible solution with respect to a relaxed set of constraints such as those used in

rCA, it is obvious that generation redispatch will not provide a solution with more compre-

hensive constraints such as those used in iCA. Therefore, if load-shedding is indicated by

rCA (in the second component), it will also be indicated by iCA (in the first component);

albeit after a longer time and the amount of load-shed will be equal or higher. Therefore,

the ability to quickly indicate the minimum amount of load that must be shed before a

detailed network analysis tool can provide a more accurate estimate of load-shed, is another

advantage of the rCA.

4.4 Real-time Application of the Proposed Two-component Methodology

It can be realized from Sections 4.2 and 4.3 that the first and second components

enhance the scope and speed, respectively, of traditional power system security assessment.

The question then becomes, how should the two components be applied in real-time when

a contingency occurs? Different entities implement SCED at different timescales for real-

time power system operations. For example, PJM Interconnection LLC implements real-

time SCED every fifteen minutes [110], whereas Midcontinent Independent System Oper-

ator (MISO) implements SCED every five minutes [111]. In this context, the real-time

application of the two components can be explained using timelines shown in Fig. 4.4.

With reference to Fig. 4.4, let an outage occur at time 𝑡𝑜. Following the outage, the

first and second components should be initiated simultaneously but independently. Let the

redispatch solution be implemented at time 𝑡𝑑, while the first and second components pro-

vide their dispatch solutions at time 𝑡𝑖 and 𝑡𝑟, respectively. If 𝑡𝑖 < 𝑡𝑑, as shown in Fig.

89

4.4(a), then the solution obtained using the first component should be used for redispatch

as it has better quality. However, if 𝑡𝑖 > 𝑡𝑑 and 𝑡𝑟 < 𝑡𝑑, as shown in Fig. 4.4(b) then the

solution obtained from the second component should be implemented to at least secure the

system against post-contingency cut-set saturation. It will be shown in Section 5.2.2 that

the computational burden of the second component is comparable to a simple DC-OPF. As

such, the likelihood of 𝑡𝑟 > 𝑡𝑑 is small even for large power systems. However, if that still

happens then depending on its availability, the solution from the first (preferred) or the

second component should be implemented in the next redispatch.

Fig. 4.4 (a) If the First Component Provides a Dispatch Solution Before the Scheduled

Time for the Next Redispatch, then the Solution Obtained from the First Component

Should be Implemented, (b) If the First Component Does not Provide a Dispatch Solution

Before the Scheduled Time for Next Redispatch, then the Solution Obtained from the Sec-

ond Component Should be Implemented

90

4.5 The Modified Update Scheme (M-UPS) Algorithm

The corrective actions introduced by iCA (in the first component) and rCA (in the

second component) change the bus power injections. Therefore, FT must re-evaluate the

system corresponding to the new bus power injections to ensure that the updated system

does not have any additional saturated cut-sets due to a potential outage. Hence, a modi-

fied-update scheme (M-UPS) is developed in this dissertation that updates the flow and

latent capacity graphs in a computationally efficient manner, thereby eliminating the need

for recreating these weighted graphs from scratch. Let the sets 𝑉𝑝 and 𝑉𝑛 contain the buses

where the power injection has increased and decreased, respectively. Increase in the net

power injection at a bus refers to either generation being increased, or load being decreased.

Similarly, decrease in net power injection at a bus refers to either generation being de-

creased, or load being increased. Let, ∆𝐼𝑝 and ∆𝐼𝑛 denote the increase and decrease in net

power injection at buses 𝑣𝑝 ∈ 𝑉
𝑝 and 𝑣𝑛 ∈ 𝑉

𝑛, respectively. Now the updated flow and

latent capacity graphs can be obtained using Algorithm IV.

4.5.1 Illustration of the M-UPS algorithm

The flow and the latent capacity graph of a sample 5-bus test system is shown in

Fig. 4.5. Let us consider that the corrective action (either iCA in the first component or

rCA in the second component) reduces the generation at bus 4 by 30 MW and reduces load

at bus 2 by 30 MW. The iterations of the M-UPS algorithm are explained as follows. The

sets 𝑉𝑝 and 𝑉𝑛 of Algorithm IV are given as follows: 𝑉𝑝 ={2} 𝑉𝑛 = {4}.

91

Algorithm IV: Modified Update Scheme (M-UPS)

i. Randomly select a source 𝑣𝑝 ∈ 𝑉
𝑝 and a sink 𝑣𝑛 ∈ 𝑉

𝑛.

ii. Search 𝒞(𝑉, 𝐸) to traverse the shortest unsaturated path 𝒫 from 𝑣𝑝 to 𝑣𝑛 using breadth

first search (BFS) [95].

iii. Use 𝒞 to find the maximum extra flow, 𝐶𝒫, that can be transferred from 𝑣𝑝 to 𝑣𝑛 through

path 𝒫.

iv. Obtain the flow, 𝐹𝒫 , to be injected in ℱ(𝑉, 𝐸) along path 𝒫 from 𝑣𝑝 to 𝑣𝑛 as 𝐹𝒫 =

min(∆𝐼𝑝, ∆𝐼𝑛, 𝐶𝒫).

v. Update weights of branches in graph ℱ as 𝑓𝑙 = 𝑓𝑙 + 𝐹𝒫 , and in graph 𝒞 as 𝑐𝑙
𝐹𝑇 = 𝑐𝑙

𝐹𝑇 −

𝐹𝒫 and 𝑐𝑙
𝑇𝐹 = 𝑐𝑙

𝑇𝐹 + 𝐹𝒫 , for all branches that belong to path 𝒫.

vi. Update net power injections at 𝑣𝑝 and 𝑣𝑛 as ∆𝐼𝑝 ≔ ∆𝐼𝑝 − 𝐹𝒫 and ∆𝐼𝑛 ≔ ∆𝐼𝑛 − 𝐹𝒫 .

vii. Depending upon the values of ∆𝐼𝑝 and ∆𝐼𝑛, update the source and sink in accordance

with the following logic:

a. if ∆𝐼𝑝 ≠ 0 & ∆𝐼𝑛 ≠ 0, the source and sink are not changed.

b. if ∆𝐼𝑝 = 0 & ∆𝐼𝑛 ≠ 0, a new source 𝑣𝑝 is selected from set 𝑉𝑝, keeping the sink 𝑣𝑛,

unchanged.

c. if ∆𝐼𝑝 ≠ 0 & ∆𝐼𝑛 = 0, a new sink is selected from set 𝑉𝑛, keeping the source 𝑣𝑝,

unchanged.

viii. Repeat Steps (ii) through (vii) until the total increase in power injection is compensated

by the total decrease in power injection.

92

Fig. 4.5 (a) Flow Graph and (b) Latent Capacity Graph for a sample 5-bus test system

Iteration 1:

Step i: A source 𝑣𝑝 and a sink 𝑣𝑛 are to be selected from sets 𝑉𝑝 and 𝑉𝑛, respectively; so,

𝑣𝑝 = 2 and 𝑣𝑛 = 4. ∆𝐼𝑝 and ∆𝐼𝑛 are 30 MW each.

Step ii: The shortest unsaturated path from bus 2 to bus 4 is given as follows: 𝒫 = {2 −

3 − 4}.

Step iii: The maximum power that could be re-routed from bus 2 to bus 4 is 270 MW;

𝐶𝒫 =270. This can be observed from the latent capacity graph of Fig. 4.5(b). We observe

that along path 2 − 3 − 4, branch 2-3 is limiting because it has a lower latent capacity of

270 MW.

Step iv: The flow 𝐹𝒫 that must be injected in the flow graph along path 𝒫 from bus 2 to bus

4 is as follows:

 𝐹𝒫 = min(∆𝐼𝑝, ∆𝐼𝑛, 𝐶𝒫) = min(30,30,270) = 30 (4.19)

Step v: The weights of the branches in the flow and latent capacity graphs are updated, for

an injection of 30 MW of flow along path 𝒫 (see Fig. 4.6).

93

Fig. 4.6 (a) Updated Flow Graph, and (b) Latent Capacity Graph Obtained After a Redis-

patch Solution

Step vi: ∆𝐼𝑝 and ∆𝐼𝑛 are updated as follows:

 ∆𝐼𝑝 = ∆𝐼𝑝 − 𝐶𝒫 = 30 − 30 = 0 (4.20)

 ∆𝐼𝑛 = ∆𝐼𝑛 − 𝐶𝒫 = 30 − 30 = 0 (4.21)

Step v: Since, ∆𝐼𝑝 = 0 and ∆𝐼𝑛 = 0 and there are no additional buses in sets 𝑉𝑝 and 𝑉𝑛,

the M-UPS algorithm is terminated.

We observe from the above example that the M-UPS algorithm creates an updated

flow graph utilizing the set of shortest indirect paths to re-route the flows. This is possible

because in the context of detecting saturated cut-sets, the net power transfer across any

cut-set of the network is important, rather than the individual branch flows. Since it does

not matter which paths are selected to match the total load with generation, following a

system redispatch, the set of shortest indirect paths can be used to re-route the flows using

Algorithm IV. This is explained with the help of another flow solution obtained from DC

power flow after generation dispatch.

94

Fig. 4.7(a) and 4.7(b) present the flow and latent capacity graphs obtained from a

DC power flow. Fig. 4.8(a) and 4.8(b) compares the flow graphs obtained from the graph-

theory based M-UPS algorithm and the DC power flow solution respectively. Despite the

individual branch flows being different, the power transfer across any cut-set of the net-

work remains constant. For example, the total power transfer across cut-set 𝐾1 is 330 MW

in both the graphs. Consequently, if the FT is applied on any flow solution, it detects that

the outage of branch 4-3 will not saturate cut-set 𝐾1 beyond its capacity (transfer margin

equals zero). This is because the total power transfer capacity of cut-set 𝐾1 reduces to ex-

actly 330 MW after the outage of branch 4-3.

Fig. 4.7: (a) Flow Graph, and (b) Latent Capacity Graph Obtained from a DC Power Flow

Solution After Generation Redispatch

95

Fig. 4.8 (a) Flow Graph Obtained from the M-UPS Algorithm, and (b) Flow graph obtained

from a DC Power Flow Solution After Generation Redispatch

4.6 The Modified Shortlisting Assets (M-SA) Algorithm

In the pre-outage scenario, all assets are evaluated by the FT. However, once the

M-UPS creates an updated flow graph it may not be necessary to evaluate all assets by FT

once again to identify the set of special assets. Hence, a modified-shortlisting asset (M-SA)

scheme is developed in this dissertation which finds the contingencies to be evaluated by

FT following the update of the flow graph to account for the changes in bus power injec-

tions.

The concept of M-SA is explained with the help of Fig. 4.9. Let the M-UPS modify

the flows through path 𝒫2 in the network to account for the changes in bus power injections.

Also, from the FT performed in the pre-outage scenario, let it be known that the flow of

another branch 𝑒𝑚 can be re-routed through path 𝒫1. Now, if paths 𝒫1 and 𝒫2 do not have

any common branches as shown in Fig. 4.9(a); FT need not be repeated for branch 𝑒𝑚. This

is because we already know from the pre-outage scenario analysis that the outage of 𝑒𝑚

does not saturate a cut-set and the disrupted flow can be re-routed through path 𝒫1 itself.

96

However, if paths 𝒫1 and 𝒫2 have branches in common as shown in Fig. 4.9(b), then 𝑒𝑚

must be re-evaluated by the FT, once the network flows have been updated.

It must be noted here that the proposed M-UPS and M-SA algorithms are used to

perform a successive FT, when the corrective actions made by the iCA and rCA change

the bus power injections. Conversely, the original UPS and SA proposed in Sections 2.6

and 2.7 were used to perform a successive FT following a branch outage that have occurred

in the system.

Fig. 4.9 (a) Updating the Flows in the Network for a Change in the Power Injections Does

not Involve any Branch in the Indirect Paths of Branch 𝑒𝑚; (b) Updating the Flows in the

Network for a Change in the Power Injections Involves Branches in the Indirect Paths of

Branch 𝑒𝑚

4.6.1 Illustration of the Modified Shortlisting Assets (M-SA) algorithm

Fig. 4.10 shows the original flow graph of a sample 7-bus power system. Let the

corrective action schemes (either iCA or rCA) sheds 20 MW of load at bus 1 and reduces

20 MW of generation at bus 3. To account for the changes in bus power injections the M-

UPS reroutes 20 MW of flow from bus 1 towards bus 3 along path along 𝒫 = {1 − 2 − 3}.

97

As such, the flows through branches 1-2 and 2-3 are updated to create a new flow graph,

as shown in Fig. 4.11. These branches have been highlighted in green to indicate that the

graph-theory based network flows have been updated.

Fig. 4.10: The Flow Graph of a Sample 7-bus Power System Before the Corrective Action

has been Implemented

98

Fig. 4.11 The Flow Graph of a Sample 7-bus Power System After the Corrective Action

has been Implemented

Table 4.1 enumerates the information that was obtained from the FT in the pre-

correction scenario (before the corrective actions have been initiated). For example, the

third row of Table 4.1 implies that for the outage of branch 3-1, the flows can be re-routed

along paths 3-6-1, 3-4-6-1, and 3-4-5-6-1. The specific transmission assets whose indirect

paths involve the branches 1-2 and 2-3 (for which the flows are updated), must be re-eval-

uated by the FT, after the new dispatch solution is applied on the graphs. With this rationale

only branches 2-1 and 3-2 must be re-evaluated by the FT in this example, after the M-

UPS has updated the graphs. The other branches need not be re-evaluated by the FT.

99

Table 4.1 Information of the FT Before the New Dispatch Solution is Obtained

Feasibility Test (FT) for an

edge

Indirect paths through which rerouting of flow can

occur

Branch 1-6 Indirect Path 1: 1-3-6

Branch 2-1 Indirect Path 1: 2-3-6-1

Branch 3-2 Indirect Path 1: 3-6-1-2

Branch 3-1 Indirect Path 1: 3-6-1

Indirect Path 2: 3-4-6-1

Indirect Path 3: 3-4-5-6-1

Branch 3-6 Indirect Path 1: 3-4-6

Indirect Path 2: 3-4-5-6

Branch 4-3 Indirect Path 1: 4-6-3

Indirect Path 2: 4-5-6-3

Branch 4-6 Indirect Path 1: 4-3-6

Indirect Path 2: 4-5-6

Branch 5-6 Indirect Path 1: 5-4-6

Branch 4-5 Indirect Path 1: 4-6-5

Branch 4-7 Indirect Path 1: 4-5-7

Branch 7-6 Indirect Path 1: 7-5-6

Branch 7-5 Indirect Path 1: 7-4-5

100

CHAPTER 5

RESULTS: MITIGATION OF SATURATED CUT-SETS

This Chapter evaluates performance of the two-component methodology for miti-

gation of post-contingency cut-set saturation on the IEEE 118-bus test system and the

2000-bus synthetic Texas system. A comparative study of the proposed methodology with

traditional approaches, such as RTCA-SCED and DC-OPF, is also presented. All simula-

tions were performed in MATLAB. GUROBI was used to solve the optimization problems.

5.1 Mitigation of Saturated Cut-sets in the IEEE 118-bus Test System

We initially present the performance of the proposed two-component methodology

using a detailed case-study that involves a sequence of six outages. Subsequently, to

demonstrate consistency, its performance is compared with the traditional approaches for

40 additional case-studies.

5.1.1 A Detailed Case-study of the IEEE 118-bus Test System

The performance of the first component is presented and compared with the RTCA-

SCED framework when six outages manifest successively. The first column of Table 5.1

shows the sequence of events. Columns two through six present the results associated with

the first component. The second column presents the special assets detected by the FT

algorithm. An outage of any of these special assets (after the outage that has already oc-

curred in the corresponding row of the first column), will create post-contingency cut-set

saturation. The third column shows the critical contingencies detected by RTCA that result

in post-contingency branch overloads. To determine the entries of this column, a two-step

101

procedure was followed: (a) PTDFs and asset ratings were used to rank the contingencies

following every outage [53], and (b) top 30% of the contingencies [27] were evaluated by

RTCA to determine the post-contingency branch overloads. The special assets detected by

FT in the second column and the critical branch contingencies detected by RTCA in the

third column were set as inputs to the iCA.

Next, an independent cascading simulation analysis was conducted using

MATCASC [76]. To screen out the contingencies that will trigger a cascade and result in

unserved power demand, every outage was evaluated by MATCASC. The fourth and sixth

columns of Table 5.1 present the cascade triggering contingencies detected by MATCASC

before and after the implementation of iCA. The fifth column presents the redispatch so-

lution (generation cost) obtained from the iCA. Note that the redispatch solution for this

case-study did not result in any load-shed. Finally, we observe from the sixth column that

the solution obtained from iCA does not contain any cascade triggering contingencies.

Therefore, through iCA, the first component has effectively utilized the information from

FT and RTCA to mitigate cascade triggering contingencies for the given sequence of

events.

Now, we evaluate the performance of the RTCA-SCED framework for the same

sequence of events. Columns seven through ten of Table 5.1 present the results associated

with RTCA-SCED. The column headings are similar to that of the first component, with

the exception that the FT results are absent in this section as the traditional SCED only

utilizes the inputs from RTCA. For the first five outages the results of the first component

and RTCA-SCED are identical. This is because for the first five outages the FT does not

identify additional violations to those already detected by RTCA (compare the second and

102

third columns of Table 5.1). However, after the sixth outage FT detects the special asset

65-66 in addition to the critical contingency 64-65 identified by RTCA (see second and

third column of the last row). This is the basis for the difference in the redispatch solutions

of the first component and RTCA-SCED as seen in the fifth and ninth columns of the last

row. Finally, it is observed that the RTCA-SCED solution contains one cascade triggering

contingency (65-66), while the solution obtained from iCA did not have any (see sixth and

tenth columns of the last row). This observation proves that integrating the results from

FT with RTCA enhances the ability of power system security assessment in mitigating the

risk of cascade triggering contingencies.

Table 5.1 Comparative Analysis of the First Component and RTCA-SCED for a

Sequence of Outages in the IEEE 118-bus Test System

Event

(branch

outages)

First component (FT-RTCA-iCA) RTCA-SCED

FT
RT

CA

MATC

ASC

(before

correc-

tion)

Gen.

cost

(k$)

MAT

CASC

(after

correc-

tion)

RT

CA

MATC

ASC

(before

correc-

tion)

Gen.

cost

(k$)

MAT

CASC

(after

correc-

tion)

Outage 1:

15-33
- - - 126.2 - - - 126.2 -

Outage 2:

19-34
- 5-8 - 126.3 - 5-8 126.3 -

Outage 3:

37-38
42-49

42-49,

 5-8,

26-30

42-49 126.5 -

42-49

5-8,

26-30

42-49 126.5 -

Outage 4:

42-49

45-46,

45-49

45-46,

45-49

45-46,

45-49
126.7 -

45-

46,

45-49

45-46,

45-49
126.7 -

Outage 5:

 49-66
- 5-8 - 126.7 - 5-8 - 126.7 -

Outage 6:

 66-67

64-65,

65-66
64-65

64-65,

65-66
127.1 - 64-65

64-65,

65-66
126.9 65-66

103

Table 5.2: Comparative Analysis of the Second Component and DC-OPF for a Sequence

of Outages in the IEEE 118-bus Test System

Event

(branch

outages)

Second component (FT-rCA) DC-OPF

FT MATCASC

(before cor-

rection)

Gen.

Cost

(k$)

MATCASC

(after cor-

rection)

Gen.

Cost

(k$)

MATCASC

Outage 1:

15-33

- - 126.2 - 125.9 26-30

Outage 2:

19-34

- - 126.2 - 125.9 26-30

Outage 3:

37-38

42-49 42-49 126.3 - 125.9 26-30, 42-49

 Outage 4:

42-49

45-46,

45-49

45-46,

45-49

126.4 - 126.2 26-30, 45-46

42-49

Outage 5:

49-66

- - 126.4 - 126.2 26-30, 45-46

45-49

Outage 6:

66-67

64-65,

65-66

64-65,

65-66

126.7 64-65 126.2 26-30, 45-46,

45-49, 64-65,

65-66

There could be situations when the first component takes longer time to generate a

solution. Under such circumstances, the second component should be used (as discussed

in Section 4.4). Table 5.2 presents the application of the second component and compares

it with a simple DC-OPF. Note that it is fair to compare the second component with a DC-

OPF instead of an AC-OPF because the DC-OPF solves a linearized constrained optimiza-

tion problem (similar to rCA used in the second component) while the optimization prob-

lem solved in AC-OPF is non-linear. Moreover, the focus here is on high-speed, and it is

well-known that for a given system, a DC-OPF problem can be solved much faster than an

AC-OPF problem.

The first column of Table 5.2 lists the sequence of events. Columns two through

five present the results of the second component. Note that only the FT results are shown

in this section as the RTCA results are not considered in the second component. Cascading

104

analysis done after the corrective action indicates that the redispatch obtained from rCA

does not contain any cascade triggering contingency for the first five consecutive outages

(see fifth column of Table 5.2). However, after the sixth outage, two cascade triggering

contingencies manifest before the corrective action is initiated (see last row, third column

of Table 5.2), of which, only one is addressed by rCA. That is, the solution obtained using

the rCA still contains one cascade triggering contingency (see last row, fifth column of

Table 5.2). This happened because the contingency 64-65 triggered cascading failures due

to branch overloads, even after the rCA alleviated all post-contingency cut-set saturation.

However, the second component performs significantly better than a DC-OPF (see

columns six and seven of Table 5.2). The sixth column presents the DC-OPF redispatch

solution, while the seventh column presents the cascading analysis results after the correc-

tive action has been implemented. Since a DC-OPF does not model any security con-

straints, the number of cascade triggering contingencies in the solution is significantly

higher compared to that obtained using rCA (in the second component). This shows that in

situations when the first component takes a long time to generate a solution due to heavy

computational burden, the second component can be used to secure the system against

post-contingency cut-set saturation, and thereby reduce the risk of cascading failures.

5.1.2 Mitigation of Saturated Cut-sets Considering Different Asset ratings

The proposed first and the second components are generic enough to initiate cor-

rective actions considering transmission asset ratings determined by different criteria. To

demonstrate the application of the first and second components two different scenarios are

considered: (a) Scenario 1: asset ratings with 95% of the normal value, and (b) Scenario 2:

asset ratings with 105% of the normal value. Same sequence of outages presented in

105

previous sub-section are considered here. Tables 5.3 and 5.4 present the performance of

the proposed first and second components, respectively. It is observed that the generation

costs obtained from either the first or second components in Scenario 1 are greater (or

equal) than that in Scenario 2 for every outage (compare the fourth and seventh columns

of Table 5.3, and the third and fifth columns of Table 5.4). This is expected because of the

more conservative asset ratings of Scenario 1 as compared to Scenario 2.

Table 5.3 Performance of the First Component (FT-RTCA-iCA) Considering Different

Asset Ratings During Multiple Outages in the IEEE 118-bus Test System

Event

(branch

outages)

Scenario 1:

Rating: 95%×Normal

Scenario 2:

Rating: 105%×Normal

RTCA FT iCA:

Gen.

Cost (k$)

RTCA FT iCA:

Gen.

Cost (k$)

Outage 1:

15-33

8-5 - 126.3 - - 126.2

Outage 2:

19-34

8-5 - 126.3 8-5 - 126.2

Outage 3:

37-38

42-49

64-65

8-5

47-69

26-30

49-69

63-64

63-59

42-49 126.7 42-49

26-30

42-49 126.4

Outage 4:

42-49

45-46

45-49

45-46

45-49

126.8 45-46

45-49

45-46

45-49

126.5

Outage 5:

49-66

8-5 - 126.8 126.5

Outage 6:

66-67

64-65 64-65

65-66

127.4

64-65 65-66 126.9

106

Table 5.4 Performance of the Second Component (FT-rCA) Considering Different Asset

Ratings During Multiple Outages in the IEEE 118-bus Test System

Event

(branch

outages)

Scenario 1:

Rating: 95%×Normal

Scenario 2:

Rating: 105%×Normal

 FT rCA:

Gen. cost (k$)

FT rCA:

Gen cost (k$)

Outage 1:

15-33

- 126.2 - 126.2

Outage 2:

19-34

- 126.2 - 126.2

Outage 3:

37-38

42-49 126.3 42-49 126.2

Outage 4:

42-49

45-46

45-49

126.5 45-46

45-49

126.3

Outage 5:

49-66

 126.5 126.3

Outage 6:

66-67

64-65

65-66

126.9 65-66 126.6

5.1.3 Application of the Proposed Methodology to Different Case-studies

To validate the consistency of the first and second components, 40 different case-

studies were generated (in addition to the case-study presented in detail in Section 5.1.1).

