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ABSTRACT

In recent years, there has been significant progress in deep learning and computer

vision, with many models proposed that have achieved state-of-art results on various

image recognition tasks. However, to explore the full potential of the advances in

this field, there is an urgent need to push the processing of deep networks from the

cloud to edge devices. Unfortunately, many deep learning models cannot be efficiently

implemented on edge devices as these devices are severely resource-constrained. In

this thesis, I present QU-Net, a lightweight binary segmentation model based on the

U-Net architecture. Traditionally, neural networks consider the entire image to be

significant. However, in real-world scenarios, many regions in an image do not contain

any objects of significance. These regions can be removed from the original input

allowing a network to focus on the relevant regions and thus reduce computational

costs. QU-Net proposes the salient regions (binary mask) that the deeper models can

use as the input. Experiments show that QU-Net helped achieve a computational

reduction of 25% on the Microsoft Common Objects in Context (MS COCO) dataset

and 57% on the Cityscapes dataset. Moreover, QU-Net is a generalizable model that

outperforms other similar works, such as Dynamic Convolutions.

i



ACKNOWLEDGMENTS

I would like to express my gratitude to Dr. Yezhou Yang for his continued guidance

and support during the project. His motivation and vision have inspired me, and I

appreciate the opportunity to work with him.

I want to thank my committee members, Dr. Deliang Fan and Dr. Yingzhen

Yang, for their continuous guidance and support during the research work and the

thesis.

I want to thank Mohammad Farhadi, who introduced me to the ARGOS and

supported me at various stages of my work. Working with him has been a constant

learning experience for me.

I also want to thank Active Perception Group as a whole. Although I was intro-

duced to the in-person experience of the lab during the second half of my Masters, it

was a great experience to work with other like-minded individuals - Varun, Prabal,

Ashish, and Himanshu.

I would also like to thank my parents, Santhosh Kumar and Preetha Varma, and

my fiancée Devika Unnikrishnan for everything.

ii



TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

CHAPTER

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 BACKGROUND AND RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Region Proposal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Binary Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Background Subtraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Image Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.3 Quantized Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.4 Dynamic Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 PROPOSED METHOD - QU-NET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 COCO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.2 Cityscapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.3 Differences between the two datasets . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

iii



CHAPTER Page

3.3 Forward and Backward Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Quantization and DCT-based approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2.1 Quantization based approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.2 DCT based approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Comparison with Dynamic Convolutional Networks . . . . . . . . . . . . . . . 35

4.3.1 Object Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3.2 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4 Comparison with state-of-the-art models . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.5 Comparison on variable-scale objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 BIGGER PICTURE - ARGOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6 CONCLUSION AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

APPENDIX

A PERMISSION STATEMENTS FROM CO-AUTHORS . . . . . . . . . . . . . . . . . 50

iv



LIST OF TABLES

Table Page

4.1 Results of Quantization and Application of DCT-II Transform . . . . . . . . 32

4.2 Results for the Object Detection Task on the Cityscapes and the COCO

Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Results for the Object Detection Task for Different Object Sizes in the

COCO Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.4 Results for the Instance Segmentation Task for Different Object Sizes

in the COCO Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

v



LIST OF FIGURES

Figure Page

1.1 Top-1 Accuracy Vs the Amount of FLOPs for a Model . . . . . . . . . . . . . . . 2

1.2 The Overall Flow of the QU-Net-based Baseline Models . . . . . . . . . . . . . . 3

2.1 Straight Through Estimator Approximation During Backward Pass . . . . 9

2.2 Bitwise XNOR Operation as a Replacement to Convolution Operations 10

3.1 Sample Images from the COCO Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Sample Images from the Cityscapes Dataset . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 QU-Net: A U-Net-based Binary Model That Predicts the Regions of

Interest in Images That Can Be Used for Further Processing . . . . . . . . . . 23

3.4 Architecture Diagram of the Quantized Convolution Layer Implemented 25

4.1 The Mask Predictions by the Fully Quantized Version of U-Net on the

Top Left (Yellow Is the Predicted Regions). The Bottom Row Shows

the Result with the Mask Applied to the Original Image . . . . . . . . . . . . . . 32

4.2 The Mask Predictions by the DCT Based Fully Quantized Version of

U-net on the Top Left (Yellow Is the Predicted Regions). The Bottom

Row Shows the Result with the Mask Applied to the Original Image . . . 34

4.3 Results of the Segmentation Metrics on the Instance Segmentation

Classes in the Cityscapes Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4 Results of the mAP Statistics for Both Object Detection and Segmen-

tation Calculated on the COCO Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1 Overall ARGOS Architecture with the Binary Region Proposal (QU-

Net) and the Online Distillation Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

vi



Chapter 1

INTRODUCTION

1.1 Overview

Deep learning and neural networks have made great strides over the past decade

with diverse applications in various fields of life. However, the inherent concept of

neural networks is not new, with the McCulloch-Pitts Neuron model (1943) being

the first mathematical model presented in the area of neural networks. With the

rise of computers in the latter half of the 1900s, there were efforts to model the

concept of a biological neuron and use these to develop an artificial neural network.

However, the growth of neural networks was severely curtailed by the limitations in

electronics. Neural networks and deep learning were catapulted back into the scene

when AlexNet won the ImageNet challenge, the first Convolutional Neural Network

(CNN) to win the competition. The success of AlexNet was propelled by the use of

Graphical Processing Units (GPU) to accelerate the workload of neural networks.

Deep learning has been used for different applications in recent years, including

computer vision and natural language processing. Neural networks have used more

layers to learn latent features and achieve state-of-the-art performance. Consequently,

this has led to an increase in the computational cost of these networks. As a result,

there has been an increased focus on the computing power offered by GPUs to achieve

the heavy computation required by deep learning-based applications. Propelled by

the rise of AI and deep learning, the growth of GPUs has surpassed the expectations

set by Moore’s law - the number of transistors in dense integrated circuit doubles

every two years - and has in turn been replaced by Huang’s law - the speed at which
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Figure 1.1: Top-1 accuracy Vs the amount of FLOPs for a model

GPUs grow is at a faster rate than that predicted by Gordon Moore. However,

with the exponential increase in the complexity of deep learning models as shown

in Fig. 1.1, there have been questions about the sustainability of deep learning in

the long run. The improvement in accuracy does not grow at the same rate as

the computational complexity, with a significant increase in computation required

to achieve a minor increase in performance. Thus, it is crucial to develop more

efficient and sustainable methods to train and use models. In addition, with the high

computation requirements of these models, the implementation of the models has

been restricted to cloud-based servers with powerful processors. Various devices with

resource constraints currently send their data to a shared cloud server that processes

the information and sends it back. This approach is unviable in the long run for two

reasons, 1) The edge devices can generate a large amount of data that is received and

processed by one central server. With the data projected to grow in the coming years,
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the cloud servers can be overloaded, disrupting an extensive network of devices. 2)

The data being sent to the cloud cannot be fully assumed to be secure since the data

is uploaded over a vulnerable network to the cloud.

1.2 Motivation

QU-Net

Deeper Model

[4.20  234.44  803.73  750.02    0.65      0     car
0.00  550.59  76.68    878.66     0.45      0     car

…….                         ]

.

.

