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ABSTRACT 

Ensuring reliable operation of large power systems subjected to multiple outages is 

a challenging task because of the combinatorial nature of the problem. Traditional methods 

of steady-state security assessment in power systems involve contingency analysis based 

on AC or DC power flows. However, power flow based contingency analysis is not fast 

enough to evaluate all contingencies for real-time operations. Therefore, real-time contin-

gency analysis (RTCA) only evaluates a subset of the contingencies (called the contin-

gency list), and hence might miss critical contingencies that lead to cascading failures. 

This dissertation proposes a new graph-theoretic approach, called the feasibility test 

(FT) algorithm, for analyzing whether a contingency will create a saturated or overloaded 

cut-set in a meshed power network; a cut-set denotes a set of lines which if tripped sepa-

rates the network into two disjoint islands. A novel feature of the proposed approach is that 

it lowers the solution time significantly making the approach viable for an exhaustive real-

time evaluation of the system. Detecting saturated cut-sets in the power system is important 

because they represent the vulnerable bottlenecks in the network. The robustness of the FT 

algorithm is demonstrated on a 17,000+ bus model of the Western Interconnection (WI).  

 Following the detection of post-contingency cut-set saturation, a two-component 

methodology is proposed to enhance the reliability of large power systems during a series 

of outages. The first component combines the proposed FT algorithm with RTCA to create 

an integrated corrective action (iCA), whose goal is to secure the power system against 

post-contingency cut-set saturation as well as critical branch overloads. The second 
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component only employs the results of the FT to create a relaxed corrective action (rCA) 

that quickly secures the system against saturated cut-sets.  

The first component is more comprehensive than the second, but the latter is com-

putationally more efficient. The effectiveness of the two components is evaluated based 

upon the number of cascade triggering contingencies alleviated, and the computation time. 

Analysis of different case-studies on the IEEE 118-bus and 2000-bus synthetic Texas sys-

tems indicate that the proposed two-component methodology enhances the scope and speed 

of power system security assessment during multiple outages. 
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∆𝑃2    Net active power injection in cluster 𝐶2. 

𝑃𝐾   Total active power to be transferred across cut-set 𝐾. 

𝒫 This is a path containing a sequence of branches from a source bus to a sink 

bus in a connected graph. 

𝑃𝑇𝐷𝐹𝑙,𝑖
𝑗

 Power Transfer Distribution Factor for the 𝑙𝑡ℎ branch when power is added 

at the bus 𝑖 and withdrawn at the bus 𝑗. 

𝑞𝑗  Reactive power injection at the bus 𝑗 in the power system.   

∆𝑞 This set contains the reactive power mismatches for different buses in the 

iterations of an AC power flow solution. 

𝑟𝐶𝐴 Relaxed Corrective Action  

𝑅𝐾  Total active power transfer capacity of cut-set 𝐾. 

RTCA Real Time Contingency Analysis (RTCA) 

SA Shortlisting Assets. 

SCED  Security Constrained Economic Dispatch 

𝑇𝑙
𝑖 Transfer margin of the 𝑖𝑡ℎ saturated cut-set, associated with branch 𝑒𝑙 .  

𝑇𝑙  Transfer margin of the limiting critical cut-set associated with branch 𝑒𝑙 .  

𝒯𝑘  Electrical betweenness for a potential branch contingency 𝑒𝑘 . 

𝒯𝑘
𝑝

 Positive electrical betweenness for a potential branch contingency 𝑒𝑘 . 

𝒯𝑘
𝑛  Negative electrical betweenness for a potential branch contingency 𝑒𝑘 . 

𝑇𝐶𝑙  Total additional active power transfer capability of the indirect paths of 

branch 𝑒𝑙 . 

𝑈𝑃𝑆 Update Scheme.  
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𝑣𝑙
𝐹      The “from bus” of branch 𝑒𝑙 .  

𝑣𝑙
𝑇     The “to bus” of branch 𝑒𝑙 .  

𝑉        A set containing different buses of the power system. 

𝑉𝑝 A set containing buses where the net power injection has increased after the 

corrective action, with respect to the original test case. 

𝑉𝑛 A set containing buses where the net power injection has decreased after the 

corrective action, with respect to the original test case. 

𝒱𝑗  Voltage magnitude at bus 𝑗. 

∆𝒱 A set containing the changes in bus voltage magnitude in different iterations 

of an AC power flow solution.  

𝑥   Total number of cut-sets associated with branch 𝑒𝑙 . 

𝜒𝑗𝑘  Reactance of the branch joining bus 𝑗 to bus 𝑘 

𝑦    Total number of saturated cut-sets associated with branch 𝑒𝑙 . 

𝑌   The bus admittance matrix of the network. 

𝑌𝑗𝑘
𝑟  Real component of the bus admittance corresponding to the 𝑗𝑡ℎ row and 𝑘𝑡ℎ 

column of the 𝑌 matrix 

𝑌𝑗𝑘
𝑖  Imaginary component of the bus admittance corresponding to the 𝑗𝑡ℎ row 

and 𝑘𝑡ℎ column of the 𝑌 matrix 

𝑧    A variable denoting impedance of a branch. 

𝜃𝑗   Voltage angle at the bus 𝑗. 

∆𝜃 A set containing the change in bus voltage angles in different iterations of 

an AC power flow solution. 
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CHAPTER 1 

INTRODUCTION 

 

This Chapter presents the background and motivation for this research, followed by 

a detailed literature survey, and the research scope for this dissertation. 

1.1 Background 

Maintaining un-interrupted supply of electricity is of paramount importance, to sat-

isfy the ever-increasing energy demands of the society.  Failure of any element may have 

a negative impact on the normal operations of electric power systems. Real-time system 

monitoring is the first step to operate power systems reliably. Measurements are collected 

from the remote terminal units (RTUs) or local control centers, which are used to perform 

state estimation to determine the real-time status of the power system defined by the volt-

age magnitude and voltage angle of all buses in the system [1]-[2].  

Phasor measurement units (PMUs) or synchrophasors built in the 1980s have im-

proved the real-time monitoring capabilities of modern power systems significantly [3]-

[4]. PMUs provide fast time synchronized measurements (typically 30 samples per second 

[5]-[6]. Fast reporting rates of voltage and current phasor measurements from PMUs facil-

itate quick, reliable state estimation and system monitoring in power transmission and dis-

tribution systems [7]-[16]. Due to the high cost associated with the synchrophasor technol-

ogy significant research has been done on optimal PMU placement techniques to minimize 

the number of PMUs required for accurate state estimation [17]-[24]. Going beyond the 

advancements made in real-time state estimation and system monitoring, it is important to 
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enhance the state-of-the-art techniques of power system security assessment, which utilizes 

the converged state estimation results to investigate the consequence of potential contin-

gencies in power systems. 

The North American Electric Reliability Corporation (NERC) recommends that a 

reliable electric grid should be able to withstand the loss of a single element of its bulk 

power system (called N-1 reliability) [25]. Consequently, power system operators perform 

real-time contingency analysis (RTCA) and security constrained economic dispatch 

(SCED) successively at regular intervals [26]. RTCA evaluates the impact of a potential 

contingency on the system’s static security (branch overloads and voltage violations). The 

critical contingencies detected by RTCA are modeled as the security constraints in SCED 

to provide a least-cost dispatch solution to eliminate the potential post-contingency over-

loads [27]-[28]. Despite RTCA-and-SCED trying to ensure N-1 reliability, cascading fail-

ures do occur in a power system. Severe instances of cascading failures could result in un-

intentional islanding and consequently, blackouts/brownouts [29]-[30]. Few examples of 

the major system disturbances in North America are as follows: Northeast Blackout in 1965 

[31], New York City blackout in 1977 [32], Western Electricity Coordinating Council 

(WECC) blackout in 1996 [33], North East blackout in 2003 [34], power outages in Loui-

siana during Hurricane Gustav in 2008 [35], the US Southwest blackout in 2011 [36], and 

large-scale power interruptions in Florida during Hurricane Irma in 2017 [37].  

Analysis of some of the major blackouts that have happened in the past has indi-

cated that they often involve successive outages of power system assets [38]. For example, 

the 1977 New York City blackout was caused by the loss of 11 transmission lines in 52 

minutes [32]. The Federal Electricity Regulatory Commission (FERC) reported that one of 
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the causes of the blackout was “the failure to recognize that a critical interconnection to the 

West was effectively unavailable” [39]. Werho et al. stated that a critical interconnection 

does not necessarily refer to a single line whose status can be monitored [40]; i.e., a critical 

interconnection might consist of multiple transmission lines. As such, real-time detection 

of critical interconnections in the power system that is suffering from multiple outages is a 

challenging task [41]. Moreover, considering the high speed with which some of the black-

outs/brownouts occur (the 2011 US Southwest blackout occurred within 11 minutes [36]), 

it is clear that fast and robust assessment of power system security is extremely important 

for real-time operations. 

The traditional approaches for providing situational awareness during real-time op-

erations are based on steady-state contingency analyses techniques that solve AC or DC 

power flows [42]-[46]. However, power flow-based contingency analysis (CA) is not fast 

enough to perform an exhaustive N-1 RTCA [46]. The computational burden of the prob-

lem increases further for a more ambitious N-k contingency analysis [42]. Therefore, power 

utilities select a subset of the contingencies for evaluation based on some pre-defined cri-

teria [44]-[45]. In [46], Huang et al. stated that the size of this subset has considerable 

impact on RTCA solution: a large subset is computationally burdensome, while a small 

subset might miss critical scenarios. This can be a problem for real-time operations during 

extreme scenarios when multiple outages occur in rapid succession [40]. 

Furthermore, transmission system operators do not necessarily monitor their neigh-

boring systems in detail during state estimation or contingency analysis [40]. As a result, 

situational awareness could be limited if all external contingencies are not evaluated by 

RTCA. The US Southwest blackout of September 8, 2011 is a classic example of the 
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dangers that lack of situational awareness of critical events occurring in the neighboring 

system, pose [36]. The event was initiated by the loss of a 500-kV line (Hassayampa-North 

Gila) that was transporting power from Arizona to California through the Imperial Irriga-

tion District (IID) system. This event occurred at 3:27 PM. Two transformers in the IID 

system (Coachella Valley and Ramon transformers) were overloaded and tripped offline. 

The Coachella Valley transformers tripped at 3:28 PM, while the Ramon transformers 

tripped at 3:32 PM. Following these initial triggering outages, a sequence of outages fol-

lowed in the next 11 minutes disconnecting the San Diego area (which was being supplied 

power by the San Diego Gas & Electric (SDG&E) system) from the rest of the grid by 3:38 

PM. Subsequent analysis of the blackout revealed that the neighboring entities had partial 

visibility of the IID’s system, and as such could not observe that the Coachella Valley and 

Ramon transformers would be overloaded for the outage of Hassayampa-North Gila trans-

mission line. Therefore, there is a genuine need to improve upon the existing methods of 

power system security assessment by enhancing situational awareness of critical contin-

gencies in large power systems.  

1.2 Literature Survey 

1.2.1 Power Flow Studies 

A power flow study forms the basis of steady-state analysis in an interconnected 

power system. The transmission networks are normally assumed to be three-phase bal-

anced, and hence only the positive sequence network is modeled. The most commonly used 

power flow models used in the literature are AC power flow model, and the simplified DC 

power flow model [47].  
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 AC power flow model is a non-linear model because the bus power injection is a 

function of the square of the bus voltages. The objective of the AC power flow problem is 

to obtain complete voltage magnitude and angle information for every bus of the power 

system for specified load and generation values. Depending upon the bus type, different 

buses in the power system are associated with known and unknown quantities. The three 

basic bus types are the PV, PQ, and slack bus. 

 A PV bus is a generator bus; the active power and voltage magnitude is known at 

the generator bus. A PQ bus is a load bus; active power and reactive power at all PQ buses 

are known. The slack bus (also referred as the swing bus) is a generator bus which has a 

large amount of generation capacity.  The voltage magnitude and angle information at the 

slack bus is known. For the PV buses, the generator reactive power output adjusts automat-

ically to maintain the specified voltage. However, reactive power capability of a generator 

is associated with a minimum and maximum limit. Therefore, a PV bus might switch to a 

PQ bus when the reactive power of the generator reaches its limit.  

 Now, the non-linear power flow equations are given as follows: 

                               𝑝𝑗 = ∑𝒱𝑗𝒱𝑘(𝑌𝑗𝑘
𝑟𝑐𝑜𝑠𝜃𝑗𝑘 + 𝑌𝑗𝑘

𝑖 𝑠𝑖𝑛𝜃𝑗𝑘)

𝑛

𝑘=1

                                            (1.1) 

                              𝑞𝑗 = ∑𝒱𝑗𝒱𝑘(𝑌𝑗𝑘
𝑟𝑐𝑜𝑠𝜃𝑗𝑘 + 𝑌𝑗𝑘

𝑖 𝑠𝑖𝑛𝜃𝑗𝑘)

𝑛

𝑘=1

                                             (1.2) 

where,  𝑝𝑗  and 𝑞𝑗  are the net active and reactive power injected at bus 𝑗 respectively, 𝑌𝑗𝑘
𝑟  

and 𝑌𝑗𝑘
𝑖  denote real and imaginary parts of the bus admittance matrix 𝑌 respectively, cor-

responding to the 𝑗𝑡ℎ row and the 𝑘𝑡ℎ column, and 𝜃𝑗𝑘 denotes the difference between  the 

voltage angles between the buses 𝑗 and 𝑘; i.e., 𝜃𝑗𝑘 = 𝜃𝑗 − 𝜃𝑘. Considering that a system 



 

 

6 

has 𝑛 buses and 𝑔 generator buses, there are 2(𝑛 − 1) − (𝑔 − 1) unknowns in the system 

[48]. This is because the voltage magnitude for all generator buses are known, and the 

voltage magnitude and angle of the slack bus is also known.  

 There are different methods for solving the set of non-linear equations described by 

(1.1) and (1.2). The most commonly used method is the Newton Raphson method. It starts 

with an initial guess of the unknown variables, following which a Taylor series approxi-

mation is used to linearize the system at the given operating point, which can be expressed 

as follows: 

                                                     [
∆𝜃
∆𝒱
] = −𝐽−1 [

∆𝑝
∆𝑞 

]                                                            (1.3) 

where, ∆𝑝 and ∆𝑞 contain active and reactive power mismatches for different bus, and 𝐽 is 

the Jacobian matrix obtained from the partial derivatives: 𝐽 = [

𝜕∆𝑝

𝜕𝜃

𝜕∆𝑞

𝜕𝒱
𝜕∆𝑞

𝜕𝜃

𝜕∆𝑞

𝜕𝒱

]. The linearized 

equations (1.3) are solved to obtain the next guess of the unknown variables iteratively. 

The iterations are repeated unless the mismatch in ∆𝑝 and ∆𝑞 is less than a specific toler-

ance.  

 The Newton Raphson method of solving the power flow equations is computation-

ally expensive, because of the detailed network model, and due to the issue of the Jacobian 

being re-computed in each iteration based upon the partial derivatives. Fast decoupled 

power flow is a variation of the Newton-Raphson that exploits the approximate decoupling 

of active and reactive power flows in power networks, and moreover fixes the value of the 

Jacobian during different iterations to improve the computational efficiency [49].  



 

 

7 

 To enhance the computational speed of the network analysis further, a DC power 

flow model is often used. Especially when reactive power and voltage magnitude are not 

of major concern, an approximate DC model can be used for solving the power flow prob-

lem. The network conductance is assumed to be zero (considered negligible in comparison 

with the reactance); i.e., the transmission line losses are ignored [47], [48].  Then the sim-

plified transmission line power flow is given by: 

                                                  𝑝𝑗,𝑘 =
𝜃𝑗 − 𝜃𝑘

𝜒𝑗𝑘
                                                                     (1.4) 

where, 𝑝𝑗,𝑘 denotes the active power flow from bus 𝑗 towards bus 𝑘, 𝜒𝑗𝑘  denotes the trans-

mission line reactance, and 𝜃𝑗, 𝜃𝑘 denote the respective bus voltage angles. The approxi-

mate DC model helps to avoid the non-linearity of the AC power flow model. Therefore, 

information regarding the active power and voltage angle could be easily obtained using 

the DC power flow.    

1.2.2 Contingency Analysis (CA) 

Contingency analysis (CA) is a “what if” scenario simulator that evaluates the im-

pact of an unplanned outage on the electric power system [50]. A contingency denotes the 

loss of a failure of a component of the power system. Generator contingency denotes the 

outage of a generator. Transmission contingency refers to the outage of a transmission line 

or a transformer. When generation is lost, much of the deficient power comes from tie lines, 

and this can mean line flow limit or bus voltage limit violations [47]. When a transmission 

line or a transformer fails, the flow on that line goes to zero and all flows nearby will be 

affected, which might result in a line flow limit and bus voltage limit violation. 
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Transmission contingencies are more common than generation contingencies [51]. This 

dissertation only relates to transmission contingencies occurring in a power system.  

Contingency analysis can be conducted in day-ahead or real-time [51]. Day-ahead 

contingency analysis evaluates the effect of contingency on system reliability and identifies 

the active network constraints for day-ahead scheduling. RTCA identifies the consequence 

of contingencies that might occur in a very short time. RTCA helps operators to react 

quickly to unexpected outages. This dissertation only relates to real-time power system 

operations.  

Contingencies could either be a single element contingency or a multi-element con-

tingency [51]. A single and a multi-element contingency is denoted by N-1 and N-k, re-

spectively. Contingency analysis has been traditionally limited to N-1 due to computational 

burden. For every potential contingency a power flow simulation is performed to evaluate 

the impact of the contingency. For very large power systems, the traditional RTCA-SCED 

framework is not able to perform an exhaustive N-1 evaluation within a few minutes [27].  

In practice, only a subset of the potential contingencies is fed as input to RTCA; these 

selected contingencies form the contingency list [46]. The contingency list is determined 

from offline studies [27]-[28], operator knowledge [26], [50], or contingency ranking tech-

niques [52]-[56]. Different contingencies in the contingency list are evaluated sequentially 

by a power flow solution. The AC power flow solution checks for both post-contingency 

branch overloads and bus voltage violations, while a DC power flow checks only for post-

contingency branch overloads.       
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1.2.3 Linear Sensitivity Distribution Factors 

Evaluating thousands of possible outages becomes a challenging problem to solve, 

if the results are to be presented within a few minutes [46]. One of the easiest ways to 

present a quick indication of possible overloads is to use the linear sensitivity factors. These 

sensitivity factors detect approximate changes in branch flows for generation changes or 

branch outages in the network and originate from the simplified DC power flow model. 

The two sensitivity factors commonly used in power system operations are [47], [53]-[57]: 

1. Power Transfer Distribution Factor (PTDF) 

2. Line Outage Distribution Factor (LODF)    

The PTDF represents the sensitivity of the flow on branch 𝑒𝑙  to a shift of power 

made from the bus 𝑖 to bus 𝑗 [47]. The PTDF is defined as follows:  

                     𝑃𝑇𝐷𝐹𝑙,𝑖
𝑗
=
∆𝑓𝑙

∆𝑓
                                                                                                       (1.5)  

where, 𝑙 = branch index, ∆𝑓𝑙 = change in power flow on the 𝑙𝑡ℎ branch, and ∆𝑓 = total 

power transferred from the bus 𝑖 to the bus 𝑗. 

 If ∆𝐺𝑖 denotes the power which is injected at bus 𝑖 and withdrawn at the reference 

bus 𝑟, the updated branch flow is obtained as follows: 

                          𝑓𝑙
′ = 𝑓𝑙

0 + 𝑃𝑇𝐷𝐹𝑙,𝑖
𝑟 ∆𝐺𝑖                                                                                     (1.6) 

where, 𝑟 denotes the location of the reference bus, 𝑓𝑙
0 denotes the previous flow, and 𝑓𝑙

′ 

denote the new flow after change in bus power injections.  

 The LODF describes the redistribution of branch flows due to a branch outage. The 

LODF is mathematically defined as follows [47]: 



 

 

10 

                                                 𝐿𝑂𝐷𝐹𝑙,𝑘 =
∆𝑓𝑙

𝑓𝑘
0                                                                            (1.7) 

where, 𝐿𝑂𝐷𝐹𝑙,𝑘 = Line outage distribution factor for the 𝑙𝑡ℎ branch after the outage of the 

𝑘𝑡ℎ branch in the system, ∆𝑓𝑙 is the change in flow in the 𝑙𝑡ℎ branch, and 𝑓𝑘
0 is the original 

flow in the 𝑘𝑡ℎ branch before it suffered an outage. Therefore, the post-contingency branch 

flow on 𝑙𝑡ℎ branch for an outage of the 𝑘𝑡ℎ branch is given as follows: 

                                      𝑓𝑙
𝑐 = 𝑓𝑙

0 + 𝐿𝑂𝐷𝐹𝑙,𝑘𝑓𝑘
0                                                                      (1.8) 

where,  𝑓𝑙
0, 𝑓𝑘

0 denote pre-outage flows on branches 𝑙 and 𝑘 respectively, and 𝑓𝑙
𝑐  is the 

post-contingency flow on 𝑙𝑡ℎ branch with the 𝑘𝑡ℎ branch out. 

PTDFs and transmission line ratings were used for screening out critical contingen-

cies in [53]-[54], while LODFs were used for contingency screening in [55]. LODFs have 

also been used for quickly detecting an island formation due to multiple element contin-

gencies [56]. A closed form expression of generalized LODFs under multiple line outages 

was presented in [57]. In [58], the PTDFs and generalized LODFs were used to detect 

island formation in power systems under multiple line outages. In [59], a dual computa-

tionally efficient method for calculating the PTDFs was proposed. In [60], contingency 

screening was done using LODFs. A variation of a DC power flow based linear sensitivity 

analysis was used to detect an island formation due to a potential contingency in [61].  

1.2.4 Mitigation of Post-contingency Violations 

Contingencies that result in post-contingency violations with regards to static secu-

rity (branch overloads and voltage violations) are called critical contingencies. The system 

must be pre-positioned via appropriate actions to mitigate the impact of the critical 
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contingencies [51]. Otherwise, a cascading failure might be triggered by such contingen-

cies resulting in an unforeseen blackout. The commonly used approaches to handle post-

contingency violations are security constrained economic dispatch (SCED) [62], trans-

former tap adjustment [63], phase-shifter angle adjustment [63], transmission switching 

[27]-[28], and load shedding [64]. DC power flow based SCED is used to relieve flow 

violations for real-time operations of the power system [27]. Operators use tap changing 

transformers and phase shifting transformers to control the voltage and active power, re-

spectively [63]. Load shedding is always used as the last option due to its adverse economic 

and social impacts [51].  

1.2.5 Cascading Failure Analysis 

Cascading failure analysis is important because of the occurrence of black-

outs/brownouts all over the world at different points in time [65]. Cascading failure is a 

sequence of dependent failures of individual components that weakens the power grid [66]. 

AC power flow-based cascade failure model has been used in [67]-[68], whereas DC power 

flow-based cascade failure model was used in [69]-[70] for enhanced computational bene-

fits. Dobson et al. in [71]-[72] obtained statistics of cascading line outages from utilities to 

understand how cascades initiate and propagate in the power system. In [73], Rezaei et al. 

estimated the risk of cascading failure with an algorithm called random chemistry. In [74], 

Rahnamay-Naeini et al. performed probabilistic analysis to understand the dynamics of 

cascading failures. In [75], Hines et al. proposed an influence graph model to capture pat-

terns of cascading failures in power systems and validated the model using historical data. 

Instead of relying on prior historical data, which may or may not be relevant for the present 
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scenario, the research presented in this dissertation will exploit knowledge of the current 

network conditions to identify the system’s critical interconnections, the loss of which 

might trigger a cascade. Despite different research initiatives on cascading failure analysis, 

there are not many non-commercial publicly available tools for researchers to simulate 

cascade failure analysis [76]. A DC power flow based non-commercial tool named 

MATCASC was developed in [76] for cascading failure analysis. MATCASC has been 

used in this dissertation to validate the results obtained herein.   

1.2.6 Graph Theoretic Approach for Power System Vulnerability Analysis 

Graph theoretic techniques have been widely used for quick assessment of power 

system vulnerability [77]-[92]. With regards to vulnerability assessment, graph theoretic 

approaches have focused on the topology and structure of the power system. Ishizaki et al. 

summarized the applications of graph theory for power systems modeling, dynamics, co-

herency, and control [77]. In [78], Albert et al. studied the structural vulnerability of the 

North American power grid using a metric called the node degree, which refers to the 

number of lines connected to a bus. Use of betweenness indices, which refer to the number 

of shortest paths traversing a given element, were explored in [79], [80]. These electrical 

betweenness indices [80] aim to find the most important transmission links with respect to 

the actual power flowing in the network and are governed by Kirchhoff’s laws. Arianos et 

al. proposed a new metric called net-ability (a concept of distance between two nodes) to 

evaluate the performance of power grids [81]. Crucitti et al. used a metric called global 

efficiency of a power network to identify the critical components of the network [82]. The 

metric global efficiency is derived from the shortest path lengths between any two nodes 
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in the network [83]. On the Italian power grid, a purely topological analysis was performed 

by Crucitti et al. in [84]. The concept of graph resistance was exploited in [85] for detecting 

power system vulnerabilities.  

Modified centrality indices were used in [86] and [87] to assess the risk of black-

outs/brownouts and systemic vulnerabilities, respectively. Different statistical measures 

such as the betweenness indices, node-degree, and geodesic distance have been used as 

possible alternatives to power flow techniques to quantify power system vulnerability dur-

ing N-1 contingencies and cascading failures [88], [89]. In [90], Zhu et al. proposed a met-

ric called risk graph to better capture the cascade failure vulnerability of the power system. 

More recently, Beyza et al. investigated the structural vulnerability of the power system 

when successive N-1 contingencies progressively alter the network structure [91]. Many of 

the methods discussed above represent the global vulnerability of the system with the help 

of a single index. However, simply quantifying the global vulnerability does not provide 

meaningful physical information to a system operator because it obscures the physical in-

terpretation of the vulnerability [40].  

In [40], Werho et al. used a graph theory-based network flow algorithm to identify 

the cut-set of minimum size between a source-sink pair. A cut-set denotes the minimum 

set of branches which when removed separates the network into two disjoint islands; the 

size of the cut-set refers to the number of branches present in it. If the number of branches 

contained in the minimum sized cut-set progressively decreases, it indicates a structural 

weakness between the selected source-sink pair. In [92], Beiranvand et al. presented a 

novel topological sorting algorithm to screen out coherent cut-sets. Coherent cut-sets de-

note the set of branches that partition the network, such that the power flows in the same 
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direction through all the branches. However, coherent cut-sets may not be the only bottle-

necks in a power system, as there may be a cut-set in which the power flows are not unidi-

rectional, but a single outage limits the power transfer through it.  

1.3 Research Scope 

Building on the prior work on cut-sets in power systems [40], [92], this dissertation 

is aimed towards finding if a contingency will create a saturated (or overloaded) cut-set in 

the power network independent of the directions in which power flows through different 

branches of the cut-set. The complexity of the problem lies in the fact that a power system 

asset can be associated with innumerable cut-sets. Therefore, the research question being 

explored here is: how to analyze the power transfer capability across all cut-sets associated 

with a transmission asset (line or transformer), and quickly screen out the cut-set that will 

become saturated by the largest margin as a consequence of the loss of the transmission 

asset? Intelligent graph theoretic algorithms based on network science is developed in this 

dissertation to precisely answer this research question. Followed by the identification of 

saturated cut-sets due to a potential contingency, convex optimization techniques would be 

used to make the power system secure against saturated cut-sets. Sub-section 1.3.1 intro-

duces the graph theoretic terminologies in the context of the power system that will be used 

extensively in this research. Sub-section 1.3.2 introduces saturated cut-sets with the help 

of an example. Finally, sub-section 1.3.3 presents the working principle for identifying 

saturated cut-sets due to a potential contingency.  
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1.3.1 Graph Theoretic Terminologies Used in Power System 

The power system is represented by a graph 𝒢(𝑉, 𝐸), with the buses contained in 

set 𝑉, and all branches (transmission lines and transformers) contained in set 𝐸 [93]. The 

sets 𝐺 and 𝐿 contain all the generator (source) buses and load (sink) buses, respectively. 

Every transmission asset (line or transformer) is associated with a maximum power transfer 

capability referred to as the asset rating. Hence, every branch 𝑒𝑙 ∈ 𝐸 is associated with a 

weight 𝑓𝑙
𝑚𝑎𝑥, where 𝑓𝑙

𝑚𝑎𝑥 denotes the asset rating of branch 𝑒𝑙 . For example, in Fig. 1.1 

branch 𝑒5 joining buses 4 and 5 has a flow of 15 MW from bus 4 towards bus 5 (i.e., 𝑓5 =

15), and the corresponding branch rating is 250 MW (i.e., 𝑓5
𝑚𝑎𝑥 = 250). 

 
Fig. 1.1 Effect of a Contingency on a Cut-set of the Power Network 
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1.3.2 Introduction to Saturated Cut-sets 

A cut-set is defined as the set containing minimum number of branches which when 

removed splits the network into two disjoint islands [93]-[94]. Any cut-set which transfers 

more power from one area to another than is permissible by the maximum power transfer 

capability of the cut-set is called a saturated cut-set. Let branches 𝑒1, 𝑒2,…, 𝑒𝑘  belong to 

cut-set 𝐾. If the flows through the different branches of cut-set 𝐾 are 𝑓1, 𝑓2,… 𝑓𝑘 , and the 

ratings of those branches are 𝑓1
𝑚𝑎𝑥, 𝑓2

𝑚𝑎𝑥,… 𝑓𝑘
𝑚𝑎𝑥, cut-set 𝐾 is called a saturated cut-set if 

the following equation holds true: 

                                                  ∑𝑓𝑙

𝑘

𝑙=1

>∑𝑓𝑙
𝑚𝑎𝑥

𝑘

𝑙=1

, ∀𝑒𝑙 ∈ 𝐾                                                (1.9) 

where ∑ 𝑓𝑙
𝑘
𝑙=1 = 𝑃𝐾  is the actual power flow occurring through cut-set 𝐾 and ∑ 𝑓𝑙

𝑚𝑎𝑥𝑘
𝑙=1 =

𝑅𝐾  is the maximum power that can be transferred across cut-set 𝐾. The objective of this 

research is to find if a contingency will create a saturated cut-set in the power system. If 

the outage of any branch 𝑒𝑙 ∈ 𝐾 exhausts the power transfer capability of cut-set 𝐾, then 

the loss of branch 𝑒𝑙  is said to saturate cut-set 𝐾. The transfer margin on cut-set 𝐾 for the 

outage of branch 𝑒𝑙  is defined to be 𝑅𝐾 − 𝑃𝐾 . It must be noted that for a saturated cut-set 

the transfer margin is negative.  

 The concept of saturated cut-sets is explained with the help of Fig. 1.1. The cut-set 

𝐾1 in Fig. 1.1 contains branches 𝑒4, 𝑒6, and 𝑒7; i.e., 𝐾1 = {𝑒4, 𝑒6, 𝑒7}. Total power trans-

ferred across this cut-set is 𝑃𝐾1 = 𝑓4 + 𝑓6 + 𝑓7 = 360 MW. The total power transfer ca-

pacity across this cut-set is  𝑅𝐾1 = 𝑓4
𝑚𝑎𝑥 + 𝑓6

𝑚𝑎𝑥 + 𝑓7
𝑚𝑎𝑥 = 580 MW. It is easy to observe 

that the cut-set 𝐾1 is unsaturated as 𝑃𝐾1 < 𝑅𝐾1 . However, the loss of branch 3-4 would 
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saturate cut-set 𝐾1. This is because with the outage of branch 3-4, the power that must be 

transferred from Area 1 to Area 2 (to satisfy the total load with total generation) is still 360 

MW (i.e., 𝑃𝐾1 = 360 MW), but the total power transfer capability of cut-set 𝐾1 reduces to 

330 MW (as now 𝑅𝐾1 = 𝑓6 
𝑚𝑎𝑥 + 𝑓7

𝑚𝑎𝑥). Consequently, outage of branch 3-4 saturates cut-

set 𝐾1 by 30 MW (𝑅𝐾1 − 𝑃𝐾1 = 330 − 360 = −30 MW); in other words, the transfer 

margin is -30 MW.  

It must be noted here that a single branch, e.g., 3-4 in Fig. 1.1, can be associated 

with multiple cut-sets, such as, 𝐾2={3-4,4-5},𝐾3={3-4,3-5,1-3,1-2}, and 𝐾4={3-4,3-5,1-

3,2-3}. This implies that to assess the impact of the loss of any asset on any cut-set of the 

power system (to check whether it has become saturated or not), we must examine the 

power transfer capability of all cut-sets associated with that asset. For a big system con-

taining thousands of buses, a single asset could be associated with hundreds of cut-sets. 

Therefore, quantifying the impact of an outage on any cut-set of the power network is a 

computationally intensive task.  

1.3.3 Working Principle for Detecting Saturated Cut-sets 

Detection of saturated cut-sets due to a potential contingency is based on the fol-

lowing idea. Let a branch 𝑒𝑙  (transmission line or transformer) connect buses 𝑣𝑙
𝐹 and 𝑣𝑙

𝑇 as 

shown in Fig. 1.2. Since branch 𝑒𝑙  is a single element that joins bus 𝑣𝑙
𝐹 to 𝑣𝑙

𝑇 it is called a 

direct path from bus 𝑣𝑙
𝐹 to 𝑣𝑙

𝑇. There could be many other electrical paths to transfer power 

from bus 𝑣𝑙
𝐹to bus 𝑣𝑙

𝑇. Any path that contains multiple branches from 𝑣𝑙
𝐹 towards 𝑣𝑙

𝑇 is an 

indirect path. If all the indirect paths combined do not have the capacity to re-route 𝑓𝑙  units 

of power that was flowing through the direct path, it implies that the loss of branch 𝑒𝑙  would 
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inevitably result in post-contingency cut-set saturation. Based on this inference, a graph 

theory-based network analysis tool is developed in this dissertation to quickly detect vio-

lations of the type where the set of indirect paths do not have extra capacity to carry the 

power that was originally flowing through the direct path.    

 
Fig. 1.2 Network Connectivity Between Two Buses 

 Now, let branch 𝑒𝑙  be associated with 𝑥 cut-sets of the network, of which 𝑦 cut-sets 

(𝑦 ≤ 𝑥) become saturated by a negative transfer margin when 𝑒𝑙  is lost (implying that 𝑦 

cut-sets of the network are saturated). As the 𝑦 cut-sets may be saturated by different neg-

ative transfer margins, 𝑇𝑙
𝑖, 1 ≤ 𝑖 ≤ 𝑦, the objective here is to identify the cut-set that be-

comes saturated by the numerically largest negative transfer margin (i.e., 𝑇𝑙 =

max(|𝑇𝑙
𝑖|);  1 ≤ 𝑖 ≤ 𝑦); this cut-set is henceforth referred to as the limiting critical cut-set, 

𝐾𝑐𝑟𝑖𝑡 . The detection of the limiting critical cut-set must be followed by a corrective action 

to alleviate the saturation of the identified cut-set. The detection and corrective action 

should be executed iteratively, such that there exists no saturated cut-sets in the network 

due to any contingency. Note that this dissertation will identify the limiting critical cut-sets 

based on the thermal ratings of the different assets and the active power flowing through 

them (power factor is set to unity for the studies done here). However, the proposed net-

work analysis tool is generic enough to incorporate branch ratings obtained from other 

analyses as well (such as, proxy limits based on power system stability criteria). 
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 In Section 1.2.1, we have seen that different methods of power flow analysis (AC 

power flow, decoupled power flow, and DC power flow) involve different modeling detail 

and approximations. The proposed research will investigate another level of approximation 

in the power flow model to study the properties of cut-set power transfers. The approxima-

tion will involve relaxation of Kirchhoff’s voltage law (KVL) but will satisfy the law of 

conservation of energy. The flow solution will be referred to as the graph-theory based 

network flow solution (see Section 2.4).  The relaxation of the KVL constraint will facili-

tate existence of multiple valid network flow solutions. However, the power transfer across 

any cut-set of the network will remain constant because of conservation of energy. We will 

observe that this relaxed graph-theory based network flow model can provide useful infor-

mation on different aspects of cut-set power transfer at a significantly enhanced computa-

tional speed. 

The subsequent sections of this dissertation are organized as follows. Chapter 2 

presents a new graph-theory based network analysis technique which can detect post-con-

tingency cut-set saturation. It describes the theoretical foundations of the proposed meth-

odology by virtue of which it can achieve high computational efficiency. Chapter 3 pre-

sents the results and discussions with the help of different case-studies in the context of 

detecting saturated cut-sets in power networks. Chapter 4 presents a constrained optimiza-

tion formulation to secure the power system against post-contingency cut-set saturation. 

Chapter 5 presents the results and discussion for the mitigation of saturated cut-sets with 

the help of different case-studies. Finally, Chapter 6 presents the concluding statements 

and the scope of future work.  
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CHAPTER 2 

DETECTION OF SATURATED CUT-SETS 

 

This Chapter presents different graph-theory based network flow algorithms to detect 

saturated cut-sets in power systems at enhanced computational speed. The basis of the pro-

posed network analysis depends on intelligent graph traversal schemes on weighted graphs. 

The theoretical arguments introduced in this Chapter, followed by different toy examples, 

will demonstrate how a relaxed steady-state network analysis method can quickly evaluate 

the impact of a transmission contingency on different cut-sets in a power system.  

2.1 The Flow and Latent Capacity Graphs 

The flow graph, defined as ℱ(𝑉, 𝐸), contains information about power flowing 

through different branches of the network. Fig. 2.1(a) shows a flow graph for a sample 5 

bus power system obtained from a DC power flow solution (the branch reactances for this 

system is available in Appendix A). The notation introduced in Section 1.3.1 is used to 

describe the flow graph in Fig. 2.1(a). 𝑓𝑙  and 𝑓𝑙
𝑚𝑎𝑥 represent the flow and branch rating for 

the respective branches. A latent capacity graph 𝒞(𝑉, 𝐸) is created from the flow graph 

ℱ(𝑉, 𝐸).  The latent capacity graph provides information regarding the following: for any 

branch 𝑒𝑙 ∈ 𝐸, what is the extra power that could be transferred from bus 𝑣𝑙
𝐹 to 𝑣𝑙

𝑇, and 

vice-versa (𝑣𝑙
𝐹 and 𝑣𝑙

𝑇 denote the “from bus” and “to bus” of branch 𝑒𝑙 , respectively). The 

extra power transfer capability in a specific direction is called the “latent capacity” of the 

branch in that direction; hence, the name latent capacity graph. Each branch of the graph 

𝒞(𝑉, 𝐸) is associated with bidirectional weights: 𝑐𝑙
𝐹𝑇 and 𝑐𝑙

𝑇𝐹, such that 𝑐𝑙
𝐹𝑇 and 𝑐𝑙

𝑇𝐹 denote 
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the “latent capacity” of branch 𝑒𝑙  in the direction from 𝑣𝑙
𝐹 to 𝑣𝑙

𝑇 and 𝑣𝑙
𝑇 to 𝑣𝑙

𝐹, respectively. 

