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ABSTRACT  
   

Resistance to existing anti-cancer drugs poses a key challenge in the field of 

medical oncology, in that it results in the tumor not responding to treatment using the 

same medications to which it responded previously, leading to treatment failure. 

Adaptive therapy utilizes evolutionary principles of competitive suppression, leveraging 

competition between drug resistant and drug sensitive cells, to keep the population of 

drug resistant cells under control, thereby extending time to progression (TTP), relative to 

standard treatment using maximum tolerated dose (MTD). Development of adaptive 

therapy protocols is challenging, as it involves many parameters, and the number of 

parameters increase exponentially for each additional drug. Furthermore, the drugs could 

have a cytotoxic (killing cells directly), or a cytostatic (inhibiting cell division) 

mechanism of action, which could affect treatment outcome in important ways. I have 

implemented hybrid agent-based computational models to investigate adaptive therapy, 

using either a single drug (cytotoxic or cytostatic), or two drugs (cytotoxic or cytostatic), 

simulating three different adaptive therapy protocols for treatment using a single drug 

(dose modulation, intermittent, dose-skipping), and seven different treatment protocols 

for treatment using two drugs: three dose modulation (DM) protocols (DM Cocktail 

Tandem, DM Ping-Pong Alternate Every Cycle, DM Ping-Pong on Progression), and 

four fixed-dose (FD) protocols (FD Cocktail Intermittent, FD Ping-Pong Intermittent, FD 

Cocktail Dose-Skipping, FD Ping-Pong Dose-Skipping). The results indicate a 

Goldilocks level of drug exposure to be optimum, with both too little and too much drug 

having adverse effects. Adaptive therapy works best under conditions of strong cellular 

competition, such as high fitness costs, high replacement rates, or high turnover. Clonal 
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competition is an important determinant of treatment outcome, and as such treatment 

using two drugs leads to more favorable outcome than treatment using a single drug. 

Switching drugs every treatment cycle (ping-pong) protocols work particularly well, as 

well as cocktail dose modulation, particularly when it is feasible to have a highly 

sensitive measurement of tumor burden. In general, overtreating seems to have adverse 

survival outcome, and triggering a treatment vacation, or stopping treatment sooner when 

the tumor is shrinking seems to work well. 
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CHAPTER 1 

INTRODUCTION 

Therapeutic resistance to existing anti-cancer drugs is a grave problem for cancer 

treatment (J. J. Cunningham, Gatenby, and Brown 2011) and, still remains, to this day, a 

formidable challenge that remains to be overcome for controlling or curing cancer. This 

is because the same drugs that once showed anti-cancer effects at the time therapy was 

initiated do not show the same effects later during treatment, leading to treatment failure, 

and eventually death (J. J. Cunningham, Gatenby, and Brown 2011). The primary goal of 

this dissertation has been to examine ways in which I can tackle the problem of 

therapeutic resistance. Indeed, if the problem of therapeutic resistance can be overcome, 

it would be possible to maintain indefinite control over cancer for the lifetime of the 

patient, converting cancer from an acute lethal disease that takes lives to a chronic 

disease that does not kill. 

The one size fits all approach has typically been the mainstay for most cancer 

treatments up to this day, with the patient receiving the maximum tolerated dose of the 

cancer drug, with the goal being to eradicate the cancer (Gatenby 2009). While this hit 

hard and hit fast and hit often all-out attack approach might work for a tiny fraction of 

cancers, this approach also exacerbates the problem of drug resistance (Gatenby 2009). It 

turns out that some cancer cells, due to genetic (Wagle et al. 2011) or epigenetic 

phenomena, are able to withstand or “resist” the anti-cancer drug. These resistant cancer 

cells, even though possibly constituting a minority fraction of the overall cancer, would 

survive selectively, at the expense of the drug-sensitive cells, which are cancer cells on 

which the drug is able to exert the intended effect, such that the drug resistant cells 
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progressively become the more predominant cell type in the cancer, a phenomenon 

known in ecology as ‘competitive release’ (Zhang et al. 2017). Indeed, after competitive 

release has occurred, it would not be a stretch of imagination to see why most cancer 

treatments eventually lead to treatment failure. 

The problem of drug resistance in oncology can be likened with that of pesticide 

resistance in agriculture (J. J. Cunningham, Gatenby, and Brown 2011; Gatenby 2009). 

Since the advent of the industrial revolution, there has been an explosion in the number of 

pesticides available in the market, and unrestrained use of these has led to the 

development of pesticide and herbicide resistance, which has grave consequences for the 

economy, leading to considerable losses in revenue. The farmers, growers, and pest 

managers have been able to tackle this problem of pesticide resistance by adopting a set 

of approaches to mange pests, collectively called Integrated Pest Management (IPM) 

(Barzman et al. 2015). Inspired by pest mangers, Gatenby et al has ushered in a new era 

of cancer treatment, which has been termed as adaptive therapy (Gatenby, Silva, Gillies, 

and Frieden 2009; Gatenby 2009; Gatenby, Brown, and Vincent 2009b). 

So, the next question which arises is, what is adaptive therapy? Adaptive therapy 

can be viewed as tailoring treatment to the particular tumor, either by adjusting drug 

doses when the tumor grows, or by dosing a constant amount of the drug when the tumor 

is growing and withholding treatment when the tumor is shrinking. The idea being that, in 

the absence of the drug, the sensitive cells can dominate the competition with the 

resistant cells, levelling the playing field, and perhaps tilting the balance towards the 

sensitive cells, such that the tumor can still be controlled with the anti-cancer drug. As 
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such, adaptive therapy can be thought to be a form of personalized medicine, tailoring 

individual cancer treatment plan for the specific individual. 

So, can the concept of adaptive therapy be borne out experimentally? As might 

have been expected, the answer is yes. Preclinical trials in mice with ovarian cancer has 

shown that a heuristic, shot in the dark algorithm of adjusting drug dosages work better 

than standard treatment (Gatenby, Silva, Gillies, and Frieden 2009). In a different 

preclinical trial in mice with breast cancer, the experimenters tested two different 

adaptive therapy protocols, dose-adjustment and dose-skipping, and came to the 

conclusion that the dose-adjustment works better than dose-skipping (Enriquez-Navas et 

al. 2016). In a clinical trial involving advanced stage metastatic castrate-resistant patients 

with prostate cancer, intermittent therapy, which could be conceived to be one form of 

adaptive therapy, was able to extend the median time to progression (TTP) to at least 27 

months, relative to the 16.5 months median TTP that was observed in the 

contemporaneous cohort of patients that received standard treatment (Zhang et al. 2017). 

Now, how do we come up with this individual treatment plan to curb resistance? 

The answer to this question lies in developing adaptive therapy treatment protocols that is 

best able to curb or combat resistance. In Chapter 2, I have investigated the simplest 

scenario possible, adaptive therapy using a single drug. In Chapter 3 and 4, I have 

investigated adaptive therapy treatment protocols with multiple drugs—specifically, two 

drugs. 

Adaptive therapy with two drugs is considerably more challenging than adaptive 

therapy using a single drug. This is because, due to the law of combinatorial 

mathematics, the number of treatment parameters explode with each additional drug 
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(Thomas et al. 2022). Broadly speaking, two different drugs may be applied together such 

that they are at the same place at the same time, or the drugs could be applied 

successively (“rotated”), one after the other, such that only one drug is applied at any 

given time. It is unclear what is the best way to combine two drugs. As such, in Chapters 

3 and 4, I have investigated multiple different ways to combine individual drugs together, 

with the goal of discovering the best ways to control or curb therapeutic resistance. 

Moreover, anti-cancer drugs could have a cytotoxic mechanism of action, killing 

cells, or a cytostatic mechanism of action, preventing cellular division (Millar and Lynch 

2003). However, very little research has been done to investigate how adaptive therapy 

using a single cytotoxic drug would compare to adaptive therapy using a single cytotoxic 

drug, or how adaptive therapy using two cytotoxic drugs would compare to adaptive 

therapy using two cytostatic drugs. In chapter 2, I have investigated adaptive therapy 

using a single cytotoxic, or a single cytostatic drug. In chapter 4, I have investigated 

adaptive therapy using two cytotoxic drugs, or two cytostatic drugs. 

Furthermore, cancer is a loose term to describe a set of different diseases, all 

sharing certain hallmarks (Hanahan and Weinberg 2016, 2011), and each cancer can be 

conceived to be uniquely different from any other, and this concept extends not only for 

different cancer types, but also within the same cancer type. As such, cancers can be 

expected to have very different cellular kinetic parameters. An important point to 

mention is that, due to the sheer number of ways in which two drugs can be combined 

together, testing out all these different adaptive therapy protocols in mice is challenging, 

if not almost impossible, due to the time and the cost involved in the process. Thus, I 

have resorted to leverage the power of computational simulations to answer these 
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questions. The idea is that the best adaptive therapy protocols that are identified in these 

simulations could be tested first in preclinical experiments in mice with cancer, and if the 

results hold up, then these could further be tested in clinical trials in patients with cancer. 

In chapter 5, inspired by the spirit of translational research, I have undertaken to compare 

my computational modeling results to preclinical experiments conducted in mice with 

cancer. In Chapter 6, I write the conclusion, reiterating some key results obtained, and 

point out some possible avenue for further research in the field of adaptive therapy. 
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CHAPTER 2 

IN SILICO INVESTIGATIONS OF ADAPTIVE THERAPY USING A SINGLE 

CYTOTOXIC OR A SINGLE CYTOSTATIC DRUG 

Abstract 

Adaptive therapy, as per the dose modulation, dose-skipping, or intermittent 

treatment protocol works well for treatment using a single cytotoxic drug, under a wide 

range of scenarios and parameter settings. In contrast, adaptive therapy works well only 

under a limited number of scenarios and parameter settings when using a single cytostatic 

drug. In general, adaptive therapy works best under conditions of higher fitness cost, 

higher replacement rate, higher turnover. Adaptive therapy works best when drug 

dosages are changed as soon as a change in tumor burden is detected. In general, it is 

better to pause treatment sooner than later, when the tumor is shrinking If the amount of 

drug used is too low, it is unable to control the sensitive cells and the tumor grows. 

However, if the drug dose is too high, it quickly selects for resistant cells and eventually 

the tumor grows out of control. However, there appears to be intermediate levels of 

dosing, which we call the minimum effective dose, which is able to control the sensitive 

cells but is not high enough to select for the resistant cells to grow out of control.  

Introduction 

Historically, treating  cancer involves standard treatment (ST) at maximum 

tolerated dose (MTD) of a cancer drug. While this approach might work well for some 

cancer types, particularly ones with little heterogeneity, for most solid tumors this 

standard treatment eventually leads to an unresponsive tumor and consequent treatment 

failure instead of eradicating the cancer. This situation happens because under high doses 
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of the drug resistant cell clones survive and proliferate at the expense of sensitive cells, a 

phenomenon termed ‘competitive release’ (Enriquez-Navas, Wojtkowiak, and Gatenby 

2015b). Yet there is a silver lining: adaptations for resistance normally entail a fitness 

cost. For instance, resistant MCF7Dox cells have a doubling time of 60 hours versus 40 

hours for sensitive MCF7 cells in the absence of the drug, and in co-culture experiments 

the sensitive MCF7 cells outcompete resistant MCF7Dox cells (Gallaher et al. 2018). 

Adaptive therapy utilizes this principle of fitness penalty incurred by resistant cells in 

absence of the drug in order to maintain long-term control over the tumor (Gatenby 2009; 

Enriquez-Navas, Wojtkowiak, and Gatenby 2015b; Gallaher et al. 2018; Gatenby, 

Brown, and Vincent 2009b; Gatenby, Silva, Gillies, and Frieden 2009; Enriquez-Navas et 

al. 2016; Zhang et al. 2017; J. West et al. 2020; J. B. West et al. 2019b; Ibrahim-Hashim 

et al. 2017; Bacevic et al. 2017; Buhler et al. 2021; A. Araujo et al. 2021; Brady-Nicholls 

et al. 2020; J. Cunningham et al. 2020; Hansen and Read 2020b; Thomas et al. 2022). It 

has been shown by Gatenby and colleagues that robust cancer control is possible with 

adaptive therapy as long as there is a substantial fitness cost to resistance. Multiple 

theoretical and mathematical models of adaptive therapy has been formulated. A vast 

array of models calibrate models to fit experimental data (J. West et al. 2020; Strobl et al. 

2021; J. B. West et al. 2019b). 

Preclinical experiments in mice with breast cancer demonstrated the superiority of 

dose modulation protocol, which involves adjusting drug dosages in response to changes 

in tumor burden over dose-skipping protocol, which involves administration of fixed-

dosage of the drug if the tumor grows (Enriquez-Navas et al. 2016). Stable tumor burden 

was maintained in mice with breast cancer by a heuristic dose adjustment treatment 
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protocol (Gatenby, Silva, Gillies, and Frieden 2009). Intermittent therapy trials, in which 

drug is administered until tumor burden shrinks to a fraction of the baseline followed by 

withholding drug until tumor burden increases to the baseline, in patients with prostate 

cancer resulted in an increase in median time to progression by at least 27 months 

compared to a contemporaneous cohort of patients (Zhang et al. 2017). Preclinical 

adaptive therapy experiments were conducted in mice with breast cancer using paclitaxel 

(Enriquez-Navas et al. 2016; Gatenby, Silva, Gillies, and Frieden 2009), or in mice with 

ovarian cancer using carboplatin (Gatenby, Silva, Gillies, and Frieden 2009). Both these 

drugs are cytotoxic in their mode of action. Previous adaptive therapy experiments have 

also been carried out using a cytotoxic drug (Enriquez-Navas et al. 2016). In contrast, the 

clinical trial carried out in prostate cancer patients using intermittent therapy used 

abiraterone (plus prednisone) (Zhang et al. 2017), a hormone therapy drug with a 

cytostatic mode of action. The main distinction is that cytotoxic drugs work by killing 

cancer cells, while the mode of action of cytostatic drugs is the inhibition of tumor 

growth by suppressing cell division (Millar and Lynch 2003).  

There are different variations and parameters for different types of adaptive 

therapy. While the dose-modulation protocol involves adjusting drug dosages based on 

changes in tumor burden since the previous treatment cycle, the dose-skipping or 

intermittent treatment protocols typically involve administering fixed dosages of the 

drugs every treatment cycle. Also, due to wide variations possible in cell kinetics, 

multiple scenarios exist. In addition to tumor growth kinetics, each adaptive therapy 

treatment protocol involves its own specific set of treatment parameters. Furthermore, 

because cytotoxic and cytostatic drugs vary fundamentally in their mode of action, 
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survival outcomes could reasonably be expected to vary widely, thus designing adaptive 

therapy protocols that are best for a given situation and circumstance can be a challenging 

task. In this article, we sought to investigate which treatment protocol would be the best 

or most optimum for given situations or circumstances, on a case-by-case basis. We 

investigate three types of adaptive therapy treatment protocols, namely, dose modulation, 

dose-skipping, and intermittent therapy, as well as standard treatment at maximum 

tolerated dose under a wide range of conditions, with the goal of finding the best or the 

most optimum treatment protocol. 

Materials and Methods 

We modified the agent-based hybrid model we previously published (Thomas et 

al. 2022) to simulate adaptive therapy using a single drug and correspondingly extended 

the Hybrid Automata Library (HAL) agent-based modeling framework (Bravo et al. 

2020). Drug diffusion is modeled by solving the diffusion partial differential equations 

(Bravo et al. 2020). The tumor consists of two different cell types: the sensitive cells and 

the resistant cells, which are situated on a 2-dimensional 100 by 100 square lattice. Each 

cell is modeled as an on-lattice agent, such that they occupy the lattice unit in which they 

are located and are not free to move around. Each cell, at every time step, could die or 

divide. As a first approximation, we assume that cytotoxic drugs only work by killing 

cells, and cytostatic drugs only work by inhibiting cell division. Thus, when cytotoxic 

drugs are used, sensitive cells die as a function of drug concentration as well as due to the 

background cell death rate, while resistant cells die only because of the background cell 

death rate. When cytostatic drugs are used, cells die only due to a background cell death 

rate (apoptosis rate) which is the same for all cell types. If a cell manages to survive, it 
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could either divide or not, depending on the rate of cell division for that particular cell 

type. When a cell is committed to dividing, it could either divide so that a new cell 

occupies one of the available spaces in its Moore neighborhood, if any, or divide by 

replacing a neighbor, or do nothing if no empty space is available and cells are not 

allowed to replace a neighbor. Whether or not cells can replace a neighbor is governed by 

the replacement parameter. Setting the replacement parameter to zero enforces contact 

inhibition in the model and cells are not able to replace a neighbor while setting it to one 

allows dividing cells to replace a neighbor every time a cell is committed to dividing and 

an empty space is not available. Setting the replacement parameter to intermediate levels, 

such as 0.5, entails that cells committed to dividing would replace a neighbor 50% of the 

time, and not be able to replace a neighbor 50% of the time. When a cell divides, a 

daughter cell is created of the same type as the parent and is situated in one of the 

neighboring lattices. Both the daughter cells (the parent cell now having divided is 

considered one of the daughter cells) could mutate when cells divide. Whether or not the 

daughter cells would mutate after cell division is governed by a set of mutation 

parameters. We allow for bidirectional mutation in the model, meaning that a sensitive 

cell could either mutate to become a resistant cell, or not, as well as a resistant cell could 

mutate to become a sensitive cell, or not, at every time-step when cell division occurs. 

For the default parameter values, we set the mutation rate from sensitive to resistant cells, 

and vice-versa, to 10-3 per cell division, in order to account for the unrealistically low 

number of cells in our model. We have incorporated fitness cost in our model by 

choosing higher division rates for sensitive cells and lower division rates for resistant 

cells. Thus at any time step the division probability of sensitive cells > the division 
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probability of resistant cells. When cytostatic drugs are being used, the sensitive cells 

undergo a decrease in their division rates as a function of the drug concentration, while 

the division rates for the resistant cells remain unaffected. At every time-step after the 

start of treatment drug diffusion is modeled by using the alternating direction implicit 

(ADI) method (Bravo et al. 2020). 

The treatment protocols being considered are the three different adaptive therapy 

protocols: dose modulation, dose-skipping, and intermittent; as well as standard 

treatment, which serves as the control. All adaptive therapy protocols involve monitoring 

the tumor every three days, and treatment starts as soon as the tumor burden equals or 

exceeds 50% of the carrying capacity, which is the total number of cancer cells that can 

be accommodated in the grid. 

Dose Modulation 

The dose modulation protocols have two primary parameters: Delta Tumor, which 

is the percentage by which the tumor burden must change relative to the previous 

treatment cycle, in order to trigger a change in  drug dose and, Delta Dose, which is the 

percentage by which the drug dose is changed relative to the previous treatment cycle. In 

this treatment the drug dosage is increased when the tumor has grown by more than Delta 

Tumor, or decreased when the tumor has shrunk by more than Delta Tumor, or 

maintained at the same dosage level as the previous treatment cycle when the tumor is 

either growing or shrinking by less than the Delta Tumor threshold. The drug dosage is 

capped so it never exceeds the maximum tolerated dose at which treatment is initiated, 

and never decreases beyond the minimum drug dose, which represents the amount below 

which the drug has no physiologic effect (and a dosage that in fact cannot be formulated 
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in laboratory settings). In addition, if the absolute tumor burden ever exceeds the 

maximum of what has been recorded so far since initiation of treatment, drug dosage is 

increased by Delta Dose. Furthermore, a treatment vacation is triggered when the tumor 

burden falls to, or below a certain threshold (“stop dosing”), such that no drug is 

administered for that treatment cycle. 

Dose-Skipping 

In contrast to the dose modulation protocol, the dose-skipping protocol involves 

administering a constant amount of the drug (fixed drug dosage). Drug is administered at 

that fixed level only when the tumor is growing above the Delta Tumor threshold, in all 

other cases no drug is administered (hence the treatment is “skipped” for that treatment 

cycle). 

Intermittent 

The intermittent protocol involves monitoring the absolute tumor burden every 

treatment cycle. Treatment starts as soon as the tumor burden equals or exceeds 50% of 

the carrying capacity, which is considered to be 100% of the baseline level. A fixed-dose 

of the drug is administered at every treatment cycle until the tumor shrinks to 50% or 

more of the baseline level, at which point no drug is administered in any treatment cycle 

until the tumor burden increases to 100% of the baseline, and so on and so forth.  The 

intermittent protocol has a key parameter: at what tumor burden should the treatment be 

stopped when the tumor is shrinking, in order that the tumor may be allowed to climb 

back up to the baseline value at which treatment was initiated previously. As mentioned 

above, this “stop dosing” threshold is chosen to be 50% of the baseline for the default 

parameter value. 
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The complete description of the model using the standard overview design details 

(ODD) format for describing agent-based models (Grimm et al. 2010) can be found in 

(Thomas et al. 2022) with the following changes: 

In section 2.2 (Entities, State Variables, and Scales), we have considered two 

different cell types: sensitive, and resistant to account for treatment using either a single 

cytotoxic, or a single cytostatic drug. 

In section 2.4.11 (Observation), we have made some modification to our criterion 

for progression. The modified survival criterion is as follows: If the tumor burden 

equaled or exceeded 97% of the carrying capacity at any point after initiation of therapy, 

or the rolling average of the total number of resistant cells over 500 time-steps equaled or 

exceeded 50% of the carrying capacity, then the particular run is scored as “Progressed” 

and the time at which progression takes place after therapy initiation is noted. 

In section 2.5 (Initialization), instead of considering 4 different cell types to 

account for 2 drugs, in the initial tumor seed, we now consider 2 different cell types: 

sensitive and resistant to account for the cell types that are either sensitive, or resistant, to 

the single drug studied here. 

In section 2.7.1 (Cell Death), for treatment with a single cytotoxic drug, the 

equation for probability of cell death is as follows: Probability of cell death per 

hour=background death probability per hour+S1*[Drug1]*𝚿1, where S1 is the binary 

indicator variable for the cell’s sensitivity to drug 1,[Drug1] being the concentration of 

drug 1 (non-negative real values), and 𝚿1 is the drug potency (non-negative real values), 

quantified as the probability of cell death per unit drug concentration per hour. For 
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treatment using a single cytostatic drug, the equation for probability of cell death is as 

follows: Probability of cell death per hour=background death probability per hour. 

In section 2.7.2 (Cell Division), the cell division rates for the sensitive cell is 0.06 

per hour, the cell division rate for the resistant cell is 0.02 per hour. The division 

probabilities can now be arranged in the following descending order:sensitive cells > 

resistant cells. For treatment with a single cytostatic drug, probability of cell division per 

hour=background division probability per hour-S1*[Drug1]*𝚿1, where S1 is the binary 

indicator variable for the cell’s sensitivity to drug 1, [Drug1] is the concentration of drug 

1 (non-negative real values), and 𝚿1 is the drug potency (non-negative real values), 

quantified as the probability of inhibition in cell division per unit drug concentration per 

hour. 

Section 2.7.4 (Mutation): The default value for the mutation rate parameter is 10-

3 per cell division, to account for transition from sensitive cell type to resistant cell type, 

and vice-versa. 

In section 2.7.6 (Drug Protocols): The treatment protocols are described as 

follows: 

Standard Treatment (ST): Drug 1 was administered at maximum tolerated dose 

(MTD) once every 24 hours for the entire duration of the simulation (Fig. 2.1). 

Dose Modulation: Treatment started at MTD with Drug 1, and dosage of the drug 

was adjusted according to the dose modulation adaptive therapy protocol, parameterized 

by Delta Tumor, and Delta Dose (Fig. 2.1). This treatment protocol was equivalent to the 

standard dose modulation adaptive therapy protocol (AT-1) from previous experiments. 
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Dose-Skipping: Drug 1 was administered at a fixed-dose that was set at 75% of 

MTD. If the tumor grew by more than Delta Tumor since its last measurement, or if the 

tumor burden exceeded its previous maximum size, the drug was applied or else, the dose 

was skipped. (Fig. 2.1). This is equivalent to AT-2 protocol from previous experiments. 

Intermittent: Treatment started at 75% of the MTD using Drug 1, drug being 

administered once every 24 hours. Treatment was stopped when a shrinkage in tumor 

burden by at least 50% relative to the tumor burden at which therapy was initiated is 

detected, and therapy was restarted when the tumor burden equaled or exceeded 100% of 

the value at which therapy was initiated (Fig. 2.1). This protocol is equivalent to the 

prostate cancer clinical trial carried out in cancer patients with the drug abiraterone.  
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Figure 2.1: Single-drug adaptive therapy protocols using a single cytotoxic, or a single 
cytostatic drug. Schematic depicting dose modulation protocol (Fig. 2.1A), dose-skipping 
(Fig. 2.1B), intermittent (Fig. 2.1C), and standard treatment (Fig. 2.1D). 
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Figure 2.2: Adaptive therapy using a single cytotoxic or a single cytostatic drug. Single-
drug adaptive therapy protocols comparing standard treatment (ST) versus three different 
adaptive therapy protocols, dose modulation, dose-skipping, and intermittent using a 
single cytotoxic drug (Fig. 2.2A), or a single cytostatic drug (Fig. 2.2B). 
 

For treatment using a single cytotoxic drug, all the protocols, that is, dose 

modulation, dose-skipping, and intermittent work well, increasing TTP relative to 

standard treatment (Fig. 2.2A, Table 2.1), although the effect size as measured by the 

hazard ratio was small for intermittent (Table S1). For treatment using a single cytostatic 

drug, none of the protocols, that is, dose-modulation, intermittent, or  dose-skipping 

is  able to increase TTP relative to standard treatment (Fig. 2.2B, Table S1). 
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Default Standard 
Treatment 

0.18 0.11-0.27 <0.001 

Dose Skipping (cytotoxic) 

Default Standard 
Treatment 

0.01 0.003-0.037 <0.001 

Intermittent (cytotoxic) 

Default Standard 
Treatment 

0.51 0.38-0.69 <0.001 

Dose Modulation (cytostatic) 

Default Standard 
Treatment 

2.4 1.7-3.2 <0.001 

Dose Skipping (cytostatic) 

Default Standard 
Treatment 

2.2 1.6-3.0 <0.001 

Intermittent (cytostatic) 

Default Standard 
Treatment 

2.6 1.9-3.5 <0.001 

 

The Effect of Fitness Costs of Resistance 
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Figure 2.3: Effect of fitness cost parameter on the outcome of adaptive therapy using a 
single cytotoxic or a single cytostatic drug. Survival outcome for treatment as per the 
dose modulation protocol (Fig. 2.3A, Fig. 2.3B), dose-skipping (Fig. 2.3C, Fig. 2.3D), or 
intermittent (Fig. 2.3E, Fig. 2.3F) under fitness cost of 1.7-fold, 2.5-fold, 5-fold, or 7-fold 
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relative to standard treatment for treatment using either a single cytotoxic (Fig. 2.3A, 
2.3C, 2.3E), or a single cytostatic drug (Fig. 2.3B, 2.3D, 2.3F). 
 

Fitness cost incurred by resistant cells, as manifested in longer doubling times 

relative to sensitive cells in the absence of the drug, plays an important role in 

determining the outcome of both cytotoxic as well as cytostatic single-drug adaptive 

therapy. In general, adaptive therapy using a single cytotoxic drug works better than 

standard treatment at fitness cost of 1.7-fold, 2.5-fold, 5-fold, or 7-fold, increasing TTP, 

for treatment as per the dose modulation, intermittent, and dose-skipping protocol (Fig. 

2.3, Table 2.2). The exception to this trend is adaptive therapy is not working well 

relative to the standard treatment at a fitness cost of 7-fold for treatment as per the dose-

skipping protocol (Fig. 2.3C, Table 2.2). Moreover, in general, adaptive therapy 

treatment protocols under conditions of higher fitness cost leads to improved survival 

outcome relative to treatment under conditions of lower fitness cost. Thus, adaptive 

therapy at 7-fold fitness cost leads to better survival outcome than treatment under 5-fold 

fitness cost for dose-modulation as well as the intermittent treatment protocol (Table 2.2). 

However, for treatment with a cytostatic drug, none of the protocols tested here resulted 

in increased TTP relative to standard treatment at any of the fitness cost values tested 

here except dose-skipping protocol under fitness cost of 1.7-fold (Fig. 2.3B,2.3D,2.3F, 

Table 2.2). 

Moreover, in general, higher fitness cost (such as 7-fold fitness cost) translated to 

an improvement in survival outcome relative to lower fitness cost (such as 5-fold)  (Table 

2.3).. Thus, for treatment using a single cytotoxic drug, as per the dose modulation 

protocol, as well as the intermittent resulted in increased TTP relative to standard 
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treatment for all the fitness cost values tested (Fig. 2.3, Table 2.2, all p < 0.001). For 

treatment with the dose-skipping protocol using a cytotoxic drug (Fig. 3C; Table S1), all 

fitness values except the 7-fold fitness cost results in significant increase in TTP relative 

to standard treatment. For the intermittent protocol using a cytotoxic drug (Fig. 2.3E), all 

values of fitness cost tested here resulted in significantly increased TTP relative to 

standard treatment (Fig. 2.3A; Table 2.2). We observe increased TTP comparing higher 

fitness cost to lower fitness costs (Table 2.2). As an exception to this general trend, 

however, we observe increased TTP under 5-fold fitness cost compared to 7-fold fitness 

cost with dose-skipping using a cytotoxic drug.  