Original Image sent to QU-Net

Image mask 
generated

Image mask sent to 
deeper model

Different image recognition tasks 
performed based on model

Object Detection

Image Segmentation

Figure 1.2: The overall flow of the QU-Net-based baseline models

Most neural networks give equal importance to every region in the image. Many

of these regions do not contain any objects, which does not necessitate extracting

features and applying computation on these parts. The findings based on real-world

data show that the total area occupied by the objects of interest in an image is much

lesser than the background. For example, the Cityscapes Cordts et al. (2016) dataset,

an example of a real-world urban dataset, have objects that only occupy an average

area of 7% while the objects in the COCO Lin et al. (2015) dataset, a large dataset

representing multiple everyday objects, occupies 34%. Based on these findings, I

3



propose a lightweight model - QU-Net - that can efficiently predict the regions of

interest and allow deeper models to focus their computation on these specific regions.

QU-Net generates a binary mask representing the areas containing the object. The

deeper model uses this masked image to direct their attention to those specific regions.

The use of a masked input is theoretically equal to reducing the image size of the

input. Nevertheless, to achieve a practical reduction, the convolution kernels need to

be rewritten. The overall flow of QU-Net is shown in Fig. 1.2.

1.3 Challenges

While designing QU-Net, it was essential to consider the trade-off between the

accuracy and the computation reduction with the question of how much an accuracy

degradation was acceptable for an associated computation reduction. Although our

model is used as a preprocessing step by other deep models, it is vital to maintain

a good accuracy while determining the regions of interest so that the deeper model

does not miss them. Building a quantized network involves an unavoidable accuracy

degradation, especially for complex image recognition tasks like instance segmenta-

tion, although it provides the benefits of a lower computational cost. The challenge

was to develop a model capable of detecting the maximum number of object regions,

easily integrable with different deeper models, and achieving a sound computation

reduction with an acceptable accuracy degradation factor.

1.4 Contribution

As part of this work, I aim to build a generalized region proposal model that

can be used by models supporting different image recognition tasks. QU-Net reduces

the computation of deep models by predicting the regions of interest on which the

network should focus. While many works have explored the effect of quantization

4



on fully convolutional networks, very few have explored the quantization of encoder-

decoder architectures. The principles that can be followed for the traditional CNNs

while quantizing may not apply to the encoder-decoder model. Further, binary neural

networks have primarily focused on image classification datasets. The performance of

these networks on more complex image recognition tasks has not been studied much.

The main contributions of this work are -

• An extensive research on the effect of quantization on different parts of the

U-Net network and the utilization of a DCT transformed image as an input.

• A binary segmentation model architecture called QU-Net that predicts the re-

gions of interest, which are the regions with the highest probability of containing

an object. QU-Net is proposed as a preprocessing step for deeper models to de-

termine the regions suitable for processing.

• Experiments to evaluate the model’s overall performance when implemented on

different model architectures such as convolutional neural networks and trans-

formers and another similar method (Dynamic Convolutions) that utilizes the

spatial information to reduce the overall computation of a network.

1.5 Outline

• In Chapter 2, I provide an overview of region proposal systems and binary

neural networks. Further, I provide a historical review of the various concepts

in designing QU-Net, including region proposal systems, image segmentation,

quantized neural networks, and dynamic models.

• In Chapter 3, I introduce and describe the approach in developing the QU-

Net region proposal model, which includes the datasets used for training and

evaluation, the architecture, and the overall training procedure.

5



• In Chapter 4, I talk about the different experimental setups and the corre-

sponding results. First, I describe the effect of quantization on the different

parts of the model. Further, I compare the work with Dynamic Convolutions,

which is closest to this work. I also compare the work with several state-of-the-

art methods to understand the overall performance of the network. Finally, I

talk about the effect of different object sizes on the accuracy of the model.

• In Chapter 5, I talk about ARGOS, an end-to-end framework for accelerating

neural networks on devices that have limited computation power, and how QU-

Net integrates into the entire ARGOS architecture.

• In Chapter 6, I conclude the thesis and give a summary of the contributions

of this work as well the potential avenues for future research in this area.

6



Chapter 2

BACKGROUND AND RELATED WORK

2.1 Background

2.1.1 Region Proposal

Object Detection models have commonly followed either a two-shot architecture

or a single-shot architecture. A two-shot architecture usually consists of a region pro-

posal stage responsible for defining the relevant regions of interest, and a classification

stage categorizes the regions and refines the predictions. In contrast, a single-shot

architecture does not consist of a region proposal stage and performs classification

and localization in one step.

R-CNN Girshick et al. (2014) introduced the concept of region proposal where

a selective search algorithm was used to propose an initial region of 2000, which

was fed into a network individually to determine their classifications. The R-CNN

method was slow since each image had to process 2000 regions that may or may

not contain relevant classes. Later, faster variants such as and Fast R-CNN Girshick

(2015) and Faster R-CNN Ren et al. (2016) were developed. Fast R-CNN proposed to

alleviate this problem by using the feature map generated by the convolutional neural

network to propose the regions. Fast R-CNN reduced the computation time since the

convolution operation only had to be performed once per image. Both R-CNN and

Fast R-CNN used selective search to propose the regions which Faster R-CNN aimed

to replace by using a separate network to determine the regions from the feature map

output. Faster R-CNN improved the overall run-time significantly and could be run

real-time as well.
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SSD Liu et al. (2016) YOLO Redmon et al. (2016) are two popular single-shot

approaches. These architectures do not rely on regions and perform the detections in

one step. One-Shot architectures have a lower accuracy when compared to two-shot

networks, although they have a low run-time, while two-shot architectures yield high

accuracy but have a higher inference time. The main cost in two-shot architectures is

induced from the cost of the region proposal system. There has been ongoing work to

improve the accuracy of single-shot networks to match that of two-shot architectures.

A model always has a lower computational complexity on smaller images because

the total area to be processed is much smaller. Therefore, if we were to have a

network that predicts the image locations, it would help reduce the image’s total

area, similar to a region proposal system. To ensure the cost of the region proposal

model was small, we used a quantized network. Further, both single-shot and two-

shot architectures can be used as an image area reduction benefit both networks in

reducing the computation.

2.1.2 Binary Neural Networks

Before I dive into the related work and the proposed approach, it is essential

to understand the concepts behind binary neural networks, which is the building

block of this work. Binary neural networks are not a recent concept, but they have

gained popularity in recent years. The core idea behind this is using a lower bit

representation for the weights and activations in the network that can benefit both

memory and computational complexity.

Binary neural networks employ a function to convert all the tensor values to +1

and -1. The binarization of values drastically reduces the memory consumption as

the numbers need only 1-bit for storage rather than 32 bits. The sign function is

shown in 2.1 which assigns every value greater than 0 to +1 and -1 otherwise. Here,

8



xb refers to the binary value of the real number.

xb =


+1 if x ≥ 0

−1 otherwise.

(2.1)

One issue associated with binarizing the values is that it loses its continuity and

becomes a discrete function. This makes the function non-differentiable during the

backpropagation phase while training the network. A widely used solution in the

training of binary neural networks is the straight-through estimator (STE), as shown

in Fig. 2.1 1. The STE method passes the gradients of the previous step to the next

step for a binary layer. It has been shown to work very well and helps circumvent

the issue brought forward by the sign function.

Figure 2.1: Straight Through Estimator approximation during backward pass

At each gradient accumulation phase, the binary weights and activations are used

1Own image - https://towardsdatascience.com/binary-neural-networks-future-of-low-cost-neural-
networks-bcc926888f3f
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to calculate the loss. However, the loss is backpropagated such that the weight update

happens on the full-precision values. Once all the parameters are updated, they are

clipped between -1 and +1.