The two weight components are given by:  

                                     
𝑐𝑙
𝐹𝑇 = 𝑓𝑙

𝑚𝑎𝑥 − 𝑓𝑙
𝑐𝑙
𝑇𝐹 = 𝑓𝑙

𝑚𝑎𝑥 + 𝑓𝑙
}                                                                       (2.1)  

Fig. 2.1(b) shows the corresponding latent capacity graph for the flow graph in Fig. 

2.1(a). Branch 𝑒1 is associated with a flow of 202.5 MW from bus 1 towards bus 2; i.e., 

𝑓1 = 202.5 (refer to Fig. 2.1(a)). Note that the maximum power transfer capacity of branch 

𝑒1 is 210 MW. Therefore, the extra flow that can be transferred through branch 𝑒1 from 

bus 1 towards bus 2 is 7.5 MW (= 𝑓1
𝑚𝑎𝑥 − 𝑓1 = 210 − 202.5). On the other hand, the 

extra power that can be transferred from bus 2 towards bus 1 is 412.5 MW (= 𝑓1
𝑚𝑎𝑥 + 𝑓1 =

210 + 202.5). The same observation holds true for the latent capacities associated with 

other branches in the network. The latent capacity graph will be traversed exhaustively to 

detect saturated cut-sets in power systems. 

 
Fig. 2.1 (a) A Sample Flow Graph ℱ(𝑉, 𝐸), and (b) Latent Capacity Graph 𝒞(𝑉, 𝐸) for a 

Sample 5-bus Power System. This Flow Solution is Obtained from a DC power flow 
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2.2 Saturated Branch and Saturated Paths 

The concept of saturated branch and saturated paths will be extensively used in 

different graph-theoretic algorithms developed in this dissertation. Consider that a branch 

𝑒𝑙  connects buses 𝑣𝑙
𝐹 and 𝑣𝑙

𝑇. If it cannot transfer additional power from 𝑣𝑙
𝐹 towards 𝑣𝑙

𝑇, it 

is said to be saturated in the corresponding direction. In other words, if the latent capacity 

for a branch is zero in a specific direction it is said to be saturated along that direction. 

Now, a path contains a sequence of branches from a given source to a given sink. A satu-

rated path will contain at least one branch that has a latent capacity of zero along the spec-

ified direction. For example, let us consider a path from bus 4 to bus 2 in Fig. 2.1(b): 𝒫 =

{4 − 5 − 1 − 2}. In path 𝒫, none of the branches are saturated along the direction de-

scribed by the path from bus 4 towards bus 2 (see Fig. 2.1(b)). This implies that all branches 

in path 𝒫 are unsaturated, and consequently path 𝒫 is an unsaturated path.       

2.3 Breadth First Search (BFS) Graph Traversal  

The two most popular techniques of graph traversal are the breadth first search (BFS) 

algorithm [95] and the depth first search (DFS) algorithm [96]. For traversing the shortest 

path from a specific source to another sink, BFS is advantageous to DFS. This is because, 

when BFS is used to traverse the graph to reach the specified sink from a given source, the 

path traced by BFS is already the shortest path. If there had been a shorter path, BFS would 

have found it earlier. Moreover, the graph-theoretic algorithms that will be presented in the 

later sections of this dissertation will mostly depend on finding the shortest unsaturated 

path from a source bus to a sink bus in the network. Therefore, only unsaturated branches 

are considered during the graph traversal from the source to the sink; thereby eliminating 
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the possibility of selecting saturated paths. This is explained with the help of the bidirec-

tional latent capacity graph 𝒞(V, E) shown in Fig. 2.1(b). Let us assume that the source bus 

is 4 and the sink bus is 2. The BFS graph traversal takes place in the following steps: 

Step 1: In the first step, the source bus is identified with a depth of “0”.  

 
Fig. 2.2 Step 1 of the Graph Traversal Using BFS 

Step 2: Buses 3 and 5 are adjacent to bus 4, and branches 4-3 and 4-5 have non-zero latent 

capacities. Therefore, buses 3 and 5 are connected to bus 4 at a depth of “1” as shown in 

Fig. 2.3.  

 
Fig. 2.3 Step 2 of the Graph Traversal Using BFS (the Latent Capacities of the Branches 

Along Given Direction are Shown in Red) 

Step 3: Those buses which are adjacent to buses 3 and 5, but which have not been traversed 

yet are identified in this stage. Since, bus 3 is connected to buses 1 and 2, and bus 5 is 

connected to bus 1, they are added at a depth level of “2” as shown in the Fig. 2.4 below. 

It must also be noted that each of the branches 3-1, 3-2 and 5-1 are associated with non-

zero latent capacities. Since the sink bus “2” is reached in this step, the process is not 
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repeated and the path from the source bus to the sink bus is back tracked to obtain the 

shortest unsaturated path, which is given by 𝒫 = {4 − 3 −  2}. 

 
Fig. 2.4 Step 3 of the Graph Traversal Using BFS (the Latent Capacities of the Branches 

Along a Given Direction are Shown in Red) 

In this research, we have used the BFS scheme for traversing the bi-directional la-

tent capacity graph 𝒞(V, E). The BFS function can be found in MATLAB’s graph theory 

toolbox. If the graph 𝒞(V, E) is to be traversed from a source bus to a sink bus, the algorithm 

starts at the source bus, and explores all the neighboring buses at the present depth prior to 

moving on to the buses at the next depth. Once the sink is reached the algorithm stops. 

2.3.1 Time Complexity of Shortest Path Graph Traversal Schemes 

Apart from BFS, other commonly used graph traversal methods for finding the short-

est path between a source-sink pair are Bellman-Ford algorithm [97], and Dijkstra algo-

rithm [98]. If |𝐸| denotes the total number of branches, and |𝑉| denotes the total number 

buses, the time-complexity of the Bellman-Ford algorithm is O(|E||V|) [99]. The time-com-

plexity of Dijkstra algorithm implemented using binary heap is 𝑂(|𝐸| + |𝑉|𝑙𝑜𝑔|𝑉|) [100]. 
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Lastly, the time-complexity of the BFS algorithm is 𝑂(|𝐸| + |𝑉|) [101], which is the best 

among the three shortest-path graph traversal techniques. Therefore, we have used the BFS 

graph traversal scheme to develop different algorithms to determine if contingencies create 

saturated cut-sets in power networks. 

2.4 Graph-theory based Network Flow Algorithm (NFA) 

The graph theory-based network flow algorithm is based on the following assump-

tions: (1) power injections are known, and (2) losses are negligibly small. Subject to these 

assumptions, the goal is to generate network flows that can help detect if a contingency 

saturates a cut-set. The graph theoretic network flow algorithm is based on the following 

principle: utilize the available generation of the sources (generators) to satisfy the total 

demand of the sinks (loads), without violating the asset ratings. The network flows are 

obtained using Algorithm I described below. At the start of the algorithm, branches in 

ℱ(𝑉, 𝐸) do not have any weight, while the bidirectional weights of the branches in 𝒞(𝑉, 𝐸) 

are equal to the corresponding asset ratings. 

The graph theory-based network flow algorithm obeys the law of conservation of 

energy, but it relaxes KVL as it does not use impedances directly while building the net-

work flows; the impedances are accounted for indirectly through the asset ratings. The flow 

solution is also non-unique because depending on the order in which the sources and sinks 

are selected, there could be multiple valid flow solutions. However, the power transfer 

across any cut-set of the network is the same for all valid graph-theory based network flow 

solutions. This is explained as follows. 
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Algorithm I: Graph theory-based Network Flow Algorithm (NFA) 

i. Randomly select a source bus 𝑣𝑖 ∈ 𝐺 and a sink bus 𝑣𝑗 ∈ 𝐿. 

ii. Search 𝒞(𝑉, 𝐸) to traverse the shortest unsaturated path 𝒫 from 𝑣𝑖 to 𝑣𝑗 using breadth 

first search (BFS) [95]. 

iii. Use 𝒞 to find the maximum extra flow, 𝐶𝒫, that could be transferred from 𝑣𝑖 to 𝑣𝑗 

through path 𝒫. 

iv. Obtain the flow 𝐹𝒫  to be injected in ℱ(𝑉, 𝐸) along path 𝒫 from 𝑣𝑖 to 𝑣𝑗 as 𝐹𝒫 =

min(𝐺𝑖, 𝐿𝑗, 𝐶𝒫); where 𝐺𝑖 is the active power generated at source 𝑣𝑖 and 𝐿𝑗 is the active 

power demand at sink 𝑣𝑗.  

v. Update the weights of branches in ℱ(𝑉, 𝐸) as 𝑓𝑙 = 𝑓𝑙 + 𝐹𝒫 , and in graph 𝒞(𝑉, 𝐸) as 

𝑐𝑙
𝐹𝑇 = 𝑐𝑙

𝐹𝑇 − 𝐹𝒫  and 𝑐𝑙
𝑇𝐹 = 𝑐𝑙

𝑇𝐹 + 𝐹𝒫  for all branches that belong to path 𝒫. 

vi. Update the available generation and unsatisfied demand at buses 𝑣𝑖 and 𝑣𝑗 as 𝐺𝑖 ∶=

𝐺𝑖 − 𝐹𝒫  and 𝐿𝑗 ∶= 𝐿𝑗 − 𝐹𝒫 .  

vii. Depending upon the values of 𝐺𝑖 and 𝐿𝑗, update the source and sink buses in accord-

ance with the following logic: 

a. if 𝐺𝑖 ≠ 0 & 𝐿𝑗 ≠ 0, the source and sink buses are not changed.  

b. if 𝐺𝑖 = 0 & 𝐿𝑗 ≠ 0, a new source, 𝑣𝑖, is selected from 𝐺, keeping the sink, 𝑣𝑗, un-

changed. 

c. if 𝐺𝑖 ≠ 0 & 𝐿𝑗 = 0, a new sink, 𝑣𝑗, is selected from 𝐿, keeping the source, 𝑣𝑖, un-

changed. 

viii. Repeat Steps (ii) through (vii) until the total power generation satisfies the total power 

demand.   
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Let the network graph 𝒢(𝑉, 𝐸) be split into two clusters 𝐶1 and 𝐶2 such that 𝐶1 ∪

𝐶2 = 𝑉 and 𝐶1 ∩ 𝐶2 = ∅ as shown in Fig. 2.5. If 𝑃𝐺
1(𝑃𝐺

2) and 𝑃𝐿
1(𝑃𝐿

2) be the total generation 

and total demand in 𝐶1(𝐶2), then the net generation in 𝐶1 is given by ∆𝑃1 = 𝑃𝐺
1 − 𝑃𝐿

1 , while 

the net generation in 𝐶2 is given by ∆𝑃2 = 𝑃𝐺
2 − 𝑃𝐿

2. Now, cut-set 𝐾 between clusters 𝐶1 

and 𝐶2 would include only those branches whose one end belongs to 𝐶1 and the other end 

belongs to 𝐶2; let the number of branches in cut-set 𝐾 be 𝑘. Also, let 𝑓1
𝐴, 𝑓2

𝐴,…, 𝑓𝑘
𝐴 denote 

network flows through different branches of cut-set 𝐾 for a valid graph-theory based flow 

solution 𝐴, and 𝑓1
𝐵, 𝑓2

𝐵,…, 𝑓𝑘
𝐵 denote the network flows through the same branches for a 

valid graph-theory based flow solution 𝐵. Then, by the law of conservation of energy, total 

power transfer across cut-set 𝐾 for each of the flow solutions 𝐴 and 𝐵 must be equal to 

∆𝑃1 = −∆𝑃2, i.e., 

                                      ∑𝑓𝑙
𝐴

𝑘

𝑙=1

=∑𝑓𝑙
𝐵

𝑘

𝑙=1

= ∆𝑃1 = −∆𝑃2 ,                 ∀ 𝑒𝑙 ∈ 𝐾                  (2.2) 

 
Fig. 2.5 The Original Power Network is Divided into Two Disjoint Clusters 𝐶1 and 𝐶2 

2.4.1 Graph-theory based Network Flows on a Sample 5-bus Test System 

For the sample 5-bus system depicted in Fig. 2.1 the sets 𝐺 (containing source lo-

cations) and 𝐿 (containing sink locations) comprise of: 𝐺 = {1,4,5} and 𝐿 = {2,3}.  At the 

start of the solution, the network flows through different branches of the system are 
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initialized to zero. The corresponding flow and latent capacity graphs 𝒞(V, E) are depicted 

in Fig. 2.6(a) and Fig. 2.6(b) respectively. 

 
Fig. 2.6 (a) Flow Graph and (b) Latent Capacity Graph of the 5-bus Test System at the 

Beginning of the Network Flow Algorithm 

Iteration 1: 

Step i: A source is selected from set 𝐺 randomly, say, 𝑣𝑖 = 5. A sink is selected from set 𝐿 

randomly, say, 𝑣𝑗 = 3. Therefore, power generation at the source and sink buses are 150 

MW and 240 MW, respectively, i.e., 𝐺𝑖 = 150 MW and 𝐿𝑗 = 240 MW.  

Step ii: The shortest unsaturated path from the source bus 5 towards sink bus 3 is given by 

𝒫 = {5 − 3}.  

Step iii: The maximum power that could be transferred through path 𝒫 from source bus 5 

towards sink bus 3 is limited by 180 MW, i.e., 𝐶𝒫 = 180 (see Fig. 2.6(b)).  

Step iv: Now, the flow 𝐹𝒫  that will be injected along path 𝒫 of the flow graph  ℱ(𝑉, 𝐸) 

from source bus 5 towards sink bus 3 is given as follows. 

                         𝐹𝒫 = 𝑀𝑖𝑛(𝐺𝑖 , 𝐿𝑗, 𝐶𝒫) = 𝑀𝑖𝑛(150,240,180) = 150                                (2.1) 
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Step v:  The flow and latent capacity graphs (see Fig. 2.7) are updated for an injection of 

150 MW of flow along path 𝒫. 

Step vi: Accordingly, the available generation and the unsatisfied power demand at the 

source bus 5 and sink bus 3 are given as follows:  

                                       
𝐺𝑖 = 𝐺𝑖 − 𝐹𝒫 = 150 − 150 = 0
𝐿𝑗 = 𝐿𝑗 − 𝐹𝒫 = 240 − 150 = 90

}                                                  (2.2)        

After Step vi, the flow and latent capacity graphs are shown in Fig. 2.7. 

 
Fig. 2.7 Iteration 1-(a) Flow Graph, and (b) Latent Capacity Graph of the 5-bus Test System 

Step vii: Since 𝐺𝑖 = 0 and 𝐿𝑗 ≠ 0, a new source 𝑣𝑖 is selected keeping the sink 𝑣𝑗 un-

changed. Let the new source be bus 4, i.e., 𝑣𝑖 = 4 and 𝑣𝑗 = 3. The new values of 𝐺𝑖 and 𝐿𝑗 

are 210 MW and 90 MW respectively.  

Iteration 2: 

Step ii: The shortest unsaturated path, which is selected from the source bus 4 to the sink 

bus 3 is given by path 𝒫 = {4 − 3}.  

Step iii: The maximum power that could be transferred from the source to the sink through 

path 𝒫 is 250 MW, i.e., 𝐶𝒫 = 250 (see Fig. 2.7(b)).   
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Step iv: Now, the flow 𝐹𝒫  that will be injected along path 𝒫 is given by (2.3). 

𝐹𝒫 = 𝑀𝑖𝑛(𝐺𝑖, 𝐿𝑗, 𝐶𝒫) = 𝑀𝑖𝑛(210,90,250) = 90                                                  (2.3) 

Step v: The flow and latent capacity graphs are updated for an injection of 90 MW of flow 

along path 𝒫 (see Fig. 2.8).  

 
Fig. 2.8 Iteration 2- (a) Flow Graph and (b) Latent Capacity Graph of the 5-bus Test System 

Step vi: The flow 𝐹𝒫  injected through path 𝒫 of the flow graph, and the bidirectional 

weights of the latent capacity graphs are now updated. Accordingly, the available genera-

tion and the unsatisfied power demand at the source and sink buses are as follows:  

                                         
𝐺𝑖 = 𝐺𝑖 − 𝐹𝒫 = 210 − 90 = 120

𝐿𝑗 = 𝐿𝑗 − 𝐹𝒫 = 90 − 90 = 0
}                                              (2.4) 

Step vii: Since 𝐺𝑖 ≠ 0 and 𝐿𝑗 = 0, a new sink is selected from the set 𝐿 keeping the source 

unchanged. Let the new sink be bus 2, i.e., 𝑣𝑖 = 4 and 𝑣𝑗 = 2. The new values for 𝐺𝑖 and 

𝐿𝑗 are 120 and 300 MW, respectively. 

 

 



 

 

31 

Iteration 3: 

Step ii: The shortest unsaturated path from the source bus 4 to the sink bus 3 is given by 

path 𝒫 = {4 − 3 − 2} (see Fig. 2.8(b)). 

Step iii: The maximum flow that could be transferred from the source to the sink through 

path 𝒫 is 150 MW, i.e., 𝐶𝒫 = 150, because branch 3 − 2 has a latent capacity of 150 MW 

in the direction from bus 3 towards bus 2 (see Fig. 2.8(b)).  

Step iv: Now, the flow 𝐹𝒫  that will be injected in the flow graph along path 𝒫 is as follows: 

                         𝐹𝒫 = 𝑀𝑖𝑛(𝐺𝑖, 𝐿𝑗, 𝐶𝒫) = 𝑀𝑖𝑛(120,300,150) = 120                               (2.5) 

Step v: The flow and latent capacity graphs are updated for an injection of 120 MW of flow 

along path 𝒫 (see Fig. 2.9). 

 
Fig. 2.9 Iteration 3-(a) Flow Graph and (b) Latent Capacity Graph of the 5-bus Test System 

 Step vi: Accordingly, the available generation and the unsatisfied power demand at the 

source and sink buses are given as follows:  

                                      
𝐺𝑖 = 𝐺𝑖 − 𝐹𝒫 = 120 − 120 = 0

𝐿𝑗 = 𝐿𝑗 − 𝐹𝒫 = 300 − 120 = 180
}                                              (2.6) 
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Step vii: Since 𝐺𝑖 = 0 and 𝐿𝑗 ≠ 0, the source is updated while keeping the sink unchanged. 

Therefore, the source and sink buses for the next iteration are buses 1 and 2, respectively, 

i.e., 𝑣𝑖 = 1 and 𝑣𝑗 = 2.  

Iteration 4: 

Step ii: The shortest unsaturated path from the source bus 1 to the sink bus 2 in the latent 

capacity graph 𝒞(V, E) is given by path 𝒫 = {1 − 2} (see Fig. 2.9(b)). 

Step iii: The maximum power that could be transferred from source bus 1 towards sink bus 

2 is 210 MW, i.e., 𝐶𝒫 = 210, because the branch 1 − 2 has a latent capacity of 210 MW, 

in the direction from bus 1 towards bus 2 (see Fig. 2.9(b)). 

Step iv: Now, the flow 𝐹𝒫  that will be injected in the flow graph along path 𝒫 is given as 

follows: 

                           𝐹𝒫 = 𝑀𝑖𝑛(𝐺𝑖, 𝐿𝑗, 𝐶𝒫) = 𝑀𝑖𝑛(180,180,210) = 180                              (2.7) 

Step v: The flow and latent capacity graphs are updated for an injection of 180 MW of flow 

along path 𝒫 = {1 − 2} (see Fig. 2.10). 

 
Fig. 2.10 Iteration 4-(a) Flow Graph and (b) Latent Capacity Graph of the 5-bus Test Sys-

tem 
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Step vi: Accordingly, the available generation and the unsatisfied demand at the source and 

sink buses are given as follows:  

                                      
𝐺𝑖 = 𝐺𝑖 − 𝐹𝒫 = 180 − 180 = 0

𝐿𝑗 = 𝐿𝑗 − 𝐹𝒫 = 180 − 180 = 0
}                                                  (2.8) 

Step vii: Since 𝐺𝑖 = 0 and 𝐷𝑗 = 0, and the total load is satisfied by the total available gen-

eration, the final flow and the latent capacity graphs are depicted in Fig. 2.11. 

 
Fig. 2.11 Final Graphs-(a) Flow Graph and (b) Latent Capacity Graph of the 5-bus Test 

System 

2.4.2 Existence of Multiple Valid Network Flow Solutions 

It must be pointed out here that using the graph-theory based network flow algo-

rithm described above, there will be multiple valid graph-theoretic network flow solutions. 

The base-case network flow depends upon the generators and loads that were selected in 

the different iterations of the network flow algorithm. For example, another valid graph-

theoretic flow solution for the same system is given in Fig. 2.12(a). Fig. 2.12(b) shows the 
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corresponding latent capacity graph. The flow solution of Fig. 2.12 is obtained from the 

following iterations: 

 
Fig. 2.12 Final Graphs-(a) Flow Graph and (b) Latent Capacity Graph of the 5-bus Test 

System 

Iteration 1- 150 MW of power generation at source bus 5 is used to satisfy 150 MW of 

power demand at the sink bus 2 via path 5-1-2. 

Iteration 2- 60 MW of power generation at the source bus 1 is used to satisfy 60 MW of 

power demand at the sink bus 2 via path 1-2. 

Iteration 3- 90 MW of power generation at the source bus 1 is used to satisfy remaining 90 

MW of power demand at the sink bus 2 via path 1-3-2. 

Iteration 4- 30 MW of remaining power generation from source bus 1 is used to satisfy 30 

MW of power demand at the sink bus 3 via path 1-3. 

Iteration 5- 210 MW of power generation from source bus 4 is used to satisfy the remaining 

210 MW of power demand at the sink bus 3 via path 4-3.  

 Fig. 2.13 compares the three valid flow graphs for the same system. Fig. 2.13(a) 

shows a flow solution obtained from DC power flow solution. The corresponding branch 
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reactance that were used in the DC power flow solution is available in Appendix A. Fig. 

2.13(b) shows a valid graph theory-based network flow solution. Fig. 2.13(c) shows an-

other valid graph-theory based network flow solution. We can see that the individual 

branch flows are different for different flow solutions. However, the total power transferred 

across any cut-set in the network is constant. For example, the total power transferred 

across cut-set 𝐾 is 360 MW, for each flow graphs as enumerated in Table 2.1.  

 
Fig. 2.13 (a) Case A: A Flow Graph Obtained From a DC Power Flow Solution, (b) Case 

B: A Flow Graph Obtained From a Valid Graph-Theory Based Network Flow Solution, (c) 

Case C: A Flow Graph Obtained From Another Valid Graph-Theory Based Network Flow 

Solution for the 5-bus Test System 

Table 2.1 Power Transfer Across a Cut-set for Three Different Network Flow Solutions 

of a 5-bus Power System 

Branches in 𝐾1 Case A: Flow (MW) Case B: Flow (MW) Case C: Flow (MW) 

4-3 195 210 210 

5-3 90 150 0 

5-1 75 0 150 

Total Power Trans-

fer across cut-set 𝐾1 

360 360 360 

 

Another example that demonstrates how any graph-theory based network flow al-

gorithm generates constant flows across a cut-set independent of different branch flows is 

presented here. Fig. 2.14 presents a DC power flow solution for a 10-bus test system. 
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Branch reactance information of this 10-bus power system is presented in Appendix B. Fig. 

2.15 and Fig. 2.16 present two valid graph-theory based network flow solution for the sys-

tem. The ratings for each branch for this 10-bus power system is 300 MVA. Let us consider 

cut-set 𝐾1 ={4-1,9-2,9-3}. Table 2.2 enumerates that the total power transferred across this 

cut-set is 380.86 MW independent of the fact that the individual branch flows are different 

for the respective flow solutions. 

 
Fig. 2.14 Case 1- A Flow Graph Obtained from a DC Power Flow Solution (the Numbers 

in Blue Font on Each Branch Represent Flows) for a 10-bus Test System. The Rating for 

Every Branch is 300 MVA. 

 
Fig. 2.15 Case 2- A Flow Graph Obtained from Another Graph-theory Based Network 

Flow Solution (the Numbers in Blue Font on Each Branch Represent Flows) for a 10-bus 

Test System. The Rating for Every Branch is 300 MVA. 
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Fig. 2.16 Case 3- Another Flow Graph Obtained from Another Graph-Theory Based Net-

work Flow Solution (the Numbers in Blue Font on Each Branch Represent Flows) for a 

10-bus Test System. The Rating for Every Branch is 300 MVA. 

Table 2.2 Power Transfer Across a Cut-set for Three Different Network Flow Solutions 

of a 10-bus Power System 

Branches in cut-set  

𝐾1  
Case 1: 

Power flow (MW) 

Case 2: 

Power flow (MW) 

Case 3: 

Power flow (MW) 

4-1 172.51 208 35.86 

9-2 121.96 0 72.86 

9-3 86.39 172.86 272.14 

Total power flow 

through the cut-set 
380.86 380.86 380.86 

2.5 Feasibility Test (FT) Algorithm 

Once the graph-theory based network flows are obtained, the next step is to find out 

the “special assets” from the graphs ℱ(𝑉, 𝐸) and 𝒞(𝑉, 𝐸). In the proposed research, the 

“special assets” are defined as follows: a transmission line or a transformer is classified 

as special if there is no way to reroute the power flowing through it via the set of indirect 

paths. The detection of the special assets is performed by the Feasibility Test (FT) algo-

rithm, which checks for the feasibility of re-routing the power flowing through any 
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transmission asset via the set of indirect paths. For branch 𝑒𝑙 , let  𝑓𝑙  units of power flow 

from 𝑣𝑙
𝐹 to 𝑣𝑙

𝑇. The steps of the FT algorithm for branch 𝑒𝑙  are given in Algorithm II. 

Algorithm II: Graph theory-based Feasibility Test (FT)  

i. Define 𝒞′(𝑉, 𝐸) = 𝒞(𝑉, 𝐸). Remove branch 𝑒𝑙  from 𝒞′. Initialize a variable 𝑇𝐶𝑙 to zero 

(i.e., 𝑇𝐶𝑙 ≔ 0). 

ii. Search 𝒞′ to obtain the shortest unsaturated path 𝒫 from 𝑣𝑙
𝐹 to 𝑣𝑙

𝑇 using breadth first 

search (BFS) [95]; path 𝒫 is considered unsaturated if it has capacity to reroute addi-

tional flow. 

iii. Find the maximum extra flow, 𝐶𝒫, that can be rerouted through path 𝒫 from 𝑣𝑙
𝐹 to 𝑣𝑙

𝑇. 

iv. Update 𝑇𝐶𝑙  as 𝑇𝐶𝑙 ≔ 𝑇𝐶𝑙 + 𝐶𝒫 , and the weights of 𝒞′ as follows: 𝑐𝑙
𝐹𝑇 = 𝑐𝑙

𝐹𝑇 − 𝐶𝒫 and 

𝑐𝑙
𝑇𝐹 = 𝑐𝑙

𝑇𝐹 + 𝐶𝒫. Note that this step saturates path 𝒫 in 𝒞′. 

v. Repeat Steps (ii) through (iv) until there exists no unsaturated path in 𝒞′ from 𝑣𝑙
𝐹 to 

𝑣𝑙
𝑇.  

vi. Due to outage of branch 𝑒𝑙 , compute the transfer margin, 𝑇𝑙 , as: 𝑇𝑙 = 𝑇𝐶𝑙 − 𝑓𝑙 . If 𝑇𝑙  for 

branch 𝑒𝑙  is negative, 𝑒𝑙  is a special asset.  

vii. To identify 𝐾𝑐𝑟𝑖𝑡 , traverse the saturated graph 𝒞′ from 𝑣𝑙
𝐹 towards 𝑣𝑙

𝑇. All the buses 

that can be reached from 𝑣𝑙
𝐹 without traversing a saturated branch are grouped into 

cluster 𝐶1. Similarly, the buses that cannot be reached from 𝑣𝑙
𝐹 without traversing a 

saturated branch are grouped into cluster 𝐶2. Cut-set 𝐾𝑐𝑟𝑖𝑡 contains the branches whose 

one end is in 𝐶1 and the other end is in 𝐶2.  
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2.5.1 Illustration of the FT Algorithm  

Let us consider a valid graph-theory based network flow solution of the 5-bus test 

system (shown in Fig. 2.17). The FT is an iterative graph search algorithm applied on the 

latent capacity graph. The original latent capacity graph 𝐶(𝑉, 𝐸) is assigned to 𝐶′(𝑉, 𝐸), 

because the FT will make incremental changes to the latent capacity graph to evaluate the 

impact of the contingency. Consider that the outage of branch 3-4 is to be analyzed by the 

FT. From the flow graph of Fig. 2.17(a), it can be realized that the flow through branch 3-

4 is 210 MW, i.e., 𝑓𝑙 =210. The working of the FT algorithm through the different itera-

tions is explained below.     

 
Fig. 2.17 (a) Flow Graph, and (b) Latent Capacity Graph for the 5-bus Test System Ob-

tained from the Graph Theory-based Network Flow Algorithm 

Iteration 1: 

Step i: The branch 3-4 has been removed from the latent capacity graph (see Fig. 2.18). 

The variable 𝑇𝐶𝑙  is initialized to zero, i.e., 𝑇𝐶𝑙 = 0.  
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Step ii: The shortest unsaturated path in the latent capacity graph from bus 4 to bus 3 is 

given by path 𝒫 ={4-5-3}.  

Step iii: The maximum power that could be transferred through path, 𝒫 is 30 MW (i.e., 

𝐶𝒫 = 30), which is limited by branch 5-3 (see Fig. 2.18). 

 
Fig. 2.18 The Branch Which is to be Evaluated for an Outage by the FT is Removed from 

the Latent Capacity Graph 𝒞′(𝑉, 𝐸) as the First Step  

Step iv: Next, 𝑇𝐶𝑙  is updated as follows: 

                                      𝑇𝐶𝑙 = 𝑇𝐶𝑙+𝐶𝒫 = 0 + 30 = 30                                                 (2.9) 

Moreover, the weights of the latent capacity graph 𝒞′(𝑉, 𝐸) are updated for branches along 

path 𝒫 to account for an injection of 30 MW of flow along the path 𝒫. In this example, 

branches 4-5 and 5-3 belong to path 𝒫.  The original latent capacities (in Fig. 2.18) are 

𝑐5
45 = 250, 𝑐5

54 = 250, 𝑐7
53 = 30, 𝑐7

35 = 330. As per Algorithm II, these weights are up-

dated as follows: 𝑐5
45 = 𝑐5

45 − 𝐶𝒫 = 250 − 30 = 220, 𝑐5
54 = 𝑐5

54 + 𝐶𝒫 = 250 + 30 =
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280, 𝑐5
53 = 𝑐5

53 − 𝐶𝒫 = 30 − 30 = 0, and 𝑐5
35 = 𝑐5

35 + 𝐶𝒫 = 330 + 30 = 360. These 

updated weights are shown in the updated latent capacity graph in Fig. 2.19. 

 
Fig. 2.19 An Updated Latent Capacity Graph 𝒞′(𝑉, 𝐸) After Adding a Flow of 30 MW 

Along Path 𝒫 = {4 − 5 − 3} 

Iteration 2: 

Step ii: The next shortest unsaturated path in the latent capacity graph 𝒞′(V, E) from bus 4 

to bus 3 is given by path 𝒫 = {4 − 5 − 1 − 3}.  

Step iii: The maximum power that could be re-routed through path 𝒫 is 150 MW (i.e., 𝐶𝒫 =

150 MW), which is limited by branches 5-1 and 1-3 (see Fig. 2.19). 

Step iv:  𝑇𝐶𝑙  is updated as follows: 

                             𝑇𝐶𝑙 = 𝑇𝐶𝑙+𝐶𝒫 = 30 + 150 = 180                                                        (2.10) 

The weights of the latent capacity graph 𝒞′(𝑉, 𝐸) is updated for an injection of 𝐶𝒫 units of 

flow along path 𝒫 (see Fig. 2.20). 
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Fig. 2.20 The Updated Latent Capacity Graph 𝒞′(𝑉, 𝐸) After Adding 150 MW of Flow 

Along Path 𝒫 = {4 − 5 − 1 − 3} 

Step v: Since there exist no other unsaturated indirect paths from bus 4 to bus 3, the itera-

tions are terminated.  

Step vi: Now, the transfer margin, 𝑇𝑙  for the potential outage of branch 3-4 is given by: 

           𝑇𝑙 = 𝑇𝐶𝑙 − 𝑓𝑙 = 180 − 210 = −30                                                                 (2.11) 

Step vii: The last step of the FT algorithm identifies the limiting critical cut-set. The latent 

capacity graph of Fig. 2.20 is traversed from bus 4 towards bus 3. The only other bus which 

can be reached from bus 4 without traversing a saturated branch in Fig. 2.20 is bus 5. 

Therefore, buses 4 and 5 are grouped in the first cluster, while buses 1, 2, and 3 are grouped 

into the second cluster. The branches which connect these two clusters are 1-5, 3-4 and 3-

5. Therefore, the limiting critical cut-set is 𝐾𝑐𝑟𝑖𝑡 ={1-5,3-4,3-5}. This cut-set is said to be 

saturated by a margin of 30 MW for the outage of branch 3-4.  
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2.5.2 Application of the FT Algorithm on Different Network Flow Solutions 

If the FT algorithm is applied to any of the three flow graphs (Fig. 2.13(a) or Fig. 

2.13(b) or  Fig. 2.13(c)) of the sample 5-bus power system to evaluate the outage of branch 

3-4, the following conclusion will be reached independent of which flow graphs is used for 

the analysis: the outage of branch 3-4 (𝑒4) would maximally saturate cut-set 𝐾1 (where 

𝐾1={3-4,3-5, 1-5}) by a margin of 30 MW, i.e. 𝐾𝑐𝑟𝑖𝑡 = 𝐾1 and 𝑇𝑙 = −30 MW. This is 

verified as follows. Note that branch 3-4 is associated with 4 cut-sets as shown in Fig. 2.21. 

Fig. 2.22 depicts the power transfer across all four cut-sets associated with branch 3-4 for 

the flow graph obtained from a DC power flow solution. Consider cut-set 𝐾3 in Fig. 2.22(c). 

The total power transfer across 𝐾3 is 540 MW (𝐹𝐾3 = 𝑓1 + 𝑓2+𝑓4 + 𝑓7) and the maximum 

power that can be transferred across 𝐾3 after the outage of 3-4 is also 540 MW (𝑅𝐾3 =

𝑓1
𝑚𝑎𝑥 + 𝑓2

𝑚𝑎𝑥 + 𝑓7
𝑚𝑎𝑥). As such, outage of 3-4 saturates 𝐾3 by 0 MW (𝑅𝐾3 = 𝐹𝐾3). Simi-

larly, it was observed that the outage of branch 3-4 creates a negative margin of 30 MW in 

cut-set 𝐾1 (see Fig. 2.22(a)), positive margin of 40 MW in 𝐾2 (see Fig. 2.22(b)), and a 

positive margin of 240 MW in 𝐾4 (see Fig. 2.22(d)). Therefore, it is validated using Fig. 

2.22 that the FT algorithm correctly identifies the cut-set which gets saturated by the larg-

est (negative) margin.  

Identical results were obtained when the FT was applied to the flow graphs of Fig. 

2.13(b) and Fig. 2.13(c). Lastly, it must also be pointed out that the margin computed by 

the FT is indicative of the minimum amount of power transfer that must be reduced across 

cut-set 𝐾𝑐𝑟𝑖𝑡  to alleviate its saturation due to the contingency. 
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Fig. 2.21 The 4 Different Cut-sets Associated with Branch 3-4 (the Power Flows Corre-

spond to a DC Power Flow Solution) 

 
Fig. 2.22 Effect of the Outage of Branch 3-4 on (a) 𝐾1, (b) 𝐾2, (c) 𝐾3, and (d) 𝐾4 of the 

Flow Graph of Fig. 2.13(a). 
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Fig. 2.23 (a) Power Transfer Across Cut-set 𝐾𝑐𝑟𝑖𝑡 for the Flow Graph of Fig. 2.14, (b) 

Power Transfer Across Cut-set 𝐾𝑐𝑟𝑖𝑡  for the Flow Graph of Fig. 2.15, (c) Power Transfer 

Across Cut-set 𝐾𝑐𝑟𝑖𝑡  for the Flow Graph of Fig. 2.16 

Now, let us consider the sample 10-bus test system of Fig. 2.14. If branch 4-1 is 

evaluated by FT with respect to any of the flow graphs (Fig. 2.14 or Fig. 2.15 or Fig. 2.16), 

following observation is made: branch 4-1 is a special asset as it fails FT, and is associated 

with a limiting critical cut-set containing branches 4-1 and 6-7 (i.e., 𝐾𝑐𝑟𝑖𝑡 ={4-1,6-7}) with 

a transfer margin 𝑇𝑙 =-35.86 MW. The implication of the above statement is explained 

with the help of Fig. 2.23(a), (b), and (c) which present the power transfer across cut-set 

𝐾𝑐𝑟𝑖𝑡  for the three different flow graphs of the same system shown in Fig. 2.14, 2.15, and 

2.16, respectively. From Fig. 2.23 it is clear that although the individual flows on different 

branches of the cut-set are different, FT finds that, for all three flow graphs, if the branch 
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4-1 is lost, the cut-set 𝐾𝑐𝑟𝑖𝑡  will have a power transfer capability shortage of 35.86 MW 

from cluster 𝐶1 to cluster 𝐶2. For example, in Fig. 2.23(a), when branch 4-1 is lost, the flow 

in branch 6-7 becomes (208+127.86) MW = 335.86 MW, which exceeds its rating (of 300 

MW) by 35.86 MW. In summary, the FT: (a) detects special assets, (b) identifies the lim-

iting critical cut-set associated with each special asset, and (c) computes the power trans-

fer margin across the identified limiting critical cut-set.  

