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ABSTRACT 

 

In this thesis, the applications of deep learning in the analysis, detection and  classification 

of medical imaging datasets were studied, with a focus on datasets having a limited sample 

size. A combined machine learning-deep learning model was designed to classify one  

small dataset, prostate cancer provided by Mayo Clinic, Arizona. Deep learning model was 

implemented to extract imaging features followed by machine learning classifier for 

prostate cancer diagnosis. The results were compared against models trained on texture-

based features, namely gray level co-occurrence matrix (GLCM) and Gabor. Some of the 

challenges of performing diagnosis on medical imaging datasets with limited sample sizes, 

have been identified. Lastly, a set of future works have been proposed. 

 

Keywords: Deep learning, radiology, transfer learning, convolutional neural network. 
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CHAPTER 1 

INTRODUCTION 

 
Medical imaging refers to the various techniques that are employed in order to create visual 

depictions of the human anatomy. Medical imaging helps reveal internal structures and 

organs that are ofttimes obfuscated by layers of skin, tissue, muscle and bones. Radiology 

is a field of medicine that makes use of medical imaging for the purpose of diagnosis, 

monitoring, prognosis and treatment of diseases and disorders. 

Some of the most pervasive medical imaging techniques are as follows: 

 

1. Medical x-ray imaging and computed tomography (CT) 

 

2. Magnetic resonance imaging (MRI) 

 

3. Ultrasound imaging (sonography) 

 

4. Positron emission tomography (PET) 

 

The aim of this research is to focus on medical imaging—specifically,  MRI and its 

applications in disease diagnosis. 

1.1 Background: Imaging Modalities Review 

 

1.1.1 Medical X-ray Imaging and Computed Tomography 

 

X-rays are a type of high-energy electromagnetic radiation which can pass through solid 

objects as opposed to visible light. On its way through the body, a fraction of the X-ray 

beams is absorbed by muscles and tissues, thus attenuating the strength of the emergent 

stream. Such patterns are captured using an X-ray film, thereby producing a visible 

representation of the internal structures of the body. Some of the most popular X-ray 

imaging techniques include computed tomography (CT), radiography, dental cone-beam 

computed tomography, fluoroscopy, mammography and angiography. Figure 1 contains 
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the thoracic x-rays of two different patients, in the frontal and side views, as obtained from 

Cohen et al’s “COVID-19 Image Data Collection” lung X-ray dataset [1]. 

[2] reviewed the current state-of-the-art digital image acquisition and processing 

frameworks used in medical x-ray imaging. It also discussed in detail the future concepts 

of digital x-ray image acquisition techniques that shall be used in medicine. Digital x-ray 

fluoroscopy, and solid-state large area flat dynamic x-ray image detector (FDXD) are two 

state-of-the-art x-ray imaging techniques that have been described in the paper. 

Furthermore, the authors discuss digital quantum noise reduction techniques—including 

but not limited to noise reduction by spectral amplitude estimation—for generating cleaner 

x-ray images. 

 

 

 

 

 

 

 

 

 

  

  

      

Fig 1. Thoracic X-rays of two different patients, in the frontal and side 

views, as obtained from Cohen et al’s “COVID-19 Image Data 

Collection” lung X-ray dataset [1] 
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Computed tomography (CT) scanners comprise a circular, rotating frame. The frames 

consist of an X-ray tube and a detector on opposite ends. The rotating frame enhances the 

generation of thousands of sectional views, which help in the reconstruction of the anatomy 

being imaged. CTs are helpful in generating 3D images, and the quality of the images 

generated are far better than traditional X-rays [3]. Figure 2 contains the CT scans of four 

different patients, obtained from Soares et al’s “SARS-Cov-2 CT-scan dataset [4].” 

 

 

 

 

 

 

 

 

 

 

 

 

 

CT is a relatively new technology that was developed to improve image acquisition and 

detection of x-rays [5, 6, 7, 8]. CTs are also especially effective in image reconstruction, 

as reported by [5]. However, one longstanding concern with CT scans is its increased 

exposure to radiation [9, 10]. [11] describes some of the basic concepts and principles 

      

      

Fig 2. CT scans of four different patients, obtained from Soares et al’s 

“SARS-Cov- 2 CT-scan dataset [4].” The first two patients have been 

diagnosed with COVID- 19, while the others pertain to non-COVID cases. 
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behind image acquisition and processing using computed tomography. Although we are 

concerned primarily with the applicability of CT scans in medical imaging, it must be 

noted that computed tomography has a plethora of industrial applications [12]. 

1.1.2 Magnetic Resonance Imaging 

Medical resonance imaging (MRI) is a medical imaging technique which employs a 

magnetic field in combination with computer-generated radio waves in order to generate 

detailed visual depictions of the internal structures and organs of the human body. Unlike 

computed tomography (CT) and positron emission tomography (PET), MRI doesn’t 

involve the use of X-rays or any sort of ionizing radiations whatsoever. Figure 3 contains 

four different MRI contrast types—namely, Apparent Diffusion Coefficient (ADC), T2-

weighted Fast Recovery Fast Spin Echo (FRFSE), Pelvis (T2 FatSat) and Gadolinium 

contrast (GAD)—utilized to capture the prostate scan of the same patient (#2663). 

MRI is a pervasively used imaging technique in medicine [13, 14, 15]; it has a wide range 

of applications and variants including but not limited to: cardiac magnetic resonance 

imaging (also called cardiovascular magnetic resonance imaging, CMR) [16], functional 

MRI (fMRI) [17], molecular MRI [18], parallel MRI [19]. Although prevalently used in 

diagnostic medicine, MRIs have their own unique challenges [18] and side effects (also 

known as contraindications) [19]. 
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Pelvis (T2 FatSat): Gadolinium contrast (GAD): 

 

      

 

      

Fig 3. Four different MRI contrast types—namely, Apparent Diffusion Coefficient 

(ADC), T2-weighted Fast Recovery Fast Spin Echo (FRFSE), Pelvis (T2 FatSat) 

and Gadolinium contrast (GAD)—utilized to capture the prostate scan of the 

same patient (#2663). The images have been obtained from a dataset comprising 

prostate scans of 16 patients, all diagnosed with prostate cancer—which has been 

provided to us by Mayo Clinic, Arizona. 

Apparent Diffusion Coefficient: T2-weighted FRFSE: 
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1.1.3 Ultrasound imaging (Sonography) 

 

Ultrasound imaging (also known as sonography) employs high-frequency sound waves to 

map the internal structures of the body. Ultrasonograms (USGs) are generated in real-time, 

therefore depicting motion in the internal tissues and organs as well. They are also good at 

depicting the blood flow through the organs. Unlike X-rays, this is a relatively safe 

diagnostic procedure, owing to the fact that the patient does not have to go through any 

amount of exposure to ionizing radiation. Figure 4 contains four ultrasound scans obtained 

from the “Point-of-care Ultrasound (POCUS)” recordings, which has been utilized by the 

first recorded work that automatically detected COVID- 19 from ultrasound alone [20]. 