Table 2.2: Effect of fitness cost parameter on the outcome of adaptive 
therapy using a single cytotoxic or a single cytostatic drug 

Experimental 
Condition 

Comparison 
Condition 

Hazard 
Ratio 

95% CI p-value 

Dose Modulation (cytotoxic) 

1.7-fold 
fitness cost 

Standard 
Treatment 

0.59 0.44–0.81 < 0.001 

2.5-fold 
fitness cost 

Standard 
Treatment 

0.30 0.22-0.41 <0.001 

5-fold fitness 
cost 

Standard 
Treatment 

0.21 0.14-0.31 <0.001 

7-fold fitness 
cost 

Standard 
Treatment 

0.01 0.003-0.037 <0.001 

7-fold fitness 
cost 

5-fold 
fitness cost 

0.08 0.04-0.16 <0.001 

Dose Skipping (cytotoxic) 

1.7-fold 
fitness cost 

Standard 
Treatment 

0.08 0.05-0.13 <0.001 
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2.5-fold 
fitness cost 

Standard 
Treatment 

0.11 0.07-0.16 <0.001 

5-fold fitness 
cost 

Standard 
Treatment 

0.11 0.07-0.16 <0.001 

7-fold fitness 
cost 

Standard 
Treatment 

2.7 2.0-3.8 <0.001 

5-fold fitness 
cost 

7-fold 
fitness cost 

0.17 0.11-0.28 <0.001 

Intermittent (cytotoxic) 

1.7-fold 
fitness cost 

Standard 
Treatment 

0.31 0.22-0.42 <0.001 

2.5-fold 
fitness cost 

Standard 
Treatment 

0.50 0.37-0.68 <0.001 

5-fold fitness 
cost 

Standard 
Treatment 

0.55 0.41-0.74 <0.001 

7-fold fitness 
cost 

Standard 
Treatment 

0.34 0.25-0.46 <0.001 

7-fold fitness 
cost 

5-fold 
fitness cost 

0.01 0.003-0.040 <0.001 

Dose Modulation (cytostatic) 

1.7-fold 
fitness cost 

Standard 
Treatment 

  
Not 
Significant 

2.5-fold 
fitness cost 

Standard 
Treatment 

  
Not 
Significant 

5-fold fitness 
cost 

Standard 
Treatment 

  
Not 
Significant 

7-fold fitness 
cost 

Standard 
Treatment 

4.9 3.5-6.8 <0.001 

2.5 -fold 
fitness cost 

1.7-fold 
fitness cost 

0.01 0.002-0.045 <0.001 
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Dose Skipping (cytostatic) 

1.7-fold 
fitness cost 

Standard 
Treatment 

0.16 0.11-0.23 <0.001 

2.5-fold 
fitness cost 

Standard 
Treatment 

0.06 0.03-0.10 <0.001 

5-fold fitness 
cost 

Standard 
Treatment 

2.1 1.6-2.9 <0.001 

7-fold fitness 
cost 

Standard 
Treatment 

  
Not 
Significant 

Intermittent (cytostatic) 

1.7-fold 
fitness cost 

Standard 
Treatment 

  
Not 
Significant 

2.5-fold 
fitness cost 

Standard 
Treatment 

1.6 1.2-2.2 <0.01 

5-fold fitness 
cost 

Standard 
Treatment 

2.2 1.6-3.0 <0.001 

7-fold fitness 
cost 

Standard 
Treatment 

5.9 4.2-8.3 <0.001 
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Figure 2.4: Effect of replacement parameter on outcome of adaptive therapy using a 
single cytotoxic or a single cytostatic drug. Treatment as per the dose modulation 
protocol (Fig. 2.4A, 2.4B), dose-skipping protocol (Fig. 2.4C, Fig. 2.4D), or intermittent 
(Fig. 2.4E,Fig. 2.4F), relative to standard treatment under conditions of 0%, 50%, or 
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100% replacement using either a single cytotoxic (Fig. 2.4A,2.4C, 2.4E), or a single 
cytostatic drug (Fig. 2.4B, Fig. 2.4D, Fig. 2.4F). 
 

Cell Competition 

The relationship between cell crowding, cell death and cell proliferation and 

direct cell competition is unknown. We encapsulated this complexity in a parameter (Cell 

Replacement) that specifies the likelihood that a cell can replace its neighbor if there are 

no empty spaces in its immediate neighborhood when it tries to divide. 

In general, for treatment using a single cytotoxic drug, under conditions of 50% or 100% 

replacement rate, every adaptive therapy protocol works well, increasing TTP relative to 

standard treatment (Fig. 2.4, Table 2.3), an exception being treatment as per the dose-

skipping protocol under conditions of 100% replacement (Fig. 2.4C, Table 2.3). 

However, under conditions of 0% replacement rate, no improvement in survival outcome 

was observed relative to standard treatment for any of the adaptive therapy protocols 

tested here. In general, adaptive therapy under conditions of higher replacement rates 

(more direct competition) results in improved survival outcome relative to treatment 

under conditions of lower replacement rates (Tables 2.3). Thus, survival outcome is 

better at 50% replacement rate relative to 0% replacement rate, or at 100% replacement 

relative to 50% for all of the adaptive therapy protocols using a single cytotoxic drug 

(Table 2.3), an exception being survival outcome is better under 50% relative to 100% 

replacement rate for treatment as per the dose-skipping protocol (Fig. 2.4, Table 2.3). In 

contrast, unlike treatment using a single cytotoxic drug, no improvement in survival 

outcome relative to standard treatment was observed when treated using a single 



   26 

cytostatic drug for any of the adaptive therapy protocols (Fig. 2.4B, 2.4D, 2.4F) tested 

here. 

In general, higher replacement probabilities lead to better survival outcome 

relative to lower replacement probabilities. We observe increased TTP relative to 

standard treatment under conditions of higher replacement for treatment as per the dose 

modulation protocol using a cytotoxic drug (Table S2). An exception, however, to this 

general trend is treatment using a single cytotoxic drug using the dose-skipping protocol 

leads to increased TTP relative to standard treatment under conditions of 100% 

replacement versus 50% replacement (Fig. 2.4C, Table 2.3). In contrast, treatment with 

cytostatic drugs (Fig. 2.4B, 2.4D, 2.4F) do not result in increased TTP relative to standard 

treatment under any of the replacement conditions tested (Fig. 2.4B, 2.4D, 2.4F). 

Table 2.3: Effect of replacement parameter on outcome of adaptive 
therapy using a single cytotoxic or a single cytostatic drug 

Experimental 
Condition 

Comparison 
Condition 

Hazard 
Ratio 

95% CI p-value 

Dose Modulation (cytotoxic) 

0% 
replacement 

Standard 
Treatment 

1.9 1.4-2.6 <0.001 

50% 
replacement 

Standard 
Treatment 

0.17 0.11-0.27 <0.001 

100% 
replacement 

Standard 
Treatment 

0.05 0.03-0.10 <0.001 

50% 
replacement 

0% 
replacement 

0.12 0.07-0.20 <0.001 

100% 
replacement 

50% 
replacement 

0.18 0.10-0.32 <0.001 
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Dose Skipping (cytotoxic) 

0% 
replacement 

Standard 
Treatment 

  
Not 
Significant 

50% 
replacement 

Standard 
Treatment 

0.16 0.11-0.23 <0.001 

100% 
replacement 

Standard 
Treatment 

1.7 1.3-2.3 <0.001 

50% 
replacement 

0% 
replacement 

0.04 0.02-0.11 <0.001 

100% 
replacement 

50% 
replacement 

24.8 10.0-61.4 <0.001 

Intermittent (cytotoxic) 

0% 
replacement 

Standard 
Treatment 

1.6 1.2-2.2 <0.01 

50% 
replacement 

Standard 
Treatment 

0.60 0.45-0.81 <0.001 

100% 
replacement 

Standard 
Treatment 

0.22 0.16-0.31 <0.001 

50% 
replacement 

0% 
replacement 

0.08 0.04-0.14 <0.001 

100% 
replacement 

50% 
replacement 

0.18 0.11-0.29 <0.001 

Dose Modulation (cytostatic) 

0% 
replacement 

Standard 
Treatment 

1.8 1.3-2.4 <0.001 

50% 
replacement 

Standard 
Treatment 

1.4 1.0-1.9 <0.05 

100% 
replacement 

Standard 
Treatment 

1.4 1.0-1.8 <0.05 
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Dose Skipping (cytostatic) 

0% 
replacement 

Standard 
Treatment 

11.3 7.7-16.6 <0.001 

50% 
replacement 

Standard 
Treatment 

2.4 1.8-3.3 <0.001 

100% 
replacement 

Standard 
Treatment 

0.60 0.43-0.82 <0.01 

Intermittent (cytostatic) 

0% 
replacement 

Standard 
Treatment 

3.7 2.7-5.1 <0.001 

50% 
replacement 

Standard 
Treatment 

3.4 2.5-4.7 <0.001 

100% 
replacement 

Standard 
Treatment 

1.7 1.2-2.3 <0.001 

 

Cell Turnover 
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Figure 2.5: Effect of turnover on outcome of adaptive therapy using a single cytotoxic or 
a single cytostatic drug. Survival outcome for treatment as per the dose modulation 
protocol (Fig. 2.5A, Fig. 2.5B), dose-skipping protocol (Fig. 2.5C, Fig. 2.5D), or 
intermittent (Fig. 2.5E, Fig. 2.5F) using a single cytotoxic (Fig. 2.5A, 2.5C, 2.5E) or a 
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single cytostatic drug (Fig. 2.5B, 2.5D, 2.5F) under conditions of low turnover (LT) or 
high turnover (HT), relative to standard treatment under those conditions. 
 

For treatment with a single cytotoxic drug, under low turnover conditions, dose 

modulation (Fig. 2.5A) and intermittent treatment protocols (Fig. 2.5E) results in 

increased TTP relative to standard treatment but no increased TTP is observed for dose-

skipping (Fig. 2.5C). For treatment with a single cytostatic drug, under conditions of low 

turnover, none of the protocols leads to increased TTP relative to standard treatment (Fig, 

2.5B, 2.5D, 2.5F), standard treatment working well under these conditions. However, 

under conditions of high turnover, when treated with a single cytotoxic drug (Fig. 2.5A, 

2.5C, 2.5E), or a single cytostatic drug (Fig. 2.5B, 2.5D, 2.5F), every adaptive therapy 

protocol tested here, that is, dose modulation (Fig. 2.5A, 2.5B), dose-skipping (Fig. 

2.5C,2.5D), and intermittent (Fig. 2.5E, 2.5F) treatment leads to increased TTP relative to 

standard treatment. In general, for treatment with a single cytotoxic drug, we observed 

improved survival outcomes under conditions of high turnover relative to conditions of 

low turnover (Table 2.4). 

Table 2.4: Effect of turnover on outcome of adaptive therapy using a 
single cytotoxic or a single cytostatic drug 

Experimental 
Condition 

Comparison 
Condition 

Hazard Ratio 95% CI p-value 

Dose Modulation (cytotoxic) 

Low  Turnover Standard 
Treatment 

0.17 0.11-0.26 <0.001 

High  Turnover Standard 
Treatment 

0.17 0.11-0.27 <0.001 
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High  Turnover Low 
Turnover 

0.30 0.18-0.50 <0.001 

Dose Skipping (cytotoxic) 

Low  Turnover Standard 
Treatment 

14.6 9.1-23.3 <0.001 

High  Turnover Standard 
Treatment 

0.06 0.04-0.10 <0.001 

High  Turnover Low 
Turnover 

~0 
  

Intermittent (cytotoxic) 

Low  Turnover Standard 
Treatment 

0.63 0.47-0.85 <0.01 

High  Turnover Standard 
Treatment 

0.13 0.09-0.19 <0.001 

High Turnover Low 
Turnover 

~0 
  

Dose Modulation (cytostatic) 

Low  Turnover Standard 
Treatment 

8.5 6.0-11.9 <0.001 

High  Turnover Standard 
Treatment 

0.19 0.13-0.27 <0.001 

High  Turnover Low 
Turnover 

6.4 4.1-10.1 <0.001 

Dose Skipping (cytostatic) 

Low  Turnover Standard 
Treatment 

  
Not 
Significant 

High  Turnover Standard 
Treatment 

~0 
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High  Turnover Low 
Turnover 

~0 
  

Intermittent (cytostatic) 

Low  Turnover Standard 
Treatment 

6.7 4.8-9.3 <0.001 

High  Turnover Standard 
Treatment 

0.40 0.29-0.54 <0.001 

Low  Turnover High 
Turnover 

~0 
  

 

When to Adjust the Dose of the Drug 
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Figure 2.6: Effect of the delta tumor parameter on determining the outcome of adaptive 
therapy using a single cytotoxic or a single cytostatic drug. Survival outcome comparing 
dose modulation treatment protocol with Delta Tumor=5%, 10%, 20%, or 40% using a 
single cytotoxic (Fig. 2.6A), or a single cytostatic drug (Fig. 2.6B) relative to standard 
treatment. Survival outcome comparing dose-skipping treatment protocol with Delta 
Tumor=5%, 10%, 20%, or 40% using a single cytotoxic (Fig. 2.6C), or a single cytostatic 
drug (Fig. 2.6D).  
 

The dose modulation protocols have two primary parameters: Delta Tumor, which 

is the amount the tumor burden must change in order to trigger a change in drug dose 

and, Delta Dose, which is the  amount by which the dose is changed. 

For treatment using a single cytotoxic drug, as per the dose-modulation protocol, delta 

tumor=5%, or delta tumor=10% leads to increased TTP relative to standard treatment 

(Fig. 2.6A, Table 2.5), while treatment as per the dose-skipping protocol works well for 

all values of delta tumor tested here, that is, delta tumor=5%, 10%, 20%, or 40% (Fig. 

2.6C, Table 2.5). However, only treatment as per the dose modulation protocol with delta 

tumor=5% increased TTP relative to standard treatment (Fig. 2.6B, Table 2.5). In general, 

the lower the value of delta tumor, the better is the survival outcome. Thus, delta 

tumor=5% leads to better survival outcome relative to delta tumor=10% for treatment as 

per the dose modulation protocol when using a single cytotoxic, or a single cytostatic 

drug (Table 2.5). These results indicate that treatment as per the dose modulation 

protocol works best if dose is adjusted as soon as a change in tumor burden is detected. In 

practice this will likely be limited by the sensitivity of the tumor burden assay. Note that 

using a small Delta Tumor value allows the dose modulation protocol to be effective even 

with a cytostatic drug (Fig. 2.6B, Table 2.5). 
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Table 2.5: Effect of the delta tumor parameter on determining the outcome of 
adaptive therapy using a single cytotoxic or a single cytostatic drug 

Experimental 
Condition 

Comparison 
Condition 

Hazard 
Ratio 

95% CI p-value 

Dose Modulation (cytotoxic) 

Delta 
Tumor=5% 

Standard 
Treatment 

0.03 0.02-0.06 <0.001 

Delta 
Tumor=10% 

Standard 
Treatment 

0.11 0.07-0.17 <0.001 

Delta 
Tumor=20% 

Standard 
Treatment 

  
Not Significant 

Delta 
Tumor=40% 

Standard 
Treatment 

4.4 3.3-6.0 <0.001 

Delta 
Tumor=5% 

Delta Tumor-
10% 

0.21 0.11-0.38 <0.001 

Dose Skipping (cytotoxic) 

Delta 
Tumor=5% 

Standard 
Treatment 

0.12 0.09-0.17 <0.001 

Delta 
Tumor=10% 

Standard 
Treatment 

0.13 0.10-0.19 <0.001 

Delta 
Tumor=20% 

Standard 
Treatment 

0.11 0.08-0.16 <0.001 

Delta 
Tumor=40% 

Standard 
Treatment 

0.19 0.14-0.26 <0.001 

Dose Modulation (cytostatic) 

Delta 
Tumor=5% 

Standard 
Treatment 

0.06 0.04-0.10 <0.001 

Delta 
Tumor=10% 

Standard 
Treatment 

1.5 1.1-2.0 <0.01 

Delta 
Tumor=20% 

Standard 
Treatment 

2.3 1.8-3.1 <0.001 
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Delta 
Tumor=40% 

Standard 
Treatment 

2.1 1.6-2.8 <0.001 

Delta 
Tumor=5% 

Delta 
Tumor=10% 

0.02 0.006-0.049 <0.001 

Dose Skipping (cytostatic) 

Delta 
Tumor=5% 

Standard 
Treatment 

2.5 1.8-3.3 <0.001 

Delta 
Tumor=10% 

Standard 
Treatment 

2.0 1.5-2.6 <0.001 

Delta 
Tumor=20% 

Standard 
Treatment 

2.3 1.7-3.0 <0.001 

Delta 
Tumor=40% 

Standard 
Treatment 

2.7 2.1-3.6 <0.001 

 

How much to change the dose for the dose modulation protocols 

 

Figure 2.7: Effect of the delta dose parameter on determining the outcome of dose 
modulation adaptive therapy using a single cytotoxic or a single cytostatic drug. Survival 
outcome for treatment as per the dose modulation protocol with Delta Dose=25%, 50%, 
or 75% relative to standard treatment using a single cytotoxic drug (Fig. 2.7A), or a 
single cytostatic drug (Fig. 2.7B). 

A B

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1−Drug Cytotoxic Dose Modulation

Time (Days)

Pr
og

re
ss

io
n 

Fr
ee

 S
ur

vi
va

l

ST
AT: 25%
AT: 50%
AT: 75%

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1−Drug Cytostatic Dose Modulation

Time (Days)

Pr
og

re
ss

io
n 

Fr
ee

 S
ur

vi
va

l

ST
AT: 25%
AT: 50%
AT: 75%



   36 

 

The dose modulation protocols have two primary parameters: Delta Tumor, which 

is the amount the tumor burden must change in order to trigger a change of drug dose 

and, Delta Dose, which is the  amount by which the drug dose is changed. 

For treatment using a single cytotoxic drug, as per the dose modulation protocol, all delta 

dose values tested here, that is, delta dose=25%, 50%, or 75% increased TTP relative to 

standard treatment (Fig. 2.7, Table 2.6). However, when using a single cytostatic drug, as 

per the dose modulation protocol, only delta dose=75% leads to increased TTP relative to 

standard treatment (Fig. 2.7, Table 2.6). In general, choosing a high value of delta dose 

improves survival outcome relative to choosing a lower value for delta dose (Fig. 2.7, 

Table 2.6). Thus, using delta dose=50% leads to better survival outcome than using delta 

dose=25% for treatment using a single cytotoxic drug, and using delta dose=75% leads to 

better survival outcome than using delta dose=50% when using a single cytostatic 

drug  (Table 2.6). 

Table 2.6: Effect of the delta dose parameter on determining the outcome of 
dose modulation adaptive therapy using a single cytotoxic or a single cytostatic 
drug 

Experimental 
Condition 

Comparison 
Condition 

Hazard Ratio 95% CI p-value 

Dose Modulation (cytotoxic) 

Delta 
Dose=25% 

Standard 
Treatment 

0.41 0.29-0.58 <0.001 

Delta 
Dose=50% 

Standard 
Treatment 

0.26 0.16-0.40 <0.001 

Delta 
Dose=75% 

Standard 
Treatment 

0.20 0.12-0.33 <0.001 
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Delta 
Dose=50% 

Delta 
Dose=25% 

0.43 0.26-0.71 <0.001 

Dose Modulation (cytostatic) 

Delta 
Dose=25% 

Standard 
Treatment 

1.9 1.4-2.6 <0.001 

Delta 
Dose=50% 

Standard 
Treatment 

1.7 1.2-2.4 <0.01 

Delta 
Dose=75% 

Standard 
Treatment 

0.65 0.45-0.94 <0.05 

Delta 
Dose=75% 

Delta 
Dose=50% 

0.54 0.35-0.83 <0.01 

 

Effects of  stopping treatment when tumor burden falls below a certain level 
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Figure 2.8: Effect of stopping treatment when tumor burden falls below a  certain level 
for adaptive therapy using a single cytotoxic or a single cytostatic drug. For treatment as 
per the intermittent protocol using either a single cytotoxic (Fig. 8A), or a single 
cytostatic drug (Fig. 8B), the threshold for stopping treatment was varied as the tumor 
shrinks by 5%, 10%, 20%, or  50% of the pre-treatment baseline. Survival outcome for 
treatment using a single cytotoxic drug (Fig. 8C), or a single cytostatic drug (Fig. 8D) as 
the trigger for treatment vacation is when the tumor shrinks by 20%, 50%, or 90%. 
 

The intermittent protocol has a key parameter: at what tumor burden should the 

treatment be stopped when the tumor is shrinking, in order that the tumor may be allowed 

to climb back up to the baseline value at which treatment was initiated previously. For 
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treatment using a single cytotoxic drug, as per the intermittent protocol, pausing 

treatment when tumor shrinks by 20%, or 50% leads to increased TTP relative to 

standard treatment, but no improvement in survival outcome was observed relative to 

standard treatment when pausing treatment when tumor shrinks by 90%. However, no 

improvement in survival outcome was observed for any of the values tested here when 

using a single cytostatic drug (Fig. 2.8, Table 2.7). In general, the sooner treatment is 

paused the better is the survival outcome (Table 2.7). 

For dose modulation protocols, an important consideration to be made is whether 

treatment vacation should be triggered when tumor shrinks by at least a certain 

percentage relative to the start of therapy. For treatment using a single cytotoxic drug, as 

per the dose modulation protocol, triggering a treatment vacation when the tumor shrinks 

by 20% , or 50% increases TTP relative to standard treatment, but no increase in TTP 

relative to standard treatment is observed when a treatment vacation is triggered when the 

tumor shrinks by 90% (Fig. 2.8, Table 2.7). In general, the sooner a treatment vacation is 

triggered when the tumor is shrinking the better is the survival outcome (Table 2.7). 

Thus, triggering a treatment vacation when the tumor shrinks by 20% results in improved 

survival outcome than triggering a treatment vacation when the tumor shrinks by 50% 

(Table 2.7), and triggering a treatment vacation when the tumor shrinks by 50% leads to a 

better survival outcome than triggering a treatment vacation when the tumor shrinks by 

90% (Table 2.7). When using a single cytostatic drug, there was no improvement in 

survival outcome for any of these values tested (Fig. 2.8D). 

Table 2.7: Effect of stopping treatment when tumor burden falls below 
a  certain level for adaptive therapy using a single cytotoxic or a single 
cytostatic drug 
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Experimental 
Condition 

Comparison 
Condition 

Hazard 
Ratio 

95% CI p-value 

Dose Modulation (cytotoxic) 

Treatment 
vacation when 
tumor shrinks 
by 20% 

Standard 
Treatment 

0.003 0.0004-0.0191 <0.001 

Treatment 
vacation when 
tumor shrinks 
by 50% 

Standard 
Treatment 

0.20 0.13-0.30 <0.001 

Treatment 
vacation when 
tumor shrinks 
by 90% 

Standard 
treatment 

2.5 1.9-3.4 <0.001 

Treatment 
vacation when 
tumor shrinks 
by 20% 

Treatment 
vacation 
when tumor 
shrinks by 
50% 

0.50 0.33-0.77 <0.01 

Treatment 
vacation when 
tumor shrinks 
by 50% 

Treatment 
vacation 
when tumor 
shrinks by 
90% 

0.12 0.07-0.20 <0.001 

Intermittent (cytotoxic) 

Stop when 
shrinks by 5% 

Standard 
Treatment 

0.54 0.40-0.73 <0.001 

Stop when 
shrinks by 
10% 

Standard 
Treatment 

0.47 0.35-0.64 <0.001 

Stop when 
shrinks by 
20% 

Standard 
Treatment 

0.51 0.38-0.69 <0.001 



   41 

Stop when 
shrinks by 
50% 

Standard 
Treatment 

0.55 0.41-0.73 <0.001 

Dose Modulation (cytostatic) 

Treatment 
vacation when 
tumor shrinks 
by 20% 

Standard 
Treatment 

1.4 1.1-1.9 <0.05 

Treatment 
vacation when 
tumor shrinks 
by 50% 

Standard 
Treatment 

1.4 1.0-1.8 <0.05 

Treatment 
vacation when 
tumor shrinks 
by 90% 

Standard 
treatment 

1.8 1.4-2.4 <0.001 

Intermittent (cytostatic) 

Stop when 
shrinks by 5% 

Standard 
Treatment 

1.8 1.3-2.4 <0.001 

Stop when 
shrinks by 
10% 

Standard 
Treatment 

2.1 1.5-2.8 <0.001 

Stop when 
shrinks by 
20% 

Standard 
Treatment 

1.9 1.4-2.6 <0.001 

Stop when 
shrinks by 
50% 

Standard 
Treatment 

2.5 1.8-3.4 <0.001 

 

Drug dosage level at which adaptive therapy is initiated and capped 
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Figure 2.9: Effect of administering treatment at a range of different drug dosages for 
adaptive therapy using a single cytotoxic or a single cytostatic drug. Survival outcome 
comparing treatment as per the dose modulation protocol relative to ST, starting and 
capping dosing at 25%, 50%, 75%, or 100% of MTD, for treatment using a single 
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cytotoxic drug (Fig. 2.9A), or a single cytostatic drug (Fig. 2.9B). Survival outcome for 
treatment as per dose-skipping protocol administered at 35%, 50%, 75%, or 100% of 
MTD relative to standard treatment using either a single cytotoxic drug (Fig. 2.9C), or a 
single cytostatic drug (Fig. 2.9D). Survival outcome for treatment as per the intermittent 
protocol administered at 10%, 15%, 25%, 50%, 75%, or 100% of MTD relative to ST for 
treatment using a single cytotoxic (Fig. 2.9E), or a single cytostatic (Fig. 2.9F) drug. 
 

For the dose modulation protocol, we tested different drug dosage levels for 

initiating treatment. We also capped the dose level at that value, so that dose modulation 

was never allowed to exceed that level. We observe that for treatment using a single 

cytotoxic drug, as per the dose modulation protocol, initiating treatment at 50% , 75%, or 

100% of MTD resulted in an increase in TTP relative to standard treatment (Fig. 2.9A, 

Table 2.8), whereas for treatment initiation at 25% of MTD, we observed no cases of 

death for either the standard treatment or treatment as per the dose modulation protocol 

(Fig. 2.9A), and thus there was no increase in TTP with the dose modulation protocol 

relative to standard treatment. For treatment using a single cytostatic drug, as per the dose 

modulation protocol, none of the values tested, that is, 25%, 50%, 75%, or 100% of MTD 

resulted in increase in TTP relative to standard treatment (Fig. 2.9B). 

For the dose-skipping protocol, we tested different drug dosage levels for 

administering the drugs, that is, 35%, 50%, 75%, or 100% of MTD. We observed an 

increase in TTP relative to standard treatment only for drug dosage level at 75% of MTD, 

but no increase in TTP relative to standard treatment for the other drug dosage levels 

tested here, that is 35%, 50%, or 100% (Fig. 2.9C, Table 2.8). For treatment using a 

single cytostatic drug, none of the drug dosage levels tested resulted in increase in TTP 

relative to standard treatment (Fig. 2.9D). 
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For the intermittent protocol, we tested different drug dosage levels for 

administering the drugs, that is, 10%, 15%, 25%, 50%, 75%, or 100% of MTD for 

cytotoxic drugs and 25%, 50%, 75%, or 100% of MTD for cytostatic drugs. We observed 

an increase in TTP relative to standard treatment only for drug dosage levels of 15%, 

75%, and 100% of MTD (Fig. 2.9E, Table 2.8). For treatment using a single cytostatic 

drug, as per the intermittent protocol, only treatment with a drug dosage level at 50% of 

MTD resulted in an increase in TTP relative to standard treatment (Fig. 2.9F, Table 2.8). 