2.6 Update Scheme (UPS) of the Network Flow Solution 

During major power system disturbances, multiple outages can occur in rapid suc-

cession. Therefore, the FT results would also change following the outage of a branch. To 

identify the set of special assets following an outage, it is important to first update the graph 

theory-based network flows to account for the outage of any branch. The advantage of 

graph theory-based flows is that rerouting of the flow upon the loss of a branch can be 

achieved extremely fast. The technique of updating the flow graph ℱ(𝑉, 𝐸) and latent ca-

pacity graph 𝒞(𝑉, 𝐸) when branch 𝑒𝑙  suffers an outage is done in accordance with Algo-

rithm III, which describes the graph theory-based update scheme (UPS).  

2.6.1 Illustration of the UPS Algorithm  

A graph theory-based network flow solution of the sample 5-bus system is pre-

sented in Fig. 2.24. We now want to find the updated flow and latent capacity graphs if 

branch 5-3 is lost. The steps involved in the UPS are explained below. 
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Algorithm III: Graph theory-based update scheme (UPS) 

i. Let the flow to be rerouted be given by 𝐹 = 𝑓𝑙 , where 𝑓𝑙  refers to the flow through 

branch 𝑒𝑙  from bus 𝑣𝑙
𝐹 to 𝑣𝑙

𝑇. 

ii. Remove branch 𝑒𝑙  from ℱ(𝑉, 𝐸) and 𝒞(𝑉, 𝐸). 

iii. Search 𝒞(𝑉, 𝐸) to obtain the shortest unsaturated path 𝒫 from 𝑣𝑙
𝐹 to 𝑣𝑙

𝑇 using breadth 

first search (BFS) [95].   

iv. Find the maximum extra flow, 𝐶𝒫, that can be rerouted through path 𝒫. 

v. If 𝐹 > 𝐶𝒫, inject 𝐶𝒫 units of flow through path 𝒫 and update 𝐹 as 𝐹 ≔ 𝐹 − 𝐶𝒫. If 𝐹 ≤

𝐶𝒫, inject 𝐹 units of flow through path 𝒫 and set 𝐹 ≔ 0. Update the weights of ℱ and 

𝒞 accordingly. 

vi. Repeat Steps (ii) through (v) until 𝐹 = 0. 

 

 
Fig. 2.24 (a) Flow Graph, and (b) Latent Capacity Graph of the 5-bus Power System Ob-

tained from the Graph-theory Based Network Flow Solution 
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Step i: Since 150 MW of power flows through branch 5-3 from bus 5 towards bus 3 (see 

Fig. 2.11), the amount of power that must be rerouted when branch 5-3 is lost is 𝐹 = 150 

MW.  

Step ii: The branch 5-3 is removed from both the flow graph and the latent capacity graph 

as shown in Fig. 2.25 below. 

Step iii: The shortest unsaturated path from bus 5 to bus 3 is obtained using BFS. The path 

is given as follows: 𝒫 = {5 − 1 − 3}.  

Step iv: The maximum power that could be rerouted through path 𝒫 is 150 MW (i.e., 𝐶𝒫 =

150). 

Step v: Since in this situation 𝐹 = 𝐶𝒫 , 150 MW of power is rerouted through path 𝒫. The 

flow and the latent capacity graphs are updated as shown in Fig. 2.25. Finally, 𝐹 is updated 

as follows: 𝐹 = 𝐹 − 𝐶𝒫 = 150 − 150 = 0. 

Step vi: Since 𝐹 = 0, the steps (ii) through (v) are not repeated and the graphs shown in 

Fig. 2.25 are the updated flow and latent capacity graphs of the system. For large power 

systems it can be shown that the rerouting of the flow through the indirect paths actually 

occurs through a very small subgraph of the entire network. This will be discussed with the 

help of a case-study in the next Chapter. 
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Fig. 2.25 (a) Flow Graph, and (b) Latent Capacity Graph After Power Flow Through 

Branch 5-3 is Re-routed Along Path 5-1-3 Using UPS Algorithm After Outage of Branch 

5-3 

We observed from the above example that the UPS algorithm creates an updated 

flow graph utilizing the set of shortest indirect paths to re-route the flows after a branch 

outage. This is possible because in the context of detecting saturated cut-sets, the net power 

transfer across any cut-set of the network is important, rather than the individual branch 

flows. This is explained with the help of another flow solution obtained from the DC power 

flow after the branch outage. Fig. 2.26(a) and (b) present the flow and latent capacity graphs 

obtained from a DC power flow after the outage of branch 5-3. Further Fig. 2.27(a) and (b) 

compares the flow graphs obtained from the UPS algorithm and the DC power flow solu-

tions respectively. Despite the individual branch flows being different, the power transfer 

across any cut-set of the network remains the same (compare Fig. 2.27(a) and (b)). For 

example, the total power transfer across cut-set 𝐾1 is 360 MW in both the graphs. Conse-

quently, the FT uniquely determines post-contingency cut-set saturation (independent of 

whichever flow graphs are used for the network analysis). For instance, it detects that 
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outage of branch 4-3 will saturate cut-set 𝐾1 by 210 MW.  This is because the power trans-

fer capacity of cut-set 𝐾1 reduces to only 150 MW after the outage of branch 4-3. 

 
Fig. 2.26: (a) Updated Flow Graph, and (b) Updated Latent Capacity Graph Obtained from 

a DC Power Flow Solution After the Outage of Branch 5-3 

 

 
Fig. 2.27: (a) The Updated Flow Graphs Obtained from the UPS Algorithm, and (b) DC 

Power Flow Solution After the Outage of Branch 5-3 
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2.7 Shortlisting Assets (SA) Algorithm for Successive FT 

In the base-case scenario when the flow graph is built for the first time all transmis-

sion assets would be investigated by the FT. However, in the event of a branch outage, 

when the UPS provides an updated flow graph, it is not necessary to evaluate all the assets 

by the FT once again to identify the special assets. By intelligently exploiting the infor-

mation provided by FT in the base-case scenario and using the UPS to reroute the flow for 

the branch that is out, the FT can be performed on only a subset of the assets to evaluate 

the impact of a second contingency. This is explained through Fig. 2.28. 

 
Fig. 2.28  (a) Rerouting the Flow on Branch 𝑒𝑙  Does Not Involve any Branch of the Indirect 

Paths of 𝑒𝑚, and (b) Rerouting the Flow on Branch 𝑒𝑙  Involves Some Branches of the 

Indirect Paths of 𝑒𝑚  

Let it be known from the base-case FT that the flow through branch 𝑒𝑚 can be 

rerouted through path 𝒫1, while the loss of branch 𝑒𝑙  alters flow through path 𝒫2. Then, in 

Fig. 2.28(a), when branch 𝑒𝑙  goes out, the flow through 𝑒𝑙  is rerouted through 𝒫2 by the 

UPS. Now, since 𝒫1 and 𝒫2 do not involve common branches, the rerouting of power 
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through 𝒫2 by UPS does not necessarily modify the flows through 𝒫1; therefore, the FT 

need not be repeated for 𝑒𝑚. However, if 𝒫1 and 𝒫2 have common branches, as seen in Fig. 

2.28(b); i.e., rerouting of the flow of branch 𝑒𝑙  affects the flow through 𝒫1, then 𝑒𝑚 must 

be evaluated by FT once again after the outage of 𝑒𝑙 . This rationale of screening the assets 

to be evaluated by the FT in the event of an outage is called the shortlisting asset (SA) 

algorithm. The SA algorithm is explained with an example in the following section. 

2.7.1 Illustration of the SA Algorithm 

Let us consider a flow graph for a 7-bus power system shown in Fig. 2.29.  The 

information obtained from the FT for every branch (in the base-case) is recorded in the 

form of a list as shown in Table 2.3. All branches passed the FT in the base-case scenario. 

Let us consider the FT result for the outage of branch 1-6.  Table 2.3 indicates that 30 MW 

of power flowing through branch 1-6 can be rerouted through the path 1-3-6 by the UPS if 

the branch 1-6 is lost. Similarly, the 100 MW of power flowing through branch 3-1 can be 

rerouted through the indirect paths 3-6-1, 3-4-6-1, and 3-4-5-6-1, respectively, by the UPS, 

if the branch 3-1 is lost. The set of indirect paths for the other branches through which the 

power flows could be rerouted is given in the second column of Table 2.3. 

Now, consider that the branch 2-1 suffers an outage at a particular time instant. By 

using the UPS algorithm, the flow through the branch 2-1 is rerouted through path 𝒫 =

{2 − 3 − 6 − 1}, as shown in Fig. 2.30. The updated base-case network flow solution is 

obtained by the UPS. Only specific transmission assets whose indirect paths involve 

branches 2-3, 3-6, and 6-1 must be re-evaluated by the FT. From the second column of 

Table 2.3 it is observed that indirect paths of branches 5-6, 4-5, 4-7, 7-6, and 7-5, through 
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which rerouting can occur do not involve branches 2-3, 3-6, or 6-1. Therefore, the FT need 

not be performed for all the 11 branches. The FT must be performed for only six branches, 

namely, 1-6, 3-2, 3-1, 3-6, 4-3, and 4-6, whose indirect paths involve branches 2-3, 3-6, or 

6-1. This is how the shortlisting of assets is achieved in a power network. By this rationale, 

even for a very large system, the FT needs to only evaluate a very small subset of assets, 

following a branch outage. 

 
Fig. 2.29 A Flow Graph for a Sample 7-bus Power System 
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Fig. 2.30 With the Outage of Branch 2-1, the Flow is Re-routed Through Path 𝒫={2-3-6-

1} 

Table 2.3: Information Recorded by the FT in the Base-case Scenario 

Branch evaluated by FT Indirect paths through which rerouting of flow can 

occur 

Branch 1-6 Indirect Path 1: 1-3-6 

Branch 2-1 Indirect Path 1: 2-3-6-1 

Branch 3-2 Indirect Path 1: 3-6-1-2 

Branch 3-1 Indirect Path 1: 3-6-1 

Indirect Path 2: 3-4-6-1 

Indirect Path 3: 3-4-5-6-1 

Branch 3-6 Indirect Path 1: 3-4-6 

Indirect Path 2: 3-4-5-6 

Branch 4-3 Indirect Path 1: 4-6-3 

Indirect Path 2: 4-5-6-3 

Branch 4-6 Indirect Path 1: 4-3-6 

Indirect Path 2: 4-5-6 

Branch 5-6 Indirect Path 1: 5-4-6 

Branch 4-5 Indirect Path 1: 4-6-5 

Branch 4-7 Indirect Path 1: 4-5-7 

Branch 7-6 Indirect Path 1: 7-5-6 

Branch 7-5 Indirect Path 1: 7-4-5 
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CHAPTER 3 

 RESULTS: DETECTION OF SATURATED CUT-SETS  

This Chapter presents the case-studies for different test systems.  The proposed FT 

algorithm is applied on the IEEE 39-bus test system in the base-case scenario. The perfor-

mance of the FT is compared with other contingency ranking methods on the IEEE 118-

bus system, during successive outages. The scalability and computational efficiency of the 

FT algorithm is validated on the 17,941-bus model of the Western Interconnection. This 

Chapter also contains detailed discussions on the capabilities and limitations of the FT 

algorithm with a variety of examples and comparative studies.   

3.1 Detection of Saturated Cut-sets in IEEE 39-bus System in Base-case  

The system data for the IEEE 39-bus test system is obtained from MATPOWER 

[102]. When every transmission asset was investigated by the FT in base-case scenario, 

four saturated cut-sets were identified which are depicted by dotted lines in Fig. 3.1. The 

detailed information obtained from the graph theory-based FT is summarized below: 

i. Outage of 11-10 saturates cut-set 𝐾𝑐𝑟𝑖𝑡
1 = {11-10,13-10} by 61 MW. Similarly, outage 

of 13-10 saturates the same cut-set  𝐾𝑐𝑟𝑖𝑡
1  by the same margin, because the branches 

11-10 and 13-10 have the same rating of 600 MVA, and the total power transferred 

across cut-set 𝐾𝑐𝑟𝑖𝑡
1  is 661 MW. 

ii. Outage of 6-11 saturates cut-set 𝐾𝑐𝑟𝑖𝑡
2 = {6-11,14-13} by 52 MW. However, outage of 

14-13 saturates the same cut-set 𝐾𝑐𝑟𝑖𝑡
2  by 172 MW. This is because branches 6-11 and 

14-13 have ratings of 480 MVA and 600 MVA, respectively, and the total power 

transferred across cut-set 𝐾𝑐𝑟𝑖𝑡
2  is 652 MW.  
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iii. Outage of 21-22 saturates cut-set 𝐾𝑐𝑟𝑖𝑡
3 = {21-22,24-23} by 393 MW, and the outage 

of 24-23 saturates 𝐾𝑐𝑟𝑖𝑡
3  by 93 MW. This is because branches 21-22 and 24-23 have 

ratings of 900 MVA and 600 MVA, respectively, and the total power transferred 

across cut-set 𝐾𝑐𝑟𝑖𝑡
3  is 993 MW. 

iv. Outage of 16-21 saturates cut-set 𝐾𝑐𝑟𝑖𝑡
4 = {16-21,24-23} by 119 MW. Similarly, outage 

of 24-23 has the same effect on 𝐾𝑐𝑟𝑖𝑡
4 . This is because both lines have the same rating 

of 600 MVA, and the total power transferred across 𝐾𝑐𝑟𝑖𝑡
4  is 719 MW. 

It is important to note that the proposed analysis not only identifies the saturated 

cut-sets, but also indicates the minimum amount of power transfer that must be reduced 

across the cut-set to alleviate its saturation. The performance of FT during a series of out-

ages is studied in the next section. 

 
Fig. 3.1 Identification of Saturated Cut-sets in the IEEE 39-bus System for the Base-case 

Scenario 
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3.2 Detection of Saturated Cut-sets in IEEE 118-bus System During Outages 

3.2.1 Performance of the FT Algorithm 

The utility of the proposed FT algorithm for enhanced situational awareness is ex-

plained with a case-study on the IEEE 118-bus system. Due to a hurricane, let the following 

transmission asset outages occur one after another: 15-33, 19-34, 37-38, 49-66, and 47-69 

(marked 𝑂1 through 𝑂5 in Fig. 3.2). From Fig. 3.2 and Table 3.1, following information is 

obtained when the algorithm is applied as outages manifest: 

1) Base-case: In the base-case scenario, branch 26-30 fails the graph theory-based FT and 

is classified as a special asset. The loss of 26-30 would saturate the limiting critical cut-

set 𝐾𝑐𝑟𝑖𝑡
0  by a margin of -77 MW, i.e., 𝑇𝑙

0= -77 MW.  

2) 1st Outage: When 15-33 is lost, no additional special assets are identified.  

3) 2nd Outage: When 19-34 is lost, no additional special assets are identified. 

4) 3rd Outage: When 37-38 is lost, the asset 42-49 fails the FT and is classified as a special 

asset. The loss of 42-49 would saturate the limiting critical cut-set 𝐾𝑐𝑟𝑖𝑡
3  by a margin of      

-186 MW, i.e., 𝑇𝑙
3= -186 MW. 

5) 4th Outage: When 49-66 is lost, no additional special assets are identified. 

6) 5th Outage: When 47-69 is lost, the assets 59-56, 63-59, 63-64, and 64-65 are classified 

as special assets. The loss of these four assets would saturate the limiting critical cut-

sets, 𝐾𝑐𝑟𝑖𝑡
5𝑎 , 𝐾𝑐𝑟𝑖𝑡

5𝑏 , 𝐾𝑐𝑟𝑖𝑡
5𝑐 , and 𝐾𝑐𝑟𝑖𝑡

5𝑑 , by margins of -64, -191, -191, and -219 MW, respec-

tively (i.e., 𝑇𝑙
5𝑎= -64 MW, 𝑇𝑙

5𝑏= -191 MW, 𝑇𝑙
5𝑐= -191 MW, 𝑇𝑙

5𝑑= -219 MW). 
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The value of the information obtained above can be realized by considering the 

following scenario: after the occurrence of the fifth outage, the FT algorithm would inform 

the power system operators that if any of the four assets identified in the last row, second 

column of Table 3.1 is lost next (as the 6th outage), the corresponding cut-set identified in 

the third column would be saturated by the margin mentioned in the fourth column . If this 

anticipated overload is to be avoided, the operator must preemptively reduce the power 

flowing through the identified cut-set by at least the amount mentioned in the last column 

of Table 3.1. Thus, the proposed network analysis tool is an enhanced power system con-

nectivity monitoring scheme that improves the power system operators’ situational aware-

ness by augmenting their visualization in real-time. Also, it must be noted that this insight 

is very different from what a traditional contingency analysis scheme may provide. 

Table 3.1: Identification of Limiting Critical Cut-sets in IEEE 118-bus Test System 

Event 
New Special 

Asset 
Limiting Critical Cut-set 

Transfer  

margin 

(MW) 

Base-case 
26-30 

(345 kV line) 
𝐾𝑐𝑟𝑖𝑡
0 = {26-30,25-27,25-23} 𝑇𝑙

0=-77 

Outage 1 (15-33) - - - 

Outage 2 (19-34) - - - 

Outage 3 (37-38) 
42-49 

(138 kV line) 
𝐾𝑐𝑟𝑖𝑡
3 = {42-49,44-45} 𝑇𝑙

3= -186 

Outage 4 (49-66) - - - 

 

Outage 5 (47-69) 

59-56 

(138 kV line) 
𝐾𝑐𝑟𝑖𝑡
5𝑎 = {59-56,59-54,59-55,69-49} 𝑇𝑙

5𝑎= -64 

63-59 

(345/138 kV 

transformer) 
𝐾𝑐𝑟𝑖𝑡
5𝑏 = {63-59,61-59,60-59,69-49} 𝑇𝑙

5𝑏= -191 

63-64 

(345 kV line) 
𝐾𝑐𝑟𝑖𝑡
5𝑐 = {63-64,61-59,60-59,69-49} 𝑇𝑙

5𝑐= -191 

64-65 

(345 kV line) 
𝐾𝑐𝑟𝑖𝑡
5𝑑 = {64-65,66-62,66-67,69-49} 𝑇𝑙

5𝑑= -219 

 



 

 

60 

3.2.2 Comparative Analysis with Different Methods 

This section provides a brief review of two other contingency ranking techniques 

proposed in prior literature. Subsequently, the FT is compared with these contingency rank-

ing techniques. Moreover, the results from FT are validated using an independent cascad-

ing simulation analysis.    

3.2.2.1 Contingency Ranking Using PTDFs  

The power transfer capacity from a source (generator) bus 𝑣𝑖 to a sink (load) bus 𝑣𝑗 

is as follows [53]: 

𝐶𝑖
𝑗
= 𝑀𝑖𝑛 {

𝑓1
𝑚𝑎𝑥

|𝑃𝑇𝐷𝐹1,𝑖
𝑗
|
, … ,

𝑓𝑙
𝑚𝑎𝑥

|𝑃𝑇𝐷𝐹𝑙,𝑖
𝑗
|
, … ,

𝑓𝑚
𝑚𝑎𝑥

|𝑃𝑇𝐷𝐹𝑚,𝑖
𝑗
|
}                                                         (3.1) 

where, 𝑓𝑙
𝑚𝑎𝑥 denotes the asset ratings, 𝑃𝑇𝐷𝐹𝑙,𝑖

𝑗
  denotes the power transfer distribution 

factor for a power injection at bus 𝑖 and power withdrawal at bus 𝑗,  and 𝑚 denotes total 

number of transmission assets. Now, [53] defines the electrical betweenness for a potential 

branch contingency 𝑒𝑘  as follows: 

                                          𝒯𝑘 = max[𝒯𝑘
𝑝|𝒯𝑘

𝑛],                                                                       (3.2) 

where, 𝒯𝑘  denotes the electrical betweenness for a branch contingency 𝑒𝑘 . 𝒯𝑘
𝑝

 and 𝒯𝑘
𝑛 rep-

resent the positive and negative electrical betweenness of the branch 𝑒𝑘 , which are obtained 

as follows: 

                        𝒯𝑘
𝑝
= ∑ ∑ 𝐶𝑖

𝑗
𝑃𝑇𝐷𝐹𝑙,𝑖

𝑗

 ∀𝑣𝑗(𝑣𝑗≠𝑣𝑖)∈𝐿∀𝑣𝑖∈𝐺

,         𝑖𝑓 𝑃𝑇𝐷𝐹𝑙,𝑖
𝑗
> 0                        (3.3) 

                        𝒯𝑘
𝑛 = ∑ ∑ 𝐶𝑖

𝑗
𝑃𝑇𝐷𝐹𝑙,𝑖

𝑗

    ∀𝑣𝑗(𝑣𝑗≠𝑣𝑖)∈𝐿∀𝑣𝑖∈𝐺

, 𝑖𝑓 𝑃𝑇𝐷𝐹𝑙,𝑖
𝑗
< 0                       (3.4) 
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The electrical betweenness 𝒯𝑘  presented in (3.2) can be used to rank different transmission 

contingencies [53]. 

3.2.2.2 Contingency Ranking Using LODFs  

Contingency ranking by LODFs was proposed in [55]. A metric called the line out-

age impact factor (LOIF) was computed using the LODF matrix. For a single branch con-

tingency 𝑒𝑘 , the impact of the contingency on all other transmission assets is quantified as 

follows: 

                 𝐿𝑂𝐼𝐹𝑘  =  ∑ 𝐿𝑂𝐷𝐹𝑙,𝑘
∀𝑒𝑙∈𝐸

                                                                                       (3.5) 

where, 𝐿𝑂𝐼𝐹𝑘  denotes the LOIF for a potential branch contingency 𝑒𝑘 . LOIF can be used 

to perform contingency ranking [55]. 

3.2.2.3 Cascading Simulation Analysis Using MATCASC 

  MATCASC is an open-source MATLAB based tool, that evaluates the conse-

quence of cascading failures in power systems due to branch overloads [76]. The use of 

MATCASC for cascade failure analysis is explained here with the help of a flowchart in 

Fig. 3.3(a).  Any branch outage is considered an input to MATCASC as an initial triggering 

contingency. Following this initial outage, it solves DC power flows to check for overloads 

beyond the emergency rating of transmission lines. The transmission lines that have over-

loads beyond the emergency rating are tripped following which a DC power flow is solved 

again. The steps are repeated unless there are no successive overloads in the system. At the 

end of the cascade, the power system might have already been split into multiple islands 

due to the branch outages at different stages of the cascade, as shown in Fig. 3.3(b). If the 

total power supplied is greater than the power demand of an island, there is no unsatisfied 
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power demand in the island. On the other hand, if the total power supply is less than the 

total demand, then a fraction of the power is not satisfied in the island. Therefore, to find 

the contingencies that will trigger a cascade and result in unsatisfied power demand, every 

possible initial triggering branch outage is evaluated in MATCASC. Additional details of 

MATCASC could be found in [76].  

 
Fig. 3.3  (a) A Simplified Flowchart Showing how MATCASC Performs Cascading Failure 

Analysis for Any Initial Branch Outage, and (b) Formation of Different Islands at the End 

of the Cascade 

3.2.2.4 Comparative Study on the IEEE 118-bus Test System 

 The output of the proposed FT algorithm is compared with those obtained from 

two power system vulnerability assessment techniques, namely, the metrics developed in 

[53] and [55] (described in the sub-sections 3.2.2.1 and 3.2.2.2, respectively). The analysis 

was performed on the IEEE 118-bus system for the same sequence of outages that were 

described in Table 3.1. Further, in order to validate the severity of different contingencies 
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identified by the FT, an independent cascading failure simulation was run in MATCASC 

(discussed in sub-section 3.2.2.3). The amount of load shed at the end of the cascade indi-

cates the severity of the contingency. The results of the comparison are shown in Table 3.2. 

Table 3.2 Ranking of Contingencies and Cascading Analysis in IEEE 118-bus Test 

System After Different Outages 

 

Event 

Cascading Analysis Rank by  

[53] 

Rank by  

[55] New 

contingency 

Load shed 

Base-case 26-30 

(345 kV line) 

12.20% 20 42 

Outage 1 (15-33) - - - - 

Outage 2 (19-34) - - - - 

Outage 3 (37-38) 42-49 

(138 kV line) 

29.87% 16 58 

Outage 4 (49-66) - - - - 

 

Outage 5 (47-69) 

64-65 

(345 kV line) 

28.92% 6 167 

63-59 

(345/138 kV 

transformer) 

28.26% 8 70 

63-64 

(345 kV line) 

28.26% 9 73 

56-59 

(138 kV line) 

25.27% 15 119 

 

Column 2 of Table 3.2 shows the contingencies identified by MATCASC that result 

in load shed as different events manifest in the IEEE 118-bus system. The ranking of these 

load-shed-causing-contingencies, obtained by the techniques developed in [53] and [55] 

are provided in Columns 4 and 5, respectively. It can be observed from Table 3.2 that the 

contingencies that result in loss of load were not the top ranked contingencies identified by 

the metrics developed in [53] and [55]. For instance, after the fifth outage, if any of the 

four new contingencies identified in Column 2 were to occur (as the sixth outage), then it 

would result in load shedding in excess of 25%. However, none of these four high load-
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shed-causing-contingencies appeared in the top four ranked contingencies of [53] or [55]. 

On the other hand, all the load-shed-causing-contingencies were detected as special assets 

by the proposed FT algorithm (compare Column 2 of Table 3.2 with Column 2 of Table 

3.1). This shows the usefulness of the FT in detecting critical contingencies. 

3.2.3 Application of the FT Considering Different Asset Ratings  

 

In the Section 3.2.2 the detailed performance of FT considering normal (or contin-

uous) transmission asset (line or transformer) ratings were presented for the IEEE 118-bus 

test system. However, the power carrying capacities of transmission lines are influenced 

by several factors such as the air temperature, solar radiation, wind magnitude and wind 

direction, etc. [103]-[106]. The proposed FT algorithm is generic enough to detect saturated 

cut-sets based upon asset ratings determined by any criterion. To demonstrate this, we pre-

sent the application of the FT for two different scenarios in the IEEE 118-bus test system: 

(a) Scenario 1: asset ratings with 95% of the normal value, and (b) Scenario 2: asset ratings 

with 105% of the normal value.  

Column 1 of Table 3.3 lists the sequential outages. Columns two through four pre-

sent the results of Scenario 1, whereas columns five through seven present the results cor-

responding to that of Scenario 2. Comparing the FT results for the two scenarios after dif-

ferent outages we observe that the violations detected by the FT algorithm are more severe 

for Scenario 1 as compared to Scenario 2 (because of more conservative asset ratings used 

in the former). For instance, the number of special assets identified by the FT is more in 

Scenario 1 than in Scenario 2 (compare the second and fifth columns of Table 3.3). Further, 

the transfer margin for the outage of a special asset on the respective limiting critical cut-
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set is higher for Scenario 1 as compared to Scenario 2 (compare the fourth and seventh 

columns of Table 3.3). 

Table 3.3: Performance of the FT Considering Different Transmission Asset Ratings 

During Multiple Outages 

Event 

Scenario 1: 

Rating: 95%×Normal 

Scenario 2: 

Rating: 105%×Normal 

New 

Special 

Asset 

Limiting  

Critical  

Cut-set 

Transfer 

margin 

(MW) 

New 

Special 

Asset 

Limiting 

Critical  

Cut-set 

Transfer 

margin 

(MW) 

Base-case 26-30 
{26-30,25-

27,25-23} 
-99 

- - - 

Outage 1:  

(15-33) 
- - - 

- - - 

Outage 2: 

(19-34) 
- - - 

- - - 

Outage 3: 

 (37-38) 
42-49 

{42-49, 

44-45} 
-197 

42-49 {42-49, 

44-45} 

-175 

Outage 4: 

(49-66) 

63-59 

{63-59,61-59, 

60-59, 69-49, 
47-69} 

-15 

 

 
 

- 

 

 
 

- 

 

 
 

- 

63-64 

{63-64,61-59, 

60-59, 69-49, 

47-69} 

-15 

64-65 

{64-65,62-66, 

66-67, 49-69,47-
69} 

-43 

Outage 5: 
(47-69) 

63-59 
{63-59,61-59, 
60-59, 69-49} -224 

 
63-59 

{63-59,61-
59, 60-59, 

69-49} 

 
-158 

63-64 

{63-64,61-59, 

60-59, 69-49} -224 

 

63-64 

{63-64,61-

59, 60-59, 

69-49} 

 

-158 

64-65 

{64-65,62-66, 

66-67, 49-69} -252 

 

64-65 

{64-65,62-

66, 66-67, 
49-69} 

 

-186 

56-59 
{59-56, 59-54, 
59-55, 69-49} 

-97 

 

56-59 

{59-56, 59-

54, 59-55, 

69-49} 

 

-31 

59-60 
{60-59,61-59, 

63-59, 69-49} 
-6 

   

59-61 
{61-59,60-59, 

63-59, 69-49} 
-6 

49-69 
{69-49,61-59, 
63-59, 60-59} 

-6 
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 3.3 Time Comparisons of FT and RTCA on Different Test Systems 

In this section, a statistical comparison of the computation time of the FT algorithm 

(after an outage) and traditional RTCA is presented for test systems of varying size (IEEE 

118-bus, Texas 2000-bus, Polish 3375-bus, and the 9241-bus European transmission sys-

tems). Both the FT and RTCA were implemented in MATLAB on the same computer 

(Core i7, 3.60 GHz CPU processor with 16 GB RAM). For each test system the computa-

tion time of the FT and RTCA was monitored for different transmission outages (top 100 

of the highest loaded transmission assets were considered as possible contingencies). Fig. 

3.4 compares the computation time of the FT and RTCA for the four specified test systems. 

It can be clearly observed that the FT is at least an order of magnitude faster than an ex-

haustive RTCA. Further, it can be observed that the FT takes slightly less time for the 3375-

bus system as compared to the 2000-bus system. This happens because the computation 

time of FT not only depends on the system size, but also the topological structure of the 

network and the current operating condition of the system.   

 
Fig. 3.4 Comparative Analysis of the Computation Time of the FT and RTCA for Test 

Systems of Different Sizes 
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3.4 Application of FT on a 17,941-bus Model of Western Interconnection  

The proposed FT algorithm is applied on a 17,941-bus model of the Western Inter-

connection to test the scalability and computational speed of the proposed network analysis 

scheme. Sub-section 3.4.1 presents some statistics of graph theory-based FT and UPS 

which highlight the computational advantage of the proposed methodology. Sub-section 

3.4.2 describes how the proposed network analysis scheme provides useful information 

when a sequence of outages occurs in this system. 

3.4.1 Computational Efficiency of the Graph-theory Based Network Analysis 

It takes 6 min to run an exhaustive N-1 FT for this system in the base-case scenario 

on a computer with Core i7, 3.60 GHz CPU processor and 16 GB RAM. When FT evalu-

ates branch 𝑒𝑙  for an outage, the indirect paths of 𝑒𝑙  are traversed by BFS. However, the 

saturation of the set of indirect paths may occur when a small number of indirect paths are 

traversed by the graph theory-based FT. Moreover, since BFS always identifies the shortest 

path from the source to the sink, the number of branches contained in an indirect path 

would be relatively small. For every non-radial branch of this system, the number of indi-

rect paths required to saturate the graph and the maximum number of branches contained 

in an indirect path is computed. The statistics of the FT algorithm is summarized in Fig. 

3.5(a) and Fig. 3.5(b). 



 

 

68 

 
Fig. 3.5 (a) Histogram of Number of Indirect Paths Traversed by the Graph Theory-Based 

FT, and (b) Histogram of Maximum Number of Branches Contained in an Indirect Path 

Fig. 3.5(a) plots the histogram for the number of indirect paths utilized by the BFS 

to saturate the latent capacity graph. The largest number of indirect paths required was 58. 

Fig. 3.5(b) plots the histogram of maximum number of branches contained in an indirect 

path traced by the BFS; the maximum was 111. Thus, the histogram plots demonstrate that 

the graph theory-based FT essentially uses a small subgraph to detect post-contingency 

cut-set saturation; this is the fundamental reason why the graph theory-based FT is com-

putationally efficient. Moreover, it is important to note that in the base-case scenario all 

transmission assets were evaluated by the FT. But during a sequence of outages only a 

shortlisted number of transmission assets will be evaluated by the FT (utilizing the UPS 

and SA algorithms), which will further increase the computation speed.  
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3.4.2 A Case-study During a Series of Outages on Western Interconnection 

This sub-section demonstrates the usefulness and scalability of the proposed ap-

proach through a N-1-1 event analysis of this system. The loss of 500 kV Hassayampa-

North Gila (H-NG) transmission line was the first event, while the second event was the 

loss of 230/92 kV Coachella Valley transformers. Before the analysis was done for the 

outage of the events, it took approximately 0.5 s to build the flow graph and the latent 

capacity graph for the base-case. As mentioned earlier, it takes approximately 6 min to run 

FT on all transmission assets in the base-case. Whether events 1 and 2 resulted in any 

additional special asset was investigated as follows:   

Event 1: Once the 500 kV H-NG transmission line was lost, graph theory-based UPS took 

only 0.20 s to reroute the flow to obtain a new flow graph. The SA scheme took 0.06 s to 

identify 271 branches that were to be examined by FT for this new graph. Time required 

by FT to examine all the 271 branches for an outage was 32 s. Among the 271 branches, 4 

branches failed FT and were classified as special assets as shown in Table 3.4. For the 4 

special assets, the FT found the corresponding limiting  critical cut-set, 𝐾𝑐𝑟𝑖𝑡; |𝐾𝑐𝑟𝑖𝑡| in  

Table 3.4 denotes the number of branches contained in 𝐾𝑐𝑟𝑖𝑡. Moreover, FT provided in-

formation regarding the impact of the loss of a special asset on the associated limiting 

critical cut-set. For example, if the transmission corridor 936-1192 is lost next, the limiting 

critical cut-set would be saturated by a margin of 441 MW. The total time required to per-

form this network analysis and identify all the limiting critical cut-sets after the outage of 

H-NG was 32.26 s (i.e., total time taken by UPS, SA, and FT). On the other hand, if FT 

were to be run on all transmission assets (as was done in the base-case), the time required 
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would be 6 min. Therefore, intelligently performing FT on a shortlisted set of transmission 

assets reduced the computation time from 6 min to 32.26 s. 

Table 3.4 Application of Graph-Theory Based Network Analysis in the Western 

Interconnection  

 

Event 2: When 230/92 kV Coachella Valley transformers are tripped, the UPS took only 

0.06 s to obtain the updated network flow solution. Time required by the SA scheme to 

shortlist the branches to be evaluated by FT was 0.07 s; 82 new branches were shortlisted. 

Time required by FT to examine all the 82 shortlisted branches was 10 s. Among the 82 

branches examined, 10 branches failed FT and were classified as special assets (see Table 

3.4). Total time required to identify the set of special assets after the outage of Coachella 

Events  

Time 

of 

UPS 

SA for FT FT on shortlisted assets 

 
 

Total 

Time 

 

#Bran

ch 
Time  

New special 

assets 
|𝐾𝑐𝑟𝑖𝑡 | 

𝑇𝑙  
(MW) 

Time  

 

Line out-

age: Has-

sayampa-

North 

Gila 

0.20 s 271 0.06 s 

936-1192  

(500 kV line) 
57 −441  

32 s 

(0.20+0

.06+32) 

=32.26 

s 

1192-1217 

(500 kV line) 
49 −1258  

2873-2902 

(500 kV line) 
18 −419 

2902-2903 

(500/230 kV 

transformer) 

21 −309 

Trans-

former 

outage: 

Coachell

a Valley 

0.06 s 82 0.07 s 

2416-2488 

(92 kV line) 
8 −35.35  

10 s 

(0.06+0

.07+10) 

= 

10.13 s 

2421-2487 

(230 kV line) 
2 −2 

2421-3293 

(230 kV line) 
2 −2 

2438-2606 

(230 kV line) 
5 −55 

2487-2488 

(230/90 kV 

transformer) 

8 −35 

2712-2878 

(230 kV line) 
9 −35 
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Valley transformers was 10.13 s. Therefore, it is again observed that the use of UPS and 

SA reduces the time required by the FT analysis after an outage. 

3.5 Practical Utility of the FT Algorithm 

After the 2011 U.S. Southwest blackout, the FERC reported the following finding 

[36]: “Affected TOPs (transmission operators) have limited visibility outside their systems, 

typically monitoring only one external bus. As a result, they lack adequate situational 

awareness of external contingencies that could impact their systems. They also may not 

fully understand how internal contingencies could affect SOLs (system operating limits) in 

their neighbors’ systems.” The recommendation of FERC to TOPs was to “review their 

real-time monitoring tools, such as state estimator and RTCA, to ensure that such tools 

represent critical facilities needed for the reliable operation of BPS (bulk power system)”.  

Now, modeling all “critical facilities” over a large area (across different utilities) 

could significantly increase the number of contingencies to be evaluated by RTCA, which 

would then increase the solution time considerably [40], [46]. In this regard, the ability of 

the proposed network analysis to analyze the effects of any outage on very large systems 

and provide meaningful quantifiable information in a matter of seconds gives it a distinct 

advantage. Moreover, the special assets detected by the FT can be suitable candidates for 

detailed analysis by a more precise CA tool. Thus, the proposed research can complement 

real-time operations by extending an operator’s visibility to external contingencies, while 

alleviating the associated computational burdens. 
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3.6 The Limitation and Contribution of the FT algorithm 

3.6.1 FT is not Guaranteed to Detect all Post-contingency Branch Overloads 

As per the FT when all the indirect paths do not have sufficient capacity to reroute 

the power flowing through a branch, it implies that it would inevitably result in post-con-

tingency branch overloads. However, the converse is not true. This is illustrated using the 

test system shown in Fig. 3.6, and the corresponding flows shown in Fig. 3.7 and Fig. 3.8. 

Fig. 3.7(a) presents a DC power flow solution, when 100 MW of power is injected 

at bus 1, and 100 MW is withdrawn at bus 2 (Scenario 1). The numbers in non-bold fonts 

indicate flows, while the numbers in bold font denote ratings. The proposed FT algorithm 

identifies branch 1-2 as a special asset because the indirect paths of branch 1-2 do not have 

sufficient capacity to reroute the flow through the direct path, namely, branch 1-2. A post-

contingency DC power flow shown in Fig. 3.7(b) validates that such an outage results in 

overloads along Indirect path 1.  