Ultrasound imaging depends heavily on the concepts of signal processing [21, 22]; and, as 

with any of the aforementioned diagnostic imaging techniques, it has evolved considerably 

over the years [21, 23]. Some of the most important components of ultrasound, as reported 

by [22], include but are not restricted to—pulse compression, beam forming, transducers, 

contrast agents, tissue harmonic imaging, tissue motion and blood flow detector, and 3D 

imaging—with continuous innovations being made on each of these techniques by 

researchers and medical physicists worldwide. 

For a long time, traditional 2D ultrasound techniques struggled with analyzing 3D 

anatomy; therefore radiologists were tasked with integrating 2D image plates manually. 

The development of three-dimensional ultrasound was a breakthrough that solved this 

problem, thus enabling easier visualization and diagnosis [24]. 
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1.1.4 Positron Emission Tomography 

Positron emission tomography (PET) is a functional imaging technique. It utilizes 

radioactive substances—known as radiotracers—to measure and monitor the functioning 

of tissues and organs. The radiotracer help visualize metabolic processes, physiological 

activities and progressions of diseases. Based on what part of the body is under review, the 

Pediatric pneumonia: Pediatric pneumonia: 

Fig 4. Four ultrasound scans obtained from the “Point-of-care 

Ultrasound (POCUS)” recordings, which has been utilized by the first 

recorded work that automatically detected COVID-19 from ultrasound 

alone [20]. 

COVID-19: COVID-19: 
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radiotracers could be injected, swallowed or inhaled. Owing to the tendency of radiotracers 

to accumulate in regions of chemical imbalance, it often manifests as bright spots in 

diseased areas of the body. PET scans are ofttimes utilized in combination with CTs, MRIs 

and X-rays for the purpose of diagnosis. Figure 5 contains regions of interest extracted 

from PET scans of prostate lymph nodes pertaining to four different patients suffering from 

prostate cancer. 

PET is an effective diagnostic imaging technique, and is used in an eclectic range of 

medical applications [25, 26]. Its role in modern oncological applications, including the 

detection and staging of a wide variety of tumors, is unparalleled [27, 28, 29, 30, 31]. Some 

of the neurological applications of PET imaging include but are not restricted to the 

visualization and diagnosis of movement disorders [32, 33, 34], dementia [35, 36, 37], 

brain tumors [38, 39, 40], epilepsy [41, 42, 43], neuroplasticity [44, 45], stroke [46, 47, 

48], and the study of drug delivery [49, 50, 51] and pharmacodynamics [52, 53, 54]. 
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1.2 Research Objective 

 

The objective of this research is to design an artificial intelligence (AI) -based framework 

that will be capable of performing automatic classification on medical imaging datasets 

 

           

       

Fig 5. Regions of interest extracted from PET scans of 

prostate lymph nodes pertaining to four different patients 

suffering from prostate cancer. The first two images 

correspond to malignant lymph nodes, whereas the others to 

healthy ones. The PET images had been obtained from a 

dataset comprising lymph node scans of 16 patients diagnosed 

with prostate cancer, provided by Mayo Clinic, Arizona. 
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containing a limited number of samples. Manual feature extraction often leads to a lack 

of representational capabilities of the model, and they often fail to capture the most 

important distinguishing characteristics of the images which are critical in performing 

classification. Deep learning, on the other hand, has an innate capability of being able to 

mine out the most important features from images. However, deep learning has its own 

drawbacks: 

1. Complex deep models are difficult to debug, and suffer from non-interpretability (often 

referred to as the “black-box problem”) 

2. Deep models require large volume of data for training, and can easily overfit on small 

datasets 

3. Deep models often require extensive computing time and resources owing to their 

complex structure 

Efficient applicability of neural network-based classifiers on small datasets is an open 

problem in AI, and the key is to find a balance between manually extracted features and 

automated deep models. We delve into the challenges faced by texture-based features as 

well as deep models on medical imaging data, subsequently proposing a model that 

makes the best of both worlds. We employ a convolutional neural network-based model 

to extract features; subsequently, those features are used to perform classification on 

traditional machine learning classifiers. As a result, our model generates effective image 

representations while at the same time not overfitting on the small data. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Deep Learning 

In this section, we first review four deep models that are commonly used in performing 

diagnosis on medical images: Convolutional Neural Network (CNN), Recurrent Neural 

Network (RNN), Generative Adversarial Network (GAN), and Deep Reinforcement 

Learning (DRL). 

2.1.1 Convolutional Neural Network 

Convolutional neural network (CNN) is a category of deep neural networks (DNN), that 

have been designed specifically for image classification and recognition applications. The 

design of CNNs is inspired by the visual cortex of the human brain. They are useful for 

video and audio applications as well. CNNs are a way to make machines capable of 

perceiving the world in a way that a human being would. It was a great step in the direction 

of automated computer vision and is becoming an ever-evolving research field. Figure 6 

exhibits the layers in a CNN. 

 

Deep neural networks (DNN)—as discussed earlier on in this paper—have made image 

processing tasks easier for engineers and researchers, owing to the fact that they do not 

require the model designer to manually extract features. But, in order to optimize 

performance, appropriate architectures must be chosen—depending on the task at hand, as 

well as the dataset. [55] attempts at formulating connections between the architecture and 

depth of a CNN, and its performance— given datasets of varying size and complexity. 

 

Detection, classification and segmentation are important tasks in medical image processing 
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applications. [56] and [57] implement CNNs and their variants in automatic lesion 

detection, and multiple abnormality detection, respectively—from medical images. [58] 

implements a deconvolutional CNN for classification of acute lymphoblastic leukemia 

(ALL). [59] designs a multi-network feature extraction model using pre-trained deep 

CNNs, which aids in breast cancer classification. [60] gives a concise introduction to 

multiscale CNNs, and their applicability in the classification of cells from medical images. 

[61] makes use of multiscale all convolutional neural network (MA-CNN) for classification 

of mammograms. [62] designs DCNN ensembles for the purpose of segmentation in infant 

brain MRI images. [63] segments anomalies in abdominal CT images by CNN, and then 

classifies them using fuzzy SVM. 

 

 
 

 

 

 

2.1.2 Recurrent Neural Network 

 

Recurrent Neural Network (RNN) is a category of artificial neural networks that are 

designed to handle sequential data using directed, cyclic connections between layers of 

nodes. Unlike feedforward neural networks, they are capable of processing variable-length 

data. RNNs make use of a notion of state or memory, to process subsequent sequences of 

Fig 6. Layers in a convolutional neural network (CNN) 
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incoming data. The output generated at a time step is used as input for the next time step. 

Long short-term memory (LSTM) networks and gated recurrent units (GRU) are two of 

the most commonly used types of RNNs. Figure 7 depicts the general structure of an RNN. 

