
 

Statistical Methods for Analysis of Genomic Data with Applications in Oncology 

by 

Michelle Saul 
 
 
 
 
 

A Dissertation Presented in Partial Fulfillment 
of the Requirements for the Degree 

Doctor of Philosophy 
 
 
 
 
 
 
 
 
 
 

Approved July 2021 by the 
Graduate Supervisory Committee: 

 
Valentin Dinu, Chair 

Li Liu 
Junwen Wang 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ARIZONA STATE UNIVERSITY 

August 2021   



 i 

ABSTRACT  

This dissertation presents three novel algorithms with real-world applications to genomic 

oncology. While the methodologies presented here were all developed to overcome various 

challenges associated with the adoption of high throughput genomic data in clinical oncology, 

they can be used in other domains as well.  

First, a network informed feature ranking algorithm is presented, which shows a 

significant increase in ability to select true predictive features from simulated data sets when 

compared to other state of the art graphical feature ranking methods. The methodology also 

shows an increased ability to predict pathological complete response to preoperative 

chemotherapy from genomic sequencing data of breast cancer patients utilizing domain 

knowledge from protein-protein interaction networks. 

Second, an algorithm that overcomes population biases inherent in the use of a human 

reference genome developed primarily from European populations is presented to classify 

microsatellite instability (MSI) status from next-generation-sequencing (NGS) data. The 

methodology significantly increases the accuracy of MSI status prediction in African and African 

American ancestries. 

Finally, a single variable model is presented to capture the bimodality inherent in genomic 

data stemming from heterogeneous diseases. This model shows improvements over other 

parametric models in the measurements of receiver-operator characteristic (ROC) curves for 

bimodal data. The model is used to estimate ROC curves for heterogeneous biomarkers in a 

dataset containing breast cancer and cancer-free specimen. 
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CHAPTER 1 

INTRODUCTION 

1.1 Goal  

The goal of this research is to motivate, develop, and test analytical tools useful for 

analysis of molecular oncology data. Recurring challenges in analyses of molecular oncology 

data include finding predictive biomarkers, accounting for tumor heterogeneity, and working with 

data sets with small sample sizes and large feature spaces. The following chapters each aim to 

address such challenges. 

1.2 Family Rank 

When designing prediction models built with many features and relatively small sample 

sizes, feature selection methods can often overfit training data, leading to the selection of 

irrelevant features. Distinguishing between irrelevant features and features that are true 

predictors of a response variable can be difficult because, by chance, sets of irrelevant features 

may describe the response variable as equally well as sets of relevant features. The larger the 

ratio of features to sample size, the higher the probability irrelevant features will look relevant by 

chance. This presents a common challenge in many molecular oncology studies as there are 

often small sample sizes (e.g. cohorts of patients with specific subtypes of cancer) and large 

feature sets (e.g. tens of thousands of genes or proteins). 

One way to potentially mitigate overfitting is to incorporate domain knowledge into the 

feature selection algorithm. Using such knowledge to weight features can force an algorithm to 

choose a relevant feature over an irrelevant one, even when empirically the two features are 

apparently equal at predicting the response variable. Moreover, domain knowledge that can be 

represented graphically may help select interacting features without having to test all pairwise 

interactions, which can be computationally expensive. For example, two features represented by 

connected nodes in a graph may be more likely to have a true interaction effect than two 

unconnected features.  
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Graphical domain knowledge is also applicable to many molecular oncology studies 

where protein-protein networks can affect the underlying biology of the data. Additionally, many 

publicly available databases have well annotated protein-protein networks. For example, the 

‘Search Tool for the Retrieval of Interacting Genes/Proteins’ database (STRINGdb) contains 

graphical representation of millions of known and predicted protein-protein interactions 

(Szklarczyk et al., 2015).  

Ranking algorithms such as Personalized Page Rank (Page, Brin, Motwani, & Winograd, 

1999) and Gene Rank (Morrison, Breitling, Higham, & Gilbert, 2005) are two algorithms that can 

be used to weight features utilizing graphical knowledge. Both algorithms are based on the 

original page rank algorithm in which random walks are used to determine the probability (or 

rank) of nodes in a graph. A random walk begins on a randomly selected node, and moves from 

node to node along the edges of the graph. The more connected a node is, the more likely it is 

visited during the random walk. If edge weights are given as part of the graph structure, the 

probability that a step is taken along an edge is weighted by this factor. At each node there is also 

a probability, referred to as the damping factor, that the random walk along the current path will 

end, and a new starting node will be chosen at random. The probability that a node is visited as 

the random walks progress to convergence is that node’s page rank. 

In personalized page rank, the probability of landing on a node when abandoning a 

random walk is given by a unique probability for each node as opposed to a uniform probability 

across all nodes. This allows empirical feature scores to be incorporated into the personalization 

of the page rank algorithm by assigning the node probabilities based on these scores. In gene 

rank, the probability of each node is scaled by the empirical feature score.  

Chapter 2 will present a novel feature ranking algorithm called ‘Family Rank’ which 

utilizes graphical domain knowledge to weight feature scores computed from empirical data. 

Family rank will then be compared to page rank and gene rank on simulated and real-world 

oncology data sets.  

1.3 Population Bias in MSI 
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Microsatellite instability (MSI) is a prognostic biomarker utilized by clinicians to guide 

cancer treatment. In particular, immunotherapies have been approved by the  United States Food 

and Drug Administration's (FDA) for treatment of tumors with high levels of MSI (MSI-H) (Lemery, 

Keegan, & Pazdur, 2017).  

Historically, MSI has been detected in cancerous tumor tissue samples by performing 

fragment analysis (FA) on a panel of five representative genomic markers (Boland et al., 1998). 

More recently, next-generation sequencing (NGS) has been used to analyze thousands of 

microsatellite loci to detect MSI. NGS-based tests have been shown to improve the robustness 

and sensitivity of MSI detection (Vanderwalde, Spetzler, Xiao, Gatalica, & Marshall, 2018).  

NGS MSI techniques typically rely on bioinformatics pipelines that align microsatellite 

locations in tumor DNA to a reference genome. Large numbers of microsatellite locations that do 

not match the reference genome is evidence of MSI. However, because the initial reference 

genome was created from a limited number of individuals with a heavy bias towards populations 

of European ancestry (E pluribus unum, 2010; Sherman et al., 2019), this method of 

microsatellite alignment can be prone to population biases. Furthermore, findings from the 1000 

Genomes Project indicate that variants, including microsatellites, can be specific to ancestral 

lines, and individuals of African ancestry have more normal germline variation relative to other 

ancestral lines (Fan et al., 2019; Genomes Project Consortium, 2010).  

In chapter 3, the hypothesis that this natural variation decreases the specificity of NGS 

MSI detection in patients of African/African American ancestry is tested, and an NGS-based 

diagnostic test aimed at minimizing the hypothesized bias is trained on a data set of 6,140 tumor 

specimen. 

1.4 Bimixt 

Disease heterogeneity refers to the existence of varying genetic signatures observed 

across patients with a single disease. While a disease may present similarly across patients, the 

variation in underlying genomic mutational patterns can give rise to differing responses to 

therapies and differing medical prognoses. 
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Over the past several decades, molecular sequencing has revealed genetic subtypes of 

many heterogeneous diseases. A canonical example of disease heterogeneity is breast cancer 

which is commonly classified based on the presence or absence of three biomarkers: estrogen 

receptor (ER), progestogen receptor (PR), and the HER2 gene. ER and PR are hormone 

receptors (HR). Hormone receptor status has been linked to patient prognoses with ER+/PR+ 

patients showing significantly decreased mortality rates compared to patients with only one HR 

mutation, or no HR mutations (Dunnwald, Rossing, & Li, 2007). Furthermore, meta-analyses of 

data from 20 clinical trials has shown that response to the hormone therapy drug tamoxifen can 

significantly decrease mortality in patients with ER+ tumors, but has little to no effect in patients 

that are ER- (Group, 2011). Finally, targeted therapies that are engineered to target the HER2 

gene have shown significant decreases in mortality of HER2+ breast cancer patients (Slamon et 

al., 2001). 

While many disease subtypes have been classified, subtyping remains an active field of 

research, particularly within oncology. Detection of biomarkers associated with cancer status may 

indicate which genes play crucial roles in the molecular pathways associated with specific cancer 

subtypes and may be good candidates for targeted therapies.  

 Early phase biomarker discovery studies that aim at detecting potentially actionable 

cancer mutations often revolve around assaying as many markers as possible and trying to 

identify relevant markers from the larger population that can distinguish between subjects from 

two different categories. For example, a biomarker discovery study of a proteomic screening may 

look at the expression levels of thousands of proteins to try to find the proteins with the greatest 

ability to distinguish individuals with a disease (cases) from individuals without the disease 

(controls). A single protein’s ability to distinguish cases from controls is determined by calculating 

sensitivity (true positive rate) and specificity (true negative rate) at various thresholds for the 

expression level. However, due to disease heterogeneity, finding such markers may be difficult as 

they may only be mutated in a small sub-sample of any given cohort. Thus, heterogeneity should 

be accounted for when assessing individual biomarker candidates.  
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Chapter 4 will present a novel method called ‘bimixt’ for fitting a mixture model to numeric 

measurements from heterogeneous populations. The chapter will cover estimation of the model, 

application of the model to real biomarker data, and utility of the model for assessing individual 

biomarker candidates.  
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CHAPTER 2 

FAMILY RANK: A GRAPHICAL KNOWLEDGE INFORMED FEATURE RANKING ALGORITHM1 

 Introduction 

When designing prediction models built with many features and relatively small sample 

sizes, feature selection methods can often overfit training data, leading to the selection of 

irrelevant features. Distinguishing between irrelevant features and features that are true 

predictors of a response variable can be difficult because, by chance, sets of irrelevant features 

may describe the response variable as equally well as sets of relevant features. The larger the 

ratio of features to sample size, the higher the probability irrelevant features will look relevant by 

chance. One way to potentially mitigate this impact is to incorporate domain knowledge into the 

feature selection algorithm. Using such knowledge to weight features can force an algorithm to 

choose a relevant feature over an irrelevant one, even when empirically the two features are 

apparently equal at predicting the response variable. Moreover, domain knowledge that can be 

represented graphically may help select interacting features without having to test all pairwise 

interactions, which can be computationally expensive. For example, two features represented by 

connected nodes in a graph may be more likely to have a true interaction effect than two 

unconnected features.  

 In this chapter, a feature ranking algorithm called ‘Family Rank’ is presented which 

utilizes graphical domain knowledge to weight feature scores computed from empirical data 

(henceforth referred to as ‘empirical feature scores’). The algorithm looks at each feature as a 

starting point to grow a family of features. Families are generated by iteratively selecting features 

that maximize a weighted score calculated from empirical feature scores and interaction scores 

(edge weights) with features previously added to the family. The final ranking for a feature is 

determined by summing a feature’s family-weighted scores across all families in which it appears.  

                                                   

1The work in this chapter has been published in (Saul & Dinu, 2021):  
Saul, Michelle, and Valentin Dinu. "Family Rank: A graphical domain knowledge informed feature 
ranking algorithm." Bioinformatics (2021). 
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A simulated data set is used to demonstrate a scenario in which the family rank algorithm 

outperforms other state-of-the-art graph based ranking algorithms. An example from oncology is 

then used to explore a real-world application of family rank. The oncology domain is used as an 

illustrative example because it is common to have small sample sizes (e.g. cohorts of patients in 

clinical trials with specific subtypes of cancer), large feature sets (e.g. tens of thousands of genes 

or proteins), and graphical domain knowledge (e.g. protein-protein interactions).  

 Background 

 Empirical Feature Ranking 

Empirical scores refer to any statistical method used to generate a score that measures 

the ability of a feature to predict an outcome based on empirical data. Ranks based on empirical 

feature scores without incorporating domain knowledge are used both as parameter inputs to the 

graphical ranking algorithms and as a baseline for comparison among ranking methods (referred 

to as ‘Empirical Rank’ method). In this chapter, the following empirical scoring methods are used 

to generate ranks: 

1. Area under the receiver-operator characteristic (ROC) curve (AUC) (Robin et al., 

2011) 

2. Absolute difference in group means (Δ mean) 

3. Absolute difference in group medians (Δ med) 

4. Earth mover’s distance (EMD) (Nabavi, Schmolze, Maitituoheti, Malladi, & Beck, 

2016) 

Features are ranked based on the empirical scores by ordering from highest to lowest 

score. Higher scores correspond to lower ranks. Empirical ranking methods used in this chapter 

correspond to statistical methods for scoring a feature’s ability to classify categorical outcome 

variables, since that is the response type for both simulated data sets and oncology data sets 

analyzed. However, different empirical feature ranking methods can be employed for numerical 

features (for example Pearson’s correlation) and plugged into the graphical ranking methods in 

the same manner as scores generated for categorical outcome data. 
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 Graphical Ranking Algorithms 

Ranking algorithms, such as Personalized Page Rank (Page et al., 1999) and Gene 

Rank (Morrison et al., 2005) may be used to weight empirical feature scores. Both algorithms are 

based on the original page rank algorithm in which random walks are used to determine the 

probability (or rank) of nodes in a graph. A random walk begins on a randomly selected node, and 

moves from node to node along the edges of the graph. The more connected a node is, the more 

likely it is visited during the random walk. If edge weights are given as part of the graph structure, 

the probability that a step is taken along an edge is weighted by this factor. At each node there is 

also a probability, referred to as the damping factor, that the random walk along the current path 

will end, and a new starting node will be chosen at random. The probability that a node is visited 

as the random walks progress to convergence is that node’s page rank. 

In personalized page rank, the probability of landing on a node when abandoning a 

random walk is given by a unique probability for each node as opposed to a uniform probability 

across all nodes. This allows empirical feature scores to be incorporated into the personalization 

of the page rank algorithm by assigning the node probabilities based on these scores. In gene 

rank, the probability of each node is scaled by the empirical feature score.  

This chapter presents a novel ranking algorithm, referred to as ‘Family Rank’, that 

incorporates empirical feature scores and graphical domain knowledge. The algorithm looks at 

each feature as a starting point to grow a family of features. Families are generated by iteratively 

selecting features that maximize a weighted score calculated from empirical feature scores and 

interaction scores (edge weights) with features previously added to the family. The final ranking 

for a feature is determined by summing a feature’s family-weighted scores across all families in 

which it appears. 

 Protein-Protein Networks 

Graphical knowledge is required input for all graphical ranking algorithms. The graphical 

domain knowledge for oncology applications presented in this chapter was extracted from the 

‘Search Tool for the Retrieval of Interacting Genes/Proteins’ database (STRINGdb), which 
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contains graphical representation of known and predicted protein-protein interactions (Szklarczyk 

et al., 2015). STRINGdb contains millions of interaction scores suggesting evidence of functional 

links between pairs of proteins.  

Interaction scores are calculated by combining confidence scores from seven different 

sources of evidence as follows:   

𝑆 = 1 −% (1− 𝑆')
'

 

Where 𝑆' is the confidence score for the 𝑖*+ evidence type and an independence among 

evidence sources is assumed (Mering et al., 2003). 

Confidence scores for the evidence types range between 0 and 1, and can be 

categorized as low confidence (<0.4), medium confidence (0.4 to 0.7), and high confidence 

(>0.7).  

Three of the sources of evidence of functional links between proteins come from genomic 

context produced de novo in STRING and include (Huynen, Snel, von Mering, & Bork, 2003; Von 

Mering et al., 2005): 

1. Neighborhood in the Genome: Groups of genes that are frequently observed 

in each other’s genomic neighborhood across different species 

2. Gene Fusions: Genes that are sometimes fused into single open reading 

frames 

3. Cooccurrence Across Genomes: Gene families whose occurrence patterns 

across genomes show similarities 

The other four sources of evidence of functional links between proteins are imported from 

other databases (Huynen et al., 2003; Von Mering et al., 2005) and include:  

4. Co-Expression: Proteins whose genes are observed to be correlated in 

expression, across a large number of experiments 

5. Experimental/Biochemical Data: Co-purification, co-crystallization, 

Yeast2Hybrid, Genetic Interactions, etc. as imported from primary sources 
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6. Association in Curated Databases: Known metabolic pathways, protein 

complexes, signal transduction pathways, etc. from curated databases 

7. Co-Mentioned in PubMed Abstracts: Automated, unsupervised text mining 

searching for proteins that are frequently mentioned together 

Genomic context evidence is based on systematic comparisons of genomes across 

multiple species. Functionally interacting proteins tend to be associated with each other within a 

genome. Therefore, genomes are searched for gene pairs with more evolutionary patterns in 

common than expected by chance.  

Performance of predictions from imported evidence are benchmarked against a common 

reference set of gold standard associations. The Kyoto Encyclopedia of Genes and Genomes 

(KEGG) database is used as the gold standard. 

 Methods 

 Family Rank Algorithm 

The family rank algorithm takes as input a vector of empirical scores (𝑠 = {𝑠/,… , 𝑠2}) 

corresponding to a set of features (𝑓 = {𝑓/,… , 𝑓2}) and a graph object (𝐺) in which nodes 

correspond to individual features and edge weights indicate strengths of interactions between 

pairs of features, denoted as 𝐼7𝑓', 𝑓89.  

The first step of the algorithm is normalization. If any empirical feature score is not 

between 0 and 1, 𝑠 is normalized. Likewise, if any edge weight in 𝐺 is not between 0 and 1, the 

set of all edge weights is normalized. Normalization consists of shifting all values by -1 times the 

minimum value if any value is less than 0, and dividing all values by the maximum value if any 

values are greater than 1 after shifting. 

The next step of the algorithm is to generate families of features. A family is generated for 

each feature in 𝑓 by iteratively updating and maximizing a weighted score vector 𝑤;;⃑ ',8 =

=𝑤',8/,… , 𝑤',82>  where 𝑖 indicates the iteration and 𝑗 indicates the family was initiated by feature 
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𝑓8. At iteration 𝑖 for the family initiated by feature 𝑓8, the weighted score for feature, 𝑓@ (e.g. the kth 

element of 𝑤;;⃑ ',8) is defined as: 

𝑤',8@ =

⎩
⎪
⎨

⎪
⎧

𝑠@, 𝑖 = 1, 𝑘 = 𝑗
0, 𝑖 = 1, 𝑘 ≠ 𝑗
0, 𝑖 > 1, 𝑘 = 𝑚

(1 − 𝑑) ∗ 𝑠@ + 𝑑 ∗ 𝐼(𝑓@, 𝑓M), 𝑖 = 2, 𝑘 ≠ 𝑚
(1 − 𝑑) ∗ 𝑤'O/,8@ + 𝑑 ∗ 𝐼(𝑓@, 𝑓M), 𝑖 > 2, 𝑘 ≠ 𝑚

 

where 

𝑓M = arg	max
VW∈V⃗

𝑤;;⃑ 'O/,8 

In the equation above, 𝑑 is a user-defined parameter (referred to as the damping 

parameter for consistency with page rank terminology) between 0 and 1 that determines how 

much weight to give to the interaction score, and 𝑓M is equal to the feature 𝑓@ that maximizes 

𝑤;;⃑ 'O/,8. 

At each iteration, the feature that maximizes 𝑤;;⃑ ',8 is selected (i.e. added to the family), and 

the weight for that feature is set to 0 for the next iteration. For the first iteration, 𝑤;;⃑ ',8 	is equal to the 

empirical score for the initiating feature and 0 for all other features. 

For the following iterations, the weighted score for feature 𝑓@ is updated to the weighted 

average of the score for feature 𝑓@ from the previous iteration and the interaction score between 

𝑓@	and the feature selected in the previous iteration. 

Features are added to the family iteratively until at least one of two stopping criteria is 

met: a feature that has already been added to the family is selected again and/or the maximum 

weighted score is less than a predefined tolerance level (e.g. 10E-6).  

Selected features are stored in an 𝑛 × 𝑛 feature matrix denoted as Λ and the 

corresponding score (𝑤',8@) for the selected feature is stored in an 𝑛 × 𝑛 score matrix denoted as 

Ω. Columns of the matrices represent families, and are populated by selected features for each 

family until the stopping criteria is met, as outlined above. Given a weighted score vector for the 

family initiated by feature 𝑓8 at iteration 𝑖, the 𝑖, 𝑗th element of each matrix is defined as: 
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Ω',8 = max	(𝑤;;⃑ ',8) 

Λ',8 = arg	max
VW∈V⃗

𝑤;;⃑ ',8 

While the maximum number of features that can be added to a family is 𝑛 (i.e. all features 

are selected), fewer features maybe added, in which case not all rows of the matrices Λ and Ω will 

be completely filled.  

The final step of the algorithm is to generate a single score for each feature. The final 

score for a feature is defined as the sum of the weighted scores for all families in which that 

feature appears: 

𝑠𝑐𝑜𝑟𝑒VW =a7Ω',8bΛ',8 = 𝑓@9 

In other words, the final score for a feature 𝑓@ is the sum of the scores in Ω corresponding 

to the locations in which 𝑓@ appears in Λ. An implementation of the algorithm can be found in the 

‘FamilyRank’ package available on CRAN 

[https://www.rdocumentation.org/packages/FamilyRank/versions/1.0]. 

 Data Simulation 

To assess how family rank performs on complex data, simulations were used to emulate 

gene expression data in oncology. Features were simulated from bimodal Gaussian distributions. 

A two-component distribution was used to imitate high and low expressers of genes. Lower 

components were simulated from a 𝑁(𝜇 = 5, 𝜎 = 1) distribution and upper components were 

simulated from a 𝑁(𝜇 = 13, 𝜎 = 1) distribution. Features simulated as noise had a 50% 

probability of coming from either component.  The density plot is shown in Figure 1. 
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Figure 2-1 Density Plot of Simulated Noise Features 

 

Simulated responses were balanced, with half the samples labeled ‘positive’ and the 

other half labeled ‘negative’. The response was perfectly defined by a set of 15 features (e.g. ‘true 

predictors’). Positive samples were simulated to fall into one of 3 subtypes, each defined by 5 

different features. Subtypes were used to imitate tumor heterogeneity and reflect the fact that 

tumorigenesis resulting in a single cancer type can be initiated by different gene sets. 