Figure 2.2: Bitwise XNOR operation as a replacement to convolution operations

Binary neural networks can also give significant improvements in terms of compu-

tation. XNOR-Net Rastegari et al. (2016) introduced a bit-wise operation that can

be used to replace the multiply-accumulate operation. It has been shown to achieve

a significant speedup because bit operations are internally implemented in various

hardware devices, processing it faster than other arithmetic operations. A combina-

tion of XNOR and popcount can replace the convolution operation as shown in Fig.

2.2 2. The XNOR operation outputs a one if both inputs are the same, otherwise

0. The popcount operation is used to count the number of bits equal to 1. The

illustration shows how an XNOR+popcount operation can be used to replace the

multiply-accumulate operation. It shows that when the inputs are constrained to +1

2Own image - https://towardsdatascience.com/binary-neural-networks-future-of-low-cost-neural-
networks-bcc926888f3f
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and -1, they produce the same output as normal arithmetic operations.

The reduced bit representation also results in accuracy degradation compared

to full-precision networks because of the low representation capacity of the tensors.

There has been ongoing research in this area, with various advancements made to

improve the overall accuracy of these networks. The main reason for the loss of

accuracy in binary neural networks for various complex image recognition tasks is the

loss of local information on binarization. I aim to use a lightweight binary model for

the task of region proposal, which does not depend a lot on the local information.

2.2 Related Work

2.2.1 Background Subtraction

Background subtraction is the task of separating the foreground from the back-

ground. It is mainly used to separate moving objects from the surrounding environ-

ment and is widely used as a preprocessing step for multiple image recognition tasks.

There have been many methods proposed for background subtraction. However, the

general idea is to use the information from successive frames to determine the mo-

tion vectors of each pixel and predict the static pixels, which can be classified as

background.

Currently, various OpenCV techniques and algorithms provide efficient methods

to separate the foreground from the background, which is the concept used to deter-

mine the regions of interest in the image. There have also been multiple background

subtraction-based methods proposed, such as Nguyen and Choi (2020); Sengar and

Mukhopadhyay (2020) that use this technique for processing relevant spatial regions.

However, these methods find it difficult to adapt to the natural motion in the scene

and the camera movement. To build a model that is not hindered by any of the

11



irrelevant motions in the scene and can efficiently extract the foreground, I propose a

general-purpose region proposal model that uses a segmentation mask to determine

the object locations used as a region proposal output. There have been works in the

past Lim and Yalim Keles (2018); Lim and Keles (2020) that have used the concept

of segmentation for background subtraction, but these models are computationally

heavy. At the same time, I aim to build a system that is a lightweight preprocessing

model for deeper models. The proposed method can also predict specific classes of

objects without focusing on all the regions, which is particularly useful in scenarios

where only certain classes are of interest.

2.2.2 Image Segmentation

Image segmentation is an essential aspect of many visual understanding systems.

Segmentation is the process of partitioning the image into multiple regions based on

the different objects present in the scene. It can be as simple as classifying the image

pixels into two classes of foreground and background or classifying each pixel as a

separate class in a dataset of multiple classes. In recent years, deep learning-based

models have been developed that have shown significant improvement over traditional

models. Many segmentation schemes utilize the encoder-decoder model. The latent

features are extracted in the encoder stage, which the decoder utilizes to create the

final output. U-Net Ronneberger et al. (2015) is a widespread implementation of

this type of network, which has been widely used in the biomedical field. The U-Net

model is utilized as the baseline to create the binary segmentation model. Although

U-Net has been mainly used in the biomedical sector, it extends well to various other

scenarios. Building a quantized region proposal system using U-Net reduces the

computation of deeper models using the masks generated.

In the past, papers such as Segnet Badrinarayanan et al. (2015) have proposed a

12



light-weight segmentation model. Nevertheless, this model still requires more com-

putation than the one proposed and finds it difficult to extend to datasets containing

multiple classes. Further, works such as DeepLab Chen et al. (2017), and PSPNet

Zhao et al. (2017) are more advanced works that have managed to achieve good accu-

racy. However, the cost of these networks is significantly higher than that of U-Net,

which does not bring the same benefits on quantization as the U-net network. Since

the main focus of this work is on building a region proposal system that does not de-

pend highly on the accuracy of the segmentation labels, the lower-accuracy network

can be utilized to achieve higher benefits.

2.2.3 Quantized Neural Networks

Deep neural networks contain a large number of layers with millions of parame-

ters. These allow the networks to learn complex information, but it comes at the cost

of high memory requirements and computational complexity. The high cost of deep

neural networks is attributed to the high multiply-accumulate operations in the con-

volution layers, making it challenging to run many of these deep models on low-power

devices. Therefore, there has been ongoing research to develop and implement deep

neural networks on such devices in recent years. One method proposed to achieve this

is by reducing the bit representation for both weights and activations. The aforemen-

tioned reduces the memory as well as the computation requirements for the entire

network.

Some of the initial works which explored the concept of binary networks are Cour-

bariaux et al. (2016); Rastegari et al. (2016). They proposed to achieve state-of-the-

art results on the image classification tasks accompanied by a reduction in memory

and computational cost. This speedup was achieved by binarizing the weights and

activations in the different layers of the neural network. The binarization allowed the
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speedup of convolution operations which are the main bottlenecks of a network, by

replacing them with XNOR+popcount operation. The gain achieved in terms of the

computational complexity of the convolution operation was 64 times theoretically.

The cost of a convolution operation, which is the number of operations it performs,

is directly proportional to the n - the number of channels, NW - the filter size and

NI - the input size. To improve the accuracy, XNOR-Net implements a channel-wise

scaling factor that reduces the speedup by a slight factor but provides much higher ac-

curacy. However, the accuracy achieved was still not close to that of the full-precision

methods. Further, XNOR-Net also implemented a model based on binary weights

without changing the precision of the activations, which managed to reach state-of-

the-art accuracy. There has been ongoing research in this field, but very few networks

seldom achieve the same accuracy in other image recognition tasks, with the differ-

ence being unreasonable. One reason for this is that the network loses much of the

local information on quantization. This results in an accuracy degradation as both

the local and global context are essential while making predictions. The proposed

region-proposal model relies less on pixel-wise accuracy and more on estimating the

object presence, decreasing the significance of the local descriptors. This allows us

to overcome the shortcomings of quantized networks and use the less accurate local

information to predict the object hotspots.

Traditionally, binary networks avoid the binarization of the first and the last lay-

ers since it hurt the accuracy significantly. Moreover, since the cost of a convolution

operation is proportional to the filter size and number of channels, it did not achieve

a high reduction in computation when binarized. However, many recent neural net-

works use high-resolution images with the image size contributing to the complexity

of a convolution operation. This can cause the first layer to become a bottleneck,

mainly when many images are being processed with the effect of achieving real-time
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inference. Therefore, the binarization of initial layers should be handled with care

since they are the most critical layers during quantization. Any information lost

due to reduced information capacity cannot be obtained in the later layers. They

are crucial in extracting the initial features for various image recognition tasks and

passing them to the deeper layers of the network. By the time information reaches

the final layers of the network, the feature maps are well defined, which results in

a lower information loss on binarizing these layers. Flexible binary networks Wang

et al. (2018a) utilized this observation to binarize a network based on inverse depth

priority. The binarization started from the last layer, with each iteration working

towards the top. At each step, the current layer was binarized, and the lower layers

adjusted to maintain the accuracy loss at a minimum.

