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ABSTRACT

Multi-segment manipulators and mobile robot collectives are examples of multi-agent

robotic systems, in which each segment or robot can be considered an agent. Fundamental

motion control problems for such systems include the stabilization of one or more agents

to target configurations or trajectories while preventing inter-agent collisions, agent colli-

sions with obstacles, and deadlocks. Despite extensive research on these control problems,

there are still challenges in designing controllers that (1) are scalable with the number of

agents; (2) have theoretical guarantees on collision-free agent navigation; and (3) can be

used when the states of the agents and the environment are only partially observable. Ex-

isting centralized and distributed control architectures have limited scalability due to their

computational complexity and communication requirements, while decentralized control

architectures are often effective only under impractical assumptions that do not hold in

real-world implementations.

The main objective of this dissertation is to develop and evaluate decentralized ap-

proaches for multi-agent motion control that enable agents to use their onboard sensors

and computational resources to decide how to move through their environment, with lim-

ited or absent inter-agent communication and external supervision. Specifically, control

approaches are designed for multi-segment manipulators and mobile robot collectives to

achieve position and pose (position and orientation) stabilization, trajectory tracking, and

collision and deadlock avoidance. These control approaches are validated in both simula-

tions and physical experiments to show that they can be implemented in real-time while

remaining computationally tractable.

First, kinematic controllers are proposed for position stabilization and trajectory track-

ing control of two- or three-dimensional hyper-redundant multi-segment manipulators.

Next, robust and gradient-based feedback controllers are presented for individual holo-

nomic and nonholonomic mobile robots that achieve position stabilization, trajectory track-
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ing control, and obstacle avoidance. Then, nonlinear Model Predictive Control methods are

developed for collision-free, deadlock-free pose stabilization and trajectory tracking con-

trol of multiple nonholonomic mobile robots in known and unknown environments with

obstacles, both static and dynamic. Finally, a feedforward proportional-derivative con-

troller is defined for collision-free velocity tracking of a moving ground target by multiple

unmanned aerial vehicles.
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Chapter 1

INTRODUCTION

1.1 Problem Definition

The research in this dissertation is motivated by the need for scalable approaches to mo-

tion control of multi-agent robotic systems with potentially large numbers of agents. In par-

ticular, we consider hyper-redundant multi-segment manipulators, in which each segment

can be considered an agent, and mobile robot collectives, in which each agent is a mobile

robot. A multi-segment manipulator is composed of multiple links, which may be rigid or

soft, that are connected in a serial kinematic chain. Multi-segment manipulators have been

developed for a variety of uses, including medical procedures (e.g., steerable needles), re-

mote inspection, search-and-rescue, and space applications (Walker et al., 2016). Mobile

robots are robotic systems that are capable of moving in their environment, such as Un-

manned Aerial Vehicles (UAVs) (Mahony et al., 2012), Autonomous Underwater Vehicles

(AUVs) (Khatib et al., 2016), legged mobile robots (Radford et al., 2015), and Wheeled

Mobile Robots (WMRs) (Lynch and Park, 2017). Motion control of mobile robots is re-

quired in a wide variety of applications in robotics such as autonomous vehicle navigation,

automated warehouse operations, and package delivery.

An appropriate control architecture for a given application of a multi-agent system is

determined by the number of agents and their capabilities and the available computational

resources. In centralized control approaches for multi-agent systems, a central computa-

tional unit designs and transmits control commands for all the robots. One way to reduce

the computational complexity of the control problem for multi-agent systems is to employ

a distributed control approach. In these approaches, the control problem is decomposed
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into sub-problems, which are assigned to each agent to solve using its on-board compu-

tational resources, and neighboring agents communicate their solutions to each other to

accomplish their assigned tasks. To eliminate the requirement for a central computational

unit or inter-agent communication, decentralized control approaches have been developed

for multi-agent systems, in which each agent computes its own control inputs using only

local measurements, without communicating with other agents. These types of approaches

can be scaled to large numbers of agents that lack communication.

The specific multi-agent control problems that we address in this dissertation are po-

sition and pose stabilization, trajectory tracking, and collision and deadlock avoidance, all

of which are fundamental to instantiating motion plans for multi-agent systems. Below,

we define each of these control problems for both multi-segment manipulators and mobile

robot collectives.

Position and Pose Stabilization:

The problem of position stabilization for a multi-segment manipulator is to design control

inputs for the segments (agents) that drive the tip of the manipulator to a goal position

via mechanical interactions and communication between the segments. The problem of

position stabilization for a group of mobile robots is to design control inputs for each robot

that drive it from an initial position to a goal position. Position stabilization is a special case

of pose stabilization, in which the control inputs are designed to drive a manipulator tip to a

goal position and orientation or a group of mobile robots to goal positions and orientations.

Trajectory Tracking:

The problem of trajectory tracking control for a single mobile robot is to design control in-

puts that cause the robot to converge to a time-parameterized reference trajectory, which in

general consists of desired poses (positions and orientations) and twists (linear and angular
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velocities) that vary with time. This problem can also be defined for multiple mobile robots.

Examples of trajectory tracking controllers for such multi-agent systems include the prob-

lems of controlling the robots to follow reference trajectories of time-varying poses or to

converge to a time-varying reference velocity, e.g., that of a moving target. The trajectory

tracking problem for a multi-segment manipulator that we consider in this dissertation is to

control the segments such that the tip of the manipulator follows a reference trajectory of

time-varying positions.

Collision and Deadlock Avoidance:

In position and pose stabilization and trajectory tracking control problems for multi-agent

systems, it is often important to design the agent control inputs to prevent collisions with

one another and obstacles in the environment, in addition to achieving the stabilization and

tracking control objectives. The obstacles may be static or dynamic, and information about

their locations, geometry, and motion may be known or unknown a priori. Deadlock is

another challenging problem that occurs when an agent either stops moving or exhibits

oscillatory behavior during an attempt to complete its task while avoiding collisions, as a

consequence of becoming trapped in an equilibrium point of the system dynamics. Dead-

locks inevitably occur in multi-agent systems that use decentralized control approaches,

since the agents can only respond to local information within their sensing or communi-

cation range. In this dissertation, we address collision avoidance and deadlock avoidance

problems specifically in the context of navigation by multiple mobile robots.

1.2 Background

As described, this dissertation addresses various control problems for multi-agent robotic

systems, including position and pose stabilization, trajectory tracking, and collision and

deadlock avoidance. In this section, we provide an overview of existing approaches to

3



these problems for multi-segment manipulators and mobile robot collectives and their lim-

itations.

1.2.1 Multi-Segment Manipulators

The high-dimensional configuration space of a multi-segment robot enables it to nav-

igate and perform dexterous manipulations in unstructured environments. However, this

high degree of reconfigurability poses challenges for the modeling and control of such

robots. Dynamic control of a hyper-redundant manipulator requires an accurate dynamic

model of the robot, demanding the use of complicated models from continuum mechanics.

Therefore, kinematic control methods, which are based on simpler kinematic models of

hyper-redundant manipulators, are often used to control these manipulators.

Kinematic Modeling of Multi-Segment Manipulators

Kinematic models of hyper-redundant robots differ significantly from models of conven-

tional rigid-link robots due to their intrinsic continuous, complex, and highly compliant

deformations. Whereas rigid-link robots can change their configuration only at a finite set

of locations along their structure, hyper-redundant robots can change their configuration at

any location; this property must be reflected in the kinematic modeling procedure (Walker,

2013).

Due to their versatile motions, the continuously deformable arms of the octopus pro-

vide a source of inspiration for the design of extensible hyper-redundant robotic manipu-

lators (Grissom et al., 2006; Walker, 2013). Existing kinematic modeling approaches for

octopus-inspired hyper-redundant manipulators fall into three main categories (Burgner-

Kahrs et al., 2015): (1) Constant Curvature (CC), (2) Non-Constant Curvature (NCC)

(also called Variable-Curvature (VC)) approaches, and (3) discrete approaches. In the first

method, the robot is represented as a continuous curve in 2D or 3D space that overlaps
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the arcs of a set of circles. This method is based on the CC assumption, which permits

the use of integral representations and direct continuum methods in the kinematic mod-

eling (Webster III and Jones, 2010). Therefore, the transformation matrices along the

hyper-redundant robot backbone can be obtained from conventional techniques such as

the Denavit-Hartenberg (DH) method, homogeneous transformations, exponential coordi-

nates (screw theory), Frenet-Serret frames, and integral representations (Webster III and

Jones, 2010). The main disadvantage of this method for modeling a 3D multi-segment

manipulator is that it does not model the torsion that is contributed by each of the robot’s

segments.

The second approach compensates for limitations of the first approach; specifically,

it lacks representation singularities and does not require the simplifying CC assumption.

The NCC property of octopus-inspired hyper-redundant robots is more suited to the use of

modal approaches (Godage et al., 2011) for kinematic modeling of hyper-redundant mech-

anisms. In these approaches, a sliding frame is defined at each point along the backbone of

the hyper-redundant robot, and the position and orientation of the frame are represented as

functions of curvature vectors. Although soft continuum robots generally can deform into

shapes with variable curvature, many existing soft robots are designed to conform to the

CC assumption (Xu et al., 2008; Neppalli and Jones, 2007), which enables the derivation

of closed-form kinematics and Jacobian formulations (Webster III and Jones, 2010).

In the third approach, which was introduced in (Walker, 2013; Burgner-Kahrs et al.,

2015), curved sections of the hyper-redundant robot are approximated as rigid links, en-

abling the use of existing kinematic models of conventional rigid robots (Kang et al., 2012).

The robot is divided into multiple segments that each deform in the shape of a circular arc

(the CC assumption). Each soft curved segment is modeled as an equivalent rigid-link RPR

mechanism, which has two pairs of revolute joints located on its base and end-effector.

Each pair is connected by a prismatic joint.

5



Given the complexity of modeling torsional and shearing movements and limitations on

the mechanical design of hyper-redundant robots, most prior kinematic models of octopus-

inspired hyper-redundant robots do not reproduce the controlled twisting and shearing

motions of octopus arms (Kang et al., 2012; Zheng et al., 2012). A model of a multi-

segment hyper-redundant robot based on the anatomy of octopus arm musculature is pro-

posed in (Zheng et al., 2011), although it does not include the effects of oblique muscles

that produce torsion in the arm. A kinematic model of a hyper-redundant robot back-

bone that reproduces torsional motions is presented in (Walker, 2014), which demonstrates

that uncontrolled torsion due to gravity and other external forces can produce large tip-

tracking errors, even for relatively small values of torsion. Moreover, the kinematic models

in (Godage et al., 2011, 2012) do not include the constraint that the volume of an octopus

arm always remains constant, called the isovolumetric property (Kang et al., 2012; Kier,

2016).

Kinematic Control of Multi-Segment Manipulators

Various approaches have been developed for kinematic control of multi-segment manip-

ulators. One widely studied approach is the fitting algorithm (Hatton and Choset, 2010;

Andersson, 2006), in which the configuration of a hyper-redundant robot is fit onto a

continuously-curved backbone. This method is sufficient for robots with only universal

joints, but it is computationally intensive. In (Nho Cho et al., 2015), a modular Jacobian-

based control scheme is proposed to drive a hyper-redundant robot to a target backbone

configuration, aiming at reducing the computational load of the fitting algorithm by divid-

ing the robot into multiple modules. However, this work assumed that the desired backbone

curve configuration is given, which addresses the kinematic control of the robot in a cen-

tralized fashion. A modal-based approach is used in (Yu et al., 2018) for a path planning al-

gorithm for a multi-segment hyper-redundant robot. Furthermore, learning-based methods
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have been proposed to tackle this control problem. For example, an online reinforcement

learning algorithm is used to control an octopus-like hyper-redundant robot in (Engel et al.,

2006). This approach is implemented in simulation for a 2D model of the robot and would

not be efficient in real-time applications due to its computational complexity.

A more computationally efficient approach for kinematic control of hyper-redundant

robots is the widely-used pseudo-inverse Jacobian method (Buss, 2004; Hannan and Walker,

2003). This method utilizes the Moore-Penrose pseudoinverse of the Jacobian matrix of

a hyper-redundant robot to compute the joint velocities with minimum magnitudes that

achieve the control objective. Thus, this approach can be employed to generate local solu-

tions to the differential kinematics for each segment of a hyper-redundant robot. Moreover,

this method is compatible with conventional methods for controlling hyper-redundant rigid

robots (Soylu et al., 2007). The main drawback of this centralized method is that the hyper-

redundancy of the robot results in a large rectangular Jacobian matrix whose pseudo-inverse

is time-consuming to compute, preventing the method from being efficient in practice.

Decentralized control methods can be used to avoid the aforementioned limitations of

centralized control approaches for kinematic control (Ishimura et al., 2002), cooperative

control (Liu and Arimoto, 1998), and fault-tolerant control (Kimura et al., 1995) of multi-

segment continuum robots. Moreover, decentralized control approaches can significantly

reduce the computational complexity of the control strategy. Recently, decentralized ap-

proaches have been employed for the control of multi-segment continuum robots with soft

segments. In (Kano et al., 2017), a decentralized control mechanism with local feedback

was developed for a multi-segment millipede-like robot. In (McEvoy and Correll, 2018),

a soft multi-segment shape-changing robot was developed with integrated sensing, actu-

ation, and process modules, and a distributed controller was designed for shape control

of the robot. A reinforcement learning-based approach was proposed in (Sartoretti et al.,

2019) to control serpenoid locomotion of a snake-like continuum robot. Furthermore, a de-
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centralized method for shape control of a rigid-link continuum manipulator was proposed

in (Mochiyama et al., 1996) and verified in simulations and experiments. In (Ishimura

et al., 2002), the authors were inspired by the analogy between the heat and wave equations

to propose a decentralized control approach for hyper-redundant robots. The work (Vittor

and Willgoss, 2005) proposed a modular decentralized control approach for a general N -

segment single-DoF continuum robot that exploited its stable configurations. In (Doroud-

chi et al., 2018), a decentralized control approach was presented for a 1D soft robot arm

composed of segments with local sensing, actuation, and control, and was validated in

simulation. Novel morphological observation and decentralized control approaches were

presented in (Sadati et al., 2018) for passive shape adaptation, geometrical disturbance

rejection, and task space anisotropic stiffness regulation of a 3D-printable thermoactive

helical interface on a continuum manipulator.

1.2.2 Mobile Robot Collectives

Position and Pose Stabilization and Trajectory Tracking Control of Mobile Robots

We focus here on motion control problems for Wheeled Mobile Robots (WMRs), which

may be designed with different types of wheeled drive systems such as two-wheeled differential-

drive, car-like, and omnidirectional. The kinematics of two-wheeled and car-like robots are

described by the unicycle model (Lynch and Park, 2017). In this model, there exists a con-

straint along the direction of wheels’ axis, which is called a nonholonomic constraint and

does not allow the robot to produce controlled motions along this direction. Due to this

nonholonomic constraint, WMRs whose model conforms with the unicycle model are not

linearly controllable and cannot be stabilized to the origin by a continuous smooth time-

invariant feedback control law according to the well-known Brockett’s condition (Brockett

et al., 1983). Given the complexity of designing controllers for nonholonomic WMRs,
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there has been considerable attention to the use of holonomic WMRs such as three- or

four-wheeled omnidirectional mobile robots. The design of omnidirectional robots’ wheels

(omni and Mecanum wheels) provide these type of WMRs with the capability of moving

from any arbitrary configuration to any other arbitrary configuration (Bräunl, 2008). This

in turn enables the design of linear time-invariant control laws for omnidirectional WMRs.

A linear time-invariant state-feedback control law could be a promising control strategy

for an omnidirectional WMR only when an exact dynamical model of the robot is available

and no disturbances or sensor noise are present. However, disturbances and noise, known

as undesired exogenous inputs, can significantly affect the controlled performance of the

robot in practice. These exogenous inputs can originate from different sources, such as the

friction force between the robot’s wheels and the ground, actuator inaccuracy, and noise

in sensor measurements. Therefore, a proper control design for real-world applications

should be robust enough to reject or at least attenuate the undesired effects of exogenous

inputs. Optimal control approaches, such as H2 and H∞ controllers, employ properties of

Linear Matrix Inequalities (LMIs) in order to produce control laws with these characteris-

tics. Moreover, these optimal controllers guarantee asymptotic stability of the closed-loop

system (Duan and Yu, 2013), with a robustness margin that depends on the type and mag-

nitude of parametric uncertainties. By minimizing the H2-norm and/or H∞-norm of the

closed-loop system, these controllers reduce and potentially minimize the effects of distur-

bances and noise on the robot’s performance (Boyd et al., 1994; Caverly and Forbes, 2019).

Several control approaches that employ the properties of LMIs have been developed for the

control of WMRs, e.g. (Araújo et al., 2011; Rigatos and Siano, 2014).

In order to achieve a desired closed-loop behavior, an exact dynamic model of the

omnidirectional WMR and the environment in which it is moving is of significant impor-

tance (Vázquez and Velasco-Villa, 2008; Ren et al., 2019). Although it is possible to derive

an inexact dynamic model of the robot and environment, the resulting controller often fails
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to produce the desired performance in real-world implementations due to uncertainties in

the model. These uncertainties include inaccuracies in identification of the aforementioned

friction forces, parameters of the driving motors, the robot’s inertia matrix, and the position

of the robot’s center of mass, all of which are necessary to account for in dynamic model-

ing of the robot (Ren and Ma, 2016; Williams et al., 2002). Despite extensive research on

these control problems, there remain challenges in designing controllers that exhibit robust

performance in the presence of sensor noise and disturbances, are guaranteed to prevent

collisions with both static and dynamic obstacles, and readily scale up to multiple robots

while accommodating robot failures.

Motion control of nonholonomic WMRs is required in a wide variety of applications

in robotics. Despite substantial work on designing motion controllers for nonholonomic

WMRs, challenges still arise due to the nonholonomic constraints in the robot’s kinematic

model (Tzafestas, 2013; Brockett et al., 1983). Various controllers have been designed

to stabilize a nonholonomic WMR to a target position. Discontinuous controllers were

developed in (Tanner and Kyriakopoulos, 2002; Astolfi, 1999) for exponential position sta-

bilization. Since these controllers are based on a switching framework, noise in the robot’s

sensor measurements can result in undesired chattering along the boundaries of the switch-

ing conditions (Oriolo et al., 2002). A time-varying feedback stabilization controller was

proposed in (Samson, 1993), although it can produce transient oscillations and undesired

cusps in the trajectory of the robot as it converges to the target position (Oriolo et al.,

2002). Control approaches based on Lyapunov stability theory were developed in (Shim

and Sung, 2003; Cui et al., 2019); however, these approaches cannot produce smooth con-

tinuous time-invariant feedback laws (Oriolo et al., 2002). A feedback linearization method

was proposed in (De Luca et al., 2000) for smooth position stabilization, but this method

produces a singularity in the control law when the robot’s linear velocity is zero.

Other types of control methods have been proposed in the literature for position/pose
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stabilization of nonholonomic WMRs, including smooth time-varying controllers (Gu and

Hu, 2005), differential kinematic-based approaches (Dixon et al., 2000), and guiding vector

field (GVF) controllers (Kapitanyuk et al., 2017). However, these control methods do not

incorporate constraints on the robot’s control inputs, which are enforced by the limitations

of the robot’s actuators, and constraints on the robot’s states, which are determined by the

boundaries of the free space in which the robot can move.

Other navigation strategies for nonholonomic WMRs that do incorporate these con-

straints have been developed using Model Predictive Control (MPC) (Saska et al., 2016;

Zarei et al., 2020), which is also called Receding Horizon Control (RHC). MPC is a pow-

erful control method that can handle Multiple-Input Multiple-Output (MIMO) constrained

control problems (Rawlings et al., 1994; Camacho and Alba, 2013). Nonlinear MPC

(NMPC) methods for position stabilization of nonholonomic robots with nonlinear kine-

matic models have also been investigated (Worthmann et al., 2015a; Mehrez et al., 2020).

However, online implementations of these methods are computationally intensive, and the

transient portion of the robot’s trajectory will not be smooth if the prediction horizon is

not large enough. Geometric control techniques developed for holonomic systems, e.g. the

approaches in (Bullo and Murray, 1995; Maithripala et al., 2006), cannot be applied to non-

holonomic robots, given their no-slip velocity constraint. To address this issue, a geometric

control approach for position stabilization of noholonomic WMRs was designed in (Tayefi

and Geng, 2019) by exploiting properties of exponential coordinates and the special Eu-

clidean group SE(2). However, in implementation, the controller’s dependence on direct

measurements of the robot’s heading angle can produce chattering when this angle is near

π or −π rad. Moreover, discontinuities arise in the control law due to the use of the atan2

function.
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Collision and Deadlock Avoidance by Mobile Robots

Although collision and deadlock avoidance in multi-robot systems can be guaranteed in

centralized control approaches, these approaches have limited scalability since their com-

putational complexity increases with the number of the robots (Salimi Lafmejani and Berman,

2021; Wang et al., 2017). In distributed control approaches, inter-robot collision avoidance

can be established using inter-robot communication (Wang et al., 2017; Mehrez et al.,

2017b). However, inter-robot communication might be subject to communication delays

or losses. Thus, decentralized control approaches have been developed to eliminate the

aforementioned limitations of centralized and distributed approaches. However, existing

decentralized methods are not fully decentralized due to one or more of the following sim-

plifying assumptions: (1) the reliance of robots on inter-robot communication; (2) a priori

knowledge of the robots about the positions of obstacles in the environment, or the absence

of obstacles; and (3) dependency of the approach on a global localization system such as a

camera or motion capture system.

Obstacle Avoidance

Obstacle avoidance is a well-studied challenging problem in the control of nonholo-

nomic WMRs. Many existing controllers for obstacle avoidance by WMRs are based on

artificial potential fields (Khatib, 1985; Rimon and Koditschek, 1992). In these approaches,

the potential field is constructed to produce virtual attraction forces on the robot toward the

target position and virtual repulsion forces away from the obstacles (Pandey et al., 2017).

These methods do not ensure global convergence to the target point while avoiding obsta-

cles, since the robot can become trapped in local minima (Arslan and Koditschek, 2019).

When applied to a nonholonomic WMR, potential field-based controllers that have been

developed for holonomic robots may result in infeasible robot trajectories, since the robot

cannot necessarily move along the prescribed gradient due to its nonholonomic constraint.
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In (Lamiraux et al., 2004; Papadopoulos et al., 2002; Qu et al., 2004), methods are pro-

posed for mapping the infeasible trajectories obtained by the holonomic planner to feasible

ones for nonholonomic robots; however, the potential functions in these methods are not

strictly decreasing. To overcome this drawback, approaches that use differential flatness

(Rigatos, 2015) and iterative calculations (Lamiraux et al., 2004) have been proposed to

derive feasible collision-free trajectories for nonholonomic WMRs.

A feedback controller for obstacle avoidance by nonholonomic WMRs was designed

in (Urakubo, 2015) using a time-varying potential function with no local minima or saddle

points. This approach is subject to the aforementioned issues associated with discontinu-

ous time-varying controllers. In traditional control methods for collision-free navigation of

mobile robots, collision avoidance has been achieved by incorporating the gradient of an

artificial potential field into the controller design, e.g., navigation functions or attractive-

repulsive potential fields (Salimi Lafmejani et al., 2020b). A navigation function (Rimon

and Koditschek, 1992) guarantees the convergence of a robot to a target position, defined as

the global minimum of the function, and ensures no collisions with obstacles. The design

of navigation function-based controllers for nonholonomic WMRs was studied in (Tamba

et al., 2009; Widyotriatmo and Hong, 2011; Kowalczyk, 2019). These methods rely on

prior knowledge about the environment, including the geometry of the obstacles and the

domain. In addition to potential forces, gyroscopic forces were proposed in (Chang and

Marsden, 2003) to implement obstacle avoidance while ensuring that the robot converges

to the target position. In (Ataka et al., 2018), a reactive control method inspired by mag-

netic fields was proposed for obstacle avoidance by nonholonomic WMRs in environments

with convex obstacles. This method and the sliding mode controller in (Savkin et al., 2015)

guarantee almost global convergence to the target position, can be applied in unbounded

convex domains, and require the robot to have only local sensing capabilities, with no

prior information about the environment such as the locations and shapes of the obsta-
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cles. Other control approaches have been proposed based on the Velocity Obstacle (VO)

method (Fiorini and Shiller, 1998) and Optimal Reciprocal Collision Avoidance (ORCA)

method (Alonso-Mora et al., 2018a). Recently, several methods have been developed to

incorporate collision avoidance into the constraints of an optimization problem in order to

enforce the kinematics or dynamics of the robot, constraints on the robot’s states and actua-

tion, and the dynamics of the environment in which robots are navigating (Salimi Lafmejani

and Berman, 2021; Wang et al., 2017; Zeng et al., 2020).

Inter-Robot Collision and Deadlock Avoidance

Due to their ability to incorporate constraints on robots’ states and control inputs, MPC-

based methods have been employed for collision-free multi-robot navigation, in which col-

lision avoidance between pairs of robots is encoded as constraints on the robots’ states.

Existing MPC-based methods have been developed for a single robot (Park et al., 2012;

Rösmann et al., 2020) or for multiple robots in environments without obstacles (Wang

et al., 2017). Moreover, while centralized approaches can guarantee collision-free and

deadlock-free (Wang et al., 2017; Grover et al., 2019) multi-robot navigation, it is chal-

lenging to design an MPC-based method that is computationally tractable and has these

theoretical guarantees.

The main limitation of online implementations of MPC methods, especially for multi-

robot systems with large numbers of robots, is their high computational cost, arising from

the fact that the controller runs a constrained optimization problem over a specified hori-

zon at each time step (Borrelli et al., 2017). If sufficient computational resources are in

fact available, online MPC methods can be used to compute controllers for large-scale sys-

tems and systems with fast dynamics (Di Carlo et al., 2018; Rosolia and Ames, 2020).

The stability of an MPC method can be ensured by introducing terminal constraints or ter-

minal costs, e.g. (Keerthi and Gilbert, 1988; Azizi and Keighobadi, 2017). However, this
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increases the computational complexity of the associated optimization problem.

Additional MPC-based approaches for multi-robot navigation have been developed

which can be implemented with lower computational resources than online methods. Some

of these approaches calculate the reachable set of the robots’ states or the optimal control

solutions offline, prior to the robots’ deployment. For example, the MPC method in (Huang

et al., 2016) incorporates collision avoidance constraints in the optimization problem, and

the feasibility and stability of the method are established by computing the reachable set

of the robots’ states. However, such offline computations scale poorly with the number

of robots, and they cannot be used for real-time implementations in dynamic or uncertain

environments. Another approach to reducing the computational effort is to simplify the

control problem by formulating it as a linear MPC method (Kuwata et al., 2007; Richards

and How, 2003). This can be done by using linear models to describe the robots’ motion,

such as linear point-mass models or linearizations of the unicycle model (Mao et al., 2020;

Tallamraju et al., 2018; Wang et al., 2017). For instance, in (Mao et al., 2020), a linear

MPC is combined with the ORCA approach to synthesize navigation controllers for non-

holonomic robots by computing holonomic reference trajectories for the robots, using the

approximation that they are holonomic. However, many of these methods have been im-

plemented only in simulation, e.g. (Huang et al., 2016; Richards and How, 2003), not in

real-world experiments. Moreover, applying these methods to nonholonomic robots, which

are described by nonlinear kinematic models, will inevitably result in a tracking error be-

tween the reference trajectories and the robots’ actual trajectories.

Various software tools and techniques have been developed for speeding up the solution

of the optimization problem in an MPC method. In (Wang and Boyd, 2009), the authors

propose approaches to implementing fast MPC using online optimization with interior-

point methods. The work (Stellato et al., 2020) presents a solver for convex quadratic pro-

grams, implemented in the Operator Splitting Solver for Quadratic Programming (OSQP),
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which is typically ten times faster than the interior-point methods. However, these ap-

proaches are restricted to linear MPC problems (Mao et al., 2020; Wang et al., 2018) or

a linearized form of the original nonlinear problem (Kuhne et al., 2004; Lages and Alves,

2006). MPC methods for collision-free navigation by multiple nonholonomic WMRs in-

volve the solution of a nonlinear optimal control problem. The software packages NLopt

(Johnson, 2020) and APOPT (Hedengren et al., 2012) can be used to solve this type of prob-

lem. Moreover, the open-source software tool CasADi (Andersson et al., 2012) provides

a symbolic programming framework for formulating the optimization problem, which fur-

ther reduces the computational effort required to solve the problem and facilitates efficient

implementation of NMPCs. Another way to accelerate the solution of the optimization

problem is to define its decision variables as both the control inputs and the robot states,

an approach called the multiple-shooting method (Bock and Plitt, 1984), instead of just the

control inputs, as is done in the single-shooting method (Stella et al., 2017). The single-

shooting method can exhibit slow convergence to the optimal solution and numerical insta-

bilities (Hussein et al., 2019). The multiple-shooting method produces faster convergence

to optimal solutions than the single-shooting method (Tamimi and Li, 2009), since it lifts

the optimization problem to a higher-dimensional space. The multiple-shooting method

is employed for MPC in (Mehrez, 2017) to accelerate the convergence of the associated

optimization problem.

The need for inter-robot collision and deadlock avoidance also arises in the specific ap-

plication of tracking of a moving target, e.g. a ground WMR, by multiple unmanned aerial

vehicles (UAVs). Various control approaches have been proposed for this problem (Khan

et al., 2016), which occurs in scenarios such as (1) localization of a rover via multiple

UAVs in space applications and new planet exploration (Agha-Mohammadi and Ebadi,

2018; Cristofalo et al., 2016), (2) food and medicine delivery in response to disaster situa-

tions and search-and-rescue operations (Zohdi, 2018), (3) capturing aerial footage for films
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and sporting events (Mademlis et al., 2018), and (4) police chase of a moving suspect (Dille,

2013). In centralized control approaches, a central computational unit calculates and sends

control commands to all the UAVs. However, the required computational resources of the

central unit increase with the number of UAVs. In distributed approaches, the control prob-

lem is decomposed into multiple sub-problems, which are assigned to each UAV to solve

using its on-board computational resources. In this setting, neighboring UAVs communi-

cate their solutions to each other to plan collision-free paths. However, control methods

that require inter-robot communication can suffer from communication losses or delays in

the transmission of information between robots (Reis et al., 2013; Marcotte, 2019).

To eliminate the requirement for a central computational unit or inter-robot communi-

cation, decentralized approaches have been developed for multi-robot systems, in which

each robot computes its own control inputs using only local measurements, without com-

municating with other robots (Antonelli et al., 2014; Omidshafiei et al., 2017). However,

these approaches require UAVs to be equipped with on-board 3D LiDAR sensors or cam-

eras to detect other robots during tracking, and they necessitate a complicated controller

design to guarantee both collision-free and deadlock-free navigation of the UAVs. Further-

more, most of the existing control methods only focus on tracking and collision avoidance,

without addressing the controller’s robustness to failure of UAVs during tracking.