Table 2.8: Effect of administering treatment at a range of different drug 
dosages for adaptive therapy using a single cytotoxic or a single cytostatic 
drug 

Experimental 
Condition 

Comparison 
Condition 

Hazard 
Ratio 

95% CI p-value 

Dose Modulation (cytotoxic) 

25% MTD Standard 
Treatment at 
25% MTD 

  
Not 
Significant 

50% MTD Standard 
Treatment at 
50% MTD 

~0 
  

75% MTD Standard 
Treatment at 
75% MTD 

0.06 0.03-0.12 <0.001 

100% MTD Standard 
treatment at 
100% MTD 

0.23 0.15-0.37 <0.001 

Dose Skipping (cytotoxic) 

Standard 
Treatment at 
35% MTD 

35% MTD ~0 
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Standard 
Treatment at 
50% MTD 

50% MTD ~0 
  

75% MTD Standard 
Treatment at 
75% MTD 

0.014 0.004-0.048 <0.001 

100% MTD Standard 
treatment at 
100% MTD 

2.9 2.0-4.3 <0.001 

Intermittent (cytotoxic) 

10% MTD Standard 
Treatment at 
10% MTD 

  
Not 
Significant 

15% MTD Standard 
Treatment at 
15% MTD 

0.34 0.18-0.64 <0.001 

25% MTD Standard 
Treatment at 
25% MTD 

  
Not 
Significant 

50% MTD Standard 
treatment at 
50% MTD 

3.3 2.3-4.9 <0.001 

75% MTD Standard 
treatment at 
75% MTD 

0.33 0.23-0.47 <0.001 

100% MTD Standard 
treatment at 
100% MTD 

0.48 0.34-0.68 <0.001 

Dose Modulation (cytostatic) 

25% MTD Standard 
Treatment at 
25% MTD 

  
Not 
Significant 
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50% MTD Standard 
Treatment at 
50% MTD 

  
Not 
Significant 

75% MTD Standard 
Treatment at 
75% MTD 

248.8 56.4-1096 <0.001 

100% MTD Standard 
treatment at 
100% MTD 

2.4 1.7-3.4 <0.001 

Dose Skipping (cytostatic) 

35% MTD Standard 
Treatment at 
35% MTD 

  
Not 
Significant 

Standard 
Treatment at 
50% MTD 

50% MTD ~0 
  

Standard 
Treatment at 
75% MTD 

75% MTD ~0 
  

Standard 
treatment at 
100% MTD 

100% MTD ~0 
  

Intermittent (cytostatic) 

25% MTD Standard 
Treatment at 
25% MTD 

0.53 0.37-0.77 <0.001 

50% MTD Standard 
treatment at 
50% MTD 

~0 
  

75% MTD Standard 
treatment at 
75% MTD 

86.3 36.5-204 <0.001 
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100% MTD Standard 
treatment at 
100% MTD 

2.7 1.9-3.9 <0.001 

 

Median TTP versus Average Drug Dose 

 

Figure 2.10: Summarizing the relationship between drug dose and time to progression for 
adaptive therapy using a single cytotoxic or a single cytostatic drug. In each panel, the 
average amount of drug used per timestep between the start of therapy and the time of 
progression is plotted on the X-axis, and the median time to progression for that protocol 
under those parameter values are plotted on the Y-axis, for treatment using either a single 
cytotoxic drug (A) or a single cytostatic drug (B). The points are colored based on the 
specific protocol. Open circles indicate data points that are censored as less than 50% of 
test-subjects have progressed, and are not included in the calculation. A quadratic fit to 
the curve along with the confidence intervals have been indicated in the figure panels. 
Each point represents a specific Kaplan-Meier survival curve for a given set of parameter 
values. 
 

We plotted log10 median TTP versus average drug dose including all data points 

except for which a median TTP is not available (since less than 50% of the test subjects 

has progressed) and fitted the curve to a quadratic plot. For treatment using a single 

cytotoxic drug (Fig. 2.10A), median R-squared value is 0.1593 and adjusted R-squared is 
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0.1398. For treatment using a single cytostatic drug (Fig. 2.10B), median R-squared value 

is 0.6667 and adjusted R-squared value is 0.6592.  

Discussion 

Design of adaptive therapy protocols for cancer treatment is challenging as, unlike 

standard treatment at maximum tolerated dose, where the same drug dosage is 

administered every treatment cycle, adaptive therapy treatment protocols typically 

involve  multiple parameters, in order to account for the change in tumor burden and drug 

levels for every treatment cycle. Further, different drugs could differ in their mode of 

action, which could affect treatment outcome in important ways. Most of the literature 

involving mathematical modeling or agent-based simulations implicitly assume a 

cytotoxic mode of action. In this article, we sought out to investigate three different 

adaptive therapy protocols, namely, dose modulation, dose-skipping, and intermittent, 

and standard treatment at maximum tolerated dose, using either a single cytotoxic, or a 

single cytostatic drug, under a variety of different settings on cell kinetics, or treatment 

dynamics, with the goal of finding the optimum protocol for each setting, on a case-by-

case basis. While cytotoxic drugs kill cells as a function of drug concentration, cytostatic 

drugs, as a function of drug concentration, prevents cells from dividing. 

We observed all three adaptive therapy protocols tested here, that is, dose modulation, 

dose-skipping, and intermittent increased TTP relative to standard treatment, when using 

a single cytotoxic drug, but none of the protocols increased TTP relative to standard 

treatment when using a single cytostatic drug, under the default values of parameter 

settings. In line with the preclinical adaptive therapy experiments conducted in mice with 

breast cancer (Enriquez-Navas et al. 2016), which involved dosing with the drug 
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paclitaxel, we see dose modulation outperforming dose-skipping using a single cytotoxic 

drug under the default parameter settings (HR=0.48, CI: 0.29-0.79, p<0.01). We did not 

observe increase in TTP relative to standard treatment for the intermittent protocol 

treament using a single cytostatic drug, and thus our results do not agree with the prostate 

cancer clinical trials (Zhang et al. 2017) conducted using the drug abiraterone, where the 

experimenters observed increase in TTP relative to a contemporaneous cohort of patients 

using the intermittent protocol. But our parameters are not calibrated to the individual 

prostate cancer patients (Zhang et al. 2017; J. West et al. 2020; J. B. West et al. 2019b; 

Brady-Nicholls et al. 2020), and our default values of parameters may not represent the 

dynamics of that system. Furthermore, hormone therapy in prostate cancer appears to 

shrink the tumor and so may be having both a cytostatic and a cytotoxic effect.  

Our results indicate fitness cost incurred by resistant cells, as manifested in longer 

doubling times relative to sensitive cells in the absence of the drug, is necessary, and 

higher fitness cost leads to improved survival outcome in most cases when using a single 

cytotoxic drug. However, when using a single cytostatic drug, despite a high fitness cost, 

none of the treatment protocols improve treatment outcome relative to standard treatment, 

with two exceptions, where we see dose-skipping outperforming standard treatment 

under 1.7-fold, or 2.5-fold fitness cost albeit with little  effect size. Our results here are 

consistent to our findings in an earlier publication (Thomas et al. 2022), where we 

observed a fitness cost of resistance is required for the multi-drug adaptive therapy 

protocols to work significantly better than standard treatment  and that higher fitness cost 

translated to improved survival outcome.  
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The replacement parameter is an indicator of cell competition, as it specifies the 

likelihood that a cell can replace its neighbor if there are no empty spaces in its 

immediate neighborhood when it tries to divide. We observe under conditions of 0% 

replacement, when using a single cytotoxic drug, no increase in TTP relative to the 

standard treatment, but we observe an increase in TTP relative to standard treatment 

under conditions of 50%, or 100% replacement, with the singular exception where dose-

skipping works poorly under conditions of 100% replacement, the progression being 

driven by total tumor burden and not the resistant cells in this case. Also, our observation 

that increase in replacement translates to an improved survival outcome, agrees with our 

earlier findings (Thomas et al. 2022) that adaptive therapy survival outcomes using 

multiple drugs improves under conditions of higher replacement rates. When using a 

single cytostatic drug, however, no increase in TTP relative to the standard treatment was 

observed for any of the adaptive therapy protocols tested here, regardless of the level of 

replacement. Stem cells are able to replace each other (Vermeulen and Snippert 2014; 

Vermeulen et al. 2013). Cancer cell cannibalism (entosis) is a phenomenon by which one 

cell kills its neighboring cell (Durgan and Florey 2018; Fais and Overholtzer 2018; 

Hamann et al. 2017). Because cancer cell replacement leads to cell death, cell 

replacement can be considered to be a special kind of cell turnover, opening up spaces for 

the sensitive cells to proliferate at the expense of resistant cells in the absence of the drug 

potentially leading to improved survival outcome with cytotoxic drugs under conditions 

of higher replacement rates. 

The turnover parameter is another indicator of cell competition, and it measures the 

effect of cell death and divisions with identical doubling times for each cell type across 
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the two scenarios, that is low, or high turnover. In stark contrast to our findings earlier 

when we varied the replacement or the fitness cost parameter, where treatment using a 

single cytostatic drug did not lead to an increase in TTP relative to standard treatment for 

any of the adaptive therapy protocols tested, despite increase in fitness cost, or 

replacement, we observe every adaptive therapy protocol was able to increase TTP 

relative to standard treatment under conditions of high turnover, both for treatment using 

a single cytotoxic, or a single cytostatic drug. We find the turnover parameter to be 

critical, as it serves as an important determinant to whether treatment outcome would be 

better with an adaptive therapy protocol versus standard treatment. As such, markers for 

cell turnover would be paramount to assess the potential efficacy of adaptive therapy 

protocols. Strobl et al. has shown that turnover amplifies the effect of fitness cost of 

resistance (Strobl et al. 2021, 2022) by extending TTP. In our earlier publication (Thomas 

et al. 2022) we found high turnover to either increase TTP relative to standard treatment 

for DM cocktail tandem, or insignificant with respect to low turnover for the two ping-

pong protocols tried there (DM Ping-Pong on Progression, DM Ping-Pong Every Cycle). 

It could be that selection for the doubly resistant cells was stronger when both drugs were 

used simultaneously (DM Cocktail Tandem) and less when either of the drugs were used 

at a time, and thus the effect of turnover wasn’t noticeable as it maxed out for the two 

ping-pong protocols explored there. Also, there were 4 different cell types in our earlier 

model, in contrast to the 2 cell types here. 

The dose modulation protocols have two primary parameters: Delta Tumor, which is 

the amount the tumor burden must change in order to trigger a change of drug dose and, 

Delta Dose, which is the  amount by which the drug dose is changed. Similar to our 
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findings in the 2-drug paper, we observe all of the adaptive therapy protocols work best 

when using a relatively low value of delta tumor versus a high value. As such, we 

observe the general trend that survival outcomes decrease in the following order for the 

delta tumor parameter: 5%, 10%, 20%, and 40%. This observation can also be extended 

to treatment using a single cytostatic drug, as dose modulation protocol using a single 

cytostatic drug improves survival outcome relative to standard treatment only when a 

delta dose value=5% was used, and not under delta dose=10%,20%, or 40%. For the delta 

dose parameter, however, we observe improved survival outcome when a higher delta 

dose value is used, with the best survival outcome at delta dose=75%, for both treatment 

using a single cytotoxic, or a single cytostatic drug. These results are in line with our 

earlier findings (Thomas et al. 2022), where we noted poor survival outcomes when using 

a too conservative value for the delta dose parameter. In another study (Gallaher et al. 

2018), a single drug adaptive therapy regimen with the dose modulation protocol with 

Delta Tumor=10% and Delta Dose=50% was shown to work better than Delta 

Tumor=5% and Delta Dose=25%. Our modeling results suggest that dose modulation 

with Delta Tumor=5% and Delta Dose=75% would work best for treatment using a single 

cytotoxic, or a single cytostatic drug. 

An open question in the field of adaptive therapy is when to withhold treatment, or in 

other words to back off on the drug, when it is indeed feasible to do so. For intermittent 

treatment protocols, a key question is at what tumor burden should the treatment be 

stopped when the tumor is shrinking, in order that the tumor may be allowed to climb 

back up to the baseline value at which treatment was initiated previously. For treatment 

using the dose modulation protocol, we have to decide whether to withhold treatment 
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when the tumor is shrinking or, to continue adjusting the drug dosages. For treatment as 

per the intermittent protocol, for both treatment using a single cytotoxic, or a single 

cytostatic drug, the tumor burden relative to the baseline at which we stop dosing  has no 

significant effect. For treatment using the dose modulation protocol, however, we observe 

withholding treatment when the tumor shrinks by 20% to be far better than waiting to 

withhold treatment until the tumor shrinks by 50%. For treatment using a single cytostatic 

drug, however, these effects were not significant. These results agree with our findings 

(Thomas et al. 2022) earlier, where we found incorporating frequent treatment vacations 

works best for DM Cocktail Tandem. Interestingly, it has been shown (Thomas et al. 

2022; Strobl et al. 2021) that treatment vacations would provide a benefit only under 

conditions of strong intra-tumoral competition. However, in that publication an ordinary 

differential equation was used and spatial effects were not studied.  

We also explored what is an optimum drug dosage level to administer at therapy 

initiation  (for the dose modulation protocol), or at each treatment cycle (for intermittent 

and dose-skipping). In general, a drug dosage level at 50%, or 75% of the MTD works 

well for both treatment using a single cytotoxic, or a single cytostatic drug. In addition, 

fixed dosing with a cytostatic drug at 50% of MTD worked almost all the time, with only 

a few failures. We also found a variety of protocols that were able to control the tumors 

indefinitely: 

1. Cytotoxic dose modulation starting and capped at 25% MTD (with DeltaTumor 

10%, DeltaDose 50%, and stopping treatment at 50% of the initial tumor burden) 
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2. Cytotoxic intermittent using a fixed dose at 25% of MTD (and stopping dosing at 

50% of the initial tumor burden, and restarting when it recovers to 100% of the 

initial tumor burden) 

3. Cytotoxic fixed dosing at 25% of MTD (regardless of how the tumor responds) 

4. Cytostatic intermittent with a fixed dose at 50% of MTD 

5. Cytostatic dose modulation starting and capped at 50% of MTD 

To some extent, standard treatment protocols at doses less than 100% of the 

maximum tolerated dose (such as standard treatment at 10%, 15%, 25%, 35%, 50%, or 

75% of MTD) are more along the lines of metronomic therapy albeit that the treatment 

frequency remains the same. The effects of cancer treatment using metronomic 

scheduling has been studied (Benzekry and Hahnfeldt 2013; Benzekry et al. 2015). Our 

observation here that standard treatment could lead to improved survival outcome 

provided a fraction of maximum tolerated dose is used has important implications as it 

suggests a more personalized patient-centered approach to treatment has the potential to 

work significantly better in clinical settings. Furthermore, because we did not consider 

toxicity in our models, the benefit observed using standard treatment at low drug dosages 

can be reasonably expected to have been underestimated and should work even better in 

clinical and experimental settings. 

One general principle that emerged from these simulations is that there is a sort of 

Goldilocks level of drug exposure. If too much drug is used, there is strong selection for 

resistance, and we lose control of the tumor due to the resistant clones growing out. 

However, if too little drug is used, we cannot keep control of the sensitive cells and the 

tumor grows out of control. When we analyzed the relationship between the average 
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amount of drug used per unit time and the time to progression, we found a significant 

unimodal relationship, fitting this Goldilocks principle (G. N 1837). The R-squared 

values on those regressions are consistent with the fact that there are many determinants 

of time to progression, but the average amount of drug exposure per unit of time is 

clearly a significant factor. A Goldilocks level of drug dosage has been observed to be 

optimal in tyrosine kinase inhibitors (pazopanib, which is a VEGF receptor TKI) in a 

clinical setting in patients with advanced renal cell carcinoma  (Rini 2018) 

It is not clear if drugs that are putatively cytostatic are acting as truly cytostatic drugs. For 

e.g., targeted therapies that affect growth factor receptors and hormone therapies for 

breast and prostate cancer have been shown to actually shrink the tumor. The cell killing 

effect of cytostatic drugs is actually due to  oncogene or hormone addiction. And thus, 

when you take off the drug, the cells die due to the cell killing effect. Look up some 

oncogene and hormone addiction papers. 

Our work has several limitations. We generally don’t have the technology to 

accurately measure total tumor burden changes of 5%. We also often do not have cost 

effective ways to carry out those measures frequently. However, we are essentially trying 

to control a complex system, and lag times between changes in the system and control 

responses often lead to loss of control. In the future, we will be exploring 2-drug 

cytostatic adaptive therapy protocols.  

Conclusions 

Dose modulation, dose-skipping, as well as intermittent treatment protocols work 

well under a wide range of parameter settings when treating using a single cytotoxic 

drug. In contrast, there seems to be only a handful of parameter settings that improves 
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survival outcome when using a single cytostatic drug. In general, adaptive therapy, using 

either a single cytotoxic, or a single cytostatic drug, works best under conditions of high 

competition among the cell types, such as higher fitness cost, high levels of replacement, 

or high turnover. Our results suggest assaying for the amount of turnover in the cancer 

would be helpful for determining the likely efficacy of adaptive therapy. In general, there 

seems to be an intermediate level of drug we can use, which maximizes TTP, as too little 

leads to progression of sensitive cells and too much leads to progression of resistant cells. 

In fact, we found that even a constant dosing of an intermediate drug level can provide 

long term control even without using adaptive therapy. Our results suggest that cancer 

therapy could be significantly improved by the development of sensitive and accurate 

measures of tumor burden, that can be used frequently to track tumor response to therapy. 

We should note that adaptive therapy is most appropriate when the presence or 

emergence of therapeutic resistance is likely and cure is unattainable. If successful, 

adaptive therapy holds the promise of changing cancer from an acute lethal disease into a 

chronic disease that does not kill us. 
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CHAPTER 3 

IN SILICO INVESTIGATIONS OF MULTI-DRUG ADAPTIVE THERAPY 

PROTOCOLS 

Published May 30th, 2022—Cancers; DOI: 10.3390/cancers14112699 

Introduction to Previously Published Work 

In this work, I have sought out to investigate adaptive therapy protocols for 

treating cancer using two different drugs. I have explored three different dose modulation 

(DM) protocols (DM Cocktail Tandem, DM Ping-Pong Alternate Every Cycle, and DM 

Ping-Pong on Progression), and two different fixed-dose protocols (FD Dose-

Skipping/Drug-Holiday, FD Intermittent), along with standard treatment (ST) at 

maximum tolerated dose (MTD) of the cancer drugs. Because the number of treatment 

parameters increase exponentially with each additional drug, one challenge to this work 

was to come up with adaptive therapy treatment protocols that best combine two different 

drugs such that the survival outcome can be improved with adaptive therapy, relative to 

standard treatment at MTD. I investigated how these five adaptive therapy protocols 

perform under a wide range of different conditions of tumor kinetics, as well as varied 

tumor measurement and drug dosing parameters. 

I have utilized hybrid agent-based models to answer these questions, the goal of 

this project being both identifying the optimum adaptive therapy protocol under each of 

these conditions, as well as to identify the various conditions under which a single 

adaptive therapy protocol would work best. 
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All the authors in this project have taken part in the research and manuscript 

submission process. I have assisted in developing the models, overall development of 

ideas, analyzing the data, preparing the figures, writing the article. 

Simple Summary 

Modern “adaptive therapy” approaches to cancer therapy rely on adjusting the 

dose of drugs as the size of the tumor changes. They hold the promise of transforming 

cancer from an acute lethal disease to a chronic disease we could live with, but not die 

from. Previous adaptive therapy experiments have used a single drug. We set out to 

explore how to best combine multiple drugs in these strategies. Unfortunately, there are 

far too many possible ways we might combine drugs in adaptive therapies to be evaluated 

with clinical trials. Instead, we used computer simulations of how cancers evolve in 

response to therapies to identify the most promising strategies that should be tested in 

mouse experiments and in clinical trials in the future. These promising strategies were not 

specific to any particular drug or particular type of cancer, and so may have general 

applicability for virtually all cancers. 

Abstract 

The standard of care for cancer patients aims to eradicate the tumor by killing the 

maximum number of cancer cells using the maximum tolerated dose (MTD) of a drug. 

MTD causes significant toxicity and selects for resistant cells, eventually making the 

tumor refractory to treatment. Adaptive therapy aims to maximize time to progression 

(TTP), by maintaining sensitive cells to compete with resistant cells. We explored both 

dose modulation (DM) protocols and fixed dose (FD) interspersed with drug holiday 

protocols. In contrast to previous single drug protocols, we explored the determinants of 
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success of two-drug adaptive therapy protocols, using an agent-based model. In almost all 

cases, DM protocols (but not FD protocols) increased TTP relative to MTD. DM 

protocols worked well when there was more competition, with a higher cost of resistance, 

greater cell turnover, and when crowded proliferating cells could replace their neighbors. 

The amount that the drug dose was changed, mattered less. The more sensitive the 

protocol was to tumor burden changes, the better. In general, protocols that used as little 

drug as possible, worked best. Preclinical experiments should test these predictions, 

especially dose modulation protocols, with the goal of generating successful clinical trials 

for greater cancer control. 

Keywords 

adaptive therapy; cancer; drug resistance; dose modulation; evolution; agent-based model 

Introduction 

Historically, the standard treatment (ST) for most solid tumors has been the 

maximum tolerated dose (MTD) of a cancer drug (Gatenby 2009; Chabner and Roberts 

2005), with the ultimate goal of eradicating the tumor. However, advanced cancers often 

quickly evolve drug resistance under ST protocols. Cells in a cancer are heterogeneous 

(Williams et al. 2016; E. M. Ross and Markowetz 2016; Ricketts and Marston Linehan 

2014; Morris et al. 2016; Griffiths et al. 2021; Raatz et al. 2021; Kaznatcheev et al. 2019; 

Marusyk, Almendro, and Polyak 2012) and constant application of high doses of drugs 

eliminates drug sensitive cells while drug resistant cells survive, divide, and multiply, 

taking over the tumor (Worsley, Mayne, and Veale 2016; Ramos and Bentires-Alj 2015; 

Barrett et al. 2013). In ecology, this is called competitive release (Enriquez-Navas, 

Wojtkowiak, and Gatenby 2015a). The same phenomenon occurs in the evolution of 
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pesticide-resistant pests when treated with high doses of pesticides (Adkins and Shabbir 

2014; Alto et al. 2013). However, resistance to treatment typically comes at a fitness cost 

(Gallaher et al. 2018). That is, resistant cells face a penalty, which can be measured in 

increased doubling times relative to the sensitive cells (Gallaher et al. 2018). In vitro 

competition experiments using a co-culture of drug sensitive MCF7 and drug-resistant 

MCF7Dox cell line have demonstrated that, in the absence of the drug, MCF7 cells can 

outcompete MCF7Dox cells within a few generations (Gallaher et al. 2018). Inspired by 

pest management, Gatenby and colleagues have shown that robust cancer control is 

possible if there is a substantial fitness cost to resistance (Gatenby, Brown, and Vincent 

2009a). Adaptive therapy leverages the fitness cost of resistance, using competition with 

sensitive cells to keep resistant cells under control (Gatenby 2009; Enriquez-Navas, 

Wojtkowiak, and Gatenby 2015a; Gallaher et al. 2018; Gatenby, Brown, and Vincent 

2009a; Gatenby, Silva, Gillies, and Roy Frieden 2009; Enriquez-Navas et al. 2016; Zhang 

et al. 2017; J. West et al. 2020; J. B. West et al. 2019a; Ibrahim-Hashim et al. 2017; 

Bacevic et al. 2017; Buhler et al. 2021; A. Araujo et al. 2021; Brady-Nicholls et al. 2020; 

J. Cunningham et al. 2020; Hansen and Read 2020a). This can result in long-term 

containment of the tumor, especially suitable for cases where a straightforward cure is not 

attainable due to the presence of drug-resistant cells at diagnosis. 

 

Recent preclinical experimental studies in mice with ovarian and breast cancer 

cell lines have demonstrated the superiority of dose modulation adaptive therapy over 

MTD treatment in maintaining a stable tumor burden and increasing time to progression 

(Gatenby, Silva, Gillies, and Roy Frieden 2009; Enriquez-Navas et al. 2016). A clinical 
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trial of adaptive therapy for metastatic castrate-resistant prostate cancer patients has 

extended the median time to progression to at least 27 months compared with a 

contemporaneous study of prostate cancer patients having a median time to progression 

of about 16 months with standard of care treatment (Zhang et al. 2017). Theoretical 

models have been useful for exploring the dynamics of cancer and novel approaches to 

therapy (Traina et al. 2008; Brady and Enderling 2019; Rodrigues and de Arruda 

Mancera 2013; Everett, Nagy, and Kuang 2016; Jain et al. 2011; Rockne et al. 2009; 

Benzekry and Hahnfeldt 2013; Benzekry et al. 2015; Kaznatcheev, Scott, and Basanta 

2015; Bruno et al. 2020). Computational simulations using an agent-based model provide 

evidence that dose modulation adaptive strategies are superior in controlling cancer 

compared with an MTD approach, especially when the tumor is heterogenous (Gallaher 

et al. 2018). Optimal control theory has also been used to develop adaptive therapy 

protocols (Gluzman, Scott, and Vladimirsky 2020). Mathematical models have shown 

that adaptive therapy can work even when there is no fitness cost of resistance under 

some conditions (e.g., high turnover) (Viossat and Noble 2021; Strobl et al. 2021). 

Most of the empirical and theoretical studies on adaptive therapy have focused on 

single drugs (Gallaher et al. 2018; Gatenby, Silva, Gillies, and Roy Frieden 2009; 

Enriquez-Navas et al. 2016; Zhang et al. 2017; Bacevic et al. 2017), whereas most 

chemotherapy protocols for cancer involve multiple drugs (Delbaldo et al. 2004; Wagner 

et al. 2006; Carrick et al. 2009; Mokhtari et al. 2017). Can we improve on adaptive 

therapy protocols by using multiple drugs? Adaptive therapy protocols already involve 

more variables than standard, fixed dose protocols, and the addition of multiple drugs 

leads to a combinatorial explosion in the number of possible adaptive therapy protocols. 
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It is, therefore, impractical to test many different protocols in mice. Mathematical and 

game theory models for multi-drug adaptive therapy have previously been developed to 

find the best way to combine two drugs to treat metastatic castrate-resistant prostate 

cancer (J. West et al. 2020; J. B. West et al. 2019a; J. Cunningham et al. 2020). 

Mathematical control theory has also been used to formulate a multidrug regimen for 

leukemia (Moore 2018). However, these previous modeling efforts either do not include 

spatial structure (J. West et al. 2020; J. B. West et al. 2019a), which can have dramatic 

effects on the clonal competition in cancers (Bacevic et al. 2017), or their results depend, 

in part, on the cost of resistant cells allowing sensitive cells to encapsulate them and 

thereby prevent resistant cells from proliferating (Gallaher et al. 2018; Bacevic et al. 

2017). More recent work from Strobl and colleagues (Gallaher, Brown, and Anderson 

2019; Strobl et al. 2022; Bacevic et al. 2017)explicitly quantifies this spatial competition 

between sensitive and resistance cells. 

Our main goal here was to explore how we might best combine drugs in adaptive 

protocols to prevent therapeutic resistance from spreading in a tumor. In addition, we 

wished to address some caveats of previous models and test how different types of spatial 

constraints affect adaptive therapy protocols. Moreover, traditional differential equation 

models of multi-drug adaptive therapy do not capture these spatial interactions which 

can, nevertheless, play an important role and affect treatment outcome in important ways. 

In this study, we modelled multi-drug adaptive therapy with two drugs, exploring five 

different adaptive therapy protocols, and the standard treatment (ST), at maximum 

tolerated dose until progression, using a hybrid agent-based model (Bravo et al. 2020), 

under different assumptions of spatial constraints on clonal competition. We investigated 
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protocols that either applied both drugs at the same time, or alternated them in some 

fashion, by either adjusting the dose or using a fixed dose with some form of drug 

holiday. Our primary outcome was time to progression, which was defined by the 

average tumor burden exceeding a threshold set by the control condition of no treatment, 

or the proportion of cells that were resistant to both drugs expanding to such a significant 

size (20% of the simulated space) that the protocol was doomed to failure. In this way, 

we sought to identify multi-drug adaptive protocols that could achieve long-term control 

of therapeutic resistance. 

Materials and Methods 

We described the details of our agent-based model using the standard overview 

design details (ODD) format from Grimm et al. (Grimm et al. 2010). We implemented 

our model by utilizing the Hybrid Automata Library (HAL), which is a hybrid agent-

based modeling framework designed to model discrete cell agents interacting with 

continuous chemical dynamics (Bravo et al. 2020). 

Purpose 

Our goal was to determine how to combine drugs in an adaptive therapy protocol 

in order to increase time to progression (TTP), and hopefully prevent progression 

altogether. 

Entities, State Variables, and Scales 

We modelled a tumor as a collection of interacting cells located on a 100 by 100, 

2-dimensional square lattice. Only one cell could occupy a lattice location at a time, and 

cells were restricted to being only on the lattice. We used this relatively small cell 

population size due to computational constraints. While this was smaller than is realistic 
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for even a small tumor (Fortunato et al. 2017), we compensated by using a high mutation 

rate, making the tumor far more difficult to cure with chemotherapy. For the 2-drug 

regimen, there were four cell types: doubly sensitive cells (sensitive to both drugs), cells 

resistant to drug 1, cells resistant to drug 2, or doubly resistant cells (resistant to both 

drugs). 

Process Overview and Scheduling 

At every time step, the scheduler (Fig. 3.1) updated the local drug concentration 

in each lattice site, iterating over each cell in a random order. Whether the cell survived 

or died depended on cell death probability (see Cell Death), which depended on both the 

background death probability and the probability of death due to drug treatment. If the 

cell survived, it might divide, subject to the division probability of the particular cell type 

(see Cell Division) and whether or not space was available in the adjacent Moore 

neighborhood. If space was available, the cell divided, creating a daughter cell, randomly 

placing it in one of the available spaces in its Moore neighborhood. However, if no space 

was available, the dividing cell might be able to replace a neighboring cell depending on 

the replacement probability (see Competition for Space). Daughter cells could mutate 

every time a cell underwent division (see Mutation). Doubly sensitive cells could mutate 

to become doubly resistant cells in one step or via an intermediate step by becoming a 

singly resistant cell. Cells could mutate in both forward and reverse directions (Fig. 3.2). 
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Figure 3.1: Process overview and scheduling. Cells die as a function of their sensitivity 
to the drugs, the available drug concentrations and the background death function. A cell 
divides as a function of its doubling time (resistant cells have slower doubling times). 
The effects of cell crowding, cell cannibalism and contact inhibition are represented by a 
probability of replacing a neighbor if there is no open space. 
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Figure 3.2: Mutation Schematic. A given cell type can mutate to any other cell type but 
itself with an equal probability of 10−3 per cell division. Doubly sensitive cells can mutate 
to become doubly resistant cells in one step (e.g., due to multiple drug resistance 
mechanisms (Benzekry et al. 2015)) or via an intermediate step of singly resistant cells. 
Resistant cells can also mutate to become sensitive again. This may represent epigenetic 
forms of resistance that are easily reversible. 
 