Fig. 3.8(a) presents a DC power flow solution, when 85 MW of power is injected 

at bus 1, and the same is withdrawn at bus 2 (Scenario 2). In this scenario, the proposed FT 

algorithm does not identify branch 1-2 as a special asset because the set of indirect paths 

have sufficient capacity to reroute the flow of the direct path. However, a post-contingency 

DC power flow solution shown in Fig. 3.8(b) indicates that the Indirect path 1 is still over-

loaded, due to lower impedance of Indirect path 1 compared to Indirect path 2. 
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Fig. 3.6 Topology of a Sample 6-bus Power System (Branch Impedances are Represented 

in Terms of a Variable 𝑧) 

 
Fig. 3.7 Scenario 1-(a) A DC Power Flow Solution in Base-case, and (b) A DC Power Flow 

Solution for the Outage of Branch 1-2 

 
Fig. 3.8 Scenario 2-(a) A DC Power Flow Solution in Base-case, and (b) A DC Power Flow 

Solution for the Outage of Branch 1-2 
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From this illustration, the following conclusions can be drawn: when the set of in-

direct paths do not have the capacity to reroute the power flowing through the direct path 

(see Fig. 3.7), no additional information is required to conclude that there would be a post-

contingency overload. The FT takes advantage of this observation to identify violations 

quickly. At the same time, the FT is not able to capture the overload occurring in Fig. 3.8. 

This is because the graph theory-based network flow algorithm ignores the effects of im-

pedances when creating the flows. Thus, the proposed approach may not detect all possible 

post-contingency branch overloads. 

3.6.2 FT is Guaranteed to Detect all Post-contingency Cut-set Saturation 

The discussion presented in Section 3.6.1 reveals that the graph theory-based FT is 

not guaranteed to identify all contingencies that create post-contingency branch overloads. 

However, the FT does guarantee detection of all contingencies that create a saturated cut-

set in the network. This is explained as follows. Let us examine if the outage of branch 𝑒𝑙  

of Fig. 3.9 would create a saturated cut-set in the system using the proposed FT. Branch 𝑒𝑙  

could be associated with multiple cut-sets in the system. With reference to Fig. 3.9 the 𝑖𝑡ℎ 

cut-set associated with branch 𝑒𝑙  is denoted as follows: 

                        𝐾𝑖 = {𝑒𝑙 , 𝑒𝑙1 , 𝑒𝑙2 , … , 𝑒𝑙(𝑘−1)}    for 1 ≤ 𝑖 ≤  𝑥                                            (3.6) 

where, 𝑘 is the total number of branches in cut-set 𝐾𝑖 , and 𝑥 is the total number of cut-sets 

associated with branch 𝑒𝑙 . When the transfer margin, 𝑇𝑙 , computed by the FT is negative it 

implies that the outage of branch 𝑒𝑙  saturates at least one cut-set, among the 𝑥 cut-sets that 

branch 𝑒𝑙  is associated with. On the other hand, if the transfer margin, 𝑇𝑙 , computed by the 

FT is positive, it implies that the outage of branch 𝑒𝑙  does not saturate any of the 𝑥 cut-sets 
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that it is associated with. Therefore, the FT will not miss a single contingency that would 

create a saturated cut-set. This is further illustrated using the test system shown in Fig. 

3.10, and the corresponding flows shown in Fig. 3.11 and Fig. 3.12. 

 
Fig. 3.9  𝐾𝑖  is the 𝑖𝑡ℎ Cut-set (Among 𝑥 Cut-sets) Associated with Branch 𝑒𝑙  that Separates 

the Network into Two Disjoint Clusters 

Fig. 3.11 presents a DC power flow solution when the total load and generation in 

the system is 594 MW (Case 1). The FT algorithm finds that the outage of 3-4 saturates 

cut-set 𝐾2 ={3-4,3-5,1-5} by 31 MW. To validate this inference, the power transfer capa-

bility across each cut-set associated with branch 3-4 is enumerated from the DC power 

flow solution. As shown in Fig. 3.11, branch 3-4 is associated with four cut-sets: 𝐾1,𝐾2, 𝐾3, 

and 𝐾4. The power transfer capabilities across the four cut-sets of the test system when 

branch 3-4 is lost are summarized in Table 3.5, where 𝑃𝐾 , denotes the total flow that is to 

be transferred across the cut-set, and 𝑅𝐾  denotes the total capacity of all the branches be-

longing to the cut-set (excluding branch 3-4 itself).  It is observed that 𝑃𝐾  is greater than 

𝑅𝐾  only for cut-set 𝐾2 by 31 MW.  This verifies that for Case 1, the outage of branch 3-4 

would saturate cut-set 𝐾2 by 31 MW. 
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Fig. 3.10 Topology of a Sample Five-bus Power System (Branch Impedances are Repre-

sented in Terms of a Variable 𝑧) 

 
Fig. 3.11 Power Transfer Across Four Different Cut-sets (𝐾1, 𝐾2,𝐾3, 𝐾4) Associated with 

Branch 3-4 for Case 1 

Table 3.5 Power Transfer Capacity Across Different Cut-sets in the 5-bus Test System 

Associated With Branch 3-4 

 

Cut-set 

Case 1 Case 2 

Flow 

 (𝑃𝐾) 

Capacity 

(𝑅𝐾) 

Flow  

(𝑃𝐾) 

Capacity 

 (𝑅𝐾) 

𝐾1 231 MW 250 MW 189 MW 250 MW 

𝐾2 231 MW 200 MW 189 MW 200 MW 

𝐾3 594 MW 820 MW 486 MW 820 MW 

𝐾4 264 MW 820 MW 216 MW 820 MW 
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Fig. 3.12 presents a DC power flow solution when the total load and total generation 

of the system is 486 MW (Case 2). In this case, the FT algorithm detects that the indirect 

paths of branch 3-4 have positive transfer margins indicating that they have the capacity to 

carry additional power, if need be. To validate this observation, the power transfer capa-

bility across each cut-set associated with branch 3-4 is enumerated from the DC power 

flow solution (see Table 3.5). It is observed that 𝑃𝐾  is less than 𝑅𝐾  for 𝐾1, 𝐾2, 𝐾3, 𝐾4. This 

proves that for Case 2, outage of branch 3-4 does not saturate any cut-set that is associated 

with it. 

 
Fig. 3.12 Power transfer Across Four Different Cut-sets (𝐾1, 𝐾2,𝐾3, 𝐾4) Associated with 

Branch 3-4 for Case 2 

Furthermore, note that in Fig. 3.11, the power flowing through different branches 

of the limiting critical cut-set, 𝐾2 ={3-4,3-5,1-5}, are not in the same direction. This im-

plies that cut-set 𝐾2 is not a coherent cut-set (in a coherent cut-set power flows in the same 

direction in all the branches of the cut-set [92]). Therefore, such types of critical 
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interconnections cannot be detected by the algorithm presented in [92]. It is also important 

to highlight here that enumerating the power transfer capability across different cut-sets by 

a DC power flow solution requires previously defining all the cut-sets. On the other hand, 

the graph theory-based FT can investigate the power transfer capability of different cut-

sets without the cut-sets being pre-defined. This is a unique advantage of the proposed 

network analysis, because listing all possible cut-sets for a large power network containing 

thousands of buses especially during extreme event scenarios is not practically feasible. 
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CHAPTER 4 

MITIGATION OF SATURATED CUT-SETS IN POWER SYSTEMS 

This Chapter presents a two-component methodology to enhance the reliability of 

large power systems during a series of outages. The proposed research is specifically aimed 

at minimizing the risk of cascade triggering contingencies in power systems by enhancing 

the N-1 security after an outage has occurred. The first component demonstrates how the 

detection and mitigation schemes for alleviating saturated cut-sets can be integrated with 

the traditional RTCA-SCED framework. As such, this component enhances the scope of 

existing methods of power system security assessment. The second component proposes 

an alternative, computationally efficient approach to secure power systems against post-

contingency cut-set saturation quickly. The two components are implemented in parallel 

with the understanding that the solution of the second component will be used only when 

the more comprehensive first component cannot provide a solution before the next redis-

patch occurs. 

4.1 RTCA and SCED for Real-time Power System Operations 

RTCA and SCED are usually employed by power system operators to operate the 

system in a secure manner [27]-[28]. Fig. 4.1 shows a schematic of state-of-the-art RTCA-

SCED framework that takes its inputs from the state estimator. SCED finds a least cost 

redispatch solution to eliminate the potential post-contingency branch overloads identified 

by RTCA. The solution obtained by SCED is fed back into the RTCA to ensure that the 

new solution does not create additional overloads. When no additional violations are de-

tected, the redispatch solution is implemented in the power system. 
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It was explained in Section 1.2.2 that a subset of the contingencies (selected from 

operator experience or day ahead studies) are evaluated by RTCA. As the contingency list 

is not exhaustive, it is possible that an important contingency is left out from this list, due 

to which it is not detected by RTCA (and hence not corrected by SCED) until it is too late. 

This is a serious limitation especially during extreme event scenarios when successive out-

ages occur quickly. Further, when multiple outages have already occurred, a larger number 

of post-contingency overloads manifest, because the system is in a stressed operating con-

dition. Therefore, SCED takes longer time to find a solution due to the increased number 

of security constraints that it has to model. Nevertheless, the SCED employs different 

rounding conventions of PTDFs and approximations in the dispatch model to enhance the 

computation speed [107]. The increased solution time under extreme scenarios might en-

courage power system operators to use larger approximations in the model, which would 

then affect the solution quality. Thus, both the scope as well as the speed of traditional 

power system security assessment must be enhanced during multiple outage scenarios. 

 
Fig. 4.1: RTCA and SCED for Real-time Power System Operations 

4.2 The First Component of the Proposed Methodology 

The proposed first component aims to make the power system secure against post-

contingency cut-set saturation as well as critical branch overloads by integrating the results 
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from FT and RTCA to create an integrated corrective action (iCA) as shown in Fig. 4.2. 

The objective of the iCA is to find a least cost re-dispatch solution to ensure that the critical 

contingencies detected by RTCA do not create post-contingency branch overloads and the 

special assets identified by FT do not create saturated cut-sets. During multiple outage sce-

narios, it is possible that a re-dispatch solution is not able to mitigate all the identified 

overloads. Under such circumstances, controlled load shedding will be implemented. Since 

disconnecting the loads incur high economic and social costs [108], load-shedding will be 

used as the last resort during redispatch. 

 
Fig. 4.2 The First Component: The Results from RTCA and FT are Used to Create an 

Integrated Corrective Action (iCA) 

Consider that the generator at bus 𝑖 ∈ 𝐺 in the system is associated with a quadratic 

cost curve as shown below: 

            𝐹𝑖(𝐺𝑖) = 𝑎𝑖 + 𝑏𝑖𝐺𝑖 + 𝑐𝑖𝐺𝑖
2                                                                                        (4.1) 

where, 𝐺𝑖 is the power produced (in MW) by the generator at bus 𝑖, and 𝑎𝑖 , 𝑏𝑖, and 𝑐𝑖  are 

the fixed cost coefficient (in $),  the linear cost coefficient (in $/MW), and the quadratic 

cost coefficient (in $/MW2), respectively, for the corresponding generator. Let 𝐺𝑖
𝑜 and 𝐺𝑖

𝑛 
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denote the power produced before and after the new dispatch. The change in generation 

cost as a function of change in power generation, ∆𝐺𝑖(= 𝐺𝑖
𝑛 − 𝐺𝑖

𝑜), is given by, 

∆𝐹𝑖(∆𝐺𝑖) = {𝑎𝑖 + 𝑏𝑖𝐺𝑖
𝑛 + 𝑐𝑖(𝐺𝑖

𝑛)2} − {𝑎𝑖 + 𝑏𝑖𝐺𝑖
𝑜 + 𝑐𝑖(𝐺𝑖

𝑜)2} 

     = 𝑏𝑖(𝐺𝑖
𝑛 − 𝐺𝑖

𝑜) + 𝑐𝑖{(𝐺𝑖
𝑛)2 − (𝐺𝑖

𝑜)2} 

     = 𝑏𝑖(𝐺𝑖
𝑛 − 𝐺𝑖

𝑜) + 𝑐𝑖(𝐺𝑖
𝑛 + 𝐺𝑖

𝑜)(𝐺𝑖
𝑛 − 𝐺𝑖

𝑜)      

     = 𝑏𝑖(∆𝐺𝑖) + 𝑐𝑖(2𝐺𝑖
𝑜 + ∆𝐺𝑖)(∆𝐺𝑖) 

                                       = 𝑏𝑖(∆𝐺𝑖) +  (2𝑐𝑖𝐺𝑖
𝑜 + 𝑐𝑖∆𝐺𝑖)∆𝐺𝑖                                        

     = 𝑐𝑖∆𝐺𝑖
2 + (𝑏𝑖 + 2𝑐𝑖𝐺𝑖

0)∆𝐺𝑖                                                     (4.2) 

where, 𝑑𝑖 = (2𝑐𝑖𝐺𝑖
𝑜 + 𝑏𝑖). Now, the cost of shedding the load at bus 𝑗 ∈ 𝐿 can be written 

as follows: 

                          ∆𝐹𝑗(∆𝐿𝑗) = 𝑚𝑗∆𝐿𝑗                                                                                    (4.3) 

where, ∆𝐿𝑗 denotes the amount of load-shed, and 𝑚𝑗 is the cost coefficient of load-shed (in 

$/MW); 𝑚𝑗 is chosen to be significantly higher compared to the generator cost coefficients, 

because the goal is to use load-shed only when generation redispatch alone cannot mitigate 

all violations. The convex optimization problem that minimizes the total cost of change in 

generation and load-shed is given by: 

Minimize: ∑ (𝑐𝑖∆𝐺𝑖
2 + 𝑑𝑖∆𝐺𝑖)

∀𝑖∈𝐺

+ ∑(𝑚𝑗∆𝐿𝑗)

∀𝑗∈𝐿

                                                        (4.4) 

The constraints to be applied to (4.4) are as follows. 

4.2.1 Branch Power Flows 

To model the branch power flow limits PTDFs are used. It has been explained in 

Section 1.2.3 that PTDFs are linear sensitivity factors that approximate the change in flow 
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through a branch caused by a change in power injection in the system. Let 𝑃𝑇𝐷𝐹𝑙,𝑖
𝑟  denotes 

the change in flow in branch 𝑒𝑙 , for one unit of power added at bus 𝑖 and one unit of power 

withdrawn from the reference bus of the system. Then, the change in flow, ∆𝑓𝑙, through 

𝑒𝑙  for the change in bus power injections can be obtained as follows: 

                        ∆𝑓𝑙 = ∑ 𝑃𝑇𝐷𝐹𝑙,𝑖
𝑟

∀𝑖 ∈ 𝐺

∆𝐺𝑖 − ∑ 𝑃𝑇𝐷𝐹𝑙,𝑗
𝑟

∀𝑗 ∈ 𝐿

∆𝐿𝑗                                       (4.5) 

Consequently, the constraint equation for the maximum and minimum power flows is given 

as follows: 

∑ 𝑃𝑇𝐷𝐹𝑙,𝑖
𝑟 ∆𝐺𝑖

∀𝑖∈𝐺

− ∑ 𝑃𝑇𝐷𝐹𝑙,𝑗
𝑟 ∆𝐿𝑗

∀𝑗∈𝐿

≤ 𝑓𝑙
𝑚𝑎𝑥 − 𝑓𝑙

0 , ∀𝑒𝑙 ∈ 𝐸                              (4.6) 

∑ 𝑃𝑇𝐷𝐹𝑙,𝑖
𝑟 ∆𝐺𝑖

∀𝑖∈𝐺

− ∑ 𝑃𝑇𝐷𝐹𝑙,𝑗
𝑟 ∆𝐿𝑗

∀𝑗∈𝐿

≥ 𝑓𝑙
𝑚𝑖𝑛 − 𝑓𝑙

0, ∀𝑒𝑙 ∈ 𝐸                                        (4.7) 

where, 𝑓𝑙
𝑜, 𝑓𝑙

𝑚𝑎𝑥 and 𝑓𝑙
𝑚𝑖𝑛 denote the original power flow, maximum power flow limit, 

and the minimum power flow limits, respectively. 

4.2.2 Power Injections 

The maximum and minimum power production constraints for the generators are 

given as follows: 

               ∆𝐺𝑖 ≤ 𝐺𝑖
𝑚𝑎𝑥 − 𝐺𝑖

0 ,    ∀𝑖 ∈ 𝐺                                                                            (4.8) 

               ∆𝐺𝑖 ≥ 𝐺𝑖
𝑚𝑖𝑛 − 𝐺𝑖

0  ,    ∀𝑖 ∈ 𝐺                                                                             (4.9) 

where, 𝐺𝑖
𝑜, 𝐺𝑖

𝑚𝑎𝑥, and 𝐺𝑖
𝑚𝑖𝑛 denote the original power production, maximum power pro-

duction and minimum power production of the generator at bus 𝑖, respectively. Similarly, 
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the constraints for the minimum and maximum power demand at a load bus 𝑗 are given as 

follows: 

              ∆𝐿𝑗 ≤ 𝐿𝑗
𝑚𝑎𝑥 − 𝐿𝑗

0, ∀𝑗 ∈ 𝐿                                                                        (4.10) 

               ∆𝐿𝑗 ≥ 𝐿𝑗
𝑚𝑖𝑛 − 𝐿𝑗

0,      ∀𝑗 ∈ 𝐿                                                                            (4.11) 

4.2.3 Conservation of Energy 

To ensure the conservation of energy, the aggregate change in generation dispatch 

must equal the net change in power demand in the system. 

                             ∑ ∆𝐺𝑖
∀𝑖∈𝐺

= ∑ ∆𝐿𝑗
∀𝑗∈𝐿

                                                                            (4.12) 

4.2.4 Security Constraints 1: Post-contingency Branch Flows 

The post-contingency branch flow constraints can be efficiently modeled with the 

LODFs [109]. Consider that LODF𝑙,𝑘 represents the percentage of change in flow through 

branch 𝑒𝑘  that will appear on branch 𝑒𝑙 for an outage of branch 𝑒𝑘  (refer to Section 1.2.3). 

The post-contingency flow through 𝑒𝑙  for a potential outage of branch 𝑒𝑘  is given as:  

                        𝑓𝑙
𝑐 = 𝑓𝑙

𝑛 + 𝐿𝑂𝐷𝐹𝑙,𝑘𝑓𝑘
𝑛                                                                                (4.13) 

where, 𝑓𝑙
𝑛 and 𝑓𝑘

𝑛 denote the new flows corresponding to the iCA solution through 

branches 𝑒𝑙  and 𝑒𝑘  respectively. Equation (4.13) could be re-written as follows: 

                 𝑓𝑙
𝑐 = (𝑓𝑙

0 + ∆𝑓𝑙) + 𝐿𝑂𝐷𝐹𝑙,𝑘(𝑓𝑘
0 + ∆𝑓𝑘)                                                         (4.14) 

where, 𝑓𝑙
0 and 𝑓𝑘

0 denote the original flows through branches 𝑒𝑙  and 𝑒𝑘  respectively. Sim-

ilarly, ∆𝑓𝑙 and ∆𝑓𝑘 represent the incremental change in branch-flows  𝑒𝑙  and 𝑒𝑘  as obtained 

from the redispatch. Substituting ∆𝑓𝑙 and ∆𝑓𝑘 from (4.5) into (4.14), and using the 
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respective branch flow limits, we obtain the equations for the post-contingency branch flow 

constraints: 

{
 
 

 
 ∑(𝑃𝑇𝐷𝐹𝑙,𝑖

𝑟 +  𝐿𝑂𝐷𝐹𝑙,𝑘𝑃𝑇𝐷𝐹𝑘,𝑖
𝑟 )∆𝐺𝑖

∀𝑖∈𝐺

−

∑(𝑃𝑇𝐷𝐹𝑙,𝑗
𝑟 +  𝐿𝑂𝐷𝐹𝑙,𝑘𝑃𝑇𝐷𝐹𝑘,𝑗

𝑟 )∆𝐿𝑗
∀𝑗∈𝐿 }

 
 

 
 

≤ 𝑓𝑙
𝑚𝑎𝑥 − (𝑓𝑙

0 + 𝐿𝑂𝐷𝐹𝑙,𝑘𝑓𝑘
0)   

∀𝑒𝑘 ∈ 𝐸𝑣  , ∀𝑒𝑙 ∈ 𝐸    (4.15) 

{
 
 

 
 ∑(𝑃𝑇𝐷𝐹𝑙,𝑖

𝑟 +  𝐿𝑂𝐷𝐹𝑙,𝑘𝑃𝑇𝐷𝐹𝑘,𝑖
𝑟 )∆𝐺𝑖

∀𝑖∈𝐺

−

∑(𝑃𝑇𝐷𝐹𝑙,𝑗
𝑟 +  𝐿𝑂𝐷𝐹𝑙,𝑘𝑃𝑇𝐷𝐹𝑘,𝑗

𝑟 )∆𝐿𝑗
∀𝑗∈𝐿 }

 
 

 
 

≥ 𝑓𝑙
𝑚𝑖𝑛 − (𝑓𝑙

0 + 𝐿𝑂𝐷𝐹𝑙,𝑘𝑓𝑘
0) 

  ∀𝑒𝑘 ∈ 𝐸𝑣  , ∀𝑒𝑙 ∈ 𝐸               (4.16) 

where, set 𝐸𝑣 contains the critical contingencies detected by RTCA. The constraints (4.15) 

and (4.16) are modeled for all post-contingency branch overloads for the critical contin-

gencies detected by RTCA [109]. 

4.2.5 Security Constraints 2: Cut-set Power Transfer 

This type of security constraints is designed for the special assets detected by the 

FT algorithm. The objective here is to reduce the total power transfer across the limiting 

critical cut-set 𝐾𝑐𝑟𝑖𝑡  by the respective transfer margin 𝑇𝑙  as follows: 

                          ∑ ∆𝑓𝑙
∀𝑒𝑙∈ 𝐾𝑐𝑟𝑖𝑡

≤ 𝑇𝑙 ,                                                                                      (4.17) 

where, ∆𝑓𝑙 denotes the change in flow through branch 𝑒𝑙 . Now, substituting ∆𝑓𝑙 from (4.5) 

to (4.17), the constraints for cut-set power transfer are obtained as follows: 

∑ ( ∑ 𝑃𝑇𝐷𝐹𝑙,𝑖
∀𝑒𝑙 ∈ 𝐾𝑐𝑟𝑖𝑡

) ∆𝐺𝑖
∀𝑖 ∈ 𝐺

− ∑ ( ∑ 𝑃𝑇𝐷𝐹𝑙,𝑗
∀𝑒𝑙 ∈ 𝐾𝑐𝑟𝑖𝑡

) ∆𝐿𝑗 ≤ 𝑇𝑙
∀𝑗 ∈ 𝐿

 

             ∀ 𝐾𝑐𝑟𝑖𝑡 ∈ 𝒦𝑐𝑟𝑖𝑡      (4.18) 
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where, the set 𝒦𝑐𝑟𝑖𝑡 contains the limiting critical cut-sets detected by the FT corresponding 

to different special assets. 

Note that a SCED essentially solves the same optimization problem as the iCA with 

all constraints modeled except the cut-set power transfer constraints [64]. By considering 

both post-contingency branch overloads as well as post-contingency cut-set saturation, the 

iCA creates a more comprehensive corrective action than the SCED. 

4.3 The Second Component of the Proposed Methodology 

The first component of Section 4.2 (or the traditional RTCA-SCED framework of 

Section 4.1) are likely to take more time because of the larger number of security con-

straints modeled in the optimization problem for iCA (or SCED). For example, if the num-

ber of critical contingencies detected by RTCA is |𝐸𝑣|, and the total number of transmission 

assets is |𝐸 |, the number of post-contingency branch flow constraints (see security con-

straints 1 in Section 4.2.4) that must be modeled is |𝐸𝑣| × |𝐸|.  For a large power system, 

containing thousands of branches, |𝐸| is large. Moreover, for a stressed power system that 

has suffered multiple outages, |𝐸𝑣| is also large. Consequently, the proposed first compo-

nent (or the RTCA-SCED) will not be able to suggest corrective actions at high speeds. 

To provide a high-speed corrective action, a second component is proposed, which 

only utilizes the results from FT to create a relaxed corrective action (rCA) as shown in  

Fig. 4.3. The rCA solves the same optimization problem (given by (4.4)), but without mod-

eling the post-contingency branch flow constraints (described by (4.15) and (4.16)). How-

ever, the cut-set power transfer constraints, described by (4.18), are retained in rCA, i.e., 

the rCA utilizes the results from FT to only secure the system against post-contingency 
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cut-set saturation. Note that if the optimization problem given by (4.4) is solved without 

modeling any security constraints (neither security constraints 1, nor security constraints 

2), it reduces to a simple DC optimal power flow (DC-OPF) problem. Therefore, by con-

sidering the cut-set power transfer constraints (security constraints 2), the rCA adds a re-

laxed criterion of power system security onto an OPF problem. 

 
Fig. 4.3 The Second Component: The Results from FT are Only Utilized to Create a Re-

laxed Corrective Action (rCA) 

If the set 𝐸𝑠 contains the special assets detected by FT, the number of cut-set power 

transfer equations modeled by the rCA is |𝐸𝑠|. Now, as the number of cut-set violations 

identified will be smaller than the total number of branches of a power system, |𝐸𝑠| ≪ |𝐸|, 

and consequently, |𝐸𝑠| ≪ |𝐸𝑣| × |𝐸|. This implies that the number of security constraints 

modeled by the rCA is significantly less compared to the number of security constraints 

modeled by the iCA (or SCED) and is the primary reason for the very high speed of rCA. 

It should however be noted that the solution obtained using the second component 

is secure against pre-contingency branch overloads and post-contingency cut-set satura-

tion, but not post-contingency branch overloads. Conversely, the solution obtained from 

the first component is secure against post-contingency cut-set saturation, as well as pre-

contingency and post-contingency branch overloads. Naturally, the solution quality of the 

first component is better than the second. 
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At the same time, it is important to note that if generation redispatch alone cannot 

provide a feasible solution with respect to a relaxed set of constraints such as those used in 

rCA, it is obvious that generation redispatch will not provide a solution with more compre-

hensive constraints such as those used in iCA. Therefore, if load-shedding is indicated by 

rCA (in the second component), it will also be indicated by iCA (in the first component); 

albeit after a longer time and the amount of load-shed will be equal or higher. Therefore, 

the ability to quickly indicate the minimum amount of load that must be shed before a 

detailed network analysis tool can provide a more accurate estimate of load-shed, is another 

advantage of the rCA. 

4.4 Real-time Application of the Proposed Two-component Methodology 

It can be realized from Sections 4.2 and 4.3 that the first and second components 

enhance the scope and speed, respectively, of traditional power system security assessment. 

The question then becomes, how should the two components be applied in real-time when 

a contingency occurs? Different entities implement SCED at different timescales for real-

time power system operations. For example, PJM Interconnection LLC implements real-

time SCED every fifteen minutes [110], whereas Midcontinent Independent System Oper-

ator (MISO) implements SCED every five minutes [111]. In this context, the real-time 

application of the two components can be explained using timelines shown in Fig. 4.4.  

With reference to Fig. 4.4, let an outage occur at time 𝑡𝑜. Following the outage, the 

first and second components should be initiated simultaneously but independently. Let the 

redispatch solution be implemented at time 𝑡𝑑, while the first and second components pro-

vide their dispatch solutions at time 𝑡𝑖 and 𝑡𝑟, respectively. If 𝑡𝑖 < 𝑡𝑑, as shown in Fig. 
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4.4(a), then the solution obtained using the first component should be used for redispatch 

as it has better quality. However, if 𝑡𝑖 > 𝑡𝑑  and 𝑡𝑟 < 𝑡𝑑, as shown in Fig. 4.4(b) then the 

solution obtained from the second component should be implemented to at least secure the 

system against post-contingency cut-set saturation. It will be shown in Section 5.2.2 that 

the computational burden of the second component is comparable to a simple DC-OPF. As 

such, the likelihood of 𝑡𝑟 > 𝑡𝑑 is small even for large power systems. However, if that still 

happens then depending on its availability, the solution from the first (preferred) or the 

second component should be implemented in the next redispatch. 

 
Fig. 4.4 (a) If the First Component Provides a Dispatch Solution Before the Scheduled 

Time for the Next Redispatch, then the Solution Obtained from the First Component 

Should be Implemented, (b) If the First Component Does not Provide a Dispatch Solution 

Before the Scheduled Time for Next Redispatch, then the Solution Obtained from the Sec-

ond Component Should be Implemented 
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4.5 The Modified Update Scheme (M-UPS) Algorithm 

The corrective actions introduced by iCA (in the first component) and rCA (in the 

second component) change the bus power injections. Therefore, FT must re-evaluate the 

system corresponding to the new bus power injections to ensure that the updated system 

does not have any additional saturated cut-sets due to a potential outage. Hence, a modi-

fied-update scheme (M-UPS) is developed in this dissertation that updates the flow and 

latent capacity graphs in a computationally efficient manner, thereby eliminating the need 

for recreating these weighted graphs from scratch. Let the sets 𝑉𝑝 and 𝑉𝑛 contain the buses 

where the power injection has increased and decreased, respectively. Increase in the net 

power injection at a bus refers to either generation being increased, or load being decreased. 

Similarly, decrease in net power injection at a bus refers to either generation being de-

creased, or load being increased. Let, ∆𝐼𝑝 and ∆𝐼𝑛 denote the increase and decrease in net 

power injection at buses 𝑣𝑝 ∈ 𝑉
𝑝 and 𝑣𝑛 ∈ 𝑉

𝑛, respectively. Now the updated flow and 

latent capacity graphs can be obtained using Algorithm IV.    

4.5.1 Illustration of the M-UPS algorithm 

The flow and the latent capacity graph of a sample 5-bus test system is shown in 

Fig. 4.5.  Let us consider that the corrective action (either iCA in the first component or 

rCA in the second component) reduces the generation at bus 4 by 30 MW and reduces load 

at bus 2 by 30 MW. The iterations of the M-UPS algorithm are explained as follows. The 

sets 𝑉𝑝 and 𝑉𝑛 of Algorithm IV are given as follows: 𝑉𝑝 ={2} 𝑉𝑛 = {4}. 
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Algorithm IV: Modified Update Scheme (M-UPS) 

i. Randomly select a source 𝑣𝑝 ∈ 𝑉
𝑝 and a sink 𝑣𝑛 ∈ 𝑉

𝑛. 

ii. Search 𝒞(𝑉, 𝐸) to traverse the shortest unsaturated path 𝒫 from 𝑣𝑝 to 𝑣𝑛 using breadth 

first search (BFS) [95]. 

iii. Use 𝒞 to find the maximum extra flow, 𝐶𝒫, that can be transferred from 𝑣𝑝 to 𝑣𝑛 through 

path 𝒫.  

iv. Obtain the flow, 𝐹𝒫 , to be injected in ℱ(𝑉, 𝐸) along path 𝒫 from 𝑣𝑝 to 𝑣𝑛 as 𝐹𝒫 =

min(∆𝐼𝑝, ∆𝐼𝑛, 𝐶𝒫).  

v. Update weights of branches in graph ℱ as 𝑓𝑙 = 𝑓𝑙 + 𝐹𝒫 , and in graph 𝒞 as 𝑐𝑙
𝐹𝑇 = 𝑐𝑙

𝐹𝑇 −

𝐹𝒫  and 𝑐𝑙
𝑇𝐹 = 𝑐𝑙

𝑇𝐹 + 𝐹𝒫 , for all branches that belong to path 𝒫. 

vi. Update net power injections at 𝑣𝑝 and 𝑣𝑛 as ∆𝐼𝑝 ≔ ∆𝐼𝑝 − 𝐹𝒫  and ∆𝐼𝑛 ≔ ∆𝐼𝑛 − 𝐹𝒫 . 

vii. Depending upon the values of ∆𝐼𝑝 and ∆𝐼𝑛, update the source and sink in accordance 

with the following logic: 

a. if ∆𝐼𝑝 ≠ 0 & ∆𝐼𝑛 ≠ 0, the source and sink are not changed. 

b.  if ∆𝐼𝑝 = 0 & ∆𝐼𝑛 ≠ 0, a new source 𝑣𝑝 is selected from set 𝑉𝑝, keeping the sink 𝑣𝑛, 

unchanged. 

c.  if ∆𝐼𝑝 ≠ 0 & ∆𝐼𝑛 = 0, a new sink is selected from set 𝑉𝑛, keeping the source 𝑣𝑝, 

unchanged. 

viii. Repeat Steps (ii) through (vii) until the total increase in power injection is compensated 

by the total decrease in power injection. 
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Fig. 4.5 (a) Flow Graph and (b) Latent Capacity Graph for a sample 5-bus test system 

Iteration 1: 

Step i: A source 𝑣𝑝 and a sink 𝑣𝑛 are to be selected from sets 𝑉𝑝 and 𝑉𝑛, respectively; so, 

𝑣𝑝 = 2 and 𝑣𝑛 = 4. ∆𝐼𝑝 and ∆𝐼𝑛 are 30 MW each.  

Step ii: The shortest unsaturated path from bus 2 to bus 4 is given as follows: 𝒫 = {2 −

3 − 4}.  

Step iii: The maximum power that could be re-routed from bus 2 to bus 4 is 270 MW; 

𝐶𝒫 =270. This can be observed from the latent capacity graph of Fig. 4.5(b). We observe 

that along path 2 − 3 − 4, branch 2-3 is limiting because it has a lower latent capacity of 

270 MW. 

Step iv: The flow 𝐹𝒫  that must be injected in the flow graph along path 𝒫 from bus 2 to bus 

4 is as follows: 

                        𝐹𝒫 = min(∆𝐼𝑝, ∆𝐼𝑛, 𝐶𝒫) = min(30,30,270) = 30                                 (4.19)  

Step v: The weights of the branches in the flow and latent capacity graphs are updated, for 

an injection of 30 MW of flow along path 𝒫 (see Fig. 4.6).  
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Fig. 4.6 (a) Updated Flow Graph, and (b) Latent Capacity Graph Obtained After a Redis-

patch Solution 

Step vi: ∆𝐼𝑝 and ∆𝐼𝑛 are updated as follows:  

                      ∆𝐼𝑝 = ∆𝐼𝑝 − 𝐶𝒫 = 30 − 30 = 0                                                                 (4.20) 

                    ∆𝐼𝑛 = ∆𝐼𝑛 − 𝐶𝒫 = 30 − 30 = 0                                                                   (4.21) 

Step v: Since, ∆𝐼𝑝 = 0 and ∆𝐼𝑛 = 0 and there are no additional buses in sets 𝑉𝑝 and 𝑉𝑛, 

the M-UPS algorithm is terminated.  

We observe from the above example that the M-UPS algorithm creates an updated 

flow graph utilizing the set of shortest indirect paths to re-route the flows. This is possible 

because in the context of detecting saturated cut-sets, the net power transfer across any 

cut-set of the network is important, rather than the individual branch flows. Since it does 

not matter which paths are selected to match the total load with generation, following a 

system redispatch, the set of shortest indirect paths can be used to re-route the flows using 

Algorithm IV. This is explained with the help of another flow solution obtained from DC 

power flow after generation dispatch.  
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Fig. 4.7(a) and 4.7(b) present the flow and latent capacity graphs obtained from a 

DC power flow. Fig. 4.8(a) and 4.8(b) compares the flow graphs obtained from the graph-

theory based M-UPS algorithm and the DC power flow solution respectively. Despite the 

individual branch flows being different, the power transfer across any cut-set of the net-

work remains constant. For example, the total power transfer across cut-set 𝐾1 is 330 MW 

in both the graphs. Consequently, if the FT is applied on any flow solution, it detects that 

the outage of branch 4-3 will not saturate cut-set 𝐾1 beyond its capacity (transfer margin 

equals zero). This is because the total power transfer capacity of cut-set 𝐾1 reduces to ex-

actly 330 MW after the outage of branch 4-3.  

 
Fig. 4.7: (a) Flow Graph, and (b) Latent Capacity Graph Obtained from a DC Power Flow 

Solution After Generation Redispatch 
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Fig. 4.8 (a) Flow Graph Obtained from the M-UPS Algorithm, and (b) Flow graph obtained 

from a DC Power Flow Solution After Generation Redispatch 

4.6 The Modified Shortlisting Assets (M-SA) Algorithm 

In the pre-outage scenario, all assets are evaluated by the FT. However, once the 

M-UPS creates an updated flow graph it may not be necessary to evaluate all assets by FT 

once again to identify the set of special assets. Hence, a modified-shortlisting asset (M-SA) 

scheme is developed in this dissertation which finds the contingencies to be evaluated by 

FT following the update of the flow graph to account for the changes in bus power injec-

tions.  

The concept of M-SA is explained with the help of Fig. 4.9. Let the M-UPS modify 

the flows through path 𝒫2 in the network to account for the changes in bus power injections. 

Also, from the FT performed in the pre-outage scenario, let it be known that the flow of 

another branch 𝑒𝑚 can be re-routed through path 𝒫1. Now, if paths 𝒫1 and 𝒫2 do not have 

any common branches as shown in Fig. 4.9(a); FT need not be repeated for branch 𝑒𝑚. This 

is because we already know from the pre-outage scenario analysis that the outage of 𝑒𝑚 

does not saturate a cut-set and the disrupted flow can be re-routed through path 𝒫1 itself. 
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However, if paths 𝒫1 and 𝒫2 have branches in common as shown in Fig. 4.9(b), then 𝑒𝑚 

must be re-evaluated by the FT, once the network flows have been updated. 

It must be noted here that the proposed M-UPS and M-SA algorithms are used to 

perform a successive FT, when the corrective actions made by the iCA and rCA change 

the bus power injections. Conversely, the original UPS and SA proposed in Sections 2.6 

and 2.7 were used to perform a successive FT following a branch outage that have occurred 

in the system. 