Safe Multi-Robot Navigation

In general, collision avoidance in multi-robot systems entails the avoidance of both

inter-robot and robot-obstacle collisions. Safe navigation of multiple mobile robots is

achieved when all the robots move through the environment while avoiding collisions with

one another and with any obstacles that are present. Inter-robot collision avoidance can

be ensured in NMPC control methods by including distance functions in the constraints

of the NMPC optimization problem, forcing each pair of robots to maintain a minimum
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distance during navigation (Salimi Lafmejani and Berman, 2021). Collision avoidance can

only be guaranteed by distance functions in a centralized framework, as described in (Sal-

imi Lafmejani and Berman, 2021). However, since safety conditions based on distance

functions do not account for obstacle dynamics when planning collision-free paths, this

method fails to stabilize the robots to target trajectories while guaranteeing safety. Alterna-

tively, Barrier Functions (BFs) and their derivatives, along with the vector field that defines

each robot’s kinematics, can be used to construct safety constraints that ensure collision

avoidance (Majd et al., 2021; Wang et al., 2017). BFs separate safe and unsafe regions in

the environment and can be included in a constrained minimization problem whose solution

minimally deviates from a nominal controller with guaranteed stability (Ames et al., 2014).

Although safe navigation of the robots is guaranteed, control methods that employ BFs do

not always guarantee deadlock avoidance (Alonso-Mora et al., 2018b). For instance, the

approach in (Wang et al., 2017) for collision-free navigation of multi-robot systems, which

uses safety barrier certificates, is not able to resolve all possible types of deadlocks since

the method is decentralized.

There are several studies that incorporate BFs into constraints or directly into the ob-

jective function of the MPC optimization to ensure collision-free navigation of mobile

robots. For instance, a safety-critical MPC method with discrete-time BF has been pre-

sented in (Zeng et al., 2020) for collision-free navigation of mobile robots in known, static

environments. The existing BF-based MPC methods analytically construct the BFs and

incorporate them into MPC design to ensure collision-free navigation, which is impracti-

cal in real-world applications. Synthesizing BFs is straightforward in a centralized control

architecture where the robots have information about the positions and geometry of the ob-

stacles. Given this information, a BF, representing the boundary of the smallest circle that

encloses an obstacle, could be defined for each obstacle. On the other hand, it would be

challenging for each robot to individually construct BFs in a decentralized manner using
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only its own sensor measurements, without such prior information. To address this chal-

lenge, several recent studies have investigated the use of neural networks (NNs) to learn

BFs offline or online in priori both known and unknown environments (Yaghoubi et al.,

2020; Long et al., 2021; Zhao et al., 2020; Saveriano and Lee, 2019; Srinivasan et al.,

2020; Li et al., 2021).

1.2.3 Motivation

Here, we highlight some major challenges associated with controller design for multi-

segment manipulators and mobile robot collectives that have motivated our research.

Multi-Segment Manipulators

The large number of degrees of freedom of hyper-redundant multi-segment manipulators

creates many challenges for conventional centralized control strategies, e.g., the large num-

ber of solutions for the Inverse Kinematic (IK) problem, which motivates the use of alterna-

tive control approaches. Existing alternative methods that use centralized control have em-

ployed numerical methods (Ananthanarayanan and Ordóñez, 2015) and the pseudo-inverse

Jacobian method (Siciliano, 1990; Salimi Lafmejani et al., 2020a). However, these ap-

proaches are limited by their high computational complexity, which make them inefficient

for real-time applications. Moreover, centralized control of a multi-segment manipulator

requires the measurement of the robot’s joint variables represented in the global coordinate

frame, which makes them unsuitable for autonomous control applications. The computa-

tional effort of implementing such controllers is likely to rise as the number of joints in

the robot increases. Moreover, existing methods for kinematic control of hyper-redundant

multi-segment robots are constrained by their computational complexity and limited to

robot configurations in 1D or 2D space.
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Mobile Robot Collectives

Many applications of multi-robot systems require mobile robots to navigate through an en-

vironment while avoiding collisions with one another and with obstacles. Despite extensive

research on this topic, there are still challenges to designing control strategies for multi-

robot navigation that are computationally efficient and have theoretical guarantees on colli-

sion avoidance and absence of deadlocks. Addressing these challenges motivates the design

of collision-free and deadlock-free multi-robot navigation strategies that are based on an

online, computationally efficient Nonlinear Model Predictive Control (NMPC) method for

pose stabilization and trajectory tracking of multiple mobile robots, which may be nonholo-

nomic (e.g., differential-drive WMRs). In addition, existing control approaches for stabi-

lizing the position of a nonholonomic robot suffer from various limitations, including (1)

chattering in the robot’s motion that results from the use of discontinuous functions in the

control law, e.g. sgn (Tanner and Kyriakopoulos, 2002), arctan (Astolfi, 1999), and atan2;

and (2) erratic or oscillatory transient robot motions, which are intrinsic characteristics of

time-varying control laws (Worthmann et al., 2015a) and pure geometric techniques (Lau-

mond et al., 1998). Furthermore, many existing control approaches for obstacle avoidance

(1) have been developed using a holonomic motion planner, which may introduce infeasi-

ble collision-free paths and cannot be implemented on nonholonomic robots (De Luca and

Oriolo, 1994); (2) do not have mathematical guarantees on performance; and (3) can result

in the robot becoming trapped in a local minimum.

1.3 Research Contributions and Organization of Dissertation

The contributions of this dissertation are the following, described in the sections listed

below.

• Section 2.1: A kinematic model of a 2D soft multi-segment manipulator and a de-
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centralized, consensus-based kinematic control method for position stabilization and

trajectory tracking control of the manipulator’s tip. The consensus protocol is defined

by considering the segments’ local measurements of their own configurations as the

shared information states, which are communicated between adjacent segments.

• Section 2.2: A kinematic model of a 3D soft multi-segment manipulator that repro-

duces all fundamental motions of an octopus arm, including elongation, shortening,

bending, and twisting, while enforcing the constant-volume property of the octopus

arm, and a pseudo-inverse Jacobian method for position stabilization and trajectory

tracking control of the manipulator’s tip.

• Section 3.1: A full-state feedback H∞-optimal controller for pose stabilization and

trajectory tracking control of a 3-wheeled omnidirectional mobile robot that is sub-

ject to frictional disturbances and sensor noise. The control approach does not require

a rigid-body dynamical model of the robot and is robust to uncertainties originating

from undesired exogenous inputs on the robot.

• Section 3.2: An approach to converting any gradient-based feedback controller de-

signed for a holonomic robot into a controller that can be implemented on a non-

holonomic robot for position stabilization and obstacle avoidance. The controller

produces a smooth robot trajectory for either forward or backward driving to the

target position.

• Section 3.3: A nonlinear MPC method for collision-free and deadlock-free pose sta-

bilization of multiple nonholonomic mobile robots. The method is executable on-

line, which enables real-time implementation, and the computational complexity of

the nonlinear MPC is significantly reduced by designing the associated optimization

problem without stabilizing terminal constraints or terminal costs.
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• Section 3.4: A nonlinear MPC-based method for collision-free, deadlock-free trajec-

tory tracking control of multiple nonholonomic mobile robots in environments with

known obstacles, using barrier functions corresponding to the obstacles to ensure

safe navigation. The method is executable online and is designed without stabilizing

terminal constraints or terminal costs in the associated optimization problem.

• Section 3.5: A decentralized nonlinear MPC-based control method for collision-

free pose stabilization of multiple nonholonomic mobile robots, which lack inter-

robot communication, in unknown environments with static and/or non-aggressive

dynamic obstacles. To ensure safe navigation, the method employs barrier functions

that each robot learns in real-time from its on-board LiDAR and odometry measure-

ments using a Deep Neural Network.

• Section 3.6: A feedforward proportional-derivative (PD) controller for collision-free

velocity tracking of a moving ground target by multiple unmanned aerial vehicles

(UAVs), which lack inter-robot communication and on-board sensing for collision

avoidance. The controller drives the UAVs to a fixed formation above the target and

is robust to UAV failures.

Chapter 4 concludes with a review of our contributions and possible directions for fu-

ture research.
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Chapter 2

POSITION STABILIZATION AND TRAJECTORY TRACKING CONTROL OF

MULTI-SEGMENT MANIPULATORS

This chapter describes research published in Salimi Lafmejani et al. (2020e) (Section

2.1) and Salimi Lafmejani et al. (2020a) (Section 2.2).

2.1 Position Stabilization and Trajectory Tracking Control of 2D Multi-Segment

Manipulators

In this section, we propose a novel decentralized approach to kinematic control of soft

segmented continuum robots based on a consensus strategy. The robots under considera-

tion deform in a plane according to a multi-segment Piecewise Constant Curvature (PCC)

kinematic model in which each segment is represented as an equivalent rigid-link Revolute-

Prismatic-Revolute (RPR) mechanism. In our approach, we assume that each segment of

the robot is equipped with sensors to measure joint variables in its local coordinate frame

and can communicate with its two adjacent segments. Our consensus-based decentralized

control strategy provides an alternative to conventional control methods, which solve the

inverse kinematic problem by using computationally intensive numerical methods to cal-

culate the robot’s Jacobian matrix at each time instant. We investigate the stability and

convergence properties of proposed controllers for position regulation and trajectory track-

ing tasks and provide theoretical guarantees on the controllers’ performance. We evaluate

the controllers in simulation for scenarios in which the robot’s tip must reach a certain

position or follow a specified trajectory. We compare the performance of the position reg-

ulator for different controller gains, and we find that a simulated 15-link robot can track a

complex reference trajectory with an average root-mean-square error of only 0.16% of the
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Figure 2.1: Schematic of a Continuum Robot Composed of Soft Segments, Along with its

Equivalent Model as a Serial configuration of multiple rigid-link RPR mechanisms. Local

coordinate frames (Frenet-Serret frames (Webster III and Jones, 2010)) are defined at the

two ends of each soft segment.

2.1.1 Rigid-Link Model of Soft Continuum Robot

The kinematics of the soft continuum robot are discussed in this section. The robot is

composed of a set of segments connected to each other in a series configuration. The soft

segments of the robot are replaced by equivalent rigid-link RPR mechanisms (Della Santina

et al., 2018).

Figure 2.1 depicts a soft continuum robot with soft segments, which is equivalently

modeled with multiple rigid-link RPR mechanisms connected in a series. To clarify the

details of the model, Figs. 2.2 and 2.3 show the soft segmented robot and its equivalent

rigid-link robot, respectively. Figure 2.2 illustrates a planar segmented soft continuum

robot with N bending segments, each conforming to the constant-curvature (CC) assump-
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tion. The kinematic model of the continuum robot is defined by the kinematic equations of

the multi-segment N -RPR rigid-link robot in Fig. 2.3. Since we assume that each segment

of the robot is equipped with local sensors and actuators, it is able to measure the position

of its prismatic joint and relative rotations of its revolute joints in its local coordinate frame.

Furthermore, the i-th segment can communicate these local measurements to the adjacent

(i− 1)-th and (i+ 1)-th segments, as shown in Fig. 2.2.

As shown in Fig. 2.1, the angular difference between the tangential local coordinate

frames attached to the base and end-effector of the i-th segment and the orientation of the

equivalent RPR rigid-link mechanism is defined as αi

2
. Furthermore, we denote the arc

length of the i-th soft segment by Li. Accordingly, as in (Della Santina et al., 2018), the

position vector that is aligned with the prismatic joint of the i-th segment can be represented

in the segment’s local coordinate frame as the following vector ip⃗i:

ip⃗i =

[
Li

sin(αi)

αi

Li
1− cos(αi)

αi

0

]T

. (2.1)

Thus, given the arc parameters Li and αi of each soft segment, the position vector ip⃗i of

the equivalent RPR mechanism is readily obtained.

2.1.2 Controller Design

In this section, we propose a novel decentralized method for kinematic control of soft

segmented continuum robots. This control method utilizes a consensus strategy among the

segments of the robot, which can communicate measurements to each other according to a

chain network topology.

Position Regulation Controller

Here, we define a control law that drives the tip of the robot to a target 3D position in the

global frame G, denoted by Gp⃗d. We assume that the end-effector segment of the robot,
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Figure 2.2: Schematic of Information Propagation Between Segments of the Continuum

Robot. (a) Each Segment i ∈ {1, ..., N} Communicates with its Adjacent Segment(s) in

Order to Share its Measurements of the Position Vector ip⃗i and Rotation Matrix i−1R⃗i,

which are Represented in its Local Coordinate Frame. (b) Graph of the Robot’s Com-

munication Network, where Each Blue Node Represents a Segment and Each Red Edge

Represents a Bidirectional Communication Channel.

segment N , knows the target position Gp⃗d and is equipped with a localization sensor that

can measure Gp⃗tip, the 3D position of the tip of the segment in the global frame. The other

segments do not have information about Gp⃗d. Segment N can be considered a “leader”

agent in that it knows Gp⃗d and moves toward this position, whereas the other segments are

“follower” agents that reconfigure themselves in a coordinated fashion such that the tip of

the robot is regulated to Gp⃗d.

The configuration of each rigid segment can be characterized by the joint variables that

describe its linear and angular displacements, which are denoted by pi ∈ R and θi ∈ R,
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Figure 2.3: Illustration of an Equivalent N -RPR Rigid-Link Model for the Soft Contin-

uum Robot in Fig. 2.2. The x-Axis of Each Local Coordinate Frame is Aligned with the

Corresponding Prismatic Joint.

respectively. Given the joint variables, the local position vector of the prismatic joint is

written as ip⃗i = pi
ie⃗i, where ie⃗i ∈ R3 is the unit vector along the prismatic joint expressed

in the segment’s local frame. The angular velocity of the segment in the global frame can

be written as ω⃗i = [0 0 θ̇i]
T ∈ R3. We denote the vector of generalized coordinates of the

i-th segment as q⃗i ∈ R6, which is given by:

q⃗i = [ ip⃗Ti 0 0 θi ]
T . (2.2)

The position regulation controller is defined as:

˙⃗qi = G⃗†
i

(
−
∑
j∈Ni

(ip⃗i − iR⃗j
j p⃗j) + B⃗iE⃗

)
. (2.3)

The components of the controller are defined as follows. The matrix G⃗†
i denotes the

Moore-Penrose inverse of G⃗i ∈ R3×6, which is given by:

G⃗i = [ I⃗3×3 − i ˆ⃗pi ], (2.4)
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where i ˆ⃗pi ∈ R3×3 is the skew-symmetric matrix representation of ip⃗i. Defining the graph

G = (V , E), where the vertex set V = {1, ..., N} contains the segment identities and the

edge set E contains pairs of segments that can communicate with each other, also referred

to as neighboring segments, the set Ni is defined as the neighbors of the i-th segment. The

matrix iR⃗j ∈ R3×3 is the rotation matrix from the local coordinate system of segment j to

that of segment i. The matrix B⃗i ∈ R3×3 is defined as:

B⃗i =


0⃗3×3, i = 1, 2, . . . , N − 1,

−GR⃗−1
N K, i = N,

(2.5)

whereK is a tunable positive gain and GR⃗N is the rotation matrix from the local coordinate

system of segment N to the global frame. The vector E⃗ ∈ R3 is defined as the error

between the position of the tip of the robot and its target position, both in the global frame:

E⃗ = Gp⃗tip − Gp⃗d. (2.6)

Remark 2.1.1. The controller in Eq. (2.3) is completely decentralized, in the sense that

each segment only requires measurements of its own configuration and the configurations

of its neighboring segments. Note that the controller requires only segment N to measure

a position error in the global frame (the error vector E⃗).

Trajectory Tracking Controller

We define a reference trajectory for the robot’s tip in the global frame and discretize it into a

set of m points. Adopting a switching strategy, we use the decentralized position regulator

in Eq. (2.3) to drive the tip of the robot to a position within a radius γ ∈ R>0 of each point,

which represents the acceptable tracking error.

The set of target points along the reference trajectory is denoted by P and is defined as

P =
{

Gp⃗
(1)
d , Gp⃗

(2)
d , . . . , Gp⃗

(m)
d

}
, (2.7)
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where Gp⃗
(1)
d is the position of the start point on the trajectory, and Gp⃗

(m)
d is the position

of the end point. The other elements of P are intermediate points along the trajectory. A

γ-neighborhood of point Gp⃗
(l)
d is defined as a ball of radius γ centered at this point and is

denoted by B(l)
γ . The controller first drives the position of the robot’s tip toward the start

point Gp⃗
(1)
d . Once the tip enters the ball B(1)

γ , the controller redefines the target point as

the second point, Gp⃗
(2)
d , and drives the tip toward this point until it enters the ball B(2)

γ .

This procedure is repeated for each successive point in P until the robot’s tip enters the

γ-neighborhood of Gp⃗
(m)
d . This switching control strategy can be written as:

˙⃗qi =


G⃗†

i(−
∑

j∈Ni
(ip⃗i−iR⃗j

j p⃗j)+B⃗iE⃗
(l)), Gp⃗tip /∈B

(l)
γ

G⃗†
i(−

∑
j∈Ni

(ip⃗i−iR⃗j
j p⃗j)+B⃗iE⃗

(l+1)), Gp⃗tip∈B
(l)
γ

(2.8)

where l ∈ {1, 2. . . . ,m}, and E⃗(l) is the vector of the error between the robot’s tip and the

l-th point on the reference trajectory:

E⃗(l) = Gp⃗tip − Gp⃗
(l)
d . (2.9)

Note that from Eq. (2.5), segment N is the only segment that requires E⃗(l) in its controller,

and the term B⃗iE⃗
(l) is the zero vector for the other segments.

2.1.3 Stability and Convergence Analysis

In this section, we analyze the motion of the robot with the proposed controller. We

first study the reconfiguration of each individual segment, and then investigate the stability

and convergence properties of the closed-loop system that describes the kinematics of the

robot’s tip.

Lemma 2.1.2. Let Gp⃗i denote the local position vector ip⃗i of segment i in the global frame

G. The decentralized control law in Eq. (2.3) establishes a consensus protocol for the

vectors Gp⃗i, with an input term defined by the error E⃗ between the robot’s tip and the

target position.
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Proof. The vector Gp⃗i can be written as

Gp⃗i =
GR⃗i

ip⃗i, (2.10)

and its time derivative is given by

G ˙⃗pi =
GR⃗i

i ˙⃗pi +
G ˙⃗
Ri

ip⃗i. (2.11)

The time derivative of the rotation matrix is G ˙⃗
Ri = GR⃗i

i ˆ⃗ωi, where i ˆ⃗ωi ∈ SO(3) is the

skew-symmetric matrix representation of the i-th segment’s angular velocity expressed in

its local coordinate system (Murray, 2017). Hence, the second term in the right-hand side

of Eq. (2.11) can be written as G ˙⃗
Ri

ip⃗i =
GR⃗i

i ˆ⃗ωi
ip⃗i. Moreover, we know that

i ˆ⃗ωi
ip⃗i =

iω⃗i × ip⃗i = −ip⃗i × iω⃗i = −i ˆ⃗pi
iω⃗i. (2.12)

Thus, Eq. (2.11) can be rewritten as

G ˙⃗pi =
GR⃗i

(
i ˙⃗pi − i ˆ⃗pi

iω⃗i

)
, (2.13)

and from Eq. (2.2) and Eq. (2.4), it can be simplified to

G ˙⃗pi =
GR⃗iG⃗i

˙⃗qi. (2.14)

Furthermore, substituting the control law in Eq. (2.3) for ˙⃗qi, we obtain

G ˙⃗pi =
GR⃗iG⃗iG⃗

†
i

(
−
∑
j∈Ni

(ip⃗i − iR⃗j
j p⃗j) + B⃗iE⃗

)
. (2.15)

Using the identity G⃗iG⃗
†
i = I⃗ and the fact that GR⃗i

ip⃗i =
Gp⃗i, Eq. (2.15) is reduced to

G ˙⃗pi = −
∑
j∈Ni

(Gp⃗i − Gp⃗j) +
GR⃗iB⃗iE⃗. (2.16)

Equation (2.16) is in the form of a consensus protocol on Gp⃗i with an input term GR⃗iB⃗iE⃗

(Olfati-Saber et al., 2007). If we also define ⃗⃗P ∈ R3N and ⃗⃗
B ∈ R3N×3 as

⃗⃗
P = [Gp⃗T1

Gp⃗T2 . . . Gp⃗TN ]
T , (2.17)

⃗⃗
B = [(GR⃗1B⃗1)

T (GR⃗2B⃗2)
T . . . (GR⃗N B⃗N)

T ]T , (2.18)
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we can write the concatenated representation of Eq. (2.16) for all segments as

˙⃗
P⃗ = −L⃗ ⃗⃗P +

⃗⃗
BE⃗, (2.19)

where L⃗ ∈ R3N×3N is defined as

L⃗ = L⃗⊗ I⃗3×3, (2.20)

in which L⃗ ∈ RN×N is the Laplacian matrix of the graph associated with the commu-

nication network of the robot’s segments, illustrated in Fig. 2.2b, and ⊗ represents the

Kronecker product. Hence, Eq. (2.19) is a linear consensus system (Saber and Murray,

2003) driven by the signal E⃗.

The next theorem characterizes the stability of the closed-loop system.

Theorem 2.1.3. The decentralized control law in Eq. (2.3) ensures that the position of the

robot’s tip, Gp⃗tip, is globally exponentially stable to the target position, Gp⃗d. Moreover, the

magnitudes of all the position vectors Gp⃗i converge to a common value, and the directions

of these vectors converge to the direction of Gp⃗d.

Proof. The position of the robot’s tip in the global frame can be written as the vector sum

of all position vectors Gp⃗i (see Fig. 2.3):

Gp⃗tip =
N∑
i=1

Gp⃗i. (2.21)

Taking the time derivative of this equation and following the same procedure that was used

to obtain Eq. (2.10)–(2.16), the velocity of the robot’s tip is derived as:

G ˙⃗ptip =
N∑
i=1

(
−
∑
j∈Ni

(Gp⃗i − Gp⃗j)

)
+

N∑
i=1

GR⃗iB⃗iE⃗. (2.22)

We can confirm that the double summation on the right-hand side of Eq. (2.22) is equal to

the sum of the rows of the product −L⃗ ⃗⃗P . This, in turn, can be written as the product of the

row sum of −L⃗ and the matrix ⃗⃗
P . We know that the sum of the rows of a Laplacian matrix
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is a zero row vector (Olfati-Saber et al., 2007). Invoking Lemma 2.1.2 and considering Eq.

(2.20), we can conclude that the sum of the rows of L⃗ is a zero row vector, and consequently,

the double summation in Eq. (2.22) is zero. Also, from the definition of the matrix B⃗i in

Eq. (2.5), the second summation is equal to I⃗ . Therefore, Eq. (2.22) is reduced to

G ˙⃗ptip = −KE⃗. (2.23)

Using the fact that the target position is fixed, i.e. G ˙⃗pd = 0⃗, Eq. (2.23) can be rewritten as

˙⃗
E +KE⃗ = 0⃗, (2.24)

which is globally exponentially stable to the equilibrium, i.e. E⃗ = 0⃗, for any positive K.

Furthermore, the system in Eq. (2.19) is a linear time-invariant system and can therefore

be solved for ⃗⃗P as follows (Williams and Lawrence, 2007):

⃗⃗
P (t) =

⃗⃗
P0e

−L⃗t +

∫ t

0

e−L⃗(t−τ) ⃗⃗BE⃗(τ)dτ, (2.25)

where P⃗0 is the matrix P⃗ at the initial time, t = 0. We can also solve Eq. (2.24) for E⃗ as

E⃗(t) = E⃗0e
−Kt, (2.26)

where E⃗0 is the initial error at time t = 0. Substituting the solution for E⃗(t) from Eq.

(2.26) into Eq. (2.25), and using spectral factorization of the matrix L⃗ as in (Mesbahi and

Egerstedt, 2010), Eq. (2.25) can be rewritten as:

P⃗ (t) =
3N∑
j=1

e−λjt(u⃗Tj P⃗0)u⃗j

+

∫ t

0

(
3N∑
j=1

e−λj(t−τ)(u⃗Tj B⃗E⃗0e
−Kτ )u⃗j

)
dτ, (2.27)

where λj ∈ R≥0 for j ∈ {1, 2, . . . , 3N} are the eigenvalues of L⃗ ordered from small-

est (λ1) to largest (λ3N ), and u⃗j ∈ R3N are their corresponding normalized eigenvectors.
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Calculating the integral term, we obtain the following expression1

P⃗ (t) =
3N∑
j=1

e−λjt
(
u⃗Tj P⃗0

)
u⃗j

+
3N∑
j=1

(
e−Kt − e−λjt

)
λj −K

(
u⃗Tj B⃗E⃗0

)
u⃗j. (2.28)

We know that the first eigenvalue of the Laplacian matrix L⃗ is λ1(L⃗) = 0, and the other

eigenvalues are strictly positive (Olfati-Saber et al., 2007). Consequently, the first three

eigenvalues of L⃗ are λ1(L⃗), λ2(L⃗), λ3(L⃗) = 0, and the 3N − 3 remaining eigenvalues are

strictly positive. Thus, we can write

lim
t→∞

P⃗ (t) =
3∑

j=1

(
u⃗Tj P⃗0

)
u⃗j +

1

K

3∑
j=1

(
u⃗Tj B⃗E⃗0

)
u⃗j, (2.29)

since the exponential terms associated with the positive eigenvalues converge to zero as

t → ∞. Also, we can confirm that the three normalized eigenvectors associated with the

three zero eigenvalues of L⃗ are:

u⃗1 =
1√
N
[1 0 0 1 0 0 . . . 1 0 0]T ,

u⃗2 =
1√
N
[0 1 0 0 1 0 . . . 0 1 0]T ,

u⃗3 =
1√
N
[0 0 1 0 0 1 . . . 0 0 1]T . (2.30)

Substituting these vectors into Eq. (2.29), and using the definitions in Eq. (2.17) and Eq.

(2.18), Eq. (2.29) can be rewritten as

lim
t→∞

P⃗ (t) = 1⃗N ⊗

(
1

N

N∑
i=1

Gp⃗i(0)

)
+ 1⃗N ⊗

(
− 1

N
E⃗0

)
, (2.31)

1A special case is when K is set equal to a positive eigenvalue λj of L⃗ (j > 3). Then the term

e−λjte(λj−K)τ in Eq. (2.27) equals e−λjte0 = e−λjt and integrates to
∫ t

0
e−λjtdτ = te−λjt in the sec-

ond summation of Eq. (2.28), with no denominator (λj −K) in this summation. The term te−λjt converges

to zero as t→∞, and thus Eq. (2.29) still holds true.
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where 1⃗N ∈ RN is the vector of all ones, and Gp⃗i(0) denotes the initial value of Gp⃗i at time

t = 0. Finally, using Eq. (2.21) and the definition of the error, E⃗ = Gp⃗tip−Gp⃗d, we obtain:

lim
t→∞

P⃗ (t) =
1

N

(
1⃗N ⊗ Gp⃗d

)
, (2.32)

which means that

lim
t→∞

Gp⃗i(t) =
1

N

(
Gp⃗d
)
, ∀ i ∈ {1, 2, . . . , N} . (2.33)

This shows that the Gp⃗i vectors all converge to the same magnitude and direction, and this

direction is that of the vector Gp⃗d.

Note that the final configuration of the robot, which is a straight line, is not singular,

since the prismatic joints can still move the end-effector along that line, and the revolute

joints can still rotate the segments of the robot.

This section concludes with the following corollary, which characterizes the stability

of the switching controller proposed for trajectory tracking. The corollary can be derived

from the result that the closed-loop system described by Eq. (2.24) is globally exponentially

stable.

Corollary 2.1.4. The decentralized switching controller in Eq. (2.8) drives the tip of the

robot to a γ-neighborhood of each point in the set P , defined in Eq. (2.7), in finite time if γ

is chosen sufficiently small.

Using the control law in Eq. (2.8), the trajectory tracking task is performed as m po-

sition regulation tasks, which are indexed by l and executed sequentially from l = 1 to

l = m. We proved that the equation for the closed-loop system in a position regulation task

is given by Eq. (2.24). Therefore, the closed-loop system for the trajectory tracking task

behaves like a switching system, in which each subsystem is:

˙⃗
E(l) +KE⃗(l) = 0⃗, l = 1, 2, . . . ,m (2.34)
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with E⃗(l) defined in Eq. (2.9). Equation (2.34) is linear and so can be solved for E⃗(l) as:

E⃗(l)(t) = E⃗
(l)
tl
e−K(t−tl), ∀ t ∈ [tl, tl+1), (2.35)

where tl is the time at which subsystem l becomes active, and E⃗(l)
tl

denotes the value of

E⃗(l)(t) at time t = tl. This solution converges exponentially to the target equilibrium

E⃗(l) = 0⃗, which implies that the robot’s tip will converge in finite time to a neighborhood

of the desired point Gp⃗
(l)
d and that the trajectories of the tip are bounded. Equation (2.35)

also holds for the norm of the error:

||E⃗(l)(t)||= ||E⃗(l)
tl
||e−K(t−tl), ∀ t ∈ [tl, tl+1). (2.36)

The dwell time for the l-th subsystem to reach B(l)
γ is defined as Tl := tl − tl−1 (Liberzon,

2003), which can be computed by setting ||E⃗(l)(t)||= γ in Eq. (2.36) and solving this

equation for Tl:

Tl = −
1

K
log

(
γ

||E⃗(l)
tl
||

)
, l = 1, ...,m. (2.37)

This equation shows that the parameter γ and the intermediate points of the reference tra-

jectory must be chosen such that γ ≤ ||E⃗(l)
tl
|| for each subsystem. Otherwise, tl < tl−1,

which implies the stability of the system backward in time, and consequently, its instability

forward in time.

2.1.4 Simulation Results

In this section, we present and discuss the performance of the proposed controllers in

simulation. We implemented the position regulation controller in Eq. (2.3) for the rigid-link

equivalent of a 5-segment continuum robot, and we implemented the trajectory tracking

controller in Eq. (2.8) for the rigid-link equivalent of a 15-segment continuum robot. We

set γ = 0.01 cm in all simulations.

The position regulation control problem was simulated for two different values of the

controller gain K. From Eq. (2.26), it is evident that the gain K determines the rate
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Figure 2.4: Length of Prismatic Joints Over Time for a Simulated 5-Link Serial Robot,

Equivalent to a 5-Segment Soft Continuum Robot, that is Controlled by the Position Reg-

ulator (2.3) with Gain K = 0.0382.

Figure 2.5: Length of Prismatic Joints Over Time for a Simulated 5-Link Serial Robot,

Equivalent to a 5-Segment Soft Continuum Robot, that is Controlled by the Position Reg-

ulator (2.3) with Gain K = 0.764.

at which the position of the robot’s tip converges to the target position. Equation (2.28)

shows that this gain also affects the convergence rate of consensus among the Gp⃗i vectors.
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𝐾 = 0.0382

𝐾 = 0.764

Figure 2.6: Plots of Tracking Error ||E⃗(t)||2 Over Time During the Position Regulator

Simulations. The Gain K = 0.764 Results in Faster Convergence of the Robot’s Tip to the

Target Point than the Gain K = 0.0382.