Subtype 1 was defined as having features 1 through 3 and at least one of either features 

4 or 5 simulated from the upper component of the bimodal Gaussian distribution. Subtype 2 was 

defined as having all of features 6 through 10 simulated from the upper component. Subtype 3 

was defined as having features 11 through 14 simulated from the upper component and feature 

15 simulated from the lower component.  Simulations were performed so that all response 

subtypes were mutually exclusive. That is, no positive sample fit the criteria for more than one 

subtype. The logic defining subtypes was used to imitate the fact that both over-expressed and 

under-expressed genes can result in protein levels that are either too high or too low for cells to 

function properly. The fact that multiple features were used to define a subtype was used to 

imitate the fact that a low level of one protein can be counter-balanced by a higher level of a 
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different but similar protein, so that mutations in more than one gene may be required to have a 

functional impact on a cellular level. 

Negative samples were simulated such that they did not fit the criteria of any of the 

positive subtypes. To ensure they did not fit subtype 1 criteria, at least one of features 1 through 3 

and/or both features 4 and 5 were simulated from the lower component of the Gaussian 

distribution. To ensure they did not fit subtype 2 criteria, at least one of features 6 through 10 was 

simulated from the lower component. To ensure they did not fit subtype 3 criteria, at least one of 

features 11 through 14 was simulated from the lower component and/or feature 15 was simulated 

from the upper component.  

Graphical domain knowledge for the subtypes was simulated such that each cluster of 5 

features defining a subtype was fully connected by including all possible pairs of subtype 

features, and assigning them edge weights of 1. One million additional interactions were 

simulated among random pairs of all features to introduce noise into the graphical domain 

knowledge. Edge weights for the random interactions were sampled uniformly along the interval 

from 0 to 1. Duplicated interaction pairs were removed, so that final simulated domain knowledge 

graphs had slightly fewer than 1 million total interactions. 

Ranking methods were directly compared on simulated datasets of varying sample sizes. 

Each sample had simulated values for 10,000 features, where features 1 through 15 were true 

predictors and the other 9,985 were noise. Code for generating the simulated data sets can be 

found in the ‘FamilyRank‘ package available on CRAN 

[https://www.rdocumentation.org/packages/FamilyRank/versions/1.0]. 

 Breast Cancer Data 

Ranking methods were applied to breast cancer gene-expression data obtained from 

GEO (GSE16716).  Data were collected as part of the Microarray Quality Control (MAQC)-II 

project (Consortium, 2010) and have previously been described (Popovici et al., 2010). Briefly, 

the data consist of 22,284 genes assayed across 230 breast cancer specimen.  Breast cancer 

patients were given preoperative chemotherapy and were classified as either responders (no 
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residual invasive cancer was detected in breast or lymph nodes post therapy) or non-responders 

(residual invasive cancer was detected post therapy). As in the original analysis, the first 130 

cases are used for training and the next 100 are used as an independent validation set. 

Domain knowledge was extracted from the STRING database (Mering et al., 2003), 

which contains graphical representation of known and predicted protein-protein interactions. 

Interaction scores between two proteins are assigned a value between 0 and 1 based on 

evidence of functional links from multiple sources. Details on interaction score calculations and 

sources of evidence have been previously described (Huynen et al., 2003; Szklarczyk et al., 

2015; Von Mering et al., 2005). The interaction scores used in analysis were downloaded from 

STRING version 11.0 for the homo sapiens species identifier 9606 (https://string-

db.org/cgi/download). 

Genes from the microarray expression data obtained from GEO were matched to the 

STRING network data by gene symbol. Genes not found in the expression array were removed 

from the domain knowledge. Remaining genes used for analysis included a total of 7,342,791 

unique protein-protein interactions. 

 Cross Validation 

Cross validation was performed on both simulated data and the breast cancer data set 

obtained from the MAQC study. Fifty iterations of 10-fold cross validation were performed on both 

simulated and real-world data sets. All calculations were performed in R (R Core Team, 2019). 

Training folds were used to build models across multiple parameters including 4 types of 

empirical scoring methods, 4 ranking methods (3 using domain knowledge, and one using ranks 

from empirical scores to compare as a baseline), 3 damping factors, 9 feature selection sizes, 

and 3 classifiers. The parameters evaluated are listed in Table 2.1. 
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Table 2.1 Parameters Assessed by Cross Validation 

Empirical Scoring 
Methods 

Ranking 
Methods 

Damping 
Factors 

Feature 
Selection 

Size 
Classifiers 

Area under the receiver-
operator characteristic 

(ROC) curve (AUC) 

Absolute difference in 
group means (Δ mean) 

Absolute difference in 
group medians (Δ med) 

Earth mover’s distance 
(EMD) 

Empirical Rank 

Family Rank 

Gene Rank 

Page Rank 

0.15 

0.5 

0.85 

10 – 50 by 5 

KNN 

Random Forest 

SVM 

 

Within each training fold, a total of 1,296 prediction models were built, one for each 

combination of parameters. First, 4 sets of empirical scores were generated on training data. 

AUCs were calculated using the ‘pROC’ package (Robin et al., 2011) and EMD was calculated 

using the ‘EMDomics’ package (Nabavi et al., 2016).  

Next, for each of the 4 sets of empirical scores, ranks were generated for the top 1,000 

features. The top 1,000 features associated with each empirical scoring method were used for 

ranking as opposed to all 10,000 features in order to reduce computation time. The page rank 

algorithm was performed using functions provided in the ‘igraph’ package (Csardi & Nepusz, 

2006), the gene rank algorithm was performed using R code adapted from the MATLAB code 

provided in the original publication (Morrison et al., 2005), and the family rank algorithm was 

performed using the ‘FamilyRank’ package (Saul, 2021). Family rank, gene rank, and page rank 

were run 3 times per empirical score set, one for each damping parameter assessed. Although 

empirical rank does not incorporate damping factors, to ensure equal number of classifiers were 

built per ranking method, 3 sets of the empirical rank were generated per empirical score set as 

well. Thus, a total of 48 ranked score sets were generated (12 per ranking algorithm). 

Finally, a total of 27 classifiers were built for each of the 48 ranked score sets. For each 

ranked score set, 3 different classification methods were used to build classifiers incorporating 10 
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to 50 (sequenced by 5) of the top ranked features. Random forest classification was performed 

using functions provided by the ‘randomForest’ package (Andy Liaw & Wiener, 2002), SVM was 

performed using functions provided in the ‘e1071’ package (Dimitriadou, Hornik, Leisch, Meyer, & 

Weingessel, 2008), and KNN was performed using functions provided in the ‘class’ package 

(Venables & Ripley, 2002).  

Additional parameters for classifiers were not optimized due to computation time, but 

were instead set to defaults found in the literature. For KNN, the default cluster size was set to 

11, as was done in the MAQC analysis (Popovici et al., 2010). For RF, the default settings from 

the randomForest function in the ‘randomForest’ R package were used, including a tree size of 

1,000 and a feature sample size at each tree split equal to the floor of the square root of the 

number of features. For the SVM classifier, the default settings from the svm function in the 

‘e1071’ R package were used, including a radial kernel, a gamma value equal to 1 divided by the 

number of features, and a constant of regulation parameter equal to 1.  

For each training fold, class predictions were made for the 1,296 training models on 

testing data from the held-out fold. Binary predictions were aggregated across the 10 folds to 

calculate confusion matrices and associated statistics. Class probabilities were aggregated 

across the 10 folds to calculate AUCs. All statistics were then averaged over 50 iterations. 

 Results 

 Simulated Data 

Data sets were simulated for sample sizes ranging from 50 to 500 to compare the ranks 

of true predictors (1 through 15) among ranking algorithms. For each sample size, 10 data sets 

were simulated, and ranks were generated for each ranking method evaluated at damping 

parameters ranging from 0.15 to 0.85 and empirical scoring methods 1 through 4 (as discussed in 

the methods section). The number of true predictors ranked in the top 15 features were averaged 

over the 10 simulations. Results corresponding to the best performing damping parameter per 

ranking method are shown in Figure 2-2 and results stratified by damping parameter and 

empirical scoring method are shown in Figure 2-3. 
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Figure 2-2 Rank of True Predictors by Scoring Method. 

Ranking method results corresponding to best performing damping parameter. Lines indicate 
the number of true predictors ranked in the top 15 averaged over 10 simulations. Ribbons 
depict the maximum and minimum number of true predictors in the top 15 across simulations. 
Scoring methods analyzed include AUC (1), difference in means (2), difference in medians (3), 
and EMD (4).  
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Figure 2-3 Rank of True Predictors by Scoring Method and Damping Parameter.  

Figure shows ranking method results faceted by scoring method and by damping parameters. 
Lines indicate the number of true predictors ranked in the top 15 averaged over 10 simulations. 
Ribbons depict the maximum and minimum number of true predictors in the top 15 across 
simulations. Scoring methods analyzed include AUC (1), difference in means (Δ mean) (2), 
difference in medians (3), and EMD (4). 

 

To compare the raw ranks of the true predictors among ranking methods, a data set of 

size 200 was simulated. Features were ranked by each ranking method at damping parameters 

ranging from 0.15 to 0.85 and across all 4 scoring methods. The results for the scoring method 

and damping parameters that yielded the best (lowest) average rank for true predictors for each 

ranking method is shown in Table 2.2. 
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Table 2.2 Ranks of True Predictors by Ranking Method 
True Predictor Family Rank Page Rank Gene Rank Empirical Rank 

1 8 1 306 327 
2 13 8 4 4 
3 7 3 7 10 
4 >1000 >1000 >1000 >1000 
5 6 45 8 5 
6 1 2 10 12 
7 4 15 9 8 
8 5 9 6 6 
9 3 4 249 271 

10 2 13 468 528 
11 10 5 11 9 
12 14 7 1 1 
13 12 18 2 2 
14 9 6 3 3 
15 11 244 13 11 

Table 2.2: Ranks of true predictors were generated on a simulated data set with a sample size 
of 200. The damping parameters and empirical scoring methods used for generating the ranks 
were determined by selecting the parameters that minimized the average rank of features 1 
through 15. 

 

In addition to the ranks of the true predictors, the ability of selected features to classify 

the response variable was assessed via 50 replicates of 10-fold cross-validation (CV). For each 

replicate, a unique data set with a sample size of 200 was simulated. Classification models were 

built on training folds for multiple combinations of parameters and classifiers. Results for 

parameters achieving the highest average cross-validated AUCs for each ranking method are 

shown in Table 2.3. 
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Table 2.3 Cross Validation Classification Performance on Simulated Data 

Ra
nk

in
g 

M
et

ho
d  

Parameters¹ Average CV Performance (SD)² 
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d  
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m
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# 
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FP
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C 
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 (%
) 

Se
ns
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vi
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 (%

) 

Sp
ec

ifi
ci

ty
 (%

) 

PP
V 

(%
) 

NP
V 

(%
) 

Family 
Rank SVM 2 0.5 15 91.1 

(3.5) 
89.9 
(2.7) 

10.1 
(2.7) 

8.9 
(3.5) 

0.97 
(0.02) 

90.5 
(2.8) 

91.1 
(3.5) 

89.9 
(2.7) 

90.1 
(2.6) 

91 
(3.3) 

Page 
Rank SVM 4 0.15 15 87.3 

(3.6) 
85.8 
(3.8) 

14.2 
(3.8) 

12.7 
(3.6) 

0.94 
(0.02) 

86.5 
(3.3) 

87.3 
(3.6) 

85.8 
(3.8) 

86.1 
(3.5) 

87.1 
(3.5) 

Gene 
Rank SVM 4 0.15 10 73.6 

(6) 
74.3 
(5.8) 

25.7 
(5.8) 

26.4 
(6) 

0.81 
(0.06) 

74 
(5.4) 

73.6 
(6) 

74.3 
(5.8) 

74.2 
(5.5) 

73.9 
(5.5) 

Empirical 
Rank SVM 4 N/A 10 73.8 

(6.1) 
74.8 
(5.4) 

25.2 
(5.4) 

26.2 
(6.1) 

0.82 
(0.06) 

74.3 
(5.3) 

73.8 
(6.1) 

74.8 
(5.4) 

74.5 
(5.3) 

74.1 
(5.5) 

¹Parameters that resulted in the highest average AUCs for each ranking method are displayed. 

²Statistics are averaged over 50 replicates of 10-fold CV. For each replicate, probabilities and 
predictions on samples in held-out folds were used to calculate CV statistics. 

 

AUCs for the optimal performing parameters for each ranking method are shown in 

Figure 2-4, and AUCs faceted by scoring method and classifier are shown in Figure 2-5. 

 

Figure 2-4 10-Fold CV AUCs for Simulated Data.  

Ranking method CV results corresponding to best performing parameters. AUCs were 
calculated for 50 replicates of 10-fold CV. For each replicate, class probabilities were 
calculated for samples in held-out folds. Held-out probabilities from each fold were then 
aggregated and used to calculate a single AUC.  
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Figure 2-5 10-Fold CV AUCs for Simulated Data by Scoring Method and Classifier.  

Figures show ranking method CV results stratified by empirical scoring methods and 
classifiers. AUCs were calculated for 50 replicates of 10-fold CV. For each replicate, class 
probabilities were calculated for samples in held-out folds. Held-out probabilities from each fold 
were then aggregated and used to calculate a single AUC. Scoring methods analyzed include 
AUC (1), difference in means (2), difference in medians (3), and EMD (4). 

 

Independent testing was also performed on simulated data. Optimal parameters found 

during cross validation were used to build prediction models on a simulated data set with 75 

‘positives’ and 75 ‘negatives’. Another data set containing 25 ‘positive’ and 25 ‘negative’ samples 

was simulated for independent testing. Results are shown in Table 2.4. 
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Table 2.4 Independent Validation Performance on Simulated Data 

Ranking 
Method 

Parameters¹ Performance 
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) 
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) 
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) 

PP
V 
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) 
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V 
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Family 
Rank SVM 2 0.5 15 23 22 3 2 0.96 90 92 88 88 92 

Page 
Rank SVM 4 0.15 15 22 22 3 3 0.95 88 88 88 88 88 

Gene 
Rank SVM 4 0.15 10 19 22 3 6 0.89 82 76 88 86 79 

Empirical 
Rank SVM 4 N/A 10 20 22 3 5 0.89 84 80 88 87 81 

¹Optimal parameters from training cross validation were used to build models on the entire 
training set. These models were then evaluated on the independent testing set. 

 

 Breast Cancer Data 

Ranking methods were applied to breast cancer gene-expression data obtained from the 

Microarray Quality Control (MAQC)-II project to predict response to chemotherapy. The original 

publication assessed cross-validation results on a data set consisting of 33 responders and 97 

non-responders. This set is used here to assess cross-validation results as well. Cross validation 

is performed using the same methods as the simulated data. Results for parameters achieving 

the highest average cross-validated AUCs for each ranking method are shown in Table 2.5. 
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Table 2.5 Cross Validation Classification Performance on Breast Cancer Data 
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g 
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Parameters¹ Average CV Performance (SD)² 
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) 

PP
V 

(%
) 
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V 

(%
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Family 
Rank RF 2 0.5 40 14.9 

(1.5) 
88.1 
(1.3) 

8.9 
(1.3) 

18.1 
(1.5) 

0.84 
(0.01) 

79.2 
(1.6) 

45.2 
(4.4) 

90.8 
(1.3) 

62.6 
(4.3) 

83 
(1.2) 

Page 
Rank RF 1 0.85 25 14.6 

(1.6) 
88 

(1.4) 
9 

(1.4) 
18.4 
(1.6) 

0.83 
(0.01) 

78.9 
(1.8) 

44.2 
(4.8) 

90.7 
(1.4) 

61.8 
(4.9) 

82.7 
(1.3) 

Gene 
Rank KNN 1 0.15 25 17.8 

(2.1) 
81.8 
(2.2) 

15.2 
(2.2) 

15.2 
(2.1) 

0.8 
(0.02) 

76.7 
(2.3) 

54.1 
(6.5) 

84.4 
(2.3) 

54.1 
(4.6) 

84.4 
(1.9) 

Empirical 
Rank KNN 1 N/A 40 16.2 

(2) 
81.6 
(2.2) 

15.4 
(2.2) 

16.8 
(2) 

0.81 
(0.02) 

75.3 
(2.5) 

49.1 
(6.2) 

84.2 
(2.2) 

51.4 
(5.4) 

83 
(1.8) 

¹Parameters that resulted in the highest average AUCs for each ranking method are displayed. 

²Statistics are averaged over 50 replicates of 10-fold CV. For each replicate, probabilities and 
predictions on samples in held-out folds were used to calculate CV statistics. 

 

AUCs for the optimal performing parameters for each ranking method are shown in 

Figure 2-6. AUCs faceted by scoring method and classifier are shown in Figure 2-7. 

 

Figure 2-6 10-Fold CV AUCs for Breast Cancer Data.  

Ranking method CV results corresponding to best performing parameters. AUCs were calculated for 
50 replicates of 10-fold CV. For each replicate, class probabilities were calculated for samples in held-
out folds. Held-out probabilities from each fold were then aggregated and used to calculate a single 
AUC.  
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Figure 2-7 10-Fold CV AUCs for Breast Cancer Data by Scoring Method and Classifier.  

Figures show ranking method CV results stratified by empirical scoring methods and 
classifiers. AUCs were calculated for 50 replicates of 10-fold CV. For each replicate, class 
probabilities were calculated for samples in held-out folds. Held-out probabilities from each fold 
were then aggregated and used to calculate a single AUC. Scoring methods analyzed include 
AUC (1), difference in means (2), difference in medians (3), and EMD (4). 

 

The original publication assessed optimal results on an independent data set consisting 

of 15 responders and 85 non-responders. This set is used here to assess independent test 

results using the optimal parameters from CV. Results on independent data are shown in Table 

2.6.  
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Table 2.6 Independent Validation Performance on Breast Cancer Data 

Ranking 
Method 

Parameters¹ Performance 
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Family 
Rank SVM 2 0.5 40 23 22 3 2 0.96 90 92 88 88 92 

Page 
Rank SVM 4 0.15 25 22 22 3 3 0.95 88 88 88 88 88 

Gene 
Rank SVM 4 0.15 25 19 22 3 6 0.89 82 76 88 86 79 

Empirical 
Rank SVM 4 N/A 40 20 22 3 5 0.89 84 80 88 87 81 

¹Optimal parameters from training cross validation were used to build models on the entire 
training set. These models were then evaluated on the independent testing set. 

 

Features chosen by each ranking method using optimal parameters from CV results are 

shown in Table 2.7. Overlap of selected genes by ranking methods is shown in Figure 2-8 
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Table 2.7 Selected Features by Ranking Method 

Family Rank Page Rank Gene Rank Empirical Rank 

ADCY9 ESR1.3 
AGR2 FOXA1 
CCND1.1 FYN.2 
CCNE1 IGF1R.1 
CDC20 IRS1 
CDCA8 ITPR1.1 
CENPE KIF2C 
CENPF.1 KIT 
COL10A1 MAD2L1 
COL1A2 MYB 
COL9A3 NDC80 
CXCL1 NPY1R 
CXCL10 PGR 
CXCL11.1 PLCB4.1 
CXCL12.1 PLCG2 
CXCL13 PLK1 

CXCL3 
PTGER3.
3 

CXCL5.1 SYK 
CXCL8 TFF1 
CXCR4.2 XBP1 
  

  

  

  

  
 

AR.1 
CCNA2.1 
CCNB2 
CCND1.1 
CDC20 
CDKN2A 
ENO1.2 
ESR1.3 
EZH2 
GLI3 
IGF1R.1 
KIT 
MAD2L1 
MCM3 
MCM5.1 
MCM7.1 
MYB 
MYBL2 
NDC80 
NOTCH1 
PGR 
PLK1 
RAD51.1 
SKP1 
VEGFA.1 

 

ACSM1 
ASPM 
BTG3 
CDKN2A.1 
CHMP2A 
COMP 
COX7C.1 
CYP2B7P 
IFT46 
IKBKB.1 
KPNA2 
LCMT2 
MAN2B2 
MYOF 
NKAIN1 
PLPBP.1 
PRSS23 
RAB11FIP1 
RABEP1.1 
RARRES1.
1 
RFWD3 
RRM2.1 
SKP1 
UGDH 
X215304_at 

 

AGR2  IGF1R.1 
AMFR.1  IGFBP4 
ARL3  MAPT 
BTG3  MAPT.1 
BTG3.1  MAPT.3 
BUB1  MCM3 
CA12  MCM5 
CA12.3  MCM5.1 
CA12.4  MELK 
CA12.5  METRN 
CTSV  MLPH 
DAPK1  MYO5C 
E2F3.1  NKAIN1 
ESR1  PADI2 
ESR1.8  SLC7A8 
GAMT  SLC7A8.1 
GATA3.1  TBC1D9 
GATA3.2  TTK 
GFRA1  VAV3.1 
IFT46  ZNF688 
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Figure 2-8 Venn Diagram of Ranking Method Gene Selections on Breast Cancer Data 

 

 Genes selected by each method were analyzed using STRINGdb (string-db.org). The 

networks for gene sets selected by each ranking method are shown in Figure 2-9. Network 

analysis summaries are shown in Table 2.8 and functional enrichment analysis summaries are 

shown in Table 2.9. 
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A. Family Rank 

 

B. Page Rank 
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C. Gene Rank 

 

D. Empirical Rank 

 
Figure 2-9 STRINGdb Networks of Selected Gene Sets on Breast Cancer Data 

From top to bottom, the figure shows the networks of selected genes on the breast cancer data 
set for Family Rank (A), Page Rank (B), Gene Rank (C), and Empirical Rank (D). 