Quantization of the different layers also provides great benefit, albeit to a lesser

extent, compared to a binarization scheme. It is important to reduce the bitwidths of

both weights and activations if we want to reduce memory and computational cost.

The activations form a major part of the memory map, especially when we use a

large number of batches. Since the proposed model was designed to be using different

activation schemes, Zhou et al. (2016) introduced a method to train and deploy

quantized models with different quantization schemes on various devices efficiently.

DoReFa-Net also replaced the channel-wise scaling factor introduced by XNOR-Net

with a constant scalar. This allowed the network to utilize the bitwidth kernels during

backpropagation, allowing a speedup during training and inference. The paper also

defines the convolution kernel, which can be used for low bitwidth fixed point integers

as defined in Eq. 2.2. Here, cm(x) and cm(y) are the bit vectors. The complexity of

a convolution kernel is directly proportional to the number of bits in x and y which

are the weight and activation tensors.
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r =
M−1∑
m=0

N−1∑
n=0

2m+nbitcount[and(cm(x)cm(y))] (2.2)

To ensure there was no accuracy degradation on quantizing the initial layers, we

had to ensure the activations had enough representation capacity after reducing the

bitwidth. Banner et al. (2018) has shown that the accuracy drop with the use of

8-bit representations is negligible when compared to full-precision networks. It was

posited that the quantization of vectors is highly dependant on the distribution of

vectors with a Gaussian distribution less susceptible to quantization. The weights and

activations follow a Gaussian distribution which allows us to quantize them effectively.

The gradients in a network do not follow the same distribution and are more fragile.

Since our model aims to be used at inference time after offline training, we can safely

use full precision for the gradients while quantizing the weights and the activations.

2.2.4 Dynamic Neural Networks

The ability of a neural network to adapt itself based on the output is the essence

of dynamic neural networks Han et al. (2021). These can be classified into three

main categories; Sample-wise dynamic models, Spatial-wise dynamic models, and

Temporal-wise dynamic models. Sample-wise dynamic models are designed to allow

dynamic architectures that can support different inputs. There are two main cat-

egories of dynamic architectures - dynamic architectures and dynamic parameters.

The dynamic architecture approach is one where the architecture of the network is

conditioned based on the complexity of the input. This includes approaches where a

different number of layers are executed, the width of a network is dynamic or select-

ing an appropriate branch from a tree-like neural network (SuperNet). The dynamic

parameters approach includes methods to perform a weight adjustment, predict the
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weights, or apply a soft-attention to the weights.

Temporal-wise dynamic models Yeung et al. (2017); Su and Grauman (2016) re-

duce computation by dynamically determining the computation required for each

frame. This can include methods where the features from previous frames are reused,

specific frames are skipped, and the network evaluates results based on a small part

of the video. Both Sample-wise and Temporal-wise methods mentioned above have

been proved to be effective in reducing the computation of the network. However,

one major drawback is that they consider an entire image to fall into either one of the

classes - hard or easy. In contrast, a single image can contain both hard-to-classify

objects and ones that can be easily classified.

The spatial-wise dynamic model utilizes the fact that different regions in an image

have different complexity in image recognition tasks. Spatially Adaptive Computation

Time (SACT) Figurnov et al. (2017) is an example of sample-wise dynamic models

which work on the above principle. It also selectively borrows from sample-wise

dynamic execution by implementing a network that executes the deeper layers based

on the complexity of the image. SACT is modeled using ResNet architecture as its

building block. It uses an Adaptive Computation Time(ACT) to compute the point

of stoppage for each input. ACT adds an additional branch to each residual block,

predicting a score between [0,1] known as the halting score. The global score is

maintained as the input proceeds through the network, stopping the computation of

different residual blocks. SACT takes it one step forward by using ACT on different

spatial blocks in the input. The different blocks in the input are evaluated with

each position inactivated when it attains a halting score greater than one. The other

spatial regions are evaluated until all the regions in the input complete execution.

The SACT model is not flexible as it requires deep residual networks to be effective

because it relies on feature refinement.
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Dynamic Convolution Verelst and Tuytelaars (2020) is another work based on

dynamic spatial complexity and is probably the closest to this work. Dynamic Con-

volution is also based on the ResNet network. Contrary to SACT, which creates a

spatial mask at each residual block. This mask is used to process the regions at the

next step selectively. The work also implemented its own gather-scatter approach

that enabled a practical speedup of the operation. Although it has shown excellent

results, it has limited adaptability since extending it to non-ResNet-based models is

difficult. Moreover, the use of dynamic convolutions also requires modification to the

original networks, with the need to add the additional capability to ResNet to predict

the mask. This work, QU-Net, proposes a lightweight region proposal system that

can fit any model as a plug-and-play system and be used on models that support

different tasks such as object detection, instance segmentation, and pose estimation

without a separate training cycle. Furthermore, no changes need to be implemented

on the original deeper network, with the only change being the input fed into the

deep neural network.
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Chapter 3

PROPOSED METHOD - QU-NET

In recent years, binary neural networks have been proposed as a promising technique

to train and deploy deep neural networks on resource-constrained devices. However,

although binary neural networks help reduce memory and computation costs, they

bring forth the loss of information because of the low representation capacity and

the difficulty in optimizing the network during training because of the discontinu-

ous band. There have been various methods proposed that solve the above issues.

However, binary neural networks still have not achieved an accuracy comparable to

full-precision models, especially in object detection and image segmentation.

This work proposes a binary neural network, QU-Net, a binary segmentation

model adopted as a region proposal model. This model can be used as a preprocessing

step for any deeper model to remove the regions from the input that do not contain

any relevant objects. The deeper model is only required to process the regions of

interest, thus reducing the overall computation of the network resulting from the

smaller image area processed.

3.1 Datasets

Many binary models have been trained and tested on the ImageNet dataset for

the image classification task. However, ImageNet does not completely encapsulate

the real-world scenario since many images contain canonical perspectives and a sin-

gle label. In addition, full precision models have evolved to perform more complex

tasks such as multiclass object detection and instance segmentation in recent years.

Compared to the full-precision models, the binary models have shown underwhelming
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performance in these categories, a significant hurdle affecting their widespread adop-

tion. To ensure the model was applicable in real-world scenarios, complex datasets

(MS COCO and Cityscapes) that mimicked the real-world scenarios were used to

train the model and gauge its performance.

3.1.1 COCO

Microsoft Common Objects in Context (MS COCO) is a dataset created to ad-

vance the field of image recognition. It has been widely used to benchmark various

SotA models. It consists of labels for object detection, segmentation, and pose estima-

tion. It consists of annotated objects from more than 80 classes, including everyday

objects such as car and person. The total number of images in the training and

validation set are as follows -

• Train Set - 118287 images

• Validation set - 5000 images

Figure 3.1: Sample images from the COCO dataset
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3.1.2 Cityscapes

Cityscapes is a dataset that consists of images from various urban street scenes.