Moreover, we know that the smallest positive eigenvalue of the Laplacian matrix, λ2(L⃗),

determines the convergence rate of a consensus system (Olfati-Saber et al., 2007). We con-

sider a 5-segment continuum robot for which λ2(L⃗) = 0.382, and we simulate its motion

under the position regulation controller for cases where K > λ2(L⃗) and K < λ2(L⃗).

In the first simulation of the position regulator, we set K = 0.0382. Figure 2.4 shows

that the convergence rate of consensus among the lengths of the five prismatic joints to their

steady-state value is relatively slow. Since K < λ2(L⃗) in this case, K governs the asymp-

totic convergence rate of the consensus dynamics. The rate of convergence of the tracking

error to zero is also determined by the value of K, and the red plot in Fig. 2.6 confirms

that the robot’s tip converges slowly to the target position. Figure 2.5 plots snapshots of the

robot’s configuration over time and illustrates that the links of the robot undergo similar

changes in their lengths and orientations as the robot’s tip gradually approaches the target

point.

In the second simulation of the position regulator, we set K = 0.764. The green plot
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Initial configuration

Intermediate configuration

Final configuration

Target point

t = 0 s

t = 155 s

Prismatic joint

Revolute joint

Figure 2.7: Configuration Over Time of the Simulated 5-Link Robot when Controlled by

the Position Regulator (2.3) with Gain K = 0.0382. The Robot Reconfigures from its

Initial Configuration to Approach the Target Point with its Tip. Intermediate Configurations

are Shown in Gray.

in Fig. 2.6 shows that the robot’s tip converges very quickly to the target position. Since

λ2(L⃗) < K in this case, λ2(L⃗) = 0.382 governs the asymptotic convergence rate of the

consensus dynamics. As Fig. 2.5 shows, the fact that λ2(L⃗) > 0.0382 causes the prismatic

joints to converge to their common steady-state value more quickly than in the first simula-

tion, in whichK = 0.0382. However, sinceK = 0.764 governs the convergence rate of the

tracking error and λ2(L⃗) < 0.764, the tracking error in Fig. 2.6 converges at a faster rate

than the consensus dynamics in Fig. 2.5. As a result, the lengths of the prismatic joints are

still changing significantly, two with large overshoots (see Fig. 2.5), even after the robot’s

tip enters the γ-neighborhood of the target position. The snapshots in Fig. 2.8 illustrate the

disparities in the links’ lengths and orientations during the robot’s quick reconfiguration to
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Initial configuration

Intermediate configuration

Final configuration

Target point

t = 0 s

t = 6.1 s

Prismatic joint

Revolute joint

Figure 2.8: Configuration Over Time of the Simulated 5-Link Robot when Controlled by

the Position Regulator (2.3) with Gain K = 0.764. The Robot Reconfigures from its Initial

Configuration to Approach the Target Point with its Tip. Intermediate Configurations are

Shown in Gray.

reach the target point. The fifth link undergoes a large elongation, which could exceed its

prismatic joint limit in practice.

The simulation results for the position regulator suggest qualitative guidelines for se-

lecting the gain K in the controller. K should be sufficiently large to drive the robot’s

tip quickly to the target point, but not much larger than λ2(L⃗) if it is important to main-

tain fairly consistent changes in all link lengths and orientations throughout the robot’s

reconfiguration. For the trajectory tracking problem, we simulated a 15-link robot and de-

fined the reference trajectory as the sequence of letters “ASU.” Figure 2.9 shows snapshots

of the robot’s configuration over time as its tip tracks a sequence of points defined along

the reference trajectory. We evaluated the trajectory-tracking performance of the robot by
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computing the average root-mean-square error (RMSE) between the reference trajectory

and the trajectory of the robot’s tip. This value is 0.024 cm, which is 0.16% of the ini-

tial length of the robot (15 cm). This very low error demonstrates the effectiveness of the

control strategy.

Initial configuration

Final configuration

End point

Start

point

Tracked path

Desired path

Intermediate 

configuration

t = 0 s

t = 52 s

t = 89 s

t = 126 s

t = 144 s

t = 0 s

t = 173 s

t = 184 s

t = 206 s

t = 221 s

t = 274 s

t = 319 s

t = 343 s

Tracking direction

Figure 2.9: Configuration Over Time of a Simulated 15-Link Robot, Equivalent to a

15-Segment Soft Continuum Robot, when Controlled by the Trajectory Tracking Con-

troller (2.8) with GainK = 0.25. The Robot Reconfigures such that its Tip Moves Between

a Series of Points Defined Along a Trajectory that Spells ASU. Intermediate Configurations

and Their Corresponding Times Are Shown in Gray. The Average RMSE of Tracking is

0.024 cm.

2.1.5 Discussion

We proposed a decentralized approach to kinematic control of soft segmented contin-

uum robots that deform within a plane. The kinematics of the soft segments comply with

the CC condition assumption, which enables us to model each segment as an equivalent
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rigid-link RPR mechanism. Decentralized controllers were defined for position regulation

and trajectory tracking objectives, utilizing a consensus protocol in which adjacent seg-

ments share local measurements of changes in the length and orientation of their equivalent

rigid link. The controllers were validated with simulations of 5-link and 15-link robots, and

the effect of the controller gain was investigated.

2.2 Trajectory Tracking Control of 3D Multi-Segment Manipulators

In this section, we address the kinematic modeling and control of hyper-redundant

robots inspired by the octopus arm. We propose a discrete multi-segment model in which

each segment is a 6-DoF Gough-Stewart parallel platform. Our model is novel in that it can

reproduce all generic motions of an octopus arm, including elongation, shortening, bend-

ing, and particularly twisting, which is usually not included in such models, while enforcing

the constant-volume property of the octopus arm. We use an approach that is inspired by the

unique decentralized nervous system of the octopus arm to overcome challenges in solv-

ing the Inverse Kinematics (IK) problem, including the large number of solutions for this

problem and the impracticality of numerical methods for real-time applications. We apply

the pseudo-inverse Jacobian method to design a kinematic controller that drives the tip of

the hyper-redundant robot to track a reference trajectory. We evaluate our proposed model

and controller in simulation for a variety of 3D reference trajectories: a straight line, an

ellipse, a sinusoidal path, and trajectories that emulate octopus-like reaching and fetching

movements. The tip of the simulated hyper-redundant robot tracks the reference trajectories

with average root-mean-square errors that are less than 0.3% of the robot’s initial length,

demonstrating the effectiveness of our modeling and control approaches.
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2.2.1 Kinematic Model of Hyper-Redundant Robot

In this section, we derive the kinematic model of an octopus-inspired multi-segment

hyper-redundant robot in which each segment is a 6-DoF Gough-Stewart (GS) platform

as described in (Salimi Lafmejani et al., 2018). We first derive the kinematic model of a

single-segment 6-DoF GS platform without considering the active prismatic joints on its

base and end-effector. Then, we include a model of the radial prismatic joints as kine-

matic constraints that maintain the isovolumetric property. As in (Salimi Lafmejani et al.,

2018), we represent the kinematics of the entire hyper-redundant robot by generalizing the

kinematic equations of a single-segment 6-DoF GS platform to a multi-segment hyper-

redundant robot. Moreover, we describe the FK and IK problems for our proposed model

of the multi-segment hyper-redundant robot.

Gough-Stewart Platform Model of Robot

We model each segment of the hyper-redundant robot as a 6-DoF UPS Gough-Stewart

(GS) platform (Salimi Lafmejani et al., 2018), shown in Fig. 2.10. This 6-DoF parallel

platform consists of twelve active prismatic joints, six passive universal joints, and six

passive spherical joints. Six longitudinal prismatic joints connect the universal joints on

the base platform to the spherical joints on the end-effector. The radial prismatic joints at

the base and the end-effector of each segment are rotated 120◦ with respect to the local

coordinate frame, as shown in Fig. 2.10.

The 6-DoF GS platform in Fig. 2.10 can generate all possible reconfigurations of each

segment of the hyper-redundant robot (Salimi Lafmejani et al., 2017; Sharifzadeh et al.,

2018); i.e., it can produce three rotations around the segment’s Xa, Ya, and Za axes and

three translations along these axes. Pure elongations and contractions of the segment along

the Za axis are generated when all six longitudinal prismatic joints lengthen or shorten
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Figure 2.10: Model of a Single Segment of the Hyper-Redundant Robot Based on a UPS

6-DoF Gough-Stewart (GS) Platform.

simultaneously by the same amount. If these lengths change by different amounts, then the

segment’s end-effector rotates, causing the segment to bend. As a special case, torsional

motion about the segment’s Za axis is produced when every other longitudinal prismatic

joint lengthens by the same amount, while the other longitudinal prismatic joints shorten

by this amount.

Since the single-segment model captures all possible rotations and translations of an

individual segment, the model of the entire multi-segment robot can reproduce four fun-

damental motions of an octopus arm: bending, elongation, shortening, and twisting (Kier,

2016). Figure 2.11 illustrates a model of the hyper-redundant robot as a series of identical

interconnected segments, each modeled as the 6-DoF GS platform shown in Fig. 2.10. The

base platform of the i-th segment is the end-effector of the (i − 1)-th segment. We make

the following assumptions about the capabilities of the segments: (1) Each segment can

measure the 3D pose of its end-effector with respect to its local coordinate frame, which

is fixed to its base. (2) Each segment can transmit these measurements to its two adjacent

segments, similar to the propagation of sensorimotor information through the decentralized

nervous system of an octopus arm (Grasso, 2014). (3) The 3D pose of the robot’s tip with
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Figure 2.11: Multi-Segment Model of an Octopus-Inspired Hyper-Redundant Robot Com-

posed of a Series of 6-DoF GS Platforms.

respect to the global coordinate frame can be measured, analogous to the use of vision

feedback in the octopus (Levy and Hochner, 2017).

Let k denote the index of the joints and i = 1, 2, ..., N be the indices of the segments,

where the end-effector of theN -th segment is the distal tip of the robot. We define Gp⃗i ∈ R3

as the position of the end-effector of the i-th segment in the global coordinate frameG. The

rotation matrix GRi ∈ R3×3 determines the orientation of the i-th segment’s end-effector

in the global frame. The vector Ga⃗k,i ∈ R3 denotes the position of the k-th universal joint

on the base of i-th segment in the global frame, and i⃗bk,i ∈ R3 denotes the position of the

k-th spherical joint on the end-effector of the i-th segment in the local coordinate frame of

the i-th segment. The vector Gl⃗k,i ∈ R3 is the position of the k-th longitudinal prismatic
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joint of the i-th segment in the global frame. The position vector Gp⃗i is calculated as:

Gp⃗i =
Ga⃗k,i +

Gl⃗k,i − GRi
i⃗bk,i. (2.38)

The pose of each segment in the global frame can be determined by the corresponding

position vector Gp⃗i and rotation matrix GRi. The position vector i−1p⃗i and rotation matrix

i−1Ri for the i-th segment in the coordinate frame attached to the end-effector of segment

i− 1 are defined as:

i−1p⃗i =
GR−1

i−1
Gp⃗i

i−1Ri =
GR−1

i−1
GRi,

(2.39)

where GR−1
i−1 is the inverse of the rotation matrix GRi−1. As in (Salimi Lafmejani et al.,

2018), by rearranging Eq. (2.38) to solve for Gl⃗k,i, using Eq. (2.39) to substitute in the

position vector and rotation matrix that are defined in local coordinate frames, and right-

multiplying the left and right sides of the resulting equation by their respective transposes,

we can obtain the lengths of the longitudinal prismatic joints, lk,i, from the following equa-

tion:

Gl⃗Tk,i
Gl⃗k,i = l2k,i

= (i−1p⃗i +
i−1⃗bT

k,i
i−1⃗bk,i +

i−1a⃗T
k,i

i−1a⃗k,i − 2i−1p⃗T
i

i−1a⃗k,i + 2i−1p⃗T
i
i−1⃗bk,i − 2i−1⃗bT

k,i
i−1a⃗k,i)

1/2.

(2.40)

Let rai and rbi denote the radii of the base and end-effector, respectively, of the i-th

segment. Let iA and iB denote matrices whose columns are the position vectors i−1a⃗k,i

and i−1⃗bk,i represented in the frame attached to the end-effector of the (i − 1)-th segment.
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These matrices are defined as:

iA = i−1B = rai
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(2.41)

We define α as the ratio between the radius of the i-th segment’s base, rai, and the radius

of its end-effector, rbi:

α =
rbi
rai
, α ∈ (0 1]. (2.42)

In order to enforce the isovolumetric property in the kinematic model of the robot,

the lengths of the radial prismatic joints are determined according to the lengths of the

longitudinal prismatic joints so as to keep the volume of each segment constant. Since the

total volume of the robot is the sum of all the segment volumes, the total robot volume

remains constant as well. The volume of the i-th segment, denoted by si, can be computed

as:

si =
π

3
||i−1p⃗i||r2ia(1 + α + α2). (2.43)

To keep the volume si of the i-th segment constant, the radius of its base should be:

ria =
1√
π

[
3si

||i−1p⃗i||(1 + α + α2)

] 1
2

. (2.44)

Forward and Inverse Kinematic Problems

Here, we discuss possible solutions to the FK and IK problems for the proposed multi-

segment hyper-redundant robot. The transformation matrix of the robot’s tip, i.e., the N -th

segment’s end-effector, represented in the global frame, GTN ∈ R4×4, can be calculated
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by consecutive post-multiplication of the transformation matrix of each segment’s end-

effector, i−1Ti, represented in the local frame attached to the end-effector of the segment

i− 1:

GTN = GT1 · 1T2 · ... · N−1TN . (2.45)

The solution of the FK problem is straightforward to compute if each segment i is able

to measure its local transformation matrix, i−1Ti, as we specified in assumption (1). In

other words, the pose of the robot’s tip can be computed from the pose of each segment’s

end-effector, expressed in the segment’s local coordinate frame.

The IK problem for the robot is defined as finding the configuration of the entire robot,

i.e., all transformation matrices on the right-hand side of Eq. (2.45), given the pose of

the robot’s tip, GTN . This problem has a large number of solutions due to the kinematic

hyper-redundancy of the robot. Different methods of solving the IK problem for a multi-

segment hyper-redundant robot are discussed in (Godage et al., 2011). These approaches

utilize computationally intensive numerical methods and can converge to physically impos-

sible solutions. Moreover, they require simplifying assumptions and approximations that

preclude the reproduction of some important features of the octopus arm. We adopt the

Distributed Inverse Kinematics (DIK) approach presented in (McEvoy and Correll, 2018,

2016) in order to deal with the challenge of solving the IK problem and compute the con-

figuration of the robot, given the pose of the robot’s tip. In (McEvoy and Correll, 2018),

the authors introduce this approach for a multi-segment planar robot composed of segments

that can autonomously change their curvature using local computation, sensing, actuation,

and communication. Using this method, the solution to the IK problem is determined by

utilizing the communication between the segments to share the transformation matrices and

curvatures between neighboring segments of the robot.
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2.2.2 Kinematic Control of Robot Motion

In this section, we describe the calculation of the Jacobian matrix of our multi-segment

hyper-redundant robot and propose a differential kinematic control approach for the robot

based on the pseudo-inverse Jacobian method (Hannan and Walker, 2003). The objective

is to design controllers for regulation (position control) and trajectory tracking problems.

While we do not impose limits on the joint torques here, such constraints could be included

in the robot control strategy as a second prioritized task (Dietrich and Ott, 2020).

Jacobian Matrix of the Robot

From assumptions (1) and (2) in Section 2.2.1, the i-th segment can measure its position

vector i−1p⃗i and rotation matrix i−1Ri, both represented in its local coordinate frame, and

can communicate these measurements to its neighboring segments, segments i − 1 and

i + 1. We define the pose of the robot’s N -th segment as X⃗ := [Gp⃗Ttip δ⃗T ]T ∈ R6, where

Gp⃗tip ∈ R3 is the position of the robot’s tip in the global frame, and δ⃗ = [ψ θ ϕ]T ∈ R3 is

the vector of Euler angles representing the orientation of theN -th segment. We also denote

the joint space of the robot by Q⃗ ∈ R6N , which is defined as

Q⃗ = [l1,1 . . . l6,1 l1,2 . . . l6,2 . . . . . . l1,N . . . l6,N ]
T . (2.46)

The twist of the robot’s tip, ⃗̇Xtip, is mapped to the velocities of all active prismatic

joints, ⃗̇Q, by the Jacobian matrix of the entire robot, Jrobot ∈ R6×6N :

⃗̇Xtip = Jrobot
⃗̇Q. (2.47)

The Jacobian matrix Jrobot can be calculated as follows. Let Ji ∈ R6×6, i = 1, 2, ..., N , de-

note the Jacobian matrix and i−1s⃗k,i denote the unit vector that indicates the direction of the

prismatic joints of the i-th segment in its local coordinate frame. As in (Salimi Lafmejani
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et al., 2018), this matrix is computed as

Ji =

[
i−1s⃗k,i

i−1⃗bk,i × i−1s⃗k,i

]−T

. (2.48)

We define G ̂⃗pi ∈ R3×3 as the cross product matrix of the position vector Gp⃗i. The adjoint

matrix for the i-th segment, AdTi
∈ R6×6, is then given by (Murray, 2017)

AdTi
=

GRi
G ̂⃗piGRi

03×3
GRi

 . (2.49)

Given these matrices, the Jacobian matrix of the robot can be written as

Jrobot =

[
J1 AdT1J2 ... AdTN−1

JN

]
. (2.50)

As Eq. (2.49) shows, GRi and Gp⃗i are required to calculate the corresponding adjoint

matrix. This information is contained in the transformation matrix of each segment i in the

global coordinate frame, defined as

GTi =

GRi
Gp⃗i

0⃗1×3 1

 . (2.51)

From assumption (3) in Section 2.2.1, the transformation matrix of the robot’s tip in the

global frame, GTtip, is known. Since each segment i can communicate its measurements

of i−1p⃗i and i−1Ri to its neighboring segments, as ensured by assumption (2), the transfor-

mation matrix i−1Ti can be computed by each segment i. Thus, the robot can calculate the

transformation matrix of each segment in the global frame as follows:

GTi−1 =
GTi · i−1T−1

i . (2.52)

Therefore, the transformation matrix corresponding to each segment in the global coordi-

nate frame can be found by first solving Eq. (2.52) for segment N − 1, then for segment

N − 2, and so on until the transformation matrix of each segment from the tip to the base

of the robot is computed. Consequently, we can readily calculate the Jacobian matrix of

the robot in Eq. (2.50).
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Position Control

Here, we design a regulator that stabilizes the position of the tip of the robot to a fixed point

in the global frame G. We define the error between the position of the tip, Gp⃗tip, and the

desired point, Gp⃗d, as

E⃗ = Gp⃗tip − Gp⃗d. (2.53)

We decompose Jrobot into upper and lower halves, which are denoted by Jv ∈ R3×6N and

Jω ∈ R3×6N , respectively. The former matrix is associated with the linear velocity of the

robot’s tip (G⃗̇ptip = Jv
⃗̇Q), and the latter matrix is associated with the angular velocity of

the N -th segment (⃗̇δ = Jω
⃗̇Q). Defining K ∈ R>0 as a positive gain and J†

v ∈ R6N×3 as

the Moore-Penrose inverse of Jv, we can design the control law for the position regulation

problem as:

⃗̇Q = −KJ†
vE⃗. (2.54)

Substituting the control law in Eq. (2.54) into the kinematics of the robot in Eq. (2.47), and

considering the fact that G ˙⃗pd = 0⃗, the equation of the closed-loop system is obtained as

⃗̇E = −KJvJ
†
vE⃗. (2.55)

We can confirm that the null space of J†
v is empty. Thus, the only solution for the equation

J†
vE⃗ = 0⃗ is E⃗ = 0⃗, which shows that the origin is the only equilibrium point for Eq. (2.55).

We can now use the identity JvJ
†
v = I and rewrite the closed-loop system in Eq. (2.55) as

⃗̇E +KE⃗ = 0⃗, (2.56)

which is a globally exponentially stable system for any positive K. This shows that the tip

of the robot exponentially converges to the desired point from any initial position with the

proposed controller. The controller gain K governs the rate of convergence of the system’s

trajectories to the desired position. The proposed controller drives the tip of the robot to

the target point faster with larger values of K.
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Trajectory Tracking

We use the position regulator (2.54) in a switching strategy that controls the robot to track

a predefined reference trajectory with its tip. The reference trajectory is discretized into a

set of m points. The objective is to drive the tip of the robot to a position within a radius

γ ∈ R>0 of each point, which represents the acceptable tracking error. The set of the

desired points is denoted by P and is defined as

P =
{

Gp⃗
(1)
d , Gp⃗

(2)
d , . . . , Gp⃗

(m)
d

}
, (2.57)

where Gp⃗
(1)
d and Gp⃗

(m)
d represent the start and the end points of the reference trajectory, re-

spectively, and the others are intermediate points along the trajectory. A γ-neighborhood of

point Gp⃗(i)d is defined as a ball of radius γ centered at this point and is denoted byB(Gp⃗(i)d , γ).

The controller first stabilizes the position of the robot’s tip to the start point of the trajec-

tory. Once the tip enters the ball B(Gp⃗(1)d , γ), the controller redefines the desired point as the

second point, Gp⃗
(2)
d , and drives the tip toward this point until it enters the ball B(Gp⃗(2)d , γ).

This procedure is repeated for each successive point in P until the robot’s tip enters the

γ-neighborhood of the end point, Gp⃗
(m)
d . This switching control strategy can be written as:

⃗̇Q =


−KJ†

v

(
Gp⃗tip − Gp⃗

(i)
d

)
, Gp⃗tip /∈ B(Gp⃗(i)d , γ)

−KJ†
v

(
Gp⃗tip − Gp⃗

(i+1)
d

)
, Gp⃗tip ∈ B(Gp⃗(i)d , γ).

(2.58)

Thus, the closed-loop system behaves like a switching system in which each subsystem is

given by

⃗̇E(i) +KE⃗(i) = 0⃗, (2.59)

where E⃗(i) = Gp⃗tip − Gp⃗
(i)
d is the position error associated with the i-th subsystem. Equa-

tion (2.59) is linear and can be solved for E⃗(i) as

E⃗(i)(t) = E⃗
(i)
ti e

−K(t−ti), ∀t ∈ [ti, ti+1), (2.60)
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where ti is the time at which subsystem i becomes active, and E⃗(i)
ti denotes the value of

E⃗(i)(t) at time t = ti. This solution converges exponentially to the desired equilibrium

(E⃗(i) = 0⃗), which consequently shows that the robot’s tip will converge in finite time to a

neighborhood around the desired point Gp⃗
(i)
d and that the trajectories of the tip are bounded.

Equation (2.60) also holds for the norm of the error:

||E⃗(i)(t)||= ||E⃗(i)
ti ||e

−K(t−ti), ∀t ∈ [ti, ti+1). (2.61)

We define the dwell time for the i-th subsystem to reach B(Gp⃗(i)d , γ) as Ti := ti − ti−1

(Liberzon, 2003). The dwell time can be calculated by setting ||E⃗(i)(t)|| equal to γ in Eq.

(2.61) and solving this equation for Ti:

Ti = −
1

K
log

(
γ

||E⃗(i)
ti ||

)
, i = 1, ...,m. (2.62)

This equation shows that the parameter γ and the intermediate points of the reference tra-

jectory must be chosen such that γ ≤ ||E⃗(i)
ti || for each subsystem. Otherwise, ti would be

smaller than ti−1, which would imply the stability of the system backward in time, and con-

sequently, its instability forward in time. As in the position control task, the controller gain

K determines the rate of the error convergence to zero for each subsystem. Moreover, since∑N
i=1 Ti is equal to the task completion time, and each time Ti is inversely proportional to

K, the gainK can be selected to ensure that the robot’s tip tracks a desired trajectory within

a specified amount of time. An analytical procedure could be developed to select a value

of K that guarantees particular time response characteristics for a given desired trajectory

based on the parameters N , m, α, and γ, although this is beyond the scope of this research.

2.2.3 Simulation Results

We validated our kinematic model and controller through MATLAB simulations of a

multi-segment hyper-redundant robot that tracks five 3D reference trajectories with the tip
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Figure 2.12: (a) Snapshots of the Simulated Hyper-Redundant Robot Tracking the Linear

Trajectory Eq. (2.63). Average Tracking RMSE = 0.032 cm. (b) Time Evolution of the

Desired Position (x,y,z) and Tracked Position (xtip,ytip,ztip) of the Robot’s Tip.

of its arm. The first three reference trajectories are defined as a straight line, an ellipse, and

a sinusoidal. These three trajectories are given by the following three parametric equations,
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Figure 2.13: (a) Snapshots of the Simulated Hyper-Redundant Robot Tracking the Ellip-

tical Trajectory (2.64). Average Tracking RMSE = 0.044 cm. (b) Time Evolution of the

Desired Position (x,y,z) and Tracked Position (xtip,ytip,ztip) of the Robot’s Tip.

respectively, in terms of time t ∈ [0, 1]:

Gp⃗d,line = [3t− 0.5 3t+ 0.5 t+ 6]T (2.63)
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Figure 2.14: (a) Snapshots of the Simulated Robot Tracking the Sinusoidal Trajectory

Eq. (2.65). Average Tracking RMSE = 0.049 cm. (b) Time Evolution of the Desired

Position (x,y,z) and Tracked Position (xtip,ytip,ztip) of the Robot’s Tip.

Gp⃗d,ellipse = [cos(2πt) sin(2πt) 4 + sin(2πt)]T (2.64)

Gp⃗d,sinusoid = [sin(2πt) − 1 + 4t 5 + et sin(2πt)]T (2.65)
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Figure 2.15: (a) Snapshots of the Robot Tracking the Reaching and Fetching Reference

Trajectories, Eq. (2.66) and Eq. (2.67). Average Tracking RMSEs for Reaching and Fetch-

ing Are 0.051 cm and 0.057 cm, Respectively. (b), (c) Time Evolution of the Desired and

Tracked Positions of the Robot’s Tip.

We also define two reference trajectories that qualitatively reproduce the reaching and

fetching motions of an octopus arm. These two trajectories are given by the following
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two parametric equations, respectively, for t ∈ [0, 1]:

Gp⃗d,reach = [3et − 5 0.5 cos(2πt) 1 + 6t]T (2.66)

Gp⃗d,fetch = [3e1−t − 2 2 cos(2π(1− t)) 2 + 6(1− t)]T (2.67)

In order to track the reaching and fetching trajectories, the robot must perform a combina-

tion of elongation, contraction, bending, and twisting motions, requiring each segment to

reconfigure along a combination of its six possible DoF. Thus, these two reference trajec-

tories provide challenging test cases for validating our tracking controller.

The number of segments significantly affects the tracking performance of the simu-

lated robot and the calculation time of the controller. In Table 2.1, we list this calculation

time on a computer with 64-bit Intel(R) Core(TM) i7-8750H CPU for different numbers

of segments. Since the robot did not exhibit effective performance at position and tracking

control when the number of segments was lower than 15, we chose 20 segments for the

robot in our simulations. The following other parameters and conditions were applied to

all simulations. We defined m = 21 as the number of target positions for the robot’s tip,

including the start and the end points, along each reference trajectory. We set γ = 0.05 in

Eq. (2.62). The parameter α in Eq. (2.42), the ratio between the radii of each segment’s

base and end-effector, was initially set to 0.095. The radius of the base of the robot and the

initial length of the robot were 0.25 m and 5 m, respectively. Given the isovolumetric prop-

erty described in Section 2.2.1, all segments of the robot must maintain the same volume

throughout each simulation. Since the total volume of the robot was distributed equally

among its segments, the length of each segment was determined by Eq. (2.43). As a result,

the lengths of the segments increase from the base of the robot (1st segment) to its tip (N -th

segment), since the radii of the segments decrease from base to tip in order to maintain

the same volume for all segments and to enforce the isovolumetric property described in

Section 2.2.1. We empirically set the controller gain to K = 20, which produced accurate
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Table 2.1: Calculation Time of the Proposed Controller in Milliseconds (ms) for the Simu-

lated Multi-Segment Robot with Different Numbers of Segments.

Number of segments 10 15 20 25 30

Calculation time (ms) 32.14 77.48 91.17 135.84 192.66

tracking in all simulations.

Figures 2.12a, 2.13a, 2.14a, and 2.15a plot the initial and final configurations of the

simulated robot and several of its intermediate configurations, shown in a paler shade, as

it tracks each reference trajectory in Eqs. (2.63)–(2.67). In all cases, the robot starts in a

vertical initial configuration. Each desired reference trajectory is depicted as a red dashed

line, and its start and end points are labeled. As shown in Fig. 2.12a, the robot exhibits

bending, elongation, and twisting motions along its length in order to track the desired lin-

ear trajectory. Figure 2.13a shows the shortening, twisting, and bending of the robot that

enables it to track the desired elliptical trajectory. Tracking the desired sinusoidal trajectory

and performing reaching and fetching tasks require the robot to exhibit all four fundamental

octopus-like motions, as depicted in Figs. 2.14a and 2.15a. We evaluate the performance of

the robot at tracking each reference trajectory by computing the average root-mean-square

error (RMSE) between the reference trajectory and the trajectory of the robot’s tip, which

are plotted over time in Figs. 2.12b, 2.13b, 2.14b, 2.15b, and 2.15c. In each figure, the

colored dots indicate the sequence of 21 target positions along the reference trajectory, and

the colored dashed lines show the simulated position of the robot’s tip. The average RMSE

value for each reference trajectory is given in the captions of Figs. 2.12a, 2.13a, 2.14a,

and 2.15a. These values are at most about 0.285% of the initial length of the robot, indicat-

ing the effectiveness of the control strategy.
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2.2.4 Discussion

We have proposed a novel discrete approach to kinematic modeling of an octopus-

inspired, multi-segment hyper-redundant robot. A bio-inspired solution that exploits the

flow of information between interconnected segments is used to determine the instanta-

neous configuration of the robot, given the tip’s pose, without solving the computationally

expensive IK problem for the robot.
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Chapter 3

COLLISION-FREE POSE STABILIZATION AND TRAJECTORY TRACKING

CONTROL OF AUTONOMOUS MOBILE ROBOTS

This chapter contains results from Salimi Lafmejani et al. (2020d) (Section 3.1), Sal-

imi Lafmejani et al. (2020b) (Section 3.2), Salimi Lafmejani and Berman (2021) (Section

3.3), Salimi Lafmejani et al. (2022b) (Section 3.4), Salimi Lafmejani et al. (2022a) (Sec-

tion 3.5), and Salimi Lafmejani et al. (2021c) (Section 3.6).