 

[64] designs a combined CNN-RNN model for the purpose of blood cell classification from 

a dataset comprising a total of 12,444 blood cell images. This model performs better than 

some of the popular CNN models such as ResNet and Inception V3. The authors of [65] 

design a novel, recursive generative adversarial network (GAN)—named RNN-GAN—for 

performing efficient image segmentation on medical image datasets where the region of 

interest is very small in size compared to the background. The proposed combined model, 

when trained on medical images of different types and sizes, yield consistently good 

performance. Adequate image acquisition is essential when it comes to diagnosis using 

medical images. [66] makes use of RNN to design a model, in real time, to predict 

ultrasound scan adequacy—for diagnosing pediatric, developmental dysplasia of the hip 

(DDH). [67] makes use of a combination of multilayer perceptron and RNN for the purpose 

of classification in MRIs, based on the longitudinal characteristics of the data. The authors 

report an accuracy of 89.7% using the proposed model for AD classification. In [68], the 

authors—for the very first time—design a way to automatically segment the frame-wise 

glottal areas, along with the vocal fold tissues directly from the video. A CNN model, 

which makes use of LSTM cells, is implemented. This model is picked from a total of 

eighteen different CNN configurations which had been trained and evaluated on 13,000 

HSV frames acquired from 56 healthy and 74 unhealthy patients. The authors in [69] 

propose a model—called the 2D- ResNet18+LSTM—for brain age prediction from 3D 

pediatric brain MRIs. The proposed model comprises four parts: 2D ResNet18 for feature 
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extraction on 2D images; a pooling layer for feature reduction over sequences; an LSTM 

layer; and a regression layer—in that order. The authors of [70] propose a technique that 

combines optimal wavelet statistical texture features and RNN, for tumor detection in brain 

MRIs. The system comprises four phases: feature extraction, feature selection, 

classification, and segmentation. After the feature selection process, selected features are 

fed into RNN for brain tumor classification. After classification, the images with tumors 

are selected for segmentation—which, in turn, was done using a customized version of the 

region growing algorithm. The authors of [71] propose a fully automated technique for 

denoising task- based fMRI data, without assuming any particular noise model. The 

designed system uses a DNN made up of: one temporal convolutional layer, one LSTM 

layer, one time-distributed fully- connected layer, and one unconventional selection 

layer—in that order. 

 

 
Fig 7. The structure of a recurrent neural network (RNN); where ℎ� is the 

hidden layer vector, �� is the input vector and �� is the output vector [2]. 
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2.1.3 Generative Adversarial Network 

 

Generative adversarial networks (GAN) are a class of deep learning models that comprise 

two competing neural networks. One of those networks is known as the generator network, 

while the other the discriminator network. The task of the generator is to generate fake 

data, while the task of the discriminator network is to try to discriminate between the fake 

data and the real one. Figure 8 depicts the general structure of a GAN. [72] devises an 

unsupervised pre-training method on a GAN, before performing classification on a deep 

neural network for brain tumor classification. [73] does pulmonary nodule classification 

on lung CT images (which in turn aids in the early detection of lung cancer), using deep 

convolutional neural network (DCNN) and GAN. [74] employs U-Net and GAN for 

unbalanced medical image segmentation. [75] performs medical image segmentation using 

adversarial image-to-image networks. In [76], task-driven GANs aid in the unsupervised 

segmentation of x-ray images. Conditional GANs are deployed in [77] to denoise low dose 

chest images, with encouraging results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 8. General structure of a generative adversarial network (GAN) 
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2.1.4 Deep reinforcement learning 

 

Reinforcement learning (RL) is a type of machine learning where an agent tries to 

maximize some predefined measure of “reward” by interacting with the environment. Deep 

reinforcement learning (DRL) entails a combination of deep learning and reinforcement 

learning techniques, meant to enable agents perform a wide variety of AI-related tasks. 

Figure 9 depicts the general structure of a reinforcement learning model. 

The authors of [78] design an automatic data augmentation module using DRL. This 

augmentation module is cascaded with an image segmentation module such that the 

resulting combination can act as one complete, end-to-end training model with a consistent 

loss. [79] proposes a DRL model for the classification of pulmonary nodules from thoracic 

CT images. On feeding as input to the system a raw thoracic CT image, it predicts whether 

or not a nodule is present in that image. The training accuracy is reported as 99.1%; while 

the test accuracy is 64.6% (sensitivity 58.9%, specificity 55.3%, PPV 54.2%, NPV 60.0%). 

[80] makes use of RL for the purpose of detecting breast lesions from dynamic contrast-

enhanced magnetic resonance volume (DCE-MRI). The research aims at maintaining state- 

of-the-art accuracy while also speeding up the time required for lesion detection. This study 

makes use of the deep Q-network approach (DQN) for lesion detection. [81] presents a 

comparative study of popular, representative deep reinforcement learning models in lung 

tumor detection. Deep Q-network (DQN) and its variants—such as the deep dueling Q-

network, deep recurrent Q-network, and hierarchical deep Q-network (h-DQN) have been 

explained. 

The authors of [82] evaluate novel deep reinforcement learning strategies which are aimed 

at training agents to localize landmarks in medical images. Fixed- and multi-scale search 
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strategies have been evaluated, with novel action steps in a coarse-to-fine manner. DQN-, 

double DQN (DDQN)-, duel DQN-, and duel DDQN-based architectures have been 

compared. [83] makes use of multi-scale image analysis and deep reinforcement learning 

for real-time 3D landmark detection in CT images. The performance and runtime of the 

proposed method has been compared with five reference methods, and the results seem 

promising. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

2.2 Transfer Learning 

While the success of deep models attracts great attention in medical research, it is not 

without limitation. As indicated in [84], clinical studies often have limited samples which 

posed great challenges to CNN model. One solution is transfer learning which is a 

 

Fig 9. The general structure of a reinforcement learning model 
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technique prevalently used to train deep networks on small datasets. Transfer learning (TL) 

refers to the migration of knowledge between applications. Owing to restrictions on sample 

quality, data availability, lack of domain knowledge et cetera, it is ofttimes challenging to 

develop robust models based only on the resources available for the purpose of the 

application at hand. In such scenarios, researchers would train models that had previously 

acquired some knowledge from similar tasks, or data sets and transferred the pre- trained 

model to the dataset of interest. For example, [85] selects color optic disc-centered fundus 

images using active learning; subsequently identifying glaucoma using transfer learning on 

a deep CNN. In [86], a problem-based architecture of DCNN called ChestNet is proposed. 

This variant of DCNN, ChestNet, is pre-trained on a set of relevant and irrelevant data sets; 

before finally being trained on the Pediatric Chest X-ray dataset for detection of pulmonary 

consolidation. [87] gives a concise yet informative description about ChestNet, and its 

applicability in the detection of thoracic diseases on chest images. The authors of [88] 

develop an ensemble of five of the most commonly used deep CNN models (AlexNet, 

DenseNet121, InceptionV3, ResNet18 and GoogLeNet) pre-trained on ImageNet, for the 

purpose of pneumonia detection in the Guangzhou Women and Children’s Medical Center 

dataset of chest X-rays. 