Design Concepts 

Basic Principles 

The basic principles are: (1) tumors are heterogeneous with respect to sensitivity 

and resistance to drugs; (2) competition between different cell types in tumors is local, 

between neighboring cells; and (3) drug dynamics occur over continuous space and at a 

faster time scale than cell division. These features of cancer therapy make a hybrid agent-

based model ideal for capturing the dynamics of cancer evolution in response to therapy. 
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We observed clonal dynamics and in particular, the evolution of therapeutic 

resistance. We routinely observed competitive release in addition to selection for 

different cell types. 

Adaptation 

Cells in the model evolved a resistance adaptation to the drugs, encoded in the 

four possible cell types. 

Objectives 

The fitness function for the agents was implicit in the model. Different cells had 

different division and death rates (probabilities per unit time). Natural selection, and 

selection due to the cancer drugs, acted upon those phenotypes. 

Learning 

Not applicable. 

Prediction 

Not applicable. 

Sensing 

Cells could be killed by the amount of drug in their local environment, but they 

did not make any decisions based on sensing that concentration. 

Interaction 

Cells interacted with one another directly when they divided and replaced a 

neighboring cell (see Competition for Space). 

Stochasticity 
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Stochasticity was an important feature of our model as cell death, division, 

mutation and replacement are stochastic processes. For each protocol with a given set of 

parameter values, we ran the model at least 50 times to account for this stochasticity. 

Collectives 

There were no collectives in the model. 

Observation 

We ran the model for 5000 time steps (approximately 208 days), with each time 

step representing 1 h. We determined whether the tumor had “Progressed” or was 

“Controlled”, and we also recorded the time at which the tumor “Progressed”. 

Progression was defined by the following survival criteria: if the rolling average of tumor 

burden over a period of 500 time steps equaled or exceeded 98% of the carrying capacity, 

or if the rolling average of the total number of doubly resistant cells over a period of 500 

time steps equaled or exceeded 20% of the carrying capacity, then the particular run was 

scored as “Progressed” and the time at which the progression took place was noted. We 

included the percent of resistant cells in our progression criteria because they were the 

clinically important population that could not be controlled medically and if they became 

common would eventually lead to an uncontrollable tumor. The 20% threshold for the 

doubly resistant cells was a somewhat arbitrary choice to identify cases where the doubly 

resistant population had started to grow out of control. However, we never observed 

cases where that doubly resistant population could be controlled above that threshold. 

Every run was replicated 50 times with a seed that was based on the clock, and we 

generated a summary of those runs with Kaplan–Meier curves, and analyzed the results 

with Cox proportional hazard regressions, which calculated the hazard ratio (HR). The 



   69 

HR was the chance that the tumor would meet the progression criteria in the next time 

interval in the experimental group (e.g., an adaptive therapy protocol) compared with 

some control group (usually the standard treatment protocol). 

Initialization 

Parameters were set at the start of a model run depending on user input or an input 

file (default values are shown in Table 3.1). Tumor cells were seeded, approximately at 

the center of the grid, in the form of a disc of radius 10 units, containing about 400 cells, 

such that each cell had an equal probability of being assigned to be one of the four cell 

types (see Entities, State Variables, and Scales). We seeded the random number 

generator from the clock for every run of the model. 

Table 3.1: Parameter	table	with	default	values.	
Parameter Value 
Cell division rate: doubly sensitive 0.06 per hour 
Cell division rate: resistant to drug 1 0.04 per hour 
Cell division rate: resistant to drug 2 0.04 per hour 
Cell division rate: doubly resistant 0.02 per hour 
Background death rate 0.01 per hour 
Replacement probability 0.5 
Delta Tumor 10% 
Delta Dose 50% 
Probability of death due to drug 1 
potency (Ψ1) 

0.04 per unit drug concentration 

Probability of death due to drug 2 
potency (Ψ2) 

0.04 per unit drug concentration 

Maximum tolerated dose (MTD) 5.0 units for a single drug. 
See Section 2.7.6 for MTD under 
combination therapies. 

Minimum drug dose 0.5 units 
Drug on time 1 h 
Frequency of drug application Once every 24 h 
Check tumor burden Every 3 days 
Drug decay 10% per hour 
Drug diffusion rate 2.0 
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Tumor size triggering treatment Tumor burden is 50% or more of 
the carrying capacity 

Mutation rate 10−3 per cell division 
Measurement noise standard deviation 
(SD) 

5 cells 

Total grid size 100 by 100 
Duration of simulation 5000 h 
Stop dosing/initiate treatment vacation 
when (DM protocols only): 

Tumor burden is less than or equal 
to 25% of carrying capacity 

 

Input Data 

Not applicable. 

Submodels 

Cell Death 

Probability of cell death in a time step (1 h) was the sum of the background death 

probability and probability of death due to individual drugs. Every cell type had the same 

intrinsic background death rate set at 0.01 per hour, for the default parameters. The 

equation of probability of cell death for a 2-drug regimen was as follows: probability of 

cell death per hour = background death probability per hour + S1*[Drug1]*Ψ1 + 

S2*[Drug2]*Ψ2, where S1 and S2 are binary indicator variables for the cell’s sensitivity 

to drugs 1 and 2, respectively, such that a value of 1 indicates sensitivity, and a value of 0 

indicates resistance to the particular drug; [Drug1] and [Drug2] are the concentration of 

those drugs (non-negative real values); and Ψ1 and Ψ2 are the drug potency (non-

negative real values) of the corresponding drug, quantified as the probability of cell death 

per unit drug concentration per hour. The probability of cell death never exceeded 1 in 

any of our parameter settings. 

Cell Division 
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As long as a cell did not just die, it had a chance to divide each time step, 

determined by the cell division rate of the particular cell type (Table 3.1). To incorporate 

the fitness cost of resistance in our model, division probabilities for the cell types were 

arranged in decreasing order, as follows: doubly sensitive cells > resistant to drug 1 = 

resistant to drug 2 > doubly resistant cells. Thus, the doubly sensitive cells had the 

highest, singly resistant cells to either drugs had intermediate, and doubly resistant cells 

had the lowest cell division rates. 

Competition for Space 

If there were no empty spaces adjacent to a dividing cell, it might replace one of 

its neighbors, with a probability set by the replacement probability parameter. This was a 

computationally efficient abstraction to deal with a gap in the scientific literature. We do 

not know the relationship between cell crowding and cell death. Some level of cell 

crowding must kill cells. There is evidence that crowding can collapse local capillaries 

(R. P. Araujo and McElwain 2004; Boucher and Jain 1992). Modeling capillary dynamics 

or elastic tissues, where cells could push aside neighbors, is computationally expensive. 

We do know it is common that cancer cells consume their neighbors (Durgan and Florey 

2018; Fais and Overholtzer 2018). Contact inhibition is also a common phenomenon 

where the presence of neighbors inhibits cell division (Ribatti 2017; Mendonsa, Na, and 

Gumbiner 2018). Setting different values of the probability (r) for replacing a neighbor 

can represent a spectrum of behavior, from contact inhibition (r = 0) to neighbor killing 

(r = 1), with neighbor death due to crowding in the middle. 

Mutation 
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The possible transitions between cell types are shown in Fig. 3.2. These 

transitions represent mutations that occur at a constant rate determined by the mutation 

rate parameter (the default is 10−3 per cell division, Table 3.1). We chose this particular 

value so as to make the effective mutation rate comparable to real tumors (Fortunato et al. 

2017), where tumor burden commonly approaches a billion or more cells. Moreover, a 

high mutation rate ensured that doubly resistant cells were constantly being generated 

during our simulations, thus limiting treatment protocols that worked just because the 

doubly resistant cell population was small. The high mutation rate and the ability to 

interconvert between the cell types may also represent epigenetic mechanisms of 

therapeutic resistance (Brown et al. 2014; Garcia-Martinez et al. 2021). 

Drug Dynamics (Diffusion and Metabolism) 

Drugs were applied once a day (the frequency of drug application parameter) for 

one hour (drug on time parameter; Table 3.1). We made drug delivery uniform 

throughout the lattice such that each lattice site received the same amount of drug, 

representing a well perfused tumor. A fraction (10%, Table 3.1) of each drug decayed at 

every time-step. Cells were exposed to the remaining drug which could also freely diffuse 

into neighboring lattice sites. Drug diffusion was modeled using the alternating direction 

implicit (ADI) method (Bravo et al. 2020). 

Drug Protocols 

For all adaptive therapy protocols explored here, dose modulation (DM) and fixed 

dose (FD), tumor burden was monitored every 3 days. We modeled error in the tumor 

burden measurement by adding noise (drawn from a Gaussian distribution with a mean of 

the current tumor burden and a standard deviation of 5 cells). We initiated treatment at 
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MTD as soon as the tumor burden equaled or exceeded 50% of carrying capacity (5000 

cells). 

For the DM protocols, starting with MTD, dosage of the drugs was increased by 

the Delta Dose parameter if the tumor grew above the Delta Tumor threshold, and the 

dosages were decreased by the Delta Dose parameter if the tumor shrank by at least the 

Delta Tumor threshold. If the tumor grew by no more than the Delta Tumor threshold or 

shrank less than the Delta Tumor threshold, then the same drug dosage was administered 

in the next cycle. We also took the absolute tumor burden into consideration (called 

maximum tolerable tumor burden). If the current tumor burden exceeded the maximum 

that had been recorded so far, then the dosage was increased by Delta Dose. This 

occurred so as to prevent the tumor from growing progressively below our ‘Delta Tumor’ 

threshold for consecutive treatment cycles. In addition, if the tumor burden ever fell to, or 

below, the “stop dosing” threshold (which defaulted to 2500 cells), a treatment vacation 

was triggered, during which no drug was administered for the treatment cycle. This 

modelled the common clinical practice of stopping treatment if the tumor burden falls 

below detectable levels. Finally, we assumed that it may be difficult to formulate a cancer 

drug at very low dosages, so we set a minimum drug dose. If a DM protocol would cause 

the dose to fall below that level, we kept the dose at the minimum dose. 

For the FD protocols, drug dosage was set at 75% of the MTD with a cocktail 

formulation, to match the experiments in (Enriquez-Navas et al. 2016). FD Intermittent 

relied solely on the value of the absolute tumor burden. 

MTD for either drug administered singly was 5 units. We assumed that due to increased 

toxicity of combining drugs, the maximum that could be applied was 3 units of each drug 
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when they were used in combination. For fixed dose adaptive therapy protocols, we used 

a drug cocktail that was 75% of the MTD for each drug (0.75 of 3 units of each drug, 

which was 2.25 units of each drug (Enriquez-Navas et al. 2016)), however we did not 

observe a difference between 75% and MTD for fixed dose protocols. We investigated 

five different multi-drug adaptive therapy protocols and compared them to a standard 

treatment as follows (Fig. 3.3). 
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Figure 3.3: Two-drug adaptive therapy protocols, comparing variations of dose 
modulation (DM) and fixed dose (FD) adaptive therapy. Each panel shows on top, an 
example of how tumor burden might fluctuate over time, and below, how the dosing of 
the two drugs would be adjusted in response to the change in the tumor burden. Tumor 
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burden is measured every 3 days (indicated with vertical lines). (A) DM Cocktail 
increases the dose of both drugs if the tumor is growing, and reduces the dose of both 
drugs if the tumor is shrinking. (B) DM Ping-Pong Alternate Every Cycle uses one drug 
at a time, but alternates drugs every 3 days, and adjusts the dose depending on how the 
tumor responded to the drug the last time it was applied. (C) DM Ping-Pong on 
Progression also uses one drug at a time, reducing the dose if the tumor is shrinking, but 
switching drugs if the tumor grows. (D) FD Dose-Skipping/Drug Holiday is similar to the 
AT-2 algorithm from (Gallaher et al. 2018), a fixed dose is applied every time the tumor 
grows, but the dose is skipped if the tumor remains stable or shrinks. (E) FD Intermittent 
is similar to the adaptive therapy prostate cancer trial from (Gatenby, Brown, and Vincent 
2009b), where a fixed dose is applied until the tumor shrinks below 50% of its initial size. 
Dosing is restarted if the tumor grows above 100% of its original size. Tick marks on the 
tumor burden axis at 50% and 100% represent absolute values that trigger administering 
or withholding dosages of drugs for FD Intermittent. (F) Standard treatment applies both 
drugs at maximum tolerated dose (MTD). 
 

Standard Treatment (ST) 

Both drugs (drug 1 and drug 2) were administered at maximum tolerated dose 

(MTD) in a cocktail formulation once every 24 h for the entire duration of the simulation 

(Fig. 3.3F). 

DM Cocktail Tandem 

Treatment started at MTD for both drugs, and dosages of both drugs were 

adjusted simultaneously according to the dose modulation adaptive therapy protocol, 

parameterized by Delta Tumor and Delta Dose (Fig. 3.3A). This was equivalent to the 

standard dose modulation adaptive therapy protocol (AT-1) from previous experiments 

(Gatenby, Silva, Gillies, and Roy Frieden 2009; Enriquez-Navas et al. 2016), but using 

two drugs in tandem, as if they were one. 

DM Ping-Pong Alternate Every Cycle 

Treatment started with drug 1 at MTD followed by drug 2 at MTD during the 

subsequent cycle. Drugs were always switched every cycle and dosages of each drug 
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were adjusted (Delta Dose) based on the response of the tumor (Delta Tumor) the last 

time the same drug was administered (Fig. 3.3). 

DM Ping-Pong on Progression 

As in the standard dose modulation protocol with a single drug, we decreased the 

dose by Delta Dose when the tumor shrank by at least Delta Tumor. However, if the 

tumor grew by more than Delta Tumor, instead of increasing the dose of the current drug, 

we switched to the other drug. Any time we resumed the use of a drug that was used 

previously, we restarted treatment with a dose that was Delta Dose higher than the last 

time that drug was used (because the tumor grew the last time that drug was used at the 

prior concentration). Initially, each drug was started at MTD. Therefore, as long as the 

tumor was stable or shrinking, we continued using the current drug (Fig. 3.3C). 

FD Dose-Skipping/Drug Holiday 

Drugs were administered in a cocktail formulation at a fixed dose that was set at 

75% of the MTD. If the tumor grew by more than Delta Tumor since its last 

measurement, or if the tumor burden exceeded its previous maximum size, the drug was 

applied. Otherwise, the dose was skipped (Fig. 3.3D). This was the AT-2 protocol from 

(Enriquez-Navas et al. 2016), except we used two drugs in combination. 

FD Intermittent 

Treatment started at 75% of the MTD using a cocktail formulation. Drug was 

administered once every 24 h. Treatment stopped any time the tumor burden fell by at 

least 50% of the value at which treatment was initiated. Treatment restarted if the tumor 

burden ever grew by at least 100% of the value at which treatment was initiated (Fig. 

3.3E). This was the protocol that was used for abiraterone in the prostate cancer clinical 



   78 

trial (Zhang et al. 2017), except that we started and stopped two drugs in combination, 

rather than one. 

Results 

Dose Modulation Adaptive Therapy Protocols with Two Drugs Leads to Increased 

Time to Progression (TTP) Relative to Standard Treatment (ST) at Maximum 

Tolerated Dose 

Relative to standard of care treatment (ST) at maximum tolerated dose, we 

observed improved TTP with DM protocols (DM Cocktail: HR = 0.25 [0.18–0.35], p < 

0.001; DM Ping-Pong Alternate: HR = 0.26 [0.18–0.38], p < 0.001; and DM Ping-Pong 

on Progression: HR = 0.13 [0.08–0.22], p < 0.001), but not the FD protocols, which 

actually performed worse than ST (FD Intermittent: HR = 1.67 [1.25–2.24], p < 0.001; 

FD Dose-Skipping/Drug Holiday: HR = 1.65 [1.23–2.21], p < 0.001), (Fig. 3.4A 

and Appendix B: Supplementary Table S1). The average total amount of drug used in 

the adaptive therapy protocols was less than the standard treatment (DM Cocktail: 52.1% 

(drug 1) and 52.1% (drug 2); DM Ping-Pong Alternate: 32.6% (drug 1) and 66.5% (drug 

2); DM Ping-Pong on Progression: 34.0% (drug1) and 39.8% (drug 2); FD Intermittent: 

66.2% (drug 1) and 66.2% (drug 2); and FD Dose-Skipping/Drug Holiday: 35.9% (drug 

1) and 35.9% (drug 2) of ST). Fig. 3.4B–F shows the population dynamics of the 

different cell types over time for example runs. The number of doubly resistant cells 

(shown in red) progressively increased for ST (Fig. 3.4B). FD Dose-Skipping/Drug 

Holiday and FD Intermittent (Fig. 3.4E,F) also led to treatment failure. For treatment 

with DM Ping-Pong on Progression, Fig. 3.4C shows an example run in which the 

number of doubly resistant cells were kept in check, while Fig. 3.4D depicts the less 
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common case where dose modulation failed. Preventing reverse mutations, which may 

better model genetic resistance mutations, did not significantly change the results 

(Appendix B: Supplemental Figure S2 and Table S8). 
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Figure 3.4: Two-drug therapies, comparing standard of care standard treatment (ST) 
versus variations of dose modulation (DM) and fixed dose (FD) adaptive therapy. Tumor 
burden was measured every 3 days. ST applied the maximum tolerated dose at each 
measurement. (A) Survival curves for DM adaptive therapy protocols (DM Cocktail 
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Tandem, DM Ping-Pong Alternate Every Cycle, and DM Ping-Pong on Progression) and 
FD adaptive therapy protocols (FD Dose-Skipping/Drug Holiday and FD Intermittent) 
compared with ST. The dose modulation protocols uniformly worked better than the 
other protocols. (B) Cell population dynamics for a tumor treated with the ST protocol 
(continuous MTD). Therapy started at about day 20 when the tumor reached 5000 cells. 
The results clearly show the effects of competitive release, leading to rapid progression. 
(C) Cell population dynamics for a tumor treated with the DM Ping-Pong on Progression 
protocol, controlling the doubly resistant cells. There was a dip in tumor burden at about 
125 days owing to switching from a low dose of drug 1 to a high dose of drug 2. (D) Cell 
population dynamics for a tumor treated with the DM Ping-Pong on Progression protocol 
resulting in the less frequent outcome of progression. At around day 70, therapy killed 
almost all the sensitive and singly resistant cells, leaving insufficient cells to keep the 
doubly resistant cells in check. (E) Cell population dynamics for a tumor treated with FD 
Dose-Skipping/Drug Holiday resulting in rapid progression. (F) Cell population 
dynamics for a tumor treated with the FD Intermittent protocol resulting in progression. 
Populations of the doubly resistant cells (in yellow) are indicated by arrows. In addition, 
the total tumor burden (gray), the number of cells sensitive to both drugs (Doubly Sen, in 
orange), the number of cells resistant to drug 1 but sensitive to drug 2 (Res Drug 1, in sky 
blue), and the number of cells resistant to drug 2 but sensitive to drug 1 (Res Drug 2, in 
bluish green), are shown. 
 

Greater Fitness Costs for Resistant Cells Increases the TTP for Adaptive Therapy 

We explored the impact of the fitness cost parameter on TTP for treatment with 

ST and the adaptive therapy protocols (Fig. 3.5 and Appendix B: Supplementary Table 

S2). Treatment with every dose modulation protocol increased TTP relative to ST (DM 

Cocktail: HR = 0.25 [0.18–0.35], p < 0.001; DM Ping-Pong Alternate: HR = 0.26 [0.18–

0.38], p < 0.001; and DM Ping-Pong on Progression: HR = 0.13 [0.08–0.22], p < 0.001) 

when the fitness penalty incurred by the resistant cells was 5X (meaning that the net 

growth rate of the doubly sensitive cells was five times that of the doubly resistant cells, 

and the net growth rate of the singly resistant cells was three times that of the doubly 

resistant cells). When the fitness penalty incurred by the doubly resistant cells was 3X 

(and singly resistant cells had twice the growth rate of the doubly resistant cells), 

treatment with the dose modulation protocols relative to ST results in TTP was either not 
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significantly different (DM Cocktail: not significant [p = 0.297]; DM Ping-Pong 

Alternate: not significant [p = 0.706]) or was worse (DM Ping-Pong on Progression: HR 

= 1.34 [1.00–1.79], p = 0.0482). In contrast, the fixed dose protocols, FD Intermittent and 

FD Dose-Skipping/Drug Holiday, were either worse or not significantly different than 

ST, regardless of whether or not the fitness cost for the resistance cells was 3X (FD 

Intermittent: not significant [p = 0.344]; FD Dose-Skipping/Drug Holiday: HR = 1.47 

[1.10–1.97], p = 0.00851) or 5X (FD Intermittent: HR = 1.67 [1.25–2.24], p< 0.001; FD 

Dose-Skipping/Drug Holiday: HR = 1.65 [1.23–2.21], p < 0.001). 
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Figure 3.5: Role of fitness cost in determining the outcome of adaptive therapy with 2 
drugs. The panels show the comparison of adaptive therapy (AT) versus standard 
treatment (ST) as fitness cost for resistance is varied for (A) DM Cocktail Tandem, (B) 
DM Ping-Pong Alternate Every Cycle, (C) DM Ping-Pong on Progression, (D) FD Dose-
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Skipping/Drug-Holiday, (E) FD Intermittent. 5× fitness cost is the default, with the 
division rate of doubly sensitive cells being 0.06/h, doubly resistant cells being 0.02/h, 
and that of the singly resistant cells being 0.04/h, while the death rate of all cell types was 
0.01/h, translating to a net growth rate of the doubly sensitive cells at 5 times (5×) that of 
the doubly resistant cells. We compared this to a 3× fitness cost, with the division rate of 
doubly sensitive cells being 0.04/h, doubly resistant cells being 0.02/h, and singly 
resistant cells being 0.03/h, while the death rate of all cell types was 0.01/h, translating to 
a net growth rate of the doubly sensitive cells at 3 times (3×) that of the doubly resistant 
cells. 
 

Higher Levels of Cell Turnover Increases the Efficacy of Adaptive Therapy 

For any given net growth rate, there can be more or less cell turnover generating 

that rate (determined by the cell death and division probabilities). We explored how the 

degree of cell turnover impacted adaptive therapy protocols (Fig. 3.6). We kept the net 

growth rates of the different cell types the same as our default parameters (Table 3.2), but 

defined a low turnover condition with a cell death rate of 0.005/h for all cell types (half of 

the default value of 0.01/h) and division rates of doubly sensitive cells at 0.055/h, singly 

resistant cells at 0.035/h, and doubly resistant cells at 0.015/h. The high turnover 

condition had a death rate of 0.02/h for all cell types (twice the default), division rates of 

0.07/h for the doubly sensitive cells, 0.05/h for the singly resistant cells, and 0.03/h for 

the doubly resistant cells. The doubling times in Table 3.2 were within the range of 

observed human cell division times, namely, from lymphocytes that can divide in less 

than 10 h (Maur, Auf der Maur, and Berlincourt-Böhni 1979; Dowling et al. 2014; Yoon, 

Kim, and Braciale 2010), to common cancer cell lines in culture that range from 17 to 80 

h doubling times (D. T. Ross et al. 2000). 
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Figure 3.6: Effect of turnover on outcome of adaptive therapy with 2 drugs. The panels 
show the comparison of adaptive therapy (AT) versus standard treatment (ST) as turnover 
is varied while keeping the doubling time and net growth rate identical for (A) DM 
Cocktail Tandem, (B) DM Ping-Pong Alternate Every Cycle, (C) DM Ping-Pong on 
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Progression, (D) FD Dose-Skipping/Drug-Holiday, (E) FD Intermittent. For low turnover 
(LT) conditions, the death rate was half of the default, at 0.005/h for all cell types, while 
for high turnover (HT) conditions, the death rate was twice the default at 0.02/h for all 
cell types. Division rates were set for each cell type to keep the fitness differences (net 
growth rates) the same as the default conditions. The dose modulation protocols worked 
well regardless of the amount of turnover. High cell turnover led to statistically 
significantly improved TTP in ST, DM Cocktail Tandem, and though the effect size was 
small, in both FD protocols. 
 

Table 3.2: Doubling time of the cell types. 
Cell Types Doubling Time 
Doubly sensitive 13.86 h 
Resistant to drug 1 23.1 h 
Resistant to drug 2 23.1 h 
Doubly resistant 69.3 h 

 

Treatment with every dose modulation protocol improved time to progression, 

relative to ST, when cell turnover was low (DM Cocktail: HR = 0.25 [0.18–0.35, p < 

0.001; DM Ping-Pong Alternate: HR = 0.28 [0.19–0.40], p < 0.001; DM Ping-Pong on 

Progression: HR = 0.14 [0.09–0.22], p < 0.001), and also when cell turnover was high 

(DM Cocktail: HR = 0.20 [0.13–0.30], p < 0.001; DM Ping-Pong Alternate: HR = 0.35 

[0.24–0.51], p < 0.001; DM Ping-Pong on Progression: HR = 0.22 [0.14–0.34], p < 

0.001). 

DM Cocktail Tandem protocol worked particularly well where cell turnover was 

high, versus when it was low (HR = 0.29 [0.17–0.49], p < 0.001), whereas the amount of 

turnover had no significant effect on the success of the other two dose modulation 

protocols (DM Ping-Pong Alternate: p = 0.424; DM Ping-Pong on Progression: p = 

0.834). ST also worked better when there were high levels of turnover in the tumor (HR = 

0.68 [0.61–0.76], p < 0.001), relative to low turnover, as did the fixed dose adaptive 

therapy protocols (FD Intermittent: 0.39 [0.26–0.60], p < 0.001; FD Dose-Skipping/Drug 
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Holiday: HR = 0.61 [0.39–0.93], p = 0.0234), but again, the fixed dose adaptive therapy 

protocols performed worse than ST, when cell turnover was high (FD Intermittent: HR = 

1.44 [1.07–1.92], p = 0.0151; FD Dose-Skipping/Drug Holiday: HR = 1.90 [1.42–

2.55], p < 0.001), in addition to when cell turnover was low (FD Intermittent: HR = 1.58 

[1.18–2.11], p = 0.00213; FD Dose-Skipping/Drug Holiday: HR = 1.60 [1.19–2.14], p = 

0.00175). 

Tumor doubling times were typically much slower than cell culture doubling 

times. To investigate this, we tested reducing all of the division rates and death rates by 

an order of magnitude. This had the effect of exposing the cells to an order of magnitude 

more drug before they could divide. None of the simulated tumors in any of the protocols 

progressed within the 200 days, used in our other experiments, but eventually they all 

progressed (Appendix B: Supplementary Figure S3). Under these much slower kinetics, 

most of the adaptive therapy protocols were not statistically significantly better than 

standard therapy, in fact, DM Cocktail was worse. Only FD Dose-Skipping/Drug Holiday 

performed better than standard therapy (Appendix B: Supplementary Table S9). 

Cell Replacement Increases the TTP with Adaptive Therapy 

We investigated the role of spatial structure and the ability of cells to replace their 

neighbors (Fig. 3.7 and Appendix B: Supplementary Table S4). If cells could not 

replace their neighbors, then they had to wait for a neighbor to die before they could 

reproduce in a crowded area of the tumor. Treatment worked better the more readily cells 

could replace their neighbors for all protocols (p < 0.01 and HR ≤ 0.83), with only two 

exceptions: for DM Ping-Pong Alternate Every Cycle, there was no significant difference 

between 50% and 100% replacement (p = 0.275), and for DM Ping-Pong on Progression, 
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that difference was only modestly significant, though still with a large effect size (HR = 

0.40 [0.17–0.92], p= 0.031). Dose modulation AT worked better than ST (p < 0.001 and 

HR ≤ 0.32 in all cases) and there was little difference between ST and FD protocols (see 

Appendix B: Supplementary Table S4 for hazard ratios, p-values, and Cox regression p-

values for all comparisons). For the DM Cocktail protocol, the degree of replacement 

among the cells had a particularly strong effect (Fig. 3.7A), with the hazard ratio = 0.08 

[0.04–0.16], p < 0.001 when comparing 0% vs. 50% replacement, and the hazard ratio = 

0.05 [0.02–0.15], p < 0.001 when comparing 50% vs. 100% replacement. 
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Figure 3.7: Effect of replacement on outcome of adaptive therapy with 2 drugs. The 
panels show the comparison of adaptive therapy (AT) versus standard treatment (ST) as 
the replacement parameter is varied for (A) DM Cocktail Tandem, (B) DM Ping-Pong 
Alternate Every Cycle, (C) DM Ping-Pong on Progression, (D) FD Dose-Skipping/Drug-
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Holiday, (E) FD Intermittent. The replacement parameter determined the probability that 
a dividing cell with no empty neighbors could replace a neighbor. We tested the two 
extremes in which a cell can always replace a neighbor (Rep 100%), representing direct 
cell competition, cancer cell cannibalism, or cell death due to crowding. We represented 
complete contact inhibition when a cell can never replace a neighbor (Rep 0%). We also 
tested an intermediate value (our default) in which a dividing cell can replace its neighbor 
50% of the time (Rep 50%), representing some cell death due to crowding and other 
forms of competition, but also some degree of contact inhibition. 
 