3.1 Pose Stabilization and Trajectory Tracking Control of a Holonomic Robot

In this section, we present an optimal control approach using Linear Matrix Inequali-

ties (LMIs) for trajectory tracking control of a three-wheeled omnidirectional mobile robot

in the presence of external disturbances on the robot’s actuators and noise in the robot’s

sensor measurements. First, a state-space representation of the omnidirectional robot dy-

namics is derived using a point-mass dynamic model. Then, we propose an LMI-based

full-state feedback H∞-optimal controller for the tracking problem. The robot’s tracking

performance with the H∞-optimal controller is compared to its performance with a clas-

sical full-state feedback tracking controller in simulations with circular and bowtie-shaped

reference trajectories. In order to evaluate our proposed controller in practice, we also

implement the H∞-optimal and classical controllers for these reference trajectories on a

three-wheeled omnidirectional robot. The H∞-optimal controller guarantees stabilization

of the robot motion and attenuates the effects of frictional disturbances and measurement

noise on the robot’s tracking performance. Using the H∞-optimal controller, the robot is

able to track the reference trajectories with up to a 47.8% and 45.8% decrease in the maxi-
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mum pose and twist errors, respectively, over a full cycle of the trajectory compared to the

classical controller. The simulation and experimental results show that our LMI-basedH∞-

optimal controller is robust to undesired effects of disturbances and noise on the dynamic

behavior of the robot during trajectory tracking and can outperform the classical controller

in attenuating their effects.

3.1.1 Formulation and Problem Setup

Figure 3.1 shows a schematic of a three-wheeled omnidirectional robot equipped with

omni wheels, which allow the robot move at any direction at each time instant. This holo-

nomic WMR can be modeled as a point-mass with double-integrator dynamics as follows,

without including disturbances and noise:

Mẍ = u, (3.1)

where M3×3 = diag(m,m, I) is a diagonal mass matrix in whichm and I are defined as the

robot’s mass and moment of inertia about the axis perpendicular to the ground, respectively.

We assume that m is a known constant and I can be calculated as the moment of inertia of

a solid cylinder with radius d as I = 1
2
md2. As shown in Fig. 3.1, the variables Gx and Gy

are the position coordinates of the robot’s center of mass along the x̄-axis and ȳ-axis, and

φ is the robot’s heading angle. The vector x = [Gx, Gy, φ]T ∈ R3, which is defined in

the global coordinate frame x̄− ȳ, indicates the pose of the robot in a planar configuration.

Moreover, u = [Gfx,
Gfy,

Gτz]
T ∈ R3 is the control input vector, which is interpreted

as the wrench (forces and torque) applied to the robot’s body. We define the state variables

as follows:

x1 = [Gx Gy φ]T, x2 = [Gẋ Gẏ φ̇]T. (3.2)
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Then, one can readily write the state-space representation of the robot dynamics in Eq. (3.1)

as:

ẋ1 = x2, ẋ2 = M−1u. (3.3)

The vectors X6×1 := [xT
1 xT

2 ]
T ∈ R6 and Ẋ6×1 := [ẋT

1 ẋT
2 ]

T ∈ R6 are defined to

characterize the state-space representation of the robot’s dynamics as:

Ẋ = ApX+Bpu

yp = CpX+Dpu,

(3.4)

where yp denotes the output and the four matrices Ap, Bp, Cp, and Dp for the trajectory

tracking control problem are given by:

Ap =

03×3 I3×3

03×3 03×3

 , Bp = M−1

03×3

I3×3


Cp = I6×6, Dp = 06×3.

(3.5)

Since we are designing a full-state feedback controller, the output yp is defined as the state

vector X. Note that I denotes the identity matrix and 0 denotes a matrix of zeros.

Figure 3.2 shows the block diagram of the proposed tracking controller when actua-

tion disturbances and output measurement noise are included in the robot model (Scherer,

2001). The plant in Fig. 3.2 consists of the state-space model of the robot’s dynamics

without undesired exogenous inputs, described in Eq. (3.4). We can expand the state-space

model to include the undesired effects of disturbances on the robot, arising from the friction

force between the omni wheels and the ground, and noise in the sensor measurements. To

do so, we formulate the model as a tracking control problem in the LMI framework, using

the notation described in (Caverly and Forbes, 2019). We start by defining the reference

trajectory, r6×1, the disturbance input, d3×1, and the output measurement noise, n6×1. The

error, e6×1, between the tracked trajectory and the reference trajectory is defined as z1. In
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Figure 3.1: Schematic of a Three-Wheeled Omnidirectional WMR, Illustrating the Driving

and Free-Sliding Directions of the Robot’s Wheels.

addition, y1 and y2 are the reference trajectory and the noisy output, respectively. Thus,

we have that:

w := [rT dT nT]T, z1 := e = r− yp, z2 := u

y1 := r, y2 := n+ yp.

(3.6)

As a result, the state-space representation of the robot dynamics for the trajectory tracking

problem, including disturbances and sensor noise, can be written as:

Ẋ = ApX+ [0 Bp 0]w +Bpu

z1 = −CpX+ [I −Dp 0]w −Dpu

z2 = 0X+ [0 0 0]w + Iu

y1 = 0X+ [I 0 0]w + 0u

y2 = CpX+ [0 Dp − I]w +Dpu.

(3.7)

The realization in Eq. (3.7) results in the following 9-matrix representation for the LMI-
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based tracking controller:

A := Ap, B1 :=

[
0 Bp 0

]
, B2 := Bp

C1 :=

[
−Cp 0

]T

C2 :=

[
0 Cp

]T

D11 :=

I −Dp 0

0 0 0

 D12 :=

[
−Dp I

]T

D21 :=

I −0 0

0 Dp −I

 D22 :=

[
0 Dp

]T

.

(3.8)

3.1.2 Control Approaches

In the trajectory tracking control problem, the three-wheeled omnidirectional robot

should follow predefined reference trajectories that are described by desired poses (po-

sition and orientation) and twists (linear and angular velocities) of the robot with respect

to time. In this section, we first describe a classical full-state feedback controller for this

problem, and then propose a full-state feedback H∞-optimal controller.

Classical Full-State Feedback Controller

Given the point-mass dynamic model for the omnidirectional robot in Eq. (3.1), define

K ∈ R6×6 as a positive definite gain matrix and ẍr as the desired acceleration of the

reference trajectory, including linear and angular accelerations. Referring to (Slotine et al.,

1991), the control law for the classical controller is described by:

u = −S+ ẍr, (3.9)
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where S ∈ R6×1 is defined as follows:

S = Kė+Λe, (3.10)

in which Λ ∈ R6×6 is a positive definite gain matrix. Here, the vector e ∈ R6×1 denotes the

error between the measured pose of the robot, x, and the reference pose, xr. In addition,

the vector ė ∈ R6×1 denotes the error between the measured twist of the robot, ẋ, and the

reference twist, ẋr. Accordingly, we have that:

e = x1 − xr, ė = x2 − ẋr. (3.11)

Substituting Eq. (3.10) into Eq. (3.9) and using the fact that ë = ẍ − ẍr, we can obtain

the equation of the error dynamics for the closed-loop system as a second-order differential

equation with positive definite matrix coefficients:

ë+Kė+Λe = 0. (3.12)

In (Sreedhar and Rao, 1968), it was proved that a differential equation of the form Eq.

(3.12) is stable if both matrix coefficients are positive definite. This proves that the pose

and twist errors will converge to zero.

𝐀p 𝐁p
𝐂p 𝐃p

𝒖 = 𝐊[𝒆𝐓 ሶ𝒆𝐓]𝐓+
u +𝒅 u

𝒅

𝐲𝟏 = 𝒓

+

𝒏

𝒚𝒑

𝐲𝟐 = 𝐲𝒑 + 𝒏

+
𝐳𝟏 = 𝒆

− Robot Dynamics Controller

: state vector𝐗

Figure 3.2: Block Diagram of the Tracking Controller, Including Disturbances and Sensor

Noise as Input Signals.
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Full-State Feedback H∞-Optimal Controller

The input-output equations in the state-space model of the robot dynamics in Eq. (3.7) can

be written in an abbreviated form as follows (Duan and Yu, 2013), where z := [zT
1 zT

2 ]
T:

Ẋ = AX+B1w +B2u

z = C1x+D11w +D12u.

(3.13)

We propose the following control law for the H∞-optimal controller:

u = −KH∞ [eT ėT]T + ẍr (3.14)

where the controller gain matrix, KH∞ , is determined such that theH∞-norm of the closed-

loop system is minimized when the exogenous inputs are applied to the robot. The closed-

loop system represented in state-space form and its transfer function, T(s) = z(s)/w(s),

are described by:

Ẋ = (A+B2KH∞)X+B1w

z = (C1 +D12KH∞)X+D11w

T(s) = (C1 +D12KH∞)(sI− (A+B2KH∞))−1B1 +D11

(3.15)

Using the Bounded Real Lemma (Duan and Yu, 2013; Caverly and Forbes, 2019), it can

be shown that γ is the minimum value of the H∞-norm of the closed-loop system if there

exist a positive definite matrix P and a matrix F which satisfy the LMI in the following

optimization problem (here, “∗” represents a symmetric element of a matrix):

min γ

P > 0
AP+B2F+ (AP+B2F)

T B1 (C1P+D12F)
T

∗T −γI DT
11

∗T ∗T −γI

 < 0

(3.16)

Given such matrices P and F, we can calculate the H∞-optimal controller gain matrix as

KH∞ = FP−1.
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Figure 3.3: Trajectory of a Simulated Three-Wheeled Omnidirectional Robot that Tracks

the Circular Reference Trajectory Using (a) The Classical Full-State Feedback Controller;

(b) The Full-State Feedback H∞-Optimal Controller.
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Figure 3.4: Norm of the Pose and Twist Errors Over 50 s of the Simulations in which the

Robot Tracks the Circular Reference Trajectory Using (a) The Classical Full-State Feed-

back Controller; (b) The Full-State Feedback H∞-Optimal Controller.

3.1.3 Simulation Results

In this section, we implement the controllers on a simulated three-wheeled omnidi-

rectional robot in MATLAB. We compare the performance of the H∞-optimal controller

and the classical controller for two reference trajectories: a circular reference trajectory
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described by:

xr,c = [2 + cos(t) 2 + sin(t) 0]T

ẋr,c = [− sin(t) cos(t) 0]T

ẍr,c = [− cos(t) − sin(t) 0]T,

(3.17)

and a bowtie-shaped reference trajectory described by:

xr,b = [0.5 cos(t) 0.5 sin(t) cos(t) 0]T

ẋr,b = [−0.5 sin(t) 0.5 cos(2t) 0]T

ẍr,b = [−0.5 cos(t) − sin(2t) 0]T.

(3.18)

In addition, we simulate the disturbance input d and output measurement noise n as the

following sinusoidal functions:

d =[0.05 sin(t/2) 0.15 sin(t/4) 0]T

n =[0.15 sin(2t) 0.1 sin(3t) 0 0.25 sin(4t) 0.25 sin(2t) 0]T.

(3.19)

Note that the first three elements of the noise signal are applied to the measurement of

the robot’s pose, [Gx Gy φ]T, and the last three elements affect the twist measurements,

[Gẋ Gẏ φ̇]T.

For the classical controller, we tuned the gain matrices to K = 0.25I3×3 and Λ =

0.5I3×3, which produce the best tracking performance in terms of the lowest values of

||e(t)||2 and ||ė(t)||2, the 2-norms of the pose error and twist error. In order to find

the controller gain for the H∞-optimal controller, we solve the LMI in Eq. (3.16) using

YALMIP (Lofberg, 2004), which employs SeDuMi (Sturm, 1999) for this purpose. The

optimal controller gain matrix of the H∞ controller is obtained as:

KH∞ =


5.01 0 0 12.33 0 0

0 5.01 0 0 12.33 0

0 0 35.31 0 0 39.54

 (3.20)
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Figure 3.5: Trajectory of a Simulated Three-Wheeled Omnidirectional Robot that Tracks

the Bowtie Reference Trajectory Using (a) The Classical Full-State Feedback Controller;

(b) The Full-State Feedback H∞-Optimal Controller.

70



Norm of pose error (m)

Norm of velocity error (m/s)

0.3 m
0.18 m/s

(a)

Norm of pose error (m)

Norm of velocity error (m/s)

0.1 m 0.22 m/s

(b)

Figure 3.6: Norm of the Pose and Twist Errors Over 50 s of the Simulations in which the

Robot Tracks the Bowtie Reference Trajectory Using (a) The Classical Full-State Feedback

Controller; (b) The Full-State Feedback H∞-Optimal Controller.

Figures 3.3a and 3.3b show the trajectory of the simulated omnidirectional robot over

50 s as it tracks the circular reference trajectory using the classical and H∞-optimal con-

trollers, respectively, in the presence of the disturbances and noise defined in Eq. (3.19).

For these simulations, Figs. 3.4a and 3.4b each plot the time evolution of ||e(t)||2 and

||ė(t)||2. Similarly, Figs. 3.5a and 3.5b plot the trajectory of the simulated robot over 50 s

as it tracks the bowtie reference trajectory using both controllers, and Figs. 3.6a and 3.6b
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plot the corresponding time evolution of ||e(t)||2 and ||ė(t)||2. In the plots of the error

norms over time, the black and blue dashed horizontal lines indicate the maximum values

of ||e(t)||2 and ||ė(t)||2, respectively, over one complete cycle of the robot around the ref-

erence trajectory after the robot’s initial transient behavior as it approached this trajectory.

We will refer to these maximum values as ||e||max
2 and ||ė||max

2 . Figs. 3.4a and 3.4b show

that for the circular reference trajectory, the H∞ controller reduces ||e||max
2 from 0.62 m

for the classical controller to 0.1 m, and reduces ||ė||max
2 from 0.27 m/s for the classical

controller to 0.2 m/s. Figs. 3.5a and 3.5b show that for the bowtie reference trajectory, the

H∞ controller reduces ||e||max
2 from 0.3 m to 0.1 m, and slightly raises ||ė||max

2 from 0.18

m/s to 0.22 m/s.

These results demonstrate that the LMI-based full-state feedback H∞-optimal con-

troller can significantly improve the tracking performance of the robot in simulation com-

pared to the classical full-state feedback controller. This is because the H∞-optimal con-

troller attenuates the undesired effects of the exogenous inputs, d and n, whereas the clas-

sical controller cannot mitigate the effects of these undesired inputs.

3.1.4 Experimental Implementation and Results

In this section, we implement the classical and H∞ trajectory tracking controllers on

the three-wheeled omnidirectional robot shown in Fig. 3.7. This robot has three omni

wheels connected to Dynamixel DC motors that are spaced 120◦ apart. The rollers around

the rims of the omni wheels allow the robot to move freely to any arbitrary configuration.

The Dynamixel motors can measure the omni wheels’ rotation angles, θi (i = 1, 2, 3), and

their angular velocities, θ̇i (i = 1, 2, 3), using embedded encoders. The parameters r and

d denote the radius of the omni wheels and the distance between the center of each wheel

and the origin of the body-fixed coordinate frame, defined as x̂− ŷ.

72



Odometry, Twist, and Torque Calculations

+

ො𝑦

Front wheel

Left wheel
Right 

wheel

𝜑

Positive direction of torques

Positive direction 

of rotation 

120°

120°

120°

ො𝑥

+

+

+

𝜏1

𝜏2𝜏3

Omni wheel

Raspberry 

Pi 3 B+

OpenCR 1.0 

board

U2D2 board

Three-wheeled omnidirectional robot

Dynamixel XM430-W350-R 

a) b)

𝑑

2𝑟

Figure 3.7: (a) Isometric and (b) Overhead Views of the Three-Wheeled Omnidirectional

WMR Used in the Experiments. The Global Coordinate Frame is Defined as in Fig. 3.1.

The twist of the omnidirectional robot, ẋ = [Gẋ Gẏ φ̇]T, represented in the global

coordinate frame x̄ − ȳ, can be expressed in terms of the angular velocities of the omni

wheels. We first define the rotation matrix, R−φ(z), that describes rotation of the body-

fixed coordinate frame, x̂ − ŷ, by an angle −φ about the z̄-axis. To calculate the robot’s

twist in the global coordinate frame, we pre-multiply the robot’s twist in the body-fixed

frame, bẋ = [bẋ, bẏ, φ̇]T, by this rotation matrix as follows (Lynch and Park, 2017):
Gẋ

Gẏ

φ̇

 =


cos(φ) − sin(φ) 0

sin(φ) cos(φ) 0

0 0 1


︸ ︷︷ ︸

R−φ(z)


2r
3

−r
3

r
3

0 −
√
3r

3

√
3r
3

−r
3d

−r
3d

−r
3d



θ̇1

θ̇2

θ̇3


︸ ︷︷ ︸

bẋ

(3.21)

This equation can be used to compute the robot’s twist error, ė, in Eq. (3.11). Odometry

to estimate the robot’s pose, [Gx Gy φ]T, is possible using the rotational feedback pro-

vided by the Dynamixel motors. This can be done by assuming that the wheels’ angular ve-
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locities remain constant during the time step ∆t between readings, such that θ̇i = ∆θi/∆t.

Regardless of the units used to measure time, we can set ∆t = 1 without loss of generality,

which results in θ̇i = ∆θi (Lynch and Park, 2017). Thus, the robot’s velocity in the global

frame x̄− ȳ can be computed in terms of the rotation angles of the omni wheels measured

by the encoders. In turn, we can calculate the robot’s pose error, e, in Eq. (3.11) given the

odometry information of the robot.

We calculate the control input vector, u, by substituting the robot’s pose and twist errors

into the control laws of the classical and H∞ controllers, defined in Eqs. (3.9) and (3.14),

respectively. We set the classical controller gains to the values used in the simulations,

and the gains of the H∞ controller were set according to Eq. (3.20). The control inputs

are defined as the desired wrench of the robot, F = [Gfx
Gfx

Gτz]
T, represented in the

global coordinate frame x̄− ȳ. This wrench should be produced by the Dynamixel motors.

We first transform this desired wrench from the global frame to the body-fixed coordinate

frame of the robot by pre-multiplying the wrench in the global frame by the rotation matrix

Rφ(z). Then, the wrench in the body-fixed frame can be converted to the desired torques

that should be produced by the motors on the omni wheels, T = [τ1 τ2 τ3]
T, as follows:

τ1

τ2

τ3

 =


2r
3

0 −r
3d

−r
3

−
√
3r

3
−r
3d

−r
3

√
3r
3

−r
3d




cos(φ) sin(φ) 0

− sin(φ) cos(φ) 0

0 0 1




Gfx

Gfy

Gτz

 (3.22)

The torques applied by the Dynamixel motors are controlled by the Raspberry Pi computer

through the U2D2 board, which are both powered by the OpenCR board. We programmed

both controllers on the robot in the C++ language based on the Robot Operating System

(ROS) platform.
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Figure 3.8: Snapshots of the Trajectory of a Three-wheeled Omnidirectional Robot During

an Experiment in which it Tracks the Circular Reference Trajectory Using (a) The Classical

Full-State Feedback Controller; (b) The Full-State Feedback H∞-Optimal Controller.
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Figure 3.9: Norm of the Pose and Twist Errors Over 25 s of an Experiment in which the

Robot Tracks the Circular Reference Trajectory Using (a) The Classical Full-State Feed-

back Controller; (b) The Full-State Feedback H∞-Optimal Controller.

Experimental Results

In our experiments, the three-wheeled omnidirectional robot attempted to track the circu-

lar and bowtie reference trajectories defined in Eq. (3.17) and (3.18) in the presence of
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Figure 3.10: Snapshots of the Robot’s Trajectory During an Experiment in which it Tracks

the Bowtie Reference Trajectory Using (a) The Classical Full-State Feedback Controller;

(b) the Full-State Feedback H∞-Optimal Controller.
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Figure 3.11: Norm of the Pose and Twist Errors Over 10 s of an Experiment in which the

Robot Tracks the Bowtie Reference Trajectory Using (a) The Classical Full-State Feedback

Controller; (b) The Full-State Feedback H∞-Optimal Controller.

unknown disturbances arising from the friction force between the omni wheels and the

ground, as well as noise in the output measurements. We compared the robot’s tracking

performance with both the classical and H∞-optimal controllers. Snapshots of the robot’s
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trajectory over one full cycle of the circular and bowtie reference trajectories for both con-

trollers are plotted using in MATLABin Figs. 3.8a, 3.8b and in Figs. 3.10a, 3.10b. As in

the simulations, the H∞ controller is able to attenuate the undesired effects of exogenous

inputs on the tracking performance of the robot, yielding lower tracking errors than the

classical controller. Figs. 3.9a and 3.9b show that for the circular reference trajectory, the

H∞ controller reduces ||e||max
2 from 0.4 m for the classical controller to 0.11 m, and reduces

||ė||max
2 from 0.24 m/s for the classical controller to 0.13 m/s. Figs. 3.10a and 3.10b show

that for the bowtie reference trajectory, the H∞ controller reduces ||e||max
2 from 0.23 m to

0.12 m, and ||ė||max
2 from 0.12 m/s to 0.07 m/s.

3.1.5 Discussion

In this chapter, we proposed a full-state feedback H∞-optimal controller based on the

LMI framework for trajectory tracking control by a three-wheeled omnidirectional robot.

First, a point-mass dynamic model of the robot represented in state-space form was de-

rived, and then the effects of disturbances on its actuators and noise in its output mea-

surements were incorporated into the model. Along with the H∞-optimal controller, we

also described a classical full-state feedback controller for this control problem. We simu-

lated a three-wheeled omnidirectional robot and implemented both controllers in simulation

for tracking of circular and bowtie reference trajectories. Furthermore, we experimentally

tested the classical and H∞ controllers on a real three-wheeled omnidirectional robot for

the same reference trajectories. We compared the tracking performance of the robot with

both controllers in terms of the norms of the robot’s pose and twist errors. The simulation

and experimental results demonstrate that our proposed full-state feedback H∞-optimal

controller can significantly improve the robot’s tracking performance compared to the clas-

sical controller by attenuating the effect of undesired exogenous inputs on the robot.
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3.2 Position Stabilization of a Nonholonomic Robot with Static Obstacle Avoidance

In this section, we propose a gradient-based nonlinear control approach for stabiliz-

ing a nonholonomic Wheeled Mobile Robot (WMR) to a target position in environments

with and without obstacles. This approach enables any gradient-based feedback control

law (with bounded or unbounded gradients) developed for a holonomic point-mass robot

model to be adapted to control a nonholonomic robot. The proposed controller is defined in

terms of smooth continuous functions, which produce smooth robot trajectories and can be

tuned to stabilize the robot to the goal position at a desired convergence rate. We first prove

that the controller will stabilize a nonholonomic robot to a target point in an obstacle-free

environment. To stabilize the robot’s position in environments with obstacles, we modify

our controller to utilize the gradient of an artificial potential function and use Lyapunov

stability theory to prove that the robot is guaranteed to converge to the target position un-

der this controller. We demonstrate the effectiveness of our controller for various initial

robot positions and environments, and two types of potential fields that are widely used in

gradient-based methods for obstacle avoidance, through MATLAB simulations and exper-

iments with a commercial nonholonomic WMR.

3.2.1 Problem Formulations

We consider a nonholonomic WMR with a reference point P at the midpoint of the axis

connecting its wheels, as shown in Fig. 3.12. The robot’s configuration at time t is defined

as ξ(t) = [x(t)T θ(t)]T = [x(t) y(t) θ(t)]T ∈ R3, where x and y denote the coordinates of

point P in the global coordinate frame and θ denotes the robot’s heading angle, defined as

the angle of the robot’s heading direction with respect to the xo-axis of the global frame.

The unicycle kinematic model of the robot is given by:

ẋ = v cos(θ), ẏ = v sin(θ), θ̇ = ω, (3.23)
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Figure 3.12: (a) 3-D View of the Turtlebot3 Burger Robot (Robotis, 2020), a Nonholonomic

WMR that We Used in Our Experiments, and (b) Definitions of the State Variables ρ, α,

and θ in an Overhead View of the Robot.

where v is the speed of the reference point and ω is the angular velocity of the robot. The

vector of control inputs is defined as u = [v ω]T ∈ R2. We assume that the robot knows

its initial configuration ξ(0) and can use its sensors to determine x(t) and the quaternion

representation (Jia, 2008) of its heading angle θ(t) at each time t > 0. A quaternion q is

defined as the sum of a scalar qw and a vector [qx qy qz]
T described in an orthonormal

basis (i, j,k) of R3:

q = qw + qxi+ qyj+ qzk. (3.24)

Since the WMR moves in the x− y plane, the elements of q are given by:

qx = 0, qy = 0, qz = sin

(
θ

2

)
, qw = cos

(
θ

2

)
, (3.25)

two of which are trigonometric functions of the robot’s heading. We will design controllers

for the robot that solve the following problems. In both problems, we define the target
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position of the robot (specifically, of the point P ) as the origin of the global coordinate

frame, without loss of generality.

Problem 3.2.1. Consider a robot with model (3.23) that moves in an unbounded domain.

Design a feedback control law of the form u = u(ξ) that requires only trigonometric

functions of θ and drives the robot to the target position from any initial configuration.

Problem 3.2.2. Consider a robot with model (3.23) that moves in a convex domain that

contains one or more convex obstacles. Design a controller of the form u = u(ξ), based on

the gradient of a potential field, that requires only trigonometric functions of θ and drives

the robot to the target position from almost1 any initial configuration while preventing

collisions with the obstacles and the domain’s boundary.

Existing solutions to the above problems have some limitations. In particular, they re-

quire the controller to be an explicit function of the Euler angle representation of the robot’s

heading, which can result in large changes in the control input when the robot’s heading

increases past π rad and is measured as θ ∈ [−π, 0] rad, or when it decreases past −π rad

and is measured as θ ∈ [0, π] rad. These large changes can cause undesired transient be-

haviors in the robot’s navigation, such as sudden reorientations of the robot and chattering

in its trajectory that is characteristic of switching controllers (Liberzon, 2003). In order to

produce a smooth robot trajectory, our position controller uses trigonometric functions of

the robot’s heading, i.e. sin(θ) and cos(θ), in accordance with the quaternion representation

Eq. (3.25). Moreover, our approach to collision-free position control can implement any

gradient-based controller designed for a holonomic robot on a nonholonomic WMR.

Defining ρ :=
√
x2 + y2 and α := tan−1( y

x
), we can represent the position of the refer-

ence point P in a polar coordinate system as x = ρ cos(α) and y = ρ sin(α). Accordingly,

1See Remark 3.2.6 for a discussion of particular cases in which convergence to the target position is not

guaranteed.
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we can rewrite the model in Eq. (3.23) in the polar coordinate system as:

ρ̇ cos(α)− ρα̇ sin(α) = v cos(θ),

ρ̇ sin(α) + ρα̇ cos(α) = v sin(θ),

θ̇ = ω. (3.26)

We multiply the first and second equations in Eq. (3.26) by cos(α) and sin(α), respectively,

and add them up. Then we repeat this procedure by multiplying the first and second equa-

tions by − sin(α) and cos(α), respectively, and adding them up. As a result, we obtain the

following representation of the unicycle kinematic model in the polar coordinate system,

where ρ, α, and θ are state variables and v and ω are control inputs:

ρ̇ = v cos(θ − α), α̇ =
v

ρ
sin(θ − α), θ̇ = ω, (3.27)

We propose the following control laws for v and ω:

v = kvρ, ω = kω sin(θ − α), (3.28)

where kv and kω are controller gains. Given Eq. (3.25) and the definition of ρ, Eq. (3.28)

can be rewritten as:

v = kv
√
x2 + y2 = kv∥x∥,

ω = kω sin(θ − α) (3.29)

= kω sin(θ) cos(α)− kω cos(θ) sin(α)

= 2kωqzqw cos(α)− kω(q2w − q2z) sin(α). (3.30)

Remark 3.2.3. As Eq. (3.29) shows, we can directly substitute the position and orientation

measurements from the robot’s sensors, i.e. x, y, qz, and qw, into the control laws in order to

calculate the control inputs without any post-processing of these measurements. Moreover,

our proposed control law for ω does not have any discontinuities in the robot’s heading
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angle θ, since it is based on the quaternion representation of rotations using trigonometric

functions of the heading angle measurements.
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Figure 3.13: The Phase Portrait of the Closed-Loop System when the (a) Negative and (b)

Positive Controller Gains are Used.

Convergence Analysis

To analyze the stability of the proposed control system, we substitute the control law (3.28)

into the robot’s kinematic model (3.27) and obtain the equations of the closed-loop system

as:

ρ̇ = kvρ cos(θ − α),

α̇ = kv sin(θ − α),

θ̇ = kω sin(θ − α). (3.31)
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Furthermore, defining β := θ−α and subtracting the second equation from the third equa-

tion in (3.31), we obtain a reduced-dimensional representation of the closed-loop system:

ρ̇ = kvρ cos(β), (3.32)

β̇ = (kω − kv) sin(β). (3.33)

The equilibrium points of this system are located where ρ = 0 and β = nπ for n ∈ Z.

By linearizing the system about these points, we can confirm that if kω < kv < 0, then

the equilibrium points with even values of n are locally exponentially stable, while the

equilibria with odd values of n are unstable. A converse statement about even and odd

values of n holds true if 0 < kv < kω. The next theorem characterizes the region of

attraction of the stable equilibrium points.

Theorem 3.2.4. Consider the closed-loop system (3.32)-(3.33). If kω < kv < 0, then an

equilibrium point of this system, specified by an even number for n as n = 2m, m ∈ Z,

is asymptotically stable, and the setR = {ξ | ρ > 0, (2m− 1)π < β < (2m+ 1)π} is its

basin of attraction.

Proof. Using the trigonometric identity sin(β) =
2 tan(β

2
)

1+tan2(β
2
)

and the following change of

variable,

η = tan

(
β

2

)
→ η̇ =

1

2
β̇

(
1 + tan2

(
β

2

))
, (3.34)

Eq. (3.33) is simplified to

η̇ = kβη, (3.35)

where kβ := kω − kv. The solution of Eq. (3.35) is

η(t) = η0e
kβt, (3.36)

where η0 denotes the value of η at t = 0. This shows that if kβ < 0, η(t) exponentially

converges to zero for any value of η0. This assures monotonic convergence of β to 2mπ
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from any value in ((2m − 1)π, (2m + 1)π), since tan(·) is a strictly monotonic function

on ( (2m−1)π
2

, (2m+1)π
2

). In Fig. 3.13a, the projection of the system trajectories for m =

−1, 0, 1 along the vertical axis is monotonic, which shows this monotonic evolution of β.