In many a case, it is extremely difficult for humans or DL methodologies alone to extract 

the most important set of features from medical image data sets. Hence researchers 

oftentimes need to go with a combination of machine learning and deep learning 

approaches in order to utilize the representational capabilities of deep models, while at the 

same time not overfitting the data. [89] has followed one such approach. The researchers 

have access to 58 in-house brain MR images, and 128 MR images from The Cancer 
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Genome Atlas—all of patients with high-grade glioma. For each patient, the researchers 

calculate 348 hand-crafted radiomics features; and extract 8192 using a pre-trained deep 

CNN. Next, they perform feature selection and Elastic Net-Cox modeling to classify 

patients into long- and short- term survivors. [90] is a detailed study of ROI-based opacity 

classification of diffuse lung diseases in chest CT images. It makes use of the Cifar-10 and 

Cifar-100 data sets for pre-training deep CNNs (VGG16 used in this study); subsequently, 

a CT image data set of diffuse lung diseases for parameter tuning, and classification. It 

delves into the structure of CNN used, and how to implement pre-training and parameter 

tuning. This paper gives the reader an intuition about the relation between the type and 

characteristics of the data sets used for pre-training and parameter-tuning, and the 

effectiveness of the TL model. From the experimental results presented here, it is apparent 

that pre-training data sets with a higher number of class divisions; and fine-tuning data sets 

with a compact structure, or compact FC layer—yield best results. One of the many 

challenges of working with medical image data sets is the fact that they often contain too 

few samples to effectively train a deep neural network. Apart from under-training due to a 

lack of samples, deep models trained on small data sets also often suffer from: accuracy 

issues, unnecessarily complex structure of the deep network, and high computational time. 

In [91], the researchers implement transfer learning on CNN; and extreme learning 

machine to classify between malignant and benign pulmonary nodules on CT images. The 

deep CNN, which has been pre- trained with the ImageNet data set, is used to extract high-

level features of pulmonary nodules. These features help in the classification of benign and 

malignant pulmonary nodes, using the extreme learning machine (ELM) model that has 

been developed by the researchers. The classification performance of this combined, deep 
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transfer CNN and extreme learning machine model is then evaluated using two data sets: 

the Lung Image Database Consortium and Image Database Resource Initiative (LIDC-

IDRI) public data set; and a private data set from the First Affiliated Hospital of Guangzhou 

Medical University (FAH-GMU) in China. 

The authors of [92] make use of cosine loss after the softmax activation layer, instead of 

the pervasively used cross-entropy loss, to achieve better training of CNN models on small 

datasets. [93] utilizes transfer learning and deep CNNs to classify COVID-19, pneumonia 

and normal patients from a small chest X-ray dataset. The authors of [94] make use of pre-

trained VGG19, MobileNet v2, Inception, Xception and Inception ResNet v2 models to 

train CNNs on small datasets of lung images, which would ultimately achieve a 

classification accuracy, sensitivity and specificity of 96.78%, 98.66% and 96.46% 

respectively. The authors of [95] design a deep model called AppendiXNet for the purpose 

of detecting appendicitis from a dataset of less than 500 CT images. The model was pre- 

trained on 500,000 video clips, where each video was annotated for one of 600 human 

actions. The pre-trained model weights are then fine-tuned using 438 CT scans of the 

appendix. The study has exhibited how pre-training significantly improves results, over 

training the model directly on the target data. Figure 10 depicts the general structure of 

traditional machine learning and transfer learning tasks. 
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2.3 Summary of Literature Review 

 

Convolutional neural networks (CNNs) are particularly effective in performing 

classification on medical imaging datasets. However, like all deep neural network-based 

architectures, they require lots of samples for training owing to their complex structure. 

In this study, we were working with a small medical imaging dataset of 126 samples, 

where the task was to perform classification of lymph node metastasis on prostate cancer 

patients. Therefore, in order to utilize the representational capabilities of deep models, 

while at the same time alleviating overfitting, we made use of a combined deep learning-

machine learning approach. The ResNet18 model (which is a 71-layer deep CNN-based 

network) was utilized for the purpose of feature extraction from the gray-scale images. 

The decision tree-based machine learning classifier was subsequently used for 

performing classification. Also, in order to remove unimportant features, we used a 

combination of unsupervised (statistical) and supervised feature selection techniques. The 

 

Traditional machine learning Transfer learning 

Fig 10. The general structure of traditional machine learning and transfer 

learning tasks 
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proposed model outperformed two texture feature-based approaches, namely GLCM and 

Gabor. And it was comparable in performance to some of the state-of-the-art neural 

network-based classification models. The proposed deep learning-machine learning 

framework had a classification accuracy of 76.19%, sensitivity of 79.76%, specificity of 

69.05%, precision of 83.75% and F1-score of 81.71%. 
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CHAPTER 3 

DETECTION OF LYMPH NODE METASTASIS IN PROSTATE CANCER 

PATIENTS: A CASE STUDY 

3.1 Introduction 

In 2017 in the United States, prostate cancer was the second most common new cancer 

diagnosis and the third most common cause of cancer-related death [96]. Often prostate 

cancer is slow growing and initially confined to the prostate gland [97]. In these instances, 

these patients may need no treatment, opting instead for active surveillance. Other patients 

need surgery, chemotherapy, immunotherapy, radiation therapy, or often a combination of 

these. The decision to intervene and the best intervention hinges on the cancer’s stage. 

Staging cancer depends on primary tumor growth, for example, growth into adjacent 

organs such as the seminal vesicles or urinary bladder. Staging also depends on secondary, 

metastatic extent. Prostate cancer has a predilection for spreading to pelvic/retroperitoneal 

lymph nodes and bones. 

As overall prostate cancer tumor burden often determines the treatments offered, reliable 

staging is important. In this respect, imaging can play a key role. Magnetic Resonance 

Imaging (MRI) has emerged as an important imaging modality for assessment of tumor 

invasion and pelvic lymph node metastases [98]. However, determination of lymph node 

metastatic status can be challenging because abnormal (cancerous) and normal lymph 

nodes often appear similar. As such, the sensitivity of imaging for lymph node metastasis 

in prostate cancer is low [99]. In this section, we will discuss some existing literature 

pertinent with feature extraction on medical imaging datasets—starting from the 

conventional approach of manual texture-based features, to the more recent developments 

on automated feature embedding generations using convolutional neural network (CNN)-
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based deep models. 

Texture analysis refers to the segregation of the different regions in an image, based on 

their physical characteristics or intensity distribution. Traditionally, researchers focused on 

texture analysis to extract features from images, which were subsequently utilized for the 

purpose of classification by machine learning algorithms. There are many different types 

of texture analyses, some of the most common being gray-level co-occurrence matrix 

(GLCM), local binary patterns (LBP) and Gabor filters. For extensive and complete 

analyses, researchers often utilized different types of texture algorithms in combination 

with features that are representative of the imaging modality in question [100]. [101] 

designed a multifractal feature descriptor to classifying non-neoplastic tissues and tumors, 

as well as grade hepatocellular carcinoma tissues into five stages. For both of those tasks, 

the proposed feature descriptor outperformed Gabor filter, Leung-Malik filter, local binary 

patterns (LBP) and Haralick. [102] utilized three texture-based features—Haralick, Gabor 

and LBP—to classify between benign and malignant pulmonary nodules using the Support 

Vector Machine (SVM) classifier. The results showed a similar performance accuracy of 

90% for all three of these features, but a highest area under the curve (AUC) of 92.70% for 