 

Table 2.8 STRINGdb Network Statistics of Selected Genes on Breast Cancer Data 

Ranking 
Method Number of Nodes Number 

of Edges 

Average 
Node 
Degree 

Expected 
number of 
Edges 

PPI 
Enrichment 
P-value 

Family Rank 28 71 5.07 26 2.43e13 

Page Rank 15 55 7.33 13 <1e-16 

Gene Rank 17 1 0.118 1 0.699 
Empirical 
Rank 25 16 1.28 4 8.71e-6 
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Table 2.9 STRINGdb Functional Enrichment of Selected Genes on Breast Cancer Data 

Biological Process (Gene Ontology) 

Ranking 
Method1 Description Count in 

Network Strength2 
False 
Discovery 
Rate 

Fa
m

ily
 R

an
k 

attachment of mitotic spindle microtubules 
to kinetochore 3 of 10 2.32 3.69E-05 

positive regulation of mitotic cell cycle 
spindle assembly checkpoint 2 of 7 2.3 0.0011 

epithelial cell maturation 3 of 16 2.12 8.25E-05 
regulation of T cell chemotaxis 2 of 11 2.1 0.002 
positive regulation of B cell differentiation 2 of 13 2.03 0.0024 

Pa
ge

 R
an

k 

positive regulation of mitotic cell cycle 
spindle assembly checkpoint 2 0f 7 2.57 0.00063 

negative regulation of ubiquitin protein 
ligase activity 2 of 10 2.42 0.00089 

regulation of ubiquitin protein ligase activity 4 of 23 2.36 9.73E-07 
mitotic nuclear envelope disassembly 2 of 12 2.34 0.0012 
positive regulation of ubiquitin protein ligase 
activity 2 of 13 2.3 0.0012 

Em
pi

ric
al

 
R

an
k 

cytoskeleton-dependent intracellular 
transport 4 of 151 1.32 0.0457 

mitotic cell cycle process 6 of 564 0.92 0.0457 

KEGG Pathways 

Ranking 
Method1 Description Count in 

Network Strength2 
False 
Discovery 
Rate 

Fa
m

ily
 R

an
k 

Regulation of lipolysis in adipocytes 3 of 53 1.6 0.00072 
Legionellosis 3 of 54 1.59 0.00072 
Oocyte meiosis 6 of 116 1.56 2.18E-06 
Epithelial cell signaling in Helicobacter 
pylori infection 3 of 66 1.5 0.0012 

IL-17 signaling pathway 4 of 92 1.48 0.00018 

Pa
ge

 R
an

k Cell cycle 7 of 123 1.87 1.43E-10 
Oocyte meiosis 6 of 116 1.83 5.93E-09 
Progesterone-mediated oocyte maturation 4 of 94 1.74 9.26E-06 
p53 signaling pathway 2 of 68 1.58 0.0068 
HTLV-I infection 6 of 250 1.5 3.42E-07 

Em
pi

ric
al

 
R

an
k DNA replication 2 of 36 1.64 0.0123 

Cell cycle 4 of 123 1.41 0.00044 
1No significant functional enrichment was detected in Gene Rank. 
2Where more than 5 functional enrichments were found, only the 5 strongest are shown. 
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 Discussion 

Several feature-ranking methods were compared using extensive simulation and real-

world data to address whether using prior or domain knowledge in conjunction with empirical 

feature scores can reduce the number of samples necessary to detect true predictors and/or 

whether better predictions can be made.  

Simulations suggest that in scenarios with similar complexity where pertinent domain 

knowledge is available, family rank can significantly decrease the number of samples required to 

find true predictors. Figure 2-2 shows that family rank took 2 to 3-fold fewer samples compared to 

other ranking methods to find all relevant features of the simulated data. It is important to note, 

however, that the complexity of the simulated data may not accurately reflect the complexity of 

real world data. For example, in the simulated data, 15 features perfectly defined the response 

variable, but in the breast cancer data analysis, the fewest number of features selected for 

classifiers was 25. Therefore, simulations with more predictive features may be worth exploring. 

Additionally, Figure 2-9 A suggests that family rank identified 4 potentially relevant clusters (e.g. 

families), whereas the simulated data only utilized 3 subtypes. In the simulated data, all subtypes 

were also defined by 5 features, whereas the number of features in the families in Figure 2-9 A 

vary by cluster. Therefore, simulated data with varying numbers of true predictors per subtypes, 

and more numbers of subtypes are worth analyzing as well. Additionally, there was no 

connectivity between the true predictors and noise predictors in the simulated data set. The 

simulated domain knowledge was therefore probably overly optimistic and easier to pick out of a 

data set than the real world networks which had interactions between true predictors and noise 

predictors. Finally, the edge weights in the simulated data were all 1 between the true predictors 

of each subtype, which was also overly optimistic. Therefore, more connected graphs, and lower 

edge weights between true predictors should be considered in future analyses  

Table 2.2 shows that with a sample size of 200, the empirical method alone ranked 11 

out of the 15 true predictors in the top 15. Features 1, 4, 9, and 10 were not in the top 15. Family 
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rank was able to bump 3 of these features (1, 9, and 10) up to the top 15. Page rank was also 

able to bump these 3 feature up into the top 15. However, page rank also bumped the true 

feature 15 out of the top 15. Meanwhile, the difference in feature rankings of the true predictors 

between the empirical method and gene rank was very modest, and no additional true predictors 

moved into the top 15 with gene rank. 

Both simulated and real-world data showed modest increases in cross-validated 

performance measures as depicted in figures 2-2 and 2-3. It also showed modest increase in 

independent test data performance as shown in tables 2.4 and 2.7. While the increases in 

performance are modest, if true patterns are discovered, the results can have additional benefits, 

such as highlighting potential areas for further study in fields where there are huge numbers of 

features. Additionally, even modest improvements in performance can have real world 

consequences. For example, in precision medicine, even small improvements can translate to 

many more patients receiving appropriate therapies over time. Moreover, analyses of gene 

features by pathways may reveal genetic associations between genes on an expression level that 

are novel. 

Ranking methods did not select many overlapping genes in the gene sets selected on the 

breast cancer data. Figure 2-8 shows that the largest overlap was between Family Rank and 

Page Rank and included genes CCND1.1, CDC20, ESR1.3, KIT, MAD2L1, MYB, NDC80, PGR, 

and PLK1. These genes belong to the oocyte meiosis, progesterone-mediated oocyte maturation, 

cell cycle, and breast cancer pathways (Kanehisa, 2002). The relationship between cell cycles 

and chemotherapy is well-documented in the literature (Lind, 2008), thus providing a biological 

impetus for these genes to predict response to chemotherapies.  

To understand why there was little overlap between ranking methods, STRINGdb 

enrichment analyses were performed on the gene sets selected by ranking methods. Page rank 

had the highest enrichment value (p < 1e-16). This suggests that page rank had the most closely 

connected genes selected, which makes sense as page rank emphasizes the connectivity 

between nodes when selecting features. This is also visually apparent in figure 2-9 B which 
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shows many edges between all selected features. Family rank had the second highest 

enrichment value (p = 2.43e-13). Additionally, it is apparent from figure 2-9 A that the family rank 

algorithm selected more distinctive families of networks. This is shown by the several edges 

between clusters of genes, but relatively few edges between the clusters. This is expected as 

Family Rank ranks each family independently. That is, the connectivity of one cluster (or family) 

does not affect the ranks of another family. This is ideal if researchers are looking for 

heterogeneous subtypes where many features may be related within a single subtype, but a 

different subtype maybe driven by a different cluster (or family). Empirical Rank had the 2nd least 

enrichment (p = 8.71e-6). This shows that the assay technologies used did empirically pull out 

some enriched pathways, but that there were several unconnected genes that also had high 

empirical scores. Finally, gene rank was the least enriched set, and in fact had no significant 

enrichment detected (p = 0.699). Gene Rank is the only method that analyzes the domain 

knowledge completely independently of the empirical data results. As opposed to page rank and 

family rank, which both analyze the empirical and domain knowledge together, gene rank does a 

sequential analysis where the domain knowledge is ranked, the empirical data scores are ranked, 

and the two are averaged. The results suggest that this approach results in less enriched 

pathways.  

While this research has demonstrated that ranking methods utilizing domain knowledge 

have the potential to benefit prediction models and decrease the number of samples required for 

successful feature-selection, the methods must be used cautiously. There are many scenarios 

where ranking methods can hurt overall predictions. This could be the case if the domain 

knowledge contains information that is not relevant to the outcome being predicted. In this case, 

the ranks of irrelevant features may be increased and classification performance may suffer. In 

order to successfully utilize a ranking method, graphical domain knowledge, empirically measured 

variables, and measured outcomes must all complement each other.  
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CHAPTER 3 

POPULATION BIAS IN SOMATIC MEASUREMENTS OF MICROSATELLITE INSTABILITY2 

 Introduction 

Microsatellite instability (MSI) is a key secondary effect of a defective DNA mismatch 

repair mechanism resulting in incorrectly replicated microsatellites in many malignant tumors. 

Historically, MSI has been detected in cancerous tumor tissue samples by performing fragment 

analysis (FA) on a panel of five representative genomic markers. More recently, next-generation 

sequencing (NGS) has been used to analyze thousands of microsatellite loci to detect MSI. NGS-

based tests have been shown to improve the robustness and sensitivity of MSI detection. 

However, they can be prone to population biases if NGS results are aligned to a single reference 

genome instead of patient-matched normal tissue. In this chapter, an NGS-based diagnostic test 

that utilized 7,317 microsatellite loci to determine MSI status is shown to have an increased rate 

of false positives detected in patients of African ancestry as compared to an FA-based MSI 

diagnostic test. This bias was then minimized by training a modified calling model on NGS data 

that utilized 2,011 microsatellite loci. With these adjustments 100% (95% CI: 89.1% to 100%) of 

African ancestry patients in an independent validation test were called correctly using the updated 

model. This poses not only a significant technical improvement but also has an important clinical 

impact on directing immune checkpoint inhibitor therapy. 

 Background 

 Mismatch Repair 

DNA mutations in which base pairs are inserted or deleted from a strand of DNA can 

occur from errors during DNA replication or recombination, from damage caused by natural 

disruptions such as biproducts of metabolic processes, or from damage caused by environmental 

disruptions such as radiation or ultraviolet (UV) light. Mismatch repair (MMR) refers to the natural 

                                                   

2The work in this chapter is published in (Saul et al., 2020): 
Saul, Michelle, et al. "Population bias in somatic measurement of microsatellite instability 
status." Cancer medicine 9.17 (2020): 6452-6460. 
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molecular process for repairing these types of DNA mutations. In a healthy genome, MMR 

proteins will detect these mutations and recruit DNA enzymes to correct them. 

 Josef Jiricny’s 2006 review of mismatch-repair systems (Jiricny, 2006) provides a 

detailed outline of how a proficient mismatch-repair (pMMR) system functions. Briefly, the 

complexes involved in MMR initiate a chain reaction that includes four major events:  

1. Detection of the mismatched base pair by protein complexes MutSα or MutSβ 

2. Degradation of the mismatched nucleotide and nearby nucleotides by the EXO1 

enzyme 

3. Synthesis of new base pairs by the polymerase Pol δ  

4. Ligation of the two corrected DNA strands by DNA ligase  

 Microsatellite Instability 

Microsatellites are tandem repeats of short DNA sequences. Typically, sequences range 

from 1 to 6 base-pairs and are repeated 5 to 50 times. An example of a microsatellite is shown in 

Figure 3-1. 

 

Figure 3-1 Example Microsatellite 

Figure shows an example microsatellite with a dimer (2 sequence repeat) repeated 5 times. 
Figure was created with BioRender.com. 

 

Due to their repeated structures, microsatellites are prone to replication errors caused by 

DNA slippage, a phenomenon in which DNA polymerase dissociates from the template strand 

and re-anneals at the incorrect location (Jiricny, 2006). Normally, mutations occurring in 

microsatellites are corrected by the MMR system. When the MMR system is defective, the 
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mutations accumulate and result in microsatellite instability (MSI). MSI is a genomic condition 

characterized by genome-wide accumulation of insertion/deletion mutations in microsatellites.  

In healthy genomes, mismatch repair (MMR) proteins are responsible for recognizing and 

correcting these DNA mutations. However, mutations in MMR genes can lead to deficient MMR 

(dMMR) systems, preventing the correction of insertion/deletion mutations and resulting in MSI. 

Tumors with high levels of MSI (MSI-H tumors) resulting from a dMMR system accumulate far 

more somatic mutations (e.g. non-inherited mutations) than tumors with pMMR systems. MSI-H 

tumors can harbor 10 to 20 times more somatic mutations than microsatellite stable tumors (Lee, 

Murphy, Le, & Diaz Jr, 2016).  

Somatic mutations can cause unintended translation of peptides. Neoantigens are 

peptides located on the surface of cancer cells that form due to the somatic mutations in the 

tumor DNA. The large somatic mutational burden of MSI-H tumors can result in a large number of 

tumor-specific neoantigens (Marcus, Lemery, Keegan, & Pazdur, 2019). Because neoantigens 

are only expressed by tumor cells, they can be targeted by cancer therapeutics without posing a 

threat to normal cells. Furthermore, because they present on the surface of tumor cells, they are 

easier targets for therapeutics than intra-cellular targets.  

 Immune Checkpoint Inhibitors 

Immune checkpoints regulate the balance between activating immune cells and 

suppressor immune cells during an immune response. If too many activating immune cells are 

present, the immune system produces an overstimulated response that can damage healthy cells 

and tissues and cause autoimmune diseases. When too many suppressor immune cells are 

present, immune response is under stimulated allowing disease-causing agents to proliferate 

(Pardoll, 2012).  

Antigen-presenting tumor cells signal to the immune system that a tumor cell is foreign, 

which would normally initiate an immune system response. However, tumor cells exploit immune 

checkpoint pathways to evade destruction by the immune system by upregulating inhibitory 

molecules that signal to the immune system to suppress response. For example, an antigen-
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presenting tumor cell will uptake blockade molecules such as PD-L1 so that when the antigen 

attracts an immune cell, the blockade molecule will inhibit any response. There are many 

inhibitory and activating molecules that can affect the immune response. A simplified illustration 

of immune checkpoint inhibition of a t-cell by PD-L1 is shown in Figure 3-2. 

 
 

Figure 3-2 Immune Checkpoint Inhibition of T-Cell Activation  

MHC tumor antigen attracts T-cell, while PD-L1 molecule inhibits a T-cell response. Figure was 
created with BioRender.com. 

 

Cancer therapeutics known as immune checkpoint inhibitors act on molecules within the 

immune checkpoint signaling pathway to disrupt the inhibitory signals of tumor cells. For example, 

they may stimulate anty-PD-1 antibodies, which inhibit the T-cell checkpoint, and render the 

tumor cells inhibitory molecule ineffective, allowing the immune response to activate. A simplified 

illustration of the activation of an immune response in the presence of anti-PD-1 antibodies is 

shown in Figure 3-3. 
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Figure 3-3 Anti-PD-1 Antibody Aided T-Cell Activation 

Anti-PD-1 antibody blocks immune checkpoint, allowing for an immune system response. 
Figure was created with BioRender.com. 

 

Cancer tumors with high levels of MSI (MSI-H) can express an increased number of 

neoantigen peptides that signal a cell is cancerous, increasing the likelihood of response to 

immunotherapy treatments (Marcus et al., 2019).  

Clinical trials for the immune checkpoint inhibitor pembrolizumab have shown that MSI-H 

status correlates with clinical response, agnostic of primary cancer site, leading to the first pan-

cancer drug approval by United States Food and Drug Administration's (FDA) for use of 

pembrolizumab in MSI-H or dMMR cancer patients (Lemery et al., 2017).  

 Fragment Analysis 

While no FDA approved companion diagnostic for MSI assessment is currently indicated 

to direct the use of pembrolizumab or other immune checkpoint inhibitors, the most common 

historical method for MSI classification in tumor specimens has been a polymerase chain reaction 

(PCR)-based fragment analysis (FA) assay. FA classifies MSI status as high (MSI-H), low (MSI-

L), or stable (MSS) by assessing DNA fragment length variation between tumor and patient-
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matched normal tissue at five genomic loci (BAT25, BAT26, D2S123, D5S346, and D17S250), 

according to a 1997 National Cancer Institute (NCI) consensus meeting (Boland et al., 1998). 

FA results utilized in the research presented in this chapter were obtained via a 

commercially available fluorescent multiplex PCR-based method, MSI Analysis System (Promega 

Life Sciences). The system utilizes comparative analysis between enriched tumor tissue sample 

and nontumor (normal) tissue. Prior to molecular testing, tumor and matched normal tissue were 

collected by harvesting targeted tissue using manual microdissection techniques. Allelic profiles 

were generated for BAT-25, BAT-26, MONO-27, NR-21, and NR-24 and compared between 

tumor and normal samples by a board-certified clinical molecular geneticist at Caris Life 

Sciences, a college of American Pathologists (CAP) / Clinical Laboratory Improvement 

Amendments (CLIA) approved laboratory in Phoenix, AZ. 

 Immunohistochemistry 

A dMMR mechanism, which can lead to MSI, is frequently associated with loss of MMR 

protein expression. Immunohistochemical (IHC) evaluation for the expression levels of four MMR 

proteins, MLH1, MSH2, MSH6, and PMS2, is commonly used to determine MMR status. Lack of 

expression in any one of these proteins is indicative of a dMMR system, while, in most cases, 

detection of expression across all four proteins is indicative of a proficient MMR (pMMR) system. 

Because dMMR status is strongly correlated with MSI-H status and a pMMR status is 

strongly correlated with MSS status, detection of MMR status by IHC is used as an alternative 

method of determining patient eligibility for immune checkpoint inhibitors (Le et al., 2017; Le et 

al., 2015; McConechy et al., 2015). 

IHC analysis of mismatch repair proteins MSH6, MSH2, MLH1, and PMS2 utilized in this 

research was performed on full slides of formalin-fixed paraffin-embedded (FFPE) tumor 

specimens using automated staining techniques on the Benchmark XT (Ventana) utilizing 

antibody clones MLH1 (M1), MSH2 (G219-1129), MSH6 (44), and PMS2 (EPR3947). MMR 

status was determined to be deficient if staining indicated a complete loss of protein in any one of 

the four biomarkers in tumor cells and proficient if staining was present for all four proteins in 
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tumor. All analyses were performed at the Caris Life Sciences’ CAP/CLIA certified laboratory in 

Phoenix, AZ. 

 Next Generation Sequencing 

Recently, next-generation sequencing (NGS) assays that assess thousands of 

microsatellite loci have been developed for MSI detection in solid tumor tissues. These methods 

have been shown to improve robustness and sensitivity of MSI detection (Vanderwalde et al., 

2018). Additionally, NGS-based methods do not require patient-matched normal tissue since 

NGS data can be aligned to a reference genome to detect mutations. This eliminates the need for 

collection and processing of normal tissue, which increases clinical access to MSI screening, as 

normal tissue is often not available from routine diagnostic biopsies. Additionally, NGS evaluation 

of MSI allows for screening to be performed as part of a panel of NGS tests performed on a 

single assay. This is ideal for targeted therapy because it allows for a broad analysis of potential 

biomarkers to be performed as part of a single assay, rather than having to perform additional 

biopsies for multiple individual tests. 

Vanderwalde, et al (Vanderwalde et al., 2018) developed an NGS assay that aligns tumor 

genomic sequences to the human reference genome version hg19 (Kent et al., 2002) to assess 

variations between tumor and the reference genome at 7,317 microsatellite loci. Microsatellite loci 

were identified by scanning short tandem repeats of DNA sequences from NGS panel target 

regions found in the hg19 reference genome. All loci with genomic sequences equal to or longer 

than 5 repeats of monomers (N=6,960), 5 repeats of dimers (N=47), 4 repeats of trimers (N=228), 

3 repeats of tetramers (N=57), or 3 repeats of pentamers (N=25) were included in the MSI calling 

model. 

While aligning NGS results to 7,317 microsatellite loci on the reference genome allows 

for analysis of a large chunk of the microsatellite environment, the annotations of those loci are 

subject to population-bias due to the fact that the hg19 reference genome used for loci detection 

was derived from the initial human reference genome, which was created from a limited number 



 42 

of individuals, with a representation heavily biased toward populations of European ancestry (E 

pluribus unum, 2010; Sherman et al., 2019). 

Findings from the 1000 Genomes Project indicate that variants can be specific to 

ancestral lines, and, in particular, individuals of African ancestry have more normal germline 

variation relative to other ancestral lines (Fan et al., 2019; Genomes Project Consortium, 2010). 

This natural variation can occur throughout the genome, including in areas classified as 

microsatellites. While ancestral-specific germline variants are benign, they can be falsely 

classified as microsatellite insertion/deletion mutations if they are detected by an NGS assay in 

which the alignment process does not account for ancestral germline variation. Thus, alignment 

of NGS data to a primarily European-derived reference genome can lead to an increased false 

detection of microsatellite mutations and thus a higher false positive rate of MSI detection in 

patients with these variants, and in particular, within patients of African ancestry.  

NGS data utilized in the research presented in this chapter were collected on genomic 

DNA isolated from FFPE samples using the NextSeq platform (Illumina, Inc). Prior to molecular 

testing, tumor enrichment was achieved by harvesting targeted tissue using manual 

microdissection techniques. A custom-designed SureSelect XT assay was used to capture 592 

whole-gene targets (Agilent Technologies). All variants were detected with >99% confidence 

based on allele frequency and amplicon coverage, with an average sequencing depth of 750x 

and an analytic sensitivity of 5%. Sequencing alignment was compared with the reference 

genome hg19 from the UCSC Genome Browser database. All sequencing was performed at the 

Caris Life Sciences’ CAP/CLIA certified laboratory in Phoenix, AZ. 

 Methods 

 Study Cohorts  

All analyses presented in this chapter were performed on de-identified, retrospective 

data. As such, this research was covered under international review board (IRB) Exemption, 

reviewed and determined by the Western Institutional Review Board (WIRB). Specimen analyzed 

in this study were collected from FFPE tissue samples from solid tumor biopsies performed 
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across multiple cancer types. All specimen submitted over a 4-year time period to Caris Life 

Science for genetic profiling as part of routine clinical care that had valid NGS results were 

considered for inclusion. A total of 6,262 specimen were enrolled in the study. 

 Historical Cohort 

All specimen that had undergone MSI testing by both FA and NGS (using the 

Vanderwalde method) were enrolled in a historical cohort comprising a random sampling 

representative of the entire population of specimen undergoing MSI analyses at Caris Life 

Sciences. A total of 6,198 retrospective samples were enrolled in this cohort, including 452 MSI-

H, 65 MSI-L, and 5,681 MSS by FA. 