 
Fig. 4.9 (a) Updating the Flows in the Network for a Change in the Power Injections Does 

not Involve any Branch in the Indirect Paths of Branch 𝑒𝑚; (b) Updating the Flows in the 

Network for a Change in the Power Injections Involves Branches in the Indirect Paths of 

Branch 𝑒𝑚 

4.6.1 Illustration of the Modified Shortlisting Assets (M-SA) algorithm 

Fig. 4.10 shows the original flow graph of a sample 7-bus power system. Let the 

corrective action schemes (either iCA or rCA) sheds 20 MW of load at bus 1 and reduces 

20 MW of generation at bus 3. To account for the changes in bus power injections the M-

UPS reroutes 20 MW of flow from bus 1 towards bus 3 along path along 𝒫 = {1 − 2 − 3}. 
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As such, the flows through branches 1-2 and 2-3 are updated to create a new flow graph, 

as shown in Fig. 4.11. These branches have been highlighted in green to indicate that the 

graph-theory based network flows have been updated. 

 
Fig. 4.10: The Flow Graph of a Sample 7-bus Power System Before the Corrective Action 

has been Implemented 
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Fig. 4.11 The Flow Graph of a Sample 7-bus Power System After the Corrective Action 

has been Implemented 

Table 4.1 enumerates the information that was obtained from the FT in the pre-

correction scenario (before the corrective actions have been initiated). For example, the 

third row of Table 4.1 implies that for the outage of branch 3-1, the flows can be re-routed 

along paths 3-6-1, 3-4-6-1, and 3-4-5-6-1. The specific transmission assets whose indirect 

paths involve the branches 1-2 and 2-3 (for which the flows are updated), must be re-eval-

uated by the FT, after the new dispatch solution is applied on the graphs. With this rationale 

only branches 2-1 and 3-2 must be re-evaluated by the FT in this example, after the M-

UPS has updated the graphs. The other branches need not be re-evaluated by the FT. 
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Table 4.1 Information of the FT Before the New Dispatch Solution is Obtained 

Feasibility Test (FT) for an 

edge 

Indirect paths through which rerouting of flow can 

occur 

Branch 1-6 Indirect Path 1: 1-3-6 

Branch 2-1 Indirect Path 1: 2-3-6-1 

Branch 3-2 Indirect Path 1: 3-6-1-2 

Branch 3-1 Indirect Path 1: 3-6-1 

Indirect Path 2: 3-4-6-1 

Indirect Path 3: 3-4-5-6-1 

Branch 3-6 Indirect Path 1: 3-4-6 

Indirect Path 2: 3-4-5-6 

Branch 4-3 Indirect Path 1: 4-6-3 

Indirect Path 2: 4-5-6-3 

Branch 4-6 Indirect Path 1: 4-3-6 

Indirect Path 2: 4-5-6 

Branch 5-6 Indirect Path 1: 5-4-6 

Branch 4-5 Indirect Path 1: 4-6-5 

Branch 4-7 Indirect Path 1: 4-5-7 

Branch 7-6 Indirect Path 1: 7-5-6 

Branch 7-5 Indirect Path 1: 7-4-5 
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CHAPTER 5 

RESULTS: MITIGATION OF SATURATED CUT-SETS 

 

This Chapter evaluates performance of the two-component methodology for miti-

gation of post-contingency cut-set saturation on the IEEE 118-bus test system and the 

2000-bus synthetic Texas system. A comparative study of the proposed methodology with 

traditional approaches, such as RTCA-SCED and DC-OPF, is also presented. All simula-

tions were performed in MATLAB. GUROBI was used to solve the optimization problems.  

5.1 Mitigation of Saturated Cut-sets in the IEEE 118-bus Test System 

We initially present the performance of the proposed two-component methodology 

using a detailed case-study that involves a sequence of six outages. Subsequently, to 

demonstrate consistency, its performance is compared with the traditional approaches for 

40 additional case-studies. 

5.1.1 A Detailed Case-study of the IEEE 118-bus Test System 

The performance of the first component is presented and compared with the RTCA-

SCED framework when six outages manifest successively. The first column of Table 5.1 

shows the sequence of events. Columns two through six present the results associated with 

the first component. The second column presents the special assets detected by the FT 

algorithm. An outage of any of these special assets (after the outage that has already oc-

curred in the corresponding row of the first column), will create post-contingency cut-set 

saturation. The third column shows the critical contingencies detected by RTCA that result 

in post-contingency branch overloads. To determine the entries of this column, a two-step 
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procedure was followed: (a) PTDFs and asset ratings were used to rank the contingencies 

following every outage [53], and (b) top 30% of the contingencies [27] were evaluated by 

RTCA to determine the post-contingency branch overloads. The special assets detected by 

FT in the second column and the critical branch contingencies detected by RTCA in the 

third column were set as inputs to the iCA.  

Next, an independent cascading simulation analysis was conducted using 

MATCASC [76]. To screen out the contingencies that will trigger a cascade and result in 

unserved power demand, every outage was evaluated by MATCASC. The fourth and sixth 

columns of Table 5.1 present the cascade triggering contingencies detected by MATCASC 

before and after the implementation of iCA. The fifth column presents the redispatch so-

lution (generation cost) obtained from the iCA. Note that the redispatch solution for this 

case-study did not result in any load-shed. Finally, we observe from the sixth column that 

the solution obtained from iCA does not contain any cascade triggering contingencies. 

Therefore, through iCA, the first component has effectively utilized the information from 

FT and RTCA to mitigate cascade triggering contingencies for the given sequence of 

events. 

Now, we evaluate the performance of the RTCA-SCED framework for the same 

sequence of events. Columns seven through ten of Table 5.1 present the results associated 

with RTCA-SCED. The column headings are similar to that of the first component, with 

the exception that the FT results are absent in this section as the traditional SCED only 

utilizes the inputs from RTCA. For the first five outages the results of the first component 

and RTCA-SCED are identical. This is because for the first five outages the FT does not 

identify additional violations to those already detected by RTCA (compare the second and 
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third columns of Table 5.1). However, after the sixth outage FT detects the special asset 

65-66 in addition to the critical contingency 64-65 identified by RTCA (see second and 

third column of the last row). This is the basis for the difference in the redispatch solutions 

of the first component and RTCA-SCED as seen in the fifth and ninth columns of the last 

row. Finally, it is observed that the RTCA-SCED solution contains one cascade triggering 

contingency (65-66), while the solution obtained from iCA did not have any (see sixth and 

tenth columns of the last row). This observation proves that integrating the results from 

FT with RTCA enhances the ability of power system security assessment in mitigating the 

risk of cascade triggering contingencies. 

Table 5.1 Comparative Analysis of the First Component and RTCA-SCED for a 

Sequence of Outages in the IEEE 118-bus Test System 

Event 

(branch 

outages) 

First component (FT-RTCA-iCA) RTCA-SCED 

FT 
RT 

CA 

MATC

ASC 

(before 

correc-

tion) 

Gen. 

cost 

(k$) 

MAT

CASC  

(after 

correc-

tion) 

RT 

CA 

MATC

ASC 

(before 

correc-

tion) 

Gen. 

cost 

(k$) 

MAT

CASC 

(after 

correc-

tion) 

Outage 1: 

15-33 
- - - 126.2 - - - 126.2 - 

Outage 2: 

19-34 
- 5-8 - 126.3 - 5-8  126.3 - 

Outage 3: 

37-38 
42-49 

42-49, 

 5-8,  

26-30 

42-49 126.5 - 

42-49 

5-8,  

26-30 

42-49 126.5 - 

Outage 4: 

42-49 

45-46, 

45-49 

45-46,  

45-49 

45-46,  

45-49 
126.7 - 

45-

46, 

45-49 

45-46, 

45-49 
126.7 - 

Outage 5: 

 49-66 
- 5-8 - 126.7 - 5-8 - 126.7 - 

Outage 6: 

 66-67 

64-65, 

65-66 
64-65 

64-65,  

65-66 
127.1 - 64-65 

64-65, 

65-66 
126.9 65-66 
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Table 5.2: Comparative Analysis of the Second Component and DC-OPF for a Sequence 

of Outages in the IEEE 118-bus Test System 

Event 

(branch 

outages) 

Second component (FT-rCA) DC-OPF 

FT MATCASC 

(before cor-

rection) 

Gen. 

Cost 

(k$) 

MATCASC  

(after cor-

rection) 

Gen.  

Cost  

(k$) 

MATCASC  

 

Outage 1:  

15-33 

- - 126.2 - 125.9 26-30 

Outage 2:  

19-34 

- - 126.2 - 125.9 26-30 

Outage 3:  

37-38 

42-49  42-49  126.3 - 125.9 26-30, 42-49 

 Outage 4:  

42-49 

45-46,  

45-49 

45-46,  

45-49 

126.4 - 126.2 26-30, 45-46 

42-49 

Outage 5:  

49-66 

- - 126.4 - 126.2 26-30, 45-46 

45-49 

Outage 6: 

66-67 

64-65,  

65-66 

64-65, 

65-66 

126.7 64-65 126.2 26-30, 45-46,  

45-49, 64-65,  

65-66 

 

There could be situations when the first component takes longer time to generate a 

solution. Under such circumstances, the second component should be used (as discussed 

in Section 4.4). Table 5.2 presents the application of the second component and compares 

it with a simple DC-OPF. Note that it is fair to compare the second component with a DC-

OPF instead of an AC-OPF because the DC-OPF solves a linearized constrained optimiza-

tion problem (similar to rCA used in the second component) while the optimization prob-

lem solved in AC-OPF is non-linear. Moreover, the focus here is on high-speed, and it is 

well-known that for a given system, a DC-OPF problem can be solved much faster than an 

AC-OPF problem.  

The first column of Table 5.2 lists the sequence of events. Columns two through 

five present the results of the second component. Note that only the FT results are shown 

in this section as the RTCA results are not considered in the second component. Cascading 
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analysis done after the corrective action indicates that the redispatch obtained from rCA 

does not contain any cascade triggering contingency for the first five consecutive outages 

(see fifth column of Table 5.2). However, after the sixth outage, two cascade triggering 

contingencies manifest before the corrective action is initiated (see last row, third column 

of Table 5.2), of which, only one is addressed by rCA. That is, the solution obtained using 

the rCA still contains one cascade triggering contingency (see last row, fifth column of 

Table 5.2). This happened because the contingency 64-65 triggered cascading failures due 

to branch overloads, even after the rCA alleviated all post-contingency cut-set saturation.  

However, the second component performs significantly better than a DC-OPF (see 

columns six and seven of Table 5.2). The sixth column presents the DC-OPF redispatch 

solution, while the seventh column presents the cascading analysis results after the correc-

tive action has been implemented. Since a DC-OPF does not model any security con-

straints, the number of cascade triggering contingencies in the solution is significantly 

higher compared to that obtained using rCA (in the second component). This shows that in 

situations when the first component takes a long time to generate a solution due to heavy 

computational burden, the second component can be used to secure the system against 

post-contingency cut-set saturation, and thereby reduce the risk of cascading failures.  

5.1.2 Mitigation of Saturated Cut-sets Considering Different Asset ratings 

The proposed first and the second components are generic enough to initiate cor-

rective actions considering transmission asset ratings determined by different criteria. To 

demonstrate the application of the first and second components two different scenarios are 

considered: (a) Scenario 1: asset ratings with 95% of the normal value, and (b) Scenario 2: 

asset ratings with 105% of the normal value. Same sequence of outages presented in 
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previous sub-section are considered here.  Tables 5.3 and 5.4 present the performance of 

the proposed first and second components, respectively. It is observed that the generation 

costs obtained from either the first or second components in Scenario 1 are greater (or 

equal) than that in Scenario 2 for every outage (compare the fourth and seventh columns 

of Table 5.3, and the third and fifth columns of Table 5.4). This is expected because of the 

more conservative asset ratings of Scenario 1 as compared to Scenario 2. 

Table 5.3 Performance of the First Component (FT-RTCA-iCA) Considering Different 

Asset Ratings During Multiple Outages in the IEEE 118-bus Test System 

Event 

(branch 

outages) 

Scenario 1: 

Rating: 95%×Normal 

Scenario 2: 

Rating: 105%×Normal 

RTCA FT iCA: 

Gen.  

Cost (k$) 

RTCA FT iCA: 

Gen.  

Cost (k$) 

Outage 1: 

15-33 

8-5 - 126.3 - - 126.2 

Outage 2: 

19-34 

8-5 - 126.3 8-5 - 126.2 

Outage 3: 

37-38 

42-49 

64-65 

8-5 

47-69 

26-30 

49-69 

63-64 

63-59 

42-49 126.7 42-49 

26-30 

42-49 126.4 

Outage 4: 

42-49 

45-46 

45-49 

45-46 

45-49 

126.8 45-46 

45-49 

45-46 

45-49 

126.5 

Outage 5: 

49-66 

8-5 - 126.8   126.5 

Outage 6: 

66-67 

64-65 64-65 

65-66 

127.4 

 

64-65 65-66 126.9 
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Table 5.4 Performance of the Second Component (FT-rCA) Considering Different Asset 

Ratings During Multiple Outages in the IEEE 118-bus Test System 

Event 

(branch  

outages) 

Scenario 1: 

Rating: 95%×Normal 

Scenario 2: 

Rating: 105%×Normal 

 FT rCA: 

Gen. cost (k$) 

FT rCA: 

Gen cost (k$) 

Outage 1: 

15-33 

- 126.2 - 126.2 

Outage 2: 

19-34 

- 126.2 - 126.2 

Outage 3: 

37-38 

42-49 126.3 42-49  126.2 

Outage 4: 

42-49 

45-46 

45-49 

126.5 45-46  

45-49  

126.3 

Outage 5: 

49-66 

 126.5  126.3 

Outage 6: 

66-67 

64-65 

65-66 

126.9 65-66 126.6 

 

5.1.3  Application of the Proposed Methodology to Different Case-studies 

To validate the consistency of the first and second components, 40 different case-

studies were generated (in addition to the case-study presented in detail in Section 5.1.1). 

To produce critical scenarios, multiple successive outages were created in different regions 

of the system. The list of all case-studies is presented in Appendix C of the dissertation. 

The pseudocodes of the proposed first and second components are present in Appendix D 

and E of the dissertation, respectively.  

The number of successive outages varied between two to six for different case-

studies (among the forty-one case-studies, twelve, fifteen, eleven, one, and two case-stud-

ies contained 2, 3, 4, 5, and 6 successive outages, respectively). The redispatch solution 

obtained from the proposed (first and second components) and traditional (RTCA-SCED 
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and DC-OPF) approaches were evaluated by MATCASC [76] to check if the solution con-

tained cascading contingencies for any of the outages involved in the case-study.      

As the computation time of the first component and the traditional RTCA-SCED 

framework are of similar order (verified experimentally in Section 5.2.2), their perfor-

mance, denoted by bars with A and B markers, respectively, in Fig. 5.1, were compared 

first. It is observed from the figure that the redispatch solution from RTCA-SCED con-

tained cascade triggering contingencies for case-studies involved with three (1), four (2), 

and six (1) outages. However, when the first component was used, none of the case-studies 

contained any cascade triggering contingencies (bar A is absent in Fig. 5.1).  

 
Fig. 5.1 Statistical Summary of Performance of Different Approaches for 41 Case-studies 

in the IEEE 118-bus Test System 

 

Owing to the similar computation time of the second component and DC-OPF (ver-

ified experimentally in Section 5.2.2), their performance, denoted by bars C and D, respec-

tively, in Fig. 5.1, were compared next. It is observed from the figure that the redispatch 
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solution from DC-OPF contained cascade triggering contingencies for all the case-studies. 

This is because a DC-OPF does not model any security constraints. However, when the 

second component was used, the number of case-studies containing cascade triggering con-

tingencies decreased considerably in comparison to the DC-OPF results (compare the 

heights of bars C and D in Fig. 5.1). This statistical comparison confirms that during mul-

tiple outage scenarios, the proposed two-component methodology can lower, if not elimi-

nate, the risk of cascade triggering contingencies in comparison to traditional approaches. 

5.2 Mitigation of Saturated Cut-sets in the 2000-bus Synthetic Texas System 

First, the solution quality of the two-component methodology is compared with 

traditional approaches such as RTCA-SCED and DC-OPF for a specific case-study of the 

2000-bus synthetic Texas system [112]. Finally, based upon the computation time, the real-

time applicability of the two-components is explained for the same case-study. The total 

power demand in the system is 67,109 MW. 

5.2.1  A Detailed Case-study of the 2000-bus Synthetic Texas System 

In this section, we first explain the performance of the first component (FT-RTCA-

iCA) against traditional RTCA-SCED when a sequence of three successive outages mani-

fest on the 2,000-bus synthetic Texas system. The first column of Table 5.5 lists the events 

which occur successively in the system. The second column shows the number of special 

assets (|𝐸𝑠|) detected by the FT algorithm. The third column presents the number of critical 

contingencies (|𝐸𝑣|) detected by RTCA that will create post-contingency branch overloads. 

To determine the entries of this column, contingency ranking was performed (using PTDFs 
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and asset ratings [53]), following which top 30% of the contingencies were evaluated by 

RTCA [27]. The fourth and the seventh column presents the number of critical contingen-

cies detected by MATCASC before and after the corrective action (denoted as |𝐸𝑐| and 

|𝐸𝑐′|) respectively. The fifth column shows the number of critical contingencies detected 

by RTCA and FT, which are common to the cascade triggering contingencies obtained 

from MATCASC (denoted as|𝐸′′ ∩ 𝐸𝑐|, where 𝐸′′ = 𝐸𝑠 ∪ 𝐸𝑣). The sixth column presents 

the redispatch solution (generation cost, load shed) obtained from the iCA. Finally, we 

observe from the last column of Table 5.5 that the solution from iCA (in the first compo-

nent) does not contain any cascade triggering contingencies for any of the three outages.   

Table 5.5 Performance of the First Component (FT-RTCA-iCA) on the 2000-bus 

Synthetic Texas System During a Sequence of Outages 

 

Event 

FT 

 

|𝐸𝑠| 

RTC

A 

|𝐸𝑣| 

MATCASC 

(before cor-

rection) 

|𝐸𝑐| 

|𝐸′′

∩ 𝐸𝑐| 
 

iCA MATCASC 

(after cor-

rection) 

|E𝑐
′ | 

Gen. 

Cost  

(k$) 

Load- 

shed 

(MW) 

Outage 1  

(3047-3129) 

3 2 3 3 922.4 106 0 

Outage 2  

(1004-3133) 

8 10 6 6 924.7 0 0 

Outage 3 

(3127-3141) 

7 7 12 8 930.8 0 0 

 

Table 5.6 Performance of the RTCA-SCED on the 2,000-bus Synthetic Texas System 

During a Sequence of Outages 

Event RTC

A 

|E𝑣 | 

MATCASC 

(before cor-

rection) 

|𝐸𝑐| 

 

|𝐸𝑣
∩ 𝐸𝑐 | 

SCED MATCASC 

(after cor-

rection) 

|𝐸𝑐
′ | 

Gen. 

Cost (k$) 

Load- shed 

(MW) 

Outage 1  

(3047-3129) 

2 3 1 922.7 106 0 

Outage 2  

(1004-3133) 

10 6 2 924.6 0 2 

Outage 3 

(3127-3141) 

7 15 2 929.9 0 1 
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The performance of the traditional RTCA-SCED is presented in Table 5.6. The 

column headings of Table 5.6 are similar to that of the first component, with the only dif-

ference that FT results are not presented because the SCED does not use inputs from the 

FT. The last column of Table 5.6 shows that the redispatch solution from the SCED con-

tains two and one cascade triggering contingency after the second and third outages, re-

spectively. This becomes clear when the fifth column of Table 5.5 is compared with the 

fourth column of Table 5.6: the |𝐸𝑣 ∩ 𝐸𝑐| of Table 5.6 is significantly less than |𝐸′′ ∩ 𝐸𝑐| 

of Table 5.5 for every outage. This shows the RTCA alone is not able to identify a larger 

proportion of the cascade triggering contingencies, and consequently the SCED is unable 

to mitigate all cascading failures. On the other hand, identification of saturated cut-sets by 

FT, critical branch overloads by RTCA and joint modeling of these constraints within iCA 

(of the first component) minimizes the risk of cascading failures.  

Now, the performance of the second component (FT-rCA) is evaluated in detail for 

the same sequence of outages. The column headings of Table 5.7 are similar to that of 

Table 5.5 with the only difference that the RTCA results are not reported in Table 5.7. This 

is primarily because the rCA does not utilize inputs from RTCA. However, it is interesting 

to note that FT alone detects a significant number of the cascade triggering contingencies 

before the corrective action is implemented (compare the third and fourth columns of Table 

5.7). Moreover, it is observed that  |𝐸𝑠 ∩ 𝐸𝑐| of Table 5.7 is higher compared to |𝐸𝑣 ∩ 𝐸𝑐| 

of Table 5.6. This indicates that the special assets detected by FT, whose potential outage 

saturates a cut-set in the network are more likely to trigger cascading failures in the sys-

tem. The redispatch solution obtained from the rCA is shown in the fifth column of Table 
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5.7. Finally, it is observed from the last column that for the listed sequence of outages, that 

the rCA does not contain any cascade triggering contingency.  

The second component performs significantly better than a DC-OPF (see Table 

5.8). The second column presents the DC-OPF redispatch solution, while the third column 

presents the cascading analysis results after the corrective action has been implemented. 

Comparing the last columns of Table 5.7 and Table 5.8, we observe that the number of 

cascade triggering contingencies in the DC-OPF solution is significantly higher compared 

to that obtained using the rCA (in the second component). This is primarily because a DC-

OPF does not model any security constraints.  

Table 5.7 Performance of the Second Component (FT-rCA) on the 2000-bus Synthetic 

Texas System During a Sequence of Outages 

Event FT 

|𝐸𝑠| 
MATCASC 

(before cor-

rection) 

|𝐸𝑐| 

|𝐸𝑠
∩ 𝐸𝑐| 

rCA MATCASC 

(after 

correction) 

|𝐸𝑐
′ | 

Gen. 

Cost 

(k$) 

Load-

shed 

(MW) 

Outage 1  

(3047-3129) 

 

3 

 

3 

 

3 

 

917.8 

 

0 

 

0 

Outage 2  

(1004-3133) 

 

8 

 

6 

 

6 

 

922.5 

 

0 

 

0 

Outage 3 

(3127-3141) 

 

7 

 

18 

 

7 

 

925.2 

 

0 

 

0 

 

Table 5.8: Performance of DC-OPF on the 2000-bus Synthetic Texas System During a 

Sequence of Outages 

Event DC-OPF MATCASC 

(after correction) 

|𝐸𝑐
′ | 

Gen. cost (k$) Load-shed (MW) 

Outage 1  

(3047-3129) 

 

915.9 

 

0 

 

3 

Outage 2  

(1004-3133) 

 

915.9 

 

0 

 

9 

Outage 3 

(3127-3141) 

 

917.9 

 

0 

 

21 
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5.2.2  The Computation Times of Different Approaches 

Let us consider the same sequence of three successive outages in this system (as 

shown in the first column of Table 5.9). The second, third, fourth, and fifth columns present 

the computation time of traditional RTCA-SCED, first component, DC-OPF, and second 

component, respectively. It can be observed from the second and third columns that the 

computation times of RTCA-SCED and the first component are of similar order. This is 

because the computational speeds of both of these approaches depend heavily on the num-

ber of critical contingencies identified by RTCA. This becomes especially clear after the 

third outage occurs (see last row, second and third columns of Table 5.9). After this (third) 

outage, a relatively large number of violations were modeled as post-contingency branch 

overload constraints of SCED and iCA, which consequently increased the computation 

time of the traditional RTCA-SCED and the first component, respectively. It must also be 

noted that for this system, the computation time for SCED and iCA were obtained after the 

PTDFs lower than 0.02 were rounded off to 0. When this rounding was not done, due to 

the extremely high computational burden of the optimization problem for RTCA-SCED 

and the first component, the local memory of the solver became insufficient. 

Table 5.9 Time Comparisons of Different Approaches During a Sequence of Outages on 

the 2000-bus Synthetic Texas System 

Event Time* 

RTCA-

SCED 

First component 

 (FT-RTCA-iCA) 

DC-OPF Second component  

(FT-rCA) 

Outage 1:   

3047-3129 

388 sec 421 sec 15 sec 28 sec 

Outage 2:  

1004-3133 

431 sec 487 sec 20 sec 21 sec 

Outage 3:  

3127-3141 

622 sec 720 sec 24 sec 20 sec 

*The simulations were performed on a computer with 2.3 GHz Dual-Core Intel Core i5 processor 

and 8 GB RAM. 
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On a similar note, the computation times of DC-OPF and the second component 

are found to be very similar (see fourth and fifth columns of Table 5.9). Both were less 

than 30 seconds for this system, which is at least an order of magnitude faster than the first 

component and RTCA-SCED. The high speed is primarily because the DC-OPF and rCA 

(used in the second component) do not model the computationally intensive post-contin-

gency branch overload constraints. Furthermore, it is important to note that the optimiza-

tion problems of the rCA and DC-OPF do not require any approximation of the PTDFs. 

However, the performance of the second component is superior in comparison to a simple 

DC-OPF because the former incorporates a relaxed criterion of security using the cut-set 

power transfer constraints (modeled inside rCA). Thus, the rCA is able to provide security 

against post-contingency cut-set saturation without significantly increasing the computa-

tional burden of the resulting optimization problem. 

5.2.3 Real-time Implementation of the Proposed Methodology 

Table 5.10 presents the real-time application of the two-component methodology 

for the three outages described in the previous sub-section. The first column lists the se-

quence of events. Let us assume that for this system the redispatch must be implemented 

every 10 minutes. Keeping this in mind, it can be observed from Table 5.9 that the first 

component yields a result within 10 minutes for the first two outages, whereas the compu-

tation time increases beyond 10 minutes after the third outage. Therefore, the redispatch 

solution from the first component should be implemented after the first and second outages 

occur, whereas the results from the second component should be used for redispatch after 

the third outage (as mentioned in the second column, last row of Table 5.10).  
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The third column presents the solution (generation cost and load-shed) obtained 

when one of the two components of the proposed methodology is implemented after every 

outage to mitigate the identified post-contingency violations. A summary of the observa-

tions made from the dispatch solution in Table 5.10 is provided below. 

Table 5.10 Real-time Application of the Two-component Methodology During a Se-

quence of Outages on the 2000-bus Synthetic Texas System 

Events 

 

Method Dispatch Solution No. of cascade triggering 

contingencies detected by 

MATCASC (after correc-

tion) 

Gen. cost 

(k$) 

Load-shed 

(MW) 

Outage 1: 

3047-3129 

First component: 

FT-RTCA-iCA 

922.4 106 0 

Outage 2: 

1004-3133 

First component: 

FT-RTCA-iCA 

924.7 0 0 

Outage 3: 

3127-3141 

Second compo-

nent: FT-rCA 

923.2 0 0 

 

• Outage 1: The generation redispatch (obtained using the first component) alone cannot 

mitigate the identified post-contingency violations. Therefore, 106 MW of load is shed 

at this stage. Therefore, the remaining load in the system becomes 67,003 (= 67,109-

106) MW. The total generation fleet satisfies the power demand of 67,003 MW at the 

generation cost of $ 922.4k. 

• Outage 2: Following the second event, the first component is implemented once more. 

To mitigate additional post-contingency violations, the generation cost for redispatch 

increases to $ 924.7k. The redispatch solution involves no additional load-shed, and so 

the load of 67,003 MW is satisfied by the new generation dispatch. 

• Outage 3: Following the third event, the second component is implemented. The redis-

patch solution involves no additional load-shed indicating that the total generation now 

satisfies the power demand of 67,003 MW at a new generation cost of $ 923.2k. Note 
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that the slight decrease in the generation cost from $ 924.7k to $ 923.2k is due to the 

relaxed security constraints of rCA (in the second component) compared to the more 

conservative security constraints of iCA (in the first component). 

Finally, the last column presents the number of cascade-triggering contingencies 

contained in the solution. It is observed that for the listed sequence of events, the solution 

obtained from the proposed methodology does not contain any cascade triggering contin-

gencies. Therefore, this case-study illustrates the real-time implementation of the two com-

ponents in large power systems during multiple outages. 
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CHAPTER 6 

CONCLUSION 

 

This Chapter summarizes the research findings and contributions of this disserta-

tion. Further, it introduces different research problems that could be investigated in future 

works by building upon this research. 

6.1 Dissertation Summary 

This dissertation first proposes a new graph-theoretic approach for real-time secu-

rity assessment in large power systems for enhanced situational awareness. The most im-

portant research finding is that a relaxed graph theory-based network analysis tool can 

efficiently analyze if a contingency will create saturated cut-sets in a meshed power system. 

The proposed feasibility test (FT) algorithm utilizes exhaustive graph traversal using the 

breadth first search (BFS) technique to determine post-contingency cut-set saturation. 

Identification of saturated cut-sets is important, because they are the “vulnerable bottle-

necks in power grids and represent seams or fault lines across which islanding seems 

likely” [92]. However, any large power networks can be associated with countless number 

of cut-sets. In this context, the unique contribution of the FT algorithm can be stated as 

follows: the FT can quickly analyze the power transfer capability across all cut-sets (with-

out the cut-sets being pre-defined), and uniquely detect saturated cut-sets due to a potential 

contingency in the system.  

Computation speed is an important criterion for real-time power system operations. 

To enhance the computational efficiency of the FT algorithm after a branch outage or gen-

eration redispatch in the power system additional graph-theoretic algorithms were 
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developed. The update scheme (UPS) and shortlisting assets (SA) algorithm increases the 

computation speed of FT following a branch outage in the system, whereas the modified 

update scheme (M-UPS) and modified shortlisting assets (M-SA) algorithm provides the 

necessary computational boost following a generation redispatch.  

 Finally, going beyond the detection of saturated cut-sets in power systems, this 

dissertation demonstrates how the power system can be made secure against post-contin-

gency cut-set saturation using a combination of network science and constrained optimiza-

tion. A two-component methodology is developed to enhance the N-1 security during suc-

cessive outages in power systems. The first component of the proposed methodology com-

bines the results from the FT algorithm and traditional RTCA to create an integrated cor-

rective action (iCA). The iCA initiates a comprehensive response to the violations detected 

by FT and RTCA to protect the system against saturated cut-sets as well as critical branch 

overloads. The second component of the proposed methodology presents an alternative 

method that complements real-time power system operations during extreme event scenar-

ios, when detailed network analysis tools such as the first component or traditional RTCA-

SCED take longer time to generate a solution. Under such circumstances, by only employ-

ing the FT algorithm, a relaxed corrective action (rCA) is implemented that quickly miti-

gates saturated cut-sets in power systems.  

6.2 Future Work  

 Any research work paves the path for more studies that can be done and many re-

search questions that can be explored along similar lines. The findings of this dissertation 

have also led to exciting research questions that could be investigated in the future. A 
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summary of the different avenues that could be explored building upon this research are 

summarized below. 

 Visualization of electric power transmission systems is important for supporting 

the study, analysis, and presentation of power system data [113]-[115]. An immediate ap-

plication of the proposed algorithms could be the development of a robust visualization 

software to automatically display saturated cut-sets (detected by the FT) in the context of 

the local geography when outages manifest successively in a region. Automated visualiza-

tion of the information captured by the FT would facilitate quick and easy situational 

awareness of the detected violations in a power systems control room. Recently, in [113], 

the authors proposed a new algorithm for efficient automatic visualization of large power 

systems, that merges geographical context with logical clarity. These techniques can be 

explored for the development of high-end visualization platforms for the research done in 

this dissertation.  

 In power systems there may exist some practical constraints with regards to the 

total power transfer capacity for a set of transmission lines based upon a contractual agree-

ment (or rules) between different utilities [116]-[117]. Detection of post-contingency cut-

set saturation with the consideration of these additional constraints can be explored in the 

future. 

 Quick detection and mitigation of saturated cut-sets due to transmission contingen-

cies has been the focus of this dissertation. The impact of generator contingencies on dif-

ferent cut-sets is an interesting research problem as well. Following a generator contin-

gency, the deficient power is picked up by other generators in the system based upon the 

generator shift factors [118]-[121]. The redistribution of power flows following a generator 
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contingency can also create saturated cut-sets (or bottlenecks) in power networks. Building 

on the proposed FT algorithm, intelligent graph traversal techniques can be developed to 

detect saturated cut-sets due to a potential generator contingency. At the same time, all 

generators are not likely to respond to generator contingencies; for example, nuclear power 

plants are always operated on their baseload and do not respond to frequency events [122]. 

Such realistic assumptions should be explored for faster detection of saturated cut-sets due 

to generator contingencies. 

 Generation redispatch and controlled load shedding has been used as corrective 

measures to alleviate post-contingency cut-set saturation in this dissertation. Research on 

transmission switching [27]-[28] and topology re-configuration [123]-[126] for efficient 

congestion management has also been a promising field of recent research, especially for 

weakly meshed distribution networks. The prospect of using topology re-configuration (as 

a corrective action) to mitigate post-contingency cut-set saturation, can be investigated as 

an extension of this dissertation.  

The corrective actions developed in this dissertation is based upon a simple DC 

power flow model, which quickly mitigates saturated cut-sets based on active power trans-

fer. As such, the violations associated with the voltage magnitude and reactive power flows 

are not identified. The possibility of developing more detailed corrective actions with the 

consideration of voltage magnitude (and reactive power flows), while simultaneously mit-

igating post-contingency cut-set saturation could be explored in the future. However, the 

challenge here is the following: a detailed AC OPF formulation with the consideration of 

non-linear power flow equations is likely to compromise the computational efficiency of 

the proposed graph-theoretic algorithms. Therefore, future research needs to explore the 
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recent advancements in linearized OPF techniques which involve intelligent approxima-

tions in the OPF model but generate results close to the optimum of AC OPF [127]-[128]. 

The detection and mitigation of saturated cut-sets in power systems has been treated 

as a steady-state network analysis problem in this dissertation. The redispatch solution (ob-

tained from the proposed corrective actions) alleviates potential violations with regards to 

the steady-state security of power systems. However, when the generator set-points are 

changed (corresponding to the new generation dispatch) there is possibility of stability re-

lated violations manifesting during power system transients. To ensure that stability related 

violations do not arise during the transient period of system redispatch, transient stability 

assessment [129]-[132] and transient stability constrained optimal power flow techniques 

[133]-[137] could be explored in future work. 

Finally, consideration of high renewable energy penetration in power systems will 

add another level of complexity to the detection and mitigation schemes of post-contin-

gency cut-set saturation. This is because high renewable penetration implies that during 

generation redispatch we have limited controllability to maneuver generation resources to 

mitigate saturated cut-sets. Further, if corrective actions are to be initiated with the consid-

eration of the variable renewable generation (in the next dispatch cycle), stochastic optimal 

power flow techniques [138]-[141] can be explored in the context of the problem being 

solved in this dissertation.  
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APPENDIX A 

BRANCH REACTANCE DATA OF A SAMPLE 5-BUS SYSTEM 
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The branch reactance data for the 5-bus test system is provided below. 

Branch Branch Reactance (𝜒𝑗𝑘) 

1-2 0.02 

1-5 0.02 

1-3 0.04 

2-3 0.02 

3-5 0.04 

4-5 0.02 

3-4 0.02 
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APPENDIX B 

BRANCH REACTANCE DATA OF A SAMPLE 10-BUS SYSTEM 
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The branch reactance data for the 10-bus test system is provided below. 

Branch Branch Reactance (𝜒𝑗𝑘) 

1-3 0.0476 

1-4 0.0417 

2-3 0.0476 

2-9 0.0964 

3-9 0.0864 

4-6 0.0388 

5-6 0.1727 

5-10 0.0519 

6-7 0.0230 

7-8 0.0396 

8-9 0.0216 
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APPENDIX C 

 

DIFFERENT CASE-STUDIES ON THE IEEE 118-BUS TEST SYSTEM 
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Different case-studies involve different sequences of multiple successive outages on the 

IEEE 118-bus test system. The case-studies 1 through 35 are presented in this page.  

 

S. No. Outage 1 Outage 2 Outage 3 Outage 4 Outage 5 Outage 6 

Case study 1 '15-33' '19-34' '38-37' '42-49' '49-66' '66-67' 

Case study 2 '23-24' '22-23' '26-30' '32-113'     

Case study 3 '15-33' '19-34' '30-38' '24-72'     

Case study 4 '105-106' '106-107' '100-104'       

Case study 5 '3-5' '3-12'         

Case study 6 '5-11' '4-5' '11-12'       

Case study 7 '11-12' '3-5' '5-6' '16-17'     

Case study 8 '15-19' '17-18' '19-34'       

Case study 9 '25-27' '17-31' '17-113'       

Case study 10 '30-17' '33-37' '8-5' '23-25' '25-27' '19-34' 

Case study 11 '17-31' '31-32'         

Case study 12 '23-32' '25-27' '17-31'       

Case study 13 '19-34' '34-37' '35-37'       

Case study 14 '38-37' '15-33' '42-49' '19-34'     

Case study 15 '30-38' '33-37' '19-34'       

Case study 16 '40-42' '41-42' '37-40'       

Case study 17 '42-49' '37-40'         

Case study 18 '45-49' '45-46'         

Case study 19 '49-51' '53-54'         

Case study 20 '54-56' '54-55' '54-59' '49-54'     

Case study 21 '56-59' '54-56' '49-50' '55-56'     

Case study 22 '38-65' '42-49' '44-45'       

Case study 23 '64-65' '62-66' '66-67' '49-54' '49-50'   

Case study 24 '65-66' '61-62' '49-66'       

Case study 25 '65-68' '49-69' '47-69'       

Case study 26 '68-69' '65-68'         

Case study 27 '69-70' '70-75' '74-75'       

Case study 28 '24-70' '70-71'         

Case study 29 '70-75' '69-75' '70-74' '75-77'     

Case study 30 '77-80' '79-80' '77-82'       

Case study 31 '81-80' '69-77' '75-77'       

Case study 32 '82-83' '85-89'         

Case study 33 '85-89' '85-88'         

Case study 34 '89-92' '90-91'         

Case study 35 '92-94' '92-93' '92-100' '92-102'     



 

 

139 

The case-studies 36 through 41 are presented in this page. 