Furthermore, using the trigonometric identity cos(β) =
1−tan2(β

2
)

1+tan2(β
2
)

and Eq. (3.36), we can

rewrite Eq. (3.32) as

ρ̇ = f(t)ρ, (3.37)

where

f(t) = kv

(
1− η20e2kβt

1 + η20e
2kβt

)
. (3.38)

Eq. (3.37) is a first-order linear differential equation with a time-varying coefficient, whose

solution is given by

ρ(t) = ρ0e
∫
f(t)dt, (3.39)

where ρ0 denotes the value of ρ at t = 0. To solve the integral in the exponential term, we

use the following change of variable:

ζ(t) := η20e
2kβt → dζ = 2kβη

2
0e

2kβtdt. (3.40)

Then we have that
∫
f(t)dt is equal to:∫

kv
1− ζ(t)
1 + ζ(t)

dt =
kv
2kβ

∫
1− ζ
1 + ζ

dζ

ζ

=
kv
2kβ

∫ (
1

ζ
− 2

1 + ζ

)
dζ

=
kv
2kβ

(ln ζ − 2 ln(1 + ζ))

= ln

(
ζ

(1 + ζ)2

) kv
2kβ

(3.41)

Substituting the expression for
∫
f(t)dt from Eq. (3.41) into Eq. (3.39), we obtain the

solution for ρ(t) as

ρ(t) = ρ0

(
η20e

2kβt

(1 + η20e
2kβt)2

) kv
2kβ

. (3.42)
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If kβ < 0, we can confirm that

lim
t→∞

η20e
2kβt

(1 + η20e
2kβt)2

= 0, (3.43)

which means that ρ(t) → 0 as t → ∞ if kv
kβ

> 0. Therefore, ρ(t) converges to zero for

any value of ρ0 if kv, kβ < 0, which is equivalent to kω < kv < 0. This completes the

proof.

Corollary 3.2.5. The equilibrium points of the closed-loop system are marked by the green

circles in Figs. 3.13a and 3.13b. If we set 0 < kv < kω, then the equilibrium points that are

specified by odd values of n become asymptotically stable, and the others become unstable.

This occurs if β is replaced by β + π in Eqs. (3.32)-(3.33) and the procedure in the proof

of Theorem 3.2.4 is reapplied. The evolution of the system’s trajectories for positive values

of kv and kω is illustrated in Fig. 3.13b. Monotonic convergence of β to (2m + 1)π for

m = −1, 0, 1, and convergence of ρ to zero, are seen along the vertical and horizontal

axes, respectively.

Remark 3.2.6. As shown in the phase portraits in Fig. 3.13a and Fig. 3.13b, the robot’s

radial coordinate ρ diverges to infinity if and only if the initial angle β(0) is exactly (2m+

1)π rad when using negative controller gains or 2mπ rad when using positive controller

gains (for m ∈ Z). To ensure that the robot converges to the target point from such initial

configurations, positive controller gains can be used when β(0) = (2m + 1)π (cases 7

and 10 in Fig. 3.14), and negative gains can be used when β(0) = 2mπ (cases 4 and 6 in

Fig. 3.14).

Theorem 3.2.7. Consider a nonholonomic WMR with kinematic model (3.23) that moves

in a convex domain containing one or more convex obstacles. Suppose there exists an

artificial potential field φ = φ(x) that admits a global minimum at the origin x = 0 and

for which µ := ||∇φ|| is maximal on the boundaries of the obstacles. If kv < 0 and
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kω = 2kv, then the following control law drives the robot to the origin from almost any

initial position in the domain while preventing it from colliding with the obstacles and the

domain’s boundary:

v = kvµ, ω = kω
µ

ρ
sin(θ − α). (3.44)

Proof. Inserting the control law in Eq. (3.44) into the robot’s kinematic model in Eq.

(3.27), and using the fact that β = θ − α, the equations of the closed-loop system become:

ρ̇ = kvµ cos(β), ρβ̇ = kvµ sin(β). (3.45)

We define a set C as

C =
{
(ρ, β) ∈ R2 | sin(β) = 0 ∨ cos(β) = 0

}
. (3.46)

If the system trajectories start from this set, then the solution of Eq. (3.45) is straightfor-

ward to calculate. We will now consider the time evolution of trajectories that start outside

this set.

We note that µ is implicitly a function of ρ, and the equilibrium points of system (3.45)

are the elements of the set

E :=
{
(ρ, β) ∈ R2 | µ = 0

}
. (3.47)

This set also represents the critical point of the potential field φ(x). We now consider the

function

V = ρ tan2(β/2), (3.48)

which equals zero if ρ = 0 and/or β = 2mπ, m ∈ Z, and is positive otherwise. The time

derivative of V along the trajectories of the closed-loop system is

V̇ = kvµ (2 + cos(β)) tan2(β/2), (3.49)
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which is zero when µ = 0 and/or β = 2mπ, m ∈ Z, and is negative otherwise. Invoking

LaSalle’s invariance principle (Khalil, 1996), we can conclude that system trajectories that

start outside the set C converge to the largest invariant set in the set

S :=
{
(ρ, β) ∈ R2 | µ = 0 ∨ β = 2mπ, m ∈ Z

}
, (3.50)

which contains E . Points (ρ, β) for which ρ > 0 and β = 2mπ, m ∈ Z, do not comprise

an invariant set, since they are not elements of E . Therefore, almost all trajectories of the

closed-loop system converge to the largest invariant set in E , which is the location of the

global minimum of φ(x).

Before we prove that the robot will avoid collisions with obstacles, we state the follow-

ing two lemmas, which will be used in the proof.

Lemma 3.2.8. Along system trajectories that start outside the set C, sin(β) never changes

sign and converges to zero as t→∞.

Proof. We multiply the first and second equations in Eq. (3.45) by sin(β) and − cos(β),

respectively, and add them up. Then we obtain:

ρ̇ sin(β)− ρβ̇ cos(β) ≡ d

dt

(
ρ

sin(β)

)
sin2(β) = 0. (3.51)

Define ρ0 = ρ(0) and β0 = β(0). Equation (3.51) shows that if sin(β0) ̸= 0, then ρ
sin(β)

is

constant along the robot’s entire trajectory, and therefore we have that

ρ(t) =
ρ0

sin(β0)
sin(β(t)). (3.52)

Since ρ(t) is always positive, the sign of sin(β(t)) must be equal to the sign of sin(β0) for

all t ≥ 0. This implies that sin(β(t)) never changes sign. Moreover, from Eqs. (3.48)-

(3.49), we have that ρ(t) → 0 as t → ∞. Equation (3.52) then shows that sin(β(t)) → 0

as t→∞. This completes the proof.
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Lemma 3.2.9. Along system trajectories that start outside the set C, β̇ remains bounded

and converges to zero.

Proof. The function V in Eq. (3.48) is positive semi-definite, and V̇ in Eq. (3.49) is nega-

tive semi-definite. Therefore, V is always bounded, which implies that tan(β/2) remains

bounded. Also, using the trigonometric identity sin(β) =
2 tan(β

2
)

1+tan2(β
2
)

and Lemma 3.2.8, we

can conclude that tan(β(t)/2) → 0 as t → ∞. This implies that limt→∞ tan(β(t)/2)

exists and is finite. Moreover, the time derivative of tan(β(t)/2) is:

d

dt
(tan(β/2)) =

β̇

2
(1 + tan2(β/2)). (3.53)

By applying Barbalat’s Lemma (Khalil, 1996) to the function tan(β/2), we can conclude

that limt→∞( d
dt
(tan(β/2))) = 0. This, along with the boundedness of tan(β/2) in Eq.

(3.53), proves that β̇(t) is bounded and converges to zero as t→∞.

We now substitute the expression for ρ(t) in Eq. (3.52) into the second equation in Eq.

(3.45) to obtain

µ =
sin(β0)

kvρ0
β̇. (3.54)

Since β̇ is bounded by Lemma 3.2.9, this equation shows that µ is bounded. This gives

an upper bound on µ := ||∇φ|| along the robot’s trajectory. If ||∇φ|| is infinite along the

boundaries of the obstacles and the domain (if it is bounded), then the boundedness of µ

guarantees the robot’s clearance from these boundaries. Alternatively, if ||∇φ|| is bounded

and has its maximum value along these boundaries, then we must design the parameters

of the function φ such that the maximum value of ||∇φ|| always exceeds the upper bound

in Eq. (3.54). This condition guarantees the robot’s clearance from the boundaries of the

obstacles and the domain.
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Figure 3.14: Stabilization of a Simulated Nonholonomic WMR to the Origin from Different

Initial Configurations, Using Negative Controller Gains kv = −0.1 and kω = −0.5 (1 to

6), and Positive Controller Gains kv = 0.1 and kω = 0.5 (7 to 12). The Robot’s Heading at

Each Initial Configuration is Indicated by a Green Arrow.

3.2.2 Simulation and Experimental Results

In this section, we validate our controllers for position control and obstacle avoidance

with MATLAB® simulations of a nonholonomic robot. We implemented our position con-

troller on the robot with both positive and negative gains and tested it for different initial

robot configurations.

Simulation Results

Position Control: First, we simulated the position controller for 12 different initial config-

urations of the robot, using both possible sets of control gains (positive and negative). The

resulting trajectories of the robot are shown in Fig. 3.14. From each initial configuration,
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.

(a) φ = ψ, a Navigation Function

(b) φ = U , an attractive-repulsive potential field

Figure 3.15: Stabilization of a simulated nonholonomic WMR to the origin from different

initial configurations, while avoiding collisions with obstacles, using our proposed con-

troller with the potential field φ defined as (a) a navigation function (Koditschek, 1987);

(b) an attractive-repulsive potential field (Khatib, 1985).
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Figure 3.16: Experimental Validation of Our Position Controller with (a) Negative Con-

troller Gains, Producing Backward Motion, and (b) Positive Controller Gains, Producing

Forward Motion. The Robot’s Heading at its Initial Configuration is Indicated by a Green

Arrow, and its Trajectory is Plotted as a Yellow Dashed Line.

shown in black, the robot is successfully stabilized to the origin (dark green point). Note

that positive control gains cause the robot to move forward along its trajectory (i.e., in the
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Figure 3.17: Time Evolution of ρ, the Robot’s Distance to the Target Position, During the

Experimental Tests of Position Stabilization in Fig. 3.16.

direction of the xr axis in Fig. 3.12), while negative gains cause it to move backward.

Obstacle Avoidance: We evaluated our obstacle avoidance controller by setting the poten-

tial field φ to either a navigation function ψ (Rimon and Koditschek, 1992) or an attractive-

repulsive potential field U defined as in (Khatib, 1985). These types of potential fields are

widely used in gradient-based control methods for obstacle avoidance, and they satisfy the

requirements on φ given in Theorem 3.2.7.

For the case φ = ψ, we simulated a scenario in which a robot moves to the target

position, defined as the origin, through a circular environment with a radius of 4.5 m (navi-

gation functions are defined on bounded domains) while avoiding collisions with 9 circular

obstacles. We tested the controller for 7 different initial robot configurations. For the

case φ = U , we simulated the same scenario and initial robot configurations, but in an un-

bounded environment rather than a bounded one. Figures 3.15a and 3.15b plot the resulting

trajectories of the robot for the cases φ = ψ and φ = U , respectively. The trajectories show

that in all cases, the robot successfully avoids collisions with the obstacles as it drives to

the origin.
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Experimental Implementation and Results

We also implemented our controllers for position control and obstacle avoidance on a com-

mercial Robot Operating System (ROS)-compatible nonholonomic WMR, the TurtleBot3

Burger robot produced by Robotis (see Fig. 3.12). This platform is a differential-drive

robot with a nonholonomic constraint on its velocity; it cannot produce any controlled mo-

tion along the direction of its wheels’ axis, shown by the red dashed line in Fig. 3.12b. The

robot uses only its onboard sensor measurements to estimate ξ(t), its configuration in the

global coordinate frame; no external localization system, such as an overhead camera and

vision-based tracking software, is used for this purpose. The robot can use both odome-

try calculations, based on the measurements of its wheel encoders, and IMU sensor data

to estimate its instantaneous configuration with respect to its initial configuration in the

global frame, ξ(0). Fusion of the odometry and IMU sensor data improves the accuracy of

this estimate. Since we specify that the robot knows ξ(0), it can calculate its configuration

ξ(t) in the global frame at any time t > 0 by adding the sensor measurements to ξ(0).

The robot’s heading angle measurement is recorded in quaternion representation, and thus

can be directly input to our proposed controllers in Eq. (3.29), making them convenient

to implement. A video recording of the experiments described here, along with additional

position control experiments, is available online at (Salimi Lafmejani et al., 2020c).

Position Control: Figures 3.16a and 3.16b display the robot’s trajectory during four of

the experiments, and Fig. 3.17 plots the time evolution of the robot’s distance to the target

position (the origin) during each of these experiments. The figures show that the controller

stabilizes the robot smoothly to the target position from each initial configuration, without

producing oscillations or cusps in the robot’s trajectory.

Obstacle Avoidance: We also implemented our obstacle avoidance controller with the

potential field φ defined as either a navigation function ψ or an attractive-repulsive potential
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field U . For both cases, we tested the controller in an environment with 6 circular obstacles.

In the case where φ = ψ, we defined a virtual circular boundary with a radius of 2.5

m around the obstacles, and the robot was given the centers and radii of the obstacles

and boundary a priori. In the case where φ = U , the robot must be able to measure

its distance from the obstacles, which we emulated by giving the robot the same a priori

information about the obstacles. Figures 3.18a and 3.18b show the robot’s trajectory during

the experiment for each case. In both experiments, the robot converges to the target location

(yellow circle) while avoiding collisions with the obstacles, and for the case where φ =

ψ, it stays within the domain boundary (blue line in Fig. 3.18a). Figure 3.19 plots the

time evolution of φ(x) and ||∇φ(x)|| at the robot’s location x along its trajectory during

each experiment. As expected, the values of these functions converge to zero as the robot

approaches the target point.

3.2.3 Discussion

In this chapter, we have modified gradient-based controllers designed for holonomic

WMRs to enable their implementation on nonholonomic WMRs, in order to achieve collision-

free position control in environments with and without obstacles. Our controllers guarantee

obstacle avoidance under the same assumptions (e.g., prior information about obstacles)

as the corresponding controllers for holonomic robots, and do not impose any additional

requirements. We designed a smooth, continuous, nonlinear controller that depends on

trigonometric functions of the robot’s heading in quaternion form, and thus does not pro-

duce undesired transient behaviors during navigation that are exhibited by discontinuous

and time-varying controllers which use heading measurements in the Euler angle represen-

tation. Any gradient-based obstacle avoidance method that is developed for holonomic

robots can be integrated into our controller for nonholonomic robots. We proved that

the proposed controllers are stable for two sets of positive and negative control gains and
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Figure 3.18: Experimental validation of our obstacle avoidance controller, with the po-

tential field φ defined as (a) a navigation function (Koditschek, 1987); (b) an attractive-

repulsive potential field (Khatib, 1985). The robot’s initial heading is indicated by a green

arrow, and its trajectory is plotted as a yellow dashed line.

demonstrated their effectiveness through simulations and experiments with a nonholonomic

WMR.

97



0 20 40 60 80 100
t (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

, |
|

||

0

0.5

1

1.5

2

U
, |

|
U

||U

|| ||
|| U||

Figure 3.19: Time Evolution of φ and ||∇φ||, where φ = ψ or φ = U , During the Experi-

mental Tests of Obstacle Avoidance in Fig. 3.18.

3.3 Pose Stabilization of Multiple Nonholonomic Robots with Collision and Deadlock

Avoidance

In this section, we present an online nonlinear Model Predictive Control (MPC) method

for collision-free, deadlock-free navigation by multiple autonomous nonholonomic Wheeled

Mobile Robots (WMRs). Our proposed method solves a nonlinear constrained optimiza-

tion problem at each time step over a specified horizon to compute a sequence of optimal

control inputs that drive the robots to target poses along collision-free trajectories, where

the robots’ future states are predicted according to a unicycle kinematic model. To re-

duce the computational complexity of the optimization problem, we formulate it without

stabilizing terminal constraints or terminal costs. We describe a computationally efficient

approach to programming and solving the optimization problem, using open-source soft-

ware tools for fast nonlinear optimization and applying the multiple-shooting method. We

also provide rigorous proofs of the feasibility of the optimization problem and the stability

of the proposed method.

We implement our method using CasADi in a standard software framework, the Robot
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Operating System (ROS), and validate its effectiveness at producing collision-free multi-

robot navigation in six different scenarios, both in simulations and physical experiments.

We also provide recommendations for tuning the parameters of our method, describe how

the method can prevent three types of deadlocks, and outline limitations of the method and

how they can be overcome. In all scenarios, the robots successfully navigate to their goal

poses without colliding with one another or becoming trapped in a deadlock.

3.3.1 Problem Formulation

Figure 3.20 shows an example of a nonholonomic WMR, the Turtlebot3 Burger robot

from Robotis®, which we use to validate our control strategy in simulations and physical

experiments. The origin of the robot’s local coordinate frame, defined in Fig. 3.20b, is lo-

cated at position (x(t), y(t)) in the global coordinate frame at time t. The heading direction

of the robot is aligned with the x-axis of the local coordinate frame. The robot’s heading

angle θ(t) at time t increases when the robot rotates counter-clockwise about the z-axis of

the local frame, and decreases when it rotates clockwise. The control inputs at time t are

the robot’s linear velocity v(t) and angular velocity w(t). We define the state vector x ∈ R3

𝑥

𝑦

Wheels’ axis

Heading direction

(positive 

translational

velocity, 𝑣)

+

𝜃Rotating direction

(positive angular

velocity, 𝜔)

(b)(a)

Figure 3.20: (a) 3-D View (Robotis, 2020) of the Turtlebot3 Burger Robot, and (b) Over-

head View with Body-Fixed Coordinate Frame.
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and the control input vector u ∈ R2 as:

x := [x y θ]T, u := [v w]T. (3.55)

The kinematic model of a nonholonomic WMR can be written as the following unicycle

model in state-space form (Lynch and Park, 2017):

ẋ = f(x,u)→


ẋ = v cos(θ)

ẏ = v sin(θ)

θ̇ = w

(3.56)

where f(·) denotes a nonlinear function of states and control inputs, representing the twist

of the robot. From Eq. (3.56), we obtain the following discrete-time kinematic model of

the robot (Keighobadi et al., 2011):

x(k + 1) = x(k) + v(k) cos(θ(k))Ts

y(k + 1) = y(k) + v(k) sin(θ(k))Ts

θ(k + 1) = θ(k) + w(k)Ts

(3.57)

where Ts is the sampling time and k ∈ N ∪ {0} is an index for the time step, such that

t = kTs. We can write this model in state-space form as:

x(k + 1) = x(k) + f(x(k),u(k))Ts (3.58)

The states and control inputs of the robot may be subject to particular constraints. For

instance, if a robot is constrained to navigate in a bounded environment, then its state vector

must evolve within the limits xmin and xmax defined by the coordinates of the boundaries.

Moreover, in real-world implementations, the control inputs of the robot are constrained by

a lower limit umin and an upper limit umax, which are determined by the capabilities of the

robots’ actuators.
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3.3.2 Control Approaches

MPC Formulation for Single-Robot Navigation
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Figure 3.21: Illustration of the Execution of an MPC Method Over two Consecutive Time

Steps, k (left) and k + 1 (right). The Robot States x(k) (Upper Plots) and Control Inputs

u(k) (Lower Plots) are Computed Over the Prediction HorizonNP and the Control Horizon

NC , Respectively.

In an MPC scheme, the future states of the robot are calculated over a prediction hori-

zon and an objective function is minimized in order to find a sequence of optimal control

solutions over this horizon. At each time step, only the first optimal control in the computed

sequence is applied to the robot (Borrelli et al., 2017). In the general MPC formulation,

a control input u(k) that is close to a reference control input uref(k) must be computed at

each time step k in order to drive the robot’s state x(k) to follow a reference trajectory

xref(k). Using the notation ∥x∥2A := xTAx for a square matrix A, we define the following
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loss function with weighting matrices Q ∈ R3×3 and R ∈ R2×2:

l(x(k),u(k)) = ∥x(k)− xref(k)∥2Q + ∥u(k)− uref(k)∥2R (3.59)

where Q is positive semi-definite and R is positive definite. In this section, we consider

the case where the robot must be stabilized to a fixed goal pose, i.e., the pose regulation

problem. The reference trajectory xref(k) is defined as this single goal pose, and uref(k) is

set to zero so that no control input is driving the robot once it reaches the goal pose.

Given the loss function in Eq. (3.59), the discrete-time kinematic model Eq. (3.58), and

the specified limits xmin,xmax and umin,umax on the state vector and control input vector,

respectively, we can write the nonlinear optimization problem for the MPC method as

follows:

J∗
NP

(x(0),x∗,u∗) = minu

NP−1∑
k=0

l(x(k),u(k))

x(k + 1) = x(k) + f(x(k),u(k))Ts

xmin ≤ x(k) ≤ xmax

umin ≤ u(k) ≤ umax

x(0) = xc(k)

(3.60)

where NP is the prediction horizon, x(0) is the initial state of the robot, and xc(k) is the

current measured state of the robot. The optimization problem in Eq. (3.60) is solved at

each time step, and the initial state of the robot is updated at each step with the measured

state of the robot at time step k. In this MPC design, the optimization problem is solved

using the single-shooting method, in which only control inputs are decision variables.

Figure 3.21 illustrates the execution of the MPC method over two consecutive time

steps, k and k + 1. The figure shows representative plots of the robot’s state x and control

input u over time at these two time steps. At time step k, the robot states at times k through

k+NP − 1, depicted by the blue dashed line in the upper left plot, are predicted according
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to the discrete-time model in Eq. (3.57). We define the error between the robot’s state at

time k and its current goal pose as

e(k) = x(k)− xref(k). (3.61)

Then, we can compute a matrix e(k|k + NP − 1) ∈ R3×NP that consists of the errors

between all future predicted robot states and the corresponding goal poses:

e(k|k +NP − 1) = [e(k) e(k + 1) ... e(k +NP − 1)] (3.62)

The solution to the optimization problem in Eq. (3.60) is the sequence of optimal

controls computed at time step k, u∗(k|k+NP −1) ∈ R2×NP . In accordance with the MPC

method, the robot receives only the first optimal control input in this sequence, u∗(0) ∈

R2×1, and applies this input until the next time step, as illustrated in the control input plots

in Fig. 3.21.

The robot’s measurements of its states will differ from the predicted states due to sensor

noise, uncertainties in the kinematic model, and unmodeled dynamics of the environment.

This disparity is depicted in the plots of the robot’s state between time steps k and k + 1

in Fig. 3.21. To initialize the optimization problem at time step k + 1, the prediction

horizon is shifted forward by one time step and the robot’s initial state is updated to its

current measured state, x(0) = xc(k + 1). The state errors over the prediction horizon,

e(k+1|k+NP ), are computed for the new time step, and the optimization problem is solved

to obtain the optimal control solutions. Again, the robot applies the first optimal control

input until the next time step. This procedure is repeated until ||e(k)||= ||x(k)−xref(k)||<

δ, for some small positive constant δ.

In order to reduce the computational complexity of the optimization problem, we can

compute the control inputs over a control horizon NC that is shorter than the prediction

horizon NP , while still predicting the future robot states over the prediction horizon. The
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solution to the optimization problem is then the sequence of optimal controls u∗(k|k +

NC − 1) ∈ R2×NC . The optimal controls for the remainder of the prediction horizon are

defined as follows:

u∗(k̄) := u∗(k +NC − 1), ∀k̄ ∈ [k +NC , k +NP − 1] (3.63)

At the next time step, this control horizon shifts along with the prediction horizon. In

this section, we set the control horizon equal to the prediction horizon, NC = NP , in all

simulations and experiments in order to predict future robot states as accurately as possible,

as discussed in Section 3.3.5.

3.3.3 MPC Design for Multiple Nonholonomic Robots

In our proposed nonlinear MPC method for collision-free navigation by multiple non-

holonomic WMRs, the optimal control solutions (i.e., the optimal linear and angular ve-

locities) for all robots are obtained by solving a constrained optimization problem at each

time step. The objective is to find optimal solutions such that each robot navigates to a

preassigned goal pose while avoiding collisions with other robots.

MPC Formulation for Multi-Robot Navigation

Given m robots, we define xi and ui, i ∈ {1, 2, ...,m}, as the state and control input

vectors, respectively, of the i-th robot. From Eq. (3.58), the discrete-time kinematic model

of all robots is given by:

xi(k + 1) = xi(k) + f(xi(k),ui(k))Ts, i = 1, ...,m (3.64)

We define vectors that contain all the robot states and control inputs at time step k ∈

{0, 1, ..., NP − 1}:

X(k) = [xT
1(k) xT

2(k) ... xT
m(k)]

T ∈ R3m

U(k) = [uT
1(k) uT

2(k) ... uT
m(k)]

T ∈ R2m

(3.65)
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Similarly, Xc(k) will denote the vector containing all the robots’ measured states at time

step k. We also define xi,min and xi,max as lower and upper bounds on the i-th robot’s state

vector, and ui,min and ui,min as lower and upper bounds on its control input vector.

We consider the pose regulation problem, in which each robot must be stabilized to a

fixed goal pose xgi . We define the vector of reference states as:

Xref = [xT
g1

xT
g2

... xT
gm ]

T ∈ R3m (3.66)

Note that Xref is a constant vector, since the goal poses of the robots are fixed. Given that

the reference control inputs are set to zero in the pose regulation problem, the loss function

in Eq. (3.59) in our multi-robot MPC formulation is defined as:

l(X(k),U(k)) = ∥X(k)−Xref∥2Q + ∥U(k)∥2R . (3.67)

In order to achieve collision-free navigation of all m robots, we define a set of con-

straints in the formulation of the MPC to prevent any collisions that may occur within the

prediction horizon. These constraints restrict the optimization problem to compute optimal

control commands that drive the robots along collision-free paths toward their goal poses.

To this end, at every time step within the prediction horizon, we need to prevent colli-

sions between each pair of robots. We define the minimum allowable distance between

two robots, dmin, as twice the diameter of the smallest circle that is centered at the origin

of a robot’s local coordinate frame and completely encloses the robot. Then, the following

constraints prevent collisions between each pair of robots during the prediction horizon:

||xi(k|k +NP − 1)− xj(k|k +NP − 1)||> dmin, ∀i ̸= j, (3.68)

where i, j ∈ {1, 2, ...,m}. We assume that the distance between the initial positions of

each pair of robots, and the distance between their goal positions, is at least dmin.

Figure 3.22 illustrates examples of collisions between robots that would occur if the

robots followed their predicted trajectories. The i-th robot is labeled R#i. In this scenario,
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R#1, R#2, and R#3 are moving, and R#4 is stationary. The predicted trajectories of

R#1 and R#2 intersect, and R#3 is predicted to collide with R#4. The optimal control

solutions which would produce these collisions, and hence violate the collision avoidance

constraints in Eq. (3.68), are considered to be infeasible solutions of the optimization prob-

lem at the time step k.

Predicted states

R #1

R #2

Collisions
𝑑min

2

R #4

R #3

Figure 3.22: Examples of Potential Collisions, Indicated by Lightning Bolts, Between Pairs

of Robots.

Given the loss function in Eq. (3.67), the discrete-time kinematic model in Eq. (3.64),

the limits on the robots’ state and control input vectors, and the collision avoidance con-

straints in Eq. (3.68), we can write the nonlinear optimization problem for our proposed
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MPC method as follows, with i = 1, ...,m:

J∗
NP

(X(0),X∗,U∗) = minX,U

m∑
i=1

NP−1∑
k=0

l(X(k),U(k))

||xi(k + 1)− xj(k + 1)||> dmin, ∀i ̸= j,

xi(k + 1) = xi(k) + f(xi(k),ui(k))Ts

xi,min ≤ xi(k) ≤ xi,max

ui,min ≤ ui(k) ≤ ui,max

X(0) = Xc(k)

(3.69)

We solve this optimization problem using the multiple-shooting method.

Feasibility and Stability Analysis

In this section, we investigate the feasibility of the optimization problem in Eq. (3.69) and

the stability of the proposed MPC method. These two properties of MPC schemes have

been studied extensively in (Mayne et al., 2000; Gondhalekar et al., 2009). The optimiza-

tion problem is considered feasible if it has at least one solution and all its constraints are

satisfied at each time step, and the MPC method is considered stable if all robots converge

to their preassigned goal poses. A feasible state is a state X(k) that satisfies the bounds

xi,min ≤ xi(k) ≤ xi,max for all i = 1, ...,m, and a feasible control input is an input U(k)

that satisfies the bounds ui,min ≤ ui(k) ≤ ui,max, i = 1, ...,m.

Definition 3.3.1 (Feasible states and admissible control sets). Define X as the set of feasi-

ble states X of all robots, and U as the set of feasible robot control inputs U. Then, the

control inputs U(k|k +NP − 1) are admissible for any initial state X(0) ∈ X if:

(1) the control inputs are a subset of the feasible control set for all time steps in the predic-

tion horizon, i.e. U(k|k +NP − 1) ⊆ U, and

(2) the predicted states are a subset of the feasible state set for all time steps in the horizon,
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i.e. X(k|k +NP − 1) ⊆ X.

To simplify the notation, we also define the set of all feasible states and feasible control

inputs as Z := X× U.

Theorem 3.3.2 (Feasibility). Suppose that the initial state X(0) is known and is a feasible

state, i.e. X(0) ∈ X. Then, the constrained nonlinear MPC optimization problem in

Eq. (3.69) has feasible solutions if and only if for all time steps k in the prediction horizon,

the following statements hold:

(a) The optimal control solutions and corresponding predicted states are a subset of the

feasible set, i.e. X∗(k|k +NP − 1)×U∗(k|k +NP − 1) ⊆ Z.

(b) The collision avoidance constraints are satisfied for all time steps in the horizon, i.e.

||xi(k|k +NP + 1)− xj(k|k +NP + 1)||> dmin, ∀i ̸= j.

Proof. Given the nonlinear system in Eq. (3.56), if the initial state and initial control input

are in the feasible set, i.e. X(0)×U(0) ∈ Z, then the recursive feasibility, defined in (Grüne

and Pannek, 2017), of the optimization problem in Eq. (3.69) trivially holds. In other words,

the set of optimal control solutions U∗(k|k + NP − 1) is not the empty set. To prove that

the collision avoidance constraints are satisfied for all time steps k, ..., k + NP − 1, we

consider a contradictory case. Suppose that there exists an optimal control solution for

which two robots have a point in common on their predicted paths that they will reach at

the same time, leading to a collision (see robots R#1 and R#2 in Fig. 3.22). According

to the Nyquist-Shannon sampling theorem, a discrete sequence of samples can be used

to adequately reconstruct a continuous-time signal given a small enough sampling time,

Ts. Thus, for Ts small enough, the MPC method will identify the aforementioned point

of collision between the robots and compute an optimal admissible control solution that

avoids producing this collision. As a result, satisfying the collision avoidance constraints

at each time step is sufficient to guarantee collision-free navigation by all the robots.
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Proving the stability of our proposed NMPC method is challenging, since the method

requires solving a finite-horizon optimal control problem at each time step. Most existing

NMPC-based approaches for pose stabilization of nonholonomic robots ensure stability by

incorporating stabilizing terminal constraints and/or stabilizing terminal costs into the op-

timization problem (Keighobadi et al., 2011; Faulwasser and Findeisen, 2015; Faulwasser,

2012; Alessandretti et al., 2013; Lam et al., 2013; Yu et al., 2015; Gu and Hu, 2005; Worth-

mann et al., 2015b). However, constructing suitable stabilizing terminal constraints or costs

is a challenging task, and moreover, this approach limits the operating region of the MPC

and necessitates a relatively long prediction horizon (Boccia et al., 2014). These issues in

turn make the NMPC method computationally prohibitive to implement. The stability of

NMPC methods for nonholonomic robots has also been proved without the introduction

of stabilizing terminal constraints and terminal costs (Mehrez et al., 2020; Grimm et al.,

2005; Rawlings and Mayne, 2009). We establish our proposed MPC method’s stability

using this approach, which is detailed in (Worthmann et al., 2015a). Our method extends

these types of NMPC methods, which are designed for single robots, to multi-robot systems

and introduces constraints into the NMPC that enforce inter-robot collision avoidance. The

objective is to prove that there exists an optimal value function, defined as:

VNP
(X(0)) := inf JNP

(X(0),X,U) ∀X×U ∈ Z, (3.70)

that guarantees the asymptotic stability of our NMPC design with prediction horizon NP .