To produce critical scenarios, multiple successive outages were created in different regions

of the system. The list of all case-studies is presented in Appendix C of the dissertation.

The pseudocodes of the proposed first and second components are present in Appendix D

and E of the dissertation, respectively.

The number of successive outages varied between two to six for different case-

studies (among the forty-one case-studies, twelve, fifteen, eleven, one, and two case-stud-

ies contained 2, 3, 4, 5, and 6 successive outages, respectively). The redispatch solution

obtained from the proposed (first and second components) and traditional (RTCA-SCED

107

and DC-OPF) approaches were evaluated by MATCASC [76] to check if the solution con-

tained cascading contingencies for any of the outages involved in the case-study.

As the computation time of the first component and the traditional RTCA-SCED

framework are of similar order (verified experimentally in Section 5.2.2), their perfor-

mance, denoted by bars with A and B markers, respectively, in Fig. 5.1, were compared

first. It is observed from the figure that the redispatch solution from RTCA-SCED con-

tained cascade triggering contingencies for case-studies involved with three (1), four (2),

and six (1) outages. However, when the first component was used, none of the case-studies

contained any cascade triggering contingencies (bar A is absent in Fig. 5.1).

Fig. 5.1 Statistical Summary of Performance of Different Approaches for 41 Case-studies

in the IEEE 118-bus Test System

Owing to the similar computation time of the second component and DC-OPF (ver-

ified experimentally in Section 5.2.2), their performance, denoted by bars C and D, respec-

tively, in Fig. 5.1, were compared next. It is observed from the figure that the redispatch

108

solution from DC-OPF contained cascade triggering contingencies for all the case-studies.

This is because a DC-OPF does not model any security constraints. However, when the

second component was used, the number of case-studies containing cascade triggering con-

tingencies decreased considerably in comparison to the DC-OPF results (compare the

heights of bars C and D in Fig. 5.1). This statistical comparison confirms that during mul-

tiple outage scenarios, the proposed two-component methodology can lower, if not elimi-

nate, the risk of cascade triggering contingencies in comparison to traditional approaches.

5.2 Mitigation of Saturated Cut-sets in the 2000-bus Synthetic Texas System

First, the solution quality of the two-component methodology is compared with

traditional approaches such as RTCA-SCED and DC-OPF for a specific case-study of the

2000-bus synthetic Texas system [112]. Finally, based upon the computation time, the real-

time applicability of the two-components is explained for the same case-study. The total

power demand in the system is 67,109 MW.

5.2.1 A Detailed Case-study of the 2000-bus Synthetic Texas System

In this section, we first explain the performance of the first component (FT-RTCA-

iCA) against traditional RTCA-SCED when a sequence of three successive outages mani-

fest on the 2,000-bus synthetic Texas system. The first column of Table 5.5 lists the events

which occur successively in the system. The second column shows the number of special

assets (|𝐸𝑠|) detected by the FT algorithm. The third column presents the number of critical

contingencies (|𝐸𝑣|) detected by RTCA that will create post-contingency branch overloads.

To determine the entries of this column, contingency ranking was performed (using PTDFs

109

and asset ratings [53]), following which top 30% of the contingencies were evaluated by

RTCA [27]. The fourth and the seventh column presents the number of critical contingen-

cies detected by MATCASC before and after the corrective action (denoted as |𝐸𝑐| and

|𝐸𝑐′|) respectively. The fifth column shows the number of critical contingencies detected

by RTCA and FT, which are common to the cascade triggering contingencies obtained

from MATCASC (denoted as|𝐸′′ ∩ 𝐸𝑐|, where 𝐸′′ = 𝐸𝑠 ∪ 𝐸𝑣). The sixth column presents

the redispatch solution (generation cost, load shed) obtained from the iCA. Finally, we

observe from the last column of Table 5.5 that the solution from iCA (in the first compo-

nent) does not contain any cascade triggering contingencies for any of the three outages.

Table 5.5 Performance of the First Component (FT-RTCA-iCA) on the 2000-bus

Synthetic Texas System During a Sequence of Outages

Event

FT

|𝐸𝑠|

RTC

A

|𝐸𝑣|

MATCASC

(before cor-

rection)

|𝐸𝑐|

|𝐸′′

∩ 𝐸𝑐|

iCA MATCASC

(after cor-

rection)

|E𝑐
′ |

Gen.

Cost

(k$)

Load-

shed

(MW)

Outage 1

(3047-3129)

3 2 3 3 922.4 106 0

Outage 2

(1004-3133)

8 10 6 6 924.7 0 0

Outage 3

(3127-3141)

7 7 12 8 930.8 0 0

Table 5.6 Performance of the RTCA-SCED on the 2,000-bus Synthetic Texas System

During a Sequence of Outages

Event RTC

A

|E𝑣 |

MATCASC

(before cor-

rection)

|𝐸𝑐|

|𝐸𝑣
∩ 𝐸𝑐 |

SCED MATCASC

(after cor-

rection)

|𝐸𝑐
′ |

Gen.

Cost (k$)

Load- shed

(MW)

Outage 1

(3047-3129)

2 3 1 922.7 106 0

Outage 2

(1004-3133)

10 6 2 924.6 0 2

Outage 3

(3127-3141)

7 15 2 929.9 0 1

110

The performance of the traditional RTCA-SCED is presented in Table 5.6. The

column headings of Table 5.6 are similar to that of the first component, with the only dif-

ference that FT results are not presented because the SCED does not use inputs from the

FT. The last column of Table 5.6 shows that the redispatch solution from the SCED con-

tains two and one cascade triggering contingency after the second and third outages, re-

spectively. This becomes clear when the fifth column of Table 5.5 is compared with the

fourth column of Table 5.6: the |𝐸𝑣 ∩ 𝐸𝑐| of Table 5.6 is significantly less than |𝐸′′ ∩ 𝐸𝑐|

of Table 5.5 for every outage. This shows the RTCA alone is not able to identify a larger

proportion of the cascade triggering contingencies, and consequently the SCED is unable

to mitigate all cascading failures. On the other hand, identification of saturated cut-sets by

FT, critical branch overloads by RTCA and joint modeling of these constraints within iCA

(of the first component) minimizes the risk of cascading failures.

Now, the performance of the second component (FT-rCA) is evaluated in detail for

the same sequence of outages. The column headings of Table 5.7 are similar to that of

Table 5.5 with the only difference that the RTCA results are not reported in Table 5.7. This

is primarily because the rCA does not utilize inputs from RTCA. However, it is interesting

to note that FT alone detects a significant number of the cascade triggering contingencies

before the corrective action is implemented (compare the third and fourth columns of Table

5.7). Moreover, it is observed that |𝐸𝑠 ∩ 𝐸𝑐| of Table 5.7 is higher compared to |𝐸𝑣 ∩ 𝐸𝑐|

of Table 5.6. This indicates that the special assets detected by FT, whose potential outage

saturates a cut-set in the network are more likely to trigger cascading failures in the sys-

tem. The redispatch solution obtained from the rCA is shown in the fifth column of Table

111

5.7. Finally, it is observed from the last column that for the listed sequence of outages, that

the rCA does not contain any cascade triggering contingency.

The second component performs significantly better than a DC-OPF (see Table

5.8). The second column presents the DC-OPF redispatch solution, while the third column

presents the cascading analysis results after the corrective action has been implemented.

Comparing the last columns of Table 5.7 and Table 5.8, we observe that the number of

cascade triggering contingencies in the DC-OPF solution is significantly higher compared

to that obtained using the rCA (in the second component). This is primarily because a DC-

OPF does not model any security constraints.

Table 5.7 Performance of the Second Component (FT-rCA) on the 2000-bus Synthetic

Texas System During a Sequence of Outages

Event FT

|𝐸𝑠|
MATCASC

(before cor-

rection)

|𝐸𝑐|

|𝐸𝑠
∩ 𝐸𝑐|

rCA MATCASC

(after

correction)

|𝐸𝑐
′ |

Gen.

Cost

(k$)

Load-

shed

(MW)

Outage 1

(3047-3129)

3

3

3

917.8

0

0

Outage 2

(1004-3133)

8

6

6

922.5

0

0

Outage 3

(3127-3141)

7

18

7

925.2

0

0

Table 5.8: Performance of DC-OPF on the 2000-bus Synthetic Texas System During a

Sequence of Outages

Event DC-OPF MATCASC

(after correction)

|𝐸𝑐
′ |

Gen. cost (k$) Load-shed (MW)

Outage 1

(3047-3129)

915.9

0

3

Outage 2

(1004-3133)

915.9

0

9

Outage 3

(3127-3141)

917.9

0

21

112

5.2.2 The Computation Times of Different Approaches

Let us consider the same sequence of three successive outages in this system (as

shown in the first column of Table 5.9). The second, third, fourth, and fifth columns present

the computation time of traditional RTCA-SCED, first component, DC-OPF, and second

component, respectively. It can be observed from the second and third columns that the

computation times of RTCA-SCED and the first component are of similar order. This is

because the computational speeds of both of these approaches depend heavily on the num-

ber of critical contingencies identified by RTCA. This becomes especially clear after the

third outage occurs (see last row, second and third columns of Table 5.9). After this (third)

outage, a relatively large number of violations were modeled as post-contingency branch

overload constraints of SCED and iCA, which consequently increased the computation

time of the traditional RTCA-SCED and the first component, respectively. It must also be

noted that for this system, the computation time for SCED and iCA were obtained after the

PTDFs lower than 0.02 were rounded off to 0. When this rounding was not done, due to

the extremely high computational burden of the optimization problem for RTCA-SCED

and the first component, the local memory of the solver became insufficient.

Table 5.9 Time Comparisons of Different Approaches During a Sequence of Outages on

the 2000-bus Synthetic Texas System

Event Time*

RTCA-

SCED

First component

 (FT-RTCA-iCA)

DC-OPF Second component

(FT-rCA)

Outage 1:

3047-3129

388 sec 421 sec 15 sec 28 sec

Outage 2:

1004-3133

431 sec 487 sec 20 sec 21 sec

Outage 3:

3127-3141

622 sec 720 sec 24 sec 20 sec

*The simulations were performed on a computer with 2.3 GHz Dual-Core Intel Core i5 processor

and 8 GB RAM.

113

On a similar note, the computation times of DC-OPF and the second component

are found to be very similar (see fourth and fifth columns of Table 5.9). Both were less

than 30 seconds for this system, which is at least an order of magnitude faster than the first

component and RTCA-SCED. The high speed is primarily because the DC-OPF and rCA

(used in the second component) do not model the computationally intensive post-contin-

gency branch overload constraints. Furthermore, it is important to note that the optimiza-

tion problems of the rCA and DC-OPF do not require any approximation of the PTDFs.

However, the performance of the second component is superior in comparison to a simple

DC-OPF because the former incorporates a relaxed criterion of security using the cut-set

power transfer constraints (modeled inside rCA). Thus, the rCA is able to provide security

against post-contingency cut-set saturation without significantly increasing the computa-

tional burden of the resulting optimization problem.

5.2.3 Real-time Implementation of the Proposed Methodology

Table 5.10 presents the real-time application of the two-component methodology

for the three outages described in the previous sub-section. The first column lists the se-

quence of events. Let us assume that for this system the redispatch must be implemented

every 10 minutes. Keeping this in mind, it can be observed from Table 5.9 that the first

component yields a result within 10 minutes for the first two outages, whereas the compu-

tation time increases beyond 10 minutes after the third outage. Therefore, the redispatch

solution from the first component should be implemented after the first and second outages

occur, whereas the results from the second component should be used for redispatch after

the third outage (as mentioned in the second column, last row of Table 5.10).

114

The third column presents the solution (generation cost and load-shed) obtained

when one of the two components of the proposed methodology is implemented after every

outage to mitigate the identified post-contingency violations. A summary of the observa-

tions made from the dispatch solution in Table 5.10 is provided below.

Table 5.10 Real-time Application of the Two-component Methodology During a Se-

quence of Outages on the 2000-bus Synthetic Texas System

Events

Method Dispatch Solution No. of cascade triggering

contingencies detected by

MATCASC (after correc-

tion)

Gen. cost

(k$)

Load-shed

(MW)

Outage 1:

3047-3129

First component:

FT-RTCA-iCA

922.4 106 0

Outage 2:

1004-3133

First component:

FT-RTCA-iCA

924.7 0 0

Outage 3:

3127-3141

Second compo-

nent: FT-rCA

923.2 0 0

• Outage 1: The generation redispatch (obtained using the first component) alone cannot

mitigate the identified post-contingency violations. Therefore, 106 MW of load is shed

at this stage. Therefore, the remaining load in the system becomes 67,003 (= 67,109-

106) MW. The total generation fleet satisfies the power demand of 67,003 MW at the

generation cost of $ 922.4k.

• Outage 2: Following the second event, the first component is implemented once more.

To mitigate additional post-contingency violations, the generation cost for redispatch

increases to $ 924.7k. The redispatch solution involves no additional load-shed, and so

the load of 67,003 MW is satisfied by the new generation dispatch.

• Outage 3: Following the third event, the second component is implemented. The redis-

patch solution involves no additional load-shed indicating that the total generation now

satisfies the power demand of 67,003 MW at a new generation cost of $ 923.2k. Note

115

that the slight decrease in the generation cost from $ 924.7k to $ 923.2k is due to the

relaxed security constraints of rCA (in the second component) compared to the more

conservative security constraints of iCA (in the first component).

Finally, the last column presents the number of cascade-triggering contingencies

contained in the solution. It is observed that for the listed sequence of events, the solution

obtained from the proposed methodology does not contain any cascade triggering contin-

gencies. Therefore, this case-study illustrates the real-time implementation of the two com-

ponents in large power systems during multiple outages.

116

CHAPTER 6

CONCLUSION

This Chapter summarizes the research findings and contributions of this disserta-

tion. Further, it introduces different research problems that could be investigated in future

works by building upon this research.

6.1 Dissertation Summary

This dissertation first proposes a new graph-theoretic approach for real-time secu-

rity assessment in large power systems for enhanced situational awareness. The most im-

portant research finding is that a relaxed graph theory-based network analysis tool can

efficiently analyze if a contingency will create saturated cut-sets in a meshed power system.

The proposed feasibility test (FT) algorithm utilizes exhaustive graph traversal using the

breadth first search (BFS) technique to determine post-contingency cut-set saturation.

Identification of saturated cut-sets is important, because they are the “vulnerable bottle-

necks in power grids and represent seams or fault lines across which islanding seems

likely” [92]. However, any large power networks can be associated with countless number

of cut-sets. In this context, the unique contribution of the FT algorithm can be stated as

follows: the FT can quickly analyze the power transfer capability across all cut-sets (with-

out the cut-sets being pre-defined), and uniquely detect saturated cut-sets due to a potential

contingency in the system.

Computation speed is an important criterion for real-time power system operations.

To enhance the computational efficiency of the FT algorithm after a branch outage or gen-

eration redispatch in the power system additional graph-theoretic algorithms were

117

developed. The update scheme (UPS) and shortlisting assets (SA) algorithm increases the

computation speed of FT following a branch outage in the system, whereas the modified

update scheme (M-UPS) and modified shortlisting assets (M-SA) algorithm provides the

necessary computational boost following a generation redispatch.

 Finally, going beyond the detection of saturated cut-sets in power systems, this

dissertation demonstrates how the power system can be made secure against post-contin-

gency cut-set saturation using a combination of network science and constrained optimiza-

tion. A two-component methodology is developed to enhance the N-1 security during suc-

cessive outages in power systems. The first component of the proposed methodology com-

bines the results from the FT algorithm and traditional RTCA to create an integrated cor-

rective action (iCA). The iCA initiates a comprehensive response to the violations detected

by FT and RTCA to protect the system against saturated cut-sets as well as critical branch

overloads. The second component of the proposed methodology presents an alternative

method that complements real-time power system operations during extreme event scenar-

ios, when detailed network analysis tools such as the first component or traditional RTCA-

SCED take longer time to generate a solution. Under such circumstances, by only employ-

ing the FT algorithm, a relaxed corrective action (rCA) is implemented that quickly miti-

gates saturated cut-sets in power systems.

6.2 Future Work

 Any research work paves the path for more studies that can be done and many re-

search questions that can be explored along similar lines. The findings of this dissertation

have also led to exciting research questions that could be investigated in the future. A

118

summary of the different avenues that could be explored building upon this research are

summarized below.

 Visualization of electric power transmission systems is important for supporting

the study, analysis, and presentation of power system data [113]-[115]. An immediate ap-

plication of the proposed algorithms could be the development of a robust visualization

software to automatically display saturated cut-sets (detected by the FT) in the context of

the local geography when outages manifest successively in a region. Automated visualiza-

tion of the information captured by the FT would facilitate quick and easy situational

awareness of the detected violations in a power systems control room. Recently, in [113],

the authors proposed a new algorithm for efficient automatic visualization of large power

systems, that merges geographical context with logical clarity. These techniques can be

explored for the development of high-end visualization platforms for the research done in

this dissertation.

 In power systems there may exist some practical constraints with regards to the

total power transfer capacity for a set of transmission lines based upon a contractual agree-

ment (or rules) between different utilities [116]-[117]. Detection of post-contingency cut-

set saturation with the consideration of these additional constraints can be explored in the

future.

 Quick detection and mitigation of saturated cut-sets due to transmission contingen-

cies has been the focus of this dissertation. The impact of generator contingencies on dif-

ferent cut-sets is an interesting research problem as well. Following a generator contin-

gency, the deficient power is picked up by other generators in the system based upon the

generator shift factors [118]-[121]. The redistribution of power flows following a generator

119

contingency can also create saturated cut-sets (or bottlenecks) in power networks. Building

on the proposed FT algorithm, intelligent graph traversal techniques can be developed to

detect saturated cut-sets due to a potential generator contingency. At the same time, all

generators are not likely to respond to generator contingencies; for example, nuclear power

plants are always operated on their baseload and do not respond to frequency events [122].

Such realistic assumptions should be explored for faster detection of saturated cut-sets due

to generator contingencies.

 Generation redispatch and controlled load shedding has been used as corrective

measures to alleviate post-contingency cut-set saturation in this dissertation. Research on

transmission switching [27]-[28] and topology re-configuration [123]-[126] for efficient

congestion management has also been a promising field of recent research, especially for

weakly meshed distribution networks. The prospect of using topology re-configuration (as

a corrective action) to mitigate post-contingency cut-set saturation, can be investigated as

an extension of this dissertation.

The corrective actions developed in this dissertation is based upon a simple DC

power flow model, which quickly mitigates saturated cut-sets based on active power trans-

fer. As such, the violations associated with the voltage magnitude and reactive power flows

are not identified. The possibility of developing more detailed corrective actions with the

consideration of voltage magnitude (and reactive power flows), while simultaneously mit-

igating post-contingency cut-set saturation could be explored in the future. However, the

challenge here is the following: a detailed AC OPF formulation with the consideration of

non-linear power flow equations is likely to compromise the computational efficiency of

the proposed graph-theoretic algorithms. Therefore, future research needs to explore the

120

recent advancements in linearized OPF techniques which involve intelligent approxima-

tions in the OPF model but generate results close to the optimum of AC OPF [127]-[128].

The detection and mitigation of saturated cut-sets in power systems has been treated

as a steady-state network analysis problem in this dissertation. The redispatch solution (ob-

tained from the proposed corrective actions) alleviates potential violations with regards to

the steady-state security of power systems. However, when the generator set-points are

changed (corresponding to the new generation dispatch) there is possibility of stability re-

lated violations manifesting during power system transients. To ensure that stability related

violations do not arise during the transient period of system redispatch, transient stability

assessment [129]-[132] and transient stability constrained optimal power flow techniques

[133]-[137] could be explored in future work.

Finally, consideration of high renewable energy penetration in power systems will

add another level of complexity to the detection and mitigation schemes of post-contin-

gency cut-set saturation. This is because high renewable penetration implies that during

generation redispatch we have limited controllability to maneuver generation resources to

mitigate saturated cut-sets. Further, if corrective actions are to be initiated with the consid-

eration of the variable renewable generation (in the next dispatch cycle), stochastic optimal

power flow techniques [138]-[141] can be explored in the context of the problem being

solved in this dissertation.

121

REFERENCES

[1] A. Abur, and A. G. Exposito, Power system state estimation: theory and implementa-

tion. Boca Raton, FL, USA: CRC, 2004.

[2] F. C. Schweppe, “Power system static-state estimation, part III: implementation,” IEEE

Trans. Power App. Syst., vol. PAS-89, no. 1, pp. 130-135, Jan. 1970.

[3] A. G. Phadke, and J. S. Thorp, Synchronized phasor measurements and their applica-

tions. New York: Springer, 2008.

[4] A. G. Phadke, J. S. Thorp, and M. G. Adamiak, “A new measurement technique for

tracking voltage phasors, local system frequency, and rate of change of frequency,”

IEEE Trans. Power App. Syst., vol. PAS-102, no. 5, pp. 1025-1038, May 1983.

[5] A. G. Phadke, J. S. Thorp, R. F. Nuqui, and M. Zhou, “Recent developments in state

estimation with phasor measurements,” in Proc. IEEE/PES Power Syst. Conf. and Ex-

pos., pp. 1–7, Mar. 2009.

[6] Z. Chu, A. Pinceti, R. Sen Biswas, O. Kosut, A. Pal, and L. Sankar, “Can predictive

filters detect gradually ramping false data injection attacks against PMUs?,” in Proc.

IEEE Int. Conf. Commun. Control Comput. Technol. Smart Grids (SmartGridComm),

Beijing, China, pp. 1-6, Oct. 2019.

[7] A. Rouhani, and A. Abur, “Linear phasor estimator assisted dynamic state estimation,”

IEEE Trans. Smart Grid, vol. 9, no. 1, pp. 211-219, Jan. 2018.

[8] T. Yang, H. Sun, and A. Bose, “Transition to a two-level linear state estimator—part I:

architecture,” IEEE Trans. Power Syst., vol. 26, no. 1, pp. 46-53, Feb. 2011.

[9] T. Yang, H. Sun, and A. Bose, “Transition to a two-level linear state estimator—part II:

algorithm,” IEEE Trans. Power Syst., vol. 26, no. 1, pp. 54-62, Feb. 2011.

[10] K. D. Jones, J. S. Thorp, and R. M. Gardner, “Three-phase linear state estimation using

phasor measurements,” in Proc. IEEE Power Eng. Soc. Gen. Meeting, Vancouver, BC,

Canada, pp. 1-5, Jul. 2013.

[11] P. Chatterjee, A. Pal, J. S. Thorp, and J. De La Ree, “Partitioned linear state estima-

tion,” in Proc. IEEE Power Eng. Soc. Innovative Smart Grid Technol. Conf. (ISGT),

Washington, DC, USA, pp. 1-5, Feb. 2015.

[12] V. Chakati, M. Pore, A. Banerjee, A. Pal, and S. K. S. Gupta, “Impact of false data

detection on cloud hosted linear state estimator performance,” in Proc. IEEE Power

Eng. Soc. Gen. Meeting (PESGM), Portland, OR, USA, pp. 1-5, Aug. 2018.