 

S. No. Outage 1 Outage 2 Outage 3 Outage 4 Outage 5 Outage 6 

Case study 36 '80-96' '80-97' '94-96' '94-95'     

Case study 37 '94-96' '95-96' '94-100' '92-94'     

Case study 38 '94-100' '92-100' '92-102' '80-98'     

Case study 39 '100-103' '100-104'         

Case study 40 '103-105' '104-105' '100-106'       

Case study 41 '100-106' '100-103'         
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APPENDIX D 

MATLAB PSEUDOCODE: THE FIRST COMPONENT 
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The MATLAB pseudocode of the proposed first component has been presented 

here. This is the main program which uses several user defined functions (presented in 

Appendix F) to implement different algorithms developed in this research.  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
%                % 
% Program Name: Main_program_first_component        %  
%                % 
% Program Description: This program implements the proposed first     % 
% component (FT-RTCA-iCA) during successive outages in a              % 
% power network             % 

%                % 
% Author: Reetam Sen Biswas            % 
% Arizona State University           % 
%                % 
% Last Modified: 03/20/2020            % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clc 
clear all 
close all 

%% Load the input data: 

mpc = loadcase('case118_J2.m'); % All data associated with the IEEE  

% 118-bus system are loaded here.  

% Transmission line ratings obtained from the surge impedance loading  

% of transmission lines are used.  

% Multiple circuit transmission lines are converted to an equivalent 

% single circuit configuration.  

 

load Data_118bus_J2.mat; % A subset of the data which are frequently 

% used by the proposed analysis are stored in this data structure.  

% This .mat file contains four matrices named 1) Bus, 2) Branch  

% 3) Generator and 4) Load. 

% (1) Bus: This matrix contains a single column with all bus numbers  

%     in ascending order 

% (2) Branch: The first and second column of this matrix contains the  

%     “from bus” and “to bus” information for different branches.  

%     The third, fourth and fifth columns contain branch resistance, 

%     reactance, and susceptance respectively.      

%     The sixth column contains active power flow through different  

%     transmission lines in the base case.  

%     The seventh column contains branch ratings. 

%     The eight column contains branch statuses.        

% (3) Generator: The first column contains the generator bus numbers.  

%     The second column contains the power generation at  

%     different generators of the system. The third and  

%     fourth columns contain the maximum and minimum generation at  

%     respective generators. The fifth and sixth columns contain the  

%     linear and quadratic cost coefficients respectively.  

% (4) Load: The first column contains the load bus numbers. The second  

%     column contains the net power demand at a specific load bus. The 
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%     third column contains the cost of load shed. The fourth and fifth 

%     columns contain the maximum and minimum power demands at specific 

%     load buses respectively. 

 
%% Initialize different matrices: 
Generator(:,4) = zeros(length(Generator),1);  
loc_negative = find(Generator(:,2)<0); 
Generator(loc_negative,3) = Generator(loc_negative,2); 
Generator(loc_negative,4) = Generator(loc_negative,2); 
initial = 1; 
continue_flag = 1; 
K = []; 
baseMVA = 100; 
NoOfBus = length(Bus); 
BusGraph = Bus; 
BranchGraph = Branch(:,[1:2]);BranchGraph(:,3) = 

Branch(:,7);BranchGraph(:,4) = Branch(:,8); 
GeneratorGraph = Generator(:,[1:2]); 
LoadGraph = Load(:,[1:2]); 

  
%% Settings:  
% Rank_limit controls the size of the contingency list  
% used in RTCA 
Rank_limit = 54;  
% RoundOffFlag determines if the PTDF values will be  
% approximated below a specified threshold. 
% 0: no approximation; 1: approximation   
RoundOffFlag = 0;  

  
%% Build the "flow" and "latent capacity" graphs: 
% The graphs are built based on the graph-theory based  
% network flow algorithm 
[ Flow, Capacity, A, ~ ] = NetworkFlowAlgo-

rithm(BusGraph,BranchGraph,GeneratorGraph,LoadGraph); 

  

% An alternate way of building the "flow" and "latent capacity"  
% graphs is to use a DC power flow solution in the base-case scenario 
% Flow = sparse(NoOfBus,NoOfBus); 
% Capacity = sparse(NoOfBus,NoOfBus); 
% for i = 1:length(Branch(:,1))        
%     Flow(Branch(i,1),Branch(i,2)) = Branch(i,6); % dc power flows  
%     Flow(Branch(i,2),Branch(i,1)) = (-1)*Branch(i,6); 
%     Capacity(Branch(i,1),Branch(i,2)) = Branch(i,7)-

Flow(Branch(i,1),Branch(i,2));     
%     Capacity(Branch(i,2),Branch(i,1)) = Branch(i,7)-

Flow(Branch(i,2),Branch(i,1));     
% end 

  
%% Find the list of radial branches in the system: 
[ Radial, ~ ] = FindRadial( Branch, A ); 

  
%% Create the PTDF, LODF, B and H matrices:  
[ PTDF_true, PTDF, LODF, B_full, H_full, ~ ] = Cre-

ate_PTDF_LODF_B_H(Bus,Branch,RoundOffFlag); 
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%% Perform Contingency Ranking: 
[Bompard_rank, ~] = ContingencyRanking(Bus, Branch, Load, Generator, 

PTDF_true); 

  
%% Perform RTCA using DC power flows using the results of contingency 

ranking:  
[ Vio, flag_vio_rtca, ~] = 

DC_RTCA_Ranking(mpc,Bompard_rank,Rank_limit,Radial); 
if (isempty(Vio)==0) 
    Pre_Vio_L = Vio(:,1); 
else 
    Pre_Vio_L = []; 
end 

  
%% Perform feasibility test (FT) for all branches in the base-case sce-

nario: 
[ CL_Sp_vio, CutsetStack_vio, EdgeList, flag_vio_ft, ~ ] = Feasibil-

ityTestBasecase( Flow, Capacity, A, BranchGraph ); 
K_rtca = []; 
K_ft = []; 
outage_number = 1; 
Total_load_base = sum(Load(:,2)); 

  
while (continue_flag==1)     
    if ((flag_vio_rtca==1) || (flag_vio_ft==1))   
%% Display violations detected by RTCA: 
        if (flag_vio_rtca==1) 
            DisplayViolations_RTCA(Vio); 
        end 
%% Display violations detected by FT: 
        if (flag_vio_ft==1) 
            DisplayViolations_FT( CL_Sp_vio,CutsetStack_vio ); 
        end 

         

%% Create inputs from RTCA for the iCA:         
        if (isempty(Vio)==0) 
            if ((initial==1) || (isempty(K_rtca)==1)) 
                K_rtca = Vio(:,1); 
            else 
                K_rtca = vertcat(K_rtca,K_rtca_new); 
                K_rtca = unique(K_rtca); 
            end 
        end         

  
%% Create inputs from FT for the iCA:         
        if ((initial==1) || (isempty(K_ft)==1)) 
                [ K_ft, Tm, Cutset_FT, ~ ] = CreateInput_ODC( 

CL_Sp_vio, CutsetStack_vio, Branch);           
        else             
                [ K_ft, Tm, Cutset_FT, ~] = Aug-

mentCutsetInfo(K_ft_new,Tm_new,Cutset_FT_new,K_ft,Tm,Cutset_FT); 
        end                    
        count_unique = 1; 
        K_ft_unique = []; 
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        Tm_unique = []; 
        Cutset_FT_unique = []; 
        [row_K_ft, ~] = size(K_ft); 

         
        for i = 1:row_K_ft 
            branch_num = K_ft(i); 
            flag = IsPresent(K_rtca,branch_num); 
            if (flag==0) 
                K_ft_unique(count_unique,:) = K_ft(i,:); 
                Tm_unique(count_unique,1) = Tm(i,1); 
                Cutset_FT_unique(:,:,count_unique) = Cutset_FT(:,:,i); 
                count_unique = count_unique + 1; 
            end 
        end 

         
%% Perform the Integrated Corrective Action (iCA): 
        [ GeneratorNegativeChange, GeneratorPositiveChange, LoadNega-

tiveChange, LoadPositiveChange, Branch, Load, Generator, Soln_Flag, 

tot_change_cost, ~ ] = IntegratedCorrectiveAction(K_rtca, PTDF, LODF, 

Bus, Branch, Generator, Load, Radial, K_ft_unique, Tm_unique, 

Cutset_FT_unique); 

                 

%% Update the system based upon the redispatch solution: 
        if (Soln_Flag==0) 
            break; 
        end                 
        mpc.gen(:,2) = Generator(:,2); 
        for nload = 1:length(Load(:,1)) 
             LoadBus = Load(nload,1); 
             loc = find(mpc.bus(:,1)==LoadBus); 
             mpc.bus(loc,3) = Load(nload,2); 
        end 
        Res = rundcpf(mpc); 
        Branch(:,6) = Res.branch(:,14);    

                 

%% Perform RTCA following redispatch: 
        [ Vio, flag_vio_rtca, ~ ] = DC_RTCA_Ranking( mpc, Bompard_rank, 

Rank_limit, Radial);         
        if (isempty(Vio)==0)                     
            Vio_L = Vio(:,1); 
            Intersect_Pre_Vio_L = intersect(Pre_Vio_L,Vio_L); 
            if (length(Intersect_Pre_Vio_L)==length(Vio_L)) 
                flag_vio_rtca = 0; 
            else 
                Pre_Vio_L = Vio_L; 
            end 
        end         
        if (flag_vio_rtca==1) 
             K_rtca_new = Vio(:,1); 
             initial = 0; 
        end 

         
        % Group all the injection increase and injection decrease 
        % together in separate matrices 
        InjectionPositiveChange = []; 
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        Temp = []; Temp = LoadNegativeChange; Temp(:,2) = (-

1)*Temp(:,2);  
        InjectionPositiveChange = vertcat(GeneratorPosi-

tiveChange,Temp);             
        Temp = [];Temp = LoadPositiveChange;  
        InjectionNegativeChange = vertcat(GeneratorNega-

tiveChange,Temp); 

         
 %% Update the "flow" and "latent capacity graphs" following redispatch 

based on M-UPS algorithm: 
        [Flow,Capacity,BranchFlowChange,~] = ModifiedUpdateScheme(Flow, 

Capacity, InjectionPositiveChange, InjectionNegativeChange, 

BranchGraph); 

                            
%% Perform shortlisting assets following redispatch based on M-SA algo-

rithm: 
        [ShortlistedEdges, ~] = ModifiedShortlistAssets(Branch-

FlowChange, EdgeList, BranchGraph);         

                                
%% Perform Feasibility Test (FT) on shortlisted assets: 
        [CL_Sp_vio, CutsetStack_vio, EdgeList, flag_vio_ft, ~] = Feasi-

bilityTestOnShortlist( Flow, Capacity, A, BranchGraph, 

ShortlistedEdges, EdgeList ); 

         
        if (flag_vio_ft==1)                
%% Create inputs for Optimal Dispatch Change (ODC) for new cutsets: 
            [K_ft_new, Tm_new, Cutset_FT_new, ~ ] = CreateInput_cutset( 

CL_Sp_vio, CutsetStack_vio, Branch);                
        end                                            
    else 
%% Display the results of the corrective action:        
         fprintf('-----------------------------------------------------

------------\n'); 
         fprintf('The first component has alleviated all post-contin-

gency cut-set saturation and critical branch overloads \n');            
         fprintf('-----------------------------------------------------

------------\n'); 
         GeneratorCost_Ar = Generator(:,6).*Generator(:,2).^2+Genera-

tor(:,5).*Generator(:,2); TotalGeneratorCost = sum(GeneratorCost_Ar); 
         LoadCost_Ar = (Load(:,2)-Load(:,4)).*Load(:,3); TotalLoadCost 

= sum(LoadCost_Ar);             
         fprintf('Production cost = $ %f \n',TotalGeneratorCost);                  
         Net_load_shed = Total_load_base-sum(Load(:,2)); 
         fprintf('Total amount of load shed = %f MW \n',Net_load_shed);               

         
%% Check if there are successive branch outages in the system: 
        LineOutNumber = input('\n Enter the branch number which is out 

(Press 0 and enter if you do not want to continue) ?');         
        fprintf('\n'); 
        fprintf('\n ******** New Outage: *************\n');   

  
        if (LineOutNumber==0) 
            continue_flag = 0; 
            break;         
        else 
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%% Update the system matrices following the branch outage:  
            mpc.branch(LineOutNumber,11) = 0; 
            Res = rundcpf(mpc); 
            Branch(:,6) = Res.branch(:,14); 
            Branch(:,8) = Res.branch(:,11); 
            BranchGraph(:,4) = Branch(:,8);  
            A(Branch(LineOutNumber,1),Branch(LineOutNumber,2)) = 0; 
            A(Branch(LineOutNumber,2),Branch(LineOutNumber,1)) = 0;                               
% Update the system matrices, instead of re-building  
% the matrices from scratch 
            [ PTDF_true, PTDF, LODF, B_full, H_full, ~ ] = Up-

date_PTDF_LODF_B_H( B_full, H_full, Bus, Branch, LineOutNum-

ber,RoundOffFlag);      

             

%% Find the radial branches for the new system: 
            [ Radial, ~ ] = FindRadial( Branch, A );     
%% Perform contingency ranking:             
            [Bompard_rank, ~] = ContingencyRanking(Bus, Branch, Load, 

Generator, PTDF_true); 
%% Perform RTCA using DC power flows: 
            [ Vio, flag_vio_rtca, ~ ] = DC_RTCA_Ranking( mpc, 

Bompard_rank, Rank_limit, Radial);             
             if (isempty(Vio)==0)                     
                    Vio_L = Vio(:,1); 
                    Pre_Vio_L = Vio_L; 
             end                                     
             if (flag_vio_rtca==1) 
                    K_rtca_new = Vio(:,1);                 
             end                  
%% A successive FT has to be performed following the branch outage 
% However, the successive FT must involve the UPS algorithm and the  
% SA algorithm for fast computation 
            [ Flow, Capacity, A, CL_Sp_vio, EdgeList, PathStack, Edge-

SatStack, CutsetStack_vio, ~ ] = OutageAnalysis( BranchGraph, Flow, Ca-

pacity, LineOutNumber, EdgeList, A );      
            [ row_vio, col_vio ] = size(CL_Sp_vio); 
            flag_vio_ft = 0; 
            if (row_vio>=1) 
                flag_vio_ft = 1;           
                initial = 0;                                  
                [ K_ft_new, Tm_new, Cutset_FT_new, ~ ] = CreateIn-

put_cutset( CL_Sp_vio, CutsetStack_vio, Branch);                           
            end                    
            if ((flag_vio_rtca==0) && (flag_vio_ft==0)) 
                fprintf('\n There are no violations detected by the 

Feasibility Test (FT) and DC-RTCA \n'); 
            end                 
            outage_number = outage_number + 1; 
        end      
    end         
end 
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APPENDIX E 

MATLAB PSEUDOCODE: THE SECOND COMPONENT 
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The MATLAB pseudocode of the proposed second component is presented here. 

This is the main program which uses several user defined functions (presented in Appendix 

F) to implement different algorithms developed in this research.  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
%                % 
% Program Name: Main_program_second_component        % 
%                % 
% Program Description: This program implements the proposed second    % 
% component (FT-rCA) during successive outages in a power network     %  
%               % 
% Author: Reetam Sen Biswas            % 
% Arizona State University           % 
%                % 
% Last Modified: 03/20/2020            % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%% 
clc 
clear all 
close all 

  
%% Load the input data 
%% Load the input data: 

 

mpc = loadcase('case118_J2.m'); % All data associated with the IEEE  

% 118-bus system are loaded here.  

% Transmission line ratings obtained from the surge impedance loading  

% of transmission lines are used.  

% Multiple circuit transmission lines are converted to an equivalent 

% single circuit configuration.  

 

load Data_118bus_J2.mat; % A subset of the data which are frequently 

% used by the proposed analysis are stored in this data structure.  

% This .mat file contains four matrices named 1) Bus, 2) Branch  

% 3) Generator and 4) Load. 

% (1) Bus: This matrix contains a single column with all bus numbers  

%     in ascending order 

% (2) Branch: The first and second column of this matrix contains the  

%     “from bus” and “to bus” information for different branches.  

%     The third, fourth and fifth columns contain branch resistance, 

%     reactance, and susceptance respectively.      

%     The sixth column contains active power flow through different  

%     transmission lines in the base case.  

%     The seventh column contains branch ratings. 

%     The eight column contains branch statuses.        

% (3) Generator: The first column contains the generator bus numbers.  

%     The second column contains the power generation at  

%     different generators of the system. The third and  

%     fourth columns contain the maximum and minimum generation at  
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%     respective generators. The fifth and sixth columns contain the  

%     linear and quadratic cost coefficients.  

% (4) Load: The first column contains the load bus numbers. The second  

%     column contains the net power demand at a specific load bus. The 

%     third column contains the cost of load shed. The fourth and fifth 

%     columns contain the maximum and minimum power demands at specific 

%     load buses respectively. 

 
%% Initialize different matrices: 
BusGraph = Bus; 
BranchGraph = Branch(:,[1:2]);BranchGraph(:,3) = 

Branch(:,7);BranchGraph(:,4) = Branch(:,8); 
GeneratorGraph = Generator(:,[1:2]); 
LoadGraph = Load(:,[1:2]); 
GenBusNumAr = Generator(:,1); 
PgenOldAr = Generator(:,2);   

  
%% Build the "flow" and "latent capacity" graphs: 
% The graphs are built based on the graph-theory based  
% network flow algorithm 
[ Flow, Capacity, A, ~ ] = NetworkFlowAlgo-

rithm(BusGraph,BranchGraph,GeneratorGraph,LoadGraph); 

  
% An alternate way of building the "flow" and "latent capacity"  
% graphs is to use a DC power flow solution in the base-case scenario 
% Flow = sparse(NoOfBus,NoOfBus); 
% Capacity = sparse(NoOfBus,NoOfBus); 
% for i = 1:length(Branch(:,1))        
%     Flow(Branch(i,1),Branch(i,2)) = Branch(i,6); % dc power flows  
%     Flow(Branch(i,2),Branch(i,1)) = (-1)*Branch(i,6); 
%     Capacity(Branch(i,1),Branch(i,2)) = Branch(i,7)-

Flow(Branch(i,1),Branch(i,2));     
%     Capacity(Branch(i,2),Branch(i,1)) = Branch(i,7)-

Flow(Branch(i,2),Branch(i,1));     
% end 

   

%% Initialize different variables: 
fprintf('\n------ System condition: Base-case (No outage) ------\n'); 
BranchOut = []; 
count = 1; 
flag_vio_out = 1; 
Net_change_cost = 0; 
continue_flag = 1; 
K = []; 
Cutset_FT = []; 
Total_load_base = sum(Load(:,2)); 

  
%% Create the PTDF, LODF, B and H matrices:  
fprintf('Creating the PTDF matrix \n'); 
baseMVA = 100; 
NoOfBus = length(Bus); 
RoundOffFlag = 0; 
[PTDF_true, PTDF, LODF, B_full, H_full, ~] = Cre-

ate_PTDF_LODF_B_H(Bus,Branch,RoundOffFlag); 

  



 

 

150 

%% Perform feasibility test (FT) for all branches in the base-case sce-

nario: 
[ CL_Sp_vio, CutsetStack_vio, EdgeList, flag_vio, ~ ] = Feasibil-

ityTestBasecase( Flow, Capacity, A, BranchGraph ); 

  

fprintf('-------------------------------------------- \n'); 

  
initial = 1; 

  

while (continue_flag==1) 

     
if (flag_vio==1) 
    %% Display the violations detected by the FT algorithm: 
    DisplayViolations_FT( CL_Sp_vio,CutsetStack_vio );                

               
    %% Create inputs for the relaxed corrective action (rCA): 
    if ((initial==1) || (isempty(K)==1)) 
        [ K, Tm, Cutset_FT, ~ ] = CreateInput_cutset( CL_Sp_vio, 

CutsetStack_vio, Branch);              
    else             
        [ K, Tm, Cutset_FT, ~] = Aug-

mentCutsetInfo(K_new,Tm_new,Cutset_FT_new,K,Tm,Cutset_FT); 
    end 

     
    while (flag_vio==1) 
%% Perform the relaxed corrective action (rCA):                      
           [ GeneratorNegativeChange, GeneratorPositiveChange, LoadNeg-

ativeChange, LoadPositiveChange, Branch, Load, Generator, Soln_Flag, 

Flow_dc, Rate_dc, tot_change_cost, ~ ] = RelaxedCorrectiveAction( K, 

Tm, Cutset_FT, PTDF, Bus, Branch, Generator, Load );            
           count = count + 1;     
           % Group all the injection increase and injection decrease  
           % together in separate matrices 
           InjectionPositiveChange = []; 
           Temp = []; Temp = LoadNegativeChange; Temp(:,2) = (-

1)*Temp(:,2);  
           InjectionPositiveChange = vertcat(GeneratorPosi-

tiveChange,Temp);             
           Temp = [];Temp = LoadPositiveChange;  
           InjectionNegativeChange = vertcat(GeneratorNega-

tiveChange,Temp);            
           if Soln_Flag==0 
               % This implies that the optimization problem in the rCA 

has  
               % not converged and there is a problem 
                break; 
           end 
%% Update the system based upon the redispatch solution:            
           mpc.gen(:,2) = Generator(:,2); 
           for nload = 1:length(Load(:,1)) 
                LoadBus = Load(nload,1); 
                loc = find(mpc.bus(:,1)==LoadBus); 
                mpc.bus(loc,3) = Load(nload,2); 
           end 
           Res = rundcpf(mpc); 
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           Branch(:,6) = Res.branch(:,14);            

            
%% Update the "flow" and "latent capacity graphs" following redispatch 

based on M-UPS: 
           [Flow,Capacity,BranchFlowChange,~] = Modi-

fiedUpdateScheme(Flow, Capacity, InjectionPositiveChange, Injection-

NegativeChange, BranchGraph);            

             
%% Perform shortlisting assets following redispatch based on M-SA algo-

rithm: 
           [ShortlistedEdges, ~] = ModifiedShortlistAssets(Branch-

FlowChange, EdgeList, BranchGraph);           

                                 

%% Perform Feasibility Test (FT) on shortlisted assets: 
           [CL_Sp_vio, CutsetStack_vio, EdgeList, flag_vio, ~] = Feasi-

bilityTestOnShortlist( Flow, Capacity, A, BranchGraph, 

ShortlistedEdges, EdgeList ); 

                 
           if (flag_vio==1) 
%% Display additional violations (if any) due to the redispatch: 
               DisplayViolations_FT( CL_Sp_vio,CutsetStack_vio );                
%% Create the inputs for rCA to mitigate the combined violations: 
               [K_new, Tm_new, Cutset_FT_new, ~ ] = CreateInput_cutset( 

CL_Sp_vio, CutsetStack_vio, Branch);  
               [K, Tm, Cutset_FT, ~] = Aug-

mentCutsetInfo(K_new,Tm_new,Cutset_FT_new,K,Tm,Cutset_FT); 
           end     
    end         
    if (flag_vio==0) 
%% Display the results of the corrective action:        
         fprintf('-----------------------------------------------------

------------\n'); 
         fprintf('The second component has alleviated all post-contin-

gency cut-set saturation \n');            
         fprintf('-----------------------------------------------------

------------\n'); 
         GeneratorCost_Ar = Generator(:,6).*Generator(:,2).^2+Genera-

tor(:,5).*Generator(:,2); TotalGeneratorCost = sum(GeneratorCost_Ar); 
         LoadCost_Ar = (Load(:,2)-Load(:,4)).*Load(:,3); TotalLoadCost 

= sum(LoadCost_Ar);             
         fprintf('Production cost = $ %f \n',TotalGeneratorCost);                  
         Net_load_shed = Total_load_base-sum(Load(:,2)); 
         fprintf('Total amount of load shed = %f MW \n',Net_load_shed);          
    else 
         fprintf('-----------------------------------------------------

------------\n');    
         fprintf('Warning: All post-contingency cut-set saturation can-

not be mitigated \n');          
         fprintf('-----------------------------------------------------

------------\n');                            
    end 

     
else 
    fprintf('----------------------------------------------------------

-------\n'); 
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    fprintf('No violations are detected by the FT algorithm \n'); 
    fprintf('----------------------------------------------------------

-------\n'); 
end 

  

%% Check if there are successive branch outages in the system: 
   LineOutNumber = input('\n Enter the branch number which is out 

(Press 0 and enter if you do not want to continue) ?'); 
   if LineOutNumber==0 
      continue_flag = 0; 
      break; 

         
   else 
      fprintf('\n------ System condition: Outage of branch (%d-%d)-----

-\n',Branch(LineOutNumber,1),Branch(LineOutNumber,2));             

  
%% Update the system matrices following the branch outage:       
        mpc.branch(LineOutNumber,11) = 0;         
% Update the system matrices, instead of re-building  
% the matrices from scratch 
        [ PTDF_true, PTDF, LODF, B_full, H_full, ~ ] = Up-

date_PTDF_LODF_B_H( B_full, H_full, Bus, Branch, LineOutNum-

ber,RoundOffFlag);                                  
        Res = rundcpf(mpc);                 
        Branch(:,6) = Res.branch(:,14); 
        Branch(:,8) = Res.branch(:,11); 
        BranchGraph(:,4) = Branch(:,8); 

                 
%% A successive FT has to be performed following the branch outage 
% However, the successive FT must involve the UPS algorithm and the  
% SA algorithm for fast computation 
      [ Flow, Capacity, A, CL_Sp_vio, EdgeList, PathStack, Edge-

SatStack, CutsetStack_vio, ~ ] = OutageAnalysis( BranchGraph, Flow, Ca-

pacity, LineOutNumber, EdgeList, A );      
      [ row_vio, col_vio ] = size(CL_Sp_vio); 
      if (row_vio>=1) 
          flag_vio = 1;           
          initial = 0;                    
% Creates input for the next relaxed corrective action (rCA): 
          [ K_new, Tm_new, Cutset_FT_new, ~ ] = CreateInput_cutset( 

CL_Sp_vio, CutsetStack_vio, Branch);           
      else 
          flag_vio = 0;   
      end                   
   end     
end 
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APPENDIX F 

MATLAB PSEUDOCODE: USER DEFINED FUNCTIONS  
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The pseudocodes for different user defined functions to implement different algo-

rithms developed in the course of this research are presented here. All the user defined 

functions are presented in alphabetical order of their names. 

function [ K, Tm, Cutset_FT, time ] = Aug-

mentCutsetInfo(K_new,Tm_new,Cutset_FT_new,K,Tm,Cutset_FT) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                % 
% Program Description: The new violations identified by the FT, are   % 
% augmented with the violations detected in a previous iteration,     % 
% such that the corrective action can be initiated with respect       % 
% to all the violations            % 
%               % 
% Author: Reetam Sen Biswas            %  
% Arizona State University           % 
%                %  
% Last Modified: 03/20/2020            % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
    tic; 
    % Initialization: 
    NumOfCritCutset = length(K_new(:,1)); 
    MaxNumBranchCritCutset = length(K_new(1,:));  

  
    % Make the transfer margins of the saturated cut-sets  
    % addressed in previous iteration as zero 

     

    [ row_K_old, ~] = size(K); 
    for i = 1:row_K_old 
        Tm(i,1) = 0; 
    end 

  
    % Augment the new cutsets with their respective transfer margins 
    ncutset = length(Tm)+1; 
    [row_K, col_K] = size(K_new); 
    for r = 1:length(K_new(:,1))    
        K(ncutset,[1:col_K]) = K_new(r,[1:col_K]);     
        Tm(ncutset,1) = Tm_new(r);     
        [row_set, col_set] = size(Cutset_FT_new(:,:,r)); 
        Cutset_FT([1:row_set],[1:col_set],ncutset) = 

Cutset_FT_new([1:row_set],[1:col_set],r);  
        ncutset = ncutset+1; 
    end  

  

    time = toc; 

  
end  
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function [ LoseFlag, PathAr, CurrentFlow, FlowCap, FlowInjAr, flag_Ra-

dial, EdgeSat, Cutset] = CheckIfLose_Cutset( LinesArray, Line, Flow, 

Capacity, A ) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                % 
% Program Description: This program evaluates if a specific      %  
% transmission outage will create post-contingency cut-set            % 
% saturation, based upon the FT algorithm         % 
%               % 
% Author: Reetam Sen Biswas            % 
% Arizona State University           % 
%                % 
% Last Modified: 03/20/2020           % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
    BusA = LinesArray(Line,1); 
    BusB = LinesArray(Line,2); 

  

    NewFlowSheet = Flow; 
    NewFlowSheet(NewFlowSheet<0) = 0; 

  
    [Bus1, Bus2, flow] = find(NewFlowSheet); 
    found = 0; 

  
% Obtain the current flow of the specified branch: 
    for i = 1:length(Bus1) 
        if ((Bus1(i)==BusA && Bus2(i)==BusB) || (Bus1(i)==BusB && 

Bus2(i)==BusA)) 
            FromBus = Bus1(i); 
            ToBus = Bus2(i); 
            CurrentFlow = flow(i); 
            found = 1; 
        end 
    end 
    if found==0 
        FromBus = BusA; 
        ToBus = BusB; 
        CurrentFlow = 0; 
    end 

  

% Updates the incidence matrix accordingly: 
    A(FromBus,ToBus) = 0; 
    A(ToBus,FromBus) = 0; 

     

% Checks if the outage branch is a radial branch or not 
    [S,path]=graphshortestpath(A,FromBus,To-

Bus,'Method','BFS','Directed','true');  
    flag_Radial = 0; 
    if S==Inf     
        flag_Radial = 1;  
    end 

  
% Remove the line from the latent capacity graph 
    Capacity(FromBus,ToBus) = 0; 
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    Capacity(ToBus, FromBus) = 0; 

  
%% Find the maximum power that can be transferred along the indirect 

paths  
    FlowCap = 0;  
    LoseFlag = 0; 
    FlowInjAr = []; 
    countP = 1; 
    PathAr = []; 
    EdgeSat = []; 
    countS = 1; 
% If the power flow through the "direct path" is more than the "maximum 
% power that can be transferred through the "indirect paths", then it 
% creates a saturated cut-set. 
    while (1<2)        
      [S,path]=graphshortestpath(Capacity,FromBus,To-

Bus,'Method','BFS','Directed','true');   
      if S==Inf 
            break; 
      end  

       
      if S<Inf      
            PathAr(countP,[1:length(path)]) = path;             
            MaxCap = 9999; 
            for k=1:S 
                From = path(k);To = path(k+1);           
                if MaxCap>Capacity(From,To) 
                    MaxCap = Capacity(From,To); 
                end 
            end 
            FlowInj = MaxCap; 
            for k=1:S 
                From = path(k);To = path(k+1); 
                Flow(From,To) = Flow(From,To) + FlowInj;  
                Flow(To,From) = Flow(To,From) - FlowInj; 
                Capacity(From,To) = Capacity(From, To) - FlowInj; 
                Capacity(To,From) = Capacity(To, From) + FlowInj; 
                if Capacity(From,To)<0.0001 
                    % Finding the saturated edges after flow injection: 
                    EdgeSat(countS,1) = From; 
                    EdgeSat(countS,2) = To; 
                    countS = countS + 1; 
                end                
            end 
            FlowCap = FlowCap + FlowInj; 
            FlowInjAr(countP,1) = FlowInj; 
            countP = countP + 1; 
            if FlowCap>=CurrentFlow   
                LoseFlag = 1; 
                break; 
            end 
      end 
    end 
% Saturated cut-sets with a transfer margin lesser than 0.001 are ig-

nored 
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    if (abs(CurrentFlow-FlowCap)<0.001) 
        LoseFlag = 1; 
    end 

  
    Cutset = []; 

  
%% Find the saturated cut-set:     
    if LoseFlag==0         
        V_insub = []; 
        if LoseFlag==0 && flag_Radial==0 
            % Group the vertices: 
            [row_P, col_P] = size(PathAr); 
            for i = 1:row_P 
                V_insub = horzcat(V_insub,PathAr(i,:));         
            end     
            V_insub = unique(V_insub); 
            V_insub(V_insub==0) = []; 
        end 

  
        V_reach_F = []; V_reach_T = [];  
        countF = 1; countT = 1; 
        [row_V, col_V] = size(V_insub); 
        for v = 1:col_V      
            [S,path]=graphshortestpath(Capacity,FromBus,V_in-

sub(v),'Method','BFS','Directed','true'); 
            if S<Inf 
                V_reach_F(countF,1) = V_insub(v); countF = countF+1;         
            else 
                V_reach_T(countT,1) = V_insub(v); countT = countT+1; 
            end     
        end 

  
        K = 1; 
        Cutset(K,1) = FromBus;Cutset(K,2) = ToBus; K = K+1; 
        [row_E, col_E] = size(EdgeSat); 

  
        for i = 1:row_E     
            F = EdgeSat(i,1); T = EdgeSat(i,2);     
            [ flag_F, pos ] = IsPresent( V_reach_F, F );     
            [ flag_T, pos ] = IsPresent( V_reach_T, T );    
            if flag_F==1 && flag_T==1  
                Cutset(K,1) = F; 
                Cutset(K,2) = T; 
                K = K+1; 
            end     
        end 
    end 

  
end 
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function [ T_sort, timeBomp ] = ContingencyRanking( Bus, Branch, Load, 

Generator, PTDF ) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                % 
% Program Description: This program finds the contingency ranking     % 
% based upon the PTDFs and branch ratings         % 
%               % 
% Author: Reetam Sen Biswas            % 
% Arizona State University           % 
%                %  
% Last Modified: 03/20/2020           %  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

  
tic; 
NoOfGen = length(Generator(:,1)); 
NoOfLoad = length(Load(:,1)); 
NoOfBranch = length(Branch(:,1)); 
NoOfBus = length(Bus(:,1)); 
C_gd = zeros(NoOfGen,NoOfLoad);  
Pl_max = Branch(:,7); 
zero_col = zeros(NoOfBranch,1); 
PTDF = horzcat(PTDF,zero_col); 

  
for g = 1:NoOfGen 
    gbus = Generator(g,1); 
    for d = 1:NoOfLoad 
        dbus = Load(d,1); 
        if (gbus~=dbus) 

             
            if (gbus~=NoOfBus) 
                ptdf_lines_gbus = PTDF(:,gbus);         
            else 
                ptdf_lines_gbus = zeros(NoOfBranch,1);  
            end 

             

            if (dbus~=NoOfBus) 
                ptdf_lines_dbus = PTDF(:,dbus);         
            else 
                ptdf_lines_dbus = zeros(NoOfBranch,1);  
            end         

                 
            ptdf_lines_gbus_dbus = ptdf_lines_gbus - ptdf_lines_dbus; 

         
            value_ar = Pl_max./abs(ptdf_lines_gbus_dbus); 

         
            value = min(value_ar); 

         
            C_gd(g,d) = value;                         

         
        end 
    end 
end        

  
for nline = 1:NoOfBranch    
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     gen_buses = Generator(:,1); 
     load_buses = Load(:,1); 

      

     ptdf_gen = PTDF(nline,gen_buses)'; 
     ptdf_load = PTDF(nline,load_buses); 

      
     ptdf_gen_mat = repmat(ptdf_gen,[1,NoOfLoad]); 

                      
     ptdf_load_mat = repmat(ptdf_load,[NoOfGen,1]); 

      
     ptdf_gen_load_mat = ptdf_gen_mat - ptdf_load_mat; 

      

     common = intersect(gen_buses,load_buses'); 

      
     for j = 1:length(common) 
        gen_loc = find(gen_buses==common(j)); 
        load_loc = find(load_buses==common(j)); 
        ptdf_gen_load_mat(gen_loc,load_loc) = 0; 
     end 

      

     [r,c] = find(ptdf_gen_load_mat<0); 
     ptdf_gen_load_mat_p = ptdf_gen_load_mat; 

      
     for k = 1:length(r) 
         ptdf_gen_load_mat_p(r(k),c(k)) = 0; 
     end             

          
     ptdf_weight_positive = ptdf_gen_load_mat_p.*C_gd; 
     Tp = sum(sum(ptdf_weight_positive)); 

      
     [r,c] = find(ptdf_gen_load_mat>0); 
     ptdf_gen_load_mat_n = ptdf_gen_load_mat; 

      

     for k = 1:length(r) 
         ptdf_gen_load_mat_n(r(k),c(k)) = 0; 
     end             

      

     ptdf_weight_negative = ptdf_gen_load_mat_n.*C_gd; 
     Tn = sum(sum(ptdf_weight_negative)); 

      
    T(nline,1) = nline; 
    T(nline,2) = Branch(nline,1); 
    T(nline,3) = Branch(nline,2); 
    T(nline,4) = max(Tp,abs(Tn)); 

      
end 
T_max = max(T(:,4)); 
T(:,4) = T(:,4)./T_max; 
T_sort = sortrows(T,4,'descend'); 
timeBomp = toc; 

  
end 
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function [ PTDF_true, PTDF_approx, LODF, B_full, H_full, time ] = Cre-

ate_PTDF_LODF_B_H(Bus,Branch,RoundOffFlag) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
%                % 
% Program Description: This function creates the power transfer.      % 
% distribution factor (PTDF), line outage distribution factor (LODF), % 

% the susceptance matrix (B) and the branch-bus matrix (H)      %  
%                % 
% Author: Reetam Sen Biswas            % 
% Arizona State University           %  
%                % 
% Last Modified: 03/20/2020           %  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%    

  
    tic;         
    %% Create the H (branch-bus matrix): 
    H = []; 
    for i = 1:length(Branch(:,1)) 
        Status = Branch(i,8); 
        if Status==1 
           FromBus = Branch(i,1); 
           ToBus = Branch(i,2); 
           H(i,FromBus) = 1/Branch(i,4); 
           H(i,ToBus) = (-1)*1/Branch(i,4); 
        else 
            FromBus = Branch(i,1); 
            ToBus = Branch(i,2);     
            H(i,FromBus) = 0; 
            H(i,ToBus) = 0; 
        end 
    end         

     
    %% Build the B matrix after monitoring the branch statuses: 
    B = zeros(length(Bus(:,1))); 
    BusOld = Bus(:,1); 
    for i = 1:length(Branch(:,1)) 
        Status = Branch(i,8); 
        if Status==1 
            FromBus = Branch(i,1); 
            ToBus = Branch(i,2); 
            xline = Branch(i,4);            
            B(FromBus,ToBus) = B(FromBus,ToBus)-1/(xline); 
            B(ToBus,FromBus) = B(ToBus,FromBus)-1/(xline); 
            B(FromBus,FromBus) = B(FromBus,FromBus)+1/(xline); 
            B(ToBus,ToBus) = B(ToBus,ToBus)+1/(xline);                 
        end     
    end 