Haralick. [103] made use of a dataset of 22 patients with glioblastoma to perform 

classification between true progression and pseudoprogression from T2-weighted MRI 

images. Five GLCM features, namely homogeneity, entropy, energy, correlation and 

contrast were extracted, out of which correlation generated the best classification 

performance with an accuracy of 86.40%, AUC of 89.20%, sensitivity of 75% and 

specificity of 100%. [104], [105], [106], [107] and [108] all utilize texture-based features 

to perform breast cancer classification. [104] makes use of LBP, statistical features, 
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discrete wavelet transform (DWT) and contourlet transform (CT) to classify breast 

abnormalities on the publicly available DDSM database of mammograms, using the SVM 

classifier. Statistical-based and LBP features return an accuracy of 98.43% while DWT 

returns an accuracy of 96.93%, all of which outperform CT-based features. Moreover, the 

results indicate that a combination of LBP and statistical features performs the best, with 

an accuracy of 98.63%. [105] designed a computer-aided detection (CAD) system for 

breast cancer diagnosis on 56 patients from multi-parametric ultrasounds. A combination 

of LBP and gray-scale intensity features were extracted, resulting in a highest classification 

accuracy of 90% on the 8th week, highest sensitivity of 95% on the 4th week, and highest 

specificity of 91% on the 8th week. [106] proposed a feature descriptor for efficient breast 

cancer classification on ultrasound images using a combination of phase congruency-based 

and LBP features, from a small database containing 138 cases. The combined feature 

descriptor is reported to perform better than either of the individual approaches, with a 

highest AUC of 89.40%. [107] extracts a huge feature set comprising morphological, 

Gabor and other textural features to incorporate imaging modality-based knowledge into 

the model. Subsequently, feature selection is performed to identify the most relevant 

features, followed by classification. The proposed model was used in the detection of breast 

cancer from a dataset containing 438 lesion and 1898 control tissue scans, in which regard 

an AUC of 96.17% was achieved. [108] performs classification between normal and 

cancerous tissues from breast thermograms, using Gabor wavelet features to measure the 

amount of asymmetry between right and left breast tissues for patients with and without 

cancer. A Gabor filter bank was used to extract features from 20 frontal breast 

thermograms, out of which the two most important features were energy and amplitude. 
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The results reported significant difference in the variance of energy and amplitude values 

between right and left breast tissues, for patients with and without cancer—which led the 

authors to hypothesize that Gabor wavelet-based feature descriptors are efficient in 

classifying between normal and malignant breast thermograms. 

Conventional machine learning classifiers depend heavily on manually extracted features. 

CNNs, on the other hand, have an innate capability of automatically extracting 

consequential feature vectors from images, even though the extracted features might not 

be the most appealing or meaningful to the human eyes. Such drawbacks of texture-based 

features, paired with the computational capabilities associated with most modern 

computers, as well as the availability of enormous quantities of data, deep learning is in 

pervasive use in medical imaging applications. The most common type of deep neural 

network is the convolutional neural network (CNN). CNNs are modelled on the visual 

cortex of the human brain. They are extensively used for imaging, video and audio 

applications. The authors of [109] have conducted a detailed survey pertaining to the 

efficacy of CNNs in object detection applications. CNNs have been studied for detection, 

classification and segmentation tasks in medical research. For example, [110] proposed a 

CNN-based double-branched model wherein one branch was utilized for feature extraction, 

the other for segmentation for multiple abnormality detection from medical images. [111] 

proposed the CemrgApp, a CNN model, to classify cardiovascular properties from 

cardiovascular magnetic imaging (CMRI) scans of different cardiac patients, for efficient 

diagnosis and treatment. [112] and [113] implemented CNNs and their variants in 

automatic lesion detection and multiple abnormality detection from medical images. 

In the context of this paper, it is critical not only to review the applicability of deep neural 
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networks in the field of radiology in general, but also to delve into how pervasive it is in 

handling lymph node metastases. [114] utilized three different CNN architectures to detect 

axillary lymph node metastasis from primary breast cancer patients. The three models used 

were Inception V3, Inception-ResNet V2, and ResNet-101. The implementation yielded 

better prediction results than those performed manually by the radiologists. Inception V3, 

the best performing model, reported an area under curve (AUC) of 0.89, 85% sensitivity 

and 73% specificity. The radiologists achieved 73% sensitivity and 63% specificity. [115] 

made use of eight different pre-trained CNN models to diagnose cervical lymph node 

metastasis from CT scans of patients with thyroid cancer. The image dataset, containing 

995 axial CT scans, had roughly twice as many benign lymph nodes as malignant ones. 

ResNet50 is the best performing model with an AUC of 0.953 and an accuracy of 90.4%. 

Focusing the discussion further to the use of deep models in analyzing lymph node 

metastasis, we see how [116] utilizes ten CNN-based architectures on a small dataset of 

218 patients to perform classification. They reported a mean AUC of 0.68, accuracy 

61.37%, sensitivity 53.09% and specificity 69.65%. 

The effective detection of lymph node metastasis is highly dependent on imaging modality. 

For example, the authors of [117] designed a radiomics signature by manually extracting a 

total of nine features from the lymph node CT scans of 118 patients. A radiomic nomogram 

was subsequently generated using the logistic regression model, which achieved an AUC 

of 0.8986. [118] utilizes a total of 103 T2-weighted MRIs to perform classification of 

lymph node metastasis on bladder cancer patients. 718 features were manually extracted 

from the bladder scans, and a nomogram was generated using logistic regression. Feature 

selection was performed, which reduced the number of important features from 718 to 9. 
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Classification was subsequently performed on these 9 important features, generating a 

validation AUC of 0.8447. 

As reviewed above, existing research shows some success of using deep learning model 

(e.g., pre-trained model taking advantage of transfer learning) to extract features used in 

machine learning models. Motivated by this, we propose an integrated deep learning-

machine learning pipeline to utilize the representational capabilities of CNNs, yet at the 

same time not overfit the model on small prostate imaging dataset. We utilized the CNN-

based ResNet18 model which was pre-trained on the ImageNet dataset, to extract features 

from our own prostate image dataset for classifying between normal and metastatic lymph 

nodes. These features subsequently underwent a detailed feature selection framework 

comprising supervised and unsupervised feature selection techniques. The most important 

features as obtained from the feature selection step were finally used for  classification 

using the decision tree classifier. The ResNet18-based features yield a highest 

classification accuracy of 76.19%, sensitivity of 79.76%, specificity of 69.05%, precision 

of 83.75% and F1-score of 81.71% on the 10-fold decision tree (DT) classifier. Our 

ResNet-based feature extraction framework was compared against two texture feature-

based classification models namely, GLCM and Gabor. The decision tree classifier trained 

on GLCM features achieved a best classification accuracy of 61.90%, precision of 71.43% 

and F1-score of 72.73%. The same decision tree when trained on Gabor features achieved 

a best classification accuracy of 65.08%, precision of 76.25% and F1-score of 74.84%. 

These set of experiments have shown that the proposed, combined deep learning-machine 

learning architecture is not only comparable in performance to other state-of-the-art deep 

learning-based classifiers; but also outperforms some of the most pervasively utilized 
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texture feature-based approaches, especially when trained on medical imaging data 

containing limited samples. 