We first state several definitions and assumptions that are needed in the stability proof.

Definition 3.3.3 (K∞-function). Continuous functions ζ(r) : R≥0 → R≥0 that are strictly

increasing, and for which ζ(0) = 0, are categorized as the class of K-functions. Those

K-functions which satisfy limr→∞ ζ(r) =∞ are called the class of K∞-functions.

Assumption 3.3.4. Define Jk as the following cost function, which is calculated over the
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first k steps of the prediction horizon:

Jk(X(0),X,U) = minX,U

m∑
i=1

k∑
k̄=0

l(xi(k̄),ui(k̄)). (3.71)

Then, for any initial state X(0) ∈ X, the following holds:

Vk(X(0)) := inf Jk(X(0),X,U) ≤ ηkl(X
∗,U∗), (3.72)

where ηk, k ∈ N, is a bounded sequence of monotonically increasing natural numbers.

Assumption 3.3.5. There exist two K-functions ζ1 and ζ2 which satisfy the following:

ζ1(||X−Xref||) ≤ l(X∗,U∗) ≤ ζ2(||X−Xref||). (3.73)

Definition 3.3.6 (Performance index). The performance index γNP
, which determines the

minimum value of the prediction horizon NP that ensures the asymptotic stability of the

MPC method (Worthmann et al., 2015a), is defined as:

γNP
:= 1− (ηNP

− 1)
∏NP−1

k=1 (ηk − 1)∏NP−1
k=1 ηk −

∏NP−1
k=1 (ηk − 1)

. (3.74)

Theorem 3.3.7 (Stability). Suppose that the initial state X(0) is known and that the initial

state and initial control inputs are feasible, i.e. X(0)×U(0) ∈ Z. Given Assumption 3.3.4,

the closed-loop controller computed by the nonlinear constrained MPC in Eq. (3.69) is

asymptotically stable with the prediction horizon NP if for a positive performance index

γNP
> 0, the relaxed Lyapunov inequality holds:

VNP
(X(k + 1)) ≤ VNP

(X(k))− γNP
l(X(k),U(k)). (3.75)

Proof. Suppose that Assumption 3.3.4 and the inequality in Eq. (3.75) hold, and the initial

robot states and control inputs are feasible, i.e. X(0) × U(0) ∈ Z. Given a sequence

ck ⊆ R≥0, where
∑∞

k=0 ck <∞, such that

l(X(k),U(k)) ≤ ckl(X
∗,U∗), ∀k ∈ {1, 2, ..., NP − 1}, (3.76)
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the bounds in Eq. (3.72) are achieved by setting ηk =
∑k−1

k̄=0 ck̄ (Mehrez, 2017). Thus,

an upper bound on the optimal value function at time step k, i.e. Vk, can be obtained as

follows:

Vk(X(0)) ≤
k−1∑
k̄=0

l(X(k̄),U(k̄))

≤
k−1∑
k̄=0

ck̄l(X
∗(k̄),U∗(k̄)) = ηkl(X

∗(k),U∗(k)),

(3.77)

in which the sequence ηk is monotonically increasing for ck ≥ 0. For further details, we

refer the reader to (Worthmann et al., 2015b; Boccia et al., 2014; Worthmann et al., 2015a;

Worthmann, 2011).

Corollary 3.3.8. Theorem 3.3.7 implies that the constrained nonlinear MPC design in

Eq. (3.69) produces stable optimal control solutions if and only if the predicted sequence

of states for each robot, i.e. xi(k), i = 1, ...,m, converges to its desired goal pose xgi in

finite time starting from any feasible initial state X(0) ∈ X.

Algorithms for Implementation of the MPC

Figure 3.23 illustrates the framework for implementing our proposed MPC method in the

Robot Operating System (ROS). We first specify the number of robotsm; the robots’ initial

poses X(0) and goal poses Xref; the bounds on the robots’ states and control inputs, i.e.

xi,min, xi,max, ui,min, and ui,max; the weighting matrices Q and R; the sampling time Ts;

and the distance dmin. The bounds on the robots’ linear and angular velocities are defined

as vi ∈ [−0.22 0.22] (m/s) and wi ∈ [−2.84 2.84] (rad/s), according to the Burger

robot’s specifications (Robotis, 2020). We use the symbolic programming framework in

CasADi (Andersson et al., 2012) to formulate the optimization problem in Eq. (3.60) for

the case of a single robot, or the one in Eq. (3.69) for multiple robots. The optimization

problem is solved using the Interior Point OPTimizer (IPOPT), an open-source software
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library for large-scale nonlinear optimization problems that is available in CasADi. For

details about IPOPT options and the tuning parameters in CasADi, see (Andersson et al.,

2012; Wächter, 2009).

Algorithms 1, 2, and 3 contain pseudocode that describes the implementation of our

proposed MPC method in both simulation and experiment. A central supervisor runs these

algorithms to solve the optimization problem and send optimal control commands to the

robots. The robots estimate their current poses relative to their initial poses (which are

known) using odometry, fusing their wheel encoder measurements and IMU sensor data to

improve the accuracy of the pose estimates. Using ROS, the robots publish their odometry

information on a topic, and the central supervisor subscribes to each robot’s published

odometry topic in order to obtain the poses of the robots. The supervisor publishes the

optimal control solutions to the robots’ velocity commands. These control commands are

published to the robots’ velocity topics, which are each defined as a ROS topic.

Algorithm 1 executes the main loop of the program. First, it initializes the optimization

problem of the MPC, the ROS core node, the subscribers that read the robots’ odome-

try measurements, and the velocity command publishers. It also sets the options for the

Nonlinear Programming (NLP) solver, including the acceptable convergence tolerance (ac-

ceptable_tol), the stopping criterion based on the change in the objective function value

(acceptable_obj_change_tol), and the maximum number of iterations (max_iter) for the

IPOPT solver. Next, the following procedure repeats as long as the error between the cur-

rent robot poses and their goal poses, ||X − Xref||, exceeds a small positive constant δ.

First, Algorithm 2 obtains the robots’ measurements of their own poses by subscribing to

each robot’s odometry callback function. Then, the IPOPT solves the optimization problem

in either Eq. (3.60) or Eq. (3.69). As described earlier, only the optimal control solutions

computed at the first time step of the prediction horizon, i.e. U∗(0), are applied to the

robots. Finally, Algorithm 3 shifts the prediction and control horizons forward by one time
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step and re-initializes the optimization problem using the warm start approach, in which

the optimal solutions at the previous time step are defined as the initial solutions (also re-

ferred to as initial guesses) at the next time step. The robots’ states are re-initialized with

their current poses.
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Figure 3.23: Framework for Implementing the Proposed MPC Method for Collision-Free

Navigation by Multiple WMRs.

3.3.4 Simulation and Experimental Results

In this section, we validate our NMPC method for collision-free navigation in both sim-

ulations and experiments with real-world robots. We performed the simulations in Gazebo,

using the Turtlebot3 Burger (see Fig. 3.20) as the robot platform, and conducted the exper-

iments with multiple Burger robots. The Burger robot is a two-wheeled differential-drive

WMR that is equipped with Raspberry Pi and OpenCR boards, providing an integrated em-

bedded system of sensors and processors which can be programmed in ROS to implement

our MPC method. More details about this robot can be found in (Robotis, 2020). Videos

of the simulations and experiments are available online in (Salimi Lafmejani and Berman,

2020b) and (Salimi Lafmejani and Berman, 2020a), respectively.

We tested our MPC method in six different scenarios, each implemented in both simu-

lations and experiments. Three of the scenarios, in which there are m ∈ {1, 2, 3} robots,
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Algorithm 1 Main Function of MPC Method
Input: X(k|k + NP − 1), X(0), Xref(k|k + NP − 1), U(k|k + NP − 1), Q, R, NP , m,

xi,min, xi,max, ui,min, ui,max, f(xi(k),ui(k)), Ts, dmin

Output: X∗(k|k +NP − 1), U∗(k|k +NP − 1)

1: Initialize ROS node, odometry subscribers, and velocity command publishers; import

CasADi

2: Symbolically formulate the optimization problem in Eq. (3.60) or Eq. (3.69) using

CasADi

3: Set NLP solver (IPOPT) options: acceptable_tol = 10−8,

acceptable_obj_change_tol = 10−6, max_iter = 2000

4: while ||X(k)−Xref(k)||> δ do

5: Algorithm 2: Obtain the robots’ pose measurements

6: Solve optimization problem in Eq. (3.60) or Eq. (3.69)

7: Publish U∗(0) to ROS topics of robots’ velocity commands

8: Algorithm 3: Shift the prediction and control horizons, re-initialize the optimization

problem with warm start

9: end while

are shown in the videos (Salimi Lafmejani and Berman, 2020b,a) but are not discussed here

for the sake of conciseness. The other three scenarios, in which there are m ∈ {4, 5, 6}

robots, are described below:

Scenario 1 : Collision-free Position Swap of Four Robots. Four robots are initially lo-

cated at the vertices of a square and are all oriented toward the center of the square (the

origin). Each robot must switch positions with the robot at the opposite vertex along the
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Algorithm 2 Obtain Robots’ Pose Measurements
Input: m, k

Output: Xc(k)

1: i← 1, Xc(k)← [ ]

2: for i ≤ m do

3: Call odometry callback function of i-th robot

4: Read pose measurement xi ← [xi yi θi]

5: Concatenate Xc(k) and xi

6: end for

7: Return Xc(k)

Algorithm 3 Shift Horizons & Initialize Next Step
Input: U∗(0), Xc(k)

Output: U(0), X(0)

1: Update initial guess: U(0)← U∗(0)

2: Update initial state: X(0)← Xc(k)

3: Increment time step: k ← k + 1

4: Return U(0), X(0)

diagonal of the square. The robots’ goal headings are the same as their initial headings.

Scenario 2 : Collision-free Reconfiguration of Five Robots. Five robots start in a V-

formation and must reconfigure into a symmetric formation about the y-axis, with their

goal headings the same as their initial headings. The goal positions of the robots are as-

signed such that they must avoid many potential collisions with one another as they navigate

to their goal poses.

Scenario 3 : Collision-free Position Swap of Six Robots. Six robots start at the vertices

of a regular hexagon, facing toward the center (the origin). Each robot must switch posi-
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Table 3.1: Sampling Time (s) and Prediction Horizon (Time Steps) for Each Scenario in the Sim-

ulations and Experiments.

Simulation Experiment

Scenario 1 2 3 1 2 3

Sampling time 0.1 0.1 0.35 0.1 0.1 0.3

Prediction horizon 50 35 35 45 40 35

tions with the robot at the diametrically opposite vertex while avoiding collisions with one

another. The robots’ goal headings are the same as their initial headings. (Note: In the

experiment for this scenario, the ranges of vi and wi were reduced to vi ∈ [−0.15 0.15]

(m/s), wi ∈ [−1.5 1.5] (rad/s) to accommodate the relatively high density of robots in the

testbed.)

Table 3.1 lists the sampling time Ts and the prediction horizon NP that were used in

each of these scenarios in the simulations and experiments. For these scenarios, and for the

scenarios with m = 2 and m = 3 robots, the weighting matrices Qm and Rm were defined

as the Kronecker products of the matrices in Eq. (3.79) with the m × m identity matrix

Im×m:

Qm = Q⊗ Im×m, Rm = R⊗ Im×m, (3.78)

where Q and R are the weighting matrices for the scenario with m = 1 robot, defined as:

Q = diag(1, 5, 0.1), R = diag(0.5, 0.05). (3.79)

Figures 3.24–3.29 show snapshots of the robots at several time steps during simulations

and experimental runs of the Scenarios 1–3. The robots’ trajectories are plotted as colored
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dashed lines, and their goal positions and goal orientations are indicated by colored cir-

cles and arrows, respectively, with a different color assigned to each robot. In the figure

captions, the goal position coordinates are given in meters, and the goal orientations are in

radians. The snapshots show that in each scenario, all robots successfully navigate to their

goal poses without colliding with one another or becoming trapped in a deadlock config-

uration. In addition, Figs. 3.30–3.41 plot the time evolution of the robots’ optimal control

inputs, i.e. the optimal linear and angular velocities computed by our MPC method, during

the simulations and experimental runs of the scenarios.
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Figure 3.24: Snapshots of the Gazebo Simulation of Scenario 1. The robots’ Goal Poses

Are: xg1 = [1 − 1 − 0.785]T, xg2 = [−1 −1 − 2.356]T, xg3 = [1 1 0.785]T, xg4 =

[−1 1 2.356]T.
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Figure 3.25: Snapshots of the Experimental Run of Scenario 1. The Robots’ Goal Poses

Are: xg1 = [0.71 − 0.71 − 0.785]T, xg2 = [0.71 0.71 − 2.356]T, xg3 = [−0.71 −

0.71 0.785]T, xg4 = [0.71 − 0.71 2.356]T.

3.3.5 Analysis and Deadlock

In this section, we first give recommendations on tuning several parameters in our MPC

method for the scenarios. Next, we describe types of deadlocks that can occur in each

scenario and discuss how our method can resolve these deadlocks. Finally, we identify

some limitations of our method.
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Figure 3.26: Snapshots of the Gazebo Simulation of Scenario 2. The Robots’ Goal Poses

Are: xg1 = [1 0.5 0]T, xg2 = [0 0.75 − 1.57]T, xg3 = [−0.5 − 0.5 3.14]T, xg4 =

[−0.5 − 0.75 0.785]T, xg5 = [0.75 − 0.75 − 0.785]T.

Tuning MPC Parameters

Proper selection of the MPC parameters Ts, NP , NC ,Q, and R is important, since they can

affect both the controller performance and the computational complexity of the method.

Furthermore, these parameters may need to be retuned for different multi-robot navigation

problems.

Sampling time (Ts): The sampling time determines the resolution of the discrete-time

kinematic model in Eq. (3.57) and the rate at which the optimization problem in Eq. (3.69)

is solved. If Ts is too large, then the kinematic model will not accurately predict the robots’

future states, and therefore potential collisions between robots may not be identified and the

robots may navigate to points that are far from their goal positions. Moreover, collisions
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Figure 3.27: Snapshots of the Experimental Run of Scenario 2. The Robots’ Goal Poses

Are: xg1 = [0.56 − 0.71 0]T, xg2 = [0.84 −0.36 0]T, xg3 = [1.18 0 0]T, xg4 =
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can occur between robots that follow optimal control velocities which are infrequently up-

dated by the MPC method, and therefore are not adjusted for imminent collisions. On the

other hand, a very small Ts will result in more accurate predictions of the future states and

identification of all possible robot collisions, as discussed in the proof of Theorem 3.3.2.

However, reducing Ts increases the computational cost to solve the optimization problem,

as we observed in our simulations and experiments.

Prediction horizon (NP ): The prediction horizon determines the number of time steps

over which the MPC method predicts the robots’ future states. If NP is too small, then col-
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Figure 3.28: Snapshots of the Gazebo Simulation of Scenario 3. The Robots’ Goal Poses

Are: xg1 = [−0.866 − 0.5 − 2.618]T, xg2 = [0 − 1 − 1.57]T, xg3 = [0.866 − 0.5 −

0.523]T, xg4 = [0.866 0.5 0.523]T, xg5 = [0 1 1.57]T, xg6 = [−0.866 0.5 2.618]T.

lisions between approaching robots may not be predicted, or even if robots avoid collisions,

they can become stuck in immobile deadlock configurations. If NP is large, then the MPC

method may produce overly conservative optimal control velocities that steer the robots

away from each other prematurely, in an effort to prevent future collisions that are in fact

too distant in time to accurately predict. Moreover, increasing NP raises the computational

cost to solve the optimization problem, similar to the effect of decreasing Ts. Based on our

empirical observations, our recommendation is to set NP between 25 and 110 time steps.

Control horizon (NC): The control horizon, NC , can be set to any value such that NC ≤
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Figure 3.30: Optimal Robot Linear Velocities Over Time in the Simulation of Scenario 1
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Figure 3.31: Optimal Robot Linear Velocities Over Time During the Experimental Run of

Scenario 1.

0 10 20 30 40 50 60 70 80 90
t (s)

-3

-2

-1

0

1

2

3

 (
ra

d/
s)

1

2

4

3

-2.84 (rad/s)

+2.84 (rad/s)

Figure 3.32: Optimal Robot Angular Velocities Over Time in the Simulation of Scenario

1.

NP . In this section, we choose NC = NP in all simulations and experiments. In MPC

design, the smaller the control horizon, the lower the computational cost to solve the opti-

mization problem. However, increasing the control horizon improves the accuracy of the
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Figure 3.33: Optimal Robot Angular Velocities Over Time During the Experimental Run

of Scenario 1.
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Figure 3.34: Optimal Robot Linear Velocities Over Time in the Simulation of Scenario 2.

predicted future robot states, since they are computed using a longer sequence of optimal

control inputs. Therefore, if sufficient computational resources are available, we recom-

mend to set NC = NP in order to achieve the best possible predictions of the future robot

states. Alternatively, we may define NC as 10%–20% of NP , as is standard in MPC design.
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Figure 3.35: Optimal Robot Linear Velocities Over Time During the Experimental Run of

Scenario 2.
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Figure 3.36: Optimal Robot Angular Velocities Over Time in the Simulation of Scenario

2.

Weighting matrices (Q and R): The weighting matrices Q and R are used to define

the objective function of the optimization problem in the MPC formulation. The MPC
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Figure 3.37: Optimal Robot Angular Velocities Over Time During the Experimental Run

of Scenario 2.
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Figure 3.38: Optimal Robot Linear Velocities Over Time in the Simulation of Scenario 3.

must simultaneously satisfy two competing objectives: (1) the robots’ poses, X, should

converge as closely as possible to their goal poses, Xref; and (2) the optimal control solu-

tions should be sufficiently smooth to avoid aggressive control maneuvers. The weighting

matrices establish the relative importance of these two objectives. One way to satisfy the
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Figure 3.39: Optimal Robot Linear Velocities Over Time During the Experimental Run of

Scenario 3.
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Figure 3.40: Optimal Robot Angular Velocities Over Time in the Simulation of Scenario

3.

requirement that Q is positive semi-definite and R is positive definite is to define them as

diagonal matrices with positive entries qii, rii along the diagonal:

Q = diag(q11, q22, q33), R = diag(r11, r22). (3.80)
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Figure 3.41: Optimal Robot Angular Velocities Over Time During the Experimental Run

of Scenario 3.

In the navigation problem that we consider, it is more important that the robots reach their

goal positions than their goal orientations. Therefore, q11 and q22 can be defined as much

higher weights (e.g., 10 to 50 times larger) than q33. For the same reason, we can define r11,

the weight corresponding to a robot’s linear velocity, as a much higher value (e.g., 10 times

larger) than r22, the weight on its angular velocity, which only affects its orientation. We

note that the relative values of the entries of the weighting matrices affect the trajectories

of the robots.

Resolving Deadlocks

In multi-robot navigation scenarios, a deadlock occurs when a robot stops moving before

it reaches its goal position, as a consequence of becoming trapped in an equilibrium point

of the system dynamics (Zhou et al., 2017). Deadlocks inevitably occur in multi-robot

systems that use decentralized control approaches, since the robots can only respond to

local information within their sensing or communication range (Grover et al., 2019). Three
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types of deadlocks that can occur during multi-robot navigation are described and illus-

trated in (Wang et al., 2017). These types of deadlocks are re-illustrated in Fig. 3.42. Given

those three scenarios, deadlock type 1 can occur in Scenarios 1 and 3; deadlock type 2 can

occur in Scenario 3; and deadlock type 3 can occur in Scenarios 2 and 3. Our centralized

MPC method can predict all three types of deadlocks, since it models the future states of

all robots at each time step over the prediction horizon NP . Given an appropriate selection

of NP and a sufficiently small sampling time Ts, as discussed earlier in this section, our

method produces optimal control solutions for deadlock-free navigation.

Deadlock type 2Deadlock type 1

Deadlock type 3

Figure 3.42: Three Types of Deadlocks that Can Occur in Our Multi-Robot Navigation

Scenarios. Illustration is Based on Fig. 8 in (Wang et al., 2017).
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Limitations of the Proposed MPC Method

Although our MPC method can guarantee deadlock-free, collision-free navigation by mul-

tiple nonholonomic WMRs, it has certain limitations that should be considered in the selec-

tion of its parameters and its implementation. First, the scalability of the method to large

numbers of robots is limited by the available computational resources, since the method

uses a centralized approach to computing robot control inputs. Second, as demonstrated

in (Worthmann et al., 2015a) with numerical simulations, the quadratic loss function in

the optimization problem fails to satisfy the bounds specified in Assumption 3.3.4 when

the prediction horizon NP is very large. This problem can be addressed by careful tuning

of NP and the weighting matrices Q and R for each navigation scenario. Third, errors

in the robots’ measured poses can arise from sensor noise in the robots’ odometry read-

ings, wheel skidding and sliding, and external mechanical disturbances such as unknown

friction forces. In our experiments, the robots fuse their wheel encoder readings and IMU

sensor data to improve the accuracy of the odometry, although this sensor fusion did not

completely eliminate errors in the odometry measurements. Techniques such as direct de-

centralized integration (Nourmohammadi and Keighobadi, 2017) can improve real-time

estimation of the robots’ positions and orientations. In addition, a robust controller such as

an H∞ controller and an observer could be incorporated into our method to attenuate the

effects of measurement noise and disturbances on the robots’ trajectories.

3.3.6 Discussion

In this chapter, we proposed a nonlinear MPC method for collision-free and deadlock-

free navigation by multiple nonholonomic WMRs. This method incorporates an optimiza-

tion problem for computing velocity control inputs that drive the robots to goal poses while

avoiding collisions. We analyzed the feasibility of the optimization problem and proved the
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stability of the resulting controller. To reduce the computational complexity of the MPC,

we did not include any stabilizing terminal constraints or costs in the optimization prob-

lem. We implemented the MPC using open-source software tools that provide a symbolic

programming framework, which significantly accelerates the solution of the optimization

problem. We demonstrated the effectiveness of our proposed method in both realistic 3D

simulations and physical experiments for six different multi-robot navigation scenarios.

3.4 Trajectory Tracking Control of Multiple Nonholonomic Robots with Collision and

Deadlock Avoidance

In this section, we present a centralized predictive control approach for safe navigation

of multiple nonholonomic Wheeled Mobile Robots (WMRs) in environments with known

obstacles. Our method is based on a Nonlinear Model Predictive Control (NMPC) frame-

work and uses Barrier Functions (BFs) corresponding to the obstacles to construct Control

Barrier Conditions (CBCs), which are included as constraints in the NMPC optimization

problem. We prove that the method stabilizes the robots to target trajectories while pre-

venting inter-robot collisions, robot-obstacle collisions, and deadlocks among the robots

during navigation. We validate the effectiveness of our approach at enforcing safe multi-

robot navigation in 3D simulations of three different trajectory tracking scenarios with four

nonholonomic WMRs and three static obstacles.

3.4.1 Problem Formulation

In this section, we describe the trajectory tracking control problem and formulate an

NMPC method for navigation of a single WMR. Then, we extend this formulation to

collision-free and deadlock-free navigation of multiple WMRs in environments with static

obstacles that have known locations and geometries. We assume that there is a central
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Figure 3.43: (a) Isometric View (Robotis, 2020) of the Turtlebot3 Burger Robot, and (b)

Overhead View with Body-Fixed and Global Coordinate Frames.

supervisor that solves the optimization problem in our NMPC method and transmits the re-

sulting optimal control inputs to the robots. The robots estimate their current poses relative

to their initial poses (which are known) using odometry measurements and transmit these

pose estimates to the central supervisor.

Figure 3.43(a) shows an isometric view of a commercial nonholonomic WMR, the

Turtlebot3 (TB3) Burger robot (Robotis, 2020). The nonholonomic constraint does not

allow the robot to move along its wheels’ axis. As shown in Fig. 3.43(b), the origin of the

robot’s local coordinate frame x′ − y′ is located at the position defined as x̄ = [x y]T in

the global coordinate frame x− y, and the robot’s heading angle θ describes the rotation of

the local frame about the z-axis with respect to the global frame. The positive direction of

rotation is counter-clockwise. The control inputs of the robot are its linear velocity, v, and

angular velocity, ω. We define the state vector representing the robot’s pose as x := [x̄ θ]T

and the control input vector as u := [v ω]T. We use the following modified version of a
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discrete-time unicycle model to describe the kinematics of the nonholonomic WMR:

x(k + 1) = x(k) + g(x(k))u(k)Ts ,

g(x(k)) =


cos(θ(k))− aω sin(θ(k)) 0

sin(θ(k))− aω cos(θ(k)) 0

0 1

 ,

(3.81)

where a is a small positive constant, Ts is the sampling time, and k ∈ N ∪ {0} is an index

for the time step. Moreover, g(x(k)) denotes the vector field representing the twist of the

robot.

In the trajectory tracking control problem, the control inputs should stabilize the robot’s

position to a desired path and its heading to the direction of the tangent to the path. The

states and control inputs of the robot may be subject to particular constraints. For instance,

we may need to constrain the position of the robot if it must navigate within a bounded

environment with dimensions [xmin, xmax] × [ymin, ymax], and the robot’s heading may need

to be limited to the range θ ∈ [θmin, θmax]. We also need to restrict the control inputs to the

ranges v ∈ [vmin, vmax] and ω ∈ [ωmin, ωmax] defined by the minimum and maximum values

of the robot’s linear and angular speeds. The constraints on the robot’s angular velocity and

heading angle should enable smooth navigation of the robot along the trajectory. Given a

prediction horizon ofNP time steps, we define e(k) = x(k)−xd(k), k ∈ {0, 1, 2, ..., NP −

1}, as the error between the robot’s current pose, x(k), and its target position at time k

along the desired trajectory, xd(k). Moreover, the desired control inputs, ud(k), consist of

the desired linear and angular velocities of the robot for tracking the trajectory. We define

the error between the current and desired control inputs at time k as eu(k) = u(k)−ud(k).

In a standard NMPC method for tracking control problems, the optimal control solu-

tions are computed by minimizing the loss function l(x(k),u(k)) = ∥ex(k)∥2Q+∥eu(k)∥
2
R.

In this expression, the first and second terms denote eT
x(k)Qex(k) and eT

u(k)Reu(k), where

Q ∈ R3×3 is positive semi-definite and R ∈ R2×2 is positive definite. The minimization
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problem is subject to the constraints imposed by the kinematic model of the robot and the

bounds on its states and control inputs. We formulate the NMPC as:

u∗ = argminu

NP−1∑
k=0

l(x(k),u(k))

x(k + 1) = x(k) + g(x(k))u(k)Ts

xmin ≤ x(k) ≤ xmax

umin ≤ u(k) ≤ umax

x(0) = xc,

(3.82)

where x(0) is the initial pose of the robot, is set to xc, the robot’s current measurement of

its pose via odometry readings. The solution of the optimization problem is a sequence of

control inputs u∗ ∈ R2×Np . In accordance with MPC methods, only the first column of this

matrix, u∗(0) ∈ R2, is applied to the robot. The solution of Eq. (3.82) gives the optimal

controller for trajectory tracking by a single WMR in an obstacle-free environment. In a

trajectory tracking problem for multiple robots that navigate an environment with obstacles,

the robots must avoid collisions with one another and with the obstacles while tracking their

desired trajectories. We use barrier certificates to ensure the safety of the robots during

navigation, i.e., to prevent the robots from colliding with other robots or obstacles.

Prior to describing our proposed method in the next section, we provide some defini-

tions. Barrier Functions (BFs) enable the synthesis of safe controllers by guaranteeing the

forward invariance of a specified safe set based on a Lyapunov-like condition. We define a

safe set C that represents the free space of the domain, where the robot can move without

colliding with an obstacle. This set is described by the super-level set of a continuous dif-

ferentiable function h(x̄), which is known as a barrier function (Ames et al., 2019). The
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safe set C, its boundary ∂C, and the unsafe set U are defined as:

C = {x̄(k)) ∈ R2| h(x̄(k)) ≥ 0}

∂C = {x̄(k) ∈ R2| h(x̄(k)) = 0}

U = {x̄(k) ∈ R2| h(x̄(k)) ≤ 0}

(3.83)

In order to guarantee the robot’s safety, the control inputs must maintain the robot’s position

x̄ within the safe set C. In other words, the set C must be forward invariant with respect to

the vector field g(x(k)). To ensure forward invariance, the following inequality, called the

Control Barrier Condition (CBC), should be satisfied for all k ∈ {1, ..., NP}:

Lg(x̄(k))h(x̄(k))u(k) + γ
(
h(x̄(k))

)
≥ 0, (3.84)

where Lg(x̄(k))h(x̄(k)) := ∇h(x̄(k))Tg(x̄(k)) are the Lie derivatives of the barrier function

h(x̄) along the directions of the vectors f(x̄(k)) and g(x̄(k)), respectively. Moreover, γ(·)

is a class K function, which is a strictly increasing function with γ(0) = 0. If one uses

the standard unicycle kinematic model of a nonholonomic WMR as in (Salimi Lafmejani

et al., 2020b), then the angular velocity of the robot does not show up in the CBC (Xiao and

Belta, 2019). Thus, we use the modified kinematic model in Eq. (3.81) so that the system

has relative degree 1.

3.4.2 Safe NMPC Control Design and Analysis

The objective of safe trajectory tracking by multiple robots in environments with ob-

stacles is to drive the robots to track their desired trajectories while avoiding collisions

with one another and with static or dynamic obstacles in the environment. Figure 3.44

illustrates an example of trajectory tracking by multiple robots in which collisions would

occur between two robots or between a robot and an obstacle if the robots followed their

desired trajectories (dashed lines). In our model predictive control framework, the central

supervisor calculates optimal control inputs for the robots that achieve trajectory tracking
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Figure 3.44: Illustration of Three Robots Following their Desired Trajectories, with Poten-

tial Collisions Between Two Robots (Collisions of R #1 and R #3, R #2 and R #3) and

Between a Robot and an Obstacle (Collisions of R #1 and R #2 with Obstacles).

while preventing inter-robot and robot-obstacle collisions over the prediction horizon NP .