 Flagged Cohort 

Specimen having undergone MMR testing by IHC and MSI testing by NGS (using the 

Vanderwalde method) that had discordant results indicating an MSI-H or MSI-L status by NGS 

but pMMR by IHC were reviewed by a board certified clinical molecular geneticist and a board-

certified pathologist for sequence variants associated with African populations in gnomAD 

(Karczewski & Francioli, 2017). Discordant samples with variants associated with African 

ancestry were flagged as having potential population-biased NGS MSI results. All flagged 

samples with sufficient remnant material for testing by FA were then enrolled in the flagged cohort 

and subsequently tested for MSI status by FA. Over a 6-month time period, a total of 64 samples 

were enrolled in the flagged cohort and tested by FA. 

 Training and Validation Cohorts 

The 6,262 available samples from the flagged and historical cohorts were divided into 

training and independent validation cohorts. The independent validation cohort included 122 

samples: 90 randomly selected historical samples equally distributed across FA MSI results (30 

FA MSI-H; 30 FA MSI-L; 30 FA MSS) and 32 randomly selected flagged samples. The remaining 

6,140 samples were included in the training cohort. The 32 flagged samples included in training 

were used to assess how the model would perform on the flagged samples in the independent 

validation. 
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 Ancestry and NGS Bias Assessment 

Genetic signatures of samples were summarized utilizing population frequency data from 

gnomAD. To summarize the genetic signature of a sample, all alleles detected for that sample 

with reference single nucleotide polymorphism (SNP) IDs (RSids) in gnomAD were identified. 

Population frequencies of each allele were collected from gnomAD via Bioconductor (Lek et al., 

2016) for the 7 populations represented in gnomAD (African/African-American, Latino/Admixed 

American, Ashkenazi Jewish, East Asian, Finnish, Non-Finnish European, and Other). An allele 

was then defined as supporting the population with the highest frequency of that allele. In the 

event of ties (e.g. an allele had equivalent frequencies in two or more populations), the allele was 

defined as supporting all populations with the highest frequencies. For each sample, the number 

of alleles detected that supported each of the seven populations were totaled and the 

percentages of alleles supporting each population were calculated. Allele frequencies of samples 

in the flagged cohort were used to confirm that the flagged cohort contained samples with genetic 

signatures consistent with a primarily African/African American ancestry. Allele frequencies of 

samples in the historical cohort were used to establish that the historical cohort was 

representative of all genetic ancestries. 

After establishing ancestry by allele frequencies, potential bias of NGS based MSI results 

was assessed on the flagged cohort. Since all flagged cohort samples had discordant results 

when measured by IHC and NGS, FA results were used to assess bias. If no bias was present in 

the NGS call, it was hypothesized that FA results would be randomly distributed between MSI 

(high or low) and MSS. If MSI results by NGS were biased towards a higher rate of false positives 

in samples with African/African-American ancestry, it was hypothesized that FA results in the 

flagged cohort would agree more often with IHC MMR results than with NGS MSI results. A one-

sided exact test was performed to test the hypothesis that, in a cohort with discordant NGS MSI 

and IHC MMR results, the probability of FA results that agreed with IHC would be greater than 

50%.             

 Model Development 
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To mitigate effects of NGS bias on MSI calls, a new NGS calling model was built 

incorporating a feature selection step to select a subset of the original 7,317 MSI loci with the 

goal of eliminating any loci that could potentially be detected as false mutations in African/African-

American genomes. An overview of the model development process is shown in Figure 3-4.  

 

Figure 3-4 Diagram of NGS MSI Model Development Process 

 
 Loci Quality Control 

The quality of the original 7,317 loci was assessed on all samples prior to model training. 

To be included in training, a locus had to meet the following minimum quality requirements: 

1. Have a variant detected in at least one of the 6,262 study samples. 

2. Show repeatability when measured on replicates of the same sample. 

3. Have an average sequencing coverage depth of at least 200x. 

A total of 4,759 loci were excluded during preprocessing. Of these, 4,588 failed criterion 

1, 10 failed criterion 2, and 161 failed criterion 3. The remaining 2,558 loci were included in 

subsequent analyses. 
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 Loci Ranking 

The 2558 loci that met minimum quality requirements were then ranked based on their 

ability to predict FA MSI status in the training samples. An informative locus was expected to 

have a higher number of variants detected in the FA MSI-H samples than in the FA MSS 

samples. Analysis of variance (ANOVA) P-values were computed to measure how informative a 

locus was by comparing the difference in the mean number of variants detected between the FA 

MSI-H and FA MSS groups. If the mean of the FA MSS samples was higher than the mean of the 

FA MSI-H samples, the P-value for that locus was set to 1. Loci were ranked from lowest to 

highest P-value. 

 Model Building 

The NGS MSI calling model classifies MSI status of a sample by totaling the number of 

variants detected across all microsatellite loci and comparing the total to predetermined 

thresholds. Totals greater than the upper threshold are classified as MSI-H; totals less than the 

lower threshold are classified as MSS; and totals within the inclusive range of the two thresholds 

are classified as MSI equivocal. A total of 2549 calling models were built using between 10 and 

2558 loci included sequentially by ranking. 

Thresholds for each model were calibrated on training data to optimize the separation 

between FA MSS and FA MSI-H results. Samples with FA MSI-L results were excluded from 

thresholding due to the fact that FA is subject to interpretation and different interpreters may 

classify FA MSI-L calls as MSI-H or MSS. 

The first threshold was chosen to optimize the sum of sensitivity and specificity, and was 

calculated using methods provided in the ‘pROC’ package (Robin et al., 2011) for R version 3.5.2 

(R Core Team, 2019). The second threshold was chosen to ensure a maximum 3% false 

negative (FN) rate in the training population. It was calculated as the minimum of: 

1. The maximum number of variants detected in FA MSS samples and 

2. The third percentile of variants detected in the FA MSI-H samples. 
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If the first threshold already met the 3% criterion, the second threshold had the effect of 

limiting the false positive (FP) calls. 

 Model Scoring 

To score NGS models, NGS results were benchmarked against FA results. Results 

indicating eligibility for treatment by immune checkpoint inhibitors (FA MSI-H and NGS MSIH) 

were considered positive, while results indicating ineligibility for immune checkpoint inhibitor 

treatment (FA MSI-L, FA MSS, and NGS MSS) were considered negative. Model scores were 

calculated as true positive (TP) + true negative (TN) − false positive (FP) − false negative (FN). 

NGS equivocal calls did not contribute to model scores because operations protocol in a clinical 

setting for an NGS equivocal result often dictated that the sample be retested by FA to definitively 

determine MSI status. The number of loci corresponding to the maximum model score was 

selected as the optimal number of loci to include in the final model. 

 Model Validation 

Performance of the modified model was assessed initially via cross-validation, to ensure 

the model was not overfitting the training data, and subsequently on the independent validation 

cohort, to confirm population bias was eliminated and overall performance was not hindered. 

 Performance Measures 

Cross-validation and independent validation performances of the modified NGS-based 

calling model were assessed by calculating sensitivity, specificity, positive predictive value (PPV), 

and negative predictive value (NPV) benchmarked against FA MSI results. For these calculations, 

results that indicated eligibility for treatment by immune checkpoint inhibitors (FA MSI-H and NGS 

MSI-H) were considered positive, while results that were not eligible for treatment by immune 

checkpoint inhibitors (FA MSI-L, FA MSS, and NGS MSS) were considered negative.  

Again, NGS MSI-equivocal results were excluded from analysis as the clinical protocol for 

NGS MSI-equivocal results often dictates that samples be tested with FA. Percent equivocal 

values were reported for reference along with performance measures. Due to the fact that the 
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historical validation cohort was enriched for FA MSI-L and FA MSS samples, performance 

measures on this cohort were evaluated on the enriched population as well as a prevalence 

adjusted population. Prevalence values for MSI-H, MSI-L, and MSS used for adjustment were 

estimated from the FA MSI results in the training cohort. 

 Cross Validation 

Ten iterations of threefold cross-validation were performed on the training data to 

estimate model utility on unknown cases. Data were randomized to folds preserving distributions 

of FA MSI calls using the ‘Caret’ package (Kuhn, 2015) in R version 3.5.2. Training folds were 

used to rank loci and build and score models. The optimal model was then applied to the testing 

fold and performance measures were computed. Threefold CV was repeated for 10 different 

randomization seeds, and performance measures were averaged over these 10 runs. 

 Independent Validation 

Independent validation was assessed on a cohort of 30 MSI-H, 30 MSI-L, and 30 MSS 

tumor specimen, evaluated by FA. Performance measures were calculated on the independent 

validation cohort containing equal prevalence of each FA result.  

Additionally, performance measures were calculated on the independent validation cohort 

adjusted for prevalence of FA results. Historical data suggest the true prevalence of FA results in 

the intended use population are 7.29% (452/6198) MSI-H, 1.05% (65/6198) MSI-L, and 91.66% 

(5681/6198) MSS. To adjust for this, results in the confusion matrix corresponding to MSI-H, MSI-

L, and MSS were multiplied by 7.29%, 1.05%, and 91.66% respectively before calculation of 

performance measures were performed. 

 Reference genome version comparison 

The original NGS MSI calling model used human reference genome hg19 for alignment, 

and is the reference genome version utilized for this study. However, a newer version of the 

human reference genome, hg38, has since been released. Effects of aligning to this newer 

version were assessed on the independent validation cohort. MSI loci variants were recomputed 
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for all 7,317 microsatellite loci after alignment to hg38 and compared to the number of variants 

detected under hg19 alignment. 

 Results 

 Demographics 

Gender and cancer types were compared across cohorts stratified by FA MSI status 

using chi-square test. No significant differences were found. Age was compared across cohorts 

stratified by FA MSI status using analysis of variance (ANOVA). The flagged cohorts had slightly 

lower average ages than the historical cohorts, which supports observations of lower ages of 

cancer in African-American populations.18 Available demographics by FA MSI status for 

historical training, historical validation, flagged training, and flagged validation cohorts are shown 

in Table 3.1.  
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Table 3.1 Cohort Demographics by FA MSI Status 
 Historical 

Training 
Flagged 
Training 

Historical 
Validation 

Flagged 
Validation P 

FA MSI-H N = 422 N = 0 N = 30 N = 0  
Age     0.61 
     Mean 65 --- 65 ---  
     Median 66 --- 70 ---  
     Range 22-90 --- 25-90 ---  
Gender     0.93 
     Female 334 (79.1%) --- 23 (76.7%) ---  
     Male 88 (20.9%) --- 7 (23.3%) ---  
Cancer Type     0.88 
     Breast 2 (0.5%) --- 0 (0%) ---  
     Gastrointestinal 185 (43.8%) --- 12 (40%) ---  
     Genitourinary 3 (0.7%) --- 0 (0%) ---  
     Gynecologic 220 (52.1%) --- 18 (60%) ---  
     Male Genital Tract 1 (0.2%) --- 0 (0%) ---  
     Other 7 (1.7%) --- 0 (0%) ---  
     Thoracic 4 (0.9%) --- 0 (0%) ---  
FA MSI-L N = 35 N = 0 N = 30 N = 0  
Age     0.94 
     Mean 61 --- 64 ---  
     Median 65 --- 64 ---  
     Range 31-79 --- 44-82 ---  
Gender     0.73 
     Female 22 (62.9%) --- 21 (70%) ---  
     Male 13 (37.1%) --- 9 (30%) ---  
Cancer Type     0.4 
     Gastrointestinal 18 (51.4%) --- 11 (36.7%) ---  
     Gynecologic 14 (40%) --- 17 (56.7%) ---  
     Other 2 (5.7%) --- 1 (3.3%) ---  
     Sarcoma 1 (2.9%) --- 0 (0%) ---  
     Skin 0 (0%) --- 1 (3.3%) ---  
FA MSS N = 5,651 N = 32 N = 30 N = 32  
Age     0.02 
     Mean 66 62 65 60  
     Median 67 65 66 60  
     Range 7-90 38-83 42-93 28-82  
Gender     0.69 
     Female 3,539 (62.6%) 23 (71.9%) 20 (66.7%) 21 (65.6%)  
     Male 2,112 (37.4%) 9 (28.1%) 10 (33.3%) 11 (34.4%)  
Cancer Type     0.27 
     Breast 175 (3.1%) 0 (0%) 0 (0%) 2 (6.2%)  
     Gastrointestinal 2621 (46.4%) 15 (46.9%) 14 (46.7%) 9 (28.1%)  
     Genitourinary 173 (3.1%) 2 (6.2%) 1 (3.3%) 3 (9.4%)  
     Gynecologic 1640 (29%) 8 (25%) 8 (26.7%) 10 (31.2%)  
     Lymphoma 4 (0.1%) 0 (0%) 0 (0%) 0 (0%)  
     Male Genital Tract 1 (0%) 0 (0%) 0 (0%) 0 (0%)  
     Neuroendocrine 77 (1.4%) 2 (6.2%) 0 (0%) 1 (3.1%)  
     Other 169 (3%) 2 (6.2%) 3 (10%) 2 (6.2%)  
     Brain 20 (0.4%) 0 (0%) 0 (0%) 0 (0%)  
     Sarcoma 62 (1.1%) 0 (0%) 0 (0%) 1 (3.1%)  
     Skin 125 (2.2%) 0 (0%) 1 (3.3%) 0 (0%)  
     Thoracic 584 (10.3%) 3 (9.4%) 3 (10%) 4 (12.5%)  
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Ancestry was summarized as described in the methods section. On average, 43% of the 

alleles for flagged cohort samples supported African/African-American population, with a 

minimum of 38%, while the historical cohort averaged 20%, suggesting the flagged cohort 

samples had genetic signatures more consistent with African/African-American ancestry than the 

average sample from the historical cohort. A comparison of the distribution of alleles by 

population between the historical cohort and the flagged cohort can is shown in Figure 3-5. 
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Population Key 

A/AA African/African-
American 

AJ Ashkenazi 
Jewish 

EA East Asian 

F Finnish 

L/AA Latino/Admixed 
American 

NFE Non-Finnish 
European 

O Other 
 

Figure 3-5 Sample Population Allele Frequencies by Cohort 

Samples in the flagged cohort had significantly more African/African-American allele 
frequencies than any other population. By comparison, allele frequencies for samples in the 
historical cohort were more evenly distributed. 

 

 Ancestry and NGS Bias Results 

All 64 samples in the flagged cohort had FA MSS results. The observed probability that 

the FA MSI results were 100% (95% CI: 95%, 100%) and was statistically significantly greater 

than the probability expected by chance (P « .001), suggesting a strong bias in the NGS results. 

The performance measures of the NGS results on the flagged cohort are presented in Table 3.2. 
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Table 3.2 Original NGS Model Performance on Flagged Cohort Samples. 

 FA 
Result 

Original NGS Model Results (N) Specificity % 
(95% CI*) 

Equivocal % 
(95% CI*) MSI-H Equivocal MSS 

Flagged 
Cohort MSS 16 48 0 0 (0.0, 20.6) 75 (62.6, 85.0) 

*Confidence intervals (CI) calculated by Clopper-Pearson method. 
 

 Validation Results  

Cross-validation and independent validation results are summarized in Table 3.3.  

Table 3.3 Performance Metrics Across NGS Model Methods and Cohorts 

NGS MSI 
Method Cohort FA 

Result 
NGS Results (N) 
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ty
 %
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 C

I*)
 

Sp
ec

ifi
ci

ty
 %

 
(9
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I*)
 

PP
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%
 

(9
5%

 C
I*)

 

NP
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%
 

(9
5%

 C
I*)

 

Eq
ui

vo
ca

l %
 

(9
5%
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I*)

 

MSI-H Equiv. MSS 

Original 
Method 

Historical 
Training 

MSI-H 399 7 16 96.1 
(93.8, 
97.8) 

99.5 
(99.3, 
99.7) 

93.2 
(90.4, 
95.4) 

99.7 
(99.5, 
99.8) 

1.0 
(0.8, 
1.3)  

MSI-L 3 5 27 
MSS 26 52 5573 

Flagged 
Training MSS 9 23 0 --- 

0.0 
(0, 

33.6) 
--- --- 

71.9 
(53.3, 
86.3) 

Modified 
Method 

Averaged 
over 10 X 
3-fold CV 

Historical 
Training 

MSI-H 405 7.9 9.1 97.8 
(95.9, 
99.0) 

99.7 
(99.6, 
99.9) 

96.4 
(94.2, 
98.0) 

99.8 
(99.7, 
99.9) 

0.3 
(0.2, 
0.5) 

MSI-L 3.7 2.1 29.2 
MSS 11.3 8.8 5630.9 

Flagged 
Training MSS 0.2 1.1 30.7 --- 

99.4 
(88.8, 
100) 

--- --- 
3.4 

(0.1, 
16.2) 

Original 
Method 

Historical 
Validation 

MSI-H 28 1 1 96.6 
(82.2, 
99.9) 

86.0 
(74.2, 
93.7) 

77.8 
(60.8, 
89.9) 

98.0 
(89.4, 
99.9) 

4.4 
(1.2, 
11) 

MSI-L 8 3 19 
MSS 0 0 30 

Historical 
Validation 
(Adjusted) 

MSI-H 5.77 0.21 0.21 96.5 
(54.1, 
100) 

99.8 
(95.7, 
100) 

97.6 
(54.1, 
100) 

99.7 
(95.7, 
100) 

0.3 
(0.0, 
4.0) 

MSI-L 0.14 0.05 0.32 
MSS 0 0 83.3 

Flagged 
Validation MSS 7 25 0 --- 

0.0 
(0.0, 
41) 

--- --- 
78.1 

(60.0, 
90.7) 

Final 
Modified 
Method 

Historical 
Validation 

MSI-H 29 1 0 100 
(88.1, 
100) 

84.7 
(73.0, 
92.8) 

76.3 
(59.8, 
88.6) 

100 
(92.9, 
100) 

2.2 
(0.3, 
7.8) 

MSI-L 9 1 20 
MSS 0 0 30 

Historical 
Validation 
(Adjusted) 

MSI-H 5.98 0.21 0 100 
(54.1, 
100) 

 99.8 
(95.7, 
100) 

97.6 
(54.1, 
100) 

100 
(95.7, 
100) 

0.3 
(0, 

4.0) 
MSI-L 0.15 0.02 0.34 
MSS 0 0 83.3 

Flagged 
Validation MSS 0 0 32 --- 

100 
(89.1, 
100) 

--- --- 
0.0 

(0.0, 
10.9) 

*Confidence intervals (CI) calculated by Clopper-Pearson method. All decimal values were 
rounded to the nearest whole number for CI calculations. 
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Most notably, results showed a drastic improvement of specificity in the flagged cohorts. 

Specificity on the flagged cohort went from 0% with the original model to 94% in the cross-

validated models within the training set, and from 0% with the original model to 100% in the final 

modified model during validation. Additionally, PPV had a moderate increase from 93.2% in the 

original model to 96.4% in the cross-validated models. Because cross-validation results were 

satisfactory, the methodology was used on the full set of training data to create a final modified 

NGS MSI calling model. The 2558 loci that passed quality control were included in the analysis. 

The optimal model score corresponded to the model containing 2011 loci, eliminating a total of 

547 uninformative microsatellite loci. Additional figures illustrating model selection are provided in 

the Figure 3-6 and Figure 3-7. 

 

Figure 3-6 Depiction of Final Model Selected on Training Data 

Thresholds shown as horizontal dotted lines. 
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Figure 3-7 Number of Loci Included in Model Versus Model Score 

The dotted line indicates the maximum score at 2011 Loci. Model score depicts the number of 
training samples correctly classified out of 6,140 samples. 

 

Final model results on the Flagged cohort are shown in Table 3.4. 

Table 3.4 Updated NGS Model Performance on Flagged Cohort Samples. 
 FA 

Result 
NGS Model Results (N) Specificity % 

(95% CI*) 
Equivocal % 

(95% CI*) MSI-H Equivocal MSS 
Flagged 
Cohort MSS 0 0 64 100 (94.4, 100) 0 (0, 5.6) 

*Confidence intervals (CI) calculated by Clopper-Pearson method. 
 