3.2 Methodology 

 
We have designed a deep learning-machine learning combined model wherein the deep 

learning module is employed for the purpose of feature extraction from the raw images; 

and the features are subsequently classified using a machine learning classifier. In this 

section, we present the various components, as well as the classification results of the deep 

learning-machine learning combined framework. Figure 11 provides a schematic 

representation of the overall workflow, starting from the raw images of lymph nodes, to 

their automatic categorization as malignant/ non-malignant. The methodology includes 

feature extraction, feature selection and classification. In the proposed model, we first 

extract a 512-element feature vectors per image from the average pooling layer of the 

ResNet18 pre-trained model. (For the purpose of comparison, we also extract features 

using two texture analysis-based approaches, namely GLCM and Gabor.) Then we perform 

our feature selection algorithm on this feature vector. That leaves us with the most 

important set of features, which are subsequently classified utilizing a machine learning 

classifier. By employing such a combination of deep learning (for feature extraction) and 

machine learning (for classification) models, we can ensure that we have a model with a 

nuanced representation of the images, however at the same time assuaging the problem of 

overfitting on the small dataset. 
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3.2.1 Feature Extraction 

3.2.1.1 Texture-Based Feature Extraction 

This section delves into discussions about the texture-based features that were extracted, 

namely GLCM and Gabor. 

3.2.1.1.1 Gray Level Co-Occurrence Matrix (GLCM) 

11 GLCM features, namely contrast, correlation, energy, entropy, homogeneity, variance, 

sum of average, sum of variance, sum of entropy, difference of variance and difference of 

entropy were extracted from each of the ROI scans. The scalar distance was selected as 

� = �; and the orientations were selected as 	 = 
�, 
��, �
�  and ���� corresponding 

to 4 different GLCM matrices. Subsequently, the corresponding features from each 

orientation were averaged to generate the final 11 GLCM features. 

3.2.1.1.2 Gabor 

Further, to illustrate the efficacy of the proposed approach over simple texture analysis, 

Gabor and GLCM features were extracted from the ROIs. The Gabor feature extraction 

procedure was inspired by [119]—where a filter bank of 40 filters (5 different scales, 

with 8 orientations per scale) was utilized to extract features. A uniform input image size 

Fig 11. A schematic representation of the overall workflow—starting from the 

raw images of lymph nodes, to their automatic categorization as malignant/ non-

malignant. The methodology includes feature extraction, feature selection and 

classification. 
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of �� × �� was used, resulting in a total of �� × �� × 

 = ����
 features extracted 

per ROI scan. Subsequently—in order to remove redundancy of features extracted [119, 

120, 121]—we decided to downsample the features by a scale of 4, thereby reducing the 

feature vector size to ����
/(
 × 
) = ���
 features per scan. 

3.2.1.2 ResNet18-Based Feature Extraction 

After having performed feature extraction using a wide variety of CNN-based 

architectures, it was determined that ResNet18 generated the best vector representations 

of the images based entirely on classification accuracy. A 71-layer ResNet18 model pre-

trained on the ImageNet dataset was used to extract features from the raw scans. Weights 

from the fifth and last pooling layer were extracted and used as weights for classification 

between malignant and non-malignant scans. Note that the weights obtained using this 

approach are concatenated to generate a 512-element feature vector corresponding to 

each lymph node scan. Figure 12 provides a pictorial representation of the ResNet18 

model that has been utilized in this work. The model comprises a total of 71 layers, out of 

which the trained weights from the “average pooling” layers are used for the purpose of 

classification. 
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3.2.2 Feature Selection Mechanism 

 
We employed an ensemble technique to mine out the most consequential features from the 

feature vector obtained using the pre-trained model, in order to perform classification of 

malignant and non-malignant lymph nodes. Please note that the feature matrix has been 

arranged in such a manner that the rows depict the samples, and the columns are 

representative of the features. The feature selection process is as depicted in table 1. We 

employ the Random Forest algorithm, one of the most widely used algorithms in machine 

learning for the purpose of classification as well as feature selection. In the Python 

programming language, the Random Forest library comes with an in-built importance 

Fig 12. A pictorial representation of the ResNet18 model that has been utilized in 

this work.  
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generation function—which, based on the feature set and the dependent variable, returns 

the most important features along with their percentage of importance. Figure 13 provides 

a schematic depiction of the feature selection algorithm. 

 

Step 1. Sparsity filter: First we need to remove any missing values that 

might be present in the feature matrix. Through a procedure of trial and 

error, we determined that we should drop all features having at least 

20% of the values missing (or zero). 

Step 2. Data imputer: Impute missing values of the remaining features 

by the average value of the respective feature. 

Step 3. Low coefficient of variation (CV) filter: This particular step is 

based on the idea that features with higher variance have more 

information contained within them. Coefficient of variation is standard 

deviation normalized by mean. This metric is very effective in taking 

care of the characteristic differences in the range of values amongst the 

features, thereby minimizing any bias that might have arisen by the 

utilization of raw feature values. Coefficient of variation is standard 

deviation normalized by mean: CV =
�

�
, where σ is the standard 

deviation, and µ is the mean. 

Step 4. High correlation filter: This step drops columns with a 

correlation value greater than 95%. The way that this is achieved is by 

calculating the correlation matrix of all of the feature pairs, and 

subsequently dropping one of the features with pairwise correlation 

value greater than 95% (the feature that has a lower correlation with the 

dependent variable, in this case the malignant/ non-malignant labels that 

have been provided along with the data). 

Step 5. Feature importance calculator: This is the most important step 

in the dimensionality reduction process. We make use of machine 

learning to mine out the features that are most consequential in 

forecasting the output variable (in this case, the malignant/ non-

malignant labels). 
 

 

 
 

  

Table 1. Feature selection algorithm 

 Fig 13. A flowchart of the feature selection algorithm 
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3.2.3 Machine Learning Classification 

 
The salient features obtained from the feature selection algorithm (see section 4.2.2) were 

fed into a machine learning classifier to differentiate the malignant versus non-malignant 

lymph nodes. In order to effectively investigate the classification performance of the 

proposed model, 10-fold Cross Validation (CV) was utilized. The dataset was randomly 

shuffled and split evenly into 10 different groups. In each iteration, 9 of these groups were 

used for training and the remaining 1 for testing. The iteration process was repeated 10 

times, each time the test set being a different group. The results obtained across the 10 

iterations were finally averaged and reported. It must be noted that the groups were 

generated in such a manner as to ensure that the training and test sets were mutually 

exclusive of one another (that is, no overlap of samples). The 10-fold Decision Tree (DT) 

model was utilized for the purpose of classification. 

3.3 Dataset 

 
A radiological dataset was provided by Mayo Clinic, Arizona. The dataset comprised 

multiple de-identified gray-level MRI scans of lymph nodes, obtained using a varied range 

of image contrast types from a prospective clinical trial of 15 high-risk (Gleason ≥ 8) 

prostate cancer patients. The patients underwent prostate MRI before prostatectomy and 

pelvic lymph node dissection as part of a trial. Tissue was submitted for pathologist review. 