Adaptive Therapy Works Better If Smaller Changes in the Tumor Burden Trigger a 

Change in Dose 

We investigated the role of the Delta Tumor parameter that determined how much 

the tumor burden must change before we changed the dose in the dose modulation 

protocols, or skipped a dose in the FD protocols (Fig. 3.8, Appendix B: Supplementary 

Figure S1, and Appendix B: Supplementary Table S5). The dose modulation protocols 

were better than ST for all values of Delta Tumor (HR < 0.57 and p < 0.001). Treatment 

with DM Cocktail and Delta Tumor = 5%, achieved 100% survival and we observed no 

cases of progression. However, increasing the Delta Tumor value, that is, Delta Tumor = 

40%, resulted in a TTP that was either significantly better than (DM Ping-Pong Alternate 

Every Cycle: HR = 0.67 [0.50–0.90], p = 0.00795), or not significantly different (DM 

Cocktail: p = 0.166; DM Ping-Pong on Progression: p = 0.545) from ST. 
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Figure 3.8: Delta Tumor is an important parameter determining outcome of dose 
modulation (DM) adaptive therapy. The panels show the comparison of adaptive therapy 
(AT) versus standard treatment (ST) as the Delta Tumor parameter is varied for (A) DM 
Cocktail Tandem, (B) DM Ping-Pong Alternate Every Cycle, (C) DM Ping-Pong on 
Progression. For the dose modulation (DM) protocols, Delta Tumor is the tumor 
measurement parameter specifying a relative value by which the tumor burden must 
change, compared with the last time it was measured, in order to trigger a change in drug 
dosage. 
 

For the dose modulation protocols, TTP was progressively worse (HR ≥ 1.97 

and p ≤ 0.00571) as we increased the value of the Delta Tumor from 5 to 10 to 20%, with 

two exceptions where these effects were not significant: increasing Delta Tumor from 5% 
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0.356). As there was no recorded case of progression for DM Cocktail with Delta Tumor 

= 5% we were unable to calculate a hazard ratio but the TTP was clearly better for Delta 

Tumor = 5% versus 10% (Fig. 3.8A, Chi Sq. p < 0.001). 

Time to progression for treatment with the fixed dose protocols (FD Dose-Skipping/Drug 

Holiday and FD Intermittent) was either not significantly different or worse than 

treatment with ST (Appendix B: Supplementary Figure S1A,B, Appendix B: 

Supplementary Table S5). For FD Dose-Skipping/Drug Holiday, increasing Delta 

Tumor from 5% to 10% (p = 0.484), 10% to 20% (p = 0.254), or 20% to 40% (p = 0.51), 

did not result in any significant difference in TTP. For FD Intermittent, we stopped 

treatment when the tumor burden fell below the given percentage value relative to the 

initial tumor burden, not the last measure of tumor burden. Therefore, we investigated 

stopping treatment when the tumor shrank to 50% of the initial baseline for treatment 

initiation (the default), in addition to 80%, 90%, or 95% of the initial baseline for 

treatment initiation (Appendix B: Supplementary Figure S1B), though changing this 

parameter had no significant effects on TTP (50% vs. 80 [p = 0.0767], 80% vs. 90% [p = 

0.13], and 90% vs. 95% [p = 0.432]). 

For Dose Modulation Regimens, the Amount by Which the Drug Dose Is Changed 

(Delta Dose) Has Little Effect on the Success of Adaptive Therapy 

For the dose modulation protocols, we investigated the effect of a range of Delta 

Dose values (25%, 50%, or 75%) which determined how much we changed the dose 

relative to the last application of the drug, when the tumor burden changed by Delta 

Tumor (Fig. 3.9 and Appendix B: Supplementary Table S6). In every case the TTP was 

improved relative to ST, that is, for Delta Dose = 25% (DM Ping-Pong Alternate: HR = 



   93 

0.37 [0.26–0.53], p < 0.001; DM Ping-Pong on Progression: HR = 0.13 [0.08–0.23], p < 

0.001), Delta Dose = 50% (DM Cocktail: HR = 0.34 [0.24–0.47], p < 0.001; DM Ping-

Pong Alternate: HR = 0.46 [0.33–0.64], p < 0.001; DM Ping-Pong on Progression: HR = 

0.15 [0.09–0.25], p < 0.001), and Delta Dose = 75% (DM Cocktail: HR = 0.40 [0.29–

0.54], p < 0.001; DM Ping-Pong Alternate: HR = 0.39 [0.27–0.55], p < 0.001; DM Ping-

Pong on Progression: HR = 0.29 [0.20–0.44], p < 0.001), with the exception of DM 

Cocktail, where dose adjustment by Delta Dose = 25% had no significant effect relative 

to treatment with ST (p = 0.355). For both DM Ping-Pong Alternate and DM Ping-Pong 

on Progression, increasing the value of Delta Dose from 25 to 50% (DM Ping-Pong 

Alternate: p = 0.306; DM Ping-Pong on Progression: p = 0.754), or 50 to 75% (DM Ping-

Pong Alternate: p = 0.451; DM Ping-Pong on Progression: p = 0.0795), did not have a 

significant effect on TTP. However, for DM Cocktail, changing the dose by 50% was 

better than changing it by either 25% or 75% (increasing Delta Tumor from 25 to 50%: 

HR = 0.09 [0.04–0.18], p < 0.001; increasing Delta Tumor from 50 to 75%: HR = 1.74 

[1.13–2.67], p = 0.0112). These results suggest that the success of adaptive therapy is not 

very sensitive to change in the Delta Dose parameter, as long as it is kept above a certain 

threshold for DM Cocktail, where it pays to not be too conservative with this parameter. 
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Figure 3.9: Role of the Delta Dose parameter for dose modulation (DM) adaptive therapy 
protocols. The panels show the comparison of adaptive therapy (AT) versus standard 
treatment (ST) as the Delta Dose parameter is varied for (A) DM Cocktail Tandem, (B) 
DM Ping-Pong Alternate Every Cycle, (C) DM Ping-Pong on Progression. Delta Dose is 
the percentage by which the drug dose is changed (increased or decreased) relative to the 
last time the same drug was administered. Default value is 50% for both drugs. 
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Supplementary Table S7). We note that, for the dose modulation protocols, relative to 

ST, it was better to stop dosing when we could still detect the tumor, e.g., at a threshold 

of 50% (DM Cocktail: HR = 0.25 [0.18–0.35], p < 0.001; DM Ping-Pong Alternate: HR 

= 0.26 [0.18–0.38], p < 0.001; DM Ping-Pong on Progression: HR = 0.13 [0.08–

0.22], p < 0.001), or 80% (DM Cocktail: HR = 0.19 [0.13–0.26], p < 0.001; DM Ping-

Pong Alternate: HR = 0.19 [0.13–0.28], p < 0.001; DM Ping-Pong on Progression: HR = 

0.16 [0.11–0.25], p < 0.001) of the initial tumor burden. This was in contrast to waiting 

until the tumor had shrunk to very low or undetectable levels (as is traditional in 

oncology), here represented as 10% of the initial tumor burden, in which case the TTP 

was either worse (DM Cocktail: HR = 1.95 [1.45–2.61], p < 0.001; DM Ping-Pong on 

Progression: HR = 1.38 [1.03–1.84], p = 0.0311) or not significantly different than ST 

(DM Ping-Pong Alternate: p = 0.277). TTP was improved for every DM protocol when 

we moved from a 10% to a 50% threshold of the initial tumor burden for stopping 

treatment (DM Cocktail: HR = 0.05 [0.02–0.11], p < 0.001; DM Ping-Pong Alternate: 

HR = 0.25 [0.15–0.40], p < 0.001; DM Ping-Pong on Progression: HR = 0.13 [0.07–

0.24], p < 0.001). However, there was no significant difference in the results comparing a 

50% versus 80% threshold (DM Cocktail: p = 0.0966; DM Ping-Pong Alternate: p = 

0.31; DM Ping-Pong on Progression: p = 0.76). Note that the dose modulation protocols 

did not work well when waiting for the tumor to shrink below 10% of its initial size 

before stopping dosing. This implies that these treatment vacations are a crucial aspect of 

the dose modulation protocols. 
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Figure 3.10: The effect of stopping treatment when the tumor burden falls below some 
threshold. The panels show the comparison of adaptive therapy (AT) versus standard 
treatment (ST) as the treatment vacation parameter is varied for (A) DM Cocktail 
Tandem, (B) DM Ping-Pong Alternate Every Cycle, (C) DM Ping-Pong on Progression. 
In the DM protocols, doses are adjusted as the tumor burden changes. However, a 
treatment vacation is triggered when the tumor burden falls below a certain threshold, 
resulting in no drug being administered for the treatment cycle, and treatment is resumed 
if the tumor regrows above that threshold. In the clinic this is often performed when the 
tumor is no longer detectable. Default value of the treatment vacation parameter for the 
DM protocols was 50% of the value at which therapy was initiated 
(TreatVacAt50%OfStart), that is, 25% of the carrying capacity. No statistically 
significant improvement in TTP was observed between 50% and 80% but 10% vs. 50% 
was statistically significant for all DM protocols, suggesting that we should stop dosing 
altogether as soon as is feasible, and not wait for the tumor to disappear. 
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Discussion 

Design of multi-drug adaptive therapy protocols is challenging, as the number of 

parameters and potential protocols increases exponentially with each additional drug. 

However, drug combinations may afford more opportunities for better tumor control, 

relative to any single drug. Here, we tackled the challenge of designing multi-drug 

adaptive therapy protocols by investigating the simplest case of multi-drug adaptive 

therapy, that is, treatment with two drugs. Questions abound as to whether the treatment 

protocol should be sequential or concomitant (J. B. West et al. 2019a). We note that the 

only adaptive therapy clinical trial published to date used a fixed dose of a single drug 

(combined with a backbone drug held on continuously) and the published mouse 

experiments also used a single drug (Gatenby, Silva, Gillies, and Roy Frieden 2009; 

Enriquez-Navas et al. 2016). We simulated five different multi-drug adaptive therapy 

protocols with two drugs, and a standard-of-care standard treatment (ST) at maximum 

tolerated dose, under various scenarios of tumor dynamics, with the goal of finding the 

most promising treatment protocols. 

We showed that, relative to standard of care standard treatment (ST) at maximum 

tolerated dose, for the default values of the parameters tested, treatment with the DM 

protocols increased time to progression, but the FD protocols were worse than ST (Fig. 

3.4A and Appendix B: Supplementary Table S1). These results were consistent with 

preclinical adaptive therapy experiments in mice with breast cancer, where mice treated 

with a single drug regimen of paclitaxel, as per the dose modulation adaptive therapy 

(AT-1) algorithm, improved TTP in mice, while treatment as per the FD Dose-Skipping 

(AT-2) algorithm did not, and in fact appeared to be worse than standard therapy (STD) 
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for the ER+ model (Enriquez-Navas et al. 2016). In contrast, in the prostate clinical trial 

of adaptive therapy, the FD Intermittent protocol worked better than ST (Zhang et al. 

2017). Importantly, this trial was in a relatively slow growing cancer (metastatic, castrate 

resistant, prostate cancer), a situation that we did not model. The dose modulation 

protocol, that our model suggests would have worked even better, has not been tested in 

any clinical trial. 

Among the dose-modulation protocols, the ping-pong protocols often resulted in 

long term control of the tumors (Fig. 3.4A), and used only 34.0% (drug 1) and 39.8% 

(drug 2) for DM Ping-Pong on Progression, 32.6% (drug 1) and 66.5% (drug 2) of the 

amount of drug used in standard treatment, whereas the tumors eventually progressed 

under the Cocktail Tandem protocol, in most cases (using only 52.1% (drug 1) and 52.1% 

(drug 2) of the drug used in standard treatment, over the same amount of time). This was 

probably because the ping-pong protocols only apply one drug at a time, so there was no 

direct selection for doubly resistant cells. This meant that we continued to control the 

tumor by switching drugs. In contrast, the Cocktail Tandem protocol always applied both 

drugs at the same time, favoring doubly resistant cells, and eventually leading to 

progression. 

Adaptive therapy depends on the sensitive cells being able to out-compete the 

resistant cells, in the absence of drug, or in the presence of low doses of drug. In our 

model, this fitness differential had to be more than three-fold for the DM protocols, and a 

five-fold difference was not sufficient to make the FD protocols work (Fig. 

3.5 and Appendix B: Supplementary Table S2). It is possible that there is some level of 

fitness cost of resistance at which fixed dose protocols will work better than ST. It is 
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worth noting that, we and others have shown that when using models that ignore the 

possibility of a return to sensitivity, then FD adaptive protocols with single drugs do 

work better than ST  (Gallaher et al. 2018; Viossat and Noble 2021; Strobl et al. 2021; 

Williams et al. 2018). Whether resistance generally incurs a fitness cost, and what is the 

magnitude of the fitness penalty incurred by the resistant cells, are open questions. In one 

study, MCF7 cells resistant to Doxorubicin (MCF7Dox) had a doubling time of 60 h, 

while sensitive MCF7 (MCF7) cells had a doubling time of 40 h (Gallaher et al. 2018). In 

Lotka–Volterra competition models of adaptive therapy, it is common practice to assign 

competition coefficients based on the assumption that resistance comes at a fitness cost 

(Zhang et al. 2017; J. B. West et al. 2019a). While the fitness costs we modeled were 

high relative to what is typically observed in organismal evolution, they were not 

unreasonable given observations in clonal evolution of cancer (Williams et al. 2018). 

Furthermore, Gatenby et al. presented calculations of the competition coefficients that 

best fit the data from the clinical trial (Zhang et al. 2017) and found that the cells resistant 

to abiraterone had a 7X lower fitness than the sensitive cells. In contrast, even in our high 

fitness cost case where the doubly resistant cells incurred a 5X fitness cost, the singly 

resistant cells only incurred a 1.7X fitness cost compared with the sensitive cells. 

The amount of cell turnover had little effect on the success of adaptive therapy, 

except in DM Cocktail Tandem which performed better at high levels of turnover (Fig. 

3.6 and Appendix B: Supplementary Table S3). In our previous modeling work, we 

underscored the importance of turnover in agent-based and mathematical models 

(Gallaher, Brown, and Anderson 2019; Strobl et al. 2021). Increased turnover can 

improve adaptive therapy if there is a fitness cost of resistance, but higher fitness costs do 
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not necessarily translate to an improved outcome in the absence of increased turnover 

(Strobl et al. 2021). However, this previous work only modeled a single drug and both the 

cost of resistance and cell turnover changed to fit the dynamics of the clinical data. This 

highlighted the possibility that these effects can occur simultaneously, and, in fact, trade 

off with one another. Here, we tried to disentangle the effects of fitness cost from 

turnover, by ensuring that the doubling time of each cell type was identical for the two 

scenarios (low and high turnover). In general, our model predicted that the fitness cost of 

resistance appeared more important than the degree of turnover (Fig. 3.5 and Fig. 3.6). 

We also found that the frequency of dosing relative to the cell doubling times could have 

dramatic effects on the success of all of the therapies (Appendix B: Supplementary 

Figure S3). 

One of the most important parameters in the model was the probability that a 

dividing cell may replace its neighbor. In reality, it is not clear if a dividing cell can 

replace a neighbor. In fact, we do not know how the local density of a cancer cell affects 

its reproduction and survival. Stem cells are able to replace each other in a stem-cell 

niche (Vermeulen and Snippert 2014; Vermeulen et al. 2013), and there is evidence of 

cancer cell cannibalism (entosis) in which one cell kills its neighbor (Durgan and Florey 

2018; Fais and Overholtzer 2018; Hamann et al. 2017). Because it is an open question 

regarding how cancer cells behave when there is no adjacent space available to divide, 

we introduced a replacement parameter in the model to represent a range of possibilities. 

We showed that it was possible to achieve improved TTP with dose modulation (DM) 

adaptive therapy protocols, relative to ST, regardless of whether a dividing cancer cell 

was able to replace a neighboring cell (Fig. 3.7 and Appendix B: Supplementary Table 
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S4), however dose modulation protocols worked substantially better the more that cells 

could replace their neighbors, which is a particular type of cell turnover. 

Our results suggest that if we are to manage cancers based on their response to our 

therapies (i.e., Delta Tumor), we should be as sensitive as possible to changes in tumor 

burden, and adjust our therapy accordingly (Fig. 3.8). In practice, this may be limited by 

the error in measurements of tumor burden (and the frequency with which we can 

measure it). 

How much to change the dose when the tumor grows or shrinks (Delta Dose) is a 

key parameter for DM protocols. We found, for a wide range of Delta Dose values (25%, 

50%, or 75%) that dose modulation protocols generally resulted in an improvement in 

TTP relative to ST (Fig. 3.9 and Appendix B: Supplementary Table S6), and that there 

was often little difference in outcomes between the different values of Delta Dose, except 

in a few cases when Delta Dose was too low. These results also suggest we should not be 

too conservative about changing the dosages when the tumor burden changes. This is 

consistent with the results of a previous model using single-drug adaptive therapy, in 

which a dose modulation regimen with a Delta Tumor = 10% and Delta Dose = 50%, 

resulted in improved treatment outcome relative to continuous treatment at maximum 

tolerated dose (which we call standard treatment) (Gallaher et al. 2018). In that study, the 

investigators compared Delta Tumor = 5% and Delta Dose = 25% versus Delta Tumor = 

10% and Delta Dose = 50%, and found that the latter protocol worked better (Gallaher et 

al. 2018). Our model suggested that Delta Tumor = 5% and Delta Dose = 50% would be 

even better. 
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Interestingly, we found that, for DM protocols to work, it was helpful for frequent 

treatment vacations to be incorporated in the protocols. Waiting too long to start a 

treatment vacation, e.g., waiting until the tumor burden fell to 10% of its initial level, 

resulted in a TTP that was either worse or not significantly different than ST (Fig. 

3.10 and Appendix B: Supplementary Table S7). We found good results when we 

stopped dosing if the tumor only shrank to 80% of its initial level. That would not even 

qualify as a partial response by RECIST 1.1 criteria (Gallaher et al. 2018; Schwartz et al. 

2016). This result is consistent with the current understanding that, the less drug dose we 

administer to a tumor, the less we select for therapeutic resistance. 

Our work has some limitations. We did not explore the role of angiogenesis; 

three-dimensional tissue architecture composed of cancer cells, normal cells, immune 

cells and other stromal cells in the microenvironment of a tumor. We attempted to 

capture what happens in individual cross-sections of the tumor, which we assumed to be 

adequately perfused with capillaries, such that the drug diffusion and delivery was not 

limiting, and that the drug delivery was not limited by constraints imposed by tumor 

architecture and pressure inside the tumor. We also implicitly assumed an ability to 

transition freely between the four cell types, albeit driven by mutation or epigenetic 

modification (Brown et al. 2014; Garcia-Martinez et al. 2021), and while it does make the 

tumor more difficult to treat it also means that any cell that can divide can become doubly 

or singly resistant or sensitive with a single division. We have previously looked at the 

role of plasticity in adaptive therapy using a combination of in vitro/in vivo and 

mathematical modeling (Smalley et al. 2019), in addition to clinical data (Kim et al. 

2021). In both cases, a key parameter was the switching rate between the cell types. Here, 
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we used an unrealistically high mutation rate to compensate for an unrealistically low cell 

population size. We also used a computationally efficient abstraction of cell crowding 

dynamics and explored a range of parameters that modeled different possibilities for 

those dynamics. Future efforts might consider a range of different mutation rates, extend 

our model to three dimensions, model cells pushing neighbors aside, include additional 

hallmarks of cancer, and incorporate a more realistic representation of blood vessel 

dynamics, in addition to nutrient and drug delivery. 

Importantly, while most models predict recurrence of the tumor due to resistant 

cells ultimately taking over in the tumor, our results suggest it is possible to maintain 

indefinite control over the tumor, lending support to the idea that it is possible to convert 

cancer from an acute disease that inevitably leads to death to a chronic disease that can be 

tolerated. 

Conclusions 

Our results suggested that, when combining drugs in adaptive therapies, dose 

modulation protocols were much better than fixed dose protocols, and ping-pong 

protocols were probably better than applying multiple drugs at the same time. Applying 

one drug at a time and switching when the tumor grew (DM Ping-Pong on Progression) 

worked best across many parameter variations, though adjusting the dose of both drugs at 

the same time could also work well (DM Cocktail Tandem), especially if we had a very 

sensitive measure of tumor burden (Fig. 3.8A). One attractive feature of the ping-pong 

protocols is that only one drug is applied at a time, which may help to reduce toxicity and 

selection for multidrug resistance, compared with combination therapies. Furthermore, all 

adaptive therapy protocols reduce the amount of drug used over the same amount of time 
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as standard therapy. However, if adaptive therapy is successful in controlling cancer 

indefinitely, the total amount of drug used will eventually exceed an MTD protocol that 

could not control a cancer. Dose modulation protocols are particularly effective when cell 

competition is more intense, and when dosing of the tumor is kept to a minimum. 

Furthermore, in our model, adaptive therapy worked better than standard treatment only 

when there was a relatively large fitness cost of resistance. This suggests that developing 

good biomarkers for measuring cell turnover, clonal competition for space, and the 

fitness cost of resistance, in addition to intra-tumor heterogeneity as a proxy for the 

likelihood that resistant cells are already present at diagnosis, will be important for 

distinguishing which cancers should be treated with adaptive therapy in the future. These 

predictions should be tested in pre-clinical models, and if supported there, further tested 

in clinical trials. 
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CHAPTER 4 

IN SILICO INVESTIGATIONS OF ADAPTIVE THERAPY USING TWO 

CYTOTOXIC OR TWO CYTOSTATIC DRUGS 

Abstract 

While the dose modulation (DM) protocols (DM Cocktail Tandem, DM Ping-

Pong Alternate Every Cycle, DM Ping-Pong on Progression) involves adjusting drug 

dosages when the tumor burden changes, the fixed-dose (FD) protocols involves 

administering a specific, constant dosage of the drug only when the tumor is growing 

(Dose-Skipping) or when the absolute tumor burden is above the baseline level until it 

reduces to a certain percentage of the baseline (Intermittent). Moreover, two different 

drugs can be administered  simultaneously (cocktail), or the drugs can be switched such 

that only one drug is applied at a given time (ping-pong), either every cycle (ping-pong 

alternate every cycle) or when the tumor grows (ping-pong on progression). The dose 

modulation protocols work well when treated with two cytotoxic drugs, however, the 

ping-pong protocols (DM Ping-Pong Alternate Every Cycle, DM Ping-Pong on 

Progression, FD Ping-Pong Intermittent) work well when treated with two cytostatic 

drugs. In general, adaptive therapy, using either two cytotoxic or two cytostatic drugs 

works best under conditions of high competition, such as high fitness cost, high 

replacement rates, and high turnover, although treatment using two cytostatic drugs 

works best under low turnover in many cases. Adaptive therapy works best when drug 

dosages are changed as soon as a change in tumor burden is detected, and it is best to 

pause treatment sooner rather than later when the tumor is shrinking. Adaptive therapy 
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works best when an intermediate level of drug dosage is used, and both treatment with 

too little or too much drug leads to  poor survival outcome. 

Introduction 

In chapter 3, I have investigated multi-drug adaptive therapy protocols for 

treatment using two drugs. Because the drugs investigated worked by killing the cells, the 

anti-cancer drugs would be expected to have a cytotoxic mechanism of action, killing 

cells directly. Cytostatic drugs, on the other hand, work by inhibiting cellular division. 

An interesting question that arises is, would the survival outcome be any different for 

adaptive therapy using two cytostatic drugs? In this chapter, I have undertaken to answer 

this question by investigating seven different adaptive therapy protocols and standard 

treatment at maximum tolerated dose, for treatment using either two cytotoxic drugs, or 

two cytostatic drugs, under a wide variety of different scenarios of cell kinetics and 

treatment settings. 

Materials and Methods 

I have used the same extensions to the original model (Thomas et al. 2022) that 

are described in Chapter 2, including: the definition of progression (see Observation), the 

implementation of cytostatic drugs (see Cell Death and Cell Division). However, here we 

have 4 cell types, as in Chapter 3, with doubly sensitive cells, cells resistant to one drug 

but not the other, and doubly resistant cells. The changes to the original model (Thomas 

et al. 2022) are as follows: 

In section 2.4.11 (Observation), the change that have been made to the definition 

of progression, as described in Chapter 2 (see observation), also applies here. 

 



   114 

In section 2.7.1 (Cell Death), for treatment with two cytotoxic drugs, nothing has 

changed. For treatment using two cytostatic drugs, the equation for probability of cell 

death is as follows: Probability of cell death for a particular cell type per 

hour=background death probability of that particular cell type per hour. 

In section 2.7.2 (Cell Division), for treatment with two cytotoxic drugs, nothing 

has changed. For treatment with two cytostatic drugs, probability of cell division per 

hour=background division probability per hour-S1*[Drug1]*𝚿1- S2*[Drug2]*𝚿2, where 

S1 and S2 are the binary indicator variables for the cell’s sensitivity to drugs 1 and 2, 

respectively, such that a value of 1 indicates sensitivity, while a value of 0 indicates 

resistance to the particular drug. [Drug1] and [Drug 2] being the concentrations of those 

drugs (non-negative real values), and 𝚿1 and 𝚿2 being the drug potency of those drugs 

(non-negative real values), quantified as the probability of inhibition in cell division per 

unit drug concentration per hour. 

In section 2.7.6 (Drug Protocols), I investigated two additional treatment 

protocols—FD Ping-Pong Dose-Skipping and FD Ping-Pong Intermittent—as well as 

changed the nomenclature as follows: 

FD Cocktail Dose-Skipping: It is identical to FD Dose-Skipping/Drug Holiday, 

which administers both the drugs, Drug1 and 2, in a cocktail formulation. 

FD Ping-Pong Dose-Skipping: It is similar to FD Cocktail Dose-Skipping, other 

than Drug 1 and Drug 2 are being switched every treatment cycle, with the response of a 

particular drug being evaluated based on the how the tumor responded to that same drug 

last time it was administered.  
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FD Cocktail Intermittent: It is identical to FD Intermittent, except that Drugs 1 

and 2 are administered as a cocktail formulation at 100% of the MTD (previously I used 

75% of the MTD). 

FD Ping-Pong Intermittent: It is similar to FD Cocktail Intermittent, other than the 

drugs are switched every time the tumor climbs back to 100% or more of the baseline 

tumor burden at which treatment was initiated. 

Results 

Cytotoxic and Cytostatic Therapies 

 

Figure 4.1: Adaptive therapy using two cytotoxic or two cytostatic drugs. Single-drug 
adaptive therapy protocols comparing  standard treatment (ST) versus three different 
adaptive therapy protocols, dose modulation, dose-skipping, and intermittent using a 
single cytotoxic drug (Fig. 4.1A), or a single cytostatic drug (Fig. 4.1B). 
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Progression), as well as FD Ping-Pong Dose-Skipping with a relatively low effect size as 

measured by the hazard ratio work well (Fig. 4.1A, Table 4.1). For treatment using 2 

cytostatic drugs, all the ping-pong protocols work well (DM Ping-Pong Alternate Every 

Cycle, DM Ping-Pong on Progression, FD Ping-Pong Intermittent) except the dose-

skipping (Fig. 4.1B, Table 4.1). 

Table 4.1: Adaptive therapy using two cytotoxic or two cytostatic 
drugs 

Experimental 
Condition 

Comparison 
Condition 

Hazard 
Ratio 

95% CI p-value 

DM Cocktail Tandem (cytotoxic) 

Default Standard 
Treatment 

0.27 0.19-0.39 <0.001 

DM Ping-Pong Alternated Every Cycle (cytotoxic) 

Default Standard 
Treatment 

0.21 0.13-0.32 <0.001 

DM Ping-Pong on Progression (cytotoxic) 

Default Standard 
Treatment 

0.13 0.08-0.21 <0.001 

FD Cocktail Dose-Skipping (cytotoxic) 

Default Standard 
Treatment 

1.8 1.4-2.5 <0.001 

FD Ping-Pong Dose-Skipping (cytotoxic) 

Default Standard 
Treatment 

0.56 0.42-0.74 <0.001 

FD Cocktail Intermittent (cytotoxic) 

Default Standard 
Treatment 

1.6 1.2-2.1 <0.01 
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FD Ping-Pong Intermittent (cytotoxic) 

Default Standard 
Treatment 

1.9 1.4-2.5 <0.001 

DM Cocktail Tandem (cytostatic) 

Default Standard 
Treatment 

  
Not 
Significant 

DM Ping-Pong Alternated Every Cycle (cytostatic) 

Default Standard 
Treatment 

0.006 0.001-0.043 <0.001 

DM Ping-Pong on Progression (cytostatic) 

Default Standard 
Treatment 

0.01 0.003-0.048 <0.001 

FD Cocktail Dose-Skipping (cytostatic) 

Default Standard 
Treatment 

14.7 10.0-21.6 <0.001 

FD Ping-Pong Dose-Skipping (cytostatic) 

Default Standard 
Treatment 

5.3 3.9-7.2 <0.001 

FD Cocktail Intermittent (cytostatic) 

Default Standard 
Treatment 

1.4 1.0-1.8 <0.05 

FD Ping-Pong Intermittent (cytostatic) 

Default Standard 
Treatment 

~0 
  

The Effect of Fitness Costs of Resistance 
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Figure 4.2. Effect of fitness cost parameter on the outcome of adaptive therapy using two 
cytotoxic or two cytostatic drugs. Survival outcome for treatment as per the dose 
modulation protocol (Fig. 4.2A, Fig. 4.2B), dose-skipping (Fig. 4.2C, Fig. 4.2D), or 
intermittent (Fig. 4.2E, Fig. 4.2F) under fitness cost of 1.7-fold, 2.5-fold, 5-fold, or 7-fold 
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relative to standard treatment for treatment using either a single cytotoxic (Fig. 4.2A, 
4.2C, 4.2E), or a single cytostatic drug (Fig. 4.2B, 4.2D, 4.2F). 
 