[13] B. Azimian, R. Sen Biswas, A. Pal, and L. Tong, “Time synchronized state estimation

for incompletely observed distribution systems using deep learning considering realistic

122

measurement noise,” in Proc. IEEE Power Eng. Soc. Gen. Meeting, Washington D.C.,

USA, pp. 1-5, Jul. 2021.

[14] D. A. Haughton, and G. T. Heydt, “A linear state estimation formulation for smart dis-

tribution systems,” IEEE Trans. Power Syst., vol. 28, no. 2, pp. 1187-1195, May 2013.

[15] K. D. Jones, A. Pal, and J. S. Thorp, “Methodology for performing synchrophasor data

conditioning and validation,” IEEE Trans. Power Syst., vol. 30, no. 3, pp. 1121-1130,

May 2015.

[16] M. Padhee, R. Sen Biswas, A. Pal, K. Basu, and A. Sen, “Identifying unique power

system signatures for determining vulnerability of critical power system assets,” ACM

SIGMETRICS Perform. Eval. Rev., vol. 47, no. 4, pp. 8-11, Apr. 2020.

[17] A. Pal, A. K. S. Vullikanti and S. S. Ravi, “A PMU placement scheme considering

realistic costs and modern trends in relaying,” IEEE Trans. Power Syst., vol. 32, no. 1,

pp. 552-561, Jan. 2017.

[18] A. Pal, G. A. Sanchez-Ayala, V. A. Centeno, and J. S. Thorp, “A PMU placement

scheme ensuring real-time monitoring of critical buses of the network,” IEEE Trans.

Power Del., vol. 29, no. 2, pp. 510-517, Apr. 2014.

[19] A. Pal, C. Mishra, A. K. S. Vullikanti, and S. S. Ravi, “General optimal substation cov-

erage algorithm for phasor measurement unit placement in practical systems,” IET

Gener., Transm. Distrib., vol. 11, no. 2, pp. 347-353, Jan. 2017.

[20] A. Pal, G. A. Sanchez-Ayala, J. S. Thorp, and V. A. Centeno, “A community-based

partitioning approach for phasor measurement unit placement in large systems,” Elect.

Power Compon. Syst., vol. 44, no. 12, pp. 1317-1329, Jun. 2016.

[21] C. Mishra, K. D. Jones, A. Pal, and V. A. Centeno, “Binary particle swarm optimisation-

based optimal substation coverage algorithm for phasor measurement unit installations

in practical systems,” IET Gener. Transm. Distrib., vol. 10, no. 2, pp. 555-562, Feb.

2016.

[22] M. Ghamsari-Yazdel, M. Esmaili, F. Aminifar, P. Gupta, A. Pal, and H. A. Shayanfar,

“Incorporation of controlled islanding scenarios and complex substations in optimal

WAMS design,” IEEE Trans. Power Syst., vol. 34, no. 5, pp. 3408-3416, Sep. 2019.

[23] R. Sen Biswas, B. Azimian, and A. Pal, “A micro-PMU placement scheme for distribu-

tion systems considering practical constraints,” in Proc. IEEE Power Eng. Soc. Gen.

Meeting, Montreal, Canada, pp. 1-5, Aug. 2020.

[24] G. A. Sanchez, A. Pal, V. A. Centeno, and W. C. Flores, “PMU placement for the central

American power network and its possible impacts,” in Proc. IEEE Innovative Smart

Grid Technol. Latin America (ISGT LA), Medellin, Colombia, pp. 1-7, Oct. 2011.

123

[25] NERC, “Standard TPL-002-0a – system performance following loss of a single bulk

electric system element,” 2010. [Online]. Available: https://www.nerc.com/files/tpl-

002-0a.pdf

[26] New York Independent System Operator, “RTC-RTD convergence study,” Dec. 2017.

[27] X. Li, P. Balasubramanian, M. Sahraei-Ardakani, M. Abdi-Khorsand, K. W. Hedman,

and R. Podmore, “Real-time contingency analysis with corrective transmission switch-

ing,” IEEE Trans. Power Syst., vol. 32, no. 4, pp. 2604-2617, Jul. 2017.

[28] X. Li, and K. W. Hedman, “Enhanced energy management system with corrective trans-

mission switching strategy—part I: methodology,” IEEE Trans. Power Syst., vol. 34,

no. 6, pp. 4490-4502, Nov. 2019.

[29] M. Barkakati, R. Sen Biswas, and A. Pal, “A PMU based islanding detection scheme

immune to additive instrumentation channel errors,” in Proc. IEEE North American

Power Symp. (NAPS), Wichita, KS, Oct. 2019, pp. 1-6.

[30] R. Sen Biswas, and A. Pal, “A robust techno-economic analysis of PMU-based island-

ing detection schemes,” in Proc. IEEE Texas Power Energy Conf. (TPEC), College Sta-

tion, TX, pp. 1-6, Feb. 2017.

[31] G. S. Vassell, “Northeast Blackout of 1965,” IEEE Power Eng. Review, vol. 11, no. 1,

pp. 4-8, Jan. 1991.

[32] R. Sugarman, “Power/energy: New York City's blackout: A $350 million drain: Ripple

effects off the July 13, 1977, lightning stroke cost the public dearly in lost property,

services, end income,” IEEE Spectrum, vol. 15, no. 11, pp. 44-46, Nov. 1978.

[33] D. N. Kosterev, C. W. Taylor, and W. A. Mittelstadt, “Model validation for the August

10, 1996 WSCC system outage,” IEEE Trans. Power Syst., vol. 14, no. 3, pp. 967-979,

Aug. 1999.

[34] J. F. Hauer, N. B. Bhatt, K. Shah, and S. Kolluri, “Performance of "WAMS East" in

providing dynamic information for the North East blackout of August 14, 2003,” in

Proc. IEEE Power Eng. Soc. Gen. Meeting, Denver, CO, vol. 2, pp. 1685-1690, Jun.

2004.

[35] F. Galvan, S. Mandal, and M. Thomas, “Phasor Measurement Units (PMU) instrumental

in detecting and managing the electrical island created in the aftermath of hurricane

Gustav,” in Proc. IEEE Power Syst. Conf. Expos. Seattle, WA, pp. 1-4, Mar. 2009.

[36] FERC and NERC staff “Arizona-Southern California outages on September 8, 2011,

causes and recommendations,” Federal Energy Regulatory Commission and North

American Electric Reliability Corporation, Apr. 2012.

https://www.nerc.com/files/tpl-002-0a.pdf
https://www.nerc.com/files/tpl-002-0a.pdf

124

[37] P. M. Chakalian, L. C. Kurtz, and D. M. Hondula, “After the lights go out: household

resilience to electrical grid failure following hurricane Irma,” Nat. Hazards Rev., vol.

20, no. 4, pp. 1-14, Nov. 2019.

[38] B. A. Carreras, D. E. Newman, and I. Dobson, “North American blackout time series

statistics and implications for blackout risk,” IEEE Trans. Power Syst., vol. 31, no. 6,

pp. 4406-4414, Nov. 2016.

[39] FERC Staff, “The Con Edison power failure of July 13 and 14, 1977,” U.S. Department

of Energy Federal Energy Regulatory Commission, pp. 2-3, 19-20 Jun. 1978.

[40] T. Werho, V. Vittal, S. Kolluri, and S. M. Wong, “Power system connectivity monitor-

ing using a graph theory network flow algorithm,” IEEE Trans. Power Syst., vol. 31,

no. 6, pp. 4945-4952, Nov. 2016.

[41] M. Panteli, and D. S. Kirschen, “Situational awareness in power systems: Theory, chal-

lenges, applications,” Electric Power Syst. Research, vol. 122, pp. 140-151, 2015.

[42] A. Abedi, L. Gaudard, and F. Romerio, “Review of major approaches to analyze vul-

nerability in power systems,” Reliability Eng. & System Safety, vol. 183, pp. 153-172,

Nov. 2018.

[43] Z. Li, J. Wang, H. Sun, and Q. Guo, “Transmission contingency analysis based on inte-

grated transmission and distribution power flow in smart grid,” IEEE Trans. Power

Syst., vol. 30, no. 6, pp. 3356-3367, Nov. 2015.

[44] J. Baranowski, and D. J. French, “Operational use of contingency analysis at PJM,” in

Proc. IEEE Power Eng. Soc. Gen. Meeting, San Diego, CA, USA, pp. 1-4, Jul. 2012.

[45] F. Garcia, N. D. R. Sarma, V. Kanduri, and G. Nissankala, “ERCOT control center ex-

perience in using real-time contingency analysis in the new nodal market,” in Proc.

IEEE Power Eng. Soc. Gen. Meeting, San Diego, CA, USA, pp. 1-8, Jul. 2012.

[46] S. Huang, and V. Dinavahi, “Real-time contingency analysis on massively parallel ar-

chitectures with compensation method,” IEEE Access, vol. 6, pp. 44519-44530, 2018.

[47] A. J. Wood, B. F. Wollenberg, and G. B. Sheble. Power generation, operation, and

control. New York: Wiley-Interscience, 2013.

[48] G. Anderson. Modelling and Analysis of Electric Power Systems: Power Flow Analysis,

Fault Analysis, Power Systems Dynamics and Stability. Lecture 227-0526-00, ETH Zur-

ich. [Online]. Available: https://web.ar-

chive.org/web/20170215042633/http://www.eeh.ee.ethz.ch/uploads/tx_ethstud-

ies/modelling_hs08_script_02.pdf

[49] B. Stott, and O. Alsac, “Fast Decoupled Load Flow,” IEEE Trans. Power App. Syst.,

vol. PAS-93, no. 3, pp. 859-869, May 1974.

https://web.archive.org/web/20170215042633/http:/www.eeh.ee.ethz.ch/uploads/tx_ethstudies/modelling_hs08_script_02.pdf
https://web.archive.org/web/20170215042633/http:/www.eeh.ee.ethz.ch/uploads/tx_ethstudies/modelling_hs08_script_02.pdf
https://web.archive.org/web/20170215042633/http:/www.eeh.ee.ethz.ch/uploads/tx_ethstudies/modelling_hs08_script_02.pdf

125

[50] Contingency Analysis-Baseline. [Online]. Available: https://smartgrid.epri.com/Use-

Cases/ContingencyAnalysis-Baseline.pdf.

[51] X. Li, “Reliability enhancements for real-time operations of electric power systems,”

Ph.D. dissertation, Arizona State University, Dec. 2017.

[52] P. Mitra, V. Vittal, B. Keel and J. Mistry, “A systematic approach to N -1-1 analysis for

power system security assessment,” IEEE Power Energy Technol. Syst. J., vol. 3, no. 2,

pp. 71-80, Jun. 2016.

[53] E. Bompard, E. Pons, and D. Wu, “Extended topological metrics for the analysis of

power grid vulnerability,” IEEE Syst. J., vol. 6, no. 3, pp. 481-487, Sep. 2012.

[54] E. Bompard, R. Napoli, and F. Xue, “Extended topological approach for the assessment

of structural vulnerability in transmission networks,” IET Gener. Transm. Distrib., vol.

4, no. 6, pp. 716-724, Jun. 2010.

[55] A. K. Srivastava, T. A. Ernster, R. Liu, and V. G. Krishnan, “Graph-theoretic algorithms

for cyber-physical vulnerability analysis of power grid with incomplete information,” J.

Modern Power Syst. Clean Energy, vol. 6, no. 5, pp. 887-899, Sep. 2018.

[56] C. M. Davis, and T. J. Overbye, “Multiple element contingency screening,” IEEE Trans.

Power Syst., vol. 26, no. 3, pp. 1294-1301, Aug. 2011.

[57] T. Guler, G. Gross, and M. Liu, “Generalized line outage distribution factors,” IEEE

Trans. Power Syst., vol. 22, no. 2, pp. 879-881, May 2007.

[58] T. Guler, and G. Gross, “Detection of island formation and identification of casual fac-

tors under multiple line outages,” IEEE Trans. Power Syst., vol. 22, no. 2, pp. 505-513,

May 2007.

[59] H. Ronellenfitsch, M. Timme, and D. Witthaut, “A dual method for computing power

transfer distribution factors,” IEEE Trans. Power Syst., vol. 32, no. 2, pp. 1007-1015,

Mar. 2017.

[60] P. Kaplunovich, and K. Turitsyn, “Fast and reliable screening of N-2 contingencies,”

IEEE Trans. Power Syst., vol. 31, no. 6, pp. 4243-4252, Nov. 2016.

[61] T. Werho, V. Vittal, S. Kolluri, and S. M. Wong, “A Potential Island Formation Identi-

fication Scheme Supported by PMU Measurements,” IEEE Trans. Power Syst., vol. 31,

no. 1, pp. 423-431, Jan. 2016.

[62] K. E. Van Horn, A. D. Dominiguez-Garcia, and P. W. Sauer, “Measurement-based real-

time security constrained economic dispatch,” IEEE Trans. Power Syst., vol. 31, no. 5,

pp. 3548-3560, Sep. 2016.

https://smartgrid.epri.com/UseCases/ContingencyAnalysis-Baseline.pdf
https://smartgrid.epri.com/UseCases/ContingencyAnalysis-Baseline.pdf

126

[63] ISO New England Inc. System Planning, “Transmission planning technical guide.”

[Online]. Available: https://www.iso-ne.com/static-assets/documents/2019/10/trans-

mission_plannings_techincal_guide_rev5.pdf

[64] A. N. Madavan, S. Bose, Y. Guo, and L. Tong, “Risk-sensitive security-constrained

economic dispatch via critical region exploration,” in Proc. IEEE Power Energy Soc.

Gen. Meeting (PESGM), Atlanta, GA, USA, pp. 1-5, Aug. 2019.

[65] H. Guo, C. Zheng, H. H.-C. Iu, and T. Fernando, “A critical review of cascading failure

analysis and modeling of power system,” Renew. Sustain. Energy Rev., vol. 80, pp. 9-

22, Apr. 2017.

[66] R. Baldick, et al., “Initial review of methods for cascading failure analysis in electric

power transmission systems IEEE PES CAMS task force on understanding, prediction,

mitigation and restoration of cascading failures,” in Proc. IEEE Power Eng. Soc. Gen.

Meeting - Conversion and Delivery of Electrical Energy in the 21st Century, Pittsburgh,

PA, pp. 1-8, Jul. 2008.

[67] D. S. Kirschen, D. Jayaweera, D. P. Nedic, and R. N. Allan, “A probabilistic indicator

of system stress,” IEEE Trans. Power Syst., vol. 19, no. 3, pp. 1650-1657, Aug. 2004.

[68] R. Hardiman, M. Kumbale, and Y. Makarov, “An advanced tool for analyzing multiple

cascading failures,” in Proc. Int. Conf. Prob. Methods Applied Power Syst., Ames, IA,

pp. 629-634, Sep. 2004.

[69] B. A. Carreras, V. E. Lynch, I. Dobson, and D. E. Newman, “Complex dynamics of

blackouts in power transmission systems,” Chaos, vol. 14, no. 3, pp. 643-652, Sep.

2004.

[70] J. Chen, J. S. Thorp, and I. Dobson, “Cascading dynamics and mitigation assessment in

power system disturbances via a hidden failure model,” Int. J. Electrical Power Energy

Syst., vol. 27, no. 4, 2005.

[71] I. Dobson, B. A. Carreras, D. E. Newman, and J. M. Reynolds-Barredo, “Obtaining

statistics of cascading line outages spreading in an electric transmission network from

standard utility data,” IEEE Trans. Power Syst., vol. 31, no. 6, pp. 4831-4841, Nov.

2016.

[72] I. Dobson, “Estimating the propagation and extent of cascading line outages from utility

data with a branching process,” IEEE Trans. Power Syst., vol. 27, no. 4, pp. 2146-2155,

Nov. 2012.

[73] P. Rezaei, P. D. H. Hines, and M. J. Eppstein, “Estimating cascading failure risk with

random chemistry,” IEEE Trans. Power Syst., vol. 30, no. 5, pp. 2726-2735, Sep. 2015.

https://www.iso-ne.com/static-assets/documents/2019/10/transmission_plannings_techincal_guide_rev5.pdf
https://www.iso-ne.com/static-assets/documents/2019/10/transmission_plannings_techincal_guide_rev5.pdf

127

[74] M. Rahnamay-Naeini, Z. Wang, N. Ghani, A. Mammoli, and M. M. Hayat, “Stochastic

analysis of cascading-failure dynamics in power grids,” IEEE Trans. Power Syst., vol.

29, no. 4, pp. 1767-1779, Jul. 2014.

[75] P. D. H. Hines, I. Dobson, and P. Rezaei, “Cascading power outages propagate locally

in an influence graph that is not the actual grid topology,” IEEE Trans. Power Syst., vol.

32, no. 2, pp. 958-967, Mar. 2017.

[76] Y. Koç, T. Verma, N. A. M. Araujo, and M. Warnier, “MATCASC: A tool to analyse

cascading line outages in power grids,” in Proc. IEEE Intl. Workshop Intelligent Energy

Syst. (IWIES), Vienna, Austria, pp. 143-148, Nov. 2013.

[77] T. Ishizaki, A. Chakrabortty, and J. Imura, “Graph-theoretic analysis of power systems,”

in Proc. IEEE, vol. 106, no. 5, pp. 931-952, May 2018.

[78] R. Albert, I. Albert, and G. L. Nakarado, “Structural vulnerability of the North Ameri-

can power grid,” Phys. Rev. E, vol. 69, pp. 1–10, Feb. 2004.

[79] H. Bai, and S. Miao, “Hybrid flow betweenness approach for identification of vulnera-

ble line in power system,” IET Gener. Transm. Distrib., vol. 9, no. 12, pp. 1324-1331,

Jan. 2015.

[80] K. Wang, et. al. “An electrical betweenness approach for vulnerability assessment of

power grids considering the capacity of generators and loads,” Phys. A: Statist. Mech.

Appl., vol. 390, no. 23/24, pp. 4692-4701, Nov. 2011.

[81] S. Arianos, E. Bompard, A. Carbone, and F. Xue, “Power grid vulnerability: A complex

network approach,” Chaos, vol. 19, no. 01199, 2009.

[82] P. Crucitti, V. Latora, and M. Marchiori, “Locating critical lines in high-voltage elec-

trical power grids,” Fluctuation Noise Lett., vol. 5, no. 2, 2005.

[83] V. Rosato, S. Bologna, and F. Tiriticco, “Topological properties of high-voltage elec-

trical transmission networks,” Electric Power Systems Research, vol. 77, iss. 2, pp. 99-

105, Feb. 2007.

[84] P. Crucitti, V. Latora, and M. Marchiori, “Topological analysis of the Italian electric

power grid,” Physica A, vol. 338, pp. 92-97, 2004.

[85] Y. Koc, M. Warnier, R. E. Kooij, and B. M. T. Frances, “Structural vulnerability as-

sessment of electric power grids,” Electr. Power Syst. Res., vol. 81, pp. 1334-1340,

2011.

[86] P. Chopade, and M. Bikdesh, “New centrality measures for assessing smart grid vulner-

abilities and predicting brownouts and blackouts,” Int. J. Critical Infrastructure Protec-

tion, vol. 12, pp. 29-45, 2016.

128

[87] J. Fang, C. Su, Z. Chen, H. Sun, and P. Lund, “Power system structural vulnerability

assessment based on an improved maximum flow approach,” IEEE Trans. Smart Grid,

vol. 9, no. 2, pp. 777-785, Mar. 2018.

[88] G. J. Correa-Henao, and J. M. Yusta-Loyo, “Representation of electric power systems

by complex networks with applications to risk vulnerability assessment,” DYNA, vol.

82, no. 192, pp. 68-77, Aug. 2015.

[89] J. Beyza, E. Garcia-Paricio, and J. M. Yusta, “Applying complex network theory to the

vulnerability assessment of interdependent energy infrastructures,” Energies, vol. 12,

no. 3, Jan. 2019.

[90] Y. Zhu, J. Yan, Y. Sun, and H. He, “Revealing cascading failure vulnerability in power

grids using risk-graph,” IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 12, pp. 3274–

3284, Dec. 2014.

[91] J. Beyza, J. Yusta M, G. Correa J, and H. Ruiz F, “Vulnerability assessment of a large

electrical grid by new graph theory approach,” IEEE Latin America Trans., vol. 16, no.

2, pp. 527-535, Feb. 2018.

[92] A. Beiranvand, and P. Cuffe, “A topological sorting approach to identify coherent cut-

sets within power grids,” IEEE Trans. Power Syst., vol. 35, no. 1, pp. 721-730, Jan.

2020.

[93] R. Sen Biswas, A. Pal, T. Werho, and V. Vittal, “A graph theoretic approach to power

system vulnerability identification,” IEEE Trans. Power Syst., vol. 36, no. 2, pp. 923-

935, Mar. 2021.

[94] R. Sen Biswas, A. Pal, T. Werho, and V. Vittal, “Fast identification of saturated cut-sets

using graph search techniques,” in Proc. IEEE Power Eng. Soc. General Meeting, Mon-

treal, Canada, pp. 1-5, Aug. 2020.

[95] D. Angel, “A breadth first search approach for minimum vertex cover of grid graphs,”

in Proc. IEEE 9th Int. Conf. on Intelligent Syst. and Control (ISCO), Coimbatore, pp.

1-4, Jan. 2015.

[96] J. Allen, and F. T. Leighton, “Depth first search and dynamic programming algorithms

for efficient CMOS cell generation,” in Advanced Research in VLSI: in Proc. of the

Fifth MIT Conf., MITP, 1988.

[97] A. Elmasry, and A. Shokry, “A new algorithm for the shortest path problem”, Networks,

vol. 74, pp. 16-39, Dec. 2018.

[98] N. A. Ojekudo, and N. P. Akpan, “An application of Dijkstra algorithm to shortest route

problem”, IOSR J. Mathematics, vol. 13, no. 3, Jun. 2017.

129

[99] F. Ahmed, F. Anzum, M. N. Islam, W. Mohammad Abdullah, S. A. Ahsan, and M.

Rana, “A new algorithm to compute single source shortest path in a real edge weighted

graph to optimize time complexity,” in Proc. IEEE/ACIS 17th Int. Conf. Computer and

Information Science (ICIS), Singapore, pp. 185-191, Jun. 2018.

[100] M. Barbehenn, “A note on the complexity of Dijkstra's algorithm for graphs with

weighted vertices,” IEEE Trans. Computers, vol. 47, no. 2, pp. 263-, Feb. 1998.

[101] L. Luo, M. Wong, and W. Hwu, “An effective GPU implementation of breadth-first

search,” in Proc. Design Automation Conf., Anaheim, CA, pp. 52-55, Jun. 2010.

[102] R. D. Zimmerman, “MATPOWER 4.0b4 user’s manual,” [Online]. Available:

https://matpower.org/.

[103] D. A. Douglass et al., “A review of dynamic thermal line rating methods with forecast-

ing,” IEEE Trans. Power Del., vol. 34, no. 6, pp. 2100-2109, Dec. 2019.

[104] IEEE PES Overhead Lines Subcommittee WG 15.11, “Real-time overhead transmission

line monitoring for dynamic line rating,” IEEE Trans. Power Del., vol. 31, no. 3, pp.

921-929, Jun. 2016.

[105] CIGRE WG B2.36, Guide for Application of Direct Real-Time Monitoring Systems.

Paris: CIGRE, Technical Brochure 498, Jun. 2012.

[106] “Methods for real-time thermal monitoring of conductor temperature” Electra N° 197,

Aug. 2001.

[107] California ISO Technical Bulletin, “Comparison of lossy versus lossless shift factors in

the ISO market optimizations”, Jun. 2009.

[108] X. Xu, H. Zhang, C. Li, Y. Liu, W. Li, and V. Terzija, “Optimization of the event-driven

emergency load-shedding considering transient security and stability constraints,” IEEE

Trans. Power Syst., vol. 32, no. 4, pp. 2581-2592, Jul. 2017.

[109] N. G. Singhal, N. Li, and K. W. Hedman, “A reserve response set model for systems

with stochastic resources,” IEEE Trans. Power Syst., vol. 33, no. 4, pp. 4038-4049, Jul.

2018.