It consists of labels for image segmentation and depth estimation, with unofficially

supported object detection labels. The images were captured from more than 50 cities

in varying conditions to build a highly dynamic and varied dataset. A few sample

images are shown in 3.2. There are 19 classes defined for evaluation which include

car, person, and bike. It consists of the following number of images in the training

and validation set -

• Train Set - 2975 images

• Validation set - 500 images

Figure 3.2: Sample images from the Cityscapes dataset
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3.1.3 Differences between the two datasets

The COCO dataset is one of the most extensive publicly available datasets contain-

ing images of everyday objects. The representation of objects in their non-canonical

perspectives sets COCO apart from ImageNet, which allows the model to learn gen-

eral representations of the object. Moreover, COCO also consists of varied classes

that will enable us to test the ability of the model to adapt to a large number of

mixed classes. Although COCO consists of many classes, Cityscapes better repre-

sents real-world urban scenes and traffic images. Further, it also has a diverse set

of data from multiple cities under different conditions. Thus, Cityscapes is essential

to model deep neural networks that can be used in real-world scenarios, including

self-driving cars, traffic cameras, and many more. These are the areas where the

application of low-power neural networks is the most crucial.

3.2 Architecture

QU-Net was adapted from the U-Net Ronneberger et al. (2015) model. U-Net

was initially developed as a replacement to fully convolutional networks for the image

segmentation task in the biomedical field. Subsequently, U-Net has been used in other

domains and evaluated on diverse datasets. U-Net also has a low computational cost

when compared to more recent segmentation models. While developing a region

proposal model, it was essential to build a low complexity model to ensure it did

not add additional complexity to the deeper models that used QU-Net as a region

proposal model, and the overall complexity was reduced. The weights across the

entire network, except the last layer, were binarized. However, the model was divided

into three parts for the activation layers, with each part following its own set of

quantization rules.
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Figure 3.3: QU-Net: A U-Net-based binary model that predicts the regions of
interest in images that can be used for further processing

XNOR-Net Rastegari et al. (2016) proposed a binary-weight model that main-

tained the accuracy while reducing the memory requirements. Afterward, more works

brought forward the fact that the accuracy of a model does not degrade when we bi-

narize the weights exclusively. This observation was the primary motivation behind

using a complete binary weights network. Moreover, it also provided significant ad-

vantages in terms of memory reduction. Experiments were also performed to ensure

there was no accuracy degradation during the binarization of weights.

Initial experiments were performed to understand the importance of the different

layers in the U-Net model and determine the effects of binarization. Previous works

such as Wang et al. (2018a) have posited that as one goes deeper in a convolutional

neural network, the effect of the quantization of layers on the accuracy reduces. This

holds for a fully convolutional network, but very few works have explored the effect of

quantization on encoder-decoder architectures. Like fully convolutional networks, the

initial layers in the U-Net network are the most important because any information

lost at these stages cannot be reclaimed at later stages. Binary neural networks avoid

applying any quantization functions on the initial layers to prevent information loss.

It was determined that the first three layers in the encoder network were important in

feature extraction as there was significant accuracy degradation on binarizing these

layers. Once the information is passed down from the initial layers to the middle
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layers, vital information has been extracted from the initial samples, allowing the

flexibility to use a lower representation before the decoder stage. A set of 1-bit

weights and 1-bit activations (represented by the gray regions in Fig. 3.3) were used

in the final two convolution layers of the encoder part in the network.

Unlike typical fully connected networks where the final layers have lesser impor-

tance when compared to the initial layers during quantization, the decoder part of a

U-Net model holds significance since it plays an essential role in reconstructing the

final image mask from the extracted features. Thus, it is essential that the informa-

tion capacity of the decoder part is high such that the information is passed up to

the last layer with high accuracy. The decoder can be considered as a separate, fully

convolutional network with an equivalent priority of layers. Experiments were per-

formed with different activation bitwidths to understand the specific quantization at

which the model maintains or loses marginal accuracy. The experiments showed the

model maintained the accuracy when a bitwidth of the activations layer was reduced

to 4 with a severe degradation in accuracy on using lower bits. This resulted in using

a 4-bit representation of activations with a 1-bit representation of weights. The last

layer was maintained as a full precision layer to allow the network to output a range

of values.

To ensure the model was efficient, it was essential to quantize the initial layers

as well. This was to ensure the initial layers did not act as a bottleneck. Research

Banner et al. (2018); Wang et al. (2018b) has shown that deep neural networks using

8-bit representations can achieve the same accuracy as their 32-bit counterparts.

Thus, a set of 8-bit activations and 1-bit weights were used in the initial convolution

layer and the first two downsampling layers (represented by the yellow regions in Fig.

3.3). Also, using a lower quantization scheme hurt the accuracy badly. Compared

to the encoder layer, the initial layer of the network requires a higher quantized
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representation (8-bit) which can be attributed to the fact that the effort required to

extracting the initial features from the entire image is more than rebuilding a binary

mask from the extracted features.

Binary/Quantized 
Conv

Output

Global Pooling

FC

ReLU

FC

Sigmoid

SE LayerQuantization 
Function

x

Figure 3.4: Architecture Diagram of the Quantized Convolution Layer Implemented

Each quantization module had a squeeze-and-excitation (SE) block Hu et al.

(2018)it. An SE block is used to model channel-wise inter-dependencies, essentially

acting as a channel-wise attention block. The low representation capacity of binary

neural networks can hinder their applicability in general scenarios. Rundo et al.
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(2019) has shown that an efficient combination of SE blocks in a neural network can

improve the overall generalization capability of the networks. It also improves ac-

curacy because of the increased representation capacity of a network. The SE block

is a lightweight component and does not add any significant overhead to the overall

system when implemented. The overall flow of the quantized convolution layer is

shown in Fig. 3.4 where the input and the weights are passed through a quantization

function before a convolution layer being applied to it. The SE block works on the

original input and is multiplied with the output of the convolution layer to generate

the final result.

3.3 Forward and Backward Propagation

During binarization, the vectors lose their Gaussian continuity, which results in a

zero value for all the derivatives during backpropagation. Courbariaux et al. (2016)

and Rastegari et al. (2016) (followed by various papers based on the binary neural

networks concept) use the Straight-Through Estimator (STE) Bengio et al. (2013)

to handle the issue of the non-differentiability of the sign function. STE ignores the

gradient of the threshold function and treats it as an identity function.

All the layers in the QU-Net model are composed of 1-bit weights except for

the last layer. The weights are binarized using the DoReFa-Net Zhou et al. (2016)

method which uses a sign function as defined in 3.1. Apart from an associated sign

function, each weight parameter also has a scalar constant - equal to the mean of

all the weight vector values- multiplied with the weight vector. The addition of a

mean value vector improves the overall accuracy of the network as it increases the

range of values represented by the weight vectors. One thing to note here is that the

multiplicative scalar constant does not add any additional overhead as the convolution

kernels can still utilize the quantized bit kernels during the convolution operation in
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both the forward propagation and backward propagation. The full precision vectors

are represented by wi, and the quantized vectors were represented using wo

• Forward Pass

wo = sign(ri) ·mean(abs(wi)) (3.1)

• Backward Pass

dl

dri
=

dl

dro
. (3.2)

The activation layers followed three different sets of quantization schemes which

are based on the DoReFa-Net Zhou et al. (2016) method as well. The accuracy

was severely degraded when following the same binarization scheme followed by the

weights mentioned in the DoReFa-Net paper. To counter this, DoReFa-Net provides

an alternative scheme to quantize the activations. The values are initially bound to a

range of [0,1], before which the values are scaled down by a factor of 10. The quantiza-

tion functions as defined in Eq 3.1 and with 3.2 adopted as the backward propagated

function. The full precision vectors and the quantized vectors are represented by ri

and ro, respectively.