For treatment using two cytotoxic drugs, all the dose-modulation protocols (DM 

Cocktail Tandem, DM Ping-Pong Alternate Every Cycle, DM Ping-Pong on Progression) 

work well under conditions of 5-fold or 7-fold fitness cost, and some work well even 

under conditions of 1.7-fold and 2.5-fold fitness cost, improving survival outcome 

relative to standard treatment (Fig. 4.2, Table 4.2); FD Ping-Pong works well under all 

fitness cost values (1.7-fold, 2.5-fold, 5-fold, 7-fold) tested (Table 4.2). For treatment 

using two cytostatic drugs, the ping-pong protocols (DM Ping-Pong Alternate Every 

Cycle, DM Ping-Pong on Progression, FD Ping-Pong Intermittent) work well under all 

values of fitness cost (Table 4.2); two exceptions can be noted to this general trend: FD 

Dose-Skipping under 5-fold or 7-fold fitness cost. In general, for treatment with either 

two cytotoxic or two cytostatic drugs, for the protocols that work, higher fitness cost 

values lead to improved survival outcome relative to low fitness cost as reflected in 

relatively low hazard ratios under conditions of higher fitness cost (Table 4.2). 

Table 4.2: Effect of fitness cost parameter on the outcome of 
adaptive therapy using two cytotoxic or two cytostatic drugs 

Experimental 
Condition 

Comparison 
Condition 

Hazard 
Ratio 

95% CI p-value 

DM Cocktail Tandem (cytotoxic) 

1.7-fold 
fitness cost 

Standard 
Treatment 

0.62 0.46-0.82 <0.01 

2.5-fold 
fitness cost 

Standard 
Treatment 

  
Not 
Significant 
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5-fold fitness 
cost 

Standard 
Treatment 

0.27 0.19-0.39 <0.001 

7-fold fitness 
cost 

Standard 
Treatment 

0.02 0.005-
0.075 

<0.001 

DM Ping-Pong Alternated Every Cycle (cytotoxic) 

1.7-fold 
fitness cost 

Standard 
Treatment 

  
Not 
Significant 

2.5-fold 
fitness cost 

Standard 
Treatment 

  
Not 
Significant 

5-fold fitness 
cost 

Standard 
Treatment 

0.21 0.13-0.32 <0.001 

7-fold fitness 
cost 

Standard 
Treatment 

0.15 0.09-0.26 <0.001 

DM Ping-Pong on Progression (cytotoxic) 

1.7-fold 
fitness cost 

Standard 
Treatment 

0.57 0.43-0.76 <0.001 

2.5-fold 
fitness cost 

Standard 
Treatment 

  
Not 
Significant 

5-fold fitness 
cost 

Standard 
Treatment 

0.13 0.08-0.21 <0.001 

7-fold fitness 
cost 

Standard 
Treatment 

0.14 0.08-0.24 <0.001 

FD Cocktail Dose-Skipping (cytotoxic) 

1.7-fold 
fitness cost 

Standard 
Treatment 

0.23 0.17-0.32 <0.001 

2.5-fold 
fitness cost 

Standard 
Treatment 

0.67 0.50-0.90 <0.01 

5-fold fitness 
cost 

Standard 
Treatment 

1.8 1.4-2.5 <0.001 

7-fold fitness 
cost 

Standard 
Treatment 

1.6 1.2-2.2 <0.01 
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FD Ping-Pong Dose-Skipping (cytotoxic) 

1.7-fold 
fitness cost 

Standard 
Treatment 

0.18 0.13-0.25 <0.001 

2.5-fold 
fitness cost 

Standard 
Treatment 

0.45 0.34-0.60 <0.001 

5-fold fitness 
cost 

Standard 
Treatment 

0.56 0.42-0.74 <0.001 

7-fold fitness 
cost 

Standard 
Treatment 

0.37 0.26-0.54 <0.001 

FD Cocktail Intermittent (cytotoxic) 

1.7-fold 
fitness cost 

Standard 
Treatment 

0.65 0.48-0.87 <0.01 

2.5-fold 
fitness cost 

Standard 
Treatment 

  
Not 
Significant 

5-fold fitness 
cost 

Standard 
Treatment 

1.6 1.2-2.1 <0.01 

7-fold fitness 
cost 

Standard 
Treatment 

2.3 1.7-3.1 <0.001 

FD Ping-Pong Intermittent (cytotoxic) 

1.7-fold 
fitness cost 

Standard 
Treatment 

0.43 0.32-0.57 <0.001 

2.5-fold 
fitness cost 

Standard 
Treatment 

  
Not 
Significant 

5-fold fitness 
cost 

Standard 
Treatment 

1.9 1.4-2.5 <0.001 

7-fold fitness 
cost 

Standard 
Treatment 

1.5 1.1-2.0 <0.05 

DM Cocktail Tandem (cytostatic) 

1.7-fold 
fitness cost 

Standard 
Treatment 

0.50 0.37-0.66 <0.001 
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2.5-fold 
fitness cost 

Standard 
Treatment 

0.47 0.35-0.63 <0.001 

5-fold fitness 
cost 

Standard 
Treatment 

  
Not 
Significant 

7-fold fitness 
cost 

Standard 
Treatment 

  
Not 
Significant 

DM Ping-Pong Alternated Every Cycle (cytostatic) 

1.7-fold 
fitness cost 

Standard 
Treatment 

0.07 0.05-0.11 <0.001 

2.5-fold 
fitness cost 

Standard 
Treatment 

0.08 0.06-0.12 <0.001 

5-fold fitness 
cost 

Standard 
Treatment 

~0 
  

7-fold fitness 
cost 

Standard 
Treatment 

~0 
  

DM Ping-Pong on Progression (cytostatic) 

1.7-fold 
fitness cost 

Standard 
Treatment 

0.06 0.04-0.10 <0.001 

2.5-fold 
fitness cost 

Standard 
Treatment 

0.10 0.07-0.14 <0.001 

5-fold fitness 
cost 

Standard 
Treatment 

0.006 0.001-
0.042 

<0.001 

7-fold fitness 
cost 

Standard 
Treatment 

~0 
  

FD Cocktail Dose-Skipping (cytostatic) 

1.7-fold 
fitness cost 

Standard 
Treatment 

0.22 0.16-0.31 <0.001 

2.5-fold 
fitness cost 

Standard 
Treatment 

4.0 2.9-5.4 <0.001 

5-fold fitness 
cost 

Standard 
Treatment 

13.8 9.4-20.2 <0.001 
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7-fold fitness 
cost 

Standard 
Treatment 

13.8 9.4-20.2 <0.001 

FD Ping-Pong Dose-Skipping (cytostatic) 

1.7-fold 
fitness cost 

Standard 
Treatment 

0.13 0.08-0.18 <0.001 

2.5-fold 
fitness cost 

Standard 
Treatment 

0.35 0.25-0.48 <0.001 

5-fold fitness 
cost 

Standard 
Treatment 

6.9 5.0-9.5 <0.001 

7-fold fitness 
cost 

Standard 
Treatment 

13.6 9.3-19.8 <0.001 

FD Cocktail Intermittent (cytostatic) 

1.7-fold 
fitness cost 

Standard 
Treatment 

0.72 0.54-0.96 <0.05 

2.5-fold 
fitness cost 

Standard 
Treatment 

  
Not 
Significant 

5-fold fitness 
cost 

Standard 
Treatment 

  
Not 
Significant 

7-fold fitness 
cost 

Standard 
Treatment 

1.6 1.2-2.1 <0.01 

FD Ping-Pong Intermittent (cytostatic) 

1.7-fold 
fitness cost 

Standard 
Treatment 

0.07 0.05-0.11 <0.001 

2.5-fold 
fitness cost 

Standard 
Treatment 

0.10 0.07-0.15 <0.001 

5-fold fitness 
cost 

Standard 
Treatment 

0.006 0.001-
0.042 

<0.001 

7-fold fitness 
cost 

Standard 
Treatment 

~0 
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Cell Competition 

 

Figure 4.3. Effect of replacement parameter on outcome of adaptive therapy using two 
cytotoxic or two cytostatic drugs. Treatment as per the dose modulation protocol (Fig. 
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4.3A, 4.3B), dose-skipping protocol (Fig. 4.3C, Fig. 4.4D), or intermittent (Fig. 4.3E,Fig. 
4.3F), relative to standard treatment under conditions of 0%, 50%, or 100% replacement 
using either a single cytotoxic (Fig. 4.3A,4.3C, 4.3E), or a single cytostatic drug (Fig. 
4.3B, Fig. 4.3D, Fig. 4.3F).  
 

For treatment using two cytotoxic drugs, all the dose-modulation protocols (DM 

Cocktail Tandem, DM Ping-Pong Alternate Every Cycle, DM Ping-Pong on progression) 

as well as FD Ping-Pong Dose-Skipping work well under all conditions of replacement 

rate tested, that is, 0%, 50%, or 100% replacement. For treatment with two cytostatic 

drugs, the ping-pong protocols (DM Ping-Pong Alternate Every Cycle, DM Ping-Pong on 

Progression, FD Ping-Pong Intermittent) work well under all conditions of replacement 

tested here, with the exception of FD Ping-Pong Intermittent at 0% replacement where 

the effect was not significant. In general, when a protocol works, for either treatment 

using two cytotoxic or two cytostatic drugs, 100% replacement works best, followed by 

50% replacement, and 0% replacement works worst, as reflected in the relatively low 

hazard ratios for higher replacement rates (Fig. 4.3, Table 4.3). Some protocols work so 

well (such as some of the ping-protocols using two cytostatic drugs) that the percent of 

replacement doesn’t matter as it was able to control the tumor under all conditions (Fig. 

4.3D,4.3F). 

Table 4.3: Effect of replacement parameter on outcome of adaptive 
therapy using two cytotoxic or two cytostatic drugs 

Experimental 
Condition 

Comparison 
Condition 

Hazard 
Ratio 

95% CI p-value 

DM Cocktail Tandem (cytotoxic) 

0% 
replacement 

Standard 
Treatment 

0.64 0.48-0.86 <0.01 
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50% 
replacement 

Standard 
Treatment 

0.37 0.26-0.52 <0.001 

100% 
replacement 

Standard 
Treatment 

0.01 0.004-0.060 <0.001 

DM Ping-Pong Alternated Every Cycle (cytotoxic) 

0% 
replacement 

Standard 
Treatment 

0.13 0.08-0.20 <0.001 

50% 
replacement 

Standard 
Treatment 

0.19 0.12-0.30 <0.001 

100% 
replacement 

Standard 
Treatment 

0.16 0.10-0.25 <0.001 

DM Ping-Pong on Progression (cytotoxic) 

0% 
replacement 

Standard 
Treatment 

0.16 0.11-0.24 <0.001 

50% 
replacement 

Standard 
Treatment 

0.19 0.12-0.30 <0.001 

100% 
replacement 

Standard 
Treatment 

0.09 0.05-0.16 <0.001 

FD Cocktail Dose-Skipping (cytotoxic) 

0% 
replacement 

Standard 
Treatment 

1.9 1.4-2.5 <0.001 

50% 
replacement 

Standard 
Treatment 

1.8 1.3-2.4 <0.001 

100% 
replacement 

Standard 
Treatment 

0.72 0.54-0.97 <0.05 

FD Ping-Pong Dose-Skipping (cytotoxic) 

0% 
replacement 

Standard 
Treatment 

0.70 0.52-0.93 <0.05 

50% 
replacement 

Standard 
Treatment 

0.64 0.48-0.85 <0.01 
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100% 
replacement 

Standard 
Treatment 

0.44 0.31-0.61 <0.001 

FD Cocktail Intermittent (cytotoxic) 

0% 
replacement 

Standard 
Treatment 

1.7 1.2-2.2 <0.001 

50% 
replacement 

Standard 
Treatment 

2.0 1.5-2.7 <0.001 

100% 
replacement 

Standard 
Treatment 

  
Not 
Significant 

FD Ping-Pong Intermittent (cytotoxic) 

0% 
replacement 

Standard 
Treatment 

3.3 2.4-4.4 <0.001 

50% 
replacement 

Standard 
Treatment 

1.8 1.4-2.4 <0.001 

100% 
replacement 

Standard 
Treatment 

  
Not 
Significant 

DM Cocktail Tandem (cytostatic) 

0% 
replacement 

Standard 
Treatment 

0.41 0.30-0.55 <0.001 

50% 
replacement 

Standard 
Treatment 

  
Not 
Significant 

100% 
replacement 

Standard 
Treatment 

  
Not 
Significant 

DM Ping-Pong Alternated Every Cycle (cytostatic) 

0% 
replacement 

Standard 
Treatment 

~0 
  

50% 
replacement 

Standard 
Treatment 

~0 
  

100% 
replacement 

Standard 
Treatment 

~0 
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DM Ping-Pong on Progression (cytostatic) 

0% 
replacement 

Standard 
Treatment 

~0 
  

50% 
replacement 

Standard 
Treatment 

0.02 0.008-0.058 <0.001 

100% 
replacement 

Standard 
Treatment 

~0 
  

FD Cocktail Dose-Skipping (cytostatic) 

0% 
replacement 

Standard 
Treatment 

19.1 12.7-28.7 <0.001 

50% 
replacement 

Standard 
Treatment 

10.5 7.3-15.1 <0.001 

100% 
replacement 

Standard 
Treatment 

19.1 12.7-28.6 <0.001 

FD Ping-Pong Dose-Skipping (cytostatic) 

0% 
replacement 

Standard 
Treatment 

2.8 2.1-3.8 <0.001 

50% 
replacement 

Standard 
Treatment 

3.9 2.9-5.3 <0.001 

100% 
replacement 

Standard 
Treatment 

4.6 3.4-6.2 <0.001 

FD Cocktail Intermittent (cytostatic) 

0% 
replacement 

Standard 
Treatment 

  
Not 
Significant 

50% 
replacement 

Standard 
Treatment 

  
Not 
Significant 

100% 
replacement 

Standard 
Treatment 

  
Not 
Significant 

FD Ping-Pong Intermittent (cytostatic) 

0% 
replacement 

Standard 
Treatment 

  
Not 
Significant 
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50% 
replacement 

Standard 
Treatment 

0.01 0.001-0.039 <0.001 

100% 
replacement 

Standard 
Treatment 

~0 
  

 

Cell Turnover 
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Figure 4.4. Effect of turnover on outcome of adaptive therapy using two cytotoxic or two 
cytostatic drugs. Survival outcome for treatment as per the dose modulation protocol 
(Fig. 4.4A, Fig. 4.4B), dose-skipping protocol (Fig. 4.4C, Fig. 4.4D), or intermittent (Fig. 
4.4E, Fig. 4.4F) using a single cytotoxic (Fig. 4.4A, 4.4C, 4.4E) or a single cytostatic 
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drug (Fig. 4.4B, 4.4D, 4.4F) under conditions of low turnover (LT) or high turnover 
(HT), relative to standard treatment under those conditions. 
 

For treatment using two cytotoxic drugs, the dose modulation protocols (DM 

Cocktail Tandem, DM Ping-Pong Alternate Every Cycle, DM Ping-Pong on 

Progression), as well as FD Ping-Pong Dose-Skipping works well under conditions of 

high turnover, some also working under low turnover conditions. In contrast, for 

treatment using two cytostatic drugs, the ping-pong protocols (DM Ping-Pong Alternate 

Every Cycle, DM Ping-Pong on Progression, FD Ping-Pong Intermittent) works better 

under low turnover conditions; however, as an exception, FD Ping-Pong Dose-Skipping 

works best under high turnover conditions (Fig. 4.4L, 4.4N, Table 4.4). In general, 

cytostatic drugs tend to work better when turnover is low, relative to when turnover is 

high, including the standard treatment at maximum tolerated dose, as indicated by the 

low hazard ratios under low turnover conditions (Table 4.4). For cytotoxic drugs, 

adaptive therapy works better in tumors with high turnover (Fig. 4.4). 

Table 4.4: Effect of turnover on outcome of adaptive therapy using 
two cytotoxic or two cytostatic drugs 

Experimental 
Condition 

Comparison 
Condition 

Hazard 
Ratio 

95% CI p-value 

DM Cocktail Tandem (cytotoxic) 

Low Turnover Standard 
Treatment 

0.34 0.25-0.47 <0.001 

High 
Turnover 

Standard 
Treatment 

0.17 0.10-0.27 <0.001 

DM Ping-Pong Alternated Every Cycle (cytotoxic) 
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Low Turnover Standard 
Treatment 

  
Not 
Significant 

High 
Turnover 

Standard 
Treatment 

0.20 0.12-0.31 <0.001 

DM Ping-Pong on Progression (cytotoxic) 

Low Turnover Standard 
Treatment 

0.67 0.50-0.89 <0.01 

High 
Turnover 

Standard 
Treatment 

0.15 0.09-0.26 <0.001 

FD Cocktail Dose-Skipping (cytotoxic) 

Low Turnover Standard 
Treatment 

1.9 1.4-2.6 <0.001 

High 
Turnover 

Standard 
Treatment 

1.5 1.1-2.0 <0.01 

FD Ping-Pong Dose-Skipping (cytotoxic) 

Low Turnover Standard 
Treatment 

3.4 2.6-4.6 <0.001 

High 
Turnover 

Standard 
Treatment 

0.68 0.51-0.90 <0.01 

FD Cocktail Intermittent (cytotoxic) 

Low Turnover Standard 
Treatment 

1.8 1.4-2.5 <0.001 

High 
Turnover 

Standard 
Treatment 

1.5 1.1-2.0 <0.01 

FD Ping-Pong Intermittent (cytotoxic) 

Low Turnover Standard 
Treatment 

2.0 1.5-2.7 <0.001 

High 
Turnover 

Standard 
Treatment 

1.3 1.0-1.8 <0.05 

DM Cocktail Tandem (cytostatic) 
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Low Turnover Standard 
Treatment 

  
Not 
Significant 

High 
Turnover 

Standard 
Treatment 

  
Not 
Significant 

DM Ping-Pong Alternated Every Cycle (cytostatic) 

Low Turnover Standard 
Treatment 

~0 
  

High 
Turnover 

Standard 
Treatment 

0.02 0.004-0.062 <0.001 

DM Ping-Pong on Progression (cytostatic) 

Low Turnover Standard 
Treatment 

0.02 0.01-0.05 <0.001 

High 
Turnover 

Standard 
Treatment 

0.03 0.01-0.08 <0.001 

FD Cocktail Dose-Skipping (cytostatic) 

Low Turnover Standard 
Treatment 

4.3 3.1-5.9 <0.001 

High 
Turnover 

Standard 
Treatment 

~0 
  

FD Ping-Pong Dose-Skipping (cytostatic) 

Low Turnover Standard 
Treatment 

8.1 5.9-11.2 <0.001 

High 
Turnover 

Standard 
Treatment 

~0 
  

FD Cocktail Intermittent (cytostatic) 

Low Turnover Standard 
Treatment 

  
Not 
Significant 

High 
Turnover 

Standard 
Treatment 

  
Not 
Significant 

FD Ping-Pong Intermittent (cytostatic) 
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Low Turnover Standard 
Treatment 

~0 
  

High 
Turnover 

Standard 
Treatment 

0.57 0.43-0.76 <0.001 

 

 

When to Adjust the Dose of the Drug 

For treatment using two cytotoxic drugs, all the dose-modulation protocols (DM 

Cocktail Tandem, DM Ping-Pong Alternate Every Cycle, DM Ping-Pong on Progression) 

works well when Delta Tumor=5%, 10%, or 20% (Fig. 4.5, Table 4.5). For treatment 

using two cytostatic drugs, the ping-pong protocols (DM Ping-Pong Alternate Every 

Cycle, DM Ping-Pong on Progression) work well under Delta Tumor=5%, 10%, 20%, or 

40% (Fig. 4.5, Table 4.5). In general, for both cytotoxic and cytostatic drugs changing the 

dose when the smallest change in tumor burden is detected works best (e.g., Delta 

Dose=5%) (Fig. 4.5, Table 4.5). In fact, with a delta dose of 5%, for the first time we 

observe that DM Cocktail Tandem with cytostatic drugs works well (Fig. 4.5B, Table 

4.5).  

Table 4.5: Effect of the delta tumor parameter on 
determining the outcome of adaptive therapy using two 
cytotoxic or two cytostatic drugs 

Experimental 
Condition 

Comparison 
Condition 

Hazard 
Ratio 

95% CI p-value 

DM Cocktail Tandem (cytotoxic) 

Delta 
Tumor=5% 

Standard 
Treatment 

~0 
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Delta 
Tumor=10% 

Standard 
Treatment 

0.28 0.20-0.40 <0.001 

Delta 
Tumor=20% 

Standard 
Treatment 

  
Not 
Significant 

Delta 
Tumor=40% 

Standard 
Treatment 

3.4 2.6-4.6 <0.001 

DM Ping-Pong Alternated Every Cycle (cytotoxic) 

Delta 
Tumor=5% 

Standard 
Treatment 

0.18 0.11-0.28 <0.001 

Delta 
Tumor=10% 

Standard 
Treatment 

0.21 0.13-0.32 <0.001 

Delta 
Tumor=20% 

Standard 
Treatment 

0.37 0.26-0.53 <0.001 

Delta 
Tumor=40% 

Standard 
Treatment 

  
Not 
Significant 

DM Ping-Pong on Progression (cytotoxic) 

Delta 
Tumor=5% 

Standard 
Treatment 

0.29 0.21-0.41 <0.001 

Delta 
Tumor=10% 

Standard 
Treatment 

0.13 0.08-0.22 <0.001 

Delta 
Tumor=20% 

Standard 
Treatment 

0.27 0.19-0.40 <0.001 

Delta 
Tumor=40% 

Standard 
Treatment 

1.4 1.0-1.8 <0.05 

FD Cocktail Dose-Skipping (cytotoxic) 

Delta 
Tumor=5% 

Standard 
Treatment 

1.6 1.2-2.1 <0.01 

Delta 
Tumor=10% 

Standard 
Treatment 

1.9 1.4-2.5 <0.001 

Delta 
Tumor=20% 

Standard 
Treatment 

1.7 1.3-2.3 <0.001 
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Delta 
Tumor=40% 

Standard 
Treatment 

2.5 1.9-3.3 <0.001 

FD Ping-Pong Dose-Skipping (cytotoxic) 

Delta 
Tumor=5% 

Standard 
Treatment 

0.55 0.42-0.73 <0.001 

Delta 
Tumor=10% 

Standard 
Treatment 

0.58 0.44-0.77 <0.001 

Delta 
Tumor=20% 

Standard 
Treatment 

0.63 0.48-0.84 <0.01 

Delta 
Tumor=40% 

Standard 
Treatment 

0.70 0.52-0.95 <0.05 

DM Cocktail Tandem (cytostatic) 

Delta 
Tumor=5% 

Standard 
Treatment 

0.22 0.16-0.31 <0.001 

Delta 
Tumor=10% 

Standard 
Treatment 

  
Not 
Significant 

Delta 
Tumor=20% 

Standard 
Treatment 

  
Not 
Significant 

Delta 
Tumor=40% 

Standard 
Treatment 

  
Not 
Significant 

DM Ping-Pong Alternated Every Cycle (cytostatic) 

Delta 
Tumor=5% 

Standard 
Treatment 

0.02 0.01-0.05 <0.001 

Delta 
Tumor=10% 

Standard 
Treatment 

0.01 0.001-0.039 <0.001 

Delta 
Tumor=20% 

Standard 
Treatment 

~0 
  

Delta 
Tumor=40% 

Standard 
Treatment 

~0 
  

DM Ping-Pong on Progression (cytostatic) 
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Delta 
Tumor=5% 

Standard 
Treatment 

0.01 0.003-0.045 <0.001 

Delta 
Tumor=10% 

Standard 
Treatment 

0.01 0.001-0.040 <0.001 

Delta 
Tumor=20% 

Standard 
Treatment 

0.14 0.09-0.20 <0.001 

Delta 
Tumor=40% 

Standard 
Treatment 

0.24 0.17-0.32 <0.001 

FD Cocktail Dose-Skipping (cytostatic) 

Delta 
Tumor=5% 

Standard 
Treatment 

10.4 7.6-14.2 <0.001 

Delta 
Tumor=10% 

Standard 
Treatment 

10.4 7.6-14.2 <0.001 

Delta 
Tumor=20% 

Standard 
Treatment 

10.4 7.6-14.2 <0.001 

Delta 
Tumor=40% 

Standard 
Treatment 

10.4 7.6-14.2 <0.001 

FD Ping-Pong Dose-Skipping (cytostatic) 

Delta 
Tumor=5% 

Standard 
Treatment 

3.3 2.5-4.4 <0.001 

Delta 
Tumor=10% 

Standard 
Treatment 

4.2 3.2-5.6 <0.001 

Delta 
Tumor=20% 

Standard 
Treatment 

4.4 3.3-5.9 <0.001 

Delta 
Tumor=40% 

Standard 
Treatment 

3.7 2.8-5.0 <0.001 
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Figure 4.5. Effect of the delta tumor parameter on determining the outcome of adaptive 
therapy using two cytotoxic or two cytostatic drugs. Survival outcome comparing dose 
modulation treatment protocol with Delta Tumor=5%, 10%, 20%, or 40% using a single 
cytotoxic (Fig. 4.5A), or a single cytostatic drug (Fig. 4.5B) relative to standard 
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treatment. Survival outcome comparing dose-skipping treatment protocol with Delta 
Tumor=5%, 10%, 20%, or 40% using a single cytotoxic (Fig. 4.5C), or a single cytostatic 
drug (Fig. 4.5D).  
 

How much to change the dose for the dose modulation protocols 

For treatment using two cytotoxic drugs, all the dose modulation protocols (DM 

Cocktail Tandem, DM Ping-Pong Alternate Every Cycle, and DM Ping-Pong on 

Progression) work well when Delta Dose=25%, 50%, or 75%; with the exception of DM 

Cocktail Tandem with Delta Dose=25%. For treatment using two cytostatic drugs, the 

ping-pong protocols (DM Ping-Pong Alternate Every Cycle, DM Ping-Pong on 

Progression) works well when delta dose=25%, 50%, or 75%. In general, the larger delta 

doses work best, for both cytotoxic and cytostatic drugs (Fig. 4.6), with the exception of 

DM Ping-Pong on Progression with cytotoxic drugs (Fig. 4.6E, Table 4.6).  

Table 4.6: Effect of the delta dose parameter on determining the 
outcome of dose modulation adaptive therapy using two cytotoxic or 
two cytostatic drugs 

Experimental 
Condition 

Comparison 
Condition 

Hazard 
Ratio 

95% CI p-value 

DM Cocktail Tandem (cytotoxic) 

Delta 
Dose=25% 

Standard 
Treatment 

2.0 1.5-2.7 <0.001 

Delta 
Dose=50% 

Standard 
Treatment 

0.29 0.20-0.41 <0.001 

Delta 
Dose=75% 

Standard 
Treatment 

~0 
  

DM Ping-Pong Alternated Every Cycle (cytotoxic) 

Delta 
Dose=25% 

Standard 
Treatment 

0.26 0.17-0.40 <0.001 
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Delta 
Dose=50% 

Standard 
Treatment 

0.26 0.17-0.40 <0.001 

Delta 
Dose=75% 

Standard 
Treatment 

0.19 0.12-0.30 <0.001 

DM Ping-Pong on Progression (cytotoxic) 

Delta 
Dose=25% 

Standard 
Treatment 

0.02 0.01-0.07 <0.001 

Delta 
Dose=50% 

Standard 
Treatment 

0.11 0.06-0.19 <0.001 

Delta 
Dose=75% 

Standard 
Treatment 

0.32 0.22-0.47 <0.001 

DM Cocktail Tandem (cytostatic) 

Delta 
Dose=25% 

Standard 
Treatment 

  
Not 
Significant 

Delta 
Dose=50% 

Standard 
Treatment 

  
Not 
Significant 

Delta 
Dose=75% 

Standard 
Treatment 

0.69 0.51-0.92 <0.05 

DM Ping-Pong Alternated Every Cycle (cytostatic) 

Delta 
Dose=25% 

Standard 
Treatment 

~0 
  

Delta 
Dose=50% 

Standard 
Treatment 

~0 
  

Delta 
Dose=75% 

Standard 
Treatment 

~0 
  

DM Ping-Pong on Progression (cytostatic) 

Delta 
Dose=25% 

Standard 
Treatment 

0.03 0.01-0.07 <0.001 

Delta 
Dose=50% 

Standard 
Treatment 

~0 
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Delta 
Dose=75% 

Standard 
Treatment 

0.03 0.01-0.07 <0.001 
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Figure 4.6. Effect of the delta dose parameter on determining the outcome of dose 
modulation adaptive therapy using two cytotoxic or two cytostatic drugs. Survival 
outcome for treatment as per the dose modulation protocol with Delta Dose=25%, 50%, 
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or 75% relative to standard treatment using a single cytotoxic drug (Fig. 4.6A), or a 
single cytostatic drug (Fig. 4.6B). 
 