[110] PJM, “Security Constrained Economic Dispatch System (SCED)”, Interconnection

Training Program, Module LS 8, Winter 2011. [Online] Available:

https://pjm.com/~/media/training/nerc-certifications/ls8-SCED.ashx.

[111] X. Ma, Y. Chen, and J. Wan, “Midwest ISO co-optimization based real-time dispatch

and pricing of energy and ancillary services,” in Proc. IEEE Power Eng. Soc. Gen.

Meeting, Calgary, AB, pp. 1-6, Jul. 2009.

https://matpower.org/
https://pjm.com/~/media/training/nerc-certifications/ls8-SCED.ashx

130

[112] A. B. Birchfield, T. Xu, K. M. Gegner, K. S. Shetye, and T. J. Overbye, “Grid structural

characteristics as validation criteria for synthetic networks,” IEEE Trans. Power Syst.,

vol. 32, no. 4, pp. 3258-3265, Jul. 2017.

[113] A. B. Birchfield, and T. J. Overbye, “Techniques for Drawing Geographic One-Line

Diagrams: Substation Spacing and Line Routing,” IEEE Trans. Power Syst., vol. 33, no.

6, pp. 7269-7276, Nov. 2018.

[114] H. Chen, B. Bhargava, F. Habibi-Ashrafi, J. S. Park, and J. Castaneda, “Integration of

RTDS with EPG synchrophasor applications for visualization and analysis of simulation

scenarios at Southern California Edison,” in Proc. 2012 North American Power Symp.

(NAPS), Champaign, IL, USA, pp. 1-5, Sep. 2012.

[115] A. Pal, I. Singh, and B. Bhargava, “Stress assessment in power systems and its visuali-

zation using synchrophasor based metrics,” in Proc. IEEE 2014 North American Power

Symp. (NAPS), Pullman, WA, pp. 1-6, Sep. 2014.

[116] W. Hogan, “Contract networks for electric power transmission,” J. Regulatory Econ.,

pp. 211-242, Sep. 1992.

[117] R. D. Christie, B. F. Wollenberg, and I. Wangensteen, “Transmission management in

the deregulated environment,” in Proc. IEEE Special Issue The Technol. Power Syst.

Competition, vol. 88, no. 2, pp. 170–195, Feb. 2000.

[118] PJM, “Generator contingency analysis,” 2016. [Online] Available:

https://www.pjm.com/-/media/training/nerc-certifications/markets-exam-materi-

als/mkt-optimization-wkshp/generator-contingency-analysis.ashx

[119] CAISO, “Draft final proposal: generator contingency and remedial action scheme mod-

eling,” Jul. 2017. [Online] Available: https://www.caiso.com/Documents/DraftFinal-

Proposal-GeneratorContingencyandRemedialActionSchemeModeling_updat-

edjul252017.pdf

[120] N. G. Singhal, and K. W. Hedman, “Generator contingency modeling in electric energy

markets.” EPRI, 2018. [Online] Available: https://www.ferc.gov/sites/de-

fault/files/2020-08/W3B-2_Singhal.pdf

[121] N. G. Singhal, J. Kwon, and K. W. Hedman, “Generator contingency modeling in elec-

tric energy markets: derivation of prices via duality theory”, 2019, arXiv:1910.02323.

[122] H. Yuan, R. Sen Biswas, J. Tan, and Y. Zhang, “Developing a reduced 240-bus WECC

dynamic model for frequency response study of high renewable integration,” in

Proc. IEEE/PES Trans. Distrib. Conf. Expos. (T&D), Chicago, IL, USA, pp. 1-5, Oct.

2020.

https://www.pjm.com/-/media/training/nerc-certifications/markets-exam-materials/mkt-optimization-wkshp/generator-contingency-analysis.ashx
https://www.pjm.com/-/media/training/nerc-certifications/markets-exam-materials/mkt-optimization-wkshp/generator-contingency-analysis.ashx
https://www.caiso.com/Documents/DraftFinalProposal-GeneratorContingencyandRemedialActionSchemeModeling_updatedjul252017.pdf
https://www.caiso.com/Documents/DraftFinalProposal-GeneratorContingencyandRemedialActionSchemeModeling_updatedjul252017.pdf
https://www.caiso.com/Documents/DraftFinalProposal-GeneratorContingencyandRemedialActionSchemeModeling_updatedjul252017.pdf
https://www.ferc.gov/sites/default/files/2020-08/W3B-2_Singhal.pdf
https://www.ferc.gov/sites/default/files/2020-08/W3B-2_Singhal.pdf

131

[123] E. A. Goldis, P. A. Ruiz, M. C. Caramanis, X. Li, C. R. Philbrick, and A. M. Rudkevich,

“Shift factor-based SCOPF topology control MIP formulations with substation config-

urations,” IEEE Trans. Power Syst., vol. 32, no. 2, pp. 1179-1190, Mar. 2017.

[124] M. Heidarifar, and H. Ghasemi, “A network topology optimization model based on sub-

station and node-breaker modeling,” IEEE Trans. Power Syst., vol. 31, no. 1, pp. 247-

255, Jan. 2016

[125] S. Huang, Q. Wu, L. Cheng, and Z. Liu, “Optimal reconfiguration-based dynamic tariff

for congestion management and line loss reduction in distribution networks,” IEEE

Trans. Smart Grid, vol. 7, no. 3, pp. 1295-1303, May 2016.

[126] S. Pandey, S. Chanda, A. K. Srivastava, and R. O. Hovsapian, “Resiliency-driven pro-

active distribution system reconfiguration with synchrophasor data,” IEEE Trans.

Power Syst., vol. 35, no. 4, pp. 2748-2758, Jul. 2020.

[127] Z. Yang, H. Zhong, A. Bose, T. Zheng, Q. Xia, and C. Kang, “A linearized OPF model

with reactive power and voltage magnitude: a pathway to improve the MW-only DC

OPF,” IEEE Trans. Power Syst., vol. 33, no. 2, pp. 1734-1745, Mar. 2018.

[128] H. Yuan, F. Li, Y. Wei, and J. Zhu, “Novel linearized power flow and linearized OPF

models for active distribution networks with application in distribution LMP,” IEEE

Trans. Smart Grid, vol. 9, no. 1, pp. 438-448, Jan. 2018.

[129] M. Li, A. Pal, A. G. Phadke, and J. S. Thorp, “Transient stability prediction based on

apparent impedance trajectory recorded by PMUs,” Int. J. Elect. Power Energy Syst.,

vol. 54, pp. 498-504, Jan. 2014.

[130] C. Mishra, A. Pal, J. S. Thorp, and V. A. Centeno, “Transient stability assessment of

prone-to-trip renewable generation rich power systems using Lyapunov’s direct

method,” IEEE Trans. Sustainable Energy, vol. 10, no. 3, pp. 1523-1533, Jul. 2019.

[131] C. Mishra, R. Sen Biswas, A. Pal, and V. A. Centeno, “Critical clearing time sensitivity

for inequality constrained systems,” IEEE Trans. Power Syst., vol. 35, no. 2, pp. 1572-

1583, Mar. 2020.

[132] G. Hou, and V. Vittal, “Trajectory sensitivity based preventive control of voltage insta-

bility considering load uncertainties,” IEEE Trans. Power Syst., vol. 27, no. 4, pp. 2280-

2288, Nov. 2012.

[133] S. Xia, Z. Ding, M. Shahidehpour, K. W. Chan, S. Bu and G. Li, “Transient stability-

constrained optimal power flow calculation with extremely unstable conditions using

energy sensitivity method,” IEEE Trans. Power Syst., vol. 36, no. 1, pp. 355-365, Jan.

2021.

132

[134] Y. Xu, Z. Y. Dong, R. Zhang, Y. Xue, and D. J. Hill, “A decomposition-based practical

approach to transient stability-constrained unit commitment,” IEEE Trans. Power Syst.,

vol. 30, no. 3, pp. 1455-1464, May 2015.

[135] Y. Xu, J. Ma, Z. Y. Dong, and D. J. Hill, “Robust transient stability-constrained optimal

power flow with uncertain dynamic loads,” IEEE Trans. Smart Grid, vol. 8, no. 4, pp.

1911-1921, Jul. 2017.

[136] X. Zhao, H. n. Wei, J. Qi, P. Li, and X. Bai, “Frequency stability constrained optimal

power flow incorporating differential algebraic equations of governor dynamics,” IEEE

Trans. Power Syst., Sep. 2020.

[137] A. Pizano-Martinez, C. R. Fuerte-Esquivel, and D. Ruiz-Vega, “A new practical ap-

proach to transient stability-constrained optimal power flow,” IEEE Trans. Power Syst.,

vol. 26, no. 3, pp. 1686-1696, Aug. 2011.

[138] Y. Guo, K. Baker, E. Dall’Anese, Z. Hu, and T. H. Summers, “Data-based distribution-

ally robust stochastic optimal power flow—part I: methodologies,” IEEE Trans. Power

Syst., vol. 34, no. 2, pp. 1483-1492, Mar. 2019.

[139] X. Fang, B. M. Hodge, H. Jiang, and Y. Zhang, ‘‘Decentralized wind uncertainty man-

agement: Alternating direction method of multipliers based distributionally-robust

chance constrained optimal power flow,’’ Appl. Energy, vol. 239, pp. 938–947, Apr.

2019.

[140] O. Mégel, J. L. Mathieu, and G. Andersson, “Hybrid stochastic-deterministic multipe-

riod DC optimal power flow,” IEEE Trans. Power Syst., vol. 32, no. 5, pp. 3934-3945,

Sep. 2017.

[141] S. Xia, X. Luo, K. W. Chan, M. Zhou, and G. Li, “Probabilistic transient stability con-

strained optimal power flow for power systems with multiple correlated uncertain wind

generations,” IEEE Trans. Sustain. Energy, vol. 7, no. 3, pp. 1133-1144, Jul. 2016.

133

APPENDIX A

BRANCH REACTANCE DATA OF A SAMPLE 5-BUS SYSTEM

134

The branch reactance data for the 5-bus test system is provided below.

Branch Branch Reactance (𝜒𝑗𝑘)

1-2 0.02

1-5 0.02

1-3 0.04

2-3 0.02

3-5 0.04

4-5 0.02

3-4 0.02

135

APPENDIX B

BRANCH REACTANCE DATA OF A SAMPLE 10-BUS SYSTEM

136

The branch reactance data for the 10-bus test system is provided below.

Branch Branch Reactance (𝜒𝑗𝑘)

1-3 0.0476

1-4 0.0417

2-3 0.0476

2-9 0.0964

3-9 0.0864

4-6 0.0388

5-6 0.1727

5-10 0.0519

6-7 0.0230

7-8 0.0396

8-9 0.0216

137

APPENDIX C

DIFFERENT CASE-STUDIES ON THE IEEE 118-BUS TEST SYSTEM

138

Different case-studies involve different sequences of multiple successive outages on the

IEEE 118-bus test system. The case-studies 1 through 35 are presented in this page.

S. No. Outage 1 Outage 2 Outage 3 Outage 4 Outage 5 Outage 6

Case study 1 '15-33' '19-34' '38-37' '42-49' '49-66' '66-67'

Case study 2 '23-24' '22-23' '26-30' '32-113'

Case study 3 '15-33' '19-34' '30-38' '24-72'

Case study 4 '105-106' '106-107' '100-104'

Case study 5 '3-5' '3-12'

Case study 6 '5-11' '4-5' '11-12'

Case study 7 '11-12' '3-5' '5-6' '16-17'

Case study 8 '15-19' '17-18' '19-34'

Case study 9 '25-27' '17-31' '17-113'

Case study 10 '30-17' '33-37' '8-5' '23-25' '25-27' '19-34'

Case study 11 '17-31' '31-32'

Case study 12 '23-32' '25-27' '17-31'

Case study 13 '19-34' '34-37' '35-37'

Case study 14 '38-37' '15-33' '42-49' '19-34'

Case study 15 '30-38' '33-37' '19-34'

Case study 16 '40-42' '41-42' '37-40'

Case study 17 '42-49' '37-40'

Case study 18 '45-49' '45-46'

Case study 19 '49-51' '53-54'

Case study 20 '54-56' '54-55' '54-59' '49-54'

Case study 21 '56-59' '54-56' '49-50' '55-56'

Case study 22 '38-65' '42-49' '44-45'

Case study 23 '64-65' '62-66' '66-67' '49-54' '49-50'

Case study 24 '65-66' '61-62' '49-66'

Case study 25 '65-68' '49-69' '47-69'

Case study 26 '68-69' '65-68'

Case study 27 '69-70' '70-75' '74-75'

Case study 28 '24-70' '70-71'

Case study 29 '70-75' '69-75' '70-74' '75-77'

Case study 30 '77-80' '79-80' '77-82'

Case study 31 '81-80' '69-77' '75-77'

Case study 32 '82-83' '85-89'

Case study 33 '85-89' '85-88'

Case study 34 '89-92' '90-91'

Case study 35 '92-94' '92-93' '92-100' '92-102'

139

The case-studies 36 through 41 are presented in this page.

S. No. Outage 1 Outage 2 Outage 3 Outage 4 Outage 5 Outage 6

Case study 36 '80-96' '80-97' '94-96' '94-95'

Case study 37 '94-96' '95-96' '94-100' '92-94'

Case study 38 '94-100' '92-100' '92-102' '80-98'

Case study 39 '100-103' '100-104'

Case study 40 '103-105' '104-105' '100-106'

Case study 41 '100-106' '100-103'

140

APPENDIX D

MATLAB PSEUDOCODE: THE FIRST COMPONENT

141

The MATLAB pseudocode of the proposed first component has been presented

here. This is the main program which uses several user defined functions (presented in

Appendix F) to implement different algorithms developed in this research.

%%%
% %
% Program Name: Main_program_first_component %
% %
% Program Description: This program implements the proposed first %
% component (FT-RTCA-iCA) during successive outages in a %
% power network %

% %
% Author: Reetam Sen Biswas %
% Arizona State University %
% %
% Last Modified: 03/20/2020 %
%%%
clc
clear all
close all

%% Load the input data:

mpc = loadcase('case118_J2.m'); % All data associated with the IEEE

% 118-bus system are loaded here.

% Transmission line ratings obtained from the surge impedance loading

% of transmission lines are used.

% Multiple circuit transmission lines are converted to an equivalent

% single circuit configuration.

load Data_118bus_J2.mat; % A subset of the data which are frequently

% used by the proposed analysis are stored in this data structure.

% This .mat file contains four matrices named 1) Bus, 2) Branch

% 3) Generator and 4) Load.

% (1) Bus: This matrix contains a single column with all bus numbers

% in ascending order

% (2) Branch: The first and second column of this matrix contains the

% “from bus” and “to bus” information for different branches.

% The third, fourth and fifth columns contain branch resistance,

% reactance, and susceptance respectively.

% The sixth column contains active power flow through different

% transmission lines in the base case.

% The seventh column contains branch ratings.

% The eight column contains branch statuses.

% (3) Generator: The first column contains the generator bus numbers.

% The second column contains the power generation at

% different generators of the system. The third and

% fourth columns contain the maximum and minimum generation at

% respective generators. The fifth and sixth columns contain the

% linear and quadratic cost coefficients respectively.

% (4) Load: The first column contains the load bus numbers. The second

% column contains the net power demand at a specific load bus. The

142

% third column contains the cost of load shed. The fourth and fifth

% columns contain the maximum and minimum power demands at specific

% load buses respectively.

%% Initialize different matrices:
Generator(:,4) = zeros(length(Generator),1);
loc_negative = find(Generator(:,2)<0);
Generator(loc_negative,3) = Generator(loc_negative,2);
Generator(loc_negative,4) = Generator(loc_negative,2);
initial = 1;
continue_flag = 1;
K = [];
baseMVA = 100;
NoOfBus = length(Bus);
BusGraph = Bus;
BranchGraph = Branch(:,[1:2]);BranchGraph(:,3) =

Branch(:,7);BranchGraph(:,4) = Branch(:,8);
GeneratorGraph = Generator(:,[1:2]);
LoadGraph = Load(:,[1:2]);

%% Settings:
% Rank_limit controls the size of the contingency list
% used in RTCA
Rank_limit = 54;
% RoundOffFlag determines if the PTDF values will be
% approximated below a specified threshold.
% 0: no approximation; 1: approximation
RoundOffFlag = 0;

%% Build the "flow" and "latent capacity" graphs:
% The graphs are built based on the graph-theory based
% network flow algorithm
[Flow, Capacity, A, ~] = NetworkFlowAlgo-

rithm(BusGraph,BranchGraph,GeneratorGraph,LoadGraph);

% An alternate way of building the "flow" and "latent capacity"
% graphs is to use a DC power flow solution in the base-case scenario
% Flow = sparse(NoOfBus,NoOfBus);
% Capacity = sparse(NoOfBus,NoOfBus);
% for i = 1:length(Branch(:,1))
% Flow(Branch(i,1),Branch(i,2)) = Branch(i,6); % dc power flows
% Flow(Branch(i,2),Branch(i,1)) = (-1)*Branch(i,6);
% Capacity(Branch(i,1),Branch(i,2)) = Branch(i,7)-

Flow(Branch(i,1),Branch(i,2));
% Capacity(Branch(i,2),Branch(i,1)) = Branch(i,7)-

Flow(Branch(i,2),Branch(i,1));
% end

%% Find the list of radial branches in the system:
[Radial, ~] = FindRadial(Branch, A);

%% Create the PTDF, LODF, B and H matrices:
[PTDF_true, PTDF, LODF, B_full, H_full, ~] = Cre-

ate_PTDF_LODF_B_H(Bus,Branch,RoundOffFlag);

143

%% Perform Contingency Ranking:
[Bompard_rank, ~] = ContingencyRanking(Bus, Branch, Load, Generator,

PTDF_true);

%% Perform RTCA using DC power flows using the results of contingency

ranking:
[Vio, flag_vio_rtca, ~] =

DC_RTCA_Ranking(mpc,Bompard_rank,Rank_limit,Radial);
if (isempty(Vio)==0)
 Pre_Vio_L = Vio(:,1);
else
 Pre_Vio_L = [];
end

%% Perform feasibility test (FT) for all branches in the base-case sce-

nario:
[CL_Sp_vio, CutsetStack_vio, EdgeList, flag_vio_ft, ~] = Feasibil-

ityTestBasecase(Flow, Capacity, A, BranchGraph);
K_rtca = [];
K_ft = [];
outage_number = 1;
Total_load_base = sum(Load(:,2));

while (continue_flag==1)
 if ((flag_vio_rtca==1) || (flag_vio_ft==1))
%% Display violations detected by RTCA:
 if (flag_vio_rtca==1)
 DisplayViolations_RTCA(Vio);
 end
%% Display violations detected by FT:
 if (flag_vio_ft==1)
 DisplayViolations_FT(CL_Sp_vio,CutsetStack_vio);
 end

%% Create inputs from RTCA for the iCA:
 if (isempty(Vio)==0)
 if ((initial==1) || (isempty(K_rtca)==1))
 K_rtca = Vio(:,1);
 else
 K_rtca = vertcat(K_rtca,K_rtca_new);
 K_rtca = unique(K_rtca);
 end
 end

%% Create inputs from FT for the iCA:
 if ((initial==1) || (isempty(K_ft)==1))
 [K_ft, Tm, Cutset_FT, ~] = CreateInput_ODC(

CL_Sp_vio, CutsetStack_vio, Branch);
 else
 [K_ft, Tm, Cutset_FT, ~] = Aug-

mentCutsetInfo(K_ft_new,Tm_new,Cutset_FT_new,K_ft,Tm,Cutset_FT);
 end
 count_unique = 1;
 K_ft_unique = [];

144

 Tm_unique = [];
 Cutset_FT_unique = [];
 [row_K_ft, ~] = size(K_ft);

 for i = 1:row_K_ft
 branch_num = K_ft(i);
 flag = IsPresent(K_rtca,branch_num);
 if (flag==0)
 K_ft_unique(count_unique,:) = K_ft(i,:);
 Tm_unique(count_unique,1) = Tm(i,1);
 Cutset_FT_unique(:,:,count_unique) = Cutset_FT(:,:,i);
 count_unique = count_unique + 1;
 end
 end

%% Perform the Integrated Corrective Action (iCA):
 [GeneratorNegativeChange, GeneratorPositiveChange, LoadNega-

tiveChange, LoadPositiveChange, Branch, Load, Generator, Soln_Flag,

tot_change_cost, ~] = IntegratedCorrectiveAction(K_rtca, PTDF, LODF,

Bus, Branch, Generator, Load, Radial, K_ft_unique, Tm_unique,

Cutset_FT_unique);

%% Update the system based upon the redispatch solution:
 if (Soln_Flag==0)
 break;
 end
 mpc.gen(:,2) = Generator(:,2);
 for nload = 1:length(Load(:,1))
 LoadBus = Load(nload,1);
 loc = find(mpc.bus(:,1)==LoadBus);
 mpc.bus(loc,3) = Load(nload,2);
 end
 Res = rundcpf(mpc);
 Branch(:,6) = Res.branch(:,14);

%% Perform RTCA following redispatch:
 [Vio, flag_vio_rtca, ~] = DC_RTCA_Ranking(mpc, Bompard_rank,

Rank_limit, Radial);
 if (isempty(Vio)==0)
 Vio_L = Vio(:,1);
 Intersect_Pre_Vio_L = intersect(Pre_Vio_L,Vio_L);
 if (length(Intersect_Pre_Vio_L)==length(Vio_L))
 flag_vio_rtca = 0;
 else
 Pre_Vio_L = Vio_L;
 end
 end
 if (flag_vio_rtca==1)
 K_rtca_new = Vio(:,1);
 initial = 0;
 end

 % Group all the injection increase and injection decrease
 % together in separate matrices
 InjectionPositiveChange = [];

145

 Temp = []; Temp = LoadNegativeChange; Temp(:,2) = (-

1)*Temp(:,2);
 InjectionPositiveChange = vertcat(GeneratorPosi-

tiveChange,Temp);
 Temp = [];Temp = LoadPositiveChange;
 InjectionNegativeChange = vertcat(GeneratorNega-

tiveChange,Temp);

 %% Update the "flow" and "latent capacity graphs" following redispatch

based on M-UPS algorithm:
 [Flow,Capacity,BranchFlowChange,~] = ModifiedUpdateScheme(Flow,

Capacity, InjectionPositiveChange, InjectionNegativeChange,

BranchGraph);

%% Perform shortlisting assets following redispatch based on M-SA algo-

rithm:
 [ShortlistedEdges, ~] = ModifiedShortlistAssets(Branch-

FlowChange, EdgeList, BranchGraph);

%% Perform Feasibility Test (FT) on shortlisted assets:
 [CL_Sp_vio, CutsetStack_vio, EdgeList, flag_vio_ft, ~] = Feasi-

bilityTestOnShortlist(Flow, Capacity, A, BranchGraph,

ShortlistedEdges, EdgeList);

 if (flag_vio_ft==1)
%% Create inputs for Optimal Dispatch Change (ODC) for new cutsets:
 [K_ft_new, Tm_new, Cutset_FT_new, ~] = CreateInput_cutset(

CL_Sp_vio, CutsetStack_vio, Branch);
 end
 else
%% Display the results of the corrective action:
 fprintf('---

------------\n');
 fprintf('The first component has alleviated all post-contin-

gency cut-set saturation and critical branch overloads \n');
 fprintf('---

------------\n');
 GeneratorCost_Ar = Generator(:,6).*Generator(:,2).^2+Genera-

tor(:,5).*Generator(:,2); TotalGeneratorCost = sum(GeneratorCost_Ar);
 LoadCost_Ar = (Load(:,2)-Load(:,4)).*Load(:,3); TotalLoadCost

= sum(LoadCost_Ar);
 fprintf('Production cost = $ %f \n',TotalGeneratorCost);
 Net_load_shed = Total_load_base-sum(Load(:,2));
 fprintf('Total amount of load shed = %f MW \n',Net_load_shed);

%% Check if there are successive branch outages in the system:
 LineOutNumber = input('\n Enter the branch number which is out

(Press 0 and enter if you do not want to continue) ?');
 fprintf('\n');
 fprintf('\n ******** New Outage: *************\n');

 if (LineOutNumber==0)
 continue_flag = 0;
 break;
 else

146

%% Update the system matrices following the branch outage:
 mpc.branch(LineOutNumber,11) = 0;
 Res = rundcpf(mpc);
 Branch(:,6) = Res.branch(:,14);
 Branch(:,8) = Res.branch(:,11);
 BranchGraph(:,4) = Branch(:,8);
 A(Branch(LineOutNumber,1),Branch(LineOutNumber,2)) = 0;
 A(Branch(LineOutNumber,2),Branch(LineOutNumber,1)) = 0;
% Update the system matrices, instead of re-building
% the matrices from scratch
 [PTDF_true, PTDF, LODF, B_full, H_full, ~] = Up-

date_PTDF_LODF_B_H(B_full, H_full, Bus, Branch, LineOutNum-

ber,RoundOffFlag);

%% Find the radial branches for the new system:
 [Radial, ~] = FindRadial(Branch, A);
%% Perform contingency ranking:
 [Bompard_rank, ~] = ContingencyRanking(Bus, Branch, Load,

Generator, PTDF_true);
%% Perform RTCA using DC power flows:
 [Vio, flag_vio_rtca, ~] = DC_RTCA_Ranking(mpc,

Bompard_rank, Rank_limit, Radial);
 if (isempty(Vio)==0)
 Vio_L = Vio(:,1);
 Pre_Vio_L = Vio_L;
 end
 if (flag_vio_rtca==1)
 K_rtca_new = Vio(:,1);
 end
%% A successive FT has to be performed following the branch outage
% However, the successive FT must involve the UPS algorithm and the
% SA algorithm for fast computation
 [Flow, Capacity, A, CL_Sp_vio, EdgeList, PathStack, Edge-

SatStack, CutsetStack_vio, ~] = OutageAnalysis(BranchGraph, Flow, Ca-

pacity, LineOutNumber, EdgeList, A);
 [row_vio, col_vio] = size(CL_Sp_vio);
 flag_vio_ft = 0;
 if (row_vio>=1)
 flag_vio_ft = 1;
 initial = 0;
 [K_ft_new, Tm_new, Cutset_FT_new, ~] = CreateIn-

put_cutset(CL_Sp_vio, CutsetStack_vio, Branch);
 end
 if ((flag_vio_rtca==0) && (flag_vio_ft==0))
 fprintf('\n There are no violations detected by the

Feasibility Test (FT) and DC-RTCA \n');
 end
 outage_number = outage_number + 1;
 end
 end
end

147

APPENDIX E

MATLAB PSEUDOCODE: THE SECOND COMPONENT

148

The MATLAB pseudocode of the proposed second component is presented here.