• Forward Pass

ao =
1

2k − 1
round((2k − 1)ai)‘ (3.3)

• Backward Pass

dl

dri
=

dl

dro
. (3.4)

3.4 Training

QU-Net was trained for a standard 50 epochs on both the COCO and the Cityscapes

dataset. The RMSProp optimizer was used with a learning rate of 0.00001, weight
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decay of 1e-8, and momentum of 0.9. The learning rate used is lower than the one

used while training a full precision counterpart since binary networks have their values

constrained between the range of [-1,1], and a lower learning rate allows the gradients

to accumulate efficiently without exponential increase or decrease. The weights are

quantized during each forward pass, but each backpropagation step involves calcu-

lating the gradients on the real-valued weight tensors. Gradients generally require

a larger bitwidth based on the experiments performed in Zhou et al. (2016). Since

the model’s training did not take much time on full-precision, we did not reduce the

bitwidth of the gradients. Images of 320x320 resolution were used to train the model.

Although initial experiments were performed using images of size 640x640, it was

found that the accuracy decrease was negligible while using images of size 320x320.

Using lower resolutions quickly deteriorated the accuracy.

Lroi = −weightce[0] ∗ log(exp(x[0])/(
∑
j

exp(x[j])))

− weightce[1] ∗ log(exp(x[1])/(
∑
j

exp(x[j])))

sfdc[0] ∗
∑

p0g0∑
p0 +

∑
g0

+ sfdc[1] ∗
∑

p1g1∑
p1 +

∑
g1

(3.5)

A modified loss function was used to account for the difference in the area occupied

by the objects and the background. The overall area occupied by the objects of

interest in the scene was much lesser than the background. The low accuracy of

the initial experiments when using the original Cross-Entropy + Dice loss can be

attributed to the above fact where the validation metrics resulted in the background

objects receiving higher importance. Therefore, the loss function was modified to
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assign more importance to the foreground class. I used a weighted CrossEntropy

+ scaled Dice loss which helped in accounting for and magnifying the effect of true

positives, allowing the capture of the maximum number of regions. However, the loss

function resulted in more false positives because the background class was attributed

lesser importance.

In the above equation 3.5, the cross-entropy loss is defined by the initial two

parts with x representing the class probability and weightce representing the weights

associated with each class. The weights of each class are equal to the inverse number

of pixels containing the class. The dice coefficient is represented by the last two parts

of the equation where each class has an associated scale factor (sfdc). p represents

the predicted labels in the dice loss, and g represents the actual labels.

3.5 Validation

The final output of the model is a one-hot vector with the values representing the

pseudo-probabilities of the two classes - background and foreground. The one-hot

vector is compressed to a one-dimensional vector, with each value in a cell repre-

senting the row position containing the maximum value. Every position in the one-

dimensional vector containing 1 (object positions) represents the region of interest.

Segmentation results can result in objects being partially predicted, especially be-

cause the boundary regions are difficult to predict. Since QU-Net is being used as a

region proposal model, extending the object using a dilation scheme was acceptable

as the focus was more on covering every possible region rather than reducing the false

positives. The overall model was evaluated based on the three main metrics -

• The number of regions detected with an intersection threshold of 100% - QU-Net

is proposed as a region proposal system. The maximum number of regions must

be predicted so that the deeper models do not miss these objects. Further, it is
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of prime importance that the detection covers the maximum area possible such

that it does not affect the accuracy of the deeper models. The model is evaluated

at the maximum intersection threshold to determine the best-performing model

based on correctly predicted and encapsulated regions.

• The amount of area covered by the predicted regions - The proposed model,

reduces the overall computation of deeper neural networks, which is achieved

by using the predictions by QU-Net to determine the regions of interest. Thus,

the least area has to be selected to reduce the computation as much as possi-

ble. Even if a particular configuration of the QU-Net model predicts regions

with high accuracy but selects a large area, it does not help reduce the overall

computation of the deep networks.

• The computational complexity of the model - QU-Net is used in conjunction

with deeper models, which warrants the need of having a low complexity model

to ensure the overall complexity is not significantly influenced by QU-Net. Al-

though a higher complexity model can reduce the computation of a deeper

network with the help of better predictions (correlated to a smaller area), the

overall complexity can increase and thus not provide any benefits.
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Chapter 4

RESULTS

QU-Net was tested on different scenarios to gauge the overall effectiveness and

generalizability of the model. Our experiments showed that QU-Net could be used as

an effective region proposal system for different models. Our method ensures that only

the relevant regions in the image are processed, effectively reducing the computation

of the model by processing a smaller image region.

4.1 Setup

The development of the QU-Net network architecture and the training and test-

ing setup was done using the PyTorch framework. The model was trained on the

instance segmentation classes of the Cityscapes dataset and all the classes in the

COCO dataset. Each training procedure was run for 50 epochs. The training pa-

rameters listed in Section 5.3 were followed for both datasets. QU-Net was trained

using images of size 320×320. All the experiments used images of size 640×640 with

the image scaled-down and passed through the QU-Net network to obtain the region

proposals. The final output of the region proposal model was dilated to ensure the

objects were covered and certain surrounding regions were covered sufficiently. This

mask was then scaled up and applied to the original image.

4.2 Quantization and DCT-based approach

Initial experiments were performed to understand the overall effectiveness of the

model using different computation reduction methodologies, mainly

• Quantization of the U-Net network;
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• Using a 2D type II discrete cosine transform on the image to obtain a feature

vector in the frequency domain

DCT Input
Initial Layers
Quantized
(8bit/1bit)

Middle Layers
Quantized
(1bit/1bit)

Upsampling Layers
Quantized
(4bit/1bit)

Regions
Detected(%)

Area
Processed

FLOPs(G)

No No No No 98.36 0.3658 62.68
No No Yes No 98.23 0.3689 55.27
No No Yes Yes 98.23 0.3870 18.36
No Yes Yes Yes 97.97 0.3815 5.30
Yes Yes Yes Yes 99.66 0.9820 0.112

Table 4.1: Results of quantization and application of DCT-II transform

Each combination was trained for 50 iterations. The mAP is calculated on the

instance segmentation classes in the Cityscapes dataset.

4.2.1 Quantization based approach

Figure 4.1: The mask predictions by the fully quantized version of U-Net on the
top left (yellow is the predicted regions). The bottom row shows the result with the
mask applied to the original image.

There have been extensive studies on the effect of quantization on the overall accu-
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racy of the model. Although a lot of works have delved into the effect of quantization

on the initial and final layers of the network, very few models have implemented mod-

els with the initial layers binarized. This is important as the initial layers can serve

as a bottleneck to the rest of the network which is quantized. The main cause of this

bottleneck in a convolutional neural network is the multiply-accumulate operations

performed as part of the convolution operations. Furthermore, many models require

the results to be stored in memory so that deeper layers have access to the previous

results (ResNet, for example). This can slow down a network especially when the

memory accesses are large. Quantization is an effective method to reduce the overall

computation both in terms of memory and computational cost. It reduces the mem-

ory footprint by reducing the size of each representation where the 32-bit numbers are

represented using 1-bit numbers, thus reducing the model’s size by nearly 32 times.