The location of each lymph node was confirmed, and labels of the pre-operative MRI data 

were generated. The labels were “positive” (meaning harboring metastatic cancer cells) 

and “negative” (no cancer metastases were found). There was a total of 126 lymph node 

images: 41 positives and 85 negatives. 

The four MRI sequences, each with different tissue contrast characteristics, are as follows: 
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1. Apparent Diffusion Coefficient (ADC) 

2. T2-weighted Fast Recovery Fast Spin Echo (FRFSE) 

3. Pelvis (T2 FatSat) 

4. MRI with Gadolinium Contrast (Water-GAD) 

Figure 14 comprises a prostate MRI from the same patient; four MRI sequences shown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

  

 

        

    

Fig 14. Prostate MRI from the same patient (patient number: 2663); four 

MRI sequences— Apparent Diffusion Coefficient (ADC), Fast Recovery 

Fast Spin Echo (FRFSE), Pelvis and MRI with Gadolinium contrast 

(Water-GAD). 
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3.4 Results 
 

The ResNet18-based approach described before was utilized for feature extraction. For the 

purpose of comparison, two texture-based features were also extracted, namely Gabor and 

GLCM. Subsequently, feature selection was performed on each of these feature sets. The 

most important features were then classified using the 10-fold Decision Tree (DT) 

classifier. 

The top 9 most important ResNet18-based features yield a highest classification accuracy 

of 76.19%, sensitivity of 79.76%, specificity of 69.05%, precision of 83.75% and F1-score 

of 81.71% on the 10-fold decision tree (DT) classifier. Our ResNet-based feature extraction 

framework was compared against two texture feature-based classification models namely, 

GLCM and Gabor. The decision tree classifier trained on 11 GLCM features (contrast, 

correlation, energy, entropy, homogeneity, variance, sum of average, sum of variance, sum 

of entropy, difference of variance, difference of entropy), after feature selection using the 

aforementioned algorithm, achieved a best classification performance on the top 5 most 

important features (contrast, energy, homogeneity, sum of variance and difference of 

entropy in that order)—with an accuracy of 61.90%, precision of 71.43% and F1-score of 

72.73%. The same decision tree when trained on a set of 1960 Gabor features achieved a 

best performance on the top 15 features—with an accuracy of 65.08%, precision of 76.25% 

and F1-score of 74.84%. 

Table 2 provides the classification performance of the 10-fold decision tree classifier 

obtained using the original ResNet18-based features, the GLCM features, and the Gabor-

based features. Table 3 provides the classification performance of the 10-fold decision tree 

classifier obtained using the feature selected ResNet18-based features, the GLCM features, 

and the Gabor-based features. Further, to illustrate the efficacy of the feature selection 
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algorithm, figure 15 has been presented, which includes the receiver operating 

characteristics (ROC) curves of each of the three sets of features—namely, the ResNet18-

based features, GLCM features and Gabor features—after classification using the 10-fold 

decision tree classifier. The ResNet18-based features show a marked improvement from 

an area under curve (AUC) of 57.82% on the 512 original features to an AUC of 94.59 on 

the 9 selected features. GLCM shows a slight improvement from an AUC of 92.11 on the 

11 original features to an AUC of 95.12 on the 5 selected features. Gabor feature 

performances remain comparable between the original feature set of 1960 features which 

had an AUC of 99.20%, and the selected feature set of 15 features which had an AUC of 

98.98%. 

Classifier Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

Precision 

(%) 

F1-score 

(%) 

ResNet18-

based features 

57.14 62.35 46.34 70.67 66.25 

GLCM 57.94 72.84 33.33 67.82 70.24 

5 × 8 Gabor 

filter bank 

59.52 67.47 47.50 72.73 70.00 

 

 

  

Table 2. The performance of the 10-fold decision tree classifier obtained using the 

original ResNet18-based features, the GLCM features, and the Gabor-based features. 
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Classifier Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

Precision 

(%) 

F1-score 

(%) 

ResNet18-

based features 

76.19 79.76 69.05 83.75 81.71 

GLCM 61.90 74.07 42.86 71.43 72.73 

5 × 8 Gabor 

filter bank 

65.08 73.49 52.50 76.25 74.84 

 

 

 

 

 

 

 

 

 

 

 

 

  

Fig 15. The receiver operating characteristics (ROC) curves of each of the 

three sets of features—namely, the ResNet18-based features, GLCM features 

and Gabor features—after classification using the 10-fold decision tree 

classifier. 

Table 3. The performance of the 10-fold decision tree classifier obtained using the 

feature selected ResNet18-based features, the GLCM features, and the Gabor-based 

features. 
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3.5 Conclusion and Future Work 

3.5.1 Conclusion 
 

This case study proposes an integrated pipeline to help detect malignant lymph nodes in 

patients with prostate cancer. The accuracy obtained by our approach had a higher 

sensitivity and comparable specificity compared to sensitivity and specificity reported in 

prior studies relying on imaging alone. For example, [4] states that the area under receiver 

operating curve (AUC) varies between 0.69 and 0.81 for prostate cancer detection over 

multi-parametric MRIs, which includes diffusion-weighted imaging (DWI). The authors 

of [122] have designed an automatic deep CNN-based architecture to detect prostate cancer 

on diffusion-weighted magnetic resonance imaging (DWI). The database comprised DWI 

images of 427 patients (175 prostate cancer, 252 healthy patients). The model yielded an 

area under the receiver operating curve (AUC) of 0.87. [123], the runners up of the 2017 

PROSTATEx challenge, designed a deep learning model called the XmasNet which was 

based on deep CNNs, for the purpose of performing classification on prostate cancer 

lesions utilizing 3D multiparametric MRIs. They achieve an AUC of 0.84. The database 

comprises 341 patients, each having Diffusion Weighted Images (DWI), Apparent 

Diffusion Coefficient (ADC) scans, Ktrans, and T2-weighted images (T2WI). 

In medical imaging research, one of the primary challenges is the fact that interpretability 

varies greatly between radiologists. The PI-RADS architecture is pervasively utilized for 

the purpose of image interpretation. However, [124] exhibits the many impending issues 

of inter-observer interpretability associated with the PI-RADS model. Owing to the innate 

difficulties associated with identifying anomalies in prostate MRIs, there seems to be 

varying consensus among researchers and radiologists alike, with respect to determining 

the best identification methodologies. Sample size—as in the case with our study as well—
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often proves to be an important factor that determines the selection of the classification 

model. While we know that machine learning performs better on datasets with limited 

samples, we also acknowledge the capability of deep models to extract more meaningful 

features. In [125], the authors demonstrated that on a dataset of multiparametric MRIs 

obtained from 52 prostate cancer patients, hierarchical clustering performed better than 

deep models in differentiating between normal and tumor prostate tissues. 

While the statistical measures that we have employed to evaluate our model seem to work 

well, we do acknowledge that there might be more medically sound metrics for measuring 

performance which—to a certain degree—predict the chance of survival as well. However, 

in order to evaluate such parameters, we need to have an in-depth understanding of 

associated biomedical processes, as well as access to a wide variety of radiological features. 