This is the main program which uses several user defined functions (presented in Appendix

F) to implement different algorithms developed in this research.

%%%
% %
% Program Name: Main_program_second_component %
% %
% Program Description: This program implements the proposed second %
% component (FT-rCA) during successive outages in a power network %
% %
% Author: Reetam Sen Biswas %
% Arizona State University %
% %
% Last Modified: 03/20/2020 %
%%%

%%
clc
clear all
close all

%% Load the input data
%% Load the input data:

mpc = loadcase('case118_J2.m'); % All data associated with the IEEE

% 118-bus system are loaded here.

% Transmission line ratings obtained from the surge impedance loading

% of transmission lines are used.

% Multiple circuit transmission lines are converted to an equivalent

% single circuit configuration.

load Data_118bus_J2.mat; % A subset of the data which are frequently

% used by the proposed analysis are stored in this data structure.

% This .mat file contains four matrices named 1) Bus, 2) Branch

% 3) Generator and 4) Load.

% (1) Bus: This matrix contains a single column with all bus numbers

% in ascending order

% (2) Branch: The first and second column of this matrix contains the

% “from bus” and “to bus” information for different branches.

% The third, fourth and fifth columns contain branch resistance,

% reactance, and susceptance respectively.

% The sixth column contains active power flow through different

% transmission lines in the base case.

% The seventh column contains branch ratings.

% The eight column contains branch statuses.

% (3) Generator: The first column contains the generator bus numbers.

% The second column contains the power generation at

% different generators of the system. The third and

% fourth columns contain the maximum and minimum generation at

149

% respective generators. The fifth and sixth columns contain the

% linear and quadratic cost coefficients.

% (4) Load: The first column contains the load bus numbers. The second

% column contains the net power demand at a specific load bus. The

% third column contains the cost of load shed. The fourth and fifth

% columns contain the maximum and minimum power demands at specific

% load buses respectively.

%% Initialize different matrices:
BusGraph = Bus;
BranchGraph = Branch(:,[1:2]);BranchGraph(:,3) =

Branch(:,7);BranchGraph(:,4) = Branch(:,8);
GeneratorGraph = Generator(:,[1:2]);
LoadGraph = Load(:,[1:2]);
GenBusNumAr = Generator(:,1);
PgenOldAr = Generator(:,2);

%% Build the "flow" and "latent capacity" graphs:
% The graphs are built based on the graph-theory based
% network flow algorithm
[Flow, Capacity, A, ~] = NetworkFlowAlgo-

rithm(BusGraph,BranchGraph,GeneratorGraph,LoadGraph);

% An alternate way of building the "flow" and "latent capacity"
% graphs is to use a DC power flow solution in the base-case scenario
% Flow = sparse(NoOfBus,NoOfBus);
% Capacity = sparse(NoOfBus,NoOfBus);
% for i = 1:length(Branch(:,1))
% Flow(Branch(i,1),Branch(i,2)) = Branch(i,6); % dc power flows
% Flow(Branch(i,2),Branch(i,1)) = (-1)*Branch(i,6);
% Capacity(Branch(i,1),Branch(i,2)) = Branch(i,7)-

Flow(Branch(i,1),Branch(i,2));
% Capacity(Branch(i,2),Branch(i,1)) = Branch(i,7)-

Flow(Branch(i,2),Branch(i,1));
% end

%% Initialize different variables:
fprintf('\n------ System condition: Base-case (No outage) ------\n');
BranchOut = [];
count = 1;
flag_vio_out = 1;
Net_change_cost = 0;
continue_flag = 1;
K = [];
Cutset_FT = [];
Total_load_base = sum(Load(:,2));

%% Create the PTDF, LODF, B and H matrices:
fprintf('Creating the PTDF matrix \n');
baseMVA = 100;
NoOfBus = length(Bus);
RoundOffFlag = 0;
[PTDF_true, PTDF, LODF, B_full, H_full, ~] = Cre-

ate_PTDF_LODF_B_H(Bus,Branch,RoundOffFlag);

150

%% Perform feasibility test (FT) for all branches in the base-case sce-

nario:
[CL_Sp_vio, CutsetStack_vio, EdgeList, flag_vio, ~] = Feasibil-

ityTestBasecase(Flow, Capacity, A, BranchGraph);

fprintf('-- \n');

initial = 1;

while (continue_flag==1)

if (flag_vio==1)
 %% Display the violations detected by the FT algorithm:
 DisplayViolations_FT(CL_Sp_vio,CutsetStack_vio);

 %% Create inputs for the relaxed corrective action (rCA):
 if ((initial==1) || (isempty(K)==1))
 [K, Tm, Cutset_FT, ~] = CreateInput_cutset(CL_Sp_vio,

CutsetStack_vio, Branch);
 else
 [K, Tm, Cutset_FT, ~] = Aug-

mentCutsetInfo(K_new,Tm_new,Cutset_FT_new,K,Tm,Cutset_FT);
 end

 while (flag_vio==1)
%% Perform the relaxed corrective action (rCA):
 [GeneratorNegativeChange, GeneratorPositiveChange, LoadNeg-

ativeChange, LoadPositiveChange, Branch, Load, Generator, Soln_Flag,

Flow_dc, Rate_dc, tot_change_cost, ~] = RelaxedCorrectiveAction(K,

Tm, Cutset_FT, PTDF, Bus, Branch, Generator, Load);
 count = count + 1;
 % Group all the injection increase and injection decrease
 % together in separate matrices
 InjectionPositiveChange = [];
 Temp = []; Temp = LoadNegativeChange; Temp(:,2) = (-

1)*Temp(:,2);
 InjectionPositiveChange = vertcat(GeneratorPosi-

tiveChange,Temp);
 Temp = [];Temp = LoadPositiveChange;
 InjectionNegativeChange = vertcat(GeneratorNega-

tiveChange,Temp);
 if Soln_Flag==0
 % This implies that the optimization problem in the rCA

has
 % not converged and there is a problem
 break;
 end
%% Update the system based upon the redispatch solution:
 mpc.gen(:,2) = Generator(:,2);
 for nload = 1:length(Load(:,1))
 LoadBus = Load(nload,1);
 loc = find(mpc.bus(:,1)==LoadBus);
 mpc.bus(loc,3) = Load(nload,2);
 end
 Res = rundcpf(mpc);

151

 Branch(:,6) = Res.branch(:,14);

%% Update the "flow" and "latent capacity graphs" following redispatch

based on M-UPS:
 [Flow,Capacity,BranchFlowChange,~] = Modi-

fiedUpdateScheme(Flow, Capacity, InjectionPositiveChange, Injection-

NegativeChange, BranchGraph);

%% Perform shortlisting assets following redispatch based on M-SA algo-

rithm:
 [ShortlistedEdges, ~] = ModifiedShortlistAssets(Branch-

FlowChange, EdgeList, BranchGraph);

%% Perform Feasibility Test (FT) on shortlisted assets:
 [CL_Sp_vio, CutsetStack_vio, EdgeList, flag_vio, ~] = Feasi-

bilityTestOnShortlist(Flow, Capacity, A, BranchGraph,

ShortlistedEdges, EdgeList);

 if (flag_vio==1)
%% Display additional violations (if any) due to the redispatch:
 DisplayViolations_FT(CL_Sp_vio,CutsetStack_vio);
%% Create the inputs for rCA to mitigate the combined violations:
 [K_new, Tm_new, Cutset_FT_new, ~] = CreateInput_cutset(

CL_Sp_vio, CutsetStack_vio, Branch);
 [K, Tm, Cutset_FT, ~] = Aug-

mentCutsetInfo(K_new,Tm_new,Cutset_FT_new,K,Tm,Cutset_FT);
 end
 end
 if (flag_vio==0)
%% Display the results of the corrective action:
 fprintf('---

------------\n');
 fprintf('The second component has alleviated all post-contin-

gency cut-set saturation \n');
 fprintf('---

------------\n');
 GeneratorCost_Ar = Generator(:,6).*Generator(:,2).^2+Genera-

tor(:,5).*Generator(:,2); TotalGeneratorCost = sum(GeneratorCost_Ar);
 LoadCost_Ar = (Load(:,2)-Load(:,4)).*Load(:,3); TotalLoadCost

= sum(LoadCost_Ar);
 fprintf('Production cost = $ %f \n',TotalGeneratorCost);
 Net_load_shed = Total_load_base-sum(Load(:,2));
 fprintf('Total amount of load shed = %f MW \n',Net_load_shed);
 else
 fprintf('---

------------\n');
 fprintf('Warning: All post-contingency cut-set saturation can-

not be mitigated \n');
 fprintf('---

------------\n');
 end

else
 fprintf('--

-------\n');

152

 fprintf('No violations are detected by the FT algorithm \n');
 fprintf('--

-------\n');
end

%% Check if there are successive branch outages in the system:
 LineOutNumber = input('\n Enter the branch number which is out

(Press 0 and enter if you do not want to continue) ?');
 if LineOutNumber==0
 continue_flag = 0;
 break;

 else
 fprintf('\n------ System condition: Outage of branch (%d-%d)-----

-\n',Branch(LineOutNumber,1),Branch(LineOutNumber,2));

%% Update the system matrices following the branch outage:
 mpc.branch(LineOutNumber,11) = 0;
% Update the system matrices, instead of re-building
% the matrices from scratch
 [PTDF_true, PTDF, LODF, B_full, H_full, ~] = Up-

date_PTDF_LODF_B_H(B_full, H_full, Bus, Branch, LineOutNum-

ber,RoundOffFlag);
 Res = rundcpf(mpc);
 Branch(:,6) = Res.branch(:,14);
 Branch(:,8) = Res.branch(:,11);
 BranchGraph(:,4) = Branch(:,8);

%% A successive FT has to be performed following the branch outage
% However, the successive FT must involve the UPS algorithm and the
% SA algorithm for fast computation
 [Flow, Capacity, A, CL_Sp_vio, EdgeList, PathStack, Edge-

SatStack, CutsetStack_vio, ~] = OutageAnalysis(BranchGraph, Flow, Ca-

pacity, LineOutNumber, EdgeList, A);
 [row_vio, col_vio] = size(CL_Sp_vio);
 if (row_vio>=1)
 flag_vio = 1;
 initial = 0;
% Creates input for the next relaxed corrective action (rCA):
 [K_new, Tm_new, Cutset_FT_new, ~] = CreateInput_cutset(

CL_Sp_vio, CutsetStack_vio, Branch);
 else
 flag_vio = 0;
 end
 end
end

153

APPENDIX F

MATLAB PSEUDOCODE: USER DEFINED FUNCTIONS

154

The pseudocodes for different user defined functions to implement different algo-

rithms developed in the course of this research are presented here. All the user defined

functions are presented in alphabetical order of their names.

function [K, Tm, Cutset_FT, time] = Aug-

mentCutsetInfo(K_new,Tm_new,Cutset_FT_new,K,Tm,Cutset_FT)
%%%
% %
% Program Description: The new violations identified by the FT, are %
% augmented with the violations detected in a previous iteration, %
% such that the corrective action can be initiated with respect %
% to all the violations %
% %
% Author: Reetam Sen Biswas %
% Arizona State University %
% %
% Last Modified: 03/20/2020 %
%%%
 tic;
 % Initialization:
 NumOfCritCutset = length(K_new(:,1));
 MaxNumBranchCritCutset = length(K_new(1,:));

 % Make the transfer margins of the saturated cut-sets
 % addressed in previous iteration as zero

 [row_K_old, ~] = size(K);
 for i = 1:row_K_old
 Tm(i,1) = 0;
 end

 % Augment the new cutsets with their respective transfer margins
 ncutset = length(Tm)+1;
 [row_K, col_K] = size(K_new);
 for r = 1:length(K_new(:,1))
 K(ncutset,[1:col_K]) = K_new(r,[1:col_K]);
 Tm(ncutset,1) = Tm_new(r);
 [row_set, col_set] = size(Cutset_FT_new(:,:,r));
 Cutset_FT([1:row_set],[1:col_set],ncutset) =

Cutset_FT_new([1:row_set],[1:col_set],r);
 ncutset = ncutset+1;
 end

 time = toc;

end

155

function [LoseFlag, PathAr, CurrentFlow, FlowCap, FlowInjAr, flag_Ra-

dial, EdgeSat, Cutset] = CheckIfLose_Cutset(LinesArray, Line, Flow,

Capacity, A)
%%%
% %
% Program Description: This program evaluates if a specific %
% transmission outage will create post-contingency cut-set %
% saturation, based upon the FT algorithm %
% %
% Author: Reetam Sen Biswas %
% Arizona State University %
% %
% Last Modified: 03/20/2020 %
%%%

 BusA = LinesArray(Line,1);
 BusB = LinesArray(Line,2);

 NewFlowSheet = Flow;
 NewFlowSheet(NewFlowSheet<0) = 0;

 [Bus1, Bus2, flow] = find(NewFlowSheet);
 found = 0;

% Obtain the current flow of the specified branch:
 for i = 1:length(Bus1)
 if ((Bus1(i)==BusA && Bus2(i)==BusB) || (Bus1(i)==BusB &&

Bus2(i)==BusA))
 FromBus = Bus1(i);
 ToBus = Bus2(i);
 CurrentFlow = flow(i);
 found = 1;
 end
 end
 if found==0
 FromBus = BusA;
 ToBus = BusB;
 CurrentFlow = 0;
 end

% Updates the incidence matrix accordingly:
 A(FromBus,ToBus) = 0;
 A(ToBus,FromBus) = 0;

% Checks if the outage branch is a radial branch or not
 [S,path]=graphshortestpath(A,FromBus,To-

Bus,'Method','BFS','Directed','true');
 flag_Radial = 0;
 if S==Inf
 flag_Radial = 1;
 end

% Remove the line from the latent capacity graph
 Capacity(FromBus,ToBus) = 0;

156

 Capacity(ToBus, FromBus) = 0;

%% Find the maximum power that can be transferred along the indirect

paths
 FlowCap = 0;
 LoseFlag = 0;
 FlowInjAr = [];
 countP = 1;
 PathAr = [];
 EdgeSat = [];
 countS = 1;
% If the power flow through the "direct path" is more than the "maximum
% power that can be transferred through the "indirect paths", then it
% creates a saturated cut-set.
 while (1<2)
 [S,path]=graphshortestpath(Capacity,FromBus,To-

Bus,'Method','BFS','Directed','true');
 if S==Inf
 break;
 end

 if S<Inf
 PathAr(countP,[1:length(path)]) = path;
 MaxCap = 9999;
 for k=1:S
 From = path(k);To = path(k+1);
 if MaxCap>Capacity(From,To)
 MaxCap = Capacity(From,To);
 end
 end
 FlowInj = MaxCap;
 for k=1:S
 From = path(k);To = path(k+1);
 Flow(From,To) = Flow(From,To) + FlowInj;
 Flow(To,From) = Flow(To,From) - FlowInj;
 Capacity(From,To) = Capacity(From, To) - FlowInj;
 Capacity(To,From) = Capacity(To, From) + FlowInj;
 if Capacity(From,To)<0.0001
 % Finding the saturated edges after flow injection:
 EdgeSat(countS,1) = From;
 EdgeSat(countS,2) = To;
 countS = countS + 1;
 end
 end
 FlowCap = FlowCap + FlowInj;
 FlowInjAr(countP,1) = FlowInj;
 countP = countP + 1;
 if FlowCap>=CurrentFlow
 LoseFlag = 1;
 break;
 end
 end
 end
% Saturated cut-sets with a transfer margin lesser than 0.001 are ig-

nored

157

 if (abs(CurrentFlow-FlowCap)<0.001)
 LoseFlag = 1;
 end

 Cutset = [];

%% Find the saturated cut-set:
 if LoseFlag==0
 V_insub = [];
 if LoseFlag==0 && flag_Radial==0
 % Group the vertices:
 [row_P, col_P] = size(PathAr);
 for i = 1:row_P
 V_insub = horzcat(V_insub,PathAr(i,:));
 end
 V_insub = unique(V_insub);
 V_insub(V_insub==0) = [];
 end

 V_reach_F = []; V_reach_T = [];
 countF = 1; countT = 1;
 [row_V, col_V] = size(V_insub);
 for v = 1:col_V
 [S,path]=graphshortestpath(Capacity,FromBus,V_in-

sub(v),'Method','BFS','Directed','true');
 if S<Inf
 V_reach_F(countF,1) = V_insub(v); countF = countF+1;
 else
 V_reach_T(countT,1) = V_insub(v); countT = countT+1;
 end
 end

 K = 1;
 Cutset(K,1) = FromBus;Cutset(K,2) = ToBus; K = K+1;
 [row_E, col_E] = size(EdgeSat);

 for i = 1:row_E
 F = EdgeSat(i,1); T = EdgeSat(i,2);
 [flag_F, pos] = IsPresent(V_reach_F, F);
 [flag_T, pos] = IsPresent(V_reach_T, T);
 if flag_F==1 && flag_T==1
 Cutset(K,1) = F;
 Cutset(K,2) = T;
 K = K+1;
 end
 end
 end

end

158

function [T_sort, timeBomp] = ContingencyRanking(Bus, Branch, Load,

Generator, PTDF)
%%%
% %
% Program Description: This program finds the contingency ranking %
% based upon the PTDFs and branch ratings %
% %
% Author: Reetam Sen Biswas %
% Arizona State University %
% %
% Last Modified: 03/20/2020 %
%%%

tic;
NoOfGen = length(Generator(:,1));
NoOfLoad = length(Load(:,1));
NoOfBranch = length(Branch(:,1));
NoOfBus = length(Bus(:,1));
C_gd = zeros(NoOfGen,NoOfLoad);
Pl_max = Branch(:,7);
zero_col = zeros(NoOfBranch,1);
PTDF = horzcat(PTDF,zero_col);

for g = 1:NoOfGen
 gbus = Generator(g,1);
 for d = 1:NoOfLoad
 dbus = Load(d,1);
 if (gbus~=dbus)

 if (gbus~=NoOfBus)
 ptdf_lines_gbus = PTDF(:,gbus);
 else
 ptdf_lines_gbus = zeros(NoOfBranch,1);
 end

 if (dbus~=NoOfBus)
 ptdf_lines_dbus = PTDF(:,dbus);
 else
 ptdf_lines_dbus = zeros(NoOfBranch,1);
 end

 ptdf_lines_gbus_dbus = ptdf_lines_gbus - ptdf_lines_dbus;

 value_ar = Pl_max./abs(ptdf_lines_gbus_dbus);

 value = min(value_ar);

 C_gd(g,d) = value;

 end
 end
end

for nline = 1:NoOfBranch

159

 gen_buses = Generator(:,1);
 load_buses = Load(:,1);

 ptdf_gen = PTDF(nline,gen_buses)';
 ptdf_load = PTDF(nline,load_buses);

 ptdf_gen_mat = repmat(ptdf_gen,[1,NoOfLoad]);

 ptdf_load_mat = repmat(ptdf_load,[NoOfGen,1]);

 ptdf_gen_load_mat = ptdf_gen_mat - ptdf_load_mat;

 common = intersect(gen_buses,load_buses');

 for j = 1:length(common)
 gen_loc = find(gen_buses==common(j));
 load_loc = find(load_buses==common(j));
 ptdf_gen_load_mat(gen_loc,load_loc) = 0;
 end

 [r,c] = find(ptdf_gen_load_mat<0);
 ptdf_gen_load_mat_p = ptdf_gen_load_mat;

 for k = 1:length(r)
 ptdf_gen_load_mat_p(r(k),c(k)) = 0;
 end

 ptdf_weight_positive = ptdf_gen_load_mat_p.*C_gd;
 Tp = sum(sum(ptdf_weight_positive));

 [r,c] = find(ptdf_gen_load_mat>0);
 ptdf_gen_load_mat_n = ptdf_gen_load_mat;

 for k = 1:length(r)
 ptdf_gen_load_mat_n(r(k),c(k)) = 0;
 end

 ptdf_weight_negative = ptdf_gen_load_mat_n.*C_gd;
 Tn = sum(sum(ptdf_weight_negative));

 T(nline,1) = nline;
 T(nline,2) = Branch(nline,1);
 T(nline,3) = Branch(nline,2);
 T(nline,4) = max(Tp,abs(Tn));

end
T_max = max(T(:,4));
T(:,4) = T(:,4)./T_max;
T_sort = sortrows(T,4,'descend');
timeBomp = toc;

end

160

function [PTDF_true, PTDF_approx, LODF, B_full, H_full, time] = Cre-

ate_PTDF_LODF_B_H(Bus,Branch,RoundOffFlag)
%%%
% %
% Program Description: This function creates the power transfer. %
% distribution factor (PTDF), line outage distribution factor (LODF), %

% the susceptance matrix (B) and the branch-bus matrix (H) %
% %
% Author: Reetam Sen Biswas %
% Arizona State University %
% %
% Last Modified: 03/20/2020 %
%%%

 tic;
 %% Create the H (branch-bus matrix):
 H = [];
 for i = 1:length(Branch(:,1))
 Status = Branch(i,8);
 if Status==1
 FromBus = Branch(i,1);
 ToBus = Branch(i,2);
 H(i,FromBus) = 1/Branch(i,4);
 H(i,ToBus) = (-1)*1/Branch(i,4);
 else
 FromBus = Branch(i,1);
 ToBus = Branch(i,2);
 H(i,FromBus) = 0;
 H(i,ToBus) = 0;
 end
 end