If a potential collision is detected along a robot’s desired trajectory within the nextNP time

steps, then the computed control inputs temporarily reroute the robot along a collision-free

path and re-stabilize the robot to its desired trajectory once the collision is avoided.

We assume a scenario with m robots and s obstacles in the environment. We denote the

state and control input vectors of the i-th robot, i ∈ {1, 2, ...,m}, by xi and ui, respectively.

We also define the state vector of the j-th obstacle, j ∈ {1, 2, ..., s}, by its position in the

global frame, zj = [xobs,j yobs,j]
T. If the obstacle is moving, then it has velocity vector

żj = [ẋobs,j ẏobs,j]
T. Given the kinematic model of a single robot in Eq. (3.81), we define

the following state space model of the entire system, describing the kinematics of all robots
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and obstacles:

xi(k + 1) = xi(k) + (f(xi(k)) + g(xi(k))ui(k))Ts

zj(k + 1) = zj(k) + żj(k)Ts

i = 1, 2, ...,m, j = 1, 2, ..., s.

(3.85)

In order to enforce inter-robot collision avoidance, we define the corresponding CBCs

as follows:

∇hT(x̄i(k), x̄i′(k))[g
T(x̄i(k)) gT(x̄i′(k))]

T

+ γ
(
h(x̄i(k), x̄i′(k))

)
≥ 0, ∀i ̸= i′,

(3.86)

in which the BF for inter-robot collision avoidance and its gradient are defined as:

h(x̄i(k), x̄i′(k)) = ||x̄i(k)− x̄i′(k)||2−(ri + ri′)
2

∇h(x̄i(k), z̄j(k)) = [2(xi(k)− xi′(k)) 2(yi(k)− yi′(k))

− 2(xi(k)− xi′(k)) − 2(yi(k)− yi′(k))]T,

(3.87)

where ri and ri′ are the radii of the smallest circles that contain the i-th and i′-th robots

and are centered at the origins of their local coordinate frames. In order to enforce robot-

obstacle collision avoidance, we define the corresponding CBCs as:

∇hT(x̄i(k), zj(k))[0
T żT

j (k)]
T

+∇hT(x̄i(k), zj(k))[g
T(x̄i(k)) 0T]T

+ γ
(
h(x̄i(k), zj(k))

)
≥ 0, ∀i, j

(3.88)

in which the BF for robot-obstacle collision avoidance and its gradient are defined as:

h(x̄i(k), z̄j(k)) = ||x̄i(k)− z̄j(k)||2−(ri + robs,j)
2

∇h(x̄i(k), z̄j(k)) =

[2(xi(k)− xobs,j(k)) 2(yi(k)− yobs,j(k))

−2(xi(k)− xobs,j(k)) − 2(yi(k)− yobs,j(k))]
T,

(3.89)
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where robs,j is the radius of the smallest circle that contains the j-th obstacle with the center

of its local coordinate frame. We note that this formulation does not require the obstacles

to be circular; depend on the shape of circular obstacles. In fact, one can consider zj to

be the position of the center of the smallest circle that contains an obstacle with arbitrary

shape. In the CBCs (3.86) and (3.88), we set the function γ(·) to γ(h(·, ·)) := βh(·, ·),

where β > 0 is a small positive constant. Defining small values for β ensures that the robot

moves slowly and avoids the boundary of the safe set, ∂C, by a wide margin.

Given the CBCs (3.86) and (3.88), we now extend the NMPC method for trajectory

tracking control of a single WMR to our proposed NMPC method for collision-free tra-

jectory tracking control of multiple WMRs in an environment with obstacles. We de-

fine vectors that contain all m robots’ positions and control inputs at time step k, k ∈

{0, 1, ..., NP − 1}, by:

X(k) = [xT
1(k) xT

2(k) ... xT
m(k)]

T ∈ R3m

U(k) = [uT
1(k) uT

2(k) ... uT
m(k)]

T ∈ R2m

(3.90)

In addition, we define the vectors of the robots’ desired states and desired control inputs at

each time step k as:

Xd(k) = [xT
d1
(k) xT

d2
(k) ... xT

dm(k)]
T ∈ R3m

Ud(k) = [uT
d1
(k) uT

d2
(k) ... uT

dm(k)]
T ∈ R2m

(3.91)

Then, the loss function in our proposed NMPC method is defined as:

l(X(k),U(k)) = ∥EX(k)∥2Q + ∥EU(k)∥2R ,

EX(k) = X(k)−Xd(k), EU(k) = U(k)−Ud(k).

(3.92)

We define Xc as the vector containing all robots’ measured states via odometry at time

step k, xi,min and xi,max as lower and upper bounds on the i-th robot’s state vector, and

ui,min and ui,max as lower and upper bounds on its control input vector. Using the loss

function l in Eq. (3.92), the discrete-time kinematic model in Eq. (3.85), the bounds on the
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robots’ state and control input vectors, and the collision avoidance constraints in Eq. (3.86)

and Eq. (3.88), we formulate our NMPC method for safe multi-robot trajectory tracking

control as follows:

X∗,U∗ = argminX,U

m∑
i=1

NP−1∑
k=0

l(X(k),U(k))

xi(k + 1) = xi(k) + g(xi(k))ui(k)Ts

Eq. (3.86) Inter-robot CBC

Eq. (3.88) Robot-obstacle CBC

xi,min ≤ xi(k) ≤ xi,max

ui,min ≤ ui(k) ≤ ui,max

X(0) = Xc

(3.93)

To reduce the computational complexity of the optimization problem in Eq. (3.93), we

solve it using the multiple-shooting method (Mehrez et al., 2017a) and defining its decision

variables as both the robot states and control inputs. The pseudo-codes in Algorithms 1 and

2 describe the implementation of our proposed NMPC method. It is crucial to carefully

tune the MPC parameters, Ts,Np, Q, and R, and the tuning parameter β in the CBCs, since

they directly affect the controller’s performance and the computational complexity of the

optimization problem.

The stability of the proposed NMPC method can be established using proofs similar

to those in our previous work (Salimi Lafmejani and Berman, 2021) if we can show that

the associated optimization problem in Eq. (3.93), with CBCs as constraints, has recursive

feasibility (Grüne and Pannek, 2017). Let us denote Xi and Ui as the feasible sets of

states and control inputs for the i-th robot. Then we define X = Πm
i=1Xi and U = Πm

i=1Ui

as the feasible sets of states and control inputs for the multi-robot system, and we use

the simplified notation Z = X × U. Suppose that the initial state X(0) is known and
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Algorithm 4 Main Function of NMPC Method
Input: X, X(0), Xd, U, Uref, Q, R, NP , m, xi,min, xi,max, ui,min, ui,max, g(x̄i(k),ui(k)),

Ts, Tmax

Output: X∗, U∗

1: Initialize ROS node, robot’s odometry subscribers, and velocity command publishers

2: Symbolically formulate the optimization problem in Eq. (3.93) using CasADi (Ander-

sson et al., 2019)

3: while kTs < Tmax do

4: Algorithm 2: Obtain the robots’ pose and velocity measurements

5: Solve optimization problem in Eq. (3.93)

6: Publish U∗(0) to ROS topics of robots’ velocity commands

7: Update initial guess: U(0)← U∗(0)

8: Update initial state: X(0)← Xc

9: Increment time step: k ← k + 1

10: end while

is a feasible state, i.e., xi(0) ∈ Xi for all i = 1, ...,m. Then, the constrained NMPC

optimization problem in Eq. (3.93) has feasible solutions if and only if for all time steps

k, ..., k +NP − 1: (a) the optimal control solutions and corresponding predicted states are

a subset of the feasible set, i.e., X∗ ×U∗ ⊆ Z, and (b) the CBCs in Eqs. (3.86) and (3.88)

are satisfied.

To prove statement (a), we consider the kinematic model of each robot in Eq. (3.81).

If the initial states and initial control inputs are in the feasible set, i.e., X(0) ×U(0) ∈ Z,

then the recursive feasibility of the optimization problem in Eq. (3.93) trivially holds. In

other words, the set of optimal control solutions U∗(k) is not the empty set. To prove

statement (b), we consider a contradictory case. Suppose that there exists an optimal con-
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Algorithm 5 Obtain Robots’ Pose & Velocity Measurements
Input: m, k

Output: Xc, U(k)

1: i← 1, Xc ← [ ]

2: for i ≤ m do

3: Call odometry callback function of i-th robot

4: Read pose measurement xi ← [xi yi θi]

5: Read velocity measurement ui ← [vi ωi]

6: Concatenate Xc and xi, U(k) and ui

7: end for

8: Return Xc, U(k)

trol solution for which two robots have a point in common on their trajectories that they

will reach at the same time, or for which a robot’s trajectory will intersect an obstacle.

By the Nyquist-Shannon sampling theorem, a discrete sequence of samples can be used

to adequately reconstruct a continuous-time signal given a small enough sampling time

Ts. Thus, for a sufficiently small Ts, the NPMC method will identify the aforementioned

point of inter-robot or robot-obstacle collision and compute an optimal admissible control

solution that avoids producing this collision. As a result, satisfying the collision avoid-

ance constraints at each time step is sufficient to guarantee collision-free navigation by all

the robots. Moreover, since our method is centralized, deadlock-free navigation by the

robots is guaranteed if we set a large enough prediction horizon NP . In fact, the centralized

framework is able to plan collision-free paths for the robots that allow them to escape a

deadlock.
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3.4.3 Simulation Results

We implemented our NMPC method on four simulated TB3 Burger robots (see Fig.

3.43) using ROS and the Gazebo robot simulator, programmed in Python. We simulated

three different scenarios that may occur in automated warehouses and autonomous vehicle

traffic: Intersection Cross, Lane Merging, and Lane Changing. In each scenario, the robots

must track specified trajectories in environments with or without stationary obstacles. The

videos of all simulated scenarios are available online at (Salimi Lafmejani et al., 2021b).

For all three scenarios, we set the sampling time to Ts = 0.05 s, the prediction horizon

to NP = 30 time steps, and the parameter β in the CBCs to β ∈ [0.1, 0.2]. We selected the

weighting matrices Qm = Q ⊗ Im×m and Rm = R ⊗ Im×m, where Q = diag(2, 2, 0.5),

R = diag(0.5, 0.05), and ⊗ is the Kronecker product. The translational and rotational

velocities of Burger robots are restricted to the ranges v ∈ [−0.22 0.22] m/s and ω ∈

[−2.84 2.84] rad/s. Accordingly, we set the minimum and maximum values of the control

inputs as vmin = 0 m/s, vmax = 0.2 m/s and ωmin = −1.5 rad/s, ωmax = 1.5 rad/s. (Note that

the constraint vmin = 0 prevents the robots from moving backward.)

In the Intersection Cross scenario, the desired trajectory of one robot intersects those of

the other three robots, which run in parallel. In the case with obstacles in the environment,

shown in Fig. 3.45, each of three robots’ desired trajectories intersects a circular obstacle.

The videos of this scenario in (Salimi Lafmejani et al., 2021b) show that when a collision

is predicted at a point along a robot’s desired trajectory, the robot is steered away from this

trajectory to avoid the collision and thereafter is stabilized again to the trajectory. In the

Lane Merging scenario, the robots’ desired trajectories all lie along the same line, which

in one case is tangent to three circular obstacles as shown in Fig. 3.46. The videos of

this scenario demonstrate that robots are temporarily driven away from this line in order to

prevent collisions with other robots and obstacles. Finally, in the Lane Changing scenario,
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the robots exchange their desired trajectories, which run in parallel, at two times during

the simulation, and circular obstacles may lie tangent to some trajectories as shown in

Fig. 3.47. In the videos of this scenario, the robots are again steered away from their

desired trajectories when confronted with an obstacle or another robot. In all scenarios, the

NMPC method computes control inputs that successfully navigate the robots through their

environment without collisions.
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Figure 3.45: Overhead View of the Initial Configurations and Desired Trajectories of the

Robots in an Intersection Cross Scenario with Obstacles (gray circles).

3.4.4 Discussion

In this section, we propose a control approach based on an NMPC method and barrier

functions for safe navigation of multiple WMRs through environments with static obsta-

cles. We incorporated Control Barrier Conditions (CBCs) into the constraints of the NMPC

optimization problem in order to prevent inter-robot and robot-obstacle collisions. We

tested the proposed method in simulation for three different trajectory tracking scenarios.
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Figure 3.46: Overhead View of the Initial Configurations and Desired Trajectories of the

Robots in a Lane Merging Scenario with Obstacles (Gray Circles).
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Figure 3.47: Overhead View of the Initial Configurations and Desired Trajectories of the

Robots in a Lane Changing Scenario with Obstacles (Gray Circles).

3.5 Pose Stabilization of Multiple Nonholonomic Robots with Static and Dynamic

Obstacle Avoidance

In this section, we present a decentralized control approach based on a Nonlinear Model

Predictive Control (NMPC) method that employs barrier certificates for safe navigation of144



multiple nonholonomic wheeled mobile robots in unknown environments with static and/or

dynamic obstacles. This method incorporates a Learned Barrier Function (LBF) into the

NMPC design in order to guarantee safe robot navigation, i.e., prevent robot collisions with

other robots and the obstacles. We refer to our proposed control approach as NMPC-LBF.

Since each robot does not have a priori knowledge about the obstacles and other robots,

we use a Deep Neural Network (DeepNN) running in real-time on each robot to learn the

Barrier Function (BF) only from the robot’s LiDAR and odometry measurements. The

DeepNN is trained to learn the BF that separates safe and unsafe regions. We implemented

our proposed method on simulated and actual Turtlebot3 Burger robot(s) in different sce-

narios. The implementation results show the effectiveness of the NMPC-LBF method at

ensuring safe navigation of the robots.

3.5.1 Control Problem Formulations

Nonlinear Model Predictive Control (NMPC)

Our proposed control approach utilizes a nonlinear MPC (NMPC) method. We use the

following modified version of a discrete-time unicycle model that describes the kinematics

of a nonholonomic wheeled mobile robot (WMR):

x(k + 1) = x(k) + f(x(k),u(k))Ts

f(x(k),u(k)) =


cos(θ(k)) −a sin(θ(k))

sin(θ(k)) a cos(θ(k))

0 1


v
ω

 (3.94)

where k denotes the time step; Ts is the sampling time; a is a small positive constant;

the state vector x(k) = [x(k) y(k) θ(k)]T is the robot’s pose, i.e., its position x̄ =

[x y]T and heading angle θ in the global coordinate frame at time step k; and the control

input vector u(k) = [v(k) ω(k)]T contains the robot’s control inputs, which are its linear
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velocity v and angular velocity ω at time step k. If one uses the standard unicycle kinematic

model of a nonholonomic WMR as in (Salimi Lafmejani et al., 2020b), then the angular

velocity of the robot does not show up in the barrier constraint (Xiao and Belta, 2019).

Thus, we use the modified kinematic model in Eq. (3.94) so that the system has relative

degree 1.

In an NMPC method, we first solve a nonlinear constrained optimization problem that

minimizes a loss function l(x,u) over a prediction horizon of Np time steps:

U∗ = argminu

Np−1∑
k=0

l(x(k),u(k))

x(k + 1) = x(k) + f(x(k),u(k))Ts

xmin ≤ x(k) ≤ xmax

umin ≤ u(k) ≤ umax

x(0) = xc

(3.95)

where xc is the robot’s current odometry measurement of its pose and U∗ ∈ R2×Np is a

sequence of optimal control inputs for the future Np time steps. The bounds xmin and xmax

on the state vector can be imposed to restrict the robot to move within a specific region,

and the bounds umin and umax on the control inputs are determined by the capabilities of

the robot’s actuators. If the control objective is to drive the robot to a target pose xref, then

the loss function can be defined as the sum of two quadratic terms that quantify the normed

distance of the robot from the target pose and the control effort:

l(x(k),u(k)) = ||x(k)− xref||2Q+||u(k)||2R, (3.96)

where Q and R are square weighting matrices and ||x||2A≡ xTAx. Given the optimal

control inputs U∗, only the first control input U∗(0) is applied to the robot’s actuators.

Then, the time step is incremented from k to k + 1, and optimization problem (3.95) is

solved again.
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Control Barrier Functions (CBFs)

We define safety as a criterion that prevents the control inputs from driving the robot into

a collision with other robots or obstacles. Control barrier functions enable safety for con-

trol synthesis by providing forward invariance property of a specified safe set based on a

Lyapunov-like condition. We define a safe set C that represents the free space of the do-

main, where the robot can move without colliding with an obstacle. This set is described

by the superlevel set of a continuous differentiable function h(x̄(k)), which is known as a

barrier function (Ames et al., 2019, 2014):

C = {∀k ∈ Z0, x̄(k) ∈ Rn| h(x̄(k)) ≥ 0}. (3.97)

In order to prevent collisions, the control inputs must maintain the robot’s position x̄ within

the safe set C. In other words, the set C must be forward invariant with respect to the vector

field f(x̄(k),u(k)) defined in Eq. (3.94). The closed set C is called forward invariant if for

every x̄(0) ∈ C, x̄(k) ∈ C for all k ∈ Z0. Then, the safety certificate at time step k during

robot navigation can be encoded as a Control Barrier Condition (CBC) as follows:

Lf(x̄(k)),u(k))h(x̄(k)) + γ
(
h(x̄(k))

)
≥ 0, (3.98)

where Lf(x̄(k),u(k))h(x̄(k)), the Lie derivative of barrier function h(x̄) with respect to the

vector field f(x̄(k),u(k)), is defined as:

Lf(x̄(k)),u(k))h(x̄(k)) := ∇h(x̄(k))Tf(x̄(k),u(k)) (3.99)

and γ(·) is a classK function, that is, a strictly increasing function with γ(0) = 0. In (Zeng

et al., 2020), it was proved that adding the CBC (3.98) to the constraints of the MPC

optimization problem (3.95) ensures the safety of the computed optimal control inputs.
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Figure 3.48: LiDAR Sensor Rays and Point Sampling in Safe and Unsafe Regions within

the Sensing Range of the LiDAR. The Unsafe Samples are Taken from the Red Shaded

Regions and the Safe Samples are in Areas Excluding the Unsafe Regions. dsr,s, dr,lidar,

dur,s Show the Distances of Robot to the Safe, Boundary, and Unsafe Samples on a Ray of

LiDAR.

3.5.2 Decentralized NMPC-LBF Method

In our NMPC-LBF method, the BF is learned by training a DeepNN in real-time on each

robot. The trained DeepNN provides an approximation of the true BF defined by ĥ(x̄(k))

given future predicted states of the robot. In our method, we conservatively choose the

control horizon as Ns = Np to enforce the safety of the robot over all Np future time steps.
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Figure 3.49: An Illustration of Ground-Truth BF, h(x̄), and Approximation of BF by the

DeepNN, ĥ(x̄), on a Single Ray of LiDAR Along with a 2D Visualization of Safe and

Unsafe Samples and a Sample on the Boundary of Obstacle. We Note that the Sample

Points are Defined in x− y Plane with the Height of Zero.

Data Sampling and Training DeepNN

The DeepNN should be trained to learn an approximation of the BF. To train the DeepNN,

we need to collect samples from safe and unsafe regions that are observed by the robot

during navigation. Figure 3.48 demonstrates our method to collect samples at each time

instant. These samples are obtained in real-time only based on the LiDAR sensor readings

and the current pose of the robot via odometry readings. We defineR as the number of rays

on the LiDAR sensor, r = {1, 2, ..., R} as the index for the rays, αr as the angle between

the direction of the robot’s heading and the r-th ray of the LiDAR, and dr,lidar(k) as the

distance measured by the LiDAR in the direction of the r-th ray at the k-th time step. Then,

we sample points within the sensing range of the robot along each ray of the LiDAR as

illustrated in Fig. 3.48. Let us define dmax as the maximum distance that the robot can sense.

Then, we take S number of samples on each ray of the LiDAR. We define x̄r,s(k) ∈ R2 as

the position in the global coordinate frame of the s-th sample, s ∈ {1, 2, ..., S}, on the r-th
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ray at the k-th time step. Therefore, we have in total Nsamples = R × S samples available

in the dataset at each time step to train the DeepNN. By calculating dr,s = dmaxs/S as the

distance of sample position x̄r,s(k) to the origin of the robot’s local frame, we can readily

compute the position of the sample as:

x̄r,s(k) = x̄c +Rz(θ(k))dr,s(k)

Rz(θ(k)) =

cos(θ(k)) − sin(θ(k))

sin(θ(k)) cos(θ(k))



dr,s(k) = dr,s

cos(αr(k))

sin(αr(k))


(3.100)

where θ(k) is the heading angle of the robot at the k-th time step and Rz(θ(k)) is the stan-

dard rotation matrix that performs a rotation through angle θ(k) around about the positive

z axis. This rotation matrix transforms vectors described in the local frame of the robot

into vectors described in the global frame x − y. We note that x̄r,s is located in the safe

region, the boundary of an obstacle, or an unsafe region within the sensing range of the

LiDAR. Thus, the input for training the DeepNN is the set of all sampled points, defined as

the vector Xs ∈ RNsamples×2 . We describe the ground-truth outputs as the value of the BF at

the input samples:

h(x̄r,s(k)) = |dr,s − dr,lidar(k)|−δ, (3.101)

where δ > 0 denotes half of the width of unsafe region around the distance measured

by the LiDAR and is set to a positive value greater than the radius of the smallest circle

surrounding the robot. Thus, the input-output set of data for training the DeepNN can

be described by D = {X̄s,Hs} in which each row of X̄s = RNsamples×2 is the position

vector of the sampled point x̄r,s, s = {1, 2, ..., S}, and each row of Hs ∈ RNsamples is

the corresponding ground-truth output value of BF, h(x̄r,s). We employ the incremental
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learning method to train the DeepNN that provides an approximation of the BF. We use

a fully-connected DeepNN that is implemented in TensorFlow (Abadi et al., 2016) and

Keras (Chollet et al., 2015) with 2 inputs (prediction of the robot’s future states, i.e. x̄(k))

and nl = {32, 32, 16, 16, 8} as the number of nodes on 5 consecutive hidden layers, and 1

node at the output layer that gives a scalar value of the approximated BF.

Approximation of Barrier Function

We compute the approximation of the BF and its derivative given the trained DeepNN.

Recalling that x̄(k), where k ∈ {0, 1, ..., Np − 1}, denotes the predicted future states of

the robot, we can obtain a symbolic expression of the approximated BF for each predicted

future state, given the activation functions on each node of the DeepNN and the optimal

weights after each training. We give the symbolic expression of x̄(k) as the input to the

DeepNN and obtain a symbolic expression for the approximation of BF, i.e. ĥ(x̄(k)), at the

output of the DeepNN. Figure 3.49 illustrates samples on a single ray of the robot’s LiDAR

and the change of the ground-truth BF and its approximation with respect to the distance

to an obstacle. The approximated BF can be promptly computed by using the Forward

Propagation (FP) technique. In contrast, computation of the derivative of approximated

BF, i.e. ∇ĥ(x̄(k)), is not trivial. To do so, we use the Back Propagation (BP) technique to

calculate a symbolic expression for the gradient of ĥ(x̄(k)) with respect to the DeepNN’s

inputs, i.e., x̄(k). In our method, we use tanh as the activation function of all nodes of

the DeepNN, since tanh is a continuously differentiable function, which makes possible an

analytical computation of gradient. We note that using ReLU activation function hinders

computation of the gradient in an analytical closed-form. In (Zhao et al., 2020), Bent-ReLU

is used to solve this issue. The required computations in FP to obtain symbolic expression
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of the approximated BF are:

Al = tanh(Zl), Zl =
l−1 WT

l Al−1 + bl

A0 = x̄(k), AL = ĥ(x̄(k)), l = 1, 2, ..., L

(3.102)

where 0 is the index for the input layer, l is the index for hidden layers, L denotes the

number of hidden layers, and tanh is the activation function on each node. The weight

matrix including the weights on the connections between two consecutive layers l − 1 and

l that is defined by l−1Wl. Moreover, Zl is an affine transformation of the previous layer’s

output Al−1 and Al describes the output of l layer after applying the activation function on

Zl. In the BP computations, we obtain a symbolic expression for the approximated gradient

of the BF with respect to the inputs by:

∂ĥ(x̄(k))

∂x̄(k)
=
∂AL

∂ZL

.
∂ZL

∂AL−1

...
∂A1

∂Z1

.
Z1

∂x̄(k)

∂Al

∂Zl

= 1− tanh2(Zl),
∂Zl

∂Al−1

=l−1 WT
l .

(3.103)

Incorporating BF into NMPC

Given the BF approximated by the DeepNN, we define sets that correspond to the safe

region, its boundary, and the unsafe region of the environment, respectively:

C = {x̄ | ĥ(x̄) > δ}, ∂C = {x̄ | ĥ(x̄) = δ},

U = {x̄ | ĥ(x̄) < δ}
(3.104)

For all future Np time steps, we calculate ĥ(x̄(k)) and ∂ĥ(x̄(k))/∂x̄(k) = ∇ĥ(x̄(k)) via

FP and BF computations over the DeepNN, which also determines whether each future

state will be in the set C, ∂C, or U . The constrained optimization problem of our NMPC-
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LBF method is formulated as:

U∗,X∗ = argminx,u

NP−1∑
k=0

l(x(k),u(k))

x(k + 1) = x(k) + f(x(k),u(k))Ts

xmin ≤ x(k) ≤ xmax

umin ≤ u(k) ≤ umax

x(0) = xc

∇ĥ(x̄(k))Tf(x̄(k),u(k)) + γ
(
ĥ(x̄(k))

)
≥ 0 (CBC)

(3.105)

where X∗ is a sequence of optimal states. In order to reduce the computational complexity

in this optimization problem, we use multiple shooting method and lift up the problem

by considering both x and u as decision variables in the minimization. Moreover, we

choose the function γ(.) as γ(ĥ(x̄(k))) = βĥ(x̄(k)) where β > 0 is a small positive value.

We implement and solve this constrained nonlinear optimization problem via CasADi that

is a powerful framework specialized for solving NMPC problems by providing symbolic

expression of the problem. In the decentralized framework of our method, each robot solves

the optimization problem described in Eq. (3.105) independently in which the BF is being

learned by the DeepNN online in the loop at each time step. Figure 3.50 shows a block

diagram of the NMPC-LBF method.

Implementation and Parameter Tuning

We describe implementation of our method using the pseudo codes in Algorithms 1 and

2. Algorithm 1 explains the NMPC-LBF method step by step. After initialization of the

problem and formulating the optimization problem (line 1), the main loop (line 2 to 9) is

executed online to collect the samples and train the DeepNN as described in Algorithm 2

given the current robot’s pose from odometry and LiDAR measurements. We obtain opti-

mal control inputs after solving Eq. (3.105) and apply it to the robot. Then, we shift the
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Figure 3.50: Block Diagram of the NMPC-LBF Method Described in Eq. (3.105). \Scan

and \Odom are ROS Topics Through Which the States of the Robot and the LiDAR Mea-

surements Would be Available.

prediction horizon and initialize the states and control inputs in the optimization problem

with a warm start. This loop is executed up to the point that the distance of the robot to

its goal becomes less than eref = 0.1. There are several parameters in the NMPC-LBF

method that should be tuned carefully to achieve the expected performance of the robot

to safely navigate in the environment. To implement the NMPC-LBF method, we recom-

mend the following values for parameters to achieve the desired performance; prediction

horizon as Np = 10 ∼ 20, sampling time as Ts = 0.01 ∼ 0.05, weight matrices as

Q = diag(5, 5, 0.05) and R = diag(2, 0.5), learning rate as lr = 0.01, number of samples

on each ray of LiDAR S = 50, half width of unsafe region δ = 0.2 m, number of epochs

nepochs = 20 in the training of DeepNN, and β = 0.1 ∼ 0.2 in the CBC.
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Algorithm 6 NMPC-LBF Method
Input: x(0), xref, Q, R, xmin, xmax, umin, umax, Ts, Np

Output: U∗(0)

1: Initialize ROS node, odometry and LiDAR scan subscribers, and velocity command

publishers, symbolically formulate Eq. (3.105) using CasADi

2: while ||x(k)− xref(k)||> eref do

3: Obtaining robots’ pose and LiDAR measurements

4: Algorithm 2: Data Sampling and DeepNN training

5: Solve optimization problem in Eq. (3.105) to obtain U∗

6: Publish U∗(0) to ROS topics of robots’ velocity commands

7: Update initial guess: U(0)← U∗(0), X(0)← xc

8: Increment time step: k ← k + 1

9: end while

3.5.3 Simulation and Experimental Results

To evaluate the effectiveness of our method, we implement it on simulated TurtleBot3

(TB3) Burger robots (Robotis, 2020) in Gazebo and on an actual TB3 Burger robot. We

simulated different scenarios for navigation of single and multiple robots in unknown en-

vironments. Due to space limitations, we only present results for two of these scenarios

in this section. Videos of the experiments with the real robot and all simulations, includ-

ing the simulation not discussed here, are available at (Salimi Lafmejani et al., 2021a). In

scenario 1, a single robot should stabilize to a goal pose in an environment with six un-

known static obstacles. Figure 3.51 shows a snapshot of the initial configuration of the

robot in simulation of scenario 1. The same scenario has been implemented in our previous

work (Salimi Lafmejani et al., 2020b) where the robot has to have a priori knowledge about
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Algorithm 7 Data Sampling and DeepNN Training
Input: xc, x(k), dr,lidar, dmax, R, S, lr, nepochs

Output: ĥ(x(k)), ∂ĥ(x(k))/∂x(k)

1: X̄s = [ ], r = 0, s = 0

2: for r < R do

3: Computing dr,s, αr given r and s

4: for s < S do

5: Computing dr,s in Eq. (3.100)

6: Obtaining sample positions xr,s in Eq. (3.100)

7: Collect data samples X̄s ← x̄r,s

8: end for

9: end for

10: Calculating ĥ(x̄(k)) via FP

11: Calculating ∂ĥ(x̄(k))/∂x̄(k) via BP

12: Return ĥ(x̄(k)), ∂ĥ(x̄(k))/∂x̄(k)

the position and geometry of the obstacles, unlike the NMPC-LBF method. In scenario 2,

four robots should stabilize to their goal poses while avoiding collisions with one another

and two unknown static obstacles in the environment. In scenario 2, four robots should sta-

bilize to their goal poses in an environment with two unknown static obstacles. Figure 3.52

shows a snapshot of the initial configuration of the robots (R #i, i = {1, 2, 3, 4}) in simu-

lation of scenario 2. Figure 3.53 shows distance of the robot to the goal and optimal control

inputs over time in scenario 1. The plots for distance of the robots to their goal poses in

scenario 2 are shown in Fig. 3.54. In experimental tests, we implemented the NMPC-LBF

method on a single robot in three different scenarios in which the robot should stabilize to

its goal pose in environment with one or two unknown static obstacle(s). We also tested
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our control method in the case where the environment changes over time (Salimi Lafmejani

et al., 2021a).
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Figure 3.51: A Snapshot of the Simulation of Scenario 1 in Gazebo. The Robot Should

Stabilize to the Goal Pose at the Origin of the Global Frame.