The final QU-Net model size occupied a memory space of 2MB, allowing us to fit

the model parameters on various resource-constrained devices. Quantizing the model

decreases the overall computational cost as shown in Table 4.1. The computation is

measured in FLOPs which is the number of floating-point operations performed per

second. The overall computation cost of a fully quantized model was reduced by more

than ten times compared to the full-precision model. The final results show that the

quantized versions of the model show only a marginal decrease in the regions detected

with a small increase in the area of the regions proposed. The area captured is 38%

of the entire image, equivalent to a similar reduction in the image size processed by

the deeper models. The output of the quantized model is shown in 4.1.

4.2.2 DCT based approach

Discrete Cosine Transform (DCT) is a mathematical transformation method that

has been widely used in lossy compression techniques such as JPEG. DCT takes
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Figure 4.2: The Mask Predictions by the DCT based fully quantized version of
U-Net on the top left (yellow is the predicted regions). The bottom row shows the
result with the mask applied to the original image.

an image and transforms it from the spatial domain to the frequency domain. The

image is generally broken down into a set of 8x8 pixels, and a DCT transform is

applied to it. The final result is eight times smaller than the original input. Xu

et al. (2020) proposed that the DCT method was an effective way to reduce the total

computations of the network. The work proposed to compress an image using a DCT

transform and use the transformed image to extract the features required for various

image recognition tasks. Since the original image size is reduced (by a factor of 8),

the overall network complexity also reduces in proportion to it. However, on testing

the DCT approach as shown in Table 4.1, it was found that this method performed

better than the full-precision method in detecting the regions along with a lower

computational cost. However, it selected a large image area for further processing,

counter-intuitive to the suggested use-case of QU-Net. This method resulted in more

than 98% (as shown in Fig. 4.2) of the image being selected for processing compared
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to 38% of the area selected for processing by the fully quantized model.

Model Dataset Precision Recall mAP@0.5 mAP@0.5:0.95 FLOPs(G)

RN101-YOLO Cityscapes(Person) 68.7 49.5 56.4 32.5 42.29

DC based RN101-YOLO Cityscapes(Person) 66.2 45.5 51.1 27.2 27.58

RN101-YOLO + QU-Net Cityscapes(Person) 69.5 45.9 52.9 30.1 21.93

YOLOv5m Cityscapes 76.6 46.5 53.3 31.1 51.41

YOLOv5m + QU-Net Cityscapes 78.4 45.1 52 29.7 22.32

YOLOv5m COCO 69.7 57.5 62.8 43.5 51.41

YOLOv5m + QU-Net COCO 72.4 53.5 60.0 40.2 42.42

YOLOv5l COCO 72.8 61.5 66.5 47.2 115.61

YOLOv5l + QU-Net COCO 72.5 59 63.7 43.8 88.78

YOLOv5x COCO 74.9 62.7 68.4 49.5 219.02

YOLOv5x + QU-Net COCO 74.1 60.5 65.5 45.8 163.49

Table 4.2: Results for the object detection task on the Cityscapes and the COCO
datasets

4.3 Comparison with Dynamic Convolutional Networks

Dynamic Convolutions Verelst and Tuytelaars (2020) is possibly the closest work.

This work generates masks at each ResNet block that predicts the salient regions

containing important features and uses the masks generated at each layer to determine

the regions where convolutions need to be performed. The proposed method - QU-Net

- was compared to the dynamic convolutions approach in two object recognition tasks

- object detection and segmentation. Flexible YOLO Yang (2021) and PSPNet Zhao

et al. (2017) were used as the baseline models. Dynamic convolutions are currently

implemented only for ResNet backbones, requiring us to use models which specifically

were built using ResNet as their backbone or modify the models to use the ResNet

backbones. Dynamic Convolutions defines a computational budget parameter that

specifies the number of FLOPs relative to the original model that should be executed.

The budget parameter is used to determine the loss at each training step combined

with the loss of the network predictions. A budget parameter of 0.25 was chosen,

which indicated that 25% of the total FLOPs should be executed. A value of 0.25
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was chosen to ensure a fair comparison as a higher value would improve accuracy

but would result in a higher number of FLOPs. QU-Net improves upon dynamic

convolutions in both object detection and instance segmentation tasks.

4.3.1 Object Detection

The flexible YOLO Yang (2021) model is a model that is built using similar con-

cepts of YOLOv5. YOLOv5 uses a PANet backbone, while flexible YOLO supports

a variety of backbones. The ResNet variant, ResNet-101, was used with the dynamic

mask supported for the dynamic convolutions approach. The YOLO model with the

ResNet backbone is the baseline model against which dynamic convolutions and our

method are compared.

The baseline model and the baseline with the dynamic convolutions approach

were trained for 200 epochs on the CityPersons detection dataset provided on the

official site. CityPersons detection dataset is the object detection dataset for the

person class in the Cityscapes dataset. The accuracy was calculated for the best

models for each method. Our region proposal system was trained separately on the

Cityscapes dataset for 50 epochs. This region proposal method was tested by passing

the images through these networks and obtaining a mask used on the original image.

Finally, the masked image was passed through the baseline network to determine

the final accuracy. Our model achieved a computational reduction of 50% as shown

in Table 4.2. RN-101 represents the ResNet-101 backbone and DC represents the

Dynamic Convolution approach in the Table 4.2. QU-Net also outperformed the

dynamic convolution approach, both in terms of computational complexity as well as

accuracy. A mAP accuracy gain of 3% is achieved with an additional computation

reduction of 6 GFLOPs lower when compared to the dynamic convolutions.
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4.3.2 Segmentation

PSPNet is a segmentation model that achieved state-of-the-art accuracy on various

datasets when it was published. It takes into consideration both the global features

and the local features to output the final predictions. In addition, the pyramid

pooling module is implemented by PSPNet that pools the inputs at various scales

after passing them through convolution layers and up-sampling these layers. We use

this model as the baseline for the instance segmentation task.
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Figure 4.3: Results of the segmentation metrics on the instance segmentation classes
in the Cityscapes dataset

The baseline model and the baseline with the dynamic convolutions approach were

trained for 200 epochs, similar to the object detection approach. The Cityscapes

dataset was used with the instance segmentation classes included. The evaluation

metrics were calculated for the best model. The same model used for the object
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detection tasks was used for the instance segmentation task as well as it does require

retraining for different tasks. QU-net provided a better accuracy when compared to

the dynamic convolutions model as shown in Fig. 4.3. RN-101 represents the ResNet-

101 backbone, and DC represents the Dynamic Convolution approach in Table 4.3.

An mAP gain of 20% was achieved along with a reduction in computational cost

by 62% compared to the baseline model, 21% more than the dynamic convolutions

approach.

4.4 Comparison with state-of-the-art models

Our model is capable of being adapted to different models such as convolutional

neural networks and transformers. To test this generalizability, the QU-Net was

tested on the YOLOv5 and the Cascade Mask R-CNN models. YOLOv5 is the latest

generation of the YOLO family developed by Ultralytics. It is an object detection

model which has been pre-trained on the COCO dataset. Cascade Mask R-CNN

model is an object detection and instance segmentation model which uses the Swin

Transformer as the backbone. The accuracy was computed with and without the

addition of the QU-Net region proposal model for both these models.