 %% Build the B matrix after monitoring the branch statuses:
 B = zeros(length(Bus(:,1)));
 BusOld = Bus(:,1);
 for i = 1:length(Branch(:,1))
 Status = Branch(i,8);
 if Status==1
 FromBus = Branch(i,1);
 ToBus = Branch(i,2);
 xline = Branch(i,4);
 B(FromBus,ToBus) = B(FromBus,ToBus)-1/(xline);
 B(ToBus,FromBus) = B(ToBus,FromBus)-1/(xline);
 B(FromBus,FromBus) = B(FromBus,FromBus)+1/(xline);
 B(ToBus,ToBus) = B(ToBus,ToBus)+1/(xline);
 end
 end

 %% Adjust the B and H matrices to account for the reference bus
 % B matrix: Remove the entire row and column for the reference bus
 % H matrix: Remove the reference bus column from the H matrix
 noofbus = length(B(:,1));
 B_full = B;

161

 H_full = H;
 B_temp = B([1:noofbus-1],[1:noofbus-1]);
 B = B_temp;
 H_temp = H(:,1:noofbus-1);
 H = H_temp;

 %% Perform matrix operation to obtain the PTDF matrix
 X = inv(B);
 PTDF = H*X;
 PTDF_true = PTDF;

 if (RoundOffFlag==1)
 [r,c] = find(abs(PTDF)<0.02);
 for i = 1:length(r)
 PTDF(r(i),c(i)) = 0;
 end
 end
 PTDF_approx = PTDF;

 %% From the PTDF matrix, we now create the LODF matrix
 PTDF_full = horzcat(PTDF,zeros(length(Branch(:,1)),1));
 [nl, nb] = size(PTDF_full);
 f = Branch(:, 1);
 t = Branch(:, 2);
 Cft = sparse([f; t], [1:nl 1:nl]', [ones(nl, 1); -ones(nl, 1)],

nb, nl);
 H = PTDF_full * Cft;
 h = diag(H, 0);
 LODF = H ./ (ones(nl, nl) - ones(nl, 1) * h');
 h_diff = abs(ones(length(h),1)-h);
 [pos_ar] = find(h_diff<0.00001);
 LODF = LODF - diag(diag(LODF)) - eye(nl, nl);
 for i = 1:length(pos_ar)
 pos_val = pos_ar(i);
 LODF([1:nl],pos_val) = zeros(nl,1);
 LODF(pos_val,[1:nl]) = zeros(1,nl);
 LODF(pos_val,pos_val) = -1;
 end
 time = toc;
end

162

function [K, Tm, Cutset_FT, time] = CreateInput_cutset(CL_Sp_vio,

CutsetStack_vio,Branch)
%%%
% %
% Program Description: This program creates the inputs from %
% the FT algorithm to be utilized in the corrective actions: %
% either iCA or rCA %
% %
% Author: Reetam Sen Biswas %
% Arizona State University %
% %
% Last Modified: 03/20/2020 %
%%%
 tic;
 [noofcutset,col] = size(CL_Sp_vio);
 [xdim,ydim,zdim] = size(CutsetStack_vio);
 ncutset = 1;
 K = []; Tm = 0; Cutset_FT = [];
 for r = 1:noofcutset
 Tm(ncutset,1) = CL_Sp_vio(r,4);
 for i = 1:xdim
 F = CutsetStack_vio(i,1,r);
 T = CutsetStack_vio(i,2,r);
 if F~=0
 Cutset_FT(i,1,ncutset) = F;Cutset_FT(i,2,ncutset) = T;
 for j = 1:length(Branch(:,1))
 if (F==Branch(j,1) && T==Branch(j,2)) ||

(F==Branch(j,2) && T==Branch(j,1))
 K(ncutset,i) = j;
 break;
 end
 end
 end
 end
 ncutset = ncutset + 1;
 end
 time = toc;

end

163

function [out] = DisplayViolations_FT(CL_Sp_vio,CutsetStack_vio)
%%%
% %
% Program Description: This program displays the violations %
% (post-contingency cut-set saturation) identified by the FT %
% algorithm %
% %
% Author: Reetam Sen Biswas %
% Arizona State University %
% %
% Last Modified: 03/20/2020 %
%%%

[row_Cl,~] = size(CL_Sp_vio);
if row_Cl>0
 fprintf('-- \n');
 fprintf('Contingencies that create saturated cut-sets: \n');
 fprintf('-- \n');
 for i = 1:length(CL_Sp_vio(:,1))
 fprintf('Case %d :',i);
 fprintf('Outage of %d-%d saturates cut-set K%d by %f MW, where

K%d={',CL_Sp_vio(i,2),CL_Sp_vio(i,3),i,CL_Sp_vio(i,4),i);
 [row,col] = size(CutsetStack_vio(:,:,1));
 for j = 1:row
 F = CutsetStack_vio(j,1,i);
 T = CutsetStack_vio(j,2,i);
 LastFlag = 0;
 if j==row
 LastFlag = 1;
 else
 if CutsetStack_vio(j+1,1,i)==0
 LastFlag = 1;
 end
 end

 if F>0
 if (LastFlag==0)
 fprintf('%d-%d,',F,T);
 else
 fprintf('%d-%d',F,T);
 end
 end
 end
 fprintf('} \n');
 end
 fprintf('-- \n');
else
 fprintf('-- \n');
 fprintf('No contingencies create saturated cut-sets: \n');
 fprintf('-- \n');
end
out = 1;
end

164

function [out] = DisplayViolations_RTCA(CL_Sp_vio)
%%%
% %
% Program Description: This program displays the violations %
% detected by the RTCA. RTCA identifies critical contingencies %
% that create post-contingency branch overloads. %
% %
% Author: Reetam Sen Biswas %
% Arizona State University %
% %
% Last Modified: 03/20/2020 %
%%%
 fprintf('-- \n');
 fprintf('Contingencies that create post-contingency branch over-

loads are as follows: \n');
 fprintf('-- \n');
 [row, ~] = size(CL_Sp_vio);
 for i = 1:row
 fprintf('%f-%f \n',CL_Sp_vio(i,2),CL_Sp_vio(i,3));
 end
 out = 1;
 fprintf('-- \n');
end

165

function [CL_Sp_vio, CutsetStack_vio, EdgeList, flag_vio, time] = Fea-

sibilityTestBasecase(Flow, Capacity, A, Branch)
%%%
% %
% Program Description: This program implements the feasibility %
% test (FT) algorithm in the base-case scenario for all %
% transmission assets %
% %
% Author: Reetam Sen Biswas %
% Arizona State University %
% %
% Last Modified: 03/20/2020 %
%%%

tic;
% Find the lines which have a latent capacity of zero,
% and increase its capacity by a small margin
for Line=1:length(Branch(:,1))
 if Capacity(Branch(Line,1),Branch(Line,2))==0
 Capacity(Branch(Line,1),Branch(Line,2)) = 0.0001;
 elseif Capacity(Branch(Line,2),Branch(Line,1))==0
 Capacity(Branch(Line,2),Branch(Line,1)) = 0.0001;
 end
end

%% Analyzing different transmission assets by the FT algorithm:
CL_Sp = [];
count = 1;
CL_Sp_vio = [];
CutsetStack_vio = [];
EdgeList = zeros(length(Branch(:,1)),1);
count_radial = 1;
for Line=1:length(Branch(:,1))
 FlagPresBefore = 0;
 if FlagPresBefore==0
 [LoseFlag, PathAr, CurrentFlow, FlowCap, FlowInjAr,

flag_Radial, EdgeSat, Cutset] = CheckIfLose_Cutset(Branch, Line, Flow,

Capacity, A);
 [row, col] = size(PathAr);
 EdgeCount = 1;
 EnterLoop = 0;
 for R = 1:row
 for C = 1:col-1
 if PathAr(R,C+1)>0
 PresentFlag = 0;
 if EnterLoop==1
 Col_list = length(EdgeList(Line,:));
 for k = 1:Col_list-1
 if EdgeList(Line,k)==PathAr(R,C) &&

EdgeList(Line,k+1)==PathAr(R,C+1)
 PresentFlag=1;
 end
 end
 end

166

 if PresentFlag==0
 EdgeList(Line,EdgeCount) = PathAr(R,C);
 EdgeList(Line,EdgeCount+1) = PathAr(R,C+1);
 EdgeCount = EdgeCount+2;
 end
 EnterLoop = 1;
 end
 end
 end

 if LoseFlag==0
 CL_Sp(count,1) = Line;
 CL_Sp(count,2) = Branch(Line,1);
 CL_Sp(count,3) = Branch(Line,2);
 CL_Sp(count,4) = FlowCap-CurrentFlow;
 CL_Sp(count,5) = flag_Radial;
 [row,col] = size(PathAr);
 PathStack([1:row],[1:col],count) = PathAr;
 [row_e,col_e] = size(EdgeSat);
 EdgeSatStack([1:row_e],[1:col_e],count) = EdgeSat;
 [row_K,col_K] = size(Cutset);
 CutsetStack([1:row_K],[1:col_K],count) = Cutset;
 count = count + 1;
 end
 NoOfPaths(Line,1) = size(PathAr,1);
 end
end

%% Check if there are non-radial special assets detected by the FT al-

gorithm
flag_vio = 0;
count = 1;

if (isempty(CL_Sp)==1)
 CL_Sp_vio = [];
 CutsetStack_vio = [];
else
 for i = 1:length(CL_Sp(:,1))
 value = CL_Sp(i,5);
 if value==0
 flag_vio = 1;
 CL_Sp_vio(count,:) = CL_Sp(i,:);
 [r,c] = size(CutsetStack(:,:,i));
 CutsetStack_vio([1:r],[1:c],count) =

CutsetStack([1:r],[1:c],i);
 count = count + 1;
 end
 end
end

fprintf('\n Total number of paths traversed = %d \n',sum(NoOfPaths));
num_non_zero = length(find(NoOfPaths~=0));
fprintf('Average number of paths traversed = %d

\n',sum(NoOfPaths)/num_non_zero);

167

time = toc;
end

168

function [CL_Sp_vio, CutsetStack_vio, EdgeList, flag_vio, time] =

FeasibilityTestOnShortlist(Flow, Capacity, A, Branch,

ShortlistedEdges, EdgeList)
%%%
% %
% Program Description: This program performs the feasibility test %
% (FT) algorithm on the shortlisted assets following a change in %
% generation redispatch in the system %
% %
% Author: Reetam Sen Biswas %
% Arizona State University %
% %
% Last Modified: 03/20/2020 %
%%%

% Initialization:
CL_Sp = [];
PathStack = [];
EdgeSatStack = [];
CutsetStack = [];
tic;
count = 1;
[rowF, colF] = size(ShortlistedEdges);

% Evaluate the shortlisted branches by the FT algorithm:
for i=1:rowF
 Line = ShortlistedEdges(i,1);
 [LoseFlag, PathAr, CurrentFlow, FlowCap, FlowInjAr, flag_Radial,

EdgeSat, Cutset] = CheckIfLose3_Break_Cutset(Branch, Line, Flow, Ca-

pacity, A);
 [row, col] = size(PathAr);
 EdgeCount = 1;
 EnterLoop = 0;
 EdgeList(Line,:) = zeros(1,length(EdgeList(Line,:)));
 for R = 1:row
 for C = 1:col-1
 if PathAr(R,C+1)>0
 PresentFlag = 0;
 if EnterLoop==1
 Col_list = length(EdgeList(Line,:));
 for k = 1:Col_list-1
 if EdgeList(Line,k)==PathAr(R,C) && Edge-

List(Line,k+1)==PathAr(R,C+1)
 PresentFlag=1;
 end
 end
 end

 if PresentFlag==0
 EdgeList(Line,EdgeCount) = PathAr(R,C);
 EdgeList(Line,EdgeCount+1) = PathAr(R,C+1);
 EdgeCount = EdgeCount+2;
 end
 EnterLoop = 1;
 end

169

 end
 end
 [row, col] = size(PathAr);
 [row_e, col_e] = size(EdgeSat);
 [row_K,col_K] = size(Cutset);
 if LoseFlag==0
 PathInterest([1:row],[1:col],count) = PathAr;
 CL_Sp(count,1) = Line;
 CL_Sp(count,2) = Branch(Line,1);
 CL_Sp(count,3) = Branch(Line,2);
 CL_Sp(count,4) = FlowCap-CurrentFlow;
 CL_Sp(count,5) = flag_Radial;
 PathStack(1:row,1:col,count) = PathAr;
 EdgeSatStack(1:row_e,1:col_e,count) = EdgeSat;
 CutsetStack([1:row_K],[1:col_K],count) = Cutset;
 count = count + 1;
 end
end

% Check if there are non-singleton violations:
flag_vio = 0;
count = 1;
CL_Sp_vio = [];
CutsetStack_vio = [];
[row,col] = size(CL_Sp);
for i = 1:row
 value = CL_Sp(i,5);
 if value==0
 flag_vio = 1;
 CL_Sp_vio(count,:) = CL_Sp(i,:);
 [r,c] = size(CutsetStack(:,:,i));
 CutsetStack_vio([1:r],[1:c],count) =

CutsetStack([1:r],[1:c],i);
 count = count + 1;
 end
end
time = toc;

end

170

function [Radial, time] = FindRadial(Branch, A)
%%%
% %
% Program Description: This program finds the list of radial %
% branches in the system %
% %
% Author: Reetam Sen Biswas %
% Arizona State University %
% %
% Last Modified: 03/20/2020 %
%%%

tic;
 Radial = [];
 count = 1;
 for i = 1:length(Branch(:,1))
 Fbus = Branch(i,1);
 Tbus = Branch(i,2);
 if (Branch(i,8)==1)
 A(Fbus,Tbus) = 0;
 A(Tbus,Fbus) = 0;
 [S,path]=graphshort-

estpath(A,Fbus,Tbus,'Method','BFS','Directed','true');
 if (S==Inf)
 Radial(count,1) = i;
 Radial(count,2) = Fbus;
 Radial(count,3) = Tbus;
 count = count + 1;
 end
 A(Fbus,Tbus) = 1;
 A(Tbus,Fbus) = 1;
 end
 end
time = toc;

end

171

function [flag] = IfCloseToZero(num)
%%%
% %
% Program Description: This function checks if a number is %
% close to zero %
% %
% Author: Reetam Sen Biswas %
% Arizona State University %
% %
% Last Modified: 03/20/2020 %
%%%
 if num<10^-4 && num>(-1)*10^4
 flag = 1;
 else
 flag = 0;
 end

end

172

function [GeneratorNegativeChange, GeneratorPositiveChange, LoadNega-

tiveChange, LoadPositiveChange, Branch, Load, Generator, Soln_Flag,

tot_change_cost, time] = IntegratedCorrectiveAction(K_rtca, PTDF,

LODF, Bus, Branch, Generator, Load, RadialLines,K_ft_unique, Tm,

Cutset_FT)
%%%
% %
% Program Description: This program solves the optimization %
% problem for the integrated corrective action (iCA), %
% used in the proposed first component %
% %
% Author: Reetam Sen Biswas %
% Arizona State University %
% %
% Last Modified: 03/20/2020 %
%%%
tic;

%% Set-up the objective function:
 b = Generator(:,5);
 c = Generator(:,6);
 Pg_old_ar = Generator(:,2);
 f_gen_lin = (2*(Pg_old_ar.*c) + b);
 f_load = Load(:,3);
 f = vertcat(f_gen_lin,f_load);

 noofline = length(Branch(:,1));
 noofgen = length(Generator(:,1));
 noofload = length(Load(:,1));

 row_K = size(K_rtca,1);
 ContingencySet = [];
 count = 1;
 for lnum = 1:row_K
 if (IsPresent(RadialLines,K_rtca(lnum,1))~=1) &&

(Branch(K_rtca(lnum,1),8)==1)
 ContingencySet(count,1) = K_rtca(lnum,1);
 count = count+1;
 end
 end
 noofconting = size(ContingencySet,1);

%% Constraints for the conservation of energy:
 Pivot = 1;
 count_Sa = 1;
 for i = 1:noofgen
 Xa(count_Sa,1) = Pivot;Ya(count_Sa,1) = i;Va(count_Sa,1) = 1;
 count_Sa = count_Sa + 1;
 end
 for i = noofgen+1:(noofgen+noofload)
 Xa(count_Sa,1) = Pivot;Ya(count_Sa,1) = i;Va(count_Sa,1) = -1;
 count_Sa = count_Sa + 1;
 end
 Rhs_conserve = [0];

173

 Sign_conserve = ['='];

 %% Constraints for the power injection limits:
 % Constraints for the injection maximum limit:
 Constraint_pinj = eye(noofgen+noofload,noofgen+noofload);
 count_Sb = 1;
 for i = 1:(noofgen+noofload)
 Xb(count_Sb,1) = Pivot+i;Yb(count_Sb,1) = i;Vb(count_Sb,1) =

1;
 count_Sb = count_Sb+1;
 end
 Pivot = Pivot+noofgen+noofload;
 % Constraints for the injection minimum limit:
 X_val = Pivot+1:Pivot+noofgen+noofload; X_val = X_val';
 Xb = vertcat(Xb,X_val);
 Yb = repmat(Yb,2,1);
 Vb = repmat(Vb,2,1);
 Pivot = Pivot+noofgen+noofload;
 for ngen = 1:noofgen
 GenBusNum = Generator(ngen,1);
 Pgen_old = Generator(ngen,2);
 Pgen_max = Generator(ngen,3);
 Pgen_min = Generator(ngen,4);
 Rhs_pinj_max(ngen,1) = Pgen_max-Pgen_old;
 Rhs_pinj_min(ngen,1) = Pgen_min-Pgen_old;
 Sign_pinj_max(ngen,1) = '<';
 Sign_pinj_min(ngen,1) = '>';
 end

 %% LHS and RHS for the injection limits:
 for nload = 1:noofload
 LoadBusNum = Load(nload,1);
 Pload_old = Load(nload,2);
 Rhs_pinj_max(noofgen+nload,1) = 0;
 Rhs_pinj_min(noofgen+nload,1) = -Pload_old;
 Sign_pinj_max(noofgen+nload,1) = '<';
 Sign_pinj_min(noofgen+nload,1) = '>';
 end

%% Constraints for pre-contingency power flow in each branch:
 Constraint_flow = zeros(noofline,noofgen+noofload);
 count_Sc = 1;
 noofflow_cstr = 0;
 for nline = 1:noofline
 flag_flow = 0;
 if (Branch(nline,8)==1)
 for ngen = 1:noofgen
 GenBusNum = Generator(ngen,1);
 if (GenBusNum==length(Bus))
 PTDF_val = 0;
 else
 PTDF_val = PTDF(nline,GenBusNum);
 end
 if (PTDF_val~=0)
 Constraint_flow(nline,ngen) = PTDF_val;

174

 Xc(count_Sc,1) = Pivot+noofflow_cstr+1;

Yc(count_Sc,1) = ngen; Vc(count_Sc,1) = PTDF_val;
 count_Sc = count_Sc+1;
 flag_flow = 1;
 end
 end
 for nload = 1:noofload
 LoadBusNum = Load(nload,1);
 if (LoadBusNum==length(Bus))
 PTDF_val = 0;
 else
 PTDF_val = PTDF(nline,LoadBusNum);
 end
 if (PTDF_val~=0)
 Constraint_flow(nline,noofgen+nload) = (-

1)*PTDF_val;
 Xc(count_Sc,1) = Pivot+noofflow_cstr+1;

Yc(count_Sc,1) = noofgen+nload; Vc(count_Sc,1) = (-1)*PTDF_val;
 count_Sc = count_Sc+1;
 flag_flow = 1;
 end
 end
 if (flag_flow==1)
 flow_old = Branch(nline,6);
 flow_max = Branch(nline,7);
 flow_min = (-1)*Branch(nline,7);
 Rhs_MaxFlow(noofflow_cstr+1,1) = flow_max-flow_old;
 Rhs_MinFlow(noofflow_cstr+1,1) = flow_min-flow_old;
 Sign_Maxflow(noofflow_cstr+1,1) = '<';
 Sign_Minflow(noofflow_cstr+1,1) = '>';
 noofflow_cstr = noofflow_cstr + 1;
 end
 end
 end
 Pivot = Pivot + noofflow_cstr;
 X_val = Xc+noofflow_cstr*ones(length(Xc),1);
 Xc = vertcat(Xc,X_val);
 Yc = repmat(Yc,2,1);
 Vc = repmat(Vc,2,1);
 Pivot = Pivot + noofflow_cstr;

%% Constraints for post-contingency branch flows:
 count_post = 1;
 count_Sd = 1;
 noofpostconting_cstr = 0;
 Xd = []; Yd = []; Vd = [];Rhs_MaxFlow_post = [];Rhs_MinFlow_post =

[];
 Sign_Maxflow_post = [];Sign_Minflow_post = [];

 for Cline = 1:size(ContingencySet,1)
 l = ContingencySet(Cline,1);
 flow_old_l = Branch(l,6);
 for k = 1:noofline
 flag_flow_post = 0;
 if (Branch(k,8)==1)

175

 LODF_k_l = LODF(k,l);
 for ngen = 1:noofgen
 GenBusNum = Generator(ngen,1);
 if (GenBusNum==length(Bus))
 PTDF_k = 0;
 PTDF_l = 0;
 else
 PTDF_k = PTDF(k,GenBusNum);
 PTDF_l = PTDF(l,GenBusNum);
 end
 Value = PTDF_k+PTDF_l*LODF_k_l;
 if (Value~=0)
 Xd(count_Sd,1) = Pivot+count_post;

Yd(count_Sd,1) = ngen; Vd(count_Sd,1) = Value;
 count_Sd = count_Sd + 1;
 flag_flow_post = 1;
 end
 end
 for nload = 1:noofload
 LoadBusNum = Load(nload,1);
 if (LoadBusNum==length(Bus))
 PTDF_k = 0;
 PTDF_l = 0;
 else
 PTDF_k = PTDF(k,LoadBusNum);
 PTDF_l = PTDF(l,LoadBusNum);
 end
 Value = (-1)*PTDF_k + (-1)*PTDF_l*LODF_k_l;
 if (Value~=0)
 Xd(count_Sd,1) = Pivot+count_post;

Yd(count_Sd,1) = noofgen+nload; Vd(count_Sd,1) = Value;
 count_Sd = count_Sd + 1;
 flag_flow_post = 1;
 end
 end
 if (flag_flow_post==1)
 flow_old_k = Branch(k,6);
 flow_max_k = Branch(k,7);
 flow_min_k = (-1)*Branch(k,7);
 Rhs_MaxFlow_post(noofpostconting_cstr+1,1) =

flow_max_k-(flow_old_k+flow_old_l*LODF_k_l);
 Rhs_MinFlow_post(noofpostconting_cstr+1,1) =

flow_min_k-(flow_old_k+flow_old_l*LODF_k_l);
 Sign_Maxflow_post(noofpostconting_cstr+1,1) = '<';
 Sign_Minflow_post(noofpostconting_cstr+1,1) = '>';
 noofpostconting_cstr = noofpostconting_cstr+1;
 count_post = count_post + 1;
 end
 end
 end
 end

 Pivot = Pivot+noofpostconting_cstr;
 X_val = Xd+noofpostconting_cstr*ones(length(Xd),1);

176

 Xd = vertcat(Xd,X_val);
 Yd = repmat(Yd,2,1);
 Vd = repmat(Vd,2,1);
 Pivot = Pivot+noofpostconting_cstr;