3.5.4 Analysis of Proposed Control Approach

Stability and Feasibility

The stability of the proposed control approach can be established using proofs similar to

those in our previous work (Salimi Lafmejani and Berman, 2021) if we can show that the

associated optimization problem in Eq. (3.105), with CBCs as constraints, has recursive

feasibility (Grüne and Pannek, 2017). Let us denote X and U as the feasible sets of states

and control inputs for the robot. We use the simplified notation Z = X × U. Suppose that

x̄(0) is known and is in a feasible state, i.e., x̄(0) ∈ X. Then, the optimization problem

in Eq. (3.105) has feasible solutions if and only if for all time steps 0, ..., Np − 1: (a) the
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Figure 3.53: Plots of Distance to Goal and Optimal Control Inputs of the Robot in Scenario

1.

optimal control solutions and corresponding predicted states are a subset of the feasible set,

i.e., X∗ ×U∗ ⊆ Z, and (b) the CBCs in Eq. (3.98) are satisfied.
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Figure 3.54: The Distance of Robots to Their Goal Poses in Scenario 2 Over Time.

To prove statement (a), we consider the kinematic model of each robot in Eq. (3.94). If

the initial state and initial control input are in the feasible set, i.e., x̄(0) × u(0) ∈ Z, then

the recursive feasibility of the optimization problem in Eq. (3.105) trivially holds. In other

words, the sequence of optimal control inputs U∗ is not the empty set. To prove statement

(b), we consider a contradictory case. Suppose that there exists an optimal control solution

for which the robot and an obstacle has a point in common on their trajectories that they

will reach at the same time, or for which a robot’s trajectory will intersect an obstacle. By

the Nyquist-Shannon sampling theorem, a discrete sequence of samples can be used to ade-

quately reconstruct a continuous-time signal given a small enough sampling time Ts. Since

the approximated BF can be computed for any given predicted states, for a sufficiently

small Ts, the NMPC-LBF method will identify the aforementioned point of collision and

compute an optimal admissible control solution that avoids producing this collision. As a

result, satisfying the collision avoidance constraints at each time step is sufficient to guaran-

tee collision-free navigation by the robot. Moreover, deadlock-free navigation by the robot

is guaranteed theoretically if we set a large enough prediction horizon NP and if there exist

a trajectory by which the robot could avoid deadlock.
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Conditions to Guarantee Safe Navigation

Let us define eh(x̄(k)) and e∇h(x̄(k)) as the errors between the approximated and ground-truth

values of the BF and the partial derivative of the BF as:

eh(x̄(k)) = h(x̄(k))− ĥ(x̄(k))

e∇h(x̄(k)) = ∂h(x̄(k))/∂x̄(k)− ∂ĥ(x̄(k))/∂x̄(k),
(3.106)

Proposition 1: We assume that the learned BF via DeepNN is σh-close to the true BF in

Eq. (3.101). Then the CBC in Eq. (3.105) that uses learned BF and its derivative provided

by FP and BP computations in DeepNN would guarantee safety of the robot navigation on

the condition that the parameter β is tuned such that it satisfies the following inequality:

β ≤
||e∇h(x̄(k))|| ||f(x̄(k),u(k))||

σh
(3.107)

Proof. According to the assumption, we know that σh is the upper bound to the absolute

value of the approximation error as |eh|< σh. We also know that the ground-truth BF

satisfies the CBC defined in Eq. (3.98). Given definition of the errors in Eq. (3.106), we

can rewrite the CBC as:

(∇ĥ(x̄(k)) + e∇h(x̄(k)))
Tf(x̄(k),u(k)) ≥ −β(ĥ(x̄(k)) + eh(x̄(k))) (3.108)

which can be rearranged to separate the terms with the errors as follows:

∇ĥ(x̄(k))Tf(x̄(k),u(k)) ≥− βĥ(x̄(k))− βeh(x̄(k))

− eT
∇h(x̄(k))f(x̄(k),u(k)).

(3.109)

Now, we use the condition in Eq. (3.107) and the bounds on the BF approximation error to

obtain:

β ≤
||e∇h(x(k))|| ||f(x(k),u(k))||

σh
≤
|eT

∇h(x(k))f(x(k),u(k))|
|eh|

(3.110)

which gives us the following inequalities:

−eT
∇h(x̄(k))h(x̄(k)) ≤ β|eh|≤ eT

∇h(x̄(k))h(x̄(k)). (3.111)
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If we consider both positive and negative values of eh in Eq. (3.111), we can readily obtain:

eT
∇h(x̄(k))f(x̄(k),u(k)) + βeh ≥ 0. (3.112)

Considering Eq. (3.109) and Eq. (3.112), we can achieve:

∇ĥ(x̄(k))Tf(x̄(k),u(k)) ≥− βĥ(x̄(k))− βeh(x̄(k))

− eT
∇h(x̄(k))f(x̄(k),u(k))

≥− βĥ(x̄(k)).

(3.113)

The inequality in Eq. (3.113) is the CBC for the approximated learned BF and its ap-

proximated derivative, which concludes the safety of the robot navigation while using the

DeepNN to construct the CBC.

Limitations of Proposed NMPC-LBF Method

As a limitation of our decentralized method, a powerful computational resource on the

robot is required to train the DeepNN and solve the optimization problem of NMPC-LBF

in real-time. In turn, this allows us to increase the resolution of sampling points on each ray

of the LiDAR to collect more data, which could preempt the over-fitting problem in training

of the DeepNN. Another limitation of our method is the challenging task of tuning the

parameters of the NMPC-LBF method, which significantly affects the safety and stability

of the robot during navigation. Although inter-robot collision avoidance can be ensured in

our method, there are some special cases in which collision avoidance between the robot

and dynamic obstacles is not guaranteed. If the velocity vector of a dynamic obstacle aligns

with the velocity vector of the robot and has a greater magnitude, then they might collide

since the robot’s control inputs are constrained and there are no known constraints on the

obstacle’s dynamics. We provide a solution to this limitation as future work in section 4.

Due to the generalization error in learning of the BF by the DeepNN, there always exists a

difference between the learned BF and its derivative and their ground-truth values. Given
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the ground-truth values of the BF, computing the approximation errors in Eq. (3.106) for

training sample positions would be possible, whereas we are not able to compute them for

test sample positions that are not in our dataset. Thus, we cannot exploit the results in

Proposition 1 for predicted future samples that are outside of our dataset. This issue could

be solved to some extent if we take enough samples to cover almost all spots in the sensing

range of the robot. Last but not least, the NMPC-LBF method does not necessarily generate

smooth trajectories while approaching the obstacles. This issue could be solved by using

the stochastic NMPC method as described in (Park, 2016) to generate graceful motions of

the robot during navigation.

3.5.5 Discussion

In this section, we presented a decentralized control approach based on an NMPC

method leveraged by a DeepNN to learn BF to ensure safety for navigation of mobile

robots in unknown environments in the presence of other robots and obstacles. The pro-

posed method does not require inter-robot communication and it can be scaled up to be

implemented on any number of robots.

3.6 Velocity Tracking of a Ground Target by Multiple Unmanned Aerial Vehicles with

Collision Avoidance

In this section, we present a controller for collision-free velocity tracking of a moving

ground target by multiple unmanned aerial vehicles (UAVs). The controller combines a

feedforward proportional-derivative (PD) control term and a term that is based on the gra-

dient of an artificial potential function. We use Lasalle’s invariance principle to analytically

prove the convergence of the UAVs to a fixed formation above the target that tracks the tar-

get’s velocity and provide mathematical guarantees on the UAVs’ collision avoidance. As

a result, the Euclidean distance between each pair of UAVs approaches a constant value at
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equilibrium. In the event of UAV failure, the remaining UAVs reconfigure to a new fixed

formation and maintain collision-free tracking of the target’s velocity, demonstrating the

robustness of our control approach to failure. We validate this control approach on dif-

ferent simulated scenarios in MATLAB and the Gazebo (Koenig and Howard, 2004) robot

simulator. We also experimentally test the performance of the control approach on physical

robots, using Crazyflie quadrotors as the UAVs and a Turtlebot3 Burger robot as the mov-

ing ground target. The simulation and experimental results demonstrate the effectiveness

of our control approach at collision-free tracking and its robustness to UAV failure.

3.6.1 Problem Formulation

We first describe the assumed capabilities of the UAVs and define the model that is

used to represent their dynamics. Figure 3.55 shows an illustration of our multi-robot

target tracking problem, in which a group of N UAVs must track a wheeled mobile robot

(WMR), the target, which is moving on the ground. Let xt = [xt yt 0]T denote the

position of the target in the global coordinate frame, whose origin is defined on the ground.

We assume that the UAVs have access to the instantaneous position xt, velocity ẋt, and

acceleration ẍt of the target. In real-world scenarios, measurements of xt, ẋt, and ẍt can

be obtained by cameras on the UAVs or by a GPS sensor on the moving target. We also

assume that each UAV, indexed by i ∈ {1, ..., N}, can use measurements from its onboard

sensors to accurately estimate its current position xi ∈ R3 and velocity ẋi ∈ R3 in the

global coordinate frame, its distance to every other UAV, and its angle with respect to

every other UAV in the global coordinate frame. The UAVs can receive information from a

central computational unit, but they do not communicate with one another. We also assume

that the UAVs always operate close to a hovering condition and do not need to perform

maneuvers with large changes in orientation, which allows us to represent the dynamics of
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each UAV as a point-mass double-integrator model,

mẍi = ui, (3.114)

where m ∈ R is the UAV’s mass, assumed to be the same for all UAVs, and ui ∈ R3 is

its control input vector. Using this double-integrator model facilitates the implementation

of the control approach on any type of multi-rotor UAV. However, if the UAVs must per-

form aggressive maneuvers to track the moving target, then each UAV should instead be

described by a nonlinear dynamic model (Mellinger, 2012).

Crazyflie 

quadrotor

Turtlebot3 

Burger 

(moving target)

𝐱𝑖

𝑥
𝑦

𝑧

𝑖

𝑗

𝐫𝑖𝑗

Tracked path by 

moving target
𝐱𝑡

Crazyradio

(2.4 GHz)

Wi-Fi Router

Group of UAVs

Figure 3.55: Schematic of Our Experimental Setup for the Target Tracking Problem, in

which Four Crazyflie Quadrotors Track a Turtlebot3 Burger Robot Moving on the Ground.

3.6.2 Control Approaches

We design a control law to achieve collision-free tracking of a moving ground target by

the UAVs and prove that the control law achieves this objective. Our proposed control law

ui for the ith UAV consists of two components, each designed to achieve one of the follow-

164



ing objectives: (1) tracking the velocity of the moving target, and (2) avoiding collisions

with the other UAVs. The component of the control law that achieves the tracking objective

is defined as a feedforward Proportional-Derivative (PD) controller. The component that

ensures collision avoidance is defined as a potential-based controller with the following

potential function Vij:

Vij = rij +
a

rij
, (3.115)

where a ∈ R>0 is a positive constant and rij ∈ R>0 is the Euclidean distance between the

ith and jth UAVs, i.e., rij = ||xi − xj||2. The full control law for the ith UAV is given by:

ui = −K1si +mẍt −K2hi, (3.116)

where K1 = k1I3×3 and K2 = k2I3×3 are positive definite gain matrices, with k1, k2 ∈ R>0

and I3×3 denoting the 3× 3 identity matrix; si ∈ R3 is defined as

si = ei +Λėi, Λ = λI3×3, λ ∈ R>0, (3.117)

where ei = xi − xt is the error between the position of the ith UAV and the target; and hi

is the sum

hi =
∑
i ̸=j

∇Vij =
∑
i ̸=j

(
1− a

r2ij

)
pij, (3.118)

where pij is the unit vector along the distance vector rij = xi − xj , i.e., pij = rij/rij .

To execute this controller, each UAV must use its measurements of the position error ei =

xi−xt and its time derivative ėi = ẋi− ẋt, the target’s acceleration ẍt, and the magnitudes

and directions of the vectors rij .

Analysis of Closed-Loop Dynamics

We obtain the closed-loop dynamics of our target tracking control system by substituting

our proposed control law in Eq. (3.116) into the UAV model in Eq. (3.114):

mẍi = −K1si +mẍt −K2hi. (3.119)
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Using the expressions for si from Eq. (3.117) and hi from Eq. (3.118), we obtain:

mẍi = −K1(ei +Λėi) +mẍt −K2

∑
j ̸=i

∇Vij

= −K1ei −K1Λėi +mẍt −K2

∑
j ̸=i

(
1− a

r2ij

)
pij.

(3.120)

By rearranging this equation, the closed-loop error dynamics for the ith UAV can be com-

puted as follows:

mëi +K1Λėi +K1ei +K2

∑
j ̸=i

(
1− a

r2ij

)
pij = 0. (3.121)

Without loss of generality, we assume thatm = 1. We define the following positive definite

Lyapunov function:

H =
1

2
k2

N∑
i=1

∑
j ̸=i

Vij +
1

2

N∑
i=1

(
ėTi ėi + eTi K1ei

)
. (3.122)

The time derivative of H can be calculated as (see Appendix at the end of this chapter):

Ḣ = −
N∑
i=1

ėT
iΛK1ėi, (3.123)

The positive definiteness of the matrix ΛK1 and the absence of ei in Eq. (3.123) show that

Ḣ is negative semidefinite. This fact, along with the positive definiteness of H , imply the

boundedness of H , and consequently, the boundedness of ei, ėi, and Vij for i = 1, ..., N ,

j ̸= i. In addition, given the continuity of H , we can conclude that

ėi −→ 0 as t −→∞, ∀ i = 1, ..., N. (3.124)

This demonstrates that the velocities of all UAVs converge to the velocity of the moving

target. Moreover, Eq. (3.124) implies that ei converges to a constant value for each UAV,

and by using the fact that xi − xj = ei − ej , we conclude that

rij −→ constant as t −→∞, ∀ i ̸= j. (3.125)
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Eq. (3.125) shows that the UAVs converge to a fixed formation above the moving target at

steady-state. Furthermore, given the definition of Vij in Eq. (3.115), the boundedness of Vij

for each UAV implies that rij never equals zero for any pair of UAVs i, j, which guarantees

collision avoidance for all UAVs.

Finally, using LaSalle’s invariance principle (Khalil, 1996), we can confirm that the

trajectories of the closed-loop system converge to the largest invariant set in

E =
{
ėi ∈ R3 | Ḣ ≡ 0

}
, i = 1, . . . , N. (3.126)

Taking into account the closed-loop dynamics in Eq. (3.119) and the fact that Ḣ ≡ 0 ⇒

ėi, ëi ≡ 0, ∀ i ∈ {1, . . . , N}, E can be rewritten as

E =
{
ei ∈ R3 | K1ei +K2hi = 0

}
, i = 1, . . . , N. (3.127)

Summing the equations K1ei +K2hi = 0 over all UAVs i = 1, ..., N , we obtain

K1

N∑
i=1

ei +K2

N∑
i=1

hi = 0. (3.128)

We can confirm that K2

∑N
i=1 hi = 0, since it is the sum of the mutual repulsion forces of

every pair of UAVs on each other, which cancel out. Hence, Eq. (3.128) yields

N∑
i=1

ei = 0, (3.129)

which shows that the geometric center of the polygon defined by the UAVs (the polygon

vertices are the position coordinates of the UAVs) tracks the moving target.

3.6.3 Simulation and Experimental Results

We evaluated our proposed controller for multi-robot target tracking in different simu-

lated scenarios, both in MATLAB and in the Gazebo robot simulator. A video recording of

all simulations described here, as well as additional simulations, is available online at (Sal-

imi Lafmejani et al., 2020g).
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(a) 3D view (b) View in x− y Plane

Figure 3.56: Robot Trajectories During a MATLAB Simulation of Scenario 1.

(a) 3D view (b) View in x− y Plane

Figure 3.57: Robot Trajectories During a MATLAB Simulation of Scenario 2. The Position

at which One UAV Fails is Indicated by a Small Black Circle.

MATLAB Simulations

We simulated two scenarios in which several quadrotor UAVs track a moving nonholo-

nomic WMR while avoiding collisions with one another. The UAVs start from arbitrary
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initial configurations on the ground and then take off simultaneously to fly at a constant

altitude above the WMR before starting the tracking task.

Scenario 1: Three UAVs track the target WMR as it drives along a trajectory that includes

a small circle. Figure 3.56 plots the trajectories of the UAVs and the WMR over the duration

of this simulation (60 s). As expected, the UAVs successfully converge to a fixed formation

that tracks the trajectory of the WMR, enclosing its position in the x − y plane, while

avoiding collisions with one another.

Scenario 2: Five UAVs initially take off to track the target WMR as it drives along the

same trajectory as in Scenario 1, as shown by the plots of the UAV and WMR trajectories

in Figure 3.57. The UAVs converge to a fixed formation above the WMR and track its

trajectory. At time t = 20 s, one UAV fails and drops to the ground. The remaining four

UAVs reconfigure themselves into a new formation and continue to track the trajectory

of the WMR for the duration of the simulation (60 s). The UAVs avoid collisions with

one another throughout the simulation. This scenario demonstrates the robustness of our

multi-robot target tracking approach to UAV failures.

Gazebo Simulations

In order to evaluate our control approach in a more realistic simulation environment, we

simulated two scenarios in Gazebo that were similar to Scenarios 1 and 2 in MATLAB.

There were four UAVs instead of five in Scenario 2, still with one UAV failure. We plot

the trajectories of the moving target and the UAVs in the x − y plane for both scenarios

in Figs. 3.59a and 3.60a. To better visualize the tracking performance of the UAVs, we

also computed the geometric center of the convex hull of the UAVs during the simulation

and plotted its trajectory in Figs. 3.59b and 3.60b, along with the trajectory of the target.
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Figure 3.59b shows that the geometric center of the UAV formation successfully tracks the

target’s trajectory. Figure 3.60b shows that initially, the center of the four UAVs closely

tracks the target, and right after a UAV fails at time t = 30 s, the center of the remaining

three UAVs soon converges back to the target’s trajectory. The UAVs avoid collisions

throughout the duration of both simulations (100 s).

Figure 3.58: Scenario 1: One UAV Tracking the Ground Mobile Target. Total Duration:

20 seconds.

For experimental validation our control approach, we first describe the experimental

setup for all tested scenarios and provide corresponding plots of the results for each exper-

iment. A video recording of the experimental tests described here, as well as additional

tests, is also available online at (Salimi Lafmejani et al., 2020f).
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Figure 3.59: Robot Trajectories During a Gazebo Simulation of Scenario 1.

Experimental Setup

In order to validate the effectiveness of our proposed control method in practice, we imple-

ment our proposed control law in Eq. (3.116) on physical robots. As shown in Fig. 3.55,

Crazyflie 2.1 (Bitcraze, 2011) quadrotors are used as the UAVs. Crazyflie is a small, light-

weight, open-source platform commonly used for swarm and multi-robot applications. We

employ multiple Crazyflies as the tracker UAVs and a Turtlebot3 Burger robot (Robotis,

2020) as the moving target on the ground. We first plan curved trajectories for the Burger

robot by setting arbitrary linear and angular velocities. This planned trajectory is not known

by the UAVs. Then, we read the Burger robot’s odometry information in real-time using

the Robot Operating System (ROS). We then calculate the instantaneous position, velocity,

and acceleration of the Burger robot and compute the control commands for the Crazyflie

quadrotors accordingly. The control commands are sent to the Crazyflies using Crazyradio,
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Figure 3.60: Robot Trajectories During a Gazebo Simulation of Scenario 2. The Position

at which One UAV Fails is Indicated by a Small Black Circle.

a 2.4 GHz radio USB dongle. There is no explicit communication between the Crazyflies.

Each Crazyflie is equipped with a Flow deck v2, which uses a VL53L1x ToF sensor to

measure the distance to the ground (z-axis) and a PMW3901 optical flow sensor to measure

displacement in the plane of the ground (x− y plane). State estimation and PID controllers

have been implemented on the Crazyflie firmware, which enable the Crazyflie to follow

given position setpoints. At each time instant, the desired position setpoints are sent to the

Crazyflies as control commands from a central computer through Wi-Fi communication

provided by the Crazyradio between the computer and the Crazyflies.
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Experimental Results

For the experimental tests, two scenarios were implemented. In Scenario 1, three UAVs

track the moving target while avoiding collisions with one another. In Scenario 2, four

UAVs track the target, and after 30 s, one of the UAV lands (fails), and the tracking contin-

ues with three UAVs. The second scenario is designed to demonstrate the robustness of our

controller at tracking the moving target in the event of UAV failure. In all experiments, the

UAVs start from arbitrary initial configurations on the ground and then take off simultane-

ously to fly at a constant altitude before starting to track the ground robot. The real-time

positions of the UAVs and the target were collected at 20 Hz frequency, and a Butterworth

low-pass filter was applied to these data with a 5 Hz cut-off frequency in MATLAB.

Figure 3.61: Scenario 1: One UAV Tracking the Ground Mobile Target. Total Duration:

20 Seconds.

Figure 3.61 shows the trajectories for the Scenario 1. The start and end points of the

UAV and the moving target are pointed out in the figure. As it can be observed, the UAV

tracks the circular trajectory of the target robot while keeping a specific distance.
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Figure 3.62: Robot Trajectories During an Experimental Trial (Duration: 30 s) of Scenario

1.

The experimental results show that the UAVs successfully tracked the ground robot

in each scenario while avoiding collisions. The fluctuations in the UAV trajectories can

be attributed to the UAVs’ low-level position control loop and near-ground altitude. For

Scenario 1, along with the plots for trajectory of each UAV in Fig. 3.62a, we also plotted

the trajectory of the geometric center of the group of UAVs in Fig. 3.62b. The group of

UAVs effectively tracked the moving target without colliding with one another. Scenario

2 was performed with four UAVs. Figure 3.63 shows the trajectories of the UAVs and

their geometric center. At t = 15 s, one UAV stops tracking and lands on the ground,

emulating the failure of one member of the UAV team. This event is indicated in Fig. 3.63

with black arrows. After this event, the remaining three UAVs continue tracking the target

and ignore the failed UAV in their collision avoidance controller. As shown in Fig. 3.63b,

the failure event causes a sudden shift in the distance between the center of UAVs and the
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Figure 3.63: Robot trajectories during an experimental trial (duration: 40 s) of Scenario 2.

The position at which one UAV fails is indicated by a small black circle.

target. Nevertheless, this distance decreases to approximately the same distance exhibited

before the failure event. Comparing the experimental results with the simulation results,

we observe similar tracking behavior by the UAVs. The main difference is the presence of

fluctuations in the UAV trajectories during the experiments, which is expected in real-world

implementations.

3.6.4 Discussion

We addressed the problem of tracking a moving ground target with multiple UAVs that

do not have prior information about the target’s motion. We analytically proved the con-

vergence of the UAVs to a fixed formation above the target that tracks its trajectory, and

we provided mathematical guarantees that the UAVs avoid collisions with one another. We
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validated our control approach for different scenarios in MATLAB and Gazebo simulations

and in physical experiments with ground and aerial robots. In our simulations and experi-

ments, we also demonstrated the robustness of the UAVs’ target tracking performance and

collision avoidance to the failure of one or more UAVs during the task.

Appendix

We define the following Lyapunov function:

H =
1

2
k2

N∑
i=1

∑
j ̸=i

Vij +
1

2

N∑
i=1

(
ėT
i ėi + eT

iK1ei
)
. (3.130)

Given the expression for Vij in Eq. (3.115), which is a continuously differentiable function,

the time derivative of H can be calculated as:

Ḣ =
1

2
k2

N∑
i=1

∑
j ̸=i

V̇ij +
N∑
i=1

(
ėT
i ëi + eT

iK1ėi
)
. (3.131)

Considering the following representation for the time derivative of Vij ,

V̇ij =
(
∇rijVij

)T
ṙij, (3.132)

and given that∇rijVij = ∇xi
Vij = −∇xj

Vij , we have that:

V̇ij = (∇xi
Vij)

T ṙij =
(
−∇xj

Vij
)T

ṙij. (3.133)

Furthermore, the term
∑N

i=1

∑
j ̸=i V̇ij includes both V̇ij and V̇ji for each pair of robots

i, j, where i ̸= j. Taking into account the fact that Vij = Vji, the sum of these two terms is

calculated as:

V̇ij + V̇ji = (∇xi
Vij)

T ṙij +
(
∇xj

Vji
)T

ṙji = (∇xi
Vij)

T ṙij + (−∇xi
Vji)

T (−ṙij)

= (∇xi
(Vij + Vji))

T ṙij = 2 (∇xi
Vij)

T ṙij.

(3.134)
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Moreover, if we define eij := ei− ej , we can confirm that ėij = ṙij . Incorporating this

into Eq. (3.134), we can write:

1

2

(
V̇ij + V̇ji

)
= (∇xi

Vij)
T ėij = (∇xi

Vij)
T ėi +

(
∇xj

Vij
)T

ėj.

Therefore, the first summation in Eq. (3.131) can be written as:

1

2
k2

N∑
i=1

(∑
j ̸=i

V̇ij

)
= k2

N∑
i=1

∑
j ̸=i

(∇xi
Vij)

T ėi. (3.135)

Then, solving Eq. (3.121) for ëi and substituting this expression into Eq. (3.131), we

obtain Eq. (3.123) for Ḣ:

Ḣ = k2

N∑
i=1

∑
i ̸=j

(∇xi
Vij)

T ėi +
N∑
i=1

(
−ėT

iΛK1ėi − ėT
i

(
k2
∑
j ̸=i

∇xi
Vij

))

= k2

N∑
i=1

∑
i ̸=j

(∇xi
Vij)

T ėi − ėT
i k2

N∑
i=1

∑
j ̸=i

∇xi
Vij︸ ︷︷ ︸

= 0

+
N∑
i=1

(
−ėT

iΛK1ėi
)

= −
N∑
i=1

(
ėT
iΛK1ėi

)
.
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Chapter 4

CONCLUSION AND FUTURE WORK

In this dissertation, we have taken some significant steps to tackle the challenges of

controlling multi-agent robotic systems using decentralized methods, which we hope will

be useful for future researchers in multi-agent robotics. We show how decentralized con-

trol approaches, which have significant advantages in terms of scalability and computa-

tional affordability compared to centralized methods, can be designed to achieve trajectory

tracking by multi-segment manipulators and collision-free navigation by multiple mobile

robots. In recent years, a variety of approaches for control of multi-agent robotic systems

have been developed; however, the existing centralized and distributed methods are largely

intractable. In this research, we design different control approaches, ranging from classical

control to optimization-based control, to study the performance of our proposed methods in

control and motion planning of multi-segment manipulators and mobile robot collectives.

We validate our approaches in simulations of multi-segment manipulators, ground robots,

and aerial robots, and in experiments with ground and aerial robotic platforms.

We summarize possible directions for future work on the research presented in this

dissertation as follows:

• The decentralized position stabilization and trajectory tracking control approach for

a 2D multi-segment manipulator proposed in Section 2.1 has the potential to be im-

plemented on a variety of distributed robotic systems that are composed of multiple

connected components or multiple freely-moving agents. Possible future work in-

cludes: (1) deriving similar consensus-based decentralized controllers for dynamic

models of continuum robots; (2) extending the controllers to continuum robots that
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move in 3D space; (3) identifying bounds on the controller gain, K, to satisfy me-

chanical constraints such as limits on displacements of the robot’s joints; and (4)

incorporating secondary objectives into the controller design such as obstacle avoid-

ance, joint torque reduction, joint limits, and increased manipulability.

• Possible future work on the trajectory tracking controller for an octopus-inspired 3D

multi-segment manipulator in Section 2.2 includes developing a dynamic model for

the robot and designing a control approach based on task priorities (Soylu et al.,

2007) for the robot. Furthermore, a decentralized control approach could be devel-

oped in order to enable the robot to operate with autonomous functionality. In this

decentralized framework, we can employ Linear Matrix Inequality (LMI)-based op-

timal control approaches, such as H2 and H∞ methods, in order to attenuate the

effects of undesired exogenous inputs, such as actuation disturbances and measure-

ment noise, on the performance of the robot.

• Possible future work on the pose stabilization and trajectory tracking control ap-

proach for a holonomic mobile robot in Section 3.1 includes the extension of this

approach to multiple mobile robots that must perform tasks such as flocking and

target tracking while avoiding collisions with each other and with objects in the envi-

ronment. Moreover, the state-space model of the closed-loop system can be modified

to include weights on the reference, output, disturbance, and noise signals, which can

be tuned to improve the robot’s trajectory tracking performance.

• Possible future work on the position stabilization controller for a nonholonomic mo-

bile robot in Section 3.2, which prevents collisions with static obstacles, includes

designing controllers for stabilizing the pose of a nonholonomic robot while prevent-

ing collisions with obstacles using approaches other than gradient-based methods.
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• Possible future work on the nonlinear Model Predictive Control (NMPC) approach

to pose stabilization of multiple nonholonomic robots in Section 3.3, which achieves

collision and deadlock avoidance, includes the modification of this method to create

a decentralized MPC scheme for multi-robot navigation, in which robots use their

own distance measurements (e.g., from a LiDAR sensor) to detect nearby robots and

unknown obstacles in the environment and autonomously adjust their velocities to

avoid potential collisions and deadlocks. We have developed one such approach in

Section 3.5. As another direction of future work, an LMI-based NMPC method could

be designed with linear models of the robots’ motion, which would reduce the com-

putational complexity of our approach and thus enable controller synthesis for larger

numbers of robots without a corresponding significant increase in computational ef-

fort.

• Possible future work on the NMPC trajectory tracking controller for multiple non-

holonomic robots in Section 3.4, which uses barrier functions to achieve safe multi-

robot navigation in environments with known obstacles, is to extend this method to

prevent robot collisions with unknown static and dynamic obstacles in the environ-

ment, e.g., by using Deep Neural Networks (DeepNNs) to learn the corresponding

barrier functions in the Control Barrier Conditions (CBCs). We have developed one

such approach in Section 3.5.

• Possible future work on the NMPC pose stabilization controller for multiple nonholo-

nomic robots in Section 3.5, which uses learned barrier functions (LBFs) to achieve

safe multi-robot navigation in environments with unknown static and/or dynamic

obstacles, includes modifying the method for learning the BF over the prediction

horizon, and therefore learning the unsafe regions at future time steps, by using a

history of the robots’ LiDAR readings as inputs to the DeepNN. This would improve
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the robots’ ability to avoid collisions with moving objects in dynamic environments,

since the method could more accurately predict the trajectories of the objects based

on their past positions. Another direction for future work is to redesign the opti-

mization problem in order to encourage smoothness in the robots’ navigation while

guaranteeing safety.

• Possible future work on the velocity tracking controller for multiple UAVs in Sec-

tion 3.6 includes the design of a fully decentralized tracking controller and extension

of the collision avoidance strategy to enable the UAVs to perform collision-free track-

ing in environments with unknown and dynamic obstacles.
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