The authors of [126] have identified certain measures and classifiers that outperform others 

when it comes to prostate cancer with lymph node metastasis. A sample size of 1400 

patients—all with metastatic prostate cancer to lymph nodes—have been employed in this 

study. Univariate analysis revealed that age, Gleason score, radiotherapy history, T stage, 

log odds of metastatic lymph node (LODDS) classifier, lymph node ratio (LNR) classifier, 

and number of metastatic lymph node (NMLN) classifier except total number of lymph 

nodes examined (TNLE), are some of the most consequential predictors of patient survival. 

Multivariate analysis suggested that LODDS, LNR, and NMLN except TNLE classifiers 

are some of the most important parameters for measuring survival rate. 

In addition, it is our intention to extend our analysis to subsequently be able to localize the 

lesion region in lymph node images where cancer has been detected. From previous 

experience with working on similar medical imaging datasets, we have noticed that having 
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an additional set of “difference features” helps in not only localizing the lesion region, but 

also monitoring the progression of lesion over time. This basically involves subtracting 

time-variant images from a fixed baseline data. In this case, since we have a control image 

of an unaffected portion of lymph node provided, corresponding to every cancerous region 

of the lymph node, we could use the control as a baseline image to then perform 

localization. However, for that to work effectively we need more positively labeled (or 

cancerous) samples; at the moment, we have too few lesion lymph node images to train a 

full-fledged model to perform localization. However, on acquiring more samples, if this 

sees fruition, then we should be able to use the classifier in cascade with the localization 

framework. 

3.5.2 Future Work 
 

While our initial analyses yield promising results, we acknowledge that there are several 

areas in which we could improve—both in terms of model design, as well as ways of 

generating more meaningful feature representations from datasets having limited samples 

and class imbalance. In this section, I will transcribe some of the difficulties that we have 

been able to identify, and how we plan on overcoming them in the future. 

3.5.2.1 Feature Extraction 
 

We plan on exploring the feature extraction domain in greater detail. We have extracted 

two texture-based features namely GLCM and Gabor. We believe that if we can devise an 

effective combination of manually extracted and automatically generated features, that will 

improve the performance of the proposed model significantly. 

3.5.2.2 Data Augmentation 
 

We intend to conduct an in-depth augmentation process that might help alleviate the 
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problem of small, imbalanced sample size. We implemented simple physical 

transformations on the data (rotation, flipping et cetera), but those methods have proven 

ineffective. For this particular task, we will most likely need to use Generative Adversarial 

Networks (GANs). 
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CHAPTER 4 

CONCLUSION AND FUTURE WORK 
 

4.1 Conclusion 
 

In summary, we designed a deep learning-machine learning model—paired with a feature 

selection framework consisting of statistical (or unsupervised) and supervised 

techniques—to detect lymph node metastasis effectively from a small prostate cancer 

dataset. The pre-trained deep model was utilized for feature extraction, while the decision 

tree classifier was used for classification. The results obtained were compared against 

features generated using GLCM and Gabor-based texture features. The proposed 

ResNet18-based features outperformed the GLCM and Gabor features during 

classification. The ResNet18 features had a classification accuracy of 76.19%, sensitivity 

of 79.76%, specificity of 69.05%, precision of 83.75% and F1-score of 81.71%. In 

comparison, the GLCM features had an accuracy of 61.90%, sensitivity of 74.07%, 

specificity of 42.86%, precision of 71.43% and F1-score of 72.73%. The Gabor features 

had an accuracy of 65.08%, sensitivity of 73.49%, specificity of 52.50%, precision of 

76.25% and F1-score of 74.84%. 

Despite the efficacy of the proposed deep learning-based features in classifying lymph 

node metastasis from prostate cancer patients, there are several drawbacks of this model. 

Next we will discuss some of the shortcomings of the designed classification model, and 

also discuss ways to make it more effective in the future. 
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4.2 Future Work 
 

4.2.1 Feature Extraction 
 

4.2.1.1 Combination of Manual and Deep Model-Generated Features 
 

GLCM and Gabor-based feature extraction techniques have been employed in this study. 

However, features generated by deep models performed better—both in terms of 

classification performance, and also when feature selection was done. However, employing 

a combination of deep as well as manually extracted texture-based features, is expected to 

significantly improve classification performance. The texture-based features are efficient 

in incorporating domain knowledge in the system, whereas the deep CNN-based features 

are efficient in generating effective image representations. This is an improvement that we 

expect to include in later versions of the classification model. 

4.2.1.2 Generating a New Set of Difference Features 
 

For each patient, we were provided a set of lesion as well as control scans. If we could 

devise a way to generate a set of difference features, that might not only help us segment 

the ROIs better, but could potentially also help generate a feature pertaining to progression 

of the lesion over time. However, in order to do that we must have one of the following: 

1. A set of time varying scans 

2. More lymph node scans with lesion ROIs 

4.2.2 Data Augmentation 
 

Simple physical transformations (such as rotating, flipping et cetera) proved to be 

ineffective in enhancing performance. Data augmentation, however, is critical in 

alleviating problems associated with small sample size and imbalanced classes—both of 

which being relevant problems in our prostate cancer dataset. Therefore, an effective data 
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augmentation technique would prevent these problems in the future, and help improve 

classification performance. Generative adversarial networks (GANs) are an effective and 

widely used technique for data augmentation [127, 128, 129, 130, 131], which we plan on 

implementing in the future. 

4.2.3 Segmentation 
 

While the proposed model performs well on classification tasks, it is not capable of 

localizing (segmenting) regions of interest on images. Therefore, manual ROI extraction is 

required before classification is performed—which is a cumbersome task for the radiology 

team, considering the small size of the lesion regions compared to the entire MRI scans. 

Therefore, we intend to incorporate an automatic segmentation step before classification is 

performed by the proposed deep learning-machine learning approach. 

4.2.4 Model Generalizability 
 

The proposed model performs well on MRI and CT scans, but poorly on PET imaging 

contrasts. Also, the thresholds and hyperparameters being used in the model are based 

simply on classification performance. Consequently, it requires considerable manual 

tweaking to train different datasets, even pertaining to the same imaging and disease types. 

We intend to update the model, thereby making it more robust to different image types and 

input datasets. 

4.2.5 Model Performance Improvement 
 

In this study, we have employed a very straightforward implementation of the machine 

learning classifier, namely 10-fold decision tree. For future works, we would like to 

implement more nuanced classifiers, and classifiers with regularization and hinge loss. 

That will not only help improve classification performance, but also make the model 
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more robust against overfitting. 

Another critical area that we have not addressed is the class-imbalanced problem. In this 

dataset, we have 85 control and 41 lesion samples—which enables the model to learn the 

negative cases better than the positive ones, ultimately incorporating a bias towards the 

control cases. Sampling (over-sampling and under-sampling), boosting, bagging and 

noise filtering methods are used pervasively to counter the class-imbalance problem [132, 

133, 134, 135]. The Synthetic Minority Over-Sampling Technique (SMOTE), along with 

its variants,  is a common type of over-sampling technique that is used to generate 

balanced classes before performing classification [136, 137]. 
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