%% Constraints for cutset power trasnfer:
 [row_K, col_K] = size(K_ft_unique);
 count_Se = 1;
 Xe = [];
 Ye = [];
 Ve = [];
 Rhs_cutset = [];
 Sign_cutset = [];

 for ncutset = 1:row_K
 for ngen = 1:noofgen
 GenBusNum = Generator(ngen,1);
 PTDF_cutset = 0;
 for nbranch = 1:col_K
 if K_ft_unique(ncutset,nbranch)~=0
 BranchNum = K_ft_unique(ncutset,nbranch);
 % Check if the direction of the branch is same the

direction
 % of the cut-set.
 F_Branch = Branch(BranchNum,1);
 T_Branch = Branch(BranchNum,2);
 Sign = 0;
 if IsPresent(Cutset_FT(:,1,ncutset),F_Branch)==1 &&

IsPresent(Cutset_FT(:,2,ncutset),T_Branch)==1
 Sign = 1;
 elseif IsPres-

ent(Cutset_FT(:,2,ncutset),F_Branch)==1 && IsPres-

ent(Cutset_FT(:,1,ncutset),T_Branch)==1
 Sign = -1;
 else
 Sign = 0;
 end
 if (GenBusNum < length(Bus(:,1)))
 PTDF_val = Sign*PTDF(BranchNum,GenBusNum);
 else
 PTDF_val = 0;
 end
 PTDF_cutset = PTDF_cutset+PTDF_val;
 end
 end
 if (PTDF_cutset~=0)
 Xe(count_Se,1) = Pivot+ncutset;
 Ye(count_Se,1) = ngen;
 Ve(count_Se,1) = PTDF_cutset;
 count_Se = count_Se + 1;
 end
 end
 for nload = 1:noofload
 LoadBusNum = Load(nload,1);
 PTDF_cutset = 0;

177

 for nbranch = 1:col_K
 if K_ft_unique(ncutset,nbranch)~=0
 BranchNum = K_ft_unique(ncutset,nbranch);
 F_Branch = Branch(BranchNum,1);
 T_Branch = Branch(BranchNum,2);
 Sign = 0;
 if (IsPresent(Cutset_FT(:,1,ncutset),F_Branch)==1

&& IsPresent(Cutset_FT(:,2,ncutset),T_Branch)==1)
 Sign = 1;
 elseif (IsPres-

ent(Cutset_FT(:,2,ncutset),F_Branch)==1 && IsPres-

ent(Cutset_FT(:,1,ncutset),T_Branch)==1)
 Sign = -1;
 else
 Sign = 0;
 end
 if (LoadBusNum < length(Bus(:,1)))
 PTDF_val = Sign*PTDF(BranchNum,LoadBusNum);
 else
 PTDF_val = 0;
 end
 PTDF_cutset = PTDF_cutset+(-1)*PTDF_val;
 end
 end
 if (PTDF_cutset~=0)
 Xe(count_Se,1) = Pivot+ncutset;
 Ye(count_Se,1) = noofgen+nload;
 Ve(count_Se,1) = PTDF_cutset;
 count_Se = count_Se + 1;
 end
 end

 Tot_rate = 0;
 Tot_flow = 0;
 for i = 1:length(K_ft_unique(ncutset,:))
 if K_ft_unique(ncutset,i)==0
 break;
 end
 if (i>1)
 Tot_rate = Tot_rate+Branch(K_ft_unique(ncutset,i),7);
 end
 A_Branch = Branch(K_ft_unique(ncutset,i),1);
 B_Branch = Branch(K_ft_unique(ncutset,i),2);
 if (IsPresent(Cutset_FT(:,1,ncutset),A_Branch)==1) && (Is-

Present(Cutset_FT(:,2,ncutset),B_Branch)==1)
 Tot_flow = Tot_flow + Branch(K_ft_unique(ncutset,i),6);
 else
 Tot_flow = Tot_flow + (-

1)*Branch(K_ft_unique(ncutset,i),6);
 end
 end
 Rhs_cutset(ncutset,1) = Tot_rate-Tot_flow;
 Sign_cutset(ncutset,1) = '<';
 end
 Pivot = Pivot + row_K;

178

 X = vertcat(Xa,Xb,Xc,Xd,Xe);
 Y = vertcat(Ya,Yb,Yc,Yd,Ye);
 V = vertcat(Va,Vb,Vc,Vd,Ve);
 T = horzcat(X,Y,V);

 Constraint_SP = sparse(X,Y,V);

 %% Combine all the Constraint Matrices Together:
 RHS = vertcat(Rhs_con-

serve,Rhs_pinj_max,Rhs_pinj_min,Rhs_MaxFlow,Rhs_Min-

Flow,Rhs_MaxFlow_post,Rhs_MinFlow_post,Rhs_cutset);
 SIGN = vertcat(Sign_con-

serve,Sign_pinj_max,Sign_pinj_min,Sign_Maxflow,Sign_Min-

flow,Sign_Maxflow_post,Sign_Minflow_post,Sign_cutset);

 %% Use the quadratic cost coefficients:
 f_quad_gen = zeros(noofgen+noofload);
 for i = 1:noofgen
 c_quad = c(i,1);
 f_quad_gen(i,i) = c_quad; % Additional soft constraint on

delta_Pgi
 end

 %% Set the model parameters:
 model.obj = f;
 model.Q = sparse(f_quad_gen); % Include quadratic cost coefficients
 model.A = Constraint_SP;
 model.sense = SIGN;
 model.rhs = RHS;
 model.lb = Rhs_pinj_min;

 clear params;
 params.outputflag = 0;
 result = gurobi(model, params);

 if ((strcmp(result.status,'OPTIMAL')==1) || (strcmp(result.sta-

tus,'SUBOPTIMAL')==1))
 Soln_Flag = 1;
 xf = result.x;
 %% Compute all measurement values after solving the optmiza-

tion:
 % New branch flows:
 flow_old = zeros(length(Branch(:,1)),4);
 flow_new = zeros(length(Branch(:,1)),4);
 flow_old(:,1) = Branch(:,1);
 flow_old(:,2) = Branch(:,2);
 flow_old(:,3) = Branch(:,6);
 flow_old(:,4) = Branch(:,7);
 delta_flow = Constraint_flow*xf;
 flow_new(:,1) = Branch(:,1);
 flow_new(:,2) = Branch(:,2);
 flow_new(:,3) = flow_old(:,3)+delta_flow;
 flow_new(:,4) = Branch(:,7);

179

 % New dispatch:
 gen_old = zeros(length(Generator(:,1)),2);
 gen_new = zeros(length(Generator(:,1)),2);
 gen_old(:,1) = Generator(:,1);
 gen_old(:,2) = Generator(:,2);
 load_old(:,1) = Load(:,1);
 load_old(:,2) = Load(:,2);
 delta_inj = Constraint_pinj*xf;
 delta_pgen = delta_inj([1:noofgen],1);
 delta_pload = delta_inj([noofgen+1:noofgen+noofload],1);

 Generator_New(:,1) = Generator(:,1);
 Generator_New(:,2) = gen_old(:,2)+delta_pgen;
 Load_New(:,1) = Load(:,1);
 Load_New(:,2) = load_old(:,2)+delta_pload;

 %% Finding the actual cost using quadratic and linear cost co-

efficients:
 cost_linear = transpose(f);
 cost_quad = horzcat(transpose(c),zeros(1,noofload));
 tot_change_cost = cost_linear*xf + cost_quad*(xf.^2);

 %% Find the positions where non-zero changes have occurred in

Pgen:
 [indpos, ~] = find(delta_pgen>0.001);
 [indneg, ~] = find(delta_pgen<-0.001);
 GeneratorPositiveChange(:,1) = Generator(indpos,1);
 GeneratorPositiveChange(:,2) = delta_pgen(indpos);

 GeneratorNegativeChange(:,1) = Generator(indneg,1);
 GeneratorNegativeChange(:,2) = delta_pgen(indneg);

 %% Find the positions where non-zero changes have occurred in

Pload:
 [indpos, ~] = find(delta_pload>0.001);
 [indneg, ~] = find(delta_pload<-0.001);
 LoadPositiveChange(:,1) = Load(indpos,1);
 LoadPositiveChange(:,2) = delta_pload(indpos);

 LoadNegativeChange(:,1) = Load(indneg,1);
 LoadNegativeChange(:,2) = delta_pload(indneg);

 %% Get the data for the next stage:
 % Get the new flows for the branch:
 Branch(:,6) = flow_new(:,3);
 % Get the new generation values:
 Generator(:,2) = Generator_New(:,2);
 % Get the new load values:
 Load(:,2) = Load_New(:,2);

 else
 Soln_Flag = 0;

180

 GeneratorNegativeChange = [];
 GeneratorPositiveChange = [];
 LoadNegativeChange = [];
 LoadPositiveChange = [];
 tot_change_cost = 0;
 end

 %% Print the change in dispatches on the screen:
 if (Soln_Flag==1)
 fprintf('-- \n');
 fprintf('Total amount of load shed = %f \n',round(sum(LoadNega-

tiveChange(:,2))));
 fprintf('Total increase in dispatch = %f \n', round(sum(Gener-

atorPositiveChange(:,2))));
 fprintf('Total decrease in dispatch = %f \n', round(sum(Gener-

atorNegativeChange(:,2))));
 fprintf('Total change in cost of generation = $ %f

\n',round(tot_change_cost));
 fprintf('-- \n');
 else
 fprintf('-- \n');
 fprintf('No feasible solution obtained! \n');
 fprintf('-- \n');
 end
 time = toc;

end

181

function [flag, pos] = IsPresent(Arr, Val)
%%%
% %
% Program Description: Checks if a given number is contained %
% in a specific array %
% %
% Author: Reetam Sen Biswas %
% Arizona State University %
% %
% Last Modified: 03/20/2020 %
%%%

flag = 0;
pos = 0;
for i = 1:length(Arr)
 if Val==Arr(i)
 flag = 1;
 pos = i;
 break;
 end
end

end

182

function [Shortlist, time] = ModifiedShortlistAssets(Branch-

FlowChange, EdgeList, Branch)
%%%
% %
% Program Description: This program shortlists the transmission %
% assets that must be re-evaluated by the feasibility test (FT) %
% algorithm following a generation redispatch in the system. %
% This logic for this program is based on the M-SA algorithm. %
% %
% Author: Reetam Sen Biswas %
% Arizona State University %
% %
% Last Modified: 03/20/2020 %
%%%

tic;
len = length(BranchFlowChange);
[row_lim,col_lim] = size(EdgeList);
countF = 1;
Shortlist = [];

for r = 1:row_lim
 Common = 0;
 if (EdgeList(r,1)~=0)
 for i = 1:2:len
 F = BranchFlowChange(1,i);
 T = BranchFlowChange(1,i+1);

 col_lim = length(find(EdgeList(r,:)~=0)); % This line is

newly added
 for c = 1:2:col_lim-1
 if (F==EdgeList(r,c) && T==EdgeList(r,c+1)) ||

(F==EdgeList(r,c+1) && T==EdgeList(r,c))
 Common = 1;
 break;
 end
 end
 if (F==Branch(r,1) && T==Branch(r,2)) || (F==Branch(r,2) &&

T==Branch(r,1))
 Common = 1;
 end
 if Common==1
 break;
 end
 end
 if (Common==1)
 Shortlist(countF,1) = r;
 Shortlist(countF,2) = Branch(r,1);
 Shortlist(countF,3) = Branch(r,2);
 countF = countF + 1;
 end
 end
end
time = toc;
end

183

184

function [Flow, Capacity, BranchFlowChange, time] = Modi-

fiedUpdateScheme(Flow, Capacity, GeneratorPositiveChange, Genera-

torNegativeChange, Branch)
%%
% %
% Program Description: This program creates an updated "flow" %
% and "latent capacity graph" after change in generation %
% in the system. The logic for this program is based on the %
% M-UPS algorithm. %
% %
% Author: Reetam Sen Biswas %
% Arizona State University %
% %
% Last Modified: 03/20/2020 %
%%
 tic;
% Initialization:
 DontSelect = [];
 countD = 1;
 problem = 0;
 NoOfBFS = 0;
 EdgesFlowChange = [];
 count = 1;
 countBT = 1;
 BranchFlowChange = [];
 countChange = 1;
 BranchTouch = [];
 FlowOrg = Flow;
 CapacityOrg = Capacity;
 GenIncData = GeneratorPositiveChange;
 GenDecData = GeneratorNegativeChange;
 GenPosInc = GenIncData(:,1);GenInc = GenIncData(:,2);
 GenPosDec = GenDecData(:,1);GenDec = abs(GenDecData(:,2));

% Select Source-Sink pairs from generator increase and decrease pairs

to update the flow and capacity graphs:
 while (1<2)
 FF = CheckZeros(GenDec);
 GG = CheckZeros(GenInc);
 if (Is_i_Present(0,FF)==1) || (Is_i_Present(0,GG)==1)
 else
 break;
 end
 if (sum(GenDec)<0.01 && sum(GenInc)<0.01)
 break;
 end

 for i = 1:length(GenDec)
 if GenDec(i)~=0
 Sink = GenPosDec(i);
 break;
 end
 end

 %% Selection of the source:

185

 % Select a "source" depending upon the position of the "sink"
 for j = 1:length(GenInc)
 if GenInc(j)~=0 && problem==0
 Source = GenPosInc(j);
 break;
 else
 if GenInc(j)~=0 && IsPresent(DontSelect,j)==0
 Source = GenPosInc(j);
 break;
 end
 end
 end

% Finding the shortest path from the Source to the Sink and finding out

the maximum capacity of the path.
 while (1<2)
 [S,path]=graphshortestpath(Capac-

ity,Source,Sink,'Method','BFS','Directed','true');NoOfBFS = NoOfBFS +

1;
 if S<Inf
 for ii = 1:S
 F = path(ii);T=path(ii+1);
 len = length(BranchFlowChange);
 if len>0
 Present = 0;
 for kk = 1:2:len
 Fbr = BranchFlowChange(1,kk);
 Tbr = BranchFlowChange(1,kk+1);
 if (F==Fbr && T==Tbr) || (F==Tbr && T==Fbr)
 Present = 1;
 break;
 end
 end
 if Present==0
 BranchFlowChange(1,countChange) = F;
 BranchFlowChange(1,countChange+1) = T;
 countChange = countChange+2;
 end
 else
 BranchFlowChange(1,countChange) = F;
 BranchFlowChange(1,countChange+1) = T;
 countChange = countChange+2;
 end
 end
 end
 if ((S==Inf) && (IfCloseToZero(GenDec(i))==0) &&

(IfCloseToZero(GenInc(j))==0))
 problem = 1;
 DontSelect(countD) = j; countD = countD+1;
 else
 problem = 0;
 DontSelect = [];
 countD = countD+1;
 end
 if ((S==Inf) || (GenDec(i)==0) || (GenInc(j)==0))
 break;

186

 end
 MaxCap = 999999;
 for k=1:S
 From = path(k);To = path(k+1);
 if MaxCap>Capacity(From,To)
 MaxCap = Capacity(From,To);
 end
 end
% Determine the flow injection along a given path
 if ((GenDec(i)<=MaxCap) && (GenDec(i)<=GenInc(j)))
 FlowInj = GenDec(i);
 elseif ((GenInc(j)<=MaxCap) && (GenInc(j)<=GenDec(i)))
 FlowInj = GenInc(j);
 elseif ((MaxCap<=GenDec(i)) && (MaxCap<=GenInc(j)))
 FlowInj = MaxCap;
 end
% Update the load and generation values
 GenDec(i) = GenDec(i)-FlowInj;
 GenInc(j) = GenInc(j)-FlowInj;
% Update the "flow" and "latent capacity" graphs for
% power injection along the given path
 for k=1:S
 From = path(k);To = path(k+1);
 Flow(From,To) = Flow(From,To) + FlowInj;
 Flow(To,From) = Flow(To,From) - FlowInj;
 Capacity(From,To) = Capacity(From, To) - FlowInj;
 Capacity(To,From) = Capacity(To, From) + FlowInj;
 end
 end
 end
time = toc;
end

187

function [Flow, Capacity, A, time] = NetworkFlowAlgorithm(Bus,

Branch, Gen, BusLoad)
%%%
% %
% Program Description: The network flow algorithm (NFA) creates the %
% "flow" and "latent capacity graphs" based upon the %
% conservation of energy. %
% %
% Author: Reetam Sen Biswas %
% Arizona State University %
% %
% Last Modified: 03/20/2020 %
%%%

tic;
%% Initialize arrays and variables
NoOfBus = length(Bus);
NoOfBranch = length(Branch);
BranchSt = ones(NoOfBranch,1);

GenPos = Gen(:,1);
Generation = Gen(:,2);
LoadPos = BusLoad(:,1);
Load = BusLoad(:,2);

NoOfBFS = 0;
problem = 0;

%% Initialize the "flow" and "latent capacity" graphs
Capacity = sparse(NoOfBus,NoOfBus); % Latent capacity graph
Flow = sparse(NoOfBus,NoOfBus); % Flow graph
A = sparse(NoOfBus,NoOfBus); % Incidence matrix
for k=1:NoOfBranch
 if BranchSt(k)==1
 Capacity(Branch(k,1),Branch(k,2)) = Capac-

ity(Branch(k,1),Branch(k,2)) + Branch(k,3);
 Capacity(Branch(k,2),Branch(k,1)) = Capac-

ity(Branch(k,2),Branch(k,1)) + Branch(k,3);
 A(Branch(k,1),Branch(k,2)) = 1; A(Branch(k,1),Branch(k,1)) = 1;
 A(Branch(k,2),Branch(k,1)) = 1; A(Branch(k,2),Branch(k,2)) = 1;
 end
end
DontSelect = [];
countD = 1;

%% Create the "flow" and "latent capacity" graphs iteratively
while (1<2)
 FF = CheckZeros(Load);
 GG = CheckZeros(Generation);
 if (Is_i_Present(0,FF)==1) || (Is_i_Present(0,GG)==1)
 else
 break;
 end

 for i = 1:length(Load)

188

 if Load(i)~=0
 Sink = LoadPos(i);
 break;
 end
 end

 % Selection of the source:
 for j = 1:length(Generation)
 if Generation(j)~=0 && problem==0
 Source = GenPos(j);
 break;
 else
 if Generation(j)~=0 && IsPresent(DontSelect,j)==0
 Source = GenPos(j);
 break;
 end
 end
 end

 % Finding the maximum power that can be injected along
 % the shortest path from the source to the sink
 while (1<2)
 [S,path]=graphshortestpath(Capac-

ity,Source,Sink,'Method','BFS','Directed','true');NoOfBFS = NoOfBFS +

1;
 if S==Inf && IfCloseToZero(Load(i))==0 &&

IfCloseToZero(Generation(j))==0
 problem = 1;
 DontSelect(countD) = j; countD = countD+1;
 else
 problem = 0;
 DontSelect = [];
 countD = countD+1;
 end
 if S==Inf || Load(i)==0 || Generation(j)==0
 break;
 end
 MaxCap = 999999;
 for k=1:S
 From = path(k);To = path(k+1);
 if MaxCap>Capacity(From,To)
 MaxCap = Capacity(From,To);
 end
 end

 % Determining the flow that will be injected along the path
 if Load(i)<=MaxCap && Load(i)<=Generation(j)
 FlowInj = Load(i);
 elseif Generation(j)<=MaxCap && Generation(j)<=Load(i)
 FlowInj = Generation(j);
 elseif MaxCap<=Load(i) && MaxCap<=Generation(j)
 FlowInj = MaxCap;
 end

 % Updating the source and sink values:

189

 Load(i) = Load(i)-FlowInj;
 Generation(j) = Generation(j)-FlowInj;

 % Updating the "flow" and "latent capacity" graph based upon

the power
 % transferred along different paths
 for k=1:S
 From = path(k);To = path(k+1);
 Flow(From,To) = Flow(From,To) + FlowInj;
 Flow(To,From) = Flow(To,From) - FlowInj;
 Capacity(From,To) = Capacity(From, To) - FlowInj;
 Capacity(To,From) = Capacity(To, From) + FlowInj;
 end
 end
end

time = toc;
end

190

function [Flow, Capacity, A CL_Sp, EdgeList, PathStack, EdgeSatStack,

CutsetStack, time] = OutageAnalysis(Branch, Flow, Capacity, LineOut-

Number, EdgeList, A)
%%%
% %
% Program Description: This program performs feasibility test (FT) %
% following a branch outage in the system. Therefore, it involves %
% the following: %
% (a) The Update Scheme (UPS) for updating the weighted graphs %
% after the outage %
% (b) The Shortlisting Assets (SA) algorithm to determine the %
% assets which should be evaluated by FT %
% (c) The feasibility test (FT) on the shortlisted set of assets %
% %
% Author: Reetam Sen Biswas %
% Arizona State University %
% %
% Last Modified: 03/20/2020 %
%%%
tic;
 [LoseFlag, PathAr, CurrentFlow, FlowCap, FlowInjAr] = CheckI-

fLose_Cutset(Branch, LineOutNumber, Flow, Capacity, A);
%% The Update Scheme (UPS):
 if LoseFlag==1
 [Flow, Capacity] = UpdateScheme(Branch, LineOutNumber,

Flow, Capacity);
 A(Branch(LineOutNumber,1),Branch(LineOutNumber,2)) = 0;
 A(Branch(LineOutNumber,2),Branch(LineOutNumber,1)) = 0;
 else
 fprintf('\n Warning! Outage of the branch saturates a cut-set.