Results of the final model compared to the original model are shown by cancer type in 

Table 3.5. 
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Table 3.5 Performance of NGS Model Methods by Cancer Type 

Cancer 
Type 

NGS 
MSI 

Method 
FA 

Result 

NGS Results (N) 
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ty
 %
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I*
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ty
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N
PV

 %
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) 

Eq
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ca

l %
 

(9
5%

 C
I*

) 

MSI-
H Equiv. MSS 

Br
ea

st
 Original 

MSI-H 2 0 0 100 
(15.8, 
100) 

98.8 
(95.9, 
99.9) 

50 (6.8, 
93.2) 

100 
(97.9, 
100) 

2.8 
(0.9, 
6.4) 

MSI-L 0 0 0 
MSS 2 5 170 

Modified 
MSI-H 2 0 0 100 

(15.8, 
100) 

99.4 
(96.9, 
100) 

66.7 
(9.4, 
99.2) 

100 
(97.9, 
100) 

0.6 (0, 
3.1) MSI-L 0 0 0 

MSS 1 1 175 

G
as

tro
-in

te
st

in
al

 

Original 
MSI-H 191 0 6 97 

(93.5, 
98.9) 

99.4 
(99, 
99.6) 

91.8 
(87.2, 
95.2) 

99.8 
(99.5, 
99.9) 

1.5 
(1.1, 
2) 

MSI-L 0 3 26 
MSS 17 39 2603 

Modified 
MSI-H 192 2 3 98.5 

(95.6, 
99.7) 

100 
(99.9, 
100) 

100 
(98.1, 
100) 

99.9 
(99.7, 
100) 

0.2 
(0.1, 
0.4) 

MSI-L 0 2 27 
MSS 0 1 2658 

G
en

ito
-u

rin
ar

y 

Original 
MSI-H 3 0 0 100 

(29.2, 
100) 

98.3 
(95, 
99.6) 

50 
(11.8, 
88.2) 

100 
(97.9, 
100) 

2.7 
(0.9, 
6.3) 

MSI-L 0 0 0 
MSS 3 5 171 

Modified 
MSI-H 3 0 0 100 

(29.2, 
100) 

100 
(98, 
100) 

100 
(29.2, 
100) 

100 
(98, 
100) 

0 (0, 
2) MSI-L 0 0 0 

MSS 0 0 179 

G
yn

ec
ol

og
ic

 

Original 
MSI-H 221 8 9 96.1 

(92.7, 
98.2) 

99.1 
(98.5, 
99.5) 

93.6 
(89.7, 
96.4) 

99.4 
(99, 
99.7) 

1.9 
(1.3, 
2.6) 

MSI-L 11 5 15 
MSS 15 24 1627 

Modified 
MSI-H 230 6 2 99.1 

(96.9, 
99.9) 

99.7 
(99.3, 
99.9) 

97.9 
(95.1, 
99.3) 

99.9 
(99.6, 
100) 

0.7 
(0.4, 
1.2) 

MSI-L 12 2 17 
MSS 5 6 1655 

Ly
m

ph
om

a Original  
MSI-H 0 0 0 

--- 
100 

(39.8, 
100) 

--- 
100 

(39.8, 
100) 

0 (0, 
60.2) MSI-L 0 0 0 

MSS 0 0 4 

Modified 
MSI-H 0 0 0 

--- 
100 

(39.8, 
100) 

--- 
100 

(39.8, 
100) 

0 (0, 
60.2) MSI-L 0 0 0 

MSS 0 0 4 

M
al

e 
G

en
ita

l 
Tr

ac
t M

al
ig

na
nc

y 

Original  
MSI-H 0 0 1 

0 (0, 
97.5) 

100 
(2.5, 
100) 

--- 50 (1.3, 
98.7) 

0 (0, 
84.2) MSI-L 0 0 0 

MSS 0 0 1 

Modified 
MSI-H 0 0 1 

0 (0, 
97.5) 

100 
(2.5, 
100) 

--- 50 (1.3, 
98.7) 

0 (0, 
84.2) MSI-L 0 0 0 

MSS 0 0 1 

N
eu

ro
-e

nd
oc

rin
e 

tu
m

or
s  Original  

MSI-H 0 0 0 
--- 

98.7 
(92.9, 
100) 

0 (0, 
97.5) 

100 
(95.2, 
100) 

5 (1.4, 
12.3) MSI-L 0 0 0 

MSS 1 4 75 

Modified 
MSI-H 0 0 0 

--- 
100 

(95.4, 
100) 

--- 
100 

(95.4, 
100) 

1.2 (0, 
6.8) MSI-L 0 0 0 

MSS 0 1 79 
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N
on

e 
of

 T
he

se
 

Ap
pl

y  

Original 
MSI-H 6 0 1 85.7 

(42.1, 
99.6) 

100 
(97.9, 
100) 

100 
(54.1, 
100) 

99.4 
(96.8, 
100) 

3.2 
(1.2, 
6.9) 

MSI-L 0 0 3 
MSS 0 6 170 

Modified 
MSI-H 7 0 0 100 

(59, 
100) 

100 
(97.9, 
100) 

100 
(59, 
100) 

100 
(97.9, 
100) 

0 (0, 
2) MSI-L 0 0 3 

MSS 0 0 176 

Pr
im

ar
y 

Br
ai

n 
Tu

m
or

s  Original 
MSI-H 0 0 0 

--- 
100 

(81.5, 
100) 

--- 
100 

(81.5, 
100) 

10 
(1.2, 
31.7) 

MSI-L 0 0 0 
MSS 0 2 18 

Modified 
MSI-H 0 0 0 

--- 
95 

(75.1, 
99.9) 

0 (0, 
97.5) 

100 
(82.4, 
100) 

0 (0, 
16.8) MSI-L 0 0 0 

MSS 1 0 19 

Sa
rc

om
a Original 

MSI-H 0 0 0 
--- 

100 
(94.1, 
100) 

--- 
100 

(94.1, 
100) 

3.1 
(0.4, 
10.8) 

MSI-L 0 0 1 
MSS 0 2 61 

Modified 
MSI-H 0 0 0 

--- 
100 

(94.3, 
100) 

--- 
100 

(94.3, 
100) 

0 (0, 
5.6) MSI-L 0 0 1 

MSS 0 0 63 

Sk
in

 C
an

ce
r 

Original 
MSI-H 0 0 0 

--- 
100 

(97.1, 
100) 

--- 
100 

(97.1, 
100) 

0.8 
(0, 

4.3) 
MSI-L 0 0 1 
MSS 0 1 125 

Modified 
MSI-H 0 0 0 

--- 
100 

(97.1, 
100) 

--- 
100 

(97.1, 
100) 

0.8 
(0, 

4.3) 
MSI-L 0 0 1 
MSS 0 1 125 

Th
or

ac
ic

 Original 
MSI-H 4 0 0 100 

(39.8, 
100) 

99.3 
(98.2, 
99.8) 

50 
(15.7, 
84.3) 

100 
(99.4, 
100) 

2 (1, 
3.5) MSI-L 0 0 0 

MSS 4 12 578 

Modified 
MSI-H 4 0 0 100 

(39.8, 
100) 

100 
(99.4, 
100) 

100 
(39.8, 
100) 

100 
(99.4, 
100) 

0.2 
(0, 

0.9) 
MSI-L 0 0 0 
MSS 0 1 593 

*Confidence intervals (CI) calculated by Clopper-Pearson method. All decimal values were 
rounded to the nearest whole number for CI calculations. 

 

 Reference Genome Version Comparison Results 

Overall 892,674 variants were assessed (7,317 loci across 122 samples). Of these, only 

two variants were discordant between the hg19 and hg38 alignments. One microsatellite variant 

was detected under hg19 alignment, but not detected under hg38 alignment due to different 

alignments on the reverse strand in hg38. The other microsatellite variant was detected under 

hg38 alignment but not under hg19 alignment, due to low variant allele frequency. The discrepant 

variant calls were detected in two samples. However, discrepancies did not affect the final MSI 

status determination. Both samples were classified as MSI-H under both the hg19 and hg38 

alignments. Therefore, there was 100% concordance of NGS MSI calls between the genome 
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versions. This result suggests that all conclusions drawn in the analyses of hg19-aligned samples 

are valid in samples aligned to hg38. 

 Discussion 

In this study, a bias was observed in NGS MSI test results within a cohort of patients with 

presumed African ancestry. Our goal was to refine the selection of microsatellite loci used to 

determine MSI status and improve the specificity of the test for patients prone to the observed 

bias. We accomplished this by training a new model using a large database of previously 

exhibited a false positive NGS-based MSI test result compared to FA or IHC.  

Initial refinement required a quality assessment of the 7317 original loci, which eliminated 

over half the loci. Next, a model-building process eliminated noninformative loci resulting in a final 

set of 2011 loci that enhanced overall performance of the calling model. In particular, the updated 

model increased specificity in flagged cases by 100% in an independent validation, and increased 

overall PPV by approximately 3% in a cross-validation assessment. Overall specificity was not 

affected due to the large number of MSS samples in the general population. However, the 3% 

increase in PPV seen in cross-validation results suggests roughly 3% of MSI-H samples in the 

general population were prone to the bias observed in this study.  

While the research here used optimal model scores to select the final model built on 2011 

loci, it is worth noting that Figure 3-7 shows that several other loci counts may also reasonable 

selections. In some instances, it is ideal to maximize the number of loci selected. For instance, if 

the assay baits will change in future versions of the NGS assay, some loci may drop out due to 

low quality. In particular, if baits are eliminated in future assays, the depth of loci captured by 

those baits may not be large enough to accurately determine mutational status, and therefore the 

loci will have to drop out of the calling model. Therefore, having more loci makes the model more 

robust to lost loci due to low depth if baits are eliminated. On the other hand, having fewer loci in 

the calling model can streamline the analysis, and reduce noise due to additional loci that may 

not be as reliable. For example, Figure 3-7 shows that model performance actually dropped 

before the optimal performance seen at 2011 loci. Therefore, selecting fewer loci, perhaps by 
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selecting the number of loci that maximized performance, without seeing any loci that significantly 

reduced performance, may be more robust to noise in the model.  

Performance of MSI diagnostics are important to direct the use of immunotherapies due 

to the immunological response induced in patients whose tumors produce large numbers of 

neoantigens. This immunological landscape is not present in MSS patients, so false positive 

results may lead to patients receiving a pharmacological agent unlikely to have clinical benefit.  

While the performance of FA MSI diagnostics have been well established, NGS-based 

methods for MSI assessment offer several advantages: they can extend the availability of MSI 

diagnostics to patients whose tumor biopsies do not have sufficient normal tissue for MSI 

assessment by FA; they can potentially provide a more accurate assessment of genomic 

signatures due to the large number of microsatellite loci surveyed; and they can be assessed as 

part of comprehensive genetic profiling panels, resulting in conservation of tissue and reduced 

time-to-results, allowing clinicians to select appropriate therapies more quickly.  

The work presented here suggests that NGS-based tests that are affected by population 

biases can significantly benefit from training models using data from unbiased methods. Although 

this work focused on MSI, similar approaches could likely be utilized to minimize biases in NGS-

based tests for other biomarkers as well. 
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CHAPTER 4 

BIMIXT: MAXIMUM LIKELIHOOD ESTIMATION OF RECEIVER OPERATING 

CHARACTERISTIC (ROC) CURVES FROM MULTIMODAL, NON-GAUSSIAN DATA3  

 Introduction 

Disease heterogeneity refers to the existence of varying genetic signatures observed 

across patients with a single disease. While a disease may present similarly across patients, the 

variation in underlying genomic mutational patterns can give rise to differing responses to 

therapies and differing medical prognoses. 

Over the past several decades, molecular sequencing has revealed genetic subtypes of 

many heterogeneous diseases. A canonical example of disease heterogeneity is breast cancer 

which is commonly classified based on the presence or absence of three biomarkers: estrogen 

receptor (ER), progestogen receptor (PR), and the HER2 gene. ER and PR are hormone 

receptors (HR). Hormone receptor status has been linked to patient prognoses with ER+/PR+ 

patients showing significantly decreased mortality rates compared to patients with only one HR 

mutation, or no HR mutations (Dunnwald et al., 2007). Furthermore, meta-analyses of data from 

20 clinical trials has shown that response to the hormone therapy drug tamoxifen can significantly 

decrease mortality in patients with ER+ tumors, but has little to no effect in patients that are ER- 

(Group, 2011). Finally, targeted therapies that are engineered to target the HER2 gene have 

shown significant decreases in mortality of HER2+ breast cancer patients (Slamon et al., 2001). 

While many disease subtypes have been classified, subtyping remains an active field of 

research, particularly within oncology. Detection of biomarkers associated with cancer status may 

indicate which genes play crucial roles in the molecular pathways associated with specific cancer 

subtypes and may be good candidates for targeted therapies.  

                                                   

3 The algorithm developed in this chapter is freely available from (Winerip, Wallstrom, & LaBaer, 
2015):  
Michelle Winerip, Garrick Wallstrom and Joshua LaBaer (2015). Bimixt: Estimates Mixture 
Models for Case-Control Data. R package version 1.0. https://CRAN.R-
project.org/package=bimixt 
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 Early phase biomarker discovery studies that aim at detecting potentially actionable 

cancer mutations often revolve around assaying as many markers as possible and trying to 

identify relevant markers from the larger population that can distinguish between subjects from 

two different categories. For example, a biomarker discovery study of a proteomic screening may 

look at the expression levels of thousands of proteins to try to find the proteins with the greatest 

ability to distinguish individuals with a disease (cases) from individuals without the disease 

(controls). A single protein’s ability to distinguish cases from controls is determined by calculating 

sensitivity (true positive rate) and specificity (true negative rate) at various thresholds for the 

expression level. However, due to disease heterogeneity, finding such markers may be difficult as 

they may only be mutated in a small sub-sample of any given cohort. Thus, heterogeneity should 

be accounted for when assessing individual biomarker candidates.  

This chapter presents a novel method called ‘bimixt’ for fitting a mixture model to numeric 

measurements from heterogeneous populations. It covers estimation of the model, application of 

the model to real biomarker data, and utility of the model for assessing individual biomarker 

candidates, specifically in moderately small case/control studies (e.g. 30 – 100 subjects). The 

methods presented are made freely available via the open-source ‘bimixt’ R package (Winerip et 

al., 2015).  

 Background  

In general, a good biomarker will have a threshold that yields high sensitivity and high 

specificity. Biomarkers with good distinguishing abilities can be incorporated into clinical decision 

support as part of clinical trial endpoints (Strimbu & Tavel, 2010), diagnostic test panels, or as 

less costly or less invasive preliminary tests to help guide physicians to further testing prior to 

diagnosis. However, for some diseases, the presence of latent heterogeneity presents significant 

challenges for assessing biomarker quality.  

Latent disease heterogeneity refers to diseases that are made up of unknown, 

biologically differing subtypes. Patients with different subtypes may exhibit different prognoses 

and different responses to clinical treatments. Molecular studies are continually revealing new 
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subtypes of diseases, and it is possible that even known disease subtypes are themselves made 

of several more unknown subtypes (Wallstrom, Anderson, & LaBaer, 2013).   

One challenge of latent disease heterogeneity is that a biomarker that classifies 

individuals of one subtype well may not look like a good classifier for the entire population. For 

instance, if a biomarker correctly classifies 100% of subjects with one subtype, but that subtype is 

only present in 20% of the cases, the sensitivity of that biomarker will be roughly 20%. That is, the 

sensitivity of that biomarker will be limited by the prevalence of that subtype in the population 

(Anderson & LaBaer, 2005).  

Compounding this challenge is the fact that many biomarker discovery studies often have 

small sample sizes, making it difficult to estimate the population sensitivity of a biomarker from 

the sample. Because the sensitivity of a good biomarker may not be much higher than the 

sensitivity of a poor biomarker, and because biomarker studies are often small, it is important to 

have a method that can accurately estimate sensitivity in small sample studies of biomarkers for 

heterogeneous diseases. 

We can get a more accurate value of sensitivity from a small sample taken from a 

heterogeneous population if we have a suitable technique for generating a smooth receiver 

operator characteristic (ROC) curve. A ROC curve is a plot of sensitivity or true positive rate 

(TPR) versus 100% - specificity or false positive rate (FPR) for each possible thresh-old of the 

biomarker. For a review of ROC curves see Greene & Swets, 1966 (Green & Swets, 1966).  

We can construct an empirical ROC curve from sensitivity and specificity values of the 

observed data. However, particularly when sample sizes are small, slight perturbations in the 

specificity of the empirical curve can result in large changes in sensitivity or vice versa. Smooth 

ROC curves have the advantage of filling in the gaps of empirical ROC curves to allow for 

continuous estimation of sensitivity and specificity. Thus, if the smooth curve is generated using 

appropriate assumptions for the data, the smooth curve can give more accurate estimates for 

sensitivity and specificity.  
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ROC analysis has been used to aid medical decision making since the 1950s when it 

was used to assess the performance of an automated Pap smear reader in distinguishing 

cancerous from non-cancerous cytology smears (Zweig & Campbell, 1993).  

Many popular smoothing techniques exist for ROC analysis. Those implemented in the R 

package pROC (Robin et al., 2011) include a parametric binormal method and a non-parametric 

kernel density method. 

The parametric method implemented in pROC is a modified binormal method in which a 

linear association is assumed between the normal quantile function values of sensitivity and 

specificity. This assumes that both cases and controls are normally distributed after a monotone 

transformation. In pROC the parameters of the linear function are estimated using regression 

whereas in the traditional binormal method proposed by Metz, they are estimated using maximum 

likelihood estimates (Metz, Herman, & Shen, 1998). 

The non-parametric method implemented in pROC is derived from kernel density 

estimates of TPR and FPR (Zou, Hall, & Shapiro, 1997). Based on histograms of case and 

control data. However, when sample sizes are small, histograms may not be representative of the 

true population. Furthermore, histograms present the danger of overfitting the sample data. 

More recently, Gaussian mixture models have been used to model smooth ROC curves. 

In one approach, the expectation-maximization (EM) algorithm (Dempster, Laird, & Rubin, 1977) 

is used to find Gaussian mixture parameters for case and control data separately. Monte Carlo 

simulations are used to generate ROC curves from the distribution parameters. The Monte-Carlo 

ROC curves are then averaged together to create a non-closed form of a smooth ROC curve 

(Cheam & McNicholas, 2016). 

Zou and Hall, 2000 propose a Box-Cox transformation of data and then modeling the 

transformed case data and transformed control data as single Gaussian distributions (Zou & Hall, 

2000).  

In this paper, a parametric smoothing technique called Bimixt is introduced that 

implements both mixture modelling and transformation by modelling Box-Cox transformed case-
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control data as Gaussian mixtures. This approach allows us to model heterogeneous biomarker 

data that is not necessarily Gaussian using a parametric approach to better understand 

subpopulations and to deal with small sample sizes. 

 Methods  

A novel method for modeling case-control data for individual biomarkers is developed. In 

this approach, Box-Cox transformation (Box & Cox, 1964) is applied to the data and the 

transformed data is then modeled as a Gaussian mixture with at most four components. 

Maximum likelihood estimates of the transformation parameters and Guassian component 

parameters are developed. 

 Four Component Model 

The Box-Cox transformation is a power transformation that has a normalizing effect on 

data. We will denote the Box-Cox transformation of random variable x by transformation 

parameter λ as 𝑏𝑐(𝑥|𝜆). The transformed variable is defined as follows: 

𝑏𝑐(𝑥|𝜆) = m
𝑥n − 1
𝜆 , 𝜆 ≠ 0

ln(𝜆) ,										𝜆 = 0
 

A transformed random variable x from the four component (4c) model is distributed as the 

following Gaussian mixture: 

𝑏𝑐(𝑥|𝜆)~ r
𝑁7𝜇s*tuv, 𝜎s*tuv, 𝜇s*tuw, 𝜎s*tuw, 𝜋s*tu9, 𝑥	is	a	control	

𝑁7𝜇s~v, 𝜎s~v , 𝜇s~w, 𝜎s~w, 𝜋s~9,															𝑥	is	a	case
 

An example four component probability density plot is shown in Figure 4-1. It consists of 

lower and upper control components and lower and upper case components. In terms of a 

biomarker the upper components reflect subjects that have high expression levels of the marker 

while the lower components capture subjects that have low expression of the marker. 
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Figure 4-1 Four Component Density Plot 

An example probability density function of a four-component model. 

 

The 4c model assumes both case and control data are heterogeneous. Of the 

heterogeneity models that we implement, the 4c model allows the most flexibility and requires the 

most parameters. Estimation of the four-component model requires a total of 11 free parameters 

listed in Table 4.1. 

Table 4.1 Four Component Model Parameters 
Parameter Description 
𝝁𝒄𝒕𝒓𝒍𝟏 Mean of lower control component 
𝝁𝒄𝒕𝒓𝒍𝟐 Mean of upper control component 
𝝁𝒄𝒔𝟏 Mean of lower case component 
𝝁𝒄𝒔𝟐 Mean of upper case component 
𝝈𝒄𝒕𝒓𝒍𝟏 Standard deviation of lower control component 
𝝈𝒄𝒕𝒓𝒍𝟐 Standard deviation of upper control component 
𝝈𝒄𝒔𝟏 Standard deviation of lower case component 
𝝈𝒄𝒔𝟐 Standard deviation of upper case component 
𝝅𝒄𝒕𝒓𝒍 Proportion of controls in lower component 
𝝅𝒄𝒔 Proportion of cases in lower component 
𝝀 Box-Cox transformation parameter 

 

 Special Cases of Four Component Model 

Different heterogeneity assumptions can be reflected by using various restrictions on the 

4c model parameters. For example, the classic binormal model assumes no heterogeneity is 

present in the cases or controls. The Box-Cox transformed binormal model is the special case of 

the 4c model where 	𝝁𝒄𝒕𝒓𝒍𝟏 = 𝝁𝒄𝒕𝒓𝒍𝟐, 	𝝁𝒄𝒔𝟏 = 𝝁𝒄𝒔𝟐, 𝝈𝒄𝒕𝒓𝒍𝟏 = 𝝈𝒄𝒕𝒓𝒍𝟐, and	𝝈𝒄𝒔𝟏 = 𝝈𝒄𝒔𝟐. 



 66 

Another special case is the case where the lower case and control components are the 

same, but the upper components are allowed to vary. In this case, 	𝝁𝒄𝒕𝒓𝒍𝟏 = 𝝁𝒄𝒔𝟏 and 𝝈𝒄𝒕𝒓𝒍𝟏 = 𝝈𝒄𝒔𝟏. 

An example of this scenario is shown in the density plot in Figure 4-2.  

 

 
 
 

Figure 4-2 Special Case of Four component Density Plot 

An example probability density function of a special case of the four component model where 
the lower cases and lower controls are constrained to the same component. 

 

Special cases can be estimated with fewer parameters, and thus can be more efficient if 

they are reflective of the data. To determine if a special case is a better fit than the more general 

4c model, a likelihood ratio test can be performed to compare the maximum likelihood estimates 

of the two competing models. This can also give insight into the properties of the biomarker. For 

example, if the binormal model is a better fit than the 4c by the likelihood ratio test for a particular 

biomarker, the researcher can be confident the biomarker does not exhibit heterogeneity in the 

cohort under consideration. 

 Maximum Likelihood Model Estimation 

Model estimation consists of a nested optimization of the Box-Cox parameter and the 

two-component Gaussian mixture model parameters.  

4.3.3.1 Four Component Model Estimation 

The Box-Cox parameter λ is estimated using an optimization technique proposed by 

Nelder and Mead (Nelder & Mead, 1965) and implemented in the stats R Package (R Core Team, 
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2019). During each iteration of the search for the optimal λ, the data are transformed using the 

current λ value. Mixture model parameters are then estimated for the transformed data using a 

finite mixture modelling application of the EM algorithm.  

The EM algorithm finds the maximum likelihood estimates for the mixture model 

parameters by treating the proportion parameters (𝜋s*tuand 𝜋s~) as missing data. Initial estimates 

for the parameters are obtained using k-means clustering (Hartigan & Wong, 1979) implemented 

in the stats R package. The log likelihood value of the fit from the EM algorithm is computed with 

an adjustment for the additional estimation of λ. The final parameters are chosen to maximize this 

adjusted log likelihood value. 