The comparison for the YOLOv5 network is shown in Table 4.2 while Fig. 4.4)

shows the comparison for the Cascade Mask R-CNN model with the Swin transformer

backbone. CM R-CNN represents the Cascade Mask R-CNN approach IN THE 4.4

table. The results show a reduction in computation accompanied by a marginal

decrease in accuracy. The reduction in the Cityscapes dataset is larger since the

objects occupy an area that is four times lesser. For the YOLO model, a computation

reduction of 57% and 25% was achieved on the Cityscapes and the COCO datasets,

respectively, with an average accuracy reduction of 2%. When implemented on the

Cascade Mask R-CNN model, it reduced the number of FLOPs by 114 GFLOPs.
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Figure 4.4: Results of the mAP statistics for both object detection and segmentation
calculated on the COCO dataset

There was an accuracy reduction of 4.8% for object detection and 3.8% for instance

segmentation.

Although QU-Net reduced accuracy, the trade-off factor of reducing the computa-

tional cost is more significant with the average computation reduction of 1.5-6 times

compared to the average accuracy reduction of 3%. Furthermore, our model is ex-

tendable to datasets and can show good performance even when the dataset contains

many classes.

4.5 Comparison on variable-scale objects

To understand more about the model’s performance with regards to different ob-

ject scales, experiments were performed on the COCO dataset using the Cascade
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Mask R-CNN model with the Swin transformer backbone. These experiments also

helped us understand the objects being missed, which allowed us to determine the

weaknesses and future improvements of the network. The accuracy (AP) was calcu-

lated for each object size based on the following definitions for each scale -

• Small-scale - Objects occupying an area less than 32x32 pixels

• Medium-scale - Objects occupying an area between 32x32 and 96x96 pixels

• Large-scale - Objects occupying an area larger than 96x96 pixels

Model Dataset IOU(small) IOU(medium) IOU(large)

CM R-CNN COCO 0.354 0.552 0.673

CM R-CNN + QU-Net COCO 0.315 0.504 0.621

Table 4.3: Results for the object detection task for different object sizes in the
COCO dataset

The initial thought before performing the experiments was that the network misses

the small-scale objects, which led to the accuracy degradation. However, the results

for the object detection task as shown in Table 4.3 show that that the performance

for small-scale objects is close to that of the baseline, with the gap increasing as the

object size increase. The difference in accuracy for larger objects being higher can

be attributed to the fact that a custom dilation scheme is used for all the regions,

irrespective of the size. The post-processing performed by QU-Net can help in the

small and medium objects being entirely encapsulated by the image mask, but in the

case of large objects, some parts of the object may not be fully covered using a fixed

dilation method.

Table 4.4 shows the results for the instance segmentation part where the segmen-

tation results for the large objects lag behind the other two categories. It is also
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Model Dataset IOU(small) IOU(medium) IOU(large)

CM R-CNN COCO 0.304 0.482 0.608

CM R-CNN + QU-Net COCO 0.260 0.445 0.557

Table 4.4: Results for the instance segmentation task for different object sizes in
the COCO dataset

important to note that it is not sufficient to have a view of the object alone but of

the surrounding region to gain further context in specific image recognition tasks.

Thus, it can explain the results for the accuracy of the large-scale objects being lower

than the other two categories. Future work can also develop a dynamic dilation

scheme based on the region’s area to ensure the object and the surrounding area are

completely encapsulated.
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Chapter 5

BIGGER PICTURE - ARGOS

QU-Net is developed as part of a larger framework called ARGOS. ARGOS aims

to create an end-to-end framework to run deep neural networks with a high compu-

tational cost on low-power devices. In addition, ARGOS aims to reduce the overall

computation of the network by proposing the regions that contain objects, allowing

deeper models to focus on those regions. This method can help significantly lower

the computation cost of deep networks while maintaining accuracy.

ARGOS utilizes two separate systems for proposing the regions containing the

objects -

• QU-Net - QU-Net is the work detailed in this report that utilizes a binary

neural network to output the segmentation labels that can be superimposed on

the original image to obtain the masked image

• Online Knowledge Distillation - The online knowledge distillation method

uses a lighter model to predict the regions, which are iteratively improved from

the predictions by the deeper model. The final predictions are a combination

of the deeper model and the features obtained from previous frames.

ARGOS proposes two different mechanisms to cater to different scenarios. First,

the online knowledge distillation method uses an online learning method to improve

the predictions of the lighter network and reduce the computations performed by the

deeper network. It uses a motion-based region proposal system which is challenging

to extend to scenarios that involve moving cameras or movement in other parts of

the scene which may not be of interest, such as the motion of the tree leaves. On
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Figure 5.1: Overall ARGOS architecture with the binary region proposal (QU-Net)
and the online distillation part

the other hand, QU-Net brings forth the capability to adjust to dynamic situations

involving a moving camera or other moving objects that are not important to the

final predictions.

As seen in Fig. 5.1, the QU-Net is a part of ARGOS and can be used as a

plug-and-play system depending on the requirement. ARGOS seamlessly integrates

with different model structures and enables the reduction of the overall computation.

Once QU-Net predicts the regions containing the objects, ARGOS can employ two

different methods to parse this information. The first one is a bin-packing method.

After the light model predicts the regions of interest, the bounding boxes containing

the object are cropped from the image and packed (using the rectpack algorithm).

All the regions are packed into a batch of frames and sent for processing to the deeper

network. Although this reduces the total area for processing, it can lead to extraneous

areas being selected around the object.

Another method, the gather-scatter method, reduces the computation at the log-

ical blocks level. The different convolution modules are rewritten only to perform

computation at the regions of object presence. The inputs are first gathered into a

dense matrix filling all the holes where the light model did not predict any object.

Once the values are gathered, the convolution operation is performed on the dense

43



matrix. The resulting values are then scattered back to the original locations. A

convolution operation is a costly operation because of the large number of MAC op-

erations associated with it. This method can reduce the computational cost of the

overall network once the masked input is obtained by implementing custom neural

network modules to support the gather-scatter procedure.
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Chapter 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

This research presents a lightweight region detector model used as a black box

preprocessing tool for different deep models. The model was trained on both the

COCO dataset and the Cityscapes dataset. The model’s effectiveness in working

with different models such as convolutional neural networks and transformers for

different image recognition tasks is effectively displayed. Furthermore, experiments

show that QU-Net can be used to reduce the overall computation of the network by

reducing the overall area of the image processed.

6.2 Future Work

As part of the future work in extending QU-Net, three avenues can be explored

in the future -

• Building an unsupervised model - Currently, all the experiments are performed

using a QU-Net model trained on supervised data. Training the model has

a dependency on datasets that contain the segmentation labels. The main

aim is to use an attention-based mechanism to predict the regions of interest

from the feature maps of the image to remove the dependency on labeled data.

This improvement can improve the overall application of the model to various

datasets.

• Building a ’Smart’ Quantization model - QU-Net has been developed by man-

ually experimenting and reasoning the quantization schemes for the different

45



layers. It can be further explored in the realm of intelligent networks that

can predict the best possible quantization scheme for each layer based on the

accuracy maintained within a certain threshold.

• Building a Dynamic Dilation Based Model - QU-Net currently employs a stan-

dard dilation scheme for regions of all shapes, which causes issues as regions of

different sizes can require a different amount of dilation. A future enhancement

can be implementing a dynamic dilation scheme based on the model’s size, with

smaller objects being dilated less than larger ones. The post-processing per-

formed will also ensure the object, and its surrounding is captured, irrespective

of its size and reduce the area captured as the regions will fit the objects better.
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