     
    %% Adjust the B and H matrices to account for the reference bus 
    % B matrix: Remove the entire row and column for the reference bus  
    % H matrix: Remove the reference bus column from the H matrix 
    noofbus = length(B(:,1)); 
    B_full = B; 
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    H_full = H; 
    B_temp = B([1:noofbus-1],[1:noofbus-1]); 
    B = B_temp; 
    H_temp = H(:,1:noofbus-1);  
    H = H_temp; 

     
   %% Perform matrix operation to obtain the PTDF matrix 
    X = inv(B); 
    PTDF = H*X; 
    PTDF_true = PTDF; 

     
    if (RoundOffFlag==1)         
        [r,c] = find(abs(PTDF)<0.02); 
        for i = 1:length(r) 
            PTDF(r(i),c(i)) = 0; 
        end 
    end 
    PTDF_approx = PTDF; 

     
    %% From the PTDF matrix, we now create the LODF matrix         
    PTDF_full = horzcat(PTDF,zeros(length(Branch(:,1)),1)); 
    [nl, nb] = size(PTDF_full); 
    f = Branch(:, 1); 
    t = Branch(:, 2); 
    Cft =  sparse([f; t], [1:nl 1:nl]', [ones(nl, 1); -ones(nl, 1)], 

nb, nl); 
    H = PTDF_full * Cft; 
    h = diag(H, 0); 
    LODF = H ./ (ones(nl, nl) - ones(nl, 1) * h'); 
    h_diff = abs(ones(length(h),1)-h); 
    [ pos_ar ] = find(h_diff<0.00001); 
    LODF = LODF - diag(diag(LODF)) - eye(nl, nl); 
    for  i = 1:length(pos_ar)  
       pos_val = pos_ar(i);  
       LODF([1:nl],pos_val) = zeros(nl,1); 
       LODF(pos_val,[1:nl]) = zeros(1,nl); 
       LODF(pos_val,pos_val) = -1; 
    end                 
    time = toc;         
end 
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function [ K, Tm, Cutset_FT, time ] = CreateInput_cutset( CL_Sp_vio, 

CutsetStack_vio,Branch)  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                % 
% Program Description: This program creates the inputs from      % 
% the FT algorithm to be utilized in the corrective actions:          % 
% either iCA or rCA            % 
%               % 
% Author: Reetam Sen Biswas            % 
% Arizona State University           %  
%                % 
% Last Modified: 03/20/2020            % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
    tic; 
    [noofcutset,col] = size(CL_Sp_vio); 
    [xdim,ydim,zdim] = size(CutsetStack_vio); 
    ncutset = 1; 
    K = []; Tm = 0; Cutset_FT = [];     
    for r = 1:noofcutset         
        Tm(ncutset,1) = CL_Sp_vio(r,4); 
        for i = 1:xdim 
            F = CutsetStack_vio(i,1,r); 
            T = CutsetStack_vio(i,2,r); 
            if F~=0 
               Cutset_FT(i,1,ncutset) = F;Cutset_FT(i,2,ncutset) = T; 
               for j = 1:length(Branch(:,1)) 
                   if (F==Branch(j,1) && T==Branch(j,2)) || 

(F==Branch(j,2) && T==Branch(j,1)) 
                       K(ncutset,i) = j; 
                       break; 
                   end 
               end                
            end 
        end   
        ncutset = ncutset + 1; 
    end  
    time = toc;    

     
end 
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function [ out ] = DisplayViolations_FT( CL_Sp_vio,CutsetStack_vio ) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
%                % 
% Program Description: This program displays the violations           % 
% (post-contingency cut-set saturation) identified by the FT      % 
% algorithm              % 
%               % 
% Author: Reetam Sen Biswas            % 
% Arizona State University           % 
%                % 
% Last Modified: 03/20/2020            % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

[ row_Cl,~ ] = size(CL_Sp_vio); 
if row_Cl>0 
    fprintf('-------------------------------------------- \n'); 
    fprintf('Contingencies that create saturated cut-sets: \n'); 
    fprintf('-------------------------------------------- \n'); 
    for i = 1:length(CL_Sp_vio(:,1)) 
        fprintf('Case %d :',i); 
        fprintf('Outage of %d-%d saturates cut-set K%d by %f MW, where 

K%d={',CL_Sp_vio(i,2),CL_Sp_vio(i,3),i,CL_Sp_vio(i,4),i);      
        [row,col] = size(CutsetStack_vio(:,:,1)); 
        for j = 1:row 
            F = CutsetStack_vio(j,1,i); 
            T = CutsetStack_vio(j,2,i); 
            LastFlag = 0; 
            if j==row 
                LastFlag = 1; 
            else      
                if CutsetStack_vio(j+1,1,i)==0 
                    LastFlag = 1; 
                end 
            end 

         

            if F>0 
                if (LastFlag==0) 
                    fprintf('%d-%d,',F,T); 
                else 
                    fprintf('%d-%d',F,T); 
                end 
            end 
        end 
        fprintf('} \n'); 
    end 
    fprintf('-------------------------------------------- \n');     
else 
   fprintf('-------------------------------------------- \n'); 
   fprintf('No contingencies create saturated cut-sets: \n');     
   fprintf('-------------------------------------------- \n'); 
end 
out = 1; 
end 
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function [out] = DisplayViolations_RTCA(CL_Sp_vio) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                % 
% Program Description: This program displays the violations      % 
% detected by the RTCA. RTCA identifies critical contingencies      % 
% that create post-contingency branch overloads.       % 
%               % 
% Author: Reetam Sen Biswas            % 
% Arizona State University           % 
%                % 
% Last Modified: 03/20/2020           % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
    fprintf('-------------------------------------------- \n'); 
    fprintf('Contingencies that create post-contingency branch over-

loads are as follows: \n'); 
    fprintf('-------------------------------------------- \n'); 
    [row, ~] = size(CL_Sp_vio); 
    for i = 1:row 
       fprintf('%f-%f \n',CL_Sp_vio(i,2),CL_Sp_vio(i,3));         
    end     
    out = 1; 
    fprintf('-------------------------------------------- \n'); 
end 

   



 

 

165 

function [CL_Sp_vio, CutsetStack_vio, EdgeList, flag_vio, time] = Fea-

sibilityTestBasecase( Flow, Capacity, A, Branch ) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                % 
% Program Description: This program implements the feasibility      % 
% test (FT) algorithm in the base-case scenario for all       % 
% transmission assets            %  
%                % 
% Author: Reetam Sen Biswas            % 
% Arizona State University           % 
%                % 
% Last Modified: 03/20/2020            % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

tic; 
% Find the lines which have a latent capacity of zero,  
% and increase its capacity by a small margin 
for Line=1:length(Branch(:,1))     
    if Capacity(Branch(Line,1),Branch(Line,2))==0 
        Capacity(Branch(Line,1),Branch(Line,2)) = 0.0001; 
    elseif Capacity(Branch(Line,2),Branch(Line,1))==0 
        Capacity(Branch(Line,2),Branch(Line,1)) = 0.0001; 
    end 
end 

  
%% Analyzing different transmission assets by the FT algorithm: 
CL_Sp = []; 
count = 1; 
CL_Sp_vio = []; 
CutsetStack_vio = []; 
EdgeList = zeros(length(Branch(:,1)),1); 
count_radial = 1; 
for Line=1:length(Branch(:,1))          
        FlagPresBefore = 0;         
        if FlagPresBefore==0     
            [ LoseFlag, PathAr, CurrentFlow, FlowCap, FlowInjAr, 

flag_Radial, EdgeSat, Cutset ] = CheckIfLose_Cutset(Branch, Line, Flow, 

Capacity, A); 
            [ row, col ] = size(PathAr); 
            EdgeCount = 1; 
            EnterLoop = 0; 
            for R = 1:row 
                for C = 1:col-1 
                    if PathAr(R,C+1)>0 
                        PresentFlag = 0; 
                        if EnterLoop==1 
                            Col_list = length(EdgeList(Line,:));                 
                            for k = 1:Col_list-1 
                                if EdgeList(Line,k)==PathAr(R,C) && 

EdgeList(Line,k+1)==PathAr(R,C+1) 
                                    PresentFlag=1;  
                                end                     
                            end 
                        end 
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                        if PresentFlag==0 
                            EdgeList(Line,EdgeCount) = PathAr(R,C); 
                            EdgeList(Line,EdgeCount+1) = PathAr(R,C+1); 
                            EdgeCount = EdgeCount+2; 
                        end 
                        EnterLoop = 1; 
                    end 
                end 
            end 

             
            if LoseFlag==0           
                CL_Sp(count,1) = Line; 
                CL_Sp(count,2) = Branch(Line,1); 
                CL_Sp(count,3) = Branch(Line,2); 
                CL_Sp(count,4) = FlowCap-CurrentFlow; 
                CL_Sp(count,5) = flag_Radial; 
                [row,col] = size(PathAr); 
                PathStack([1:row],[1:col],count) = PathAr; 
                [row_e,col_e] = size(EdgeSat); 
                EdgeSatStack([1:row_e],[1:col_e],count) = EdgeSat; 
                [row_K,col_K] = size(Cutset); 
                CutsetStack([1:row_K],[1:col_K],count) = Cutset; 
                count = count + 1; 
            end  
            NoOfPaths(Line,1) = size(PathAr,1); 
        end             
end 

  
%% Check if there are non-radial special assets detected by the FT al-

gorithm 
flag_vio = 0; 
count = 1; 

  
if (isempty(CL_Sp)==1) 
    CL_Sp_vio = []; 
    CutsetStack_vio = []; 
else 
    for i = 1:length(CL_Sp(:,1)) 
        value = CL_Sp(i,5); 
        if value==0 
            flag_vio = 1; 
            CL_Sp_vio(count,:) = CL_Sp(i,:); 
            [r,c] = size(CutsetStack(:,:,i)); 
            CutsetStack_vio([1:r],[1:c],count) = 

CutsetStack([1:r],[1:c],i); 
            count = count + 1; 
        end 
    end 
end     

  
fprintf('\n Total number of paths traversed = %d \n',sum(NoOfPaths)); 
num_non_zero = length(find(NoOfPaths~=0)); 
fprintf('Average number of paths traversed = %d 

\n',sum(NoOfPaths)/num_non_zero); 
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time = toc; 
end  
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function [ CL_Sp_vio, CutsetStack_vio, EdgeList, flag_vio, time ] = 

FeasibilityTestOnShortlist( Flow, Capacity, A, Branch, 

ShortlistedEdges, EdgeList ) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
%                % 
% Program Description: This program performs the feasibility test     % 
% (FT) algorithm on the shortlisted assets following a change in      % 
% generation redispatch in the system         % 
%               % 
% Author: Reetam Sen Biswas            % 
% Arizona State University           % 
%                % 
% Last Modified: 03/20/2020            %  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
% Initialization: 
CL_Sp = []; 
PathStack = []; 
EdgeSatStack = []; 
CutsetStack = []; 
tic; 
count = 1; 
[rowF, colF] = size(ShortlistedEdges); 

  
% Evaluate the shortlisted branches by the FT algorithm: 
for i=1:rowF     
    Line = ShortlistedEdges(i,1);     
    [ LoseFlag, PathAr, CurrentFlow, FlowCap, FlowInjAr, flag_Radial, 

EdgeSat, Cutset ] = CheckIfLose3_Break_Cutset( Branch, Line, Flow, Ca-

pacity, A );     
    [ row, col ] = size(PathAr); 
    EdgeCount = 1; 
    EnterLoop = 0; 
    EdgeList(Line,:) = zeros(1,length(EdgeList(Line,:))); 
    for R = 1:row 
        for C = 1:col-1 
            if PathAr(R,C+1)>0 
                PresentFlag = 0; 
                if EnterLoop==1 
                    Col_list = length(EdgeList(Line,:));                 
                    for k = 1:Col_list-1 
                        if EdgeList(Line,k)==PathAr(R,C) && Edge-

List(Line,k+1)==PathAr(R,C+1) 
                            PresentFlag=1;  
                        end                     
                    end 
                end 

                 
                if PresentFlag==0 
                    EdgeList(Line,EdgeCount) = PathAr(R,C); 
                    EdgeList(Line,EdgeCount+1) = PathAr(R,C+1); 
                    EdgeCount = EdgeCount+2; 
                end 
                EnterLoop = 1; 
            end 
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        end 
    end  
    [row, col] = size(PathAr); 
    [row_e, col_e] = size(EdgeSat); 
    [row_K,col_K] = size(Cutset); 
    if LoseFlag==0 
        PathInterest([1:row],[1:col],count) = PathAr; 
        CL_Sp(count,1) = Line; 
        CL_Sp(count,2) = Branch(Line,1); 
        CL_Sp(count,3) = Branch(Line,2); 
        CL_Sp(count,4) = FlowCap-CurrentFlow; 
        CL_Sp(count,5) = flag_Radial; 
        PathStack(1:row,1:col,count) = PathAr;         
        EdgeSatStack(1:row_e,1:col_e,count) = EdgeSat; 
        CutsetStack([1:row_K],[1:col_K],count) = Cutset; 
        count = count + 1; 
    end 
end 

  
% Check if there are non-singleton violations: 
flag_vio = 0; 
count = 1; 
CL_Sp_vio = []; 
CutsetStack_vio = []; 
[row,col] = size(CL_Sp); 
for i = 1:row 
    value = CL_Sp(i,5); 
    if value==0 
        flag_vio = 1; 
        CL_Sp_vio(count,:) = CL_Sp(i,:); 
        [r,c] = size(CutsetStack(:,:,i)); 
        CutsetStack_vio([1:r],[1:c],count) = 

CutsetStack([1:r],[1:c],i); 
        count = count + 1; 
    end 
end 
time = toc; 

  
end 

 

  



 

 

170 

 
function [ Radial, time ] = FindRadial( Branch, A ) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                % 
% Program Description: This program finds the list of radial     % 
% branches in the system           % 
%               % 
% Author: Reetam Sen Biswas            % 
% Arizona State University           % 
%                % 
% Last Modified: 03/20/2020            % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

tic; 
    Radial = []; 
    count = 1; 
    for i = 1:length(Branch(:,1)) 
        Fbus = Branch(i,1); 
        Tbus = Branch(i,2); 
        if (Branch(i,8)==1) 
            A(Fbus,Tbus) = 0; 
            A(Tbus,Fbus) = 0;         
            [S,path]=graphshort-

estpath(A,Fbus,Tbus,'Method','BFS','Directed','true');   
            if (S==Inf) 
                Radial(count,1) = i; 
                Radial(count,2) = Fbus; 
                Radial(count,3) = Tbus; 
                count = count + 1; 
            end  
            A(Fbus,Tbus) = 1; 
            A(Tbus,Fbus) = 1;   
        end 
    end 
time = toc; 

  

end 
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function [ flag ] = IfCloseToZero( num ) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                % 
% Program Description: This function checks if a number is            % 
% close to zero             % 
%               % 
% Author: Reetam Sen Biswas                 % 
% Arizona State University           % 
%                % 
% Last Modified: 03/20/2020            %  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    if num<10^-4 && num>(-1)*10^4 
        flag = 1; 
    else 
        flag = 0; 
    end 

  

end 
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function [ GeneratorNegativeChange, GeneratorPositiveChange, LoadNega-

tiveChange, LoadPositiveChange, Branch, Load, Generator, Soln_Flag, 

tot_change_cost, time ] = IntegratedCorrectiveAction(K_rtca, PTDF, 

LODF, Bus, Branch, Generator, Load, RadialLines,K_ft_unique, Tm, 

Cutset_FT ) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                % 
% Program Description: This program solves the optimization      % 
% problem for the integrated corrective action (iCA),       % 
% used in the proposed first component         % 
%               % 
% Author: Reetam Sen Biswas            % 
% Arizona State University           % 
%                % 
% Last Modified: 03/20/2020           % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%      
tic;     

  
%% Set-up the objective function: 
    b = Generator(:,5);  
    c = Generator(:,6);      
    Pg_old_ar = Generator(:,2);  
    f_gen_lin = (2*(Pg_old_ar.*c) + b);      
    f_load = Load(:,3);  
    f = vertcat(f_gen_lin,f_load);   

     

    noofline = length(Branch(:,1)); 
    noofgen = length(Generator(:,1)); 
    noofload = length(Load(:,1));    

            

    row_K = size(K_rtca,1); 
    ContingencySet = []; 
    count = 1; 
    for lnum = 1:row_K   
        if (IsPresent(RadialLines,K_rtca(lnum,1))~=1) && 

(Branch(K_rtca(lnum,1),8)==1) 
            ContingencySet(count,1) = K_rtca(lnum,1);              
            count = count+1; 
        end 
    end 
    noofconting = size(ContingencySet,1); 

     
%% Constraints for the conservation of energy: 
    Pivot = 1; 
    count_Sa = 1; 
    for i = 1:noofgen 
       Xa(count_Sa,1) = Pivot;Ya(count_Sa,1) = i;Va(count_Sa,1) = 1; 
       count_Sa = count_Sa + 1; 
    end 
    for i = noofgen+1:(noofgen+noofload) 
       Xa(count_Sa,1) = Pivot;Ya(count_Sa,1) = i;Va(count_Sa,1) = -1; 
       count_Sa = count_Sa + 1; 
    end 
    Rhs_conserve = [0]; 
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    Sign_conserve = [ '=' ];   

     
    %% Constraints for the power injection limits: 
    % Constraints for the injection maximum limit: 
    Constraint_pinj = eye(noofgen+noofload,noofgen+noofload); 
    count_Sb = 1; 
    for i = 1:(noofgen+noofload)          
         Xb(count_Sb,1) = Pivot+i;Yb(count_Sb,1) = i;Vb(count_Sb,1) = 

1; 
        count_Sb = count_Sb+1; 
    end 
    Pivot = Pivot+noofgen+noofload; 
    % Constraints for the injection minimum limit: 
    X_val = Pivot+1:Pivot+noofgen+noofload; X_val = X_val';  
    Xb = vertcat(Xb,X_val);  
    Yb = repmat(Yb,2,1);  
    Vb = repmat(Vb,2,1); 
    Pivot = Pivot+noofgen+noofload;        
    for ngen = 1:noofgen 
        GenBusNum = Generator(ngen,1); 
        Pgen_old = Generator(ngen,2); 
        Pgen_max = Generator(ngen,3); 
        Pgen_min = Generator(ngen,4); 
        Rhs_pinj_max(ngen,1) = Pgen_max-Pgen_old;                
        Rhs_pinj_min(ngen,1) = Pgen_min-Pgen_old;         
        Sign_pinj_max(ngen,1) = '<'; 
        Sign_pinj_min(ngen,1) = '>';                         
    end 

     
    %% LHS and RHS for the injection limits: 
    for nload = 1:noofload 
        LoadBusNum = Load(nload,1); 
        Pload_old = Load(nload,2);         
        Rhs_pinj_max(noofgen+nload,1) = 0; 
        Rhs_pinj_min(noofgen+nload,1) = -Pload_old; 
        Sign_pinj_max(noofgen+nload,1) = '<'; 
        Sign_pinj_min(noofgen+nload,1) = '>'; 
    end 

         
%% Constraints for pre-contingency power flow in each branch:   
    Constraint_flow = zeros(noofline,noofgen+noofload); 
    count_Sc = 1; 
    noofflow_cstr = 0; 
    for nline = 1:noofline 
        flag_flow = 0; 
        if (Branch(nline,8)==1) 
            for ngen = 1:noofgen 
                GenBusNum = Generator(ngen,1); 
                if (GenBusNum==length(Bus)) 
                    PTDF_val = 0; 
                else         
                    PTDF_val = PTDF(nline,GenBusNum); 
                end 
                if (PTDF_val~=0) 
                    Constraint_flow(nline,ngen) = PTDF_val;  
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                    Xc(count_Sc,1) = Pivot+noofflow_cstr+1; 

Yc(count_Sc,1) = ngen; Vc(count_Sc,1) = PTDF_val; 
                    count_Sc = count_Sc+1; 
                    flag_flow = 1; 
                end 
            end 
            for nload = 1:noofload 
                LoadBusNum = Load(nload,1); 
                if (LoadBusNum==length(Bus)) 
                    PTDF_val = 0; 
                else 
                    PTDF_val = PTDF(nline,LoadBusNum); 
                end 
                if (PTDF_val~=0) 
                    Constraint_flow(nline,noofgen+nload) = (-

1)*PTDF_val; 
                    Xc(count_Sc,1) = Pivot+noofflow_cstr+1; 

Yc(count_Sc,1) = noofgen+nload; Vc(count_Sc,1) = (-1)*PTDF_val; 
                    count_Sc = count_Sc+1; 
                    flag_flow = 1; 
                end 
            end      
            if (flag_flow==1) 
                flow_old = Branch(nline,6); 
                flow_max = Branch(nline,7); 
                flow_min = (-1)*Branch(nline,7); 
                Rhs_MaxFlow(noofflow_cstr+1,1) = flow_max-flow_old;  
                Rhs_MinFlow(noofflow_cstr+1,1) = flow_min-flow_old;  
                Sign_Maxflow(noofflow_cstr+1,1) = '<'; 
                Sign_Minflow(noofflow_cstr+1,1) = '>'; 
                noofflow_cstr = noofflow_cstr + 1; 
            end 
        end 
    end 
    Pivot = Pivot + noofflow_cstr; 
    X_val = Xc+noofflow_cstr*ones(length(Xc),1); 
    Xc = vertcat(Xc,X_val); 
    Yc = repmat(Yc,2,1); 
    Vc = repmat(Vc,2,1); 
    Pivot = Pivot + noofflow_cstr; 

     

%% Constraints for post-contingency branch flows:      
    count_post = 1; 
    count_Sd = 1;  
    noofpostconting_cstr = 0; 
    Xd = []; Yd = []; Vd = [];Rhs_MaxFlow_post = [];Rhs_MinFlow_post = 

[]; 
    Sign_Maxflow_post = [];Sign_Minflow_post = [];  

     

    for Cline = 1:size(ContingencySet,1) 
        l = ContingencySet(Cline,1); 
        flow_old_l = Branch(l,6); 
        for k = 1:noofline  
            flag_flow_post = 0;              
             if (Branch(k,8)==1)                    
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                LODF_k_l = LODF(k,l); 
                for ngen = 1:noofgen 
                    GenBusNum = Generator(ngen,1); 
                    if (GenBusNum==length(Bus)) 
                        PTDF_k = 0; 
                        PTDF_l = 0;  
                    else                     
                        PTDF_k = PTDF(k,GenBusNum); 
                        PTDF_l = PTDF(l,GenBusNum); 
                    end 
                    Value = PTDF_k+PTDF_l*LODF_k_l; 
                    if (Value~=0) 
                        Xd(count_Sd,1) = Pivot+count_post; 

Yd(count_Sd,1) = ngen; Vd(count_Sd,1) = Value; 
                        count_Sd = count_Sd + 1;      
                        flag_flow_post = 1; 
                    end 
                end 
                for nload = 1:noofload 
                    LoadBusNum = Load(nload,1); 
                    if (LoadBusNum==length(Bus)) 
                        PTDF_k = 0; 
                        PTDF_l = 0; 
                    else 
                        PTDF_k = PTDF(k,LoadBusNum); 
                        PTDF_l = PTDF(l,LoadBusNum); 
                    end 
                    Value = (-1)*PTDF_k + (-1)*PTDF_l*LODF_k_l; 
                    if (Value~=0) 
                        Xd(count_Sd,1) = Pivot+count_post; 

Yd(count_Sd,1) = noofgen+nload; Vd(count_Sd,1) = Value; 
                        count_Sd = count_Sd + 1;  
                        flag_flow_post = 1; 
                    end 
                end 
                if (flag_flow_post==1) 
                    flow_old_k = Branch(k,6); 
                    flow_max_k = Branch(k,7); 
                    flow_min_k = (-1)*Branch(k,7);                 
                    Rhs_MaxFlow_post(noofpostconting_cstr+1,1) = 

flow_max_k-(flow_old_k+flow_old_l*LODF_k_l);  
                    Rhs_MinFlow_post(noofpostconting_cstr+1,1) = 

flow_min_k-(flow_old_k+flow_old_l*LODF_k_l);  
                    Sign_Maxflow_post(noofpostconting_cstr+1,1) = '<'; 
                    Sign_Minflow_post(noofpostconting_cstr+1,1) = '>'; 
                    noofpostconting_cstr = noofpostconting_cstr+1;                                                                
                    count_post = count_post + 1; 
                end 
            end 
        end 
    end             

     
    Pivot = Pivot+noofpostconting_cstr; 
    X_val = Xd+noofpostconting_cstr*ones(length(Xd),1); 
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    Xd = vertcat(Xd,X_val); 
    Yd = repmat(Yd,2,1); 
    Vd = repmat(Vd,2,1);     
    Pivot = Pivot+noofpostconting_cstr;   

     

%% Constraints for cutset power trasnfer:     
    [row_K, col_K] = size(K_ft_unique);    
    count_Se = 1; 
    Xe = []; 
    Ye = []; 
    Ve = []; 
    Rhs_cutset = []; 
    Sign_cutset = []; 

     
    for ncutset = 1:row_K         
        for ngen = 1:noofgen 
            GenBusNum = Generator(ngen,1);    
            PTDF_cutset = 0; 
            for nbranch = 1:col_K 
                if K_ft_unique(ncutset,nbranch)~=0 
                    BranchNum = K_ft_unique(ncutset,nbranch); 
                    % Check if the direction of the branch is same the 

direction 
                    % of the cut-set. 
                    F_Branch = Branch(BranchNum,1); 
                    T_Branch = Branch(BranchNum,2); 
                    Sign = 0; 
                    if IsPresent(Cutset_FT(:,1,ncutset),F_Branch)==1 && 

IsPresent(Cutset_FT(:,2,ncutset),T_Branch)==1 
                        Sign = 1; 
                    elseif IsPres-

ent(Cutset_FT(:,2,ncutset),F_Branch)==1 && IsPres-

ent(Cutset_FT(:,1,ncutset),T_Branch)==1 
                        Sign = -1; 
                    else 
                        Sign = 0; 
                    end 
                    if (GenBusNum < length(Bus(:,1))) 
                        PTDF_val = Sign*PTDF(BranchNum,GenBusNum); 
                    else 
                        PTDF_val = 0; 
                    end 
                    PTDF_cutset = PTDF_cutset+PTDF_val;  
                end 
            end 
           if (PTDF_cutset~=0) 
               Xe(count_Se,1) = Pivot+ncutset; 
               Ye(count_Se,1) = ngen; 
               Ve(count_Se,1) = PTDF_cutset; 
               count_Se = count_Se + 1; 
           end 
        end 
        for nload = 1:noofload 
            LoadBusNum = Load(nload,1);    
            PTDF_cutset = 0; 
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            for nbranch = 1:col_K 
                if K_ft_unique(ncutset,nbranch)~=0 
                    BranchNum = K_ft_unique(ncutset,nbranch);             
                    F_Branch = Branch(BranchNum,1); 
                    T_Branch = Branch(BranchNum,2); 
                    Sign = 0; 
                    if (IsPresent(Cutset_FT(:,1,ncutset),F_Branch)==1 

&& IsPresent(Cutset_FT(:,2,ncutset),T_Branch)==1) 
                        Sign = 1; 
                    elseif (IsPres-

ent(Cutset_FT(:,2,ncutset),F_Branch)==1 && IsPres-

ent(Cutset_FT(:,1,ncutset),T_Branch)==1) 
                        Sign = -1; 
                    else 
                        Sign = 0; 
                    end   
                    if (LoadBusNum < length(Bus(:,1))) 
                        PTDF_val = Sign*PTDF(BranchNum,LoadBusNum); 
                    else 
                        PTDF_val = 0; 
                    end                         
                    PTDF_cutset = PTDF_cutset+(-1)*PTDF_val;  
                end 
            end 
           if (PTDF_cutset~=0) 
               Xe(count_Se,1) = Pivot+ncutset; 
               Ye(count_Se,1) = noofgen+nload; 
               Ve(count_Se,1) = PTDF_cutset; 
               count_Se = count_Se + 1; 
           end 
        end 

         

        Tot_rate = 0; 
        Tot_flow = 0; 
        for i = 1:length(K_ft_unique(ncutset,:)) 
            if K_ft_unique(ncutset,i)==0 
                break; 
            end                 
            if (i>1) 
                Tot_rate = Tot_rate+Branch(K_ft_unique(ncutset,i),7); 
            end 
            A_Branch = Branch(K_ft_unique(ncutset,i),1); 
            B_Branch = Branch(K_ft_unique(ncutset,i),2); 
            if (IsPresent(Cutset_FT(:,1,ncutset),A_Branch)==1) && (Is-

Present(Cutset_FT(:,2,ncutset),B_Branch)==1) 
                Tot_flow = Tot_flow + Branch(K_ft_unique(ncutset,i),6); 
            else 
                Tot_flow = Tot_flow + (-

1)*Branch(K_ft_unique(ncutset,i),6); 
            end                                            
        end   
        Rhs_cutset(ncutset,1) = Tot_rate-Tot_flow; 
        Sign_cutset(ncutset,1) = '<'; 
    end 
    Pivot = Pivot + row_K; 
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    X = vertcat(Xa,Xb,Xc,Xd,Xe); 
    Y = vertcat(Ya,Yb,Yc,Yd,Ye); 
    V = vertcat(Va,Vb,Vc,Vd,Ve); 
    T = horzcat(X,Y,V); 

     
    Constraint_SP = sparse(X,Y,V); 

     
    %% Combine all the Constraint Matrices Together: 
    RHS = vertcat(Rhs_con-

serve,Rhs_pinj_max,Rhs_pinj_min,Rhs_MaxFlow,Rhs_Min-

Flow,Rhs_MaxFlow_post,Rhs_MinFlow_post,Rhs_cutset); 
    SIGN = vertcat(Sign_con-

serve,Sign_pinj_max,Sign_pinj_min,Sign_Maxflow,Sign_Min-

flow,Sign_Maxflow_post,Sign_Minflow_post,Sign_cutset); 

     
    %% Use the quadratic cost coefficients: 
    f_quad_gen = zeros(noofgen+noofload); 
    for i = 1:noofgen 
        c_quad = c(i,1);     
        f_quad_gen(i,i) = c_quad; % Additional soft constraint on 

delta_Pgi 
    end     

     
    %% Set the model parameters: 
    model.obj = f; 
    model.Q = sparse(f_quad_gen); % Include quadratic cost coefficients 
    model.A = Constraint_SP;  
    model.sense = SIGN; 
    model.rhs = RHS; 
    model.lb = Rhs_pinj_min;  

  
    clear params; 
    params.outputflag = 0; 
    result = gurobi(model, params); 

     
    if ((strcmp(result.status,'OPTIMAL')==1) || (strcmp(result.sta-

tus,'SUBOPTIMAL')==1)) 
        Soln_Flag = 1; 
        xf = result.x; 
        %% Compute all measurement values after solving the optmiza-

tion: 
        % New branch flows: 
        flow_old = zeros(length(Branch(:,1)),4); 
        flow_new = zeros(length(Branch(:,1)),4); 
        flow_old(:,1) = Branch(:,1); 
        flow_old(:,2) = Branch(:,2); 
        flow_old(:,3) = Branch(:,6); 
        flow_old(:,4) = Branch(:,7); 
        delta_flow = Constraint_flow*xf; 
        flow_new(:,1) = Branch(:,1); 
        flow_new(:,2) = Branch(:,2); 
        flow_new(:,3) = flow_old(:,3)+delta_flow; 
        flow_new(:,4) = Branch(:,7); 
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        % New dispatch: 
        gen_old = zeros(length(Generator(:,1)),2); 
        gen_new = zeros(length(Generator(:,1)),2); 
        gen_old(:,1) = Generator(:,1); 
        gen_old(:,2) = Generator(:,2); 
        load_old(:,1) = Load(:,1); 
        load_old(:,2) = Load(:,2);         
        delta_inj = Constraint_pinj*xf;         
        delta_pgen = delta_inj([1:noofgen],1); 
        delta_pload = delta_inj([noofgen+1:noofgen+noofload],1);         

         
        Generator_New(:,1) = Generator(:,1); 
        Generator_New(:,2) = gen_old(:,2)+delta_pgen; 
        Load_New(:,1) = Load(:,1); 
        Load_New(:,2) = load_old(:,2)+delta_pload; 

         
        %% Finding the actual cost using quadratic and linear cost co-

efficients: 
        cost_linear = transpose(f); 
        cost_quad = horzcat(transpose(c),zeros(1,noofload)); 
        tot_change_cost = cost_linear*xf + cost_quad*(xf.^2); 

         

        %% Find the positions where non-zero changes have occurred in 

Pgen: 
        [ indpos, ~ ] = find(delta_pgen>0.001); 
        [ indneg, ~ ] = find(delta_pgen<-0.001); 
        GeneratorPositiveChange(:,1) = Generator(indpos,1); 
        GeneratorPositiveChange(:,2) = delta_pgen(indpos); 

  
        GeneratorNegativeChange(:,1) = Generator(indneg,1); 
        GeneratorNegativeChange(:,2) = delta_pgen(indneg); 

         
        %% Find the positions where non-zero changes have occurred in 

Pload: 
        [ indpos, ~ ] = find(delta_pload>0.001); 
        [ indneg, ~ ] = find(delta_pload<-0.001); 
        LoadPositiveChange(:,1) = Load(indpos,1); 
        LoadPositiveChange(:,2) = delta_pload(indpos); 

         
        LoadNegativeChange(:,1) = Load(indneg,1); 
        LoadNegativeChange(:,2) = delta_pload(indneg); 

         

  
        %% Get the data for the next stage: 
        % Get the new flows for the branch: 
        Branch(:,6) = flow_new(:,3); 
        % Get the new generation values: 
        Generator(:,2) = Generator_New(:,2); 
        % Get the new load values: 
        Load(:,2) = Load_New(:,2); 

      

         

    else 
        Soln_Flag = 0; 
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        GeneratorNegativeChange = [];     
        GeneratorPositiveChange = []; 
        LoadNegativeChange = []; 
        LoadPositiveChange = []; 
        tot_change_cost = 0; 
    end     

     
    %% Print the change in dispatches on the screen: 
   if (Soln_Flag==1)  
        fprintf('-------------------------------------------- \n'); 
        fprintf('Total amount of load shed = %f \n',round(sum(LoadNega-

tiveChange(:,2)))); 
        fprintf('Total increase in dispatch  = %f \n', round(sum(Gener-

atorPositiveChange(:,2))));  
        fprintf('Total decrease in dispatch  = %f \n', round(sum(Gener-

atorNegativeChange(:,2)))); 
        fprintf('Total change in cost of generation = $ %f 

\n',round(tot_change_cost)); 
        fprintf('-------------------------------------------- \n'); 
   else 
        fprintf('-------------------------------------------- \n'); 
        fprintf('No feasible solution obtained! \n'); 
        fprintf('-------------------------------------------- \n'); 
   end 
   time = toc;   

  
end 
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function [ flag, pos ] = IsPresent( Arr, Val ) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                % 
% Program Description: Checks if a given number is contained          % 
% in a specific array            % 
%               % 
% Author: Reetam Sen Biswas            % 
% Arizona State University           %  
%                % 
% Last Modified: 03/20/2020            % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
flag = 0; 
pos = 0; 
for i = 1:length(Arr) 
    if Val==Arr(i) 
        flag = 1; 
        pos = i; 
        break; 
    end 
end 

  

  
end 
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function [ Shortlist, time ] = ModifiedShortlistAssets( Branch-

FlowChange, EdgeList, Branch ) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
%                % 
% Program Description: This program shortlists the transmission      % 
% assets that must be re-evaluated by the feasibility test (FT)     % 
% algorithm following a generation redispatch in the system.          % 
% This logic for this program is based on the M-SA algorithm.         % 
%               % 
% Author: Reetam Sen Biswas            % 
% Arizona State University           % 
%                % 
% Last Modified: 03/20/2020            % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
tic; 
len = length(BranchFlowChange); 
[row_lim,col_lim] = size(EdgeList); 
countF = 1; 
Shortlist = []; 

  
for r = 1:row_lim    
    Common = 0; 
    if (EdgeList(r,1)~=0) 
        for i = 1:2:len 
            F = BranchFlowChange(1,i); 
            T = BranchFlowChange(1,i+1);         

         
            col_lim = length(find(EdgeList(r,:)~=0)); % This line is 

newly added 
            for c = 1:2:col_lim-1 
                if (F==EdgeList(r,c) && T==EdgeList(r,c+1)) || 

(F==EdgeList(r,c+1) && T==EdgeList(r,c)) 
                    Common = 1; 
                    break;            
                end 
            end 
            if (F==Branch(r,1) && T==Branch(r,2)) || (F==Branch(r,2) && 

T==Branch(r,1)) 
                Common = 1;                
            end 
            if Common==1 
                break; 
            end         
        end     
        if (Common==1) 
            Shortlist(countF,1) = r; 
            Shortlist(countF,2) = Branch(r,1); 
            Shortlist(countF,3) = Branch(r,2); 
            countF = countF + 1; 
        end 
    end 
end 
time = toc;  
end 
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function [ Flow, Capacity, BranchFlowChange, time ] = Modi-

fiedUpdateScheme( Flow, Capacity, GeneratorPositiveChange, Genera-

torNegativeChange, Branch ) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
%               % 
% Program Description: This program creates an updated "flow"     % 
% and "latent capacity graph" after change in generation      % 
% in the system. The logic for this program is based on the     % 
% M-UPS algorithm.           % 
%              % 
% Author: Reetam Sen Biswas           % 
% Arizona State University          % 
%               %  
% Last Modified: 03/20/2020           % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 tic; 
% Initialization: 
    DontSelect = []; 
    countD = 1; 
    problem = 0; 
    NoOfBFS = 0; 
    EdgesFlowChange = [];  
    count = 1; 
    countBT = 1; 
    BranchFlowChange = []; 
    countChange = 1; 
    BranchTouch = []; 
    FlowOrg = Flow; 
    CapacityOrg = Capacity; 
    GenIncData = GeneratorPositiveChange; 
    GenDecData = GeneratorNegativeChange; 
    GenPosInc = GenIncData(:,1);GenInc = GenIncData(:,2); 
    GenPosDec = GenDecData(:,1);GenDec = abs(GenDecData(:,2)); 