4.3.3.2 Special Case Model Estimation 

For the binormal model proportion estimates are not necessary and so the maximum 

likelihood estimates can be computed directly from the means and standard deviations of the 

transformed data. For other special cases, constraints are applied as required. For example, if the 

model requires 	𝝁𝒄𝒕𝒓𝒍𝟏 = 𝝁𝒄𝒔𝟏 and  𝝈𝒄𝒕𝒓𝒍𝟏 = 𝝈𝒄𝒔𝟏 (as in the Figure 4-2 scenario) then the case and 

control data are combined before EM estimates are obtained. 

 Area Under the Curve Derivation 

A closed form function of the area under the curve is derived for the parametric four-

component model using moment generating functions.  

Let X ~ N (0, 1) and Y ~ N (μ, σ2) be random variables describing continuous test results, 

where X denotes a random variable corresponding to a negative test result and Y denotes a 

random variable corresponding to a positive test result. It has been shown (Pepe, 2003) that: 

𝐴𝑈𝐶 = Pr	[𝑦 > 𝑥] = Pr	[𝑦 − 𝑥 > 0] 

Thus, the AUC is equal to the difference between the probability density functions of Y 

and X. The derivation of this value for the four component curve utilizing moment generating 

functions to describe the probability density functions follows:  
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AUC of the Quadrinormal ROC Curve

Let x be random variable with probability p1 of being normally distributed
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 Simulation Studies 

To assess the ability of the 4c model to estimate the true distribution, heterogeneous 

case/control data of varying sample sizes is simulated from normal mixture distributions with the 

following parameters: 

𝑐𝑎𝑠𝑒𝑠	~	𝑁7𝜇s*tuv = 6, 𝜇s*tuw = 14, 𝜎s*tuv = 1, 𝜎s*tuw = 1, 	𝜋s*tu = .759 

𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠	~	𝑁7𝜇s*tuv = 5, 𝜇s*tuw = 10, 𝜎s*tuv = 1, 𝜎s*tuw = 1, 	𝜋s*tu = .859 

The inverse Box-Cox transformation is then applied to the simulated data setting 𝝀 to 0.5. 

  Bimixt model parameters are then estimated on the simulated data set and the 

corresponding ROC curves are generated. For comparison, the density smoothed and binormal 

smoothed ROC curves are also generated. 

The ROC curve based on the true distribution of parameters is also simulated. The area 

between curves (ABC) is then calculated between the true ROC curve and the smoothed ROC 

curves using the trapezoid rule. 

 Proteomic Biomarker Screening Study Application 

To determine how well the 4c model fits real world data, the model is applied to 

normalized data from a proteomic array screening experiment of 45 basal-like breast cancer 

patients and 45 controls (Wang et al., 2015). The subjects for the protein array came from the 

Polish Breast Cancer study (Garcia-Closas et al., 2006).  

For each subject, 9,180 proteins were screened. The abundance of each protein was 

measured using fluorescent intensity values normalized to a control spot on the array. For each 

protein, the 4c model was fit using the protein expression data from the 90 subjects.  

To see how many of the proteins the 4c model fit, a modified one-sample Kolmogorov-

Smirnov (KS) test (Massey Jr, 1951) is performed. The null hypothesis of this test is that the true 

cumulative distribution function (CDF) of the data is equal to the 4c CDF. The KS test p-values 

are calculated for all 9,180 proteins as follows: 
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1. Estimate 4c model parameters from the case/control data 

2. Apply estimated case parameters to case CDF and estimated control parameters to 

control CDF 

3. Calculate the KS p-value for the cases compared to the estimated case CDF and a 

KS p-value for the controls compared to the estimated control CDF. 

4. Take the minimum of the two p-values as the final p-value (this is conservative as a 

larger p-value shows a better fit). 

After the KS test p-values are calculated for all 9,180 proteins, they are adjusted for 

multiple comparison using the Benjamini and Hochberg method (Benjamini & Hochberg, 1995). 

 Results 

 Simulation Study 

The ROC curves associated with each smoothing method were generated for a simulated 

data set of 30 cases and 30 controls, and ABCs were calculated. The resulting smoothed ROC 

curves are overlaid on top of the true ROC curves in Figure 4-3. 
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Figure 4-3 Comparison of ROC Curve Estimates for Non-Gaussian, Bimodal Data 

The figure compares, from top left to bottom right, the empirical method, the binormal method, 
the kernel density method, and the bimixt method for estimating ROC curves for non-Gaussian 
bimodal data with 30 cases and 30 controls. The true ROC curve for the population the data 
were sampled from is shown in black. Area between the ROC curves (ABC) is calculated 
between the true ROC curve and each of the estimated ROC curves to show how well the 
method used to estimate the ROC curve on the sample set approximates the true population 
curve. 

 

 Data sets were then simulated for sample sizes ranging from 20 (10 cases and 10 

controls) to 100 (50 cases and 50 controls). The effects of sample size on the ABC across each 

of the smoothing methods are shown in Figure 4-4. 
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Figure 4-4 Effects of Sample Size on Area Between ROC Curves 

The figure shows how sample size effects the area between smoothed and true ROC curves 
for non-Gaussian bimodal data. The solid lines show the ABC averaged over 50 replicates, and 
the ribbons show the average ±2 standard deviations.  

 

 Breast Cancer Data 

The 9,180 proteins in the breast cancer screening array were fit with the 4c model. The 

parameters estimated during model fitting were used to compare the 4c model CDF to the raw 

data using the ks.test function in R. The KS test P-values were calculated on all 9,180 proteins in 

the breast cancer screening array, and adjusted for multiple comparisons. All 9,180 proteins had 

high p-values (range of 0.57 to 0.99) indicating that the 4c distribution function with the Bimixt 

estimated parameters was a reasonable fit for all potential markers. The distribution of the 

adjusted p-values is shown in Figure 4-5. 
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Figure 4-5 Histogram of P-Values for Bimixt Fit of Proteomic Data 

The histogram shows the distribution of the adjusted p-values for the KS test applied to the 
9,180 proteins from the proteomic breast cancer screen. The p-values range from 0.57 – 0.99 
with a mean of 0.65. 

 

 Discussion 

The model presented in this chapter balances the need to represent Gaussian and non-

Gaussian, bimodal data with the ability to handle small sample sizes. The model fits 100% of 

empirical data from a proteomic breast cancer screen. It can also be used to estimate smooth 

receiver operator characteristic (ROC) curves for individual markers. 

Simulation studies show that the bimxit method provides an advantage for estimating 

AUC compared to the other smoothing techniques, especially for moderately small sample sizes. 

Mixture modeling is a natural approach for modeling latent heterogeneity. While there are 

other methods for estimating mixture models, the novelty of the method presented in this chapter 

is that it facilitates mixture modeling of non-Gaussian data by incorporating the Box-Cox 

transformation parameter in the optimization process. The algorithm also supports different 

variations of constraints on the heterogeneity, with a 4c model at one end and a binormal model 

at the other.  
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One drawback of the method is that it does not allow for modelling more than four 

components. However, for many biological applications 4 components for should be sufficient. 

Additionally, the more components we estimate, the more likely we are to overfit the data and 

potentially estimate noise or outliers as their own components. This would not generalize to new 

data well. Finally, four component models are easily interpretable; it is easy to interpret two 

components biologically as high expressers or low expressers of a protein. 
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

5.1 Family Rank  

 Conclusion  

In chapter 2, a novel method for ranking features was presented that incorporated both 

empirical scores and graphical domain knowledge. Through simulations studies, it was shown 

that the method outperformed other state-of-the-art graphical ranking methods in scenarios where 

large feature spaces and small sample sizes were present. 

Furthermore, the method was applied to real-world oncology data to demonstrate the 

utility of the method in predicting response to chemotherapy from gene expression data. The 

method showed that mutations in cellular meiosis and cell cycle pathways were predictive of 

response to chemotherapy.  

The primary benefit of the method is that it may find more appropriate predictors in data 

sets where there is high degree of complexity between true predictors and outcome and the 

sample size is too small to differentiate true predictors from noise given the degree of complexity.  

 Future Work  

In this research, simulation studies were used to show the number of samples required to 

detect true predictors in the scenario where a third of the positive samples were defined by one 

set of 5 unique predictors, a third were defined by a second set of 5 unique predictors, and the 

last third were defined by a third set of 5 unique predictors. In this case, the complexity was 

defined by 3 unique sets of 5 interacting predictors. While these numbers were meant to imitate 

the heterogeneity seen in oncology data sets, the selection of 3 subtypes and 5 predictors to 

define each subtype was arbitrary. In different domains, researchers may have expectations for 

either more or less complexity in their datasets. Therefore, further analysis to explore additional 

complexity scenarios, and the number of samples required to detect true predictors in such 

scenarios is warranted.  
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Additionally, in the oncology example provided in this research, protein-protein interaction 

data from the STRING database was used as input for analysis. While all protein-protein 

interactions were utilized in this research, there may be instances where only a subset of protein-

protein interactions are relevant to the research. For example, if a researcher is interested in only 

a single pathway’s effect on outcome, it may be of use to look at the impact of utilizing sub-

networks of protein-protein interactions as input to family rank. 

5.2 Population Bias in MSI 

 Conclusion 

In chapter 3, novel work on NGS based methods to calculate MSI was presented. It was 

shown that the method developed within this chapter reduced the apparent bias observed in NGS 

results which routinely inflated the false positive rate of MSI-H calls in African American 

ancestries. 

In the initial phase of the research, bias in the human reference genome, which is 

primarily derived from European DNA, was hypothesized to result in biased estimates of MSI. 

The hypothesized bias was supported by analysis of MSI in a cohort of pan-tumor specimen with 

African American genetic ancestry. It was found that FA and IHC methods of MSI analysis that 

did not rely on alignment to the human reference genome consistently agreed on MSS or MSI-L 

status, while the NGS method in which data were aligned to the reference genome consistently 

designated the specimen in the cohort as MSI-H. 

The NGS method was then modified by utilizing novel techniques to select a subset of 

NGS loci that were able to classify MSI without the bias observed in the initial phase. The novel 

model was verified by cross validation on the training set as well as independent validation on an 

independent test cohort.  

The primary advantage of the model is that it reduces the false positive rate and 

subsequently increases the specificity of the NGS MSI diagnostic test in the African ancestry 

population. An NGS diagnostic for MSI is usually preferable to IHC or FA in clinical settings. The 
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diagnostic allows for more biomarkers to be assessed at once, utilizing less tissue from patients. 

Therefore, having an equitable test with good specificity and sensitivity is important. 

Additionally, MSI specifically is utilized directly in patient care as it is a primary indicator 

of response to immunotherapies. If a patient has high levels of MSI, they are more likely to 

respond to immunotherapies. Therefore, false positives in the test may lead patients to receive 

treatment that may not be effective for them, and waste time that could be used to try other, more 

promising therapies for their specific genetic signatures. 

 Future Work  

Liquid biopsies are a promising technique that offer less invasive diagnostics compared 

to tissue based approaches. As liquid biopsy assays improve, future assessments of MSI may be 

able to utilize blood-based normal data for alignment as opposed to normal tissue. If patient 

samples can be aligned to their own normal genetic signatures, it would eliminate inherent bias 

from aligning to reference genomes. 

Additionally, in the future, alignment techniques that utilize multiple ancestral genomes 

could be incorporated in the bioinformatics pipelines used to determine MSI calls. For example, if 

an allele aligns to any of the ancestral genomes assessed, it would not be considered a mutation.  

Finally, additional techniques of estimating response to immunotherapies may be 

developed in the future, such as measurements of neoantigen load via human leukocyte antigen 

(HLA) analysis. Such techniques can be performed on NGS data, and can be used as additional 

evidence to support immunotherapy. 

5.3 Bimixt 

 Conclusion 

In chapter 4, a novel approach for generating maximum likelihood estimates of ROC 

curves for multimodal, non-Gaussian data was presented. In this chapter, the algorithm was 

motivated by the need to capture heterogeneity in genetic and proteomic biomarkers. Simulation 

studies were conducted to show that the estimations fit the data as well or better than other state-
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of-the-art ROC smoothing methods. Additionally, application of the method to real world 

proteomic data showed that the method significantly fit 100% of the 9,180 proteins assayed.   

The main advantage of the method presented in this chapter is that it can be used to 

model multimodal Gaussian or non-Gaussian data. This is beneficial particularly in oncology data 

where genetic heterogeneity is present. Often the expression levels of proteins in a cohort of 

patients with identical tumor types appear bimodal due to inherent tumor heterogeneity.  

Compounding the challenges of heterogeneity are small sample sizes. Estimating ROC 

curves on small sample sizes can lead to “jumpy” curves, in which a small perturbation in 

sensitivity may cause a large change in specificity or vice versa. The jumpiness of empirical ROC 

curves can be mitigated using smoothing techniques, making proper smoothing techniques for 

non-Gaussian, bimodal data useful.  

 Future Work 

Power analysis for biomarker screening studies are necessary to design cost effective 

and efficient trials. One endpoint in such screening studies is often ROC analysis. Therefore, to 

properly plan such studies utilizing the methods developed here, future work in how to apply the 

methods to power analyses are warranted.  
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 Example input 

Input Description Value 

Features Vector of features to be 
ranked 𝑓 = (𝑓/, 	𝑓�, 	𝑓�) 

Empirical 
Feature 
Score 

Vector of empirical feature 
scores calculated by user, e.g. 
AUCs for data with numeric 
features and binary response 

𝑠 = (0.6, 	0.2, 	0.9) 

Graphical 
Domain 

Knowledge 

Graphical object containing 
interaction scores between 
features. 

 
 

 
 
 

 Node 
1  

(𝑓') 

Node 
2 

(𝑓8) 

Edge 
Weight 
�𝐼7𝑓', 𝑓89� 

𝑓/ 𝑓� 0.4 
𝑓/ 𝑓� 0.8 

Damping 
Parameter 

Value between 0 and 1 that 
determines how much weight 
to give to the domain 
knowledge.  

𝑑 = 0.5 

Tolerance 

Stopping criteria. If the 
weighted score of a feature 
added to a family is less than 
or equal to the tolerance 
value, iterations stop. 

𝑡𝑜𝑙 = 0 

Families to 
Build 

Value indicating number of 
families to be built. Must be 
between 1 and the number of 
features to rank. If less than 
number of features, the 
features with highest empirical 
scores are used to initiate 
family building. 

𝑛. 𝑓𝑎𝑚𝑖𝑙𝑖𝑒𝑠 = 3 

 

  

𝑓/ 
 

𝑓�  
 

𝑓�  
 

0.4 

0.8 

= 
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 Example Equations 

Equations for calculations used to build families 

𝑤',8@ =

⎩
⎪
⎨

⎪
⎧

𝑠@, 𝑖 = 1, 𝑘 = 𝑗
0, 𝑖 = 1, 𝑘 ≠ 𝑗
0, 𝑖 > 1, 𝑘 = 𝑚

(1 − 𝑑) ∗ 𝑠@ + 𝑑 ∗ 𝐼(𝑓@, 𝑓M), 𝑖 = 2, 𝑘 ≠ 𝑚
(1 − 𝑑) ∗ 𝑤'O/,8@ + 𝑑 ∗ 𝐼(𝑓@, 𝑓M), 𝑖 > 2, 𝑘 ≠ 𝑚

 

where 
𝑓M = arg	max

VW∈V⃗
𝑤;;⃑ 'O/,8 

(1) 

Ω',8 = max	(𝑤;;⃑ ',8) (2) 

Λ',8 = arg	max
VW∈V⃗

𝑤;;⃑ ',8 (3) 
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 Example: Building Family 1 

Step Calculation Stop 
Fa

m
ily

 ( 𝒋
)  

Ite
ra

tio
n 
( 𝒊
)  

W
ei

gh
t (
𝒌)

 
𝒘𝒊,𝒋𝒌

 𝒘;;;⃑ 𝒊,𝒋 𝛀𝒊,𝒋 𝚲𝒊,𝒋 Y/N 

1 

1 

1 
𝑤/,// = 𝑠/	

= 0.6 
𝑤;;⃑ /,/
= (0.6, 0, 0) 

Ω/,/ = max7𝑤;;⃑ /,/9	
= 0.6 

Λ/,/
= argmax7𝑤;;⃑ /,/9	
= 𝑓/ 

No 2 𝑤/,/� = 0 

3 𝑤/,/� = 0 

2 

1 𝑤�,// = 0 

𝑤;;⃑ �,/
= (0, 0.3, 0.85) 

 

Ω�,/ = max7𝑤;;⃑ �,/9	
= 0.85 

Λ�,/
= argmax7𝑤;;⃑ �,/9	
= 𝑓� 

No 

2 

𝑤�,/�	
= (1 − 𝑑) ∗ 𝑠� + 𝑑 ∗ 𝐼(𝑓/, 𝑓�)	
= (1 − 0.5) ∗ 0.2 + 0.5 ∗ 0.4	
= 0.3 

3 

𝑤�,/�	
= (1 − 𝑑) ∗ 𝑠� + 𝑑 ∗ 𝐼(𝑓�, 𝑓/)	
= (1 − 0.5) ∗ 0.9 + 0.5 ∗ 0.8		
= 0.85 

3 

1 

𝑤�,//	
= (1 − 𝑑) ∗ 𝑤�,// + 𝑑 ∗ 𝐼(𝑓/, 𝑓�)	
= (1 − 0.5) ∗ 0 + 0.5 ∗ 0.8	
= 0.4 𝑤;;⃑ �,/

= (0.4, 0.15, 0) 
 

Ω�,/ = max7𝑤;;⃑ �,/9	
= 0.6 

Λ�,/
= argmax7𝑤;;⃑ �,/9	

= 𝑓/ 

Yes 
𝑓/ 

already 
selected 2 

𝑤�,/�	
= (1 − 𝑑) ∗ 𝑤�,/� + 𝑑 ∗ 𝐼(𝑓�, 𝑓�)	
= (1 − 0.5) ∗ 0.3 + 0.5 ∗ 0	
= 0.15 

3 𝑤�,/� = 0 
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 Example: Building Family 2 

Step Calculation Stop 
Fa

m
ily

 ( 𝒋
)  

Ite
ra

tio
n 
( 𝒊
)  

W
ei

gh
t (
𝒌)

 
𝒘𝒊,𝒋𝒌

 𝒘;;;⃑ 𝒊,𝒋 𝛀𝒊,𝒋 𝚲𝒊,𝒋 Y/N 

2 

1 

1 𝑤/,�/ = 0 

𝑤;;⃑ /,�
= (0, 0.2, 0) 

Ω/,� = max7𝑤;;⃑ /,�9	
= 0.2 

Λ/,�
= argmax7𝑤;;⃑ /,�9	
= 𝑓� 

No 2 
𝑤/,�� = 𝑠�	

= 0.2 
3 𝑤/,�� = 0 

2 

1 

𝑤�,�/	
= (1 − 𝑑) ∗ 𝑠/ + 𝑑 ∗ 𝐼(𝑓/, 𝑓�)	
= (1 − 0.5) ∗ 0.6 + 0.5 ∗ 0.4	
= 0.5 

𝑤;;⃑ �,�
= (0.5, 0, 0.45) 

 

Ω�,� = max7𝑤;;⃑ �,�9	
= 0.5 

Λ�,�
= argmax7𝑤;;⃑ �,�9	
= 𝑓/ 

No 2 𝑤�,�� = 0 

3 

𝑤�,��	
= (1 − 𝑑) ∗ 𝑠� + 𝑑 ∗ 𝐼(𝑓�, 𝑓�)	
= (1 − 0.5) ∗ 0.9 + 0.5 ∗ 0		
= 0.45 

3 

1 𝑤�,�/ = 0 

𝑤;;⃑ �,�
= (0, 0.2, 0.625) 

 

Ω�,� = max7𝑤;;⃑ �,�9	
= 0.625 

Λ�,�
= argmax7𝑤;;⃑ �,�9	
= 𝑓� 

Yes  
all 

feature
s 

select
ed 

2 

𝑤�,��	
= (1 − 𝑑) ∗ 𝑤�,�� + 𝑑 ∗ 𝐼(𝑓�, 𝑓/)	
= (1 − 0.5) ∗ 0 + 0.5 ∗ 0.4	
= 0.2 

3 

𝑤�,��	
= (1 − 𝑑) ∗ 𝑤�,�� + 𝑑 ∗ 𝐼(𝑓�, 𝑓/)	
= (1 − 0.5) ∗ 0.45 + 0.5 ∗ 0.8	
= 0.625 
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 Example: Building Family 3 

Step Calculation Stop 
Fa

m
ily

 ( 𝒋
)  

Ite
ra

tio
n 
( 𝒊
)  

W
ei

gh
t (
𝒌)

 
𝒘𝒊,𝒋𝒌

 𝒘;;;⃑ 𝒊,𝒋 𝛀𝒊,𝒋 𝚲𝒊,𝒋 Y/N 

3 

1 

1 𝑤/,�/ = 0 

𝑤;;⃑ /,�
= (0, 0, 0.9) 

Ω/,� = max7𝑤;;⃑ /,�9	
= 0.9 

Λ/,�
= argmax7𝑤;;⃑ /,�9	
= 𝑓� 

No 2 𝑤/,�� = 0 

3 
𝑤/,�� = 𝑠�	

= 0.9 

2 

1 

𝑤�,�/	
= (1 − 𝑑) ∗ 𝑠/ + 𝑑 ∗ 𝐼(𝑓/, 𝑓�)	
= (1 − 0.5) ∗ 0.6 + 0.5 ∗ 0.8	
= 0.7 𝑤;;⃑ �,�

= (0.7, 0.1, 0) 
 

Ω�,� = max7𝑤;;⃑ �,�9	
= 0.7 

Λ�,�
= argmax7𝑤;;⃑ �,�9	
= 𝑓/ 

No 
2 

𝑤�,��	
= (1 − 𝑑) ∗ 𝑠� + 𝑑 ∗ 𝐼(𝑓�, 𝑓�)	
= (1 − 0.5) ∗ 0.2 + 0.5 ∗ 0		
= 0.1 

3 𝑤�,�� = 0 

3 

1 𝑤�,�/ = 0 

𝑤;;⃑ �,�
= (0, 0.25, 0.4) 

 

Ω�,� = max7𝑤;;⃑ �,�9	
= 0.4 

Λ�,�
= argmax7𝑤;;⃑ �,�9	
= 𝑓� 

Yes  
𝑓� 

alread
y 

select
ed 

2 

𝑤�,��	
= (1 − 𝑑) ∗ 𝑤�,�� + 𝑑 ∗ 𝐼(𝑓�, 𝑓/)	
= (1 − 0.5) ∗ 0.1 + 0.5 ∗ 0.4	
= 0.25 

3 

𝑤�,��	
= (1 − 𝑑) ∗ 𝑤�,�� + 𝑑 ∗ 𝐼(𝑓�, 𝑓/)	
= (1 − 0.5) ∗ 0 + 0.5 ∗ 0.8	
= 0.4 
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 Example: Calculating Weighted Scores 

Ω = ¤
0.6 0.2 0.9
0.85 0.5 0.7
− 0.625 −

¥ 

 

Λ = ¦
𝑓/ 𝑓� 𝑓�
𝑓� 𝑓/ 𝑓/
− 𝑓� −

§ 

 
  

Feature Original Score Weighted Score 

𝑓/ 0.6 0.6 + 0.5 + 0.7 = 1.8 

𝑓� 0.2 0.2 

𝑓� 0.9 0.9 + 0.85 + 0.625 = 2.375 
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 Package Description 

The ‘FamilyRank package contains tools for performing feature ranking via the family 

rank algorithm. Family rank grows families of features by selecting features that maximize a 

weighted score calculated from empirical feature scores and graphical knowledge. The final 

weighted score for a feature is determined by summing a feature's family-weighted scores across 

all families in which the feature appears. 