Effects of pausing treatment when tumor burden falls below a certain level 

For treatment using two cytotoxic or two cytostatic drugs, the dose-modulation 

protocols (DM Cocktail Tandem, DM Ping-Pong Alternate Every Cycle, DM Ping-Pong 

on Progression) work best when treatment is paused sooner than later when the tumor is 

responding, that is, triggering a treatment vacation when the tumor shrinks by 20%, for 

example, works better than waiting for the tumor to shrink by 50%, or 90% (Fig. 4.7, 

Table 4.7). The only exception is DM Ping-Pong on Progression (Fig. 4.7E), where 

pausing treatment at 50% is working better than 20%. A similar effect is observed for 

treatment using two cytotoxic (Fig. 4.7G, Fig 4.7I, Table 4.7) or two cytostatic drugs 

(Fig. 4.7H, 4.7J, Table 4.7) as per the intermittent protocol, where using a lower 

threshold for pausing treatment works better, however, the effect size is not strong for 

treatment using two cytotoxic drugs. In general, stopping treatment sooner than later, 

when the tumor is responding works well, for both treatment using two cytotoxic or two 

cytostatic drugs. 

Table 4.7: Effect of stopping treatment when tumor burden falls 
below a  certain level for treatment using two cytotoxic or two 
cytostatic drugs 

Experimental 
Condition 

Comparison 
Condition 

Hazard 
Ratio 

95% CI p-value 

DM Cocktail Tandem (cytotoxic) 

Treatment 
vacation when 
tumor shrinks 
by 20% 

Standard 
Treatment 

0.16 0.11-0.25 <0.001 
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Treatment 
vacation when 
tumor shrinks 
by 50% 

Standard 
Treatment 

0.28 0.20-0.40 <0.001 

Treatment 
vacation when 
tumor shrinks 
by 90% 

Standard 
treatment 

3.4 2.5-4.5 <0.001 

DM Ping-Pong Alternated Every Cycle (cytotoxic) 

Treatment 
vacation when 
tumor shrinks 
by 20% 

Standard 
Treatment 

0.12 0.07-0.20 <0.001 

Treatment 
vacation when 
tumor shrinks 
by 50% 

Standard 
Treatment 

0.21 0.14-0.32 <0.001 

Treatment 
vacation when 
tumor shrinks 
by 90% 

Standard 
treatment 

0.50 0.35-0.70 <0.001 

DM Ping-Pong on Progression (cytotoxic) 

Treatment 
vacation when 
tumor shrinks 
by 20% 

Standard 
Treatment 

0.31 0.22-0.44 <0.001 

Treatment 
vacation when 
tumor shrinks 
by 50% 

Standard 
Treatment 

0.13 0.08-0.22 <0.001 

Treatment 
vacation when 
tumor shrinks 
by 90% 

Standard 
treatment 

  
Not 
Significant 

FD Cocktail Intermittent (cytotoxic) 
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Stop when 
shrinks by 5% 

Standard 
Treatment 

1.4 1.0-1.9 <0.05 

Stop when 
shrinks by 
10% 

Standard 
Treatment 

  
Not 
Significant 

Stop when 
shrinks by 
20% 

Standard 
Treatment 

1.6 1.2-2.1 <0.01 

Stop when 
shrinks by 
50% 

Standard 
Treatment 

1.6 1.2-2.2 <0.001 

FD Ping-Pong Intermittent (cytotoxic) 

Stop when 
shrinks by 5% 

Standard 
Treatment 

1.4 1.1-1.9 <0.05 

Stop when 
shrinks by 
10% 

Standard 
Treatment 

1.6 1.2-2.2 <0.01 

Stop when 
shrinks by 
20% 

Standard 
Treatment 

1.6 1.2-2.2 <0.01 

Stop when 
shrinks by 
50% 

Standard 
Treatment 

1.8 1.3-2.4 <0.001 

DM Cocktail Tandem (cytostatic) 

Treatment 
vacation when 
tumor shrinks 
by 20% 

Standard 
Treatment 

0.73 0.55-0.97 <0.05 

Treatment 
vacation when 
tumor shrinks 
by 50% 

Standard 
Treatment 

  
Not 
Significant 

Treatment 
vacation when 

Standard 
treatment 

  
Not 
Significant 
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tumor shrinks 
by 90% 

DM Ping-Pong Alternated Every Cycle (cytostatic) 

Treatment 
vacation when 
tumor shrinks 
by 20% 

Standard 
Treatment 

~0 
  

Treatment 
vacation when 
tumor shrinks 
by 50% 

Standard 
Treatment 

~0 
  

Treatment 
vacation when 
tumor shrinks 
by 90% 

Standard 
treatment 

~0 
  

DM Ping-Pong on Progression (cytostatic) 

Treatment 
vacation when 
tumor shrinks 
by 20% 

Standard 
Treatment 

~0 
  

Treatment 
vacation when 
tumor shrinks 
by 50% 

Standard 
Treatment 

~0 
  

Treatment 
vacation when 
tumor shrinks 
by 90% 

Standard 
treatment 

~0 
  

FD Cocktail Intermittent (cytostatic) 

Stop when 
shrinks by 5% 

Standard 
Treatment 

0.70 0.52-0.93 <0.05 

Stop when 
shrinks by 
10% 

Standard 
Treatment 

  
Not 
Significant 
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Stop when 
shrinks by 
20% 

Standard 
Treatment 

0.72 0.54-0.96 <0.05 

Stop when 
shrinks by 
50% 

Standard 
Treatment 

1.3 1.0-1.8 <0.05 

FD Ping-Pong Intermittent (cytostatic) 

Stop when 
shrinks by 5% 

Standard 
Treatment 

~0 
  

Stop when 
shrinks by 
10% 

Standard 
Treatment 

~0 
  

Stop when 
shrinks by 
20% 

Standard 
Treatment 

~0 
  

Stop when 
shrinks by 
50% 

Standard 
Treatment 

~0 
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Figure 4.7. Effect of stopping treatment when tumor burden falls below a  certain level 
for treatment using two cytotoxic or two cytostatic drugs. For treatment as per the 
intermittent protocol using either a single cytotoxic (Fig. 4.7A), or a single cytostatic 
drug (Fig. 4.7B), the threshold for stopping treatment was varied as the tumor shrinks by 
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5%, 10%, 20%, or 50% of the pre-treatment baseline. Survival outcome for treatment 
using a single cytotoxic drug (Fig. 4.7C), or a single cytostatic drug (Fig. 4.7D) as the 
trigger for treatment vacation is when the tumor shrinks by 20%, 50%, or 90%. 
 

Drug dosage level at which adaptive therapy is initiated and capped 

Standard treatment for cytotoxic drugs begins to work at 25%of MTD as we 

lower the drug dosages, and works perfectly for 15% MTD, and at 10% begins to lose 

control of some of the tumors (Fig. 4.8G); for FD Cocktail Intermittent, 10% of MTD 

does not work but 15% and 25% work perfectly, and at 50% of MTD and above it does 

not work (Fig. 4.8G). Goldilocks effect in most of these cases is observed, where too 

much drug selects for resistance or too less drug is unable to control the tumor. At low 

extremes of the drug, the tumor grows out control, and at high extremes of the drug, the 

resistant clones are taking over the tumor. For cytostatic drugs, standard treatment at 25% 

or 50% of MTD works well (Fig. 4.8F), while standard treatment at 10%, 15%, 75%, and 

100% performs poorly (Fig. 4.8F); for FD Cocktail Intermittent, treatment at 50% of 

MTD results in perfect survival, while survival outcome worsens with treatment at 10%, 

15%, 25%, 75%, or 100% of MTD (Fig. 4.8H), exhibiting a Goldilocks effect for both 

standard treatment as well as adaptive therapy in many of these cases. 

Table 4.8: Effect of administering treatment at a range of 
different drug dosages for adaptive therapy using two cytotoxic or 
two cytostatic drugs 

Experimental 
Condition 

Comparison 
Condition 

Hazard 
Ratio 

95% CI p-value 

DM Cocktail Tandem (cytotoxic) 

25% MTD Standard 
Treatment at 
25% MTD 

~0 
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50% MTD Standard 
Treatment at 
50% MTD 

0.08 0.05-0.12 <0.001 

75% MTD Standard 
Treatment at 
75% MTD 

0.04 0.02-0.08 <0.001 

100% MTD Standard 
treatment at 
100% MTD 

0.24 0.16-0.35 <0.001 

DM Ping-Pong Alternated Every Cycle (cytotoxic) 

25% MTD Standard 
Treatment at 
25% MTD 

~0 
  

50% MTD Standard 
Treatment at 
50% MTD 

~0 
  

75% MTD Standard 
Treatment at 
75% MTD 

0.24 0.16-0.37 <0.001 

100% MTD Standard 
treatment at 
100% MTD 

0.20 0.13-0.32 <0.001 

DM Ping-Pong on Progression (cytotoxic) 

25% MTD Standard 
Treatment at 
25% MTD 

~0 
  

50% MTD Standard 
Treatment at 
50% MTD 

0.004 0.001-
0.031 

<0.001 

75% MTD Standard 
Treatment at 
75% MTD 

0.07 0.04-0.13 <0.001 
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100% MTD Standard 
treatment at 
100% MTD 

0.12 0.07-0.21 <0.001 

FD Cocktail Dose-Skipping (cytotoxic) 

10% MTD Standard 
Treatment at 
10% MTD 

6.3 4.3-9.4 <0.001 

Standard 
Treatment at 
15% MTD 

15% MTD ~0 
  

Standard 
Treatment at 
25% MTD 

25% MTD ~0 
  

50% MTD Standard 
treatment at 
50% MTD 

27.1 14.7-50.0 <0.001 

75% MTD Standard 
treatment at 
75% MTD 

  
Not 
Significant 

100% MTD Standard 
treatment at 
100% MTD 

1.7 1.2-2.3 <0.01 

FD Ping-Pong Dose-Skipping (cytotoxic) 

10% MTD Standard 
Treatment at 
10% MTD 

9.2 6.1-14.0 <0.001 

Standard 
Treatment at 
15% MTD 

15% MTD ~0 
  

Standard 
Treatment at 
25% MTD 

25% MTD ~0 
  

50% MTD Standard 
treatment at 
50% MTD 

27.1 14.7-50.0 <0.001 
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75% MTD Standard 
treatment at 
75% MTD 

0.45 0.33-0.62 <0.001 

100% MTD Standard 
treatment at 
100% MTD 

1.9 1.4-2.6 <0.001 

FD Cocktail Intermittent (cytotoxic) 

10% MTD Standard 
Treatment at 
10% MTD 

2.6 1.9-3.7 <0.001 

15% MTD Standard 
Treatment at 
15% MTD 

  
Not 
Significant 

25% MTD Standard 
Treatment at 
25% MTD 

~0 
  

50% MTD Standard 
treatment at 
50% MTD 

1.5 1.1-2.1 <0.05 

75% MTD Standard 
treatment at 
75% MTD 

3.8 2.7-5.5 <0.001 

100% MTD Standard 
treatment at 
100% MTD 

1.9 1.4-2.7 <0.001 

FD Ping-Pong Intermittent (cytotoxic) 

10% MTD Standard 
Treatment at 
10% MTD 

8.8 5.9-13.0 <0.001 

Standard 
treatment at 
15% MTD 

15% MTD ~0 
  

25% MTD Standard 
Treatment at 
25% MTD 

~0 
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50% MTD Standard 
treatment at 
50% MTD 

  
Not 
Significant 

75% MTD Standard 
treatment at 
75% MTD 

2.6 1.9-3.7 <0.001 

100% MTD Standard 
treatment at 
100% MTD 

2.0 1.5-2.9 <0.001 

DM Cocktail Tandem (cytostatic) 

25% MTD Standard 
Treatment at 
25% MTD 

4.7 3.3-6.7 <0.001 

50% MTD Standard 
Treatment at 
50% MTD 

~0 
  

75% MTD Standard 
Treatment at 
75% MTD 

  
Not 
Significant 

100% MTD Standard 
treatment at 
100% MTD 

  
Not 
Significant 

DM Ping-Pong Alternate Every Cycle (cytostatic) 

25% MTD Standard 
Treatment at 
25% MTD 

17.1 11.8-24.8 <0.001 

50% MTD Standard 
Treatment at 
50% MTD 

~0 
  

75% MTD Standard 
Treatment at 
75% MTD 

~0 
  



   154 

100% MTD Standard 
treatment at 
100% MTD 

~0 
  

DM Ping-Pong on Progression (cytostatic) 

25% MTD Standard 
Treatment at 
25% MTD 

14.4 10.0-20.8 <0.001 

50% MTD Standard 
Treatment at 
50% MTD 

0.27 0.16-0.45 <0.001 

75% MTD Standard 
Treatment at 
75% MTD 

~0 
  

100% MTD Standard 
treatment at 
100% MTD 

0.01 0.001-
0.043 

<0.001 

FD Cocktail Dose-Skipping (cytostatic) 

10% MTD Standard 
Treatment at 
10% MTD 

2.3 1.7-3.2 <0.001 

15% MTD Standard 
Treatment at 
15% MTD 

2.4 1.7-3.3 <0.001 

25% MTD Standard 
Treatment at 
25% MTD 

3.1 2.2-4.5 <0.001 

50% MTD Standard 
treatment at 
50% MTD 

123.7 49.6-308.3 <0.001 

75% MTD Standard 
treatment at 
75% MTD 

29.7 15.8-55.7 <0.001 

100% MTD Standard 
treatment at 
100% MTD 

19.5 11.1-34.3 <0.001 
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FD Ping-Pong Dose-Skipping (cytostatic) 

10% MTD Standard 
Treatment at 
10% MTD 

3.5 2.5-4.9 <0.001 

15% MTD Standard 
Treatment at 
15% MTD 

6.0 4.2-8.5 <0.001 

25% MTD Standard 
Treatment at 
25% MTD 

10.7 7.4-15.6 <0.001 

Standard 
Treatment at 
50% MTD 

50% MTD ~0 
  

75% MTD Standard 
treatment at 
75% MTD 

7.1 4.8-10.4 <0.001 

100% MTD Standard 
treatment at 
100% MTD 

19.5 11.1-34.3 <0.001 

FD Cocktail Intermittent (cytostatic) 

10% MTD Standard 
Treatment at 
10% MTD 

1.9 1.4-2.6 <0.001 

15% MTD Standard 
Treatment at 
15% MTD 

3.7 2.6-5.3 <0.001 

25% MTD Standard 
Treatment at 
25% MTD 

2.9 2.0-4.1 <0.001 

50% MTD Standard 
treatment at 
50% MTD 

~0 
  

75% MTD Standard 
treatment at 
75% MTD 

  
Not 
Significant 
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100% MTD Standard 
treatment at 
100% MTD 

  
Not 
Significant 

FD Ping-Pong Intermittent (cytostatic) 

10% MTD Standard 
Treatment at 
10% MTD 

4.3 3.1-6.0 <0.001 

15% MTD Standard 
Treatment at 
15% MTD 

5.8 4.0-8.3 <0.001 

25% MTD Standard 
Treatment at 
25% MTD 

11.2 7.6-16.5 <0.001 

50% MTD Standard 
treatment at 
50% MTD 

~0 
  

75% MTD Standard 
treatment at 
75% MTD 

~0 
  

100% MTD Standard 
treatment at 
100% MTD 

~0 
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Figure 4.8. Effect of administering treatment at a range of different drug dosages for 
adaptive therapy using two cytotoxic or two cytostatic drugs. Survival outcome 
comparing treatment as per the dose modulation protocol relative to ST, starting and 
capping dosing at 25%, 50%, 75%, or 100% of MTD, for treatment using a single 
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cytotoxic drug (Fig. 4.8A), or a single cytostatic drug (Fig. 4.8B). Survival outcome for 
treatment as per dose-skipping protocol administered at 35%, 50%, 75%, or 100% of 
MTD relative to standard treatment using either a single cytotoxic drug (Fig. 4.8C), or a 
single cytostatic drug (Fig. 4.8D). Survival outcome for treatment as per the intermittent 
protocol administered at 10%, 15%, 25%, 50%, 75%, or 100% of MTD relative to ST for 
treatment using a single cytotoxic (Fig. 4.8E), or a single cytostatic (Fig. 4.8F) drug. 

 

Figure 4.9. Summarizing the relationship between drug dose and time to progression for 
adaptive therapy using two cytotoxic or two cytostatic drugs. In each panel, the average 
amount of drug used per timestep between the start of therapy and the time of progression 
is plotted on the X-axis, and the median time to progression for that protocol under those 
parameter values are plotted on the Y-axis, for treatment using either a single cytotoxic 
drug (A) or a single cytostatic drug (B). The points are colored based on the specific 
protocol. Open circles indicate data points that are censored as less than 50% of test-
subjects have progressed, and are not included in the calculation. A quadratic fit to the 
curve along with the confidence intervals have been indicated in the figure panels. Each 
point represents a specific Kaplan-Meier survival curve for a given set of parameter 
values. 
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I plotted log10 median TTP versus average drug dose including all data points 
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has progressed) and fitted the curve to a quadratic plot. For treatment using two cytotoxic 

drugs (Fig. 9A), median R-squared value is 0.03479 and adjusted R-squared is 0.0206. 

For treatment using two cytostatic drugs (Fig. 10B), median R-squared value is 0.6165 

and adjusted R-squared value is 0.6105.  

Discussion 

Designing adaptive therapy protocols using two drugs is challenging as the 

number of parameters increase exponentially with each additional drug. Furthermore, we 

seek to investigate how the mechanism of action of the drugs, that is, whether or not the 

drugs are cytotoxic or cytostatic impacts survival outcome. Thus, we have investigated 

seven different treatment protocols, the dose modulation (DM) protocols: DM Cocktail 

Tandem, DM Ping-Pong Alternate Every Cycle, DM Ping-Pong on Progression; and the 

fixed-dose (FD) protocols: FD Cocktail Dose-Skipping, FD Ping-Pong Dose-Skipping, 

FD Cocktail Intermittent, FD Ping-Pong Intermittent; for treatment using either two 

cytotoxic or two cytostatic drugs. 

We observed, for treatment using two cytotoxic drugs, all dose modulation 

protocols, namely, DM Cocktail Tandem, DM Ping-Pong Alternate Every Cycle, and 

DM Ping-Pong on Progression, as well the fixed-dose protocol FD Ping-Pong Dose-

Skipping work well, increasing TTP relative to standard treatment. For treatment using 

two cytostatic drugs, the ping-pong protocols, namely, DM Ping-Pong Alternate Every 

Cycle, DM Ping-Pong on Progression, and FD Ping-Pong Intermittent work well, 

improving survival outcome relative to standard treatment. 

Our results show that fitness cost, as manifested in increased doubling time for the 

drug-resistant cells in the absence of the drug, is required for adaptive therapy to work for 
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both treatments using two cytotoxic or two cytostatic drugs. In general, a higher fitness 

cost leads to improved survival outcome, increasing TTP relative to lower fitness costs. 

However, a caveat with very high fitness cost is that the tumor burden is also increasing 

at a faster rate, which could translate to hitting the carrying capacity, and this effect might 

be especially pronounced under low amounts of the drugs. We observed FD Dose-

Skipping treatment protocols working poorly under high fitness costs. 

Cell replacement is an important parameter in our model as it is a parameter that 

governs whether or not a dividing cell would be allowed to replace a neighbor when there 

is no space available in the Moore neighborhood and, as such it is a measure of cell 

competition in the tumor. Our results indicate adaptive therapy works best at higher 

replacement rates and, in general, works best under conditions of 100% replacement. 

Furthermore, we observe this effect for both cytotoxic as well as cytostatic drugs. This 

suggests that adaptive therapy might work especially well when there is strong 

competition among the cell types constituting the tumor. 

We observe, in general, adaptive therapy using two cytotoxic drugs works best 

under conditions of high turnover. However, in general, treatment using two cytostatic 

drugs seems to work best when the cell turnover is low. 

We find, in general, adaptive therapy works best when drug doses are adjusted as 

soon as a change in tumor burden is detected, for treatment using either two cytotoxic or 

two cytostatic drugs. Furthermore, in general, the survival outcome worsens as Delta 

Tumor is progressively increased, with the best survival outcome with Delta Tumor=5% 

and the worst with Delta Tumor=40%. These results are in agreement.  
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We find, in general, for treatment using two cytotoxic or two cytostatic drugs, that 

it is best to pause treatment sooner than later when the tumor is shrinking. As such, for 

treatment as per the dose modulation protocol, triggering a treatment vacation when the 

tumor has shrunk by 20% works better than triggering a treatment vacation when the 

tumor has shrunk by 50%, which in turn works better than triggering a treatment vacation 

when the tumor has shrunk by 90%. We observe the same trend for treatment as per the 

intermittent protocol. As such, choosing to pause treatment when the tumor shrinks by 

5% works better than choosing to pause treatment when the tumor shrinks by 10%, which 

is works better than choosing to pause treatment when the tumor shrinks by 20%, which 

work better than choosing to pause treatment when the tumor shrinks by 50%. 

We observe, in general, for both treatment using either two cytotoxic or two 

cytostatic drugs, that too low dosage of a drug has poor survival outcome, and too high 

dosage of a drug also has poor survival outcome, with intermediate level of drug dosages 

having the best survival outcome. Thus, a Goldlilocks level of drug dosing works best for 

both treatments using either two cytotoxic or two cytostatic drugs. Consistent with this 

observation, fitting median TTP versus average drug dose to a quadratic results in 

significant fit. 

There are several limitations to this work. We have not modeled tissue 

architecture or normal cells inside the tumors. Modeling blood vasculature and capillary 

architecture could affect treatment outcomes in important ways. In the future, it would be 

interesting to explore how these adaptive therapy protocols would perform in a 3-

dimensional tumor model perfused with blood vessels and capillaries. 

Conclusions 
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While the dose modulation protocols (DM Cocktail Tandem, DM Ping-Pong 

Alternate Every Cycle, DM Ping-Pong on Progression), as well as the fixed-dose protocol 

(FD Ping-Pong Dose-Skipping) works well for treatment using two cytotoxic drugs, the 

ping-pong protocols except dose-skipping (DM Ping-Pong Alternate Every Cycle, DM 

Ping-Pong on Progression, and FD Ping-Pong Intermittent) works well for treatment 

using two cytostatic drugs, increasing TTP relative to standard treatment at maximum 

tolerated dose. In general, we observe adaptive therapy protocols work best under 

conditions of higher fitness cost, increased replacement rates, and higher turnover, with 

the exception of cytostatic drugs generally working better under conditions of low 

turnover. For the dose modulation protocols, as well as fixed-dose protocols, adaptive 

therapy works best when the doses are adjusted as soon as a change in tumor burden is 

detected. For the dose modulation protocols, in general, a relatively higher value for the 

delta dose parameter works best. We find that it is best to pause treatment sooner than 

later, when the tumor is shrinking. As such, triggering a treatment vacation or choosing to 

pause treatment when the tumor has shrunk by a relatively lower percentage relative to 

the baseline tumor burden at which therapy was initiated, works better than waiting for 

the tumor to shrink by a relatively higher percentage relative to that baseline. In general, 

for treatment using either two cytotoxic or two cytostatic drugs, an intermediate level of 

drug dosage works best, and worse survival outcome is observed with too little or too 

much drug, in accordance with the Goldilocks’ principle. Our results suggest adaptive 

therapy can be considerably improved by developing accurate and sensitive 

measurements of tumor burden, as well as by assaying for the level of cell turnover inside 

the tumor. Furthermore, our results lend support to the idea that it is indeed possible to 
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transform cancer from an acute and lethal disease, which results in death, to a chronic 

disease, which does not lead to death. 
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CHAPTER 5 

COMPARISON OF IN SILICO MODELING RESULTS TO PRECLINICAL MICE 

EXPERIMENTS 

 

Abstract 

Computational models that accurately predict clinical outcomes are an important 

toolkit for translational research, having the potential to transform the field of medical 

oncology. However, calibrating computational models to predict experimental outcomes 

can be a challenging task, especially when the model involves a large number of 

parameters. In this article our goal was to match the results of the preclinical mice 

experiments conducted in mice with breast cancer for treatment using either a single 

cytotoxic drug or two cytotoxic drugs. Our results indicate it is possible to predict the 

treatment outcome using the hybrid agent-based model that we have developed to 

simulate a wide variety of adaptive therapy treatment protocols. Specifically, we were 

able to match the order in which the various treatment protocols performed best-to-worst, 

for both treatment using a single cytotoxic drug, or two cytotoxic drugs. 

Introduction 

Calibrating hybrid agent-based models to a specific experimental system is an 

important step in translational research, as it enables the computational model to predict 

the outcome of the experimental system. In chapters 2, 3 (cite the article here), and 4, I 

have developed and implemented hybrid agent-based models to simulate adaptive therapy 

using a single, or two drugs. In this chapter, the goal was to match the simulation results 

to the experimental preclinical experiments conducted in mice with breast cancer. For the 
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individual adaptive therapy protocols, I investigated the ranges of the relevant parameter 

space in the model, for treatment using a single cytotoxic drug, or two cytotoxic drugs, in 

order to match the rank order of the experimental results from best-to-worst progression-

free survival outcomes. 

Materials and Methods 

For treatment using a single cytotoxic drug, please see Chapter 2, Materials and 

Methods section for details of the model. For treatment using two cytotoxic drugs, please 

see Chapter 4, Materials and Methods for details of the model. For treatment using a 

single cytotoxic drug, the adaptive therapy protocols of interest were dose modulation 

and intermittent. For treatment using two cytotoxic drugs, the adaptive therapy protocols 

of interest were DM Cocktail Tandem, DM Ping-Pong Alternate Every Cycle, FD 

Cocktail Intermittent, and FD Ping-Pong Intermittent. For each of these protocols, I 

explored the parameter space for the relevant parameters of the model, in a heuristic 

manner, in order to match the preclinical mice data. The parameter values that were used 

to run the model for treatment using a single cytotoxic drug are indicated in Table 5.1, 

and that were used to run the model for treatment using two cytotoxic drugs are indicated 

in Table 5.2. 

The resistant cells (singly resistant for treatment using a single drug, or doubly 

resistant cells for treatment using two drugs) both have a division rate of 0.02 per hour. 

The sensitive cells (for treatment using a single drug) have a division rate of 0.06 per 

hour and the doubly sensitive cells (for treatment using two drugs) have a division rate of 

0.10 per hour. MTD dosage value for treatment using a single drug was set to 2.5 units, 

and MTD dosage value for treatment using two cytotoxic drugs was set to 2.5 units for 
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each of the two drugs, thus the total dosage equaled to 5 units for a cocktail application, 

and 2.5 units of the specific drug for the ping-pong protocols. We do not know the true 

division rates, or the true MTDs, nor do we know the true replacement probability inside 

a tumor. So, we varied those parameters to see if it would match the experimental results. 

We have made some modifications to our criterion for progression from (Thomas 

et al. 2022). The modified survival criterion is as follows: If the tumor burden equaled or 

exceeded 99% of the carrying capacity at any point after initiation of therapy, or the 

rolling average of the total number of resistant cells over 500 time-steps equaled or 

exceeded 50% of the carrying capacity, then the particular run is scored as “Progressed” 

and the time at which progression takes place after therapy initiation is noted. 

 

 

Table 5.1: Parameter values for matching the results of the mice 
experiments using a single cytotoxic drug. The italics indicate 
changes in parameter values relative to Chapter 2 that were necessary 
to match the experimental results. 
Parameter Value 
Cell division rate: sensitive 0.06 per hour 
Cell division rate: resistant 0.02 per hour 
Background death rate 0.01 per hour 
Replacement probability 1.0 
Delta Tumor 10% 
Delta Dose 50% 
Probability of death due to drug 
potency (Ψ) 0.04 per unit drug concentration 

Maximum tolerated dose (MTD) 2.5 units 
Minimum drug dose 0.5 units 
Drug on time 1 hour 
Frequency of drug application Once every 24 hour 
Check tumor burden Every 3 days 
Drug decay 10% per hour 
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Drug diffusion rate 2.0 

Tumor size triggering treatment Tumor burden is 50% or more of 
the carrying capacity 

Mutation rate 1e-3 per cell division 
Measurement noise standard 
deviation (SD) 5 cells 

Total grid size 100 by 100 
Duration of simulation 5000 hour 
Stop dosing/initiate treatment 
vacation when (DM protocols 
only): 

Tumor burden is less than or equal 
to 25% of carrying capacity 

Doubling time of sensitive cells 13.86 hour 
Doubling time of resistant cells 69.3 hour 
Table 5.2: Parameter values for matching the results of the 
mice experiments using two cytotoxic drugs. The italics 
indicate changes in parameter values relative to Chapter 3 and 
Chapter 4 that were necessary to match the experimental 
results. 
Parameter Value 
Cell division rate: doubly 
sensitive 0.10 per hour 

Cell division rate: singly 
resistant 0.06 per hour 

Cell division rate: doubly 
resistant 0.02 per hour 

Background death rate 0.01 per hour 
Replacement probability 1.0 
Delta Tumor 10% 
Delta Dose 50% 
Probability of death due to 
drug potency (Ψ) 

0.04 per unit drug 
concentration 

Maximum tolerated dose 
(MTD): Drug 1 2.5 units 

Maximum tolerated dose 
(MTD): Drug 2 2.5 units 

Minimum drug dose 0.5 units 
Drug on time 1 hour 
Frequency of drug application Once every 24 hour 
Check tumor burden Every 3 days 
Drug decay 10% per hour 
Drug diffusion rate 2.0 
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Tumor size triggering 
treatment 

Tumor burden is 50% or more 
of the carrying capacity 

Mutation rate 1e-3 per cell division 
Measurement noise standard 
deviation (SD) 5 cells 

Total grid size 100 by 100 
Duration of simulation 5000 hour 
Stop dosing/initiate treatment 
vacation when (DM protocols 
only): 

Tumor burden is less than or 
equal to 25% of carrying 
capacity 

Doubling time of doubly 
sensitive cells 7.7 hour 

Doubling time of doubly 
resistant cells 69.3 hour 

Doubling time of singly 
resistant cells 13.86 hour 

 

Results 

The mouse experiments (experimental data produced by Sareh Seyedi) showed 

that the adaptive therapy protocols could be arranged in a specific rank order from best-

to-worst progression-free survival outcome, both for treatment using a single cytotoxic 

drug, or two cytotoxic drugs. These experiments were carried out using MCF7 breast 

cancer cell lines that were selected to be resistant to the anti-cancer drugs fulvestrant and 

palbociclib for hormone refractory estrogen receptor (ER) positive breast cancer. For 

these mice experiments, the anti-cancer drug capecitabine was used for adaptive therapy 

using a single drug, and for adaptive therapy using two drugs, the two anti-cancer drugs 

used were capecitabine and gemcitabine. Because both of these drugs, gemcitabine and 

capecitabine work by killing cells, these drugs can be assumed to have a cytotoxic 

mechanism of action. 
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Matching simulation results to preclinical mice experiments for treatment using a 

single cytotoxic drug 

For adaptive therapy using a single drug (capecitabine), the rank order from best 

to worst for progression-free survival outcomes are as follows: 

1. Dose modulation 

2. No treatment 

3. Standard treatment and Intermittent were essentially equivalent 

The computational simulation results (Fig. 5.1) are in agreement with the experimental 

data. 