\n');
 end

%% The Shortlisting Assets (SA):
 Shortlist = ShortlistAssets(Branch, EdgeList, LineOutNumber);
 % The branches with zero latent capacities are indentified, and
% the latent capacities are increased by a small margin to ensure that

all
% cut-sets are identified properly
 for Line = 1:length(Branch(:,1))
 if Capacity(Branch(Line,1),Branch(Line,2))==0 &&

Branch(Line,4)==1
 Capacity(Branch(Line,1),Branch(Line,2)) = 0.0001;
 elseif Capacity(Branch(Line,2),Branch(Line,1))==0 &&

Branch(Line,4)==1
 Capacity(Branch(Line,2),Branch(Line,1)) = 0.0001;
 end
 end
 %% Feasibility Test (FT) on shortlisted assets:
 CL_Sp = [];
 PathStack = [];
 EdgeSatStack = [];
 CutsetStack = [];

 count = 1;

191

 [rowF, colF] = size(Shortlist);
 for i=1:rowF
 Line = Shortlist(i,1);
 FlagPresBefore = 0;
 if FlagPresBefore==0
 [LoseFlag, PathAr, CurrentFlow, FlowCap, FlowInjAr,

flag_Radial, EdgeSat, Cutset] = CheckIfLose_Cutset(Branch, Line,

Flow, Capacity, A);
 [row, col] = size(PathAr);
 EdgeCount = 1;
 EnterLoop = 0;
 EdgeList(Line,:) = zeros(1,length(EdgeList(Line,:)));
 for R = 1:row
 for C = 1:col-1
 if PathAr(R,C+1)>0
 PresentFlag = 0;
 if EnterLoop==1
 Col_list = length(EdgeList(Line,:));
 for k = 1:Col_list-1
 if EdgeList(Line,k)==PathAr(R,C) &&

EdgeList(Line,k+1)==PathAr(R,C+1)
 PresentFlag=1;
 end
 end
 end

 if PresentFlag==0
 EdgeList(Line,EdgeCount) = PathAr(R,C);
 EdgeList(Line,EdgeCount+1) = PathAr(R,C+1);
 EdgeCount = EdgeCount+2;
 end
 EnterLoop = 1;
 end
 end
 end
 [row, col] = size(PathAr);
 [row_e, col_e] = size(EdgeSat);
 [row_K,col_K] = size(Cutset);
 if (LoseFlag==0) && (flag_Radial==0)
 PathInterest([1:row],[1:col],count) = PathAr;
 CL_Sp(count,1) = Line;
 CL_Sp(count,2) = Branch(Line,1);
 CL_Sp(count,3) = Branch(Line,2);
 CL_Sp(count,4) = FlowCap-CurrentFlow;
 CL_Sp(count,5) = flag_Radial;
 PathStack(1:row,1:col,count) = PathAr;
 EdgeSatStack(1:row_e,1:col_e,count) = EdgeSat;
 CutsetStack([1:row_K],[1:col_K],count) = Cutset;
 count = count + 1;
 end
 end
 end
time = toc;
end

192

function [GeneratorNegativeChange, GeneratorPositiveChange, LoadNega-

tiveChange, LoadPositiveChange, Branch, Load, Generator, Soln_Flag,

Flow_dc, Rate_dc, tot_change_cost, time] = RelaxedCorrectiveAction(K,

Tm, Cutset_FT, PTDF, Bus, Branch, Generator, Load)

%%%
% %
% Program Description: This program solves the optimization %
% problem for the relaxed corrective action (rCA) used %
% in the second component %
% %
% Author: Reetam Sen Biswas %
% Arizona State University %
% %
% Last Modified: 03/20/2020 %
%%%

 tic;
 % Find the length of different arrays related to the cut-set viola-

tions
 NumOfCritCutset = length(K(:,1));
 MaxNumBranchCritCutset = length(K(1,:));
 [numrow_K, numcol_K, numsheet] = size(Cutset_FT);

 %% Initialize flow across different cutsets:
 flow_cutset = [];
 for snum = 1:numsheet
 flow_total = 0;
 for rnum = 1:numrow_K
 if Cutset_FT(rnum,1,snum)~=0
 FromBus = Cutset_FT(rnum,1,snum);
 ToBus = Cutset_FT(rnum,2,snum);
 for i = 1:length(Branch(:,1))
 if (FromBus==Branch(i,1) && ToBus==Branch(i,2))
 flow_val = Branch(i,6);
 flow_total = flow_total+flow_val;
 elseif (FromBus==Branch(i,2) && ToBus==Branch(i,1))
 flow_val = (-1)*Branch(i,6);
 flow_total = flow_total+flow_val;
 end
 end
 end
 flow_cutset(snum,1) = flow_total;
 end
 end
 %% Set-up the objective function:
 b = Generator(:,5); % The linear cost coefficient
 c = Generator(:,6); % The quadratic cost coefficient
 Pg_old_ar = Generator(:,2); % Old power generation
 f_gen_lin = (2*(Pg_old_ar.*c) + b);
 f_load = Load(:,3);
 f = vertcat(f_gen_lin,f_load);

 noofline = length(Branch(:,1));

193

 noofgen = length(Generator(:,1));
 noofload = length(Load(:,1));

%% Constraints for the conservation of energy:
 Pivot = 1;
 count_Sa = 1;
 for i = 1:noofgen
 Xa(count_Sa,1) = Pivot;Ya(count_Sa,1) = i;Va(count_Sa,1) = 1;
 count_Sa = count_Sa + 1;
 end
 for i = noofgen+1:(noofgen+noofload)
 Xa(count_Sa,1) = Pivot;Ya(count_Sa,1) = i;Va(count_Sa,1) = -1;
 count_Sa = count_Sa + 1;
 end
 Rhs_conserve = [0];
 Sign_conserve = ['='];

 %% Constraints for the injection limits:
 Constraint_pinj = eye(noofgen+noofload,noofgen+noofload);
 count_Sb = 1;
 for i = 1:(noofgen+noofload)
 Xb(count_Sb,1) = Pivot+i;Yb(count_Sb,1) = i;Vb(count_Sb,1) =

1;
 count_Sb = count_Sb+1;
 end
 Pivot = Pivot+noofgen+noofload;
 X_val = Pivot+1:Pivot+noofgen+noofload; X_val = X_val';
 Xb = vertcat(Xb,X_val);
 Yb = repmat(Yb,2,1);
 Vb = repmat(Vb,2,1);
 Pivot = Pivot+noofgen+noofload;
 for ngen = 1:noofgen
 GenBusNum = Generator(ngen,1);
 Pgen_old = Generator(ngen,2);
 Pgen_max = Generator(ngen,3);
 Pgen_min = Generator(ngen,4);
 Rhs_pinj_max(ngen,1) = Pgen_max-Pgen_old;
 Rhs_pinj_min(ngen,1) = Pgen_min-Pgen_old;
 Sign_pinj_max(ngen,1) = '<';
 Sign_pinj_min(ngen,1) = '>';
 end

 %% LHS and RHS for the injection limits:
 for nload = 1:noofload
 LoadBusNum = Load(nload,1);
 Pload_old = Load(nload,2);
 Rhs_pinj_max(noofgen+nload,1) = 0;
 Rhs_pinj_min(noofgen+nload,1) = -Pload_old;
 Sign_pinj_max(noofgen+nload,1) = '<';
 Sign_pinj_min(noofgen+nload,1) = '>';
 end

 %% Constraints for pre-contingency power flow in each branch:
 Constraint_flow = zeros(noofline,noofgen+noofload);
 count_Sc = 1;

194

 noofflow_cstr = 0;
 for nline = 1:noofline
 flag_flow = 0;
 if (Branch(nline,8)==1)
 for ngen = 1:noofgen
 GenBusNum = Generator(ngen,1);
 if (GenBusNum==length(Bus))
 PTDF_val = 0;
 else
 PTDF_val = PTDF(nline,GenBusNum);
 end
 if abs(PTDF_val)>10^-5
 Constraint_flow(nline,ngen) = PTDF_val;
 Xc(count_Sc,1) = Pivot+noofflow_cstr+1;

Yc(count_Sc,1) = ngen; Vc(count_Sc,1) = PTDF_val;
 count_Sc = count_Sc+1;
 flag_flow = 1;
 end
 end
 for nload = 1:noofload
 LoadBusNum = Load(nload,1);
 if (LoadBusNum==length(Bus))
 PTDF_val = 0;
 else
 PTDF_val = PTDF(nline,LoadBusNum);
 end
% if (PTDF_val~=0)
 if abs(PTDF_val)>10^-5
 Constraint_flow(nline,noofgen+nload) = (-

1)*PTDF_val;
 Xc(count_Sc,1) = Pivot+noofflow_cstr+1;

Yc(count_Sc,1) = noofgen+nload; Vc(count_Sc,1) = (-1)*PTDF_val;
 count_Sc = count_Sc+1;
 flag_flow = 1;
 end
 end
 if (flag_flow==1)
 flow_old = Branch(nline,6);
 flow_max = Branch(nline,7);
 flow_min = (-1)*Branch(nline,7);
 Rhs_MaxFlow(noofflow_cstr+1,1) = flow_max-flow_old;
 Rhs_MinFlow(noofflow_cstr+1,1) = flow_min-flow_old;
 Sign_Maxflow(noofflow_cstr+1,1) = '<';
 Sign_Minflow(noofflow_cstr+1,1) = '>';
 noofflow_cstr = noofflow_cstr + 1;
 end
 end
 end
 Pivot = Pivot + noofflow_cstr;
 X_val = Xc+noofflow_cstr*ones(length(Xc),1);
 Xc = vertcat(Xc,X_val);
 Yc = repmat(Yc,2,1);
 Vc = repmat(Vc,2,1);
 Pivot = Pivot + noofflow_cstr;

 %% Constraints for cut-set power transfer limit:

195

 %% Constraints for the power transfer across the cut-set:
 [row_K, col_K] = size(K);
 count_Sd = 1;
 for ncutset = 1:row_K
 for ngen = 1:noofgen
 GenBusNum = Generator(ngen,1);
 PTDF_cutset = 0;
 for nbranch = 1:col_K
 if K(ncutset,nbranch)~=0
 BranchNum = K(ncutset,nbranch);
 % Check if the direction of the branch is same the

direction
 % of the cut-set.
 F_Branch = Branch(BranchNum,1);
 T_Branch = Branch(BranchNum,2);
 Sign = 0;
 if IsPresent(Cutset_FT(:,1,ncutset),F_Branch)==1 &&

IsPresent(Cutset_FT(:,2,ncutset),T_Branch)==1
 Sign = 1;
 elseif IsPres-

ent(Cutset_FT(:,2,ncutset),F_Branch)==1 && IsPres-

ent(Cutset_FT(:,1,ncutset),T_Branch)==1
 Sign = -1;
 else
 Sign = 0;
 end
 if (GenBusNum < length(Bus(:,1)))
 PTDF_val = Sign*PTDF(BranchNum,GenBusNum);
 else
 PTDF_val = 0;
 end
 PTDF_cutset = PTDF_cutset+PTDF_val;
 end
 end
 if abs(PTDF_cutset)>10^-5
 Xd(count_Sd,1) = Pivot+ncutset;
 Yd(count_Sd,1) = ngen;
 Vd(count_Sd,1) = PTDF_cutset;
 count_Sd = count_Sd + 1;
 end
 end
 for nload = 1:noofload
 LoadBusNum = Load(nload,1);
 PTDF_cutset = 0;
 for nbranch = 1:col_K
 if K(ncutset,nbranch)~=0
 BranchNum = K(ncutset,nbranch);
 % Check if the direction of the branch is same the

direction
 % of the cut-set.
 F_Branch = Branch(BranchNum,1);
 T_Branch = Branch(BranchNum,2);
 Sign = 0;
 if IsPresent(Cutset_FT(:,1,ncutset),F_Branch)==1 &&

IsPresent(Cutset_FT(:,2,ncutset),T_Branch)==1
 Sign = 1;

196

 elseif IsPres-

ent(Cutset_FT(:,2,ncutset),F_Branch)==1 && IsPres-

ent(Cutset_FT(:,1,ncutset),T_Branch)==1
 Sign = -1;
 else
 Sign = 0;
 end
 if (LoadBusNum < length(Bus(:,1)))
 PTDF_val = Sign*PTDF(BranchNum,LoadBusNum);
 else
 PTDF_val = 0;
 end
 PTDF_cutset = PTDF_cutset+(-1)*PTDF_val;
 end
 end
 if abs(PTDF_cutset)>10^-5
 Xd(count_Sd,1) = Pivot+ncutset;
 Yd(count_Sd,1) = noofgen+nload;
 Vd(count_Sd,1) = PTDF_cutset;
 count_Sd = count_Sd + 1;
 end
 end

 Tot_rate = 0;
 Tot_flow = 0;
 for i = 1:length(K(ncutset,:))
 if K(ncutset,i)==0
 break;
 end
 if (i>1)
 Tot_rate = Tot_rate+Branch(K(ncutset,i),7);
 end
 A_Branch = Branch(K(ncutset,i),1);
 B_Branch = Branch(K(ncutset,i),2);
 if (IsPresent(Cutset_FT(:,1,ncutset),A_Branch)==1) && (Is-

Present(Cutset_FT(:,2,ncutset),B_Branch)==1)
 Tot_flow = Tot_flow + Branch(K(ncutset,i),6);
 else
 Tot_flow = Tot_flow + (-1)*Branch(K(ncutset,i),6);
 end
 end
 Rhs_cutset(ncutset,1) = Tot_rate-Tot_flow;
 Sign_cutset(ncutset,1) = '<';
 end
 Pivot = Pivot + row_K;

 %% Concatenate all constraints:
 X = vertcat(Xa,Xb,Xc,Xd);
 Y = vertcat(Ya,Yb,Yc,Yd);
 V = vertcat(Va,Vb,Vc,Vd);
 Constraint_SP = sparse(X,Y,V);
 RHS = vertcat(Rhs_con-

serve,Rhs_pinj_max,Rhs_pinj_min,Rhs_MaxFlow,Rhs_MinFlow,Rhs_cutset);

197

 SIGN = vertcat(Sign_con-

serve,Sign_pinj_max,Sign_pinj_min,Sign_Maxflow,Sign_Min-

flow,Sign_cutset);
 %% Use the quadratic cost coefficients:
 f_quad_gen = zeros(noofgen+noofload);
 for i = 1:noofgen
 c_quad = c(i,1);
 f_quad_gen(i,i) = c_quad;
 end

 %% Set the model parameters:
 model.obj = f;
 model.Q = sparse(f_quad_gen);
 model.A = sparse(Constraint_SP);
 model.sense = SIGN;
 model.rhs = RHS;
 model.lb = Rhs_pinj_min;
 clear params;
 params.outputflag = 0;
 result = gurobi(model, params);

 if length(result.status)==7
 Soln_Flag = 1;
 xf = result.x;
 %% Compute all measurement values after solving the optmiza-

tion:
 % New branch flows:
 flow_old = zeros(length(Branch(:,1)),4);
 flow_new = zeros(length(Branch(:,1)),4);
 flow_old(:,1) = Branch(:,1);
 flow_old(:,2) = Branch(:,2);
 flow_old(:,3) = Branch(:,6);
 flow_old(:,4) = Branch(:,7);
 delta_flow = Constraint_flow*xf;
 flow_new(:,1) = Branch(:,1);
 flow_new(:,2) = Branch(:,2);
 flow_new(:,3) = flow_old(:,3)+delta_flow;
 flow_new(:,4) = Branch(:,7);
 % New dispatch:
 gen_old = zeros(length(Generator(:,1)),2);
 gen_new = zeros(length(Generator(:,1)),2);
 gen_old(:,1) = Generator(:,1);
 gen_old(:,2) = Generator(:,2);
 load_old(:,1) = Load(:,1);
 load_old(:,2) = Load(:,2);
 delta_inj = Constraint_pinj*xf;
 delta_pgen = delta_inj([1:noofgen],1);
 delta_pload = delta_inj([noofgen+1:noofgen+noofload],1);
 Generator_New(:,1) = Generator(:,1);
 Generator_New(:,2) = gen_old(:,2)+delta_pgen;
 Load_New(:,1) = Load(:,1);
 Load_New(:,2) = load_old(:,2)+delta_pload;

 %% Finding the actual cost using quadratic and linear cost co-

efficients:

198

 cost_linear = transpose(f);
 cost_quad = horzcat(transpose(c),zeros(1,noofload));
 tot_change_cost = cost_linear*xf + cost_quad*(xf.^2);

 %% Find the positions where non-zero changes have occurred in

Pgen:
 [indpos, ~] = find(delta_pgen>0.001);
 [indneg, ~] = find(delta_pgen<-0.001);
 GeneratorPositiveChange(:,1) = Generator(indpos,1);
 GeneratorPositiveChange(:,2) = delta_pgen(indpos);

 GeneratorNegativeChange(:,1) = Generator(indneg,1);
 GeneratorNegativeChange(:,2) = delta_pgen(indneg);
 %% Find the positions where non-zero changes have occurred in Pload:
 [indpos, ~] = find(delta_pload>0.001);
 [indneg, ~] = find(delta_pload<-0.001);
 LoadPositiveChange(:,1) = Load(indpos,1);
 LoadPositiveChange(:,2) = delta_pload(indpos);

 LoadNegativeChange(:,1) = Load(indneg,1);
 LoadNegativeChange(:,2) = delta_pload(indneg);

 %% Get the data for the next stage:
 Branch(:,6) = flow_new(:,3);
 Generator(:,2) = Generator_New(:,2);
 Load(:,2) = Load_New(:,2);

 else
 Soln_Flag = 0;
 GeneratorNegativeChange = [];
 GeneratorPositiveChange = [];
 LoadNegativeChange = [];
 LoadPositiveChange = [];
 tot_change_cost = 0;
 end
%% Print the change in dispatches on the screen:
 if (Soln_Flag==1)
 fprintf('-- \n');
 fprintf('Total decrease in load = %f \n',round(sum(LoadNega-

tiveChange(:,2))));
 fprintf('Total increase in load = %f \n',round(sum(LoadPosi-

tiveChange(:,2))));
 fprintf('Total decrease in dispatch = %f \n', round(sum(Gener-

atorNegativeChange(:,2))));
 fprintf('Total increase in dispatch = %f \n', round(sum(Gener-

atorPositiveChange(:,2))));
 fprintf('Total change in cost = $ %f

\n',round(tot_change_cost));
 fprintf('-- \n');
 else
 fprintf('-- \n');
 fprintf('No feasible solution obtained! \n');
 fprintf('-- \n');
 end

199

 %% Obtain the dc power flow graph:
 NoOfBus = length(Bus);
 Flow_dc = sparse(NoOfBus,NoOfBus);
 Rate_dc = sparse(NoOfBus,NoOfBus);
 for i = 1:length(Branch(:,1))
 Flow_dc(Branch(i,1),Branch(i,2)) = Branch(i,6);
 Flow_dc(Branch(i,2),Branch(i,1)) = (-1)*Branch(i,6);
 Rate_dc(Branch(i,1),Branch(i,2)) = Branch(i,7);
 end
 time = toc;
end

200

function [x] = RoundDown(x)
%%%
% %
% Program Description: This function rounds down all values %

% of a matrix % below 0.02 to zero %
% %
% Author: Reetam Sen Biswas %
% Arizona State University %
% %
% Last Modified: 03/20/2020 %
%%%
 [r,c] = find(abs(x)<0.02);
 for i = 1:length(r)
 x(r(i),c(i)) = 0;
 end
end

201

function [Shortlist, time] = ShortlistAssets(Branch, EdgeList, Line-

OutNumber)
%%%
% %
% Program Description: This program shortlists the transmission %
% assets that must be evaluated by the FT following a branch %
% outage. The logic for this program is based on the SA algorithm %
% %
% Author: Reetam Sen Biswas %
% Arizona State University %
% %
% Last Modified: 03/20/2020 %
%%%
tic;
 [row_renum,col_renum] = size(Branch);
 [row_list, col_list] = size(EdgeList);
 vec = zeros(row_list,1);
 EdgeList = horzcat(EdgeList,vec);
 [row, col] = size(EdgeList);
 count = 1;
 l_Col = [];
 l_Col = find(EdgeList(LineOutNumber,:)==0);
 count = 1;
 Shortlist = [];
 for eno = 1:length(EdgeList(:,1))
 flag = 0;
 e_Col = [];
 e_Col = find(EdgeList(eno,:)==0);
 for e_C = 1:2:e_Col(1)-2
 for l_C = 1:2:l_Col(1)-2
 if (EdgeList(LineOutNumber,l_C)==EdgeList(eno,e_C) &&

EdgeList(LineOutNumber,l_C+1)==EdgeList(eno,e_C+1))
 Shortlist(count,1) = eno;
 Shortlist(count,2) = Branch(eno,1);
 Shortlist(count,3) = Branch(eno,2);
 count = count+1;
 flag = 1;
 break;
 end
 if (EdgeList(LineOutNumber,l_C)==EdgeList(eno,e_C+1) &&

EdgeList(LineOutNumber,l_C+1)==EdgeList(eno,e_C))
 Shortlist(count,1) = eno;
 Shortlist(count,2) = Branch(eno,1);
 Shortlist(count,3) = Branch(eno,2);
 count = count+1;
 flag = 1;
 break;
 end
 end
 if flag==1
 break;
 end
 end
 end
time = toc;
end

202

function [PTDF_true, PTDF_approx, LODF, B_full, H_full, time] = Up-

date_PTDF_LODF_B_H(B_full, H_full, Bus, Branch, Bran-

chOut,RoundOffFlag)
%%%
% %
% Program Description: This program updates the system matrices %
% following a branch outage in the system. %
% %
% Author: Reetam Sen Biswas %
% Arizona State University %
% %
% Last Modified: 03/20/2020 %
%%%

tic;
%% Updating the H matrix:
 [row_H, col_H] = size(H_full);
 for i = 1:length(BranchOut)
 BranchNum = BranchOut(i);
 F = Branch(BranchNum,1);
 T = Branch(BranchNum,2);
 H_full(BranchNum,:) = zeros(1, col_H);
 end

%% Updating the B matrix:
 % Updating the susceptance (B) matrix changes only four entries of

the
 % matrix and hence saves computation time
 for i = 1:length(BranchOut)
 BranchNum = BranchOut(i);
 F = Branch(BranchNum,1);
 T = Branch(BranchNum,2);
 B_full(F,F) = B_full(F,F)-abs(B_full(F,T));
 B_full(T,T) = B_full(T,T)-abs(B_full(T,F));
 B_full(F,T) = 0;
 B_full(T,F) = 0;
 end

%% Finding the new PTDF matrix:
 noofbus = length(Bus);
 B = B_full([1:noofbus-1],[1:noofbus-1]);
 H = H_full(:,1:noofbus-1);

% Perform matrix operation to obtain the PTDF matrix:
 X = inv(B);
 PTDF = H*X;
 PTDF_true = PTDF;
% For all PTDF values lesser than 0.02, round them down to zero;
 if (RoundOffFlag==1)
 [r,c] = find(abs(PTDF)<0.02);
 for i = 1:length(r)
 PTDF(r(i),c(i)) = 0;
 end
 end
 PTDF_approx = PTDF;

203

% From the PTDF matrix, we now create the LODF matrix:
 PTDF_full = horzcat(PTDF,zeros(length(Branch(:,1)),1));
 [nl, nb] = size(PTDF_full);
 f = Branch(:, 1);
 t = Branch(:, 2);
 Cft = sparse([f; t], [1:nl 1:nl]', [ones(nl, 1); -ones(nl, 1)],

nb, nl);
 H = PTDF_full * Cft;
 h = diag(H, 0);
 LODF = H ./ (ones(nl, nl) - ones(nl, 1) * h');
 h_diff = abs(ones(length(h),1)-h);
 [pos_ar] = find(h_diff<0.00001);
 LODF = LODF - diag(diag(LODF)) - eye(nl, nl);
 for i = 1:length(pos_ar)
 pos_val = pos_ar(i);
 LODF([1:nl],pos_val) = zeros(nl,1);
 LODF(pos_val,[1:nl]) = zeros(1,nl);
 LODF(pos_val,pos_val) = -1;
 end
time = toc;

end

204

function [Flow, Capacity, time] = UpdateScheme(mpcNewbranch, Line,

Flow, Capacity)
%%%
% %
% Program Description: This program updates the flow and %
% latent capacity graphs based upon the UPS algorithm. The %
% logic for this program is based on the UPS algorithm. %
% %
% Author: Reetam Sen Biswas %
% Arizona State University %
% %
% Last Modified: 03/20/2020 %
%%%
tic;
% Find the flow through the branch
 BusA = mpcNewbranch(Line,1);
 BusB = mpcNewbranch(Line,2);
 NewFlowSheet = Flow;
 NewFlowSheet(NewFlowSheet<0) = 0;
 [Bus1, Bus2, flow] = find(NewFlowSheet);
 found = 0;
 for i = 1:length(Bus1)
 if (Bus1(i)==BusA && Bus2(i)==BusB) || (Bus1(i)==BusB &&

Bus2(i)==BusA)
 FromBus = Bus1(i);
 ToBus = Bus2(i);
 CurrentFlow = flow(i);
 found = 1;
 end
 end
 if found==0
 FromBus = BusA;
 ToBus = BusB;
 CurrentFlow = 0;
 end

% Remove the branch from the flow and latent capacity graphs
 Flow(FromBus, ToBus) = 0;
 Flow(ToBus, FromBus) = 0;
 Capacity(FromBus,ToBus) = 0;
 Capacity(ToBus, FromBus) = 0;

% Re=route the flow through the set of indirect paths:
 FlowCap = 0;
 LoseFlag = 0;
 EdgeTouch = [];
 TouchCount = 1;
 if CurrentFlow==0
 LoseFlag = 1;
 else
 countP = 1;
 while (1<2)
 [S,path]=graphshortestpath(Capacity,FromBus,To-

Bus,'Method','BFS','Directed','true');

205

 if S==Inf
 break;
 end
 MaxCap = 9999;
 for k=1:S
 From = path(k);To = path(k+1);
 if MaxCap>Capacity(From,To)
 MaxCap = Capacity(From,To);
 end
 end

 FlowInj = MaxCap;
 if FlowInj>CurrentFlow
 FlowInj = CurrentFlow;
 end

 for k=1:S
 From = path(k);To = path(k+1);
 Flow(From,To) = Flow(From,To) + FlowInj;
 Flow(To,From) = Flow(To,From) - FlowInj;
 Capacity(From,To) = Capacity(From, To) - FlowInj;
 Capacity(To,From) = Capacity(To, From) + FlowInj;
 end
 countP = countP + 1;

 CurrentFlow = CurrentFlow-FlowInj;
 if CurrentFlow==0
 break;
 end
 end
 end
time = toc;
end