 

 Functions 

createCase 

Description 
Numerical feature simulation for positive samples. Called by createData. 

Usage 
createCase(subtype, upper.mean, lower.mean, upper.sd, lower.sd, n.features,  

subtype1.feats = 1:5, subtype2.feats = 6:10, subtype3.feats = 11:15) 

Arguments 

subtype Numeric number indicating which subtype to simulate. Currently supports 
three subtype: 1, 2 or 3. 

upper.mean The mean of the upper component of the bimodal Gaussian distribution from 
which features are simulated. 

lower.mean The mean of the lower component of the bimodal Gaussian distribution from 
which features are simulated. 

upper.sd The standard deviation of the upper component of the bimodal Gaussian 
distribution from which features are simulated. 

lower.sd The standard deviation of the lower component of the bimodal Gaussian 
distribution from which features are simulated. 

n.features Number of features to simulate. 

subtype1.feats Numeric vector representing the indices of features that define subtype 1. 

subtype2.feats Numeric vector representing the indices of features that define subtype 2. 

subtype3.feats Numeric vector representing the indices of features that define subtype 3. 

Details 
Simulations support 3 subtypes, each defined by 5 different features. 

Subtype 1 is defined as having the first 3 subtype1.feats and at least one of the next 
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2 subtype1.feats simulated from the upper component of the bimodal Gaussian distribution. 

Subtype 2 is defined as having all 5 subtype2.feats simulated from the upper component. 

Subtype 3 is defined as having the first 4 subtype3.feats simulated from the upper component 
and the last subtype3.feats simulated from the lower component. 

Value 
Returns a vector of simulated features 

Note 
createCase is not meant to be called alone. It is designed as a helper function for createData. 

Examples 
# Toy Example  

case <- createCase(subtype = 1, upper.mean = 13, lower.mean = 5,  

upper.sd = 1, lower.sd = 1, n.features = 20,  

                        subtype1.feats = 1:5, 

                        subtype2.feats = 6:10, 

                        subtype3.feats = 11:15) 
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createControl 
Description 
Numerical feature simulation for negative samples. Called by createData. 

Usage 
createControl(upper.mean, lower.mean, upper.sd, lower.sd, n.features, subtype1.feats = 1:5, 
subtype2.feats = 6:10, subtype3.feats = 11:15) 

Arguments 

upper.mean The mean of the upper component of the bimodal Gaussian distribution from 
which features are simulated. 

lower.mean The mean of the lower component of the bimodal Gaussian distribution from 
which features are simulated. 

upper.sd The standard deviation of the upper component of the bimodal Gaussian 
distribution from which features are simulated. 

lower.sd The standard deviation of the lower component of the bimodal Gaussian 
distribution from which features are simulated. 

n.features Number of features to simulate. 

subtype1.feats Numeric vector representing the indices of features that define subtype 1. 

subtype2.feats Numeric vector representing the indices of features that define subtype 2. 

subtype3.feats Numeric vector representing the indices of features that define subtype 3. 

Details 
Simulates data such that none of the 3 subtypes defined in createCase are represented. 

To ensure subtype 1 is not represented, at least one of the first three subtype1.feats and/or 
both of the next 2 subtype1.feats are simulated from the lower component of the Gaussian 
distribution. 

 

To ensure subtype 2 is not represented, at least one of the five subtype2.feats is simulated 
from the lower component. 

 

To ensure subtype 3 is not represented, at least one of the first 4 subtype3.feats is simulated 
from the lower component and/or the last subtype3.feats is simulated from the upper 
component. 

Value 
Returns a vector of simulated features 

Note 
createControl is not meant to be called alone. It is designed as a helper function 
for createData. 

Examples 
# Toy Example  
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control <- createControl(upper.mean = 13, lower.mean = 5,  

upper.sd = 1, lower.sd = 1, n.features = 20,  

                        subtype1.feats = 1:5, 

                        subtype2.feats = 6:10, 

                        subtype3.feats = 11:15) 
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createData 
Description 
Simulate data sets meant to emulate gene expression data in oncology. 

Usage 
createData(n.case, n.control, mean.upper = 13, mean.lower = 5, sd.upper = 1, sd.lower = 1, 
n.features = 10000, subtype1.feats = 1:5, subtype2.feats = 6:10, subtype3.feats = 11:15) 

Arguments 

n.case Number of cases to simulate. 

n.control Number of controls to simulate 

mean.upper Mean of upper component of bimodal Gaussian distribution from which 
features are simulated. 

mean.lower Mean of lower component of bimodal Gaussian distribution from which 
features are simulated. 

sd.upper Standard deviation of upper component of bimodal Gaussian distribution 
from which features are simulated. 

sd.lower Standard deviation of lower component of bimodal Gaussian distribution 
from which features are simulated. 

n.features Number of features to simulate 

subtype1.feats Index of features used to define subtype 1. 

subtype2.feats Index of features used to define subtype 2. 

subtype3.feats Index of features used to define subtype 3. 

Details 
Simulates case/control data as described in createCase and createControl, and graphical 
domain knowledge as described in createGraph. 

Value 
Returns a named list with a simulated feature matrix (x), simulated binary response vector (y), 
vector of subtype labels (subtype), and simulated domain knowledge graph (graph). 

Examples 
## Toy Example 

# Simulate data set 

# 10 samples 

# 20 features 

# Features 1 through 15 perfectly define response 

# All other features are random noise. 

data <- createData(n.case = 5, n.control = 5, mean.upper=13, mean.lower=5, 

                   sd.upper=1, sd.lower=1, n.features = 20, 

                   subtype1.feats = 1:5, subtype2.feats = 6:10, 
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                   subtype3.feats = 11:15) 

x <- data$x 

y <- data$y 

graph <- data$graph 
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createGraph 
Description 
Simulate domain knowledge graph. 

Usage 
createGraph(subtype1.feats = 1:5, subtype2.feats = 6:10, subtype3.feats = 11:15,  

n.interactions = 1e+06, n.features = 10000) 

Arguments 

subtype1.feats Index of features used to define subtype 1. 

subtype2.feats Index of features used to define subtype 2. 

subtype3.feats Index of features used to define subtype 3. 

n.interactions Number of pairwise interactions to simulate. 

n.features Number of features to simulate 

Value 
Returns a data frame representation of a graph. The first two columns represent graph nodes 
and the third column represents the edge weights between nodes. 

All pairwise combinations of subtype1.feats have an edge weight of 1. 

All pairwise combinations of subtype2.feats have an edge weight of 1. 

All pairwise combinations of subtype3.feats have an edge weight of 1. 

All other pairwise combinations have an edge weight uniformly distributed between 0 and 1. 

Examples 
# Toy Example  

graph <- createGraph(subtype1.feats = 1:5, subtype2.feats = 6:10, subtype3.feats = 11:15,  

n.interactions = 100, n.features = 20) 
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familyRank 
Description 
Ranks features by incorporating graphical knowledge to weight empirical feature scores. This 
is the main function of the FamilyRank package. 

Usage 
familyRank(scores, graph, d = 0.5, n.rank = min(length(scores), 1000), n.families = min(n.rank, 
1000), tol = 0.001) 

Arguments 

scores A numeric vector of empirical feature scores. Higher scores should indicate a 
more predictive feature. 

graph A matrix or data frame representation of a graph object. 

d Damping factor 

n.rank Number of features to rank. 

n.families Number of families to grow. 

tol Tolerance 

Details 
The scores vector should be generated using an existing statistical method. Higher scores 
should correspond to more predictive features. It is up to the user to adjust accordingly. For 
example, if the user wishes to use p-values as the empirical score, the user should first adjust 
the p-values, perhaps by subtracting all p-values from 1, so that a higher value corresponds to 
a more predictive feature. 

 

The graph must be supplied in matrix form, where the first two columns represent graph nodes 
and the third column represents the edge weights between nodes. The graph nodes must be 
represented by the index of the feature that corresponds with the index in the score vector. For 
example, a node corresponding to the first value of the score vector should be indicated by a 1 
in the graph object, the second by a 2, etc. It is not necessary that every feature in 
the score vector appear in the graph. Missing pairwise interactions will be considered to have 
interaction scores of 0. 

 

The damping factor, d, represents the percentage of weight given to the interaction scores. 
The damping factor must be between 0 and 1. Higher values give more weight to the 
interaction score while lower values give more weight to the empirical score. 

 

The value for n.rank must be less than or equal to the number of scored features. The 
algorithm will include only the top n.rank features in the ranking process (e.g. 
the n.rank features with the highest values in the score vector will be used to grow families). 
Higher values of n.rank require longer compute times. 

 

The value for n.families must be less than or equal to the value of n.rank. This is the number of 
families the algorithm will grow. If n.families is less than n.rank, the algorithm will initiate 
families using the n.families highest scoring features. Higher values of n.families require longer 
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compute times. 

 

The tolerance variable, tol, tells the algorithm when to stop growing a family. Features are 
added to families until the weighted score is less than the tolerance level, or until all features 
have been added. 

Value 
Returns a vector of the weighted feature scores. 

Examples 
# Toy Example 

scores <- c(.6, .2, .9) 

graph <- cbind(c(1,1), c(2,3), c(.4, .8)) 

familyRank(scores = scores, graph = graph, d = .5) 

 

# Simulate data set 

# 100 samples 

# 1000 features 

# Features 1 through 15 perfectly define response 

# All other features are random noise 

simulatedData <- createData(n.case = 50, n.control = 50, mean.upper=13, mean.lower=5, 

                            sd.upper=1, sd.lower=1, n.features = 10000, 

                            subtype1.feats = 1:5, subtype2.feats = 6:10, 

                            subtype3.feats = 11:15) 

x <- simulatedData$x 

y <- simulatedData$y 

graph <- simulatedData$graph 

 

# Score simulated features using absolute difference in group means 

scores <- apply(x, 2, function(col){ 

  splt <- split(col, y) 

  group.means <- unlist(lapply(splt, mean)) 

  score <- abs(diff(group.means)) 

  names(score) <- NULL 

  return(score) 

}) 

 

# Display top 15 features using empirical score 

order(scores, decreasing = TRUE)[1:15] 
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# Rank scores using familyRank 

scores.fr <- familyRank(scores = scores, graph = graph, d = .5) 

# Display top 15 features using empirical scores with Family Rank 

order(scores.fr, decreasing = TRUE)[1:15] 
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grow 
Description 
Call to the C++ function that grows the families. 

Usage 
grow(n, f, d, graph, scores, feat_mat, score_mat, tol, weight_mat, selected) 

Arguments 

n Number of features to rank. 

f Number of families to grow. 

d Damping factor 

graph A matrix or data frame representation of a graph object. 

scores A numeric vector of empirical feature scores. 

feat_mat Matrix to store selected features. 

score_mat Matrix to store weighted scores of selected features. 

tol Tolerance 

weight_mat A matrix to store the cumulative weighted scores of selected futures across all 
families. 

selected Vector indicating whether a feature has been selected yet. 

Details 
This is the workhorse function for the Family Rank algorithm. 

Value 
Returns a matrix with 1+2xn.families columns and n.rank rows. The first column is the 
cumulative feature score for each of the ranked features 1:n.rank. The row number 
corresponds to the re-indexed feature index. The next n.families columns contain the indices of 
selected features for each iteration of feature selection. The last n.families columns contain the 
weighted scores of selected features for each iteration. 

Examples 
# Toy Example 

scores <- c(.6, .2, .9) 

graph <- cbind(c(1,1), c(2,3), c(.4, .8)) 

 

# initialize matrices  

n <- n.families <- length(scores) 

feat.mat <- score.mat <- matrix(0, nrow = n, ncol = n.families) 

feat.mat[1,] <- order(scores, decreasing = TRUE) 

score.mat[1,] <- sort(scores, decreasing = TRUE) 

 



 103 

# Grow families 

mats <- grow(n = n, f = n.families, d = 0.5, graph = as.matrix(graph),  

             scores = scores,  

             feat_mat = feat.mat, score_mat = score.mat, tol = 0,  

             weight_mat = as.matrix(scores), selected = rep(1, n)) 

# Selected Feature Matrix 

## columns represent families 

## rows represent iterations 

## values indicate indices of selected features 

feat.mat <- mats[, 2:(n.families+1)] 

feat.mat 

# Corresponding Score Matrix 

## columns represent families 

## rows represent iterations 

## values indicate max weighted score of selected features 

score.mat <- mats[, (n.families+2):(1+2*n.families)] 

score.mat 
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indexFeats 
Description 
Re-index features based on number to rank. Called by familyRank. 

Usage 
indexFeats(scores, graph, n.rank = NULL) 

Arguments 

scores A numeric vector of empirical feature scores. 

graph A matrix or data frame representation of a graph object. 

n.rank Number of features to rank. 

Details 
This function is used to re-index features for the Family Rank algorithm. The function takes in 
the scores for all features, and returns scores for the top n.rank features. It also takes in the full 
domain knowledge graph and returns the subgraph that only includes interactions between the 
top n.rank features. Finally, it re-indexes the top features in both the score vector and domain 
knowledge graph to 1:n.rank. 

Value 
Returns a named list with re-indexed domain knowledge graph (graph.w), re-indexed scores 
(score.w), a mapping between original and new indices (loc.map), and the number of features 
to rank (n.rnak). 

Note 
indexFeats is not meant to be called alone. It is designed as a helper function for familyRank. 
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rbinorm 
Description 
Simulates random data from a bimodal Gaussian distribution. 

Usage 
rbinorm(n, mean1, mean2, sd1, sd2, prop) 

Arguments 

n Number of observations to simulate 

mean1 Mean of mode 1 

mean2 Mean of mode 2 

sd1 Standard deviation of mode 1 

sd2 Standard deviation of mode 2 

prop Probability of being in mode 1. 1 - prop is the probability of being in mode 2. 

Details 
This function is modeled off of the rnorm function. 

Value 
Generates random deviates 

Examples 
## Generate 100 samples from a two component Gaussian curve 

samples <- rbinorm(n=100, mean1=10, mean2=20, sd1=1, sd2=2, prop=.5) 

 

## Plot distribution of simulated data 

plot(density(samples)) 
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APPENDIX C 

BIMIXT R PACKAGE DOCUMENTATION 
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 Package Description 

The ‘bimixt’ package contains tools for estimating non-Gaussian mixture models of case-

control data. The four types of models supported are binormal, two component constrained, two 

component unconstrained, and four component. The most general model is the four-component 

model, under which both cases and controls are distributed according to a mixture of two 

unimodal distributions. In the four-component model, the two component distributions of the 

control mixture may be distinct from the two components of the case mixture distribution. In the 

two-component unconstrained model, the components of the control and case mixtures are the 

same; however, the mixture probabilities may differ for cases and controls. In the two-component 

constrained model, all controls are distributed according to one of the two components while 

cases follow a mixture distribution of the two components. In the binormal model, cases and 

controls are distributed according to distinct unimodal distributions. These models assume that 

Box-Cox transformed case and control data with a common lambda parameter are distributed 

according to Gaussian mixture distributions. Model parameters are estimated using the 

expectation-maximization (EM) algorithm. Likelihood ratio test comparison of nested models can 

be performed using the lr.test function. AUC and PAUC values can be computed for the model-

based and empirical ROC curves using the auc and pauc functions, respectively. The model-

based and empirical ROC curves can be graphed using the roc.plot function. Finally, the model-

based density estimates can be visualized by plotting a model object created with the 

bimixt.model function. 

 

 Functions 
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bc.binorm 

Description 
Implementation of binormal model. The binormal model estimates a single unimodal 
component for the cases and a single unimodal component for the controls. 

Usage 
bc.binorm(case, control, lambda.bounds = c(-5, 5)) 

Arguments 

case a numeric vector of case values 

control a numeric vector of control values 

lambda.bounds numeric vector of bounds: c(upper bound, lower bound). Specifies the 
range for optim to search for the optimization of lambda. Default: c(-5,5). 

Value 

lambda Box-Cox transformation parameter 

type model type ("binorm") 

mu.cases mean of the Box-Cox transformed case component 

sig.cases standard deviation of the Box-Cox transformed case component 

pi.cases proportion of cases in each case component (always equal to 1 for binorm 
since all cases are forced into one component) 

mu.controls mean value of the Box-Cox transformed control component 

sig.controls standard deviation of the Box-Cox transformed control component 

pi.controls proportion of controls in each control component (always equal to 1 for 
binorm since all controls are forced into one component) 

max.loglike the maximum log likelihood value for the model 

case original case values 

control original control values 

mu.cases.unt an estimate of the untransformed mean of the case component. Based on 
Monte Carlo simulations. Values will differ by computer seed. 

sig.cases.unt an estimate of the untransformed standard deviation of the case component. 
Based on Monte Carlo simulations. Values will differ by computer seed. 
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mu.controls.unt an estimate of the untransformed mean of the control component. Based on 
Monte Carlo simulations. Values will differ by computer seed. 

sig.controls.unt an estimate of the untransformed standard deviation of the control 
component. Based on Monte Carlo simulations. Values will differ by 
computer seed. 
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bc.fourcomp 

Description 
Implementation of four component model. The four-component model estimates an upper and 
lower component for the cases and an upper and lower component for the controls. 

Usage 
bc.fourcomp(x.cases, x.controls, lambda.bounds = c(-5, 5), start.vals.cases=NULL, 
start.vals.controls=NULL) 

Arguments 

x.cases a numeric vector of case values 

x.controls a numeric vector of control values 

lambda.bounds numeric vector of bounds: c(upper bound, lower bound). Specifies the 
range for optim to search for the optimization of lambda. Default: c(-5,5). 

start.vals.cases starting values for the EM algorithm for the cases. If NA, the starting 
values are estimated from the data. 

start.vals.controls starting values for the EM algorithm for the controls. If NA, the starting 
values are estimated from the data. 

Value 

lambda Box-Cox transformation parameter 

type model type ( "4c") 

mu.cases means of the Box-Cox transformed case components 

sig.cases standard deviations of the Box-Cox transformed case components 

pi.cases proportion of cases in each case component 

max.loglike.cases the maximum log likelihood value for the fit of the cases 

mu.controls means of the Box-Cox transformed control components 

sig.controls standard deviations of the Box-Cox transformed control components 

pi.controls proportion of controls in each control component 

max.loglike.controls the maximum log likelihood value for the fit of the controls 

max.loglike the maximum log likelihood value for the model 
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mu.cases.unt an estimate of the untransformed means of the case components. Based 
on Monte Carlo simulations. Values will differ by computer seed. 

sig.cases.unt an estimate of the untransformed standard deviations of the case 
components. Based on Monte Carlo simulations. Values will differ by 
computer seed. 

mu.controls.unt an estimate of the untransformed means of the control components. 
Based on Monte Carlo simulations. Values will differ by computer seed. 

sig.controls.unt an estimate of the untransformed standard deviations of the control 
components. Based on Monte Carlo simulations. Values will differ by 
computer seed. 

case original case values 

control original control values 

time running time for the model fit 
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bc.fourcomp 

Description 
Implementation of four component model. The four-component model estimates an upper and 
lower component for the cases and an upper and lower component for the controls. 

Usage 
bc.fourcomp(x.cases, x.controls, lambda.bounds = c(-5, 5), start.vals.cases=NULL, 
start.vals.controls=NULL) 

Arguments 

x.cases a numeric vector of case values 

x.controls a numeric vector of control values 

lambda.bounds numeric vector of bounds: c(upper bound, lower bound). Specifies the 
range for optim to search for the optimization of lambda. Default: c(-5,5). 

start.vals.cases starting values for the EM algorithm for the cases. If NA, the starting 
values are estimated from the data. 

start.vals.controls starting values for the EM algorithm for the controls. If NA, the starting 
values are estimated from the data. 

Value 

lambda Box-Cox transformation parameter 

type model type ( "4c") 

mu.cases means of the Box-Cox transformed case components 

sig.cases standard deviations of the Box-Cox transformed case components 

pi.cases proportion of cases in each case component 

max.loglike.cases the maximum log likelihood value for the fit of the cases 

mu.controls means of the Box-Cox transformed control components 

sig.controls standard deviations of the Box-Cox transformed control components 

pi.controls proportion of controls in each control component 

max.loglike.controls the maximum log likelihood value for the fit of the controls 

max.loglike the maximum log likelihood value for the model 
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mu.cases.unt an estimate of the untransformed means of the case components. Based 
on Monte Carlo simulations. Values will differ by computer seed. 

sig.cases.unt an estimate of the untransformed standard deviations of the case 
components. Based on Monte Carlo simulations. Values will differ by 
computer seed. 

mu.controls.unt an estimate of the untransformed means of the control components. 
Based on Monte Carlo simulations. Values will differ by computer seed. 

sig.controls.unt an estimate of the untransformed standard deviations of the control 
components. Based on Monte Carlo simulations. Values will differ by 
computer seed. 

case original case values 

control original control values 

time running time for the model fit 
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bc.twocomp 

Description 
Implementation of two component models. In the two-component unconstrained model, the 
components of the control and case mixtures are the same; however, the mixture probabilities 
may differ for cases and controls. In the two-component constrained model, all controls are 
distributed according to one of the two components while cases follow a mixture distribution of 
the two components. 