     
% Select Source-Sink pairs from generator increase and decrease pairs 

to update the flow and capacity graphs: 
    while (1<2) 
      FF = CheckZeros(GenDec); 
      GG = CheckZeros(GenInc); 
      if (Is_i_Present(0,FF)==1) || (Is_i_Present(0,GG)==1) 
      else 
        break; 
      end       
      if (sum(GenDec)<0.01 && sum(GenInc)<0.01) 
        break; 
      end 

       
      for i = 1:length(GenDec) 
          if GenDec(i)~=0 
              Sink = GenPosDec(i); 
              break; 
          end 
      end 

       

     %% Selection of the source: 
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     % Select a "source" depending upon the position of the "sink"     
        for j = 1:length(GenInc) 
            if GenInc(j)~=0 && problem==0 
                Source = GenPosInc(j); 
                break; 
            else 
                if GenInc(j)~=0 && IsPresent(DontSelect,j)==0 
                    Source = GenPosInc(j);                     
                    break; 
                end 
            end 
        end  

         
% Finding the shortest path from the Source to the Sink and finding out 

the maximum capacity of the path.         
        while (1<2)        
            [S,path]=graphshortestpath(Capac-

ity,Source,Sink,'Method','BFS','Directed','true');NoOfBFS = NoOfBFS + 

1; 
            if S<Inf 
                for ii = 1:S 
                    F = path(ii);T=path(ii+1); 
                    len = length(BranchFlowChange); 
                    if len>0 
                        Present = 0; 
                        for kk = 1:2:len 
                            Fbr = BranchFlowChange(1,kk); 
                            Tbr = BranchFlowChange(1,kk+1);                                                         
                            if (F==Fbr && T==Tbr) || (F==Tbr && T==Fbr) 
                                Present = 1; 
                                break;                             
                            end 
                        end 
                        if Present==0 
                            BranchFlowChange(1,countChange) = F; 
                            BranchFlowChange(1,countChange+1) = T; 
                            countChange = countChange+2; 
                        end 
                    else 
                        BranchFlowChange(1,countChange) = F; 
                        BranchFlowChange(1,countChange+1) = T; 
                        countChange = countChange+2; 
                    end 
                end                                     
            end                         
            if ((S==Inf) && (IfCloseToZero(GenDec(i))==0) && 

(IfCloseToZero(GenInc(j))==0))             
                problem = 1; 
                DontSelect(countD) = j; countD = countD+1; 
            else 
                problem = 0; 
                DontSelect = []; 
                countD = countD+1; 
            end 
            if ((S==Inf) || (GenDec(i)==0) || (GenInc(j)==0)) 
                break; 
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            end  
            MaxCap = 999999; 
            for k=1:S 
                From = path(k);To = path(k+1);           
                if MaxCap>Capacity(From,To) 
                    MaxCap = Capacity(From,To); 
                end 
            end  
% Determine the flow injection along a given path 
            if ((GenDec(i)<=MaxCap) && (GenDec(i)<=GenInc(j))) 
                FlowInj = GenDec(i); 
            elseif ((GenInc(j)<=MaxCap) && (GenInc(j)<=GenDec(i))) 
                FlowInj = GenInc(j); 
            elseif ((MaxCap<=GenDec(i)) && (MaxCap<=GenInc(j))) 
                FlowInj = MaxCap;             
            end             
% Update the load and generation values 
            GenDec(i) = GenDec(i)-FlowInj; 
            GenInc(j) = GenInc(j)-FlowInj; 
% Update the "flow" and "latent capacity" graphs for 
% power injection along the given path 
            for k=1:S 
                From = path(k);To = path(k+1); 
                Flow(From,To) = Flow(From,To) + FlowInj;  
                Flow(To,From) = Flow(To,From) - FlowInj; 
                Capacity(From,To) = Capacity(From, To) - FlowInj; 
                Capacity(To,From) = Capacity(To, From) + FlowInj; 
            end    
        end               
    end     
time = toc;     
end 
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function [ Flow, Capacity, A, time ] = NetworkFlowAlgorithm( Bus, 

Branch, Gen, BusLoad ) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
%                %  
% Program Description: The network flow algorithm (NFA) creates the   % 
% "flow" and "latent capacity graphs" based upon the             % 
% conservation of energy.           % 
%               % 
% Author: Reetam Sen Biswas            % 
% Arizona State University           % 
%                % 
% Last Modified: 03/20/2020            % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

tic; 
%% Initialize arrays and variables 
NoOfBus = length(Bus); 
NoOfBranch = length(Branch); 
BranchSt = ones(NoOfBranch,1); 

  
GenPos = Gen(:,1); 
Generation = Gen(:,2); 
LoadPos = BusLoad(:,1); 
Load = BusLoad(:,2); 

  
NoOfBFS = 0; 
problem = 0; 

  
%% Initialize the "flow" and "latent capacity" graphs 
Capacity = sparse(NoOfBus,NoOfBus); % Latent capacity graph 
Flow = sparse(NoOfBus,NoOfBus); % Flow graph 
A = sparse(NoOfBus,NoOfBus); % Incidence matrix 
for k=1:NoOfBranch  
     if BranchSt(k)==1 
        Capacity(Branch(k,1),Branch(k,2)) = Capac-

ity(Branch(k,1),Branch(k,2)) + Branch(k,3); 
        Capacity(Branch(k,2),Branch(k,1)) = Capac-

ity(Branch(k,2),Branch(k,1)) + Branch(k,3); 
        A(Branch(k,1),Branch(k,2)) = 1; A(Branch(k,1),Branch(k,1)) = 1;  
        A(Branch(k,2),Branch(k,1)) = 1; A(Branch(k,2),Branch(k,2)) = 1;  
     end 
end 
DontSelect = []; 
countD = 1; 

  
%% Create the "flow" and "latent capacity" graphs iteratively  
while (1<2) 
      FF = CheckZeros(Load); 
      GG = CheckZeros(Generation); 
      if (Is_i_Present(0,FF)==1) || (Is_i_Present(0,GG)==1) 
      else 
        break; 
      end 

       
      for i = 1:length(Load) 
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          if Load(i)~=0 
              Sink = LoadPos(i); 
              break; 
          end 
      end 

       
     % Selection of the source:          
        for j = 1:length(Generation) 
            if Generation(j)~=0 && problem==0 
                Source = GenPos(j); 
                break; 
            else 
                if Generation(j)~=0 && IsPresent(DontSelect,j)==0 
                    Source = GenPos(j);                     
                    break; 
                end 
            end 
        end  

         
        % Finding the maximum power that can be injected along 
        % the shortest path from the source to the sink         
        while (1<2)        
            [S,path]=graphshortestpath(Capac-

ity,Source,Sink,'Method','BFS','Directed','true');NoOfBFS = NoOfBFS + 

1; 
            if S==Inf && IfCloseToZero(Load(i))==0 && 

IfCloseToZero(Generation(j))==0             
                problem = 1; 
                DontSelect(countD) = j; countD = countD+1; 
            else 
                problem = 0; 
                DontSelect = []; 
                countD = countD+1; 
            end 
            if S==Inf || Load(i)==0 || Generation(j)==0 
                break; 
            end  
            MaxCap = 999999; 
            for k=1:S 
                From = path(k);To = path(k+1);           
                if MaxCap>Capacity(From,To) 
                    MaxCap = Capacity(From,To); 
                end 
            end  

             

        % Determining the flow that will be injected along the path      
            if Load(i)<=MaxCap && Load(i)<=Generation(j) 
                FlowInj = Load(i); 
            elseif Generation(j)<=MaxCap && Generation(j)<=Load(i) 
                FlowInj = Generation(j); 
            elseif MaxCap<=Load(i) && MaxCap<=Generation(j) 
                FlowInj = MaxCap;             
            end 

             

        % Updating the source and sink values: 



 

 

189 

            Load(i) = Load(i)-FlowInj; 
            Generation(j) = Generation(j)-FlowInj; 

             
        % Updating the "flow" and "latent capacity" graph based upon 

the power 
        % transferred along different paths 
            for k=1:S 
                From = path(k);To = path(k+1); 
                Flow(From,To) = Flow(From,To) + FlowInj;  
                Flow(To,From) = Flow(To,From) - FlowInj; 
                Capacity(From,To) = Capacity(From, To) - FlowInj; 
                Capacity(To,From) = Capacity(To, From) + FlowInj; 
            end    
       end   
end 

  
time = toc; 
end 
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function [ Flow, Capacity, A CL_Sp, EdgeList, PathStack, EdgeSatStack, 

CutsetStack, time ] = OutageAnalysis( Branch, Flow, Capacity, LineOut-

Number, EdgeList, A ) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                % 
% Program Description: This program performs feasibility test (FT)    % 
% following a branch outage in the system. Therefore, it involves     % 
% the following:             % 
% (a) The Update Scheme (UPS) for updating the weighted graphs      % 
%     after the outage            % 
% (b) The Shortlisting Assets (SA) algorithm to determine the      % 
%     assets which should be evaluated by FT        % 
% (c) The feasibility test (FT) on the shortlisted set of assets      % 
%               % 
% Author: Reetam Sen Biswas            % 
% Arizona State University           % 
%                % 
% Last Modified: 03/20/2020            % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
tic; 
    [ LoseFlag, PathAr, CurrentFlow, FlowCap, FlowInjAr ] = CheckI-

fLose_Cutset( Branch, LineOutNumber, Flow, Capacity, A ); 
%% The Update Scheme (UPS): 
    if LoseFlag==1     
        [  Flow, Capacity ] = UpdateScheme( Branch, LineOutNumber, 

Flow, Capacity );     
        A(Branch(LineOutNumber,1),Branch(LineOutNumber,2)) = 0; 
        A(Branch(LineOutNumber,2),Branch(LineOutNumber,1)) = 0; 
    else  
        fprintf('\n Warning! Outage of the branch saturates a cut-set. 

\n');     
    end 

  
%% The Shortlisting Assets (SA): 
    Shortlist = ShortlistAssets( Branch, EdgeList, LineOutNumber ); 
 % The branches with zero latent capacities are indentified, and  
% the latent capacities are increased by a small margin to ensure that 

all 
% cut-sets are identified properly 
    for Line = 1:length(Branch(:,1)) 
        if Capacity(Branch(Line,1),Branch(Line,2))==0 && 

Branch(Line,4)==1 
            Capacity(Branch(Line,1),Branch(Line,2)) = 0.0001; 
        elseif Capacity(Branch(Line,2),Branch(Line,1))==0 && 

Branch(Line,4)==1 
            Capacity(Branch(Line,2),Branch(Line,1)) = 0.0001; 
        end 
    end 
 %% Feasibility Test (FT) on shortlisted assets: 
    CL_Sp = []; 
    PathStack = []; 
    EdgeSatStack = []; 
    CutsetStack = []; 

  

    count = 1; 
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    [rowF, colF] = size(Shortlist);     
    for i=1:rowF     
        Line = Shortlist(i,1); 
        FlagPresBefore = 0;         
        if FlagPresBefore==0     
            [ LoseFlag, PathAr, CurrentFlow, FlowCap, FlowInjAr, 

flag_Radial, EdgeSat, Cutset ] = CheckIfLose_Cutset( Branch, Line, 

Flow, Capacity, A );     
            [ row, col ] = size(PathAr); 
            EdgeCount = 1; 
            EnterLoop = 0; 
            EdgeList(Line,:) = zeros(1,length(EdgeList(Line,:))); 
            for R = 1:row 
                for C = 1:col-1 
                    if PathAr(R,C+1)>0 
                        PresentFlag = 0; 
                        if EnterLoop==1 
                            Col_list = length(EdgeList(Line,:));                 
                            for k = 1:Col_list-1 
                                if EdgeList(Line,k)==PathAr(R,C) && 

EdgeList(Line,k+1)==PathAr(R,C+1) 
                                    PresentFlag=1;  
                                end                     
                            end 
                        end 

                 
                        if PresentFlag==0 
                            EdgeList(Line,EdgeCount) = PathAr(R,C); 
                            EdgeList(Line,EdgeCount+1) = PathAr(R,C+1); 
                            EdgeCount = EdgeCount+2; 
                        end 
                        EnterLoop = 1; 
                    end 
                end 
            end     
            [row, col] = size(PathAr); 
            [row_e, col_e] = size(EdgeSat); 
            [row_K,col_K] = size(Cutset); 
            if (LoseFlag==0) && (flag_Radial==0) 
                PathInterest([1:row],[1:col],count) = PathAr; 
                CL_Sp(count,1) = Line; 
                CL_Sp(count,2) = Branch(Line,1); 
                CL_Sp(count,3) = Branch(Line,2); 
                CL_Sp(count,4) = FlowCap-CurrentFlow; 
                CL_Sp(count,5) = flag_Radial; 
                PathStack(1:row,1:col,count) = PathAr;         
                EdgeSatStack(1:row_e,1:col_e,count) = EdgeSat; 
                CutsetStack([1:row_K],[1:col_K],count) = Cutset; 
                count = count + 1; 
            end 
        end 
    end 
time = toc; 
end 
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function [ GeneratorNegativeChange, GeneratorPositiveChange, LoadNega-

tiveChange, LoadPositiveChange, Branch, Load, Generator, Soln_Flag, 

Flow_dc, Rate_dc, tot_change_cost, time ] = RelaxedCorrectiveAction( K, 

Tm, Cutset_FT, PTDF, Bus, Branch, Generator, Load) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                % 
% Program Description: This program solves the optimization      % 
% problem for the relaxed corrective action (rCA) used            % 
% in the second component           % 
%               % 
% Author: Reetam Sen Biswas            % 
% Arizona State University           % 
%                % 
% Last Modified: 03/20/2020           % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     

     

  

    tic;         
    % Find the length of different arrays related to the cut-set viola-

tions 
    NumOfCritCutset = length(K(:,1)); 
    MaxNumBranchCritCutset = length(K(1,:)); 
    [numrow_K, numcol_K, numsheet] = size(Cutset_FT); 

     
    %% Initialize flow across different cutsets: 
    flow_cutset = []; 
    for snum = 1:numsheet 
        flow_total = 0; 
        for rnum = 1:numrow_K 
            if Cutset_FT(rnum,1,snum)~=0   
                FromBus = Cutset_FT(rnum,1,snum);  
                ToBus = Cutset_FT(rnum,2,snum);            
                for i = 1:length(Branch(:,1))  
                    if (FromBus==Branch(i,1) && ToBus==Branch(i,2)) 
                        flow_val = Branch(i,6); 
                        flow_total = flow_total+flow_val; 
                    elseif (FromBus==Branch(i,2) && ToBus==Branch(i,1)) 
                        flow_val = (-1)*Branch(i,6); 
                        flow_total = flow_total+flow_val;                    
                    end 
                end            
            end 
            flow_cutset(snum,1) = flow_total; 
        end 
    end   
 %% Set-up the objective function:      
    b = Generator(:,5); % The linear cost coefficient 
    c = Generator(:,6); % The quadratic cost coefficient     
    Pg_old_ar = Generator(:,2); % Old power generation     
    f_gen_lin = (2*(Pg_old_ar.*c) + b);      
    f_load = Load(:,3);  
    f = vertcat(f_gen_lin,f_load);  

     

    noofline = length(Branch(:,1)); 
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    noofgen = length(Generator(:,1)); 
    noofload = length(Load(:,1)); 

     
%% Constraints for the conservation of energy: 
    Pivot = 1; 
    count_Sa = 1; 
    for i = 1:noofgen 
       Xa(count_Sa,1) = Pivot;Ya(count_Sa,1) = i;Va(count_Sa,1) = 1; 
       count_Sa = count_Sa + 1; 
    end 
    for i = noofgen+1:(noofgen+noofload) 
       Xa(count_Sa,1) = Pivot;Ya(count_Sa,1) = i;Va(count_Sa,1) = -1; 
       count_Sa = count_Sa + 1; 
    end 
    Rhs_conserve = [0]; 
    Sign_conserve = [ '=' ]; 

     
     %% Constraints for the injection limits: 
    Constraint_pinj = eye(noofgen+noofload,noofgen+noofload); 
    count_Sb = 1; 
    for i = 1:(noofgen+noofload)          
         Xb(count_Sb,1) = Pivot+i;Yb(count_Sb,1) = i;Vb(count_Sb,1) = 

1; 
        count_Sb = count_Sb+1; 
    end 
    Pivot = Pivot+noofgen+noofload; 
    X_val = Pivot+1:Pivot+noofgen+noofload; X_val = X_val';  
    Xb = vertcat(Xb,X_val);  
    Yb = repmat(Yb,2,1);  
    Vb = repmat(Vb,2,1); 
    Pivot = Pivot+noofgen+noofload;        
    for ngen = 1:noofgen 
        GenBusNum = Generator(ngen,1); 
        Pgen_old = Generator(ngen,2); 
        Pgen_max = Generator(ngen,3); 
        Pgen_min = Generator(ngen,4); 
        Rhs_pinj_max(ngen,1) = Pgen_max-Pgen_old;                
        Rhs_pinj_min(ngen,1) = Pgen_min-Pgen_old;         
        Sign_pinj_max(ngen,1) = '<'; 
        Sign_pinj_min(ngen,1) = '>';                         
    end 

     
    %% LHS and RHS for the injection limits: 
    for nload = 1:noofload 
        LoadBusNum = Load(nload,1); 
        Pload_old = Load(nload,2);         
        Rhs_pinj_max(noofgen+nload,1) = 0; 
        Rhs_pinj_min(noofgen+nload,1) = -Pload_old; 
        Sign_pinj_max(noofgen+nload,1) = '<'; 
        Sign_pinj_min(noofgen+nload,1) = '>'; 
    end 

     
    %% Constraints for pre-contingency power flow in each branch:     
    Constraint_flow = zeros(noofline,noofgen+noofload); 
    count_Sc = 1; 
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    noofflow_cstr = 0; 
    for nline = 1:noofline 
        flag_flow = 0; 
        if (Branch(nline,8)==1) 
            for ngen = 1:noofgen 
                GenBusNum = Generator(ngen,1); 
                if (GenBusNum==length(Bus)) 
                    PTDF_val = 0; 
                else         
                    PTDF_val = PTDF(nline,GenBusNum); 
                end 
                if abs(PTDF_val)>10^-5 
                    Constraint_flow(nline,ngen) = PTDF_val;  
                    Xc(count_Sc,1) = Pivot+noofflow_cstr+1; 

Yc(count_Sc,1) = ngen; Vc(count_Sc,1) = PTDF_val; 
                    count_Sc = count_Sc+1; 
                    flag_flow = 1; 
                end 
            end 
            for nload = 1:noofload 
                LoadBusNum = Load(nload,1); 
                if (LoadBusNum==length(Bus)) 
                    PTDF_val = 0; 
                else 
                    PTDF_val = PTDF(nline,LoadBusNum); 
                end 
%                 if (PTDF_val~=0) 
                if abs(PTDF_val)>10^-5 
                    Constraint_flow(nline,noofgen+nload) = (-

1)*PTDF_val; 
                    Xc(count_Sc,1) = Pivot+noofflow_cstr+1; 

Yc(count_Sc,1) = noofgen+nload; Vc(count_Sc,1) = (-1)*PTDF_val; 
                    count_Sc = count_Sc+1; 
                    flag_flow = 1; 
                end 
            end      
            if (flag_flow==1) 
                flow_old = Branch(nline,6); 
                flow_max = Branch(nline,7); 
                flow_min = (-1)*Branch(nline,7); 
                Rhs_MaxFlow(noofflow_cstr+1,1) = flow_max-flow_old;  
                Rhs_MinFlow(noofflow_cstr+1,1) = flow_min-flow_old;  
                Sign_Maxflow(noofflow_cstr+1,1) = '<'; 
                Sign_Minflow(noofflow_cstr+1,1) = '>'; 
                noofflow_cstr = noofflow_cstr + 1; 
            end 
        end 
    end 
    Pivot = Pivot + noofflow_cstr; 
    X_val = Xc+noofflow_cstr*ones(length(Xc),1); 
    Xc = vertcat(Xc,X_val); 
    Yc = repmat(Yc,2,1); 
    Vc = repmat(Vc,2,1); 
    Pivot = Pivot + noofflow_cstr; 

     
    %% Constraints for cut-set power transfer limit: 
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      %% Constraints for the power transfer across the cut-set: 
    [row_K, col_K] = size(K);    
    count_Sd = 1; 
    for ncutset = 1:row_K         
        for ngen = 1:noofgen 
            GenBusNum = Generator(ngen,1);    
            PTDF_cutset = 0; 
            for nbranch = 1:col_K 
                if K(ncutset,nbranch)~=0 
                    BranchNum = K(ncutset,nbranch); 
                    % Check if the direction of the branch is same the 

direction 
                    % of the cut-set. 
                    F_Branch = Branch(BranchNum,1); 
                    T_Branch = Branch(BranchNum,2); 
                    Sign = 0; 
                    if IsPresent(Cutset_FT(:,1,ncutset),F_Branch)==1 && 

IsPresent(Cutset_FT(:,2,ncutset),T_Branch)==1 
                        Sign = 1; 
                    elseif IsPres-

ent(Cutset_FT(:,2,ncutset),F_Branch)==1 && IsPres-

ent(Cutset_FT(:,1,ncutset),T_Branch)==1 
                        Sign = -1; 
                    else 
                        Sign = 0; 
                    end 
                    if (GenBusNum < length(Bus(:,1))) 
                        PTDF_val = Sign*PTDF(BranchNum,GenBusNum); 
                    else 
                        PTDF_val = 0; 
                    end 
                    PTDF_cutset = PTDF_cutset+PTDF_val;  
                end 
            end 
           if abs(PTDF_cutset)>10^-5 
               Xd(count_Sd,1) = Pivot+ncutset; 
               Yd(count_Sd,1) = ngen; 
               Vd(count_Sd,1) = PTDF_cutset; 
               count_Sd = count_Sd + 1; 
           end 
        end 
        for nload = 1:noofload 
            LoadBusNum = Load(nload,1);    
            PTDF_cutset = 0; 
            for nbranch = 1:col_K 
                if K(ncutset,nbranch)~=0 
                    BranchNum = K(ncutset,nbranch); 
                    % Check if the direction of the branch is same the 

direction 
                    % of the cut-set. 
                    F_Branch = Branch(BranchNum,1); 
                    T_Branch = Branch(BranchNum,2); 
                    Sign = 0; 
                    if IsPresent(Cutset_FT(:,1,ncutset),F_Branch)==1 && 

IsPresent(Cutset_FT(:,2,ncutset),T_Branch)==1 
                        Sign = 1; 
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                    elseif IsPres-

ent(Cutset_FT(:,2,ncutset),F_Branch)==1 && IsPres-

ent(Cutset_FT(:,1,ncutset),T_Branch)==1 
                        Sign = -1; 
                    else 
                        Sign = 0; 
                    end   
                    if (LoadBusNum < length(Bus(:,1))) 
                        PTDF_val = Sign*PTDF(BranchNum,LoadBusNum); 
                    else 
                        PTDF_val = 0; 
                    end                         
                    PTDF_cutset = PTDF_cutset+(-1)*PTDF_val;  
                end 
            end 
           if abs(PTDF_cutset)>10^-5 
               Xd(count_Sd,1) = Pivot+ncutset; 
               Yd(count_Sd,1) = noofgen+nload; 
               Vd(count_Sd,1) = PTDF_cutset; 
               count_Sd = count_Sd + 1; 
           end 
        end      

         

        Tot_rate = 0; 
        Tot_flow = 0; 
        for i = 1:length(K(ncutset,:)) 
            if K(ncutset,i)==0 
                break; 
            end                 
            if (i>1) 
                Tot_rate = Tot_rate+Branch(K(ncutset,i),7); 
            end 
            A_Branch = Branch(K(ncutset,i),1); 
            B_Branch = Branch(K(ncutset,i),2); 
            if (IsPresent(Cutset_FT(:,1,ncutset),A_Branch)==1) && (Is-

Present(Cutset_FT(:,2,ncutset),B_Branch)==1) 
                Tot_flow = Tot_flow + Branch(K(ncutset,i),6); 
            else 
                Tot_flow = Tot_flow + (-1)*Branch(K(ncutset,i),6); 
            end                                            
        end   
        Rhs_cutset(ncutset,1) = Tot_rate-Tot_flow; 
        Sign_cutset(ncutset,1) = '<'; 
    end 
    Pivot = Pivot + row_K; 

     
    %% Concatenate all constraints: 
    X = vertcat(Xa,Xb,Xc,Xd); 
    Y = vertcat(Ya,Yb,Yc,Yd); 
    V = vertcat(Va,Vb,Vc,Vd);     
    Constraint_SP = sparse(X,Y,V); 
    RHS = vertcat(Rhs_con-

serve,Rhs_pinj_max,Rhs_pinj_min,Rhs_MaxFlow,Rhs_MinFlow,Rhs_cutset); 
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    SIGN = vertcat(Sign_con-

serve,Sign_pinj_max,Sign_pinj_min,Sign_Maxflow,Sign_Min-

flow,Sign_cutset); 
    %% Use the quadratic cost coefficients: 
    f_quad_gen = zeros(noofgen+noofload); 
    for i = 1:noofgen 
        c_quad = c(i,1);     
        f_quad_gen(i,i) = c_quad; 
    end     

     
    %% Set the model parameters: 
    model.obj = f; 
    model.Q = sparse(f_quad_gen);  
    model.A = sparse(Constraint_SP);  
    model.sense = SIGN; 
    model.rhs = RHS; 
    model.lb = Rhs_pinj_min;  
    clear params; 
    params.outputflag = 0; 
    result = gurobi(model, params); 

     
    if length(result.status)==7 
        Soln_Flag = 1; 
        xf = result.x; 
        %% Compute all measurement values after solving the optmiza-

tion: 
        % New branch flows: 
        flow_old = zeros(length(Branch(:,1)),4); 
        flow_new = zeros(length(Branch(:,1)),4); 
        flow_old(:,1) = Branch(:,1); 
        flow_old(:,2) = Branch(:,2); 
        flow_old(:,3) = Branch(:,6); 
        flow_old(:,4) = Branch(:,7); 
        delta_flow = Constraint_flow*xf; 
        flow_new(:,1) = Branch(:,1); 
        flow_new(:,2) = Branch(:,2); 
        flow_new(:,3) = flow_old(:,3)+delta_flow; 
        flow_new(:,4) = Branch(:,7); 
        % New dispatch: 
        gen_old = zeros(length(Generator(:,1)),2); 
        gen_new = zeros(length(Generator(:,1)),2); 
        gen_old(:,1) = Generator(:,1); 
        gen_old(:,2) = Generator(:,2); 
        load_old(:,1) = Load(:,1); 
        load_old(:,2) = Load(:,2);         
        delta_inj = Constraint_pinj*xf;         
        delta_pgen = delta_inj([1:noofgen],1); 
        delta_pload = delta_inj([noofgen+1:noofgen+noofload],1);         
        Generator_New(:,1) = Generator(:,1); 
        Generator_New(:,2) = gen_old(:,2)+delta_pgen; 
        Load_New(:,1) = Load(:,1); 
        Load_New(:,2) = load_old(:,2)+delta_pload; 

         
        %% Finding the actual cost using quadratic and linear cost co-

efficients: 
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        cost_linear = transpose(f); 
        cost_quad = horzcat(transpose(c),zeros(1,noofload)); 
        tot_change_cost = cost_linear*xf + cost_quad*(xf.^2); 

         
        %% Find the positions where non-zero changes have occurred in 

Pgen: 
        [ indpos, ~ ] = find(delta_pgen>0.001); 
        [ indneg, ~ ] = find(delta_pgen<-0.001); 
        GeneratorPositiveChange(:,1) = Generator(indpos,1); 
        GeneratorPositiveChange(:,2) = delta_pgen(indpos); 

  
        GeneratorNegativeChange(:,1) = Generator(indneg,1); 
        GeneratorNegativeChange(:,2) = delta_pgen(indneg); 
  %% Find the positions where non-zero changes have occurred in Pload: 
        [ indpos, ~ ] = find(delta_pload>0.001); 
        [ indneg, ~ ] = find(delta_pload<-0.001); 
        LoadPositiveChange(:,1) = Load(indpos,1); 
        LoadPositiveChange(:,2) = delta_pload(indpos); 

         
        LoadNegativeChange(:,1) = Load(indneg,1); 
        LoadNegativeChange(:,2) = delta_pload(indneg); 

         

        %% Get the data for the next stage:         
        Branch(:,6) = flow_new(:,3);         
        Generator(:,2) = Generator_New(:,2);         
        Load(:,2) = Load_New(:,2); 

         
        else 
        Soln_Flag = 0; 
        GeneratorNegativeChange = [];     
        GeneratorPositiveChange = []; 
        LoadNegativeChange = []; 
        LoadPositiveChange = []; 
        tot_change_cost = 0; 
    end 
%% Print the change in dispatches on the screen: 
   if (Soln_Flag==1)  
        fprintf('-------------------------------------------- \n'); 
        fprintf('Total decrease in load = %f \n',round(sum(LoadNega-

tiveChange(:,2)))); 
        fprintf('Total increase in load = %f \n',round(sum(LoadPosi-

tiveChange(:,2))));         
        fprintf('Total decrease in dispatch  = %f \n', round(sum(Gener-

atorNegativeChange(:,2)))); 
        fprintf('Total increase in dispatch  = %f \n', round(sum(Gener-

atorPositiveChange(:,2))));          
        fprintf('Total change in cost = $ %f 

\n',round(tot_change_cost)); 
        fprintf('-------------------------------------------- \n'); 
   else 
        fprintf('-------------------------------------------- \n'); 
        fprintf('No feasible solution obtained! \n'); 
        fprintf('-------------------------------------------- \n'); 
   end 
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   %% Obtain the dc power flow graph: 
   NoOfBus = length(Bus);    
   Flow_dc = sparse(NoOfBus,NoOfBus); 
   Rate_dc = sparse(NoOfBus,NoOfBus); 
   for i = 1:length(Branch(:,1))        
       Flow_dc(Branch(i,1),Branch(i,2)) = Branch(i,6); 
       Flow_dc(Branch(i,2),Branch(i,1)) = (-1)*Branch(i,6); 
       Rate_dc(Branch(i,1),Branch(i,2)) = Branch(i,7); 
   end 
   time = toc; 
end 
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function [ x] = RoundDown(x) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
%                % 
% Program Description: This function rounds down all values      % 

% of a matrix % below 0.02 to zero          % 
%                % 
% Author: Reetam Sen Biswas            % 
% Arizona State University           % 
%                % 
% Last Modified: 03/20/2020           %  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    [r,c] = find(abs(x)<0.02); 
    for i = 1:length(r) 
        x(r(i),c(i)) = 0; 
    end 
end 
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function [ Shortlist, time ] = ShortlistAssets( Branch, EdgeList, Line-

OutNumber ) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                % 
% Program Description: This program shortlists the transmission       % 
% assets that must be evaluated by the FT following a branch      % 
% outage. The logic for this program is based on the SA algorithm     %     
%               % 
% Author: Reetam Sen Biswas            % 
% Arizona State University           % 
%                     % 
% Last Modified: 03/20/2020            % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
tic; 
    [row_renum,col_renum] = size(Branch); 
    [row_list, col_list] = size(EdgeList); 
    vec = zeros(row_list,1); 
    EdgeList = horzcat(EdgeList,vec); 
    [row, col] = size(EdgeList); 
    count = 1; 
    l_Col = []; 
    l_Col = find(EdgeList(LineOutNumber,:)==0); 
    count = 1; 
    Shortlist = [];     
    for eno = 1:length(EdgeList(:,1)) 
        flag = 0;    
        e_Col = []; 
        e_Col = find(EdgeList(eno,:)==0);       
        for e_C = 1:2:e_Col(1)-2         
            for l_C = 1:2:l_Col(1)-2             
                if (EdgeList(LineOutNumber,l_C)==EdgeList(eno,e_C) && 

EdgeList(LineOutNumber,l_C+1)==EdgeList(eno,e_C+1))              
                    Shortlist(count,1) = eno; 
                    Shortlist(count,2) = Branch(eno,1); 
                    Shortlist(count,3) = Branch(eno,2); 
                    count = count+1; 
                    flag = 1; 
                    break;                 
                end 
                if (EdgeList(LineOutNumber,l_C)==EdgeList(eno,e_C+1) && 

EdgeList(LineOutNumber,l_C+1)==EdgeList(eno,e_C))              
                    Shortlist(count,1) = eno; 
                    Shortlist(count,2) = Branch(eno,1); 
                    Shortlist(count,3) = Branch(eno,2); 
                    count = count+1; 
                    flag = 1; 
                    break;                 
                end 
            end         
            if flag==1 
                break; 
            end         
        end     
    end 
time = toc; 
end 
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function [ PTDF_true, PTDF_approx, LODF, B_full, H_full, time ] = Up-

date_PTDF_LODF_B_H( B_full, H_full, Bus, Branch, Bran-

chOut,RoundOffFlag) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
%                % 
% Program Description: This program updates the system matrices     % 
% following a branch outage in the system.         % 
%               % 
% Author: Reetam Sen Biswas            % 
% Arizona State University           % 
%                     % 
% Last Modified: 03/20/2020            % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

tic; 
%% Updating the H matrix: 
    [row_H, col_H] = size(H_full);     
    for i = 1:length(BranchOut) 
        BranchNum = BranchOut(i); 
        F = Branch(BranchNum,1); 
        T = Branch(BranchNum,2);         
        H_full(BranchNum,:) = zeros(1, col_H);         
    end 

     
%% Updating the B matrix:     
    % Updating the susceptance (B) matrix changes only four entries of 

the 
    % matrix and hence saves computation time 
    for i = 1:length(BranchOut) 
        BranchNum = BranchOut(i); 
        F = Branch(BranchNum,1); 
        T = Branch(BranchNum,2); 
        B_full(F,F) = B_full(F,F)-abs(B_full(F,T)); 
        B_full(T,T) = B_full(T,T)-abs(B_full(T,F)); 
        B_full(F,T) = 0;  
        B_full(T,F) = 0;  
    end 

     
%% Finding the new PTDF matrix: 
    noofbus = length(Bus); 
    B = B_full([1:noofbus-1],[1:noofbus-1]);     
    H = H_full(:,1:noofbus-1);      

     
% Perform matrix operation to obtain the PTDF matrix: 
    X = inv(B); 
    PTDF = H*X;  
    PTDF_true = PTDF; 
% For all PTDF values lesser than 0.02, round them down to zero; 
    if (RoundOffFlag==1) 
       [r,c] = find(abs(PTDF)<0.02); 
        for i = 1:length(r) 
            PTDF(r(i),c(i)) = 0; 
        end 
    end 
    PTDF_approx = PTDF; 
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% From the PTDF matrix, we now create the LODF matrix:         
    PTDF_full = horzcat(PTDF,zeros(length(Branch(:,1)),1)); 
    [nl, nb] = size(PTDF_full); 
    f = Branch(:, 1); 
    t = Branch(:, 2); 
    Cft =  sparse([f; t], [1:nl 1:nl]', [ones(nl, 1); -ones(nl, 1)], 

nb, nl); 
    H = PTDF_full * Cft; 
    h = diag(H, 0); 
    LODF = H ./ (ones(nl, nl) - ones(nl, 1) * h'); 
    h_diff = abs(ones(length(h),1)-h); 
    [ pos_ar ] = find(h_diff<0.00001); 
    LODF = LODF - diag(diag(LODF)) - eye(nl, nl); 
    for  i = 1:length(pos_ar)  
       pos_val = pos_ar(i);  
       LODF([1:nl],pos_val) = zeros(nl,1); 
       LODF(pos_val,[1:nl]) = zeros(1,nl); 
       LODF(pos_val,pos_val) = -1; 
    end         
time = toc; 

         

end 
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function [  Flow, Capacity, time ] = UpdateScheme( mpcNewbranch, Line, 

Flow, Capacity ) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                % 
% Program Description: This program updates the flow and       % 
% latent capacity graphs based upon the UPS algorithm. The       % 
% logic for this program is based on the UPS algorithm.      % 
%               % 
% Author: Reetam Sen Biswas            % 
% Arizona State University           % 
%                % 
% Last Modified: 03/20/2020                 % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
tic;     
% Find the flow through the branch 
    BusA = mpcNewbranch(Line,1); 
    BusB = mpcNewbranch(Line,2); 
    NewFlowSheet = Flow; 
    NewFlowSheet(NewFlowSheet<0) = 0; 
    [Bus1, Bus2, flow] = find(NewFlowSheet); 
    found = 0; 
    for i = 1:length(Bus1) 
        if (Bus1(i)==BusA && Bus2(i)==BusB) || (Bus1(i)==BusB && 

Bus2(i)==BusA) 
            FromBus = Bus1(i); 
            ToBus = Bus2(i); 
            CurrentFlow = flow(i); 
            found = 1; 
        end 
    end 
    if found==0 
        FromBus = BusA; 
        ToBus = BusB; 
        CurrentFlow = 0; 
    end 

  
% Remove the branch from the flow and latent capacity graphs 
    Flow(FromBus, ToBus) = 0; 
    Flow(ToBus, FromBus) = 0; 
    Capacity(FromBus,ToBus) = 0; 
    Capacity(ToBus, FromBus) = 0; 

  
% Re=route the flow through the set of indirect paths: 
    FlowCap = 0;  
    LoseFlag = 0; 
    EdgeTouch = []; 
    TouchCount = 1; 
    if CurrentFlow==0 
        LoseFlag = 1; 
    else 
        countP = 1; 
        while (1<2)        
            [S,path]=graphshortestpath(Capacity,FromBus,To-

Bus,'Method','BFS','Directed','true'); 
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            if S==Inf 
                break; 
            end  
            MaxCap = 9999; 
            for k=1:S 
                From = path(k);To = path(k+1);           
                if MaxCap>Capacity(From,To) 
                    MaxCap = Capacity(From,To); 
                end 
            end 

        
            FlowInj = MaxCap; 
            if FlowInj>CurrentFlow 
                FlowInj = CurrentFlow; 
            end 

                   
            for k=1:S 
                From = path(k);To = path(k+1);                                       
                Flow(From,To) = Flow(From,To) + FlowInj;  
                Flow(To,From) = Flow(To,From) - FlowInj; 
                Capacity(From,To) = Capacity(From, To) - FlowInj; 
                Capacity(To,From) = Capacity(To, From) + FlowInj; 
            end 
            countP = countP + 1; 

        

            CurrentFlow = CurrentFlow-FlowInj; 
            if CurrentFlow==0 
                break; 
            end 
        end 
    end 
time = toc; 
end 

  

 

 

 

  

 

 

 

  

 

 

 