Usage 
bc.twocomp(x.cases, x.controls, constrained = T, lambda.bounds = c(-5, 5),control.comp = 1, 
start.vals=NULL) 

Arguments 

x.cases a numeric vector of case values 

x.controls a numeric vector of control values 

constrained Boolean indicating whether the two-component constrained model should 
be used (default T) or the two component unconstrained model should be 
used (F) 

lambda.bounds numeric vector of bounds: c(upper bound, lower bound). Specifies the 
range for optim to search for the optimization of lambda. Default: c(-5,5). 

control.comp indicator of which component contains the controls (1 or 2) 

start.vals starting values for the EM algorithm. If NA, the starting values are estimated 
from the data. 

Value 

lambda Box-Cox transformation parameter 

type model type ( "2cc" or "2cu") 

mu.cases means of the Box-Cox transformed case components 

sig.cases standard deviations of the Box-Cox transformed case components 

pi.cases proportion of cases in each case component 

mu.controls means of the Box-Cox transformed control components 

sig.controls standard deviations of the Box-Cox transformed control components 

pi.controls proportion of controls in each control component (always equal to 1 for 2cc 
since all controls are forced into one component) 
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max.loglike the maximum log likelihood value for the model 

mu.cases.unt an estimate of the untransformed means of the case components. Based on 
Monte Carlo simulations. Values will differ by computer seed. 

sig.cases.unt an estimate of the untransformed standard deviations of the case 
components. Based on Monte Carlo simulations. Values will differ by 
computer seed. 

mu.controls.unt an estimate of the untransformed means of the control components. Based 
on Monte Carlo simulations. Values will differ by computer seed. 

sig.controls.unt an estimate of the untransformed standard deviations of the control 
components. Based on Monte Carlo simulations. Values will differ by 
computer seed. 

case original case values 

control original control values 

time running time for the model fit 
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bimixt.model 

Description 
Estimates mixture model components based on model type. 

Usage 
bimixt.model(case, control, type = "binorm", start.vals=NULL) 

Arguments 

case a numeric vector of case values. NA's will be omitted. 

control a numeric vector of control values. NA's will be omitted. 

type a string specifying the mixture model to be used to fit the data. Valid types are 
"binorm", "2cc", "2cu", or "4c". These correspond to binormal, two component 
constrained, two component unconstrained, and four component models 
respectively. Defaults to "binorm". 

start.vals an (optional) list of starting values for the EM algorithm used in the "2cc", "2cu", 
and "4c" models. If not specified by the user, starting values are estimated from 
the data using kmeans clustering. The format of the lists are described in the 
details section. 

Details 
Starting values for the EM algorithm can be provided by the user. The starting values must be 
given as lists. Each element in the list is a named numeric vector of length 2 containing starting 
estimates for the model parameters. Names must match the names given below exactly (See 
examples section for "4c" model example). 

 

For "2cc" start.vals is a list of 3 named vectors: 

mu Starting estimates for component means 

sig Starting estimates for component standard deviations 

pi Starting estimates for component proportions. Must sum to 1. 

 

For "2cu", start.vals is a list of length 4: 

mu Starting estimates for component means. 

sig Starting estimates for component standard deviations. 

pi.cs Starting estimates for case component proportions. Must sum to 1. 

pi.ctrl Starting estimates for control component proportions. Must sum to 1. 
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For "4c", start.vals is a list of length 6: 

mu.cs Starting estimates for case component means. 

mu.ctrl Starting estimates for control component means. 

sig.cs Starting estimates for case component standard deviations. 

sig.ctrl Starting estimates for control component standard deviations. 

pi.cs Starting estimates for component proportions for cases. Must sum to 1. 

pi.ctrl Starting estimates for component proportions for controls. Must sum to 1. 

Value 
Returns an object of type model with parameters specified by bc.binorm, bc.twocomp, or 
bc.fourcomp. 

Examples 
case=rmix(50,10,1.2,15,1,.7)  

control=rmix(50,10,1.2,15,1,.95)  

model1=bimixt.model(case=case, control=control, type="4c", start.vals=list(mu.cs=c(10,15),  

 

mu.ctrl=c(10,15),sig.cs=c(1.2,1),sig.ctrl=c(1.2,1),pi.cs=c(.7,.3),pi.ctrl=c(.95,.05)))  

model2=bimixt.model(case=case, control=control, type="2cu")   

model3=bimixt.model(case=case, control=control, type="2cc")  

model4=bimixt.model(case=case, control=control, type="binorm")  
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boxcox 

Description 
Implementation of the Box-Cox normalization transformation method. Called internally 
in bc.twocomp and bc.fourcomp. 

Usage 
boxcox(x, lambda) 

Arguments 

x a numeric vector or scalar 

lambda Box-Cox transformation variable 

Value 
A vector or scalar of the transformed values of x. 

References 
Box, George EP, and David R. Cox. "An analysis of transformations." Journal of the Royal 
Statistical Society. Series B (Methodological) (1964): 211-252. 
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boxcox.deriv 

Description 
Derivative of the Box-Cox transformation function. 

Usage 
  boxcox.deriv(x, lambda) 

Arguments 

x a numeric vector or scalar 

lambda Box-Cox transformation variable. 

Value 
A vector or scalar of the derivative of the Box-Cox function evaluated at x. 

References 
Box, George EP, and David R. Cox. "An analysis of transformations." Journal of the Royal 
Statistical Society. Series B (Methodological) (1964): 211-252. 
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boxcox.inv 

Description 
Inverse of the Box-Cox transformation. Called internally in bc.twocomp and bc.fourcomp. 

Usage 
boxcox.inv(y, lambda) 

Arguments 

y a numeric vector or scalar 

lambda Box-Cox transformation variable. 

Value 
A vector or scalar of the untransformed values of x. 

References 
Box, George EP, and David R. Cox. "An analysis of transformations." Journal of the Royal 
Statistical Society. Series B (Methodological) (1964): 211-252. 
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boxcox.inv.density 

Description 
A variable transformation that gives the probability density function (PDF) of the inverse Box-
Cox transformation of a normal random variable. Called internally in plot.model. 

Usage 
boxcox.inv.density(y, lambda, mu, sig) 

Arguments 

y a numeric vector or scalar 

lambda the transformation parameter 

mu the mean of the transformed component 

sig the standard deviation of the transformed component 

Value 
A vector or scalar of the untransformed x values. 

References 
Box, George EP, and David R. Cox. "An analysis of transformations." Journal of the Royal 
Statistical Society. Series B (Methodological) (1964): 211-252. 
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em.twocomp.m1 

Description 
Expectation maximization (EM) algorithm for estimating two-component Gaussian mixtures in 
which all controls are constrained to one component and the cases follow a mixture of the two 
components (two component constrained model). This is used as an internal method and is 
called from bc.twocomp. 

Usage 
em.twocomp.m1(x.all, case.indicator, max.iters = 1000, errtol = 1e-09, control.comp = 1, 
start.vals=NULL) 

Arguments 

x.all vector of cases and controls 

case.indicator a vector of equal length to x.all with 1's in the case positions and 0's in the 
control positions 

max.iters the maximum number of iterations to run 

errtol Error tolerance level. Approximates convergence of the maximum log 
likelihood value. 

control.comp indicator of which component contains the controls (1 or 2) 

start.vals starting values for the EM algorithm. If NA, the starting values are estimated 
from the data. 

Value 

max.loglike the maximum log likelihood value for the algorithm 

mu estimated means for each component 

sig estimated standard deviations for each component 

pi estimated proportion of cases in each component 

n.iters the number of iterations the algorithm took to converge 

control.comp indicator of which component contains the controls (1 or 2) 

References 
Dempster, Arthur P., Nan M. Laird, and Donald B. Rubin. "Maximum likelihood from incomplete 
data via the EM algorithm." Journal of the royal statistical society. Series B (methodological) 
(1977): 1-38. 
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em.twocomp.m2 

Description 
Expectation maximization (EM) algorithm for estimating two-component Gaussian mixture 
models. This is used as an internal method and is called twice from bc.fourcomp: once for the 
cases and once for the controls (four component model). 

Usage 
em.twocomp.m2(x.all, max.iters = 1000, errtol = 1e-09, start.vals=NULL) 

Arguments 

x.all vector of data 

max.iters the maximum number of iterations to run 

errtol Error tolerance level. Approximates convergence of the maximum log likelihood 
value. 

start.vals starting values for the EM algorithm. If NA, the starting values are estimated from 
the data. 

Value 

max.loglike the maximum log likelihood value for the algorithm 

mu estimated means for each component 

sig estimated standard deviation for each component 

pi estimated proportion of data in each component 

n.iters the number of iterations the algorithm took to converge 

References 
Dempster, Arthur P., Nan M. Laird, and Donald B. Rubin. "Maximum likelihood from incomplete 
data via the EM algorithm." Journal of the royal statistical society. Series B (methodological) 
(1977): 1-38. 
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em.twocomp.m3 

Description 
Expectation maximization (EM) algorithm for estimating two-component Gaussian mixtures 
with different mixture proportions for cases and controls (two component unconstrained 
model). This is used as an internal method and is called from bc.twocomp. 

Usage 
em.twocomp.m3(x.all, case.indicator, max.iters = 1000, errtol = 1e-09,  control.comp = 1, 
start.vals=NULL) 

Arguments 

x.all vector of cases and controls 

case.indicator a vector of equal length to x.all with 1's in the case positions and 0's in the 
control positions 

max.iters the maximum number of iterations to run 

errtol Error tolerance level. Approximates convergence of the maximum log 
likelihood value. 

control.comp indicator of which component contains the controls (1 or 2) 

start.vals starting values for the EM algorithm. If NA, the starting values are estimated 
from the data. 

Value 

max.loglike the maximum log likelihood value for the algorithm 

mu estimated means for each component 

sig estimated standard deviations for each component 

pi.cs estimated proportion of cases in each component 

pi.ctrl estimated proportion of controls in each component 

n.iters the number of iterations the algorithm took to converge 

control.comp indicator of which component contains the controls (1 or 2) 

References 
Dempster, Arthur P., Nan M. Laird, and Donald B. Rubin. "Maximum likelihood from incomplete 
data via the EM algorithm." Journal of the royal statistical society. Series B (methodological) 
(1977): 1-38. 
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Lambda 

Description 
An accessor function. Retrieves the transformation parameter, lambda, of a model object. 

Usage 
lambda(model) 

Arguments 

model an object of type model from bimixt.model 

Value 
The numeric value for the Box-Cox transformation parameter, lambda. 

Examples 
case=rmix(50,10,1.2,15,1,.7)  

control=rmix(50,10,1.2,15,1,.95) 

model=bimixt.model(case=case,control=control, type="4c") 

lambda(model) 
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lr.test 

Description 
Computes the likelihood ratio test to compare two bimixt models. 

Usage 
lr.test(model1, model2) 

Arguments 

model1 an object of type model from bimixt.model. 

model2 an object of type model from bimixt.model 

Details 
The model fits for model1 and model2 will be compared using the likelihood ratio test. Models 
must have been fit on the same data sets. 

Value 
Returns a p-value indicating the significance of the likelihood ratio test. 

Examples 
case=rmix(50,10,1.2,15,1,.7)  

control=rmix(50,10,1.2,15,1,.95)  

model1=bimixt.model(case=case,control=control, type="4c")  

model2=bimixt.model(case=case,control=control, type="binorm")  

lr.test(model1, model2) 
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Maxll 

Description 
An accessor function. Retrieves the maximum log likelihood value of a model object. 

Usage 
maxll(model) 

Arguments 

model an object of type model from bimixt.model 

Value 
The numeric value for the maximum log likelihood value for the model. 

Examples 
case=rmix(50,10,1.2,15,1,.7)  

control=rmix(50,10,1.2,15,1,.95) 

model=bimixt.model(case=case,control=control, type="4c") 

maxll(model) 
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Mn 

Description 
An accessor function. Retrieves the component means of a model object. 

Usage 
mn(model, transformed = F) 

Arguments 

model an object of type model from bimixt.model 

transformed A Boolean indicating whether to return the mean values on the transformed 
scale (TRUE) or the original scale (FALSE default). The transformed means 
are estimates of the Gaussian component means. The original scale means 
are Monte Carlo estimates of the mean of the distribution of the inverse Box-
Cox function applied to the estimated Gaussian component distribution. 

Value 

cases A vector (or scalar) of numeric values for the mean of each case component in the 
model. 

controls A vector (or scalar) of numeric values for the mean of each control component in the 
model. 

Examples 
case=rmix(50,10,1.2,15,1,.7)  

control=rmix(50,10,1.2,15,1,.95) 

model=bimixt.model(case=case,control=control, type="4c") 

mn(model) 
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plot.model 

Description 
Plot method for a mixture model object. 

Usage 
## S3 method for class 'model' 

plot(x, histogram = T, breaks = "Sturges", main = model$type, cols = c("#008ED6", "#990033"), 
ylab = "Density", xlab = "", ...) 

Arguments 

x an object of type model from bimixt.model 

histogram a Boolean indicating whether to plot a histogram of the original data (default = 
true). Histogram is plotted using the hist function. 

breaks the types of breaks to be used in hist 

main a character string to be used as the title of the plot 

cols a vector of length 2 specifying the colors of the components c(color of control 
component, color of case component) 

ylab y label of the plot 

xlab x label of the plot 

... Not used. 

Value 
Plots a model object. 

Examples 
case=rmix(50,10,1.2,15,1,.7)  

control=rmix(50,10,1.2,15,1,.95)  

model=bimixt.model(case=case,control=control, type="4c")  

plot(model) 
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print.model 

Description 
Print method for a mixture model object. 

Usage 
## S3 method for class 'model' 

print(x, ...) 

Arguments 

x an object of type model from bimixt.model 

... Not used. 

Value 
Values used in fitting a mixture model object. 

Examples 
case=rmix(50,10,1.2,15,1,.7)  

control=rmix(50,10,1.2,15,1,.95)  

model=bimixt.model(case=case,control=control, type="4c")  

print(model) 
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Prop 

Description 
An accessor function. Retrieves the case component proportions and control component 
proportions of a model object. 

Usage 
prop(model) 

Arguments 

model an object of type model from bimixt.model 

Value 

cases A vector (or scalar) of numeric values for the proportion of cases in each case 
component of the model. 

controls A vector (or scalar) of numeric values for the proportion of controls in each control 
component of the model. 

Examples 
case=rmix(50,10,1.2,15,1,.7)  

control=rmix(50,10,1.2,15,1,.95) 

model=bimixt.model(case=case,control=control, type="4c") 

prop(model) 

 

 

  



 132 

Rmix 

Description 
Creates a random sample from a normal mixture distribution with two components. 

Usage 
rmix(n, mu1, s1, mu2, s2, p1) 

Arguments 

n size of random sample 

mu1 mean of first component 

s1 standard deviation of first component 

mu2 mean of second component 

s2 standard deviation of second component 

p1 proportion of values in the first component 

Value 
A vector of n numeric values from a sample mixture distribution. 

Examples 
rmix(30,5,1,10,1.2,.95) 
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ROCauc 

Description 
Finds the area under the ROC curve. 

Usage 
ROCauc(model, direction = "auto") 

Arguments 

model an object of type model from bimixt.model 

direction same as roc: the direction in which to make the comparison. "auto" (default): 
automatically define in which group the median is higher and take the direction 
accordingly. ">": if the values for the control group are higher than the values of the 
case group (controls > t >= cases). "<": if the values for the control group are lower 
than the values of the case group (controls < t <= cases). 

Value 
Returns the area under the curve (AUC) for the fitted and empirical receiver operator 
characteristic (ROC) curves. The empirical AUC value is calculated using the pROC package. 

References 
Xavier Robin, Natacha Turck, Alexandre Hainard, Natalia Tiberti, Frederique Lisacek, Jean-
Charles Sanchez and Markus Miller (2011). "pROC: an open-source package for R and S+ to 
analyze and compare ROC curves". BMC Bioinformatics, 12, p. 77. DOI: 10.1186/1471-2105-
12-77 

Examples 
cases=rmix(50,10,1.2,20,1.3,.7) 

controls=rmix(50,9,1.1,17,1.3,.95) 

model=bimixt.model(cases,controls,"4c") 

ROCauc(model) 
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ROCcoords 

Description 
Takes in a threshold, specificity, or sensitivity value and calculates the other two values. 

Usage 
  ROCcoords(model, direction = "auto", x, input) 

Arguments 

model an object of type model from bimixt.model 

direction same as roc: the direction in which to make the comparison. "auto" (default): 
automatically define in which group the median is higher and take the direction 
accordingly. ">": if the values for the control group are higher than the values of the 
case group (controls > t >= cases). "<": if the values for the control group are lower 
than the values of the case group (controls < t <= cases). 

x The numeric value for the input. If input is "sensitivity" or "specificity" x must be 
between 0 and 1. 

input A string that defines what the input type is. Valid inputs are "sensitivity", 
"specificity", or "threshold". These can be shortened to "sens", "spec", "thr" or "se", 
"sp", "t". 

Value 
Returns a numeric vector with the values of threshold, specificity, and sensitivity. 

Examples 
  cases=rmix(50,10,1.2,20,1.3,.7) 

  controls=rmix(50,9,1.1,17,1.3,.95) 

  model=bimixt.model(cases,controls,"4c") 

  ROCcoords(model,x=.95,input="sens") 

  ROCcoords(model,x=.95,input="spec") 

  ROCcoords(model,x=9,input="thr") 
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ROCpauc 

Description 
Finds the partial area under the ROC curve. 

Usage 
ROCpauc(model, spec.lower = 0.95, spec.upper = 1, direction = "auto") 

Arguments 

model an object of type model from bimixt.model 

spec.lower a value between 0 and 1 that serves as the lower bound of the specificity to be 
used in the PAUC calculation 

spec.upper a value between 0 and 1 that serves as the upper bound of the specificity to be 
used in the PAUC calculation 

direction same as roc: the direction in which to make the comparison. "auto" (default): 
automatically define in which group the median is higher and take the direction 
accordingly. ">": if the predictor values for the control group are higher than the 
values of the case group (controls > t >= cases). "<": if the predictor values for 
the control group are lower or equal than the values of the case group (controls 
< t <= cases). 

Value 
Returns the partial area under the curve (pAUC) for the fitted and empirical receiver operator 
characteristic (ROC) curves between spec.lower and spec.upper. The empirical pAUC value is 
calculated using the pROC package. 

References 
Xavier Robin, Natacha Turck, Alexandre Hainard, et al. (2011) "pROC: an open-source 
package for R and S+ to analyze and compare ROC curves". BMC Bioinformatics, 7, 77. DOI: 
10.1186/1471-2105-12-77. 

Examples 
cases=rmix(50,10,1.2,20,1.3,.7) 

controls=rmix(50,9,1.1,17,1.3,.95) 

model= bimixt.model(cases,controls,"4c")  

ROCpauc(model, spec.lower = .85, spec.upper = 1) 

 

 

  



 136 

ROCplot 

Description 
Creates a ROC plot. 

Usage 
ROCplot(model, direction = "auto") 

Arguments 

model an object of type model from bimixt.model 

direction same as roc: same as pROC: the direction in which to make the comparison. 
"auto" (default): automatically define in which group the median is higher and take 
the direction accordingly. ">": if the values for the control group are higher than the 
values of the case group (controls > t >= cases). "<": if the values for the control 
group are lower than the values of the case group (controls < t <= cases). 

Value 
Plots empirical and model-based estimates of the receiver operator characteristic (ROC) curve. 
The empirical plot comes from the pROC package. 

References 
Xavier Robin, Natacha Turck, Alexandre Hainard, et al. (2011) "pROC: an open-source 
package for R and S+ to analyze and compare ROC curves". BMC Bioinformatics, 7, 77. DOI: 
10.1186/1471-2105-12-77. 

Examples 
cases=rmix(50,10,1.2,20,1.3,.7) 

controls=rmix(50,9,1.1,17,1.3,.95) 

model=bimixt.model(cases,controls,"4c") 

ROCplot(model) 
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stdev 

Description 
An accessor function. Retrieves the component standard deviations of a model object. 

Usage 
stdev(model, transformed = F) 

Arguments 

model an object of type model from bimixt.model 

transformed A Boolean indicating whether to return the standard deviation values on the 
transformed scale (TRUE) or the original scale (FALSE default). The 
transformed standard deviations are estimates of the Gaussian component 
standard deviations. The original scale standard deviations are Monte Carlo 
estimates of the standard deviation of the inverse Box-Cox of the estimated 
Gaussian component distribution. 

Value 

cases A vector (or scalar) of numeric values for the standard deviation of each case 
component in the model. 

controls A vector (or scalar) of numeric values for the standard deviation of each control 
component in the model. 

Examples 
case=rmix(50,10,1.2,15,1,.7)  

control=rmix(50,10,1.2,15,1,.95)  

model=bimixt.model(case=case,control=control, type="4c")  

stdev(model) 
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summary.model 

Description 
Summary method for a mixture model object. 

Usage 
## S3 method for class 'model' 

summary(object, ...) 

Arguments 

object an object of type model from bimixt.model 

... Not used. 

Value 
Gives a table with the estimated means and standard deviations of the Gaussian components 
(following the Box-Cox transformation), the estimated means and standard deviations of the 
untransformed components (before transforming for normality), and the estimated case and 
control proportions for each component in the mixture model. 

Examples 
case=rmix(50,10,1.2,15,1,.7)  

control=rmix(50,10,1.2,15,1,.95)  

model=bimixt.model(case=case,control=control, type="4c")  

summary(model) 
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type 

Description 
An accessor function. Retrieves the model type of a model object. 

Usage 

type(model) 

Arguments 

model an object of type model from bimixt.model 

Value 
Returns the type of the model, either "4c", "2cu", "2cc", or "binorm". 

Examples 
case=rmix(50,10,1.2,15,1,.7)  

control=rmix(50,10,1.2,15,1,.95)  

model=bimixt.model(case=case,control=control, type="2cu")  

type(model) 

 
 
 