 

Figure 5.1: Comparison of simulation results to preclinical mice data for adaptive 
therapy using a single cytotoxic drug. Computational simulations of adaptive therapy 
using a single cytotoxic drug (Fig. 5.1A) and results of treating mice with breast cancer 
as per single-drug adaptive therapy protocols using the drug capecitabine (Fig 5.1B). For 
Fig 5.1B, the experimental data as well as the figure itself was generated by Sareh 
Seyedi. 
 
Matching simulation results to preclinical mice experiments for treatment using two 

cytotoxic drugs 
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For adaptive therapy using two drugs (capecitabine and gemcitabine), the rank 

order from best to worst for progression free survival outcomes are as follows: 

1. There is essentially a tie between DM Ping-Pong Alternate Every Cycle, 

FD Ping-Pong Intermittent, and DM Cocktail Tandem. All these protocols 

were essentially equivalent 

2. No treatment 

3. FD Cocktail Intermittent 

4. Standard treatment using a cocktail drug formulation for the two drugs 

The computational simulation results (Fig. 5.2) are in agreement with the experimental 

data. 
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Figure 5.2: Comparison of simulation results to preclinical mice data for adaptive 
therapy using two cytotoxic drugs. Computational simulations of adaptive therapy using 
two cytotoxic drugs (Fig. 5.2A). Results of treating mice with breast cancer as per 
adaptive therapy protocols using the drug gemcitabine and capecitabine using a cocktail 
formulation of the drugs such that both the drugs are administered at the same time, 
referred to here as ‘Tandem’ (Fig. 5.2B), or rotating the drugs every treatment cycle, such 
that only one drug is applied at a time, referred to here as ‘Ping-pong’ (Fig. 5.2C) . For 
Fig 5.2B and Fig. 5.2C, the experimental data as well as the figures themselves were 
generated by Sareh Seyedi. 
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survival outcome, both for treatment using either a single drug, or two drugs. However, 

given the number of parameters in the system, there is the potential of overfitting the 

experimental data. 
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CHAPTER 6 

CONCLUSION 

Chapter 1 gives an introduction to adaptive therapy. Chapter 2 investigates 

adaptive therapy using a single cytotoxic or a single cytostatic drug. Chapter 3 includes a 

publication involving investigations of multi-drug adaptive therapy protocols using 2 

drugs. Chapter 4 investigates adaptive therapy using two cytotoxic or two cytostatic 

drugs. Chapter 5 involves matching computational simulation results using the developed 

hybrid agent-based model to preclinical mice data for both treatment using a single 

cytotoxic drug or two cytotoxic drugs. Chapter 6 discusses the conclusion. 

 

Our results show adaptive therapy significantly improves survival outcome and 

increases TTP relative to standard treatment at maximum tolerated dose, under a wide 

variety of conditions, for treatment using either a single cytotoxic, a single cytostatic, two 

cytotoxic, or two cytostatic drugs. We have developed three adaptive therapy protocols 

for single drug adaptive therapy, and seven adaptive therapy protocols for treatment using 

two drugs. These protocols work for treatment using cytotoxic or cytostatic drugs. An 

interesting avenue for future research would be to be able to combine drugs with different 

mechanism of actions in a single treatment cycle, and developing treatment schedules 

that combines a single or multiple drugs. Possible avenues for future research would be to 

investigate adaptive therapy using 3 or more drugs, possibly utilizing optimal control and 

other machine learning approaches. Because adaptive therapy has so much potential to 

transform personalized medicine, it would be interesting to use patient-specific data to 

calibrate the models and develop personalized regimens for the particular cancer patient. 
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Extending the model to 3-dimesnisons, simulating both normal and cancer cells, as well 

as blood vessels, and other tissue architecture are potential future directions for this 

project. One of our goal was to be able to transform cancer from an acute and lethal 

disease that ultimately kills us to a chronic diseases that do not kill us. Our results suggest 

adaptive therapy might be able to achieve that goal and this transform healthcare. 
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In this document I present: 
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   188 

Figure S1. Role of Delta Tumor parameter in determining outcome of fixed-
dose (FD) adaptive therapy protocols. For FD Dose-Skipping/Drug-Holiday, 
delta tumor is percentage change in tumor burden relative to the last 
measurement, such that a fixed dosage of the drugs is administered if the tumor 
burden exceeds the threshold, and treatment is skipped otherwise, default value 
being 10%. For FD Intermittent, Delta Tumor is the absolute value at which 
treatment is stopped relative to the baseline for treatment initiation, default being 
stopping treatment when tumor shrinks to 50% of the initial baseline for treatment 
initiation. The Fixed Dose (FD) protocols. A. FD Dose-Skipping/Drug-Holiday, B. 
FD intermittent are defined in the text. 
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Figure S2. Survival curves when cells can undergo forward mutation to 
resistance phenotypes but no reverse mutations. Dose modulation (DM) 
adaptive therapy protocols still work better than fixed dose (FD) adaptive therapy 
protocols. 
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Figure S3. Survival curves when the doubling time of each cell type is 
increased by one order of magnitude relative to the default values, 
representing slow tumor doubling times. Note all therapies prevent 
progression for much longer than the 200 days we tested in previous 
experiments. Dose modulation (DM) adaptive therapy protocols and fixed dose 
(FD) adaptive therapy protocols are mostly equivalent to standard treatment 
(ST), though FD Dose-Skipping/Drug-Holiday is better, and DM Cocktail Tandem 
is worse.  

Table S1: Hazard ratios along with the 95% confidence intervals (c.i.), p-values, 
and test for proportionality of hazards p-values  for various dose-modulation and 
fixed-dose adaptive therapy protocols relative to standard treatment (ST). 
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Protocol Hazard Ratio 
(95% c.i.) relative 
to standard 
treatment 

p value Test for 
proportionality of 
hazards p value 

DM Cocktail 0.25 (0.18-0.35) <0.001 0.0016 

DM Ping-Pong 
Alternate Every 
Cycle 

0.26 (0.18-0.38) <0.001 0.66 

DM Ping-Pong 
on Progression 

0.13 (0.08-0.22) <0.001 0.045 

FD Intermittent 1.67 (1.25-2.24) <0.001 1.6e-10 

FD Dose-
Skipping/Drug 
Holiday 

1.65 (1.23-2.21) <0.001 1.2e-7 

Table S2. Hazard ratios along with the 95% confidence intervals (c.i.), p-values, 
and test for proportionality of hazards p-values for Fitness Cost Parameter. 
Abbreviations: n.s. is not significant, ST is standard treatment. 

 

Comparison Hazard Ratio 
(95% c.i.) 

p value Test for 
proportionality 
of hazards p 
value 

ST (5X cost) 
relative to ST 
(3X cost) 

1.47 (1.32-1.64) <0.001 <2e-16 

DM Cocktail (3X 
cost) relative to 
ST (3X cost) 

 n.s. (0.297)  
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DM Cocktail (5X 
cost) relative to 
ST (5X cost) 

0.25 (0.18-0.35) <0.001 0.0016 

DM Cocktail (5X 
cost) relative to 
DM Cocktail (3X 
cost) 

0.09 (0.04-0.18) <0.001 3.5e-8 

DM Ping-Pong 
Alternate Every 
Cycle (3X cost) 
relative to ST 
(3X cost) 

 n.s. (0.706)  

DM Ping-Pong 
Alternate Every 
Cycle (5X cost) 
relative to ST 
(5X cost) 

0.26 (0.18-0.38) <0.001 0.66 

DM Ping-Pong 
Alternate Every 
Cycle (5X cost) 
relative to DM 
Ping-Pong 
Alternate Every 
Dose (3X cost) 

0.35 (0.21-0.56) <0.001 3e-4 

DM Ping-Pong 
on Progression 
(3X cost) 
relative to ST 
(3X cost) 

1.34 (1.00-1.79) 0.0482 0.0052 

DM Ping-Pong 
on Progression 
(5X cost) 
relative to ST 
(5X cost) 

0.13 (0.08-0.22) <0.001 0.045 



   193 

DM Ping-Pong 
on Progression 
(5X cost) 
relative to DM 
Ping-Pong on 
Progression (3X 
cost) 

0.17 (0.09-0.31) <0.001 1.4e-8 

FD Dose-
Skipping/Drug 
Holiday (3X 
cost) relative to 
ST (3X cost) 

1.47 (1.10-1.97) 0.00851 0.092 

FD Dose-
Skipping/Drug 
Holiday (5X 
cost) relative to 
ST (5X cost) 

1.65 (1.23-2.21) <0.001 1.2e-7 

FD Dose-
Skipping/Drug 
Holiday (5X 
cost) relative to 
FD Dose-
Skipping (AT-2) 
(3X cost) 

3.12 (2.03-4.80) <0.001 0.23 

FD Intermittent 
(3X cost) 
relative to ST 
(3X cost)  

 n.s. (0.344)  

FD Intermittent 
(5X cost) 
relative to ST 
(5X cost)  

1.67 (1.25-2.24) <0.001 1.6e-10 

FD Intermittent 
(5X cost) 

28.88 (12.73-
65.54) 

<0.001 0.17 
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relative to FD 
Intermittent (3X 
cost)  

Table S3. Hazard ratios along with the 95% confidence intervals (c.i.), p-values, 
and test for proportionality of hazards p-values for Turnover Parameter. 
Abbreviations: n.s. is not significant, LT is low turnover, HT is high turnover, ST is 
standard treatment. 

 

Comparison Hazard Ratio 
(95% c.i.) 

p value Test for 
proportionality of 
hazards p value 

ST (HT) 
relative to ST 
(LT) 

0.68 (0.61-0.76) <0.001 0.1 

DM Cocktail 
(LT) relative 
to ST (LT) 

0.25 (0.18-0.35) <0.001 0.0018 

DM Cocktail 
(HT) relative 
to ST (HT) 

0.20 (0.13-0.30) <0.001 3.7e-6 

DM Cocktail 
(HT) relative 
to DM 
Cocktail (LT) 

0.29 (0.17-0.49) <0.001 0.62 

DM Ping-
Pong 
Alternate 
Every Cycle 
(LT) relative 
to ST (LT) 

0.27 (0.19-0.40) <0.001 0.31 
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DM Ping-
Pong 
Alternate 
Every Cycle 
(HT) relative 
to ST (HT) 

0.35 (0.24-0.51) <0.001 0.032 

DM Ping-
Pong 
Alternate 
Every Cycle 
(HT) relative 
to DM Ping-
Pong 
Alternate 
Every Dose 
(LT) 

 n.s. (0.424)  

DM Ping-
Pong on 
Progression 
(LT) relative 
to ST (LT) 

0.14 (0.09-0.22) <0.001 0.93 

DM Ping-
Pong on 
Progression 
(HT) relative 
to ST (HT) 

0.22 (0.14-0.34) <0.001 0.072 

DM Ping-
Pong on 
Progression 
(HT) relative 
to DM Ping-
Pong on 
Progression 
(LT) 

 n.s. (0.834)  
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FD Dose-
Skipping/Dru
g Holiday 
(LT) relative 
to ST (LT) 

1.60 (1.19-2.14) 0.00175 2.1e-10 

FD Dose-
Skipping/Dru
g Holiday 
(HT) relative 
to ST (HT) 

1.90 (1.42-2.55) <0.001 8.7e-7 

FD Dose-
Skipping/Dru
g Holiday 
(HT) relative 
to FD Dose-
Skipping (AT-
2) (LT) 

0.61 (0.39-0.93) 0.0234 0.0019 

FD 
Intermittent 
(LT) relative 
to ST (LT) 

1.58 (1.18-2.11) 0.00213 4.5e-7 

FD 
Intermittent 
(HT) relative 
to ST (HT) 

1.44 (1.07-1.92) 0.0151 1.5e-10 

FD 
Intermittent 
(HT) relative 
to FD 
Intermittent 
(LT) 

0.39 (0.26-0.60) <0.001 0.25 

Table S4. Hazard ratios along with the 95% confidence intervals (c.i.), p-values, 
and test for proportionality of hazards p-values for Replacement Parameter. 
Abbreviations: n.s. is not significant, Rep is replacement, ST is standard 
treatment. 
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Comparison Hazard Ratio 
(95% c.i.) 

p value Test for proportionality 
of hazards p value 

ST (50% 
Rep) relative 
to ST (0% 
Rep) 

0.36 (0.32-0.40) <0.001 0.0016 

ST (100% 
Rep) relative 
to ST (50% 
Rep) 

0.83 (0.74-0.92) <0.001 0.11 

DM Cocktail 
(0% Rep) 
relative to ST 
(0% Rep) 

0.32 (0.23-0.43) <0.001 0.011 

DM Cocktail 
(50% Rep) 
relative to ST 
(50% Rep) 

0.25 (0.18-0.35) <0.001 0.0016 

DM Cocktail 
(100% Rep) 
relative to ST 
(100% Rep) 

0.03 (0.01-0.08) <0.001 0.097 

DM Cocktail 
(50% Rep) 
relative to DM 
Cocktail (0% 
Rep) 

0.08 (0.04-0.16) <0.001 0.00033 

DM Cocktail 
(100% Rep) 
relative to DM 

0.05 (0.02-0.15) <0.001 0.87 
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Cocktail (50% 
Rep) 

DM Ping-
Pong 
Alternate 
Every Cycle 
(0% Rep) 
relative to ST 
(0% Rep) 

0.28 (0.20-0.40) <0.001 0.79 

DM Ping-
Pong 
Alternate 
Every Cycle 
(50% Rep) 
relative to ST 
(50% Rep) 

0.26 (0.18-0.38) <0.001 0.66 

DM Ping-
Pong 
Alternate 
Every Cycle 
(100% Rep) 
relative to ST 
(100% Rep) 

0.23 (0.16-0.35) <0.001 0.025 

DM Ping-
Pong 
Alternate 
Every Cycle 
(50% Rep) 
relative to DM 
Ping-Pong 
Alternate (0% 
Rep) 

0.45 (0.27-0.73) 0.00128 0.028 

DM Ping-
Pong 
Alternate 
Every Cycle 

 n.s. 
(0.275) 
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(100% Rep) 
relative to DM 
Ping-Pong 
Alternate 
(50% Rep) 

DM Ping-
Pong on 
Progression 
(0% Rep) 
relative to ST 
(0% Rep) 

0.24 (0.17-0.34) <0.001 0.026 

DM Ping-
Pong on 
Progression 
(50% Rep) 
relative to ST 
(50% Rep) 

0.13 (0.08-0.22) <0.001 0.026 

DM Ping-
Pong on 
Progression 
(100% Rep) 
relative to ST 
(100% Rep) 

0.07 (0.03-0.13) <0.001 0.69 

DM Ping-
Pong on 
Progression 
(50% Rep) 
relative to DM 
Ping-Pong 
Progression 
(0% Rep) 

0.23 (0.13-0.41) <0.001 0.85 

DM Ping-
Pong on 
Progression 
(100% Rep) 
relative to DM 

0.40 (0.17-0.92) 0.0305 0.044 
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Ping-Pong 
Progression 
(50% Rep) 

FD Dose-
Skipping/Dru
g Holiday) 
(0% Rep) 
relative to ST 
(0% Rep) 

 n.s. 
(0.191) 

 

FD Dose-
Skipping/Dru
g Holiday 
(50% Rep) 
relative to ST 
(50% Rep) 

1.65 (1.23-2.21) <0.001 1.2e-7 

FD Dose-
Skipping/Dru
g Holiday 
(100% Rep) 
relative to ST 
(100% Rep) 

 n.s. 
(0.938) 

 

FD Dose-
Skipping/Dru
g Holiday 
(50% Rep) 
relative to FD 
Dose-
Skipping (AT-
2) (0% Rep) 

0.31 (0.21-0.48) <0.001 0.002 

FD Dose-
Skipping/Dru
g Holiday 
(100% Rep) 
relative to FD 
Dose-

0.26 (0.17-0.41) <0.001 0.47 
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Skipping (AT-
2) (50% Rep) 

FD 
Intermittent 
(0% Rep) 
relative to ST 
(0% Rep) 

1.49 (1.12-1.99) <0.0069
6 

0.00043 

FD 
Intermittent 
(50% Rep) 
relative to ST 
(50% Rep) 

1.67 (1.25-2.24) <0.001 1.6e-10 

FD 
Intermittent 
(100% Rep) 
relative to ST 
(100% Rep) 

 n.s. 
(0.294) 

 

FD 
Intermittent 
(50% Rep) 
relative to FD 
Intermittent 
(0% Rep) 

0.15 (0.09-0.25) <0.001 0.089 

FD 
Intermittent 
(100% Rep) 
relative to FD 
Intermittent 
(50% Rep) 

0.25 (0.16-0.40) <0.001 0.96 

Table S5. Hazard ratios along with the 95% confidence intervals (c.i.), p-values, 
and test for proportionality of hazards p-values for Delta Tumor Parameter. 
Abbreviations: n.s. is not significant, ST is standard treatment. 
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Comparison Hazard Ratio 
(95% c.i.) 

p value Test for 
proportionality of 
hazards p value 

DM Cocktail 
(Delta Tumor 
5%) relative to 
ST 

 n.s. (0.982)  

DM Cocktail 
(Delta Tumor 
10%) relative to 
ST 

0.25 (0.18-0.35) <0.001 0.0016 

DM Cocktail 
(Delta Tumor 
20%) relative to 
ST 

0.57 (0.43-0.76) <0.001 3.2e-7 

DM Cocktail 
(Delta Tumor 
40 %) relative 
to ST 

 n.s. (0.166)  

DM Cocktail 
(Delta Tumor 
10%) relative to 
DM Cocktail 
(Delta Tumor 
5%) 

 n.s. (0.996)  

DM Cocktail 
(Delta Tumor 
20%) relative to 
DM Cocktail 
(Delta Tumor 
10%) 

11.68 (5.61-
24.32) 

<0.001 7e-9 
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DM Cocktail 
(Delta Tumor 
40%) relative to 
DM Cocktail 
(Delta Tumor 
20%) 

6.73 (3.74-12.11) <0.001 4.3e-5 

DM Ping-Pong 
Alternate Every 
Cycle (Delta 
Tumor 5%) 
relative to ST 

0.31 (0.22-0.44) <0.001 0.5 

DM Ping-Pong 
Alternate Every 
Cycle (Delta 
Tumor 10%) 
relative to ST 

0.26 (0.18-0.38) <0.001 0.66 

DM Ping-Pong 
Alternate Every 
Cycle (Delta 
Tumor 20%) 
relative to ST 

0.50 (0.37-0.68) <0.001 0.053 

DM Ping-Pong 
Alternate Every 
Cycle (Delta 
Tumor 40 %) 
relative to ST 

0.67 (0.50-0.90) 0.00795 4.2e-7 

DM Ping-Pong 
Alternate Every 
Cycle (Delta 
Tumor 10%) 
relative to DM 
Ping-Pong 
Alternate Every 
Cycle (Delta 
Tumor 5%) 

 n.s. (0.397)  
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DM Ping-Pong 
Alternate Every 
Cycle (Delta 
Tumor 20%) 
relative to DM 
Ping-Pong 
Alternate Every 
Cycle (Delta 
Tumor 10%) 

1.97 (1.22-3.18) 0.00571 0.097 

DM Ping-Pong 
Alternate Every 
Cycle (Delta 
Tumor 40%) 
relative to DM 
Ping-Pong 
Alternate Every 
Cycle (Delta 
Tumor 20%) 

 n.s. (0.0517)  

DM Ping-Pong 
on Progression 
(Delta Tumor 
5%) relative to 
ST 

0.09 (0.05-0.16) <0.001 0.0018 

DM Ping-Pong 
on Progression 
(Delta Tumor 
10%) relative to 
ST 

0.13 (0.08-0.22) <0.001 0.045 

DM Ping-Pong 
on Progression 
(Delta Tumor 
20%) relative to 
ST 

0.40 (0.29-0.55) <0.001 0.82 

DM Ping-Pong 
on Progression 

 n.s. (0.545)  
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(Delta Tumor 
40 %) relative 
to ST 

DM Ping-Pong 
on Progression 
(Delta Tumor 
10%) relative to 
DM Ping-Pong 
on Progression 
(Delta Tumor 
5%) 

 n.s. (0.356)  

DM Ping-Pong 
on Progression 
(Delta Tumor 
20%) relative to 
DM Ping-Pong 
on Progression 
(Delta Tumor 
10%) 

3.20 (1.80-5.68) <0.001 0.018 

DM Ping-Pong 
on Progression 
(Delta Tumor 
40%) relative to 
DM Ping-Pong 
on Progression 
(Delta Tumor 
20%) 

2.71 (1.71-4.28) <0.001 0.022 

FD Dose-
Skipping/Drug 
Holiday (Delta 
Tumor 5%) 
relative to ST 

1.50 (1.12-2.01) 0.00631 4.2e-8 

FD Dose-
Skipping/Drug 
Holiday (Delta 

1.65 (1.23-2.21) <0.001 1.2e-7 
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Tumor 10%) 
relative to ST 

FD Dose-
Skipping/Drug 
Holiday (Delta 
Tumor 20%) 
relative to ST 

1.45 (1.11-1.98) 0.00832 0.00015 

FD Dose-
Skipping/Drug 
Holiday (Delta 
Tumor 40 %) 
relative to ST 

1.59 (1.18-2.12) 0.00196 1.6e-6 

FD Dose-
Skipping/Drug 
Holiday (Delta 
Tumor 10%) 
relative to FD 
Dose-Skipping 
(AT-2) (Delta 
Tumor 5%) 

 n.s. (0.484)  

FD Dose-
Skipping/Drug 
Holiday (Delta 
Tumor 20%) 
relative to FD 
Dose-Skipping 
(AT-2) (Delta 
Tumor 10%) 

 n.s. (0.254)  

FD Dose-
Skipping/Drug 
Holiday (Delta 
Tumor 40%) 
relative to FD 
Dose-Skipping 
(AT-2) (Delta 
Tumor 20%) 

 n.s. (0.51)  



   207 

FD Intermittent 
(Stop At 50% 
of Start) 
relative to ST 

1.67 (1.25-2.24) <0.001 1.6e-10 

FD Intermittent 
(Stop At 80% 
of Start) 
relative to ST 

1.45 (1.08-1.94) 0.0127 1.6e-8 

FD Intermittent 
(Stop At 90% 
of Start) 
relative to ST 

 n.s. (0.154)  

FD Intermittent 
(Stop At 95% 
of Start) 
relative to ST 

 n.s. (0.0558)  

FD Intermittent 
(Stop At 80% 
of Start) 
relative to FD 
Intermittent 
(Stop At 50% 
of Start) 

 n.s. (0.0767)  

FD Intermittent 
(Stop At 90% 
of Start) 
relative to FD 
Intermittent 
(Stop At 80% 
of Start) 

 n.s. (0.13)  

FD Intermittent 
(Stop At 95% 
of Start) 
relative to FD 

 n.s. (0.432)  
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Intermittent 
(Stop At 90% 
of Start) 

Table S6. Hazard ratios along with the 95% confidence intervals (c.i.), p-values, 
and test for proportionality of hazards p-values for Delta Dose Parameter. 
Abbreviations: n.s. is not significant, ST is standard treatment. 

 

Comparison Hazard Ratio (95% 
c.i.) 

p value Test for 
proportionality of 
hazards p value 

DM Cocktail 
(Delta Dose 
25%) relative to 
ST 

 n.s. (0.355)  

DM Cocktail 
(Delta Dose 
50%) relative to 
ST 

0.34 (0.24-0.47) <0.001 1.2e-5 

DM Cocktail 
(Delta Dose 
75%) relative to 
ST 

0.40 (0.29-0.54) <0.001 3.3e-9 

DM Cocktail 
(Delta Dose 
50%) relative to 
DM Cocktail 
(Delta Dose 
25%) 

0.09 (0.04-0.18) <0.001 1.2e-6 

DM Cocktail 
(Delta Dose 
75%) relative to 
DM Cocktail 

1.74 (1.13-2.67) 0.0112 0.68 
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(Delta Tumor 
50%) 

DM Ping-Pong 
Alternate Every 
Cycle (Delta 
Dose 25%) 
relative to ST 

0.37 (0.26-0.53) <0.001 0.79 

DM Ping-Pong 
Alternate Every 
Cycle (Delta 
Dose 50%) 
relative to ST 

0.46 (0.33-0.64) <0.001 0.0018 

DM Ping-Pong 
Alternate Every 
Cycle (Delta 
Dose 75%) 
relative to ST 

0.39 (0.27-0.55) <0.001 0.069 

DM Ping-Pong 
Alternate Every 
Cycle (Delta 
Dose 50%) 
relative to DM 
Ping-Pong 
Alternate Every 
Cycle (Delta 
Dose 25%) 

 n.s. (0.306)  

DM Ping-Pong 
Alternate Every 
Cycle (Delta 
Dose 75%) 
relative to DM 
Ping-Pong 
Alternate Every 
Cycle (Delta 
Tumor 50%) 

 n.s. (0.451)  
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DM Ping-Pong 
on Progression 
(Delta Dose 
25%) relative to 
ST 

0.13 (0.08-0.23) <0.001 0.021 

DM Ping-Pong 
on Progression 
(Delta Dose 
50%) relative to 
ST 

0.15 (0.09-0.25) <0.001 0.00064 

DM Ping-Pong 
on Progression 
(Delta Dose 
75%) relative to 
ST 

0.29 (0.20-0.44) <0.001 0.085 

DM Ping-Pong 
on Progression 
(Delta Dose 
50%) relative to 
DM Ping-Pong 
on Progression 
(Delta Dose 
25%) 

 n.s. (0.754)  

DM Ping-Pong 
on Progression 
(Delta Dose 
75%) relative to 
DM Ping-Pong 
on Progression 
(Delta Tumor 
50%) 

 n.s. (0.0795)  

Table S7. Hazard ratios along with the 95% confidence intervals (c.i.), p-values, 
and test for proportionality of hazards p-values for Treatment Vacation 
Parameter. Abbreviations: n.s. is not significant, ST is standard treatment. 
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Comparison Hazard Ratio 
(95% c.i.) 

p value Test for proportionality 
of hazards p value 

DM Cocktail 
(Treat Vacation 
at 10% of start) 
relative to ST 

1.95 (1.45-2.61) <0.001 0.00014 

DM Cocktail 
(Treat Vacation 
at 50% of start) 
relative to ST 

0.25 (0.18-0.35) <0.001 0.0016 

DM Cocktail 
(Treat Vacation 
at 80% of start) 
relative to ST 

0.19 (0.13-0.26) <0.001 2.1e-8 

DM Cocktail 
(Treat Vacation 
at 50% of start) 
relative to DM 
Cocktail (Treat 
Vacation at 10% 
of start) 

0.05 (0.02-0.11) <0.001 0.019 

DM Cocktail 
(Treat Vacation 
at 80% of start) 
relative to DM 
Cocktail (Treat 
Vacation at 50% 
of start) 

 n.s. 
(0.0966) 

 

DM Ping-Pong 
Alternate Every 
Cycle (Treat 
Vacation at 10% 
of start) relative 
to ST 

 n.s.(0.27
7) 
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DM Ping-Pong 
Alternate Every 
Cycle (Treat 
Vacation at 50% 
of start) relative 
to ST 

0.26 (0.18-0.38) <0.001 0.66 

DM Ping-Pong 
Alternate Every 
Cycle (Treat 
Vacation at 80% 
of start) relative 
to ST 

0.19 (0.13-0.28) <0.001 0.0031 

DM Ping-Pong 
Alternate Every 
Cycle (Treat 
Vacation at 50% 
of start) relative 
to DM Ping-
Pong Alternate 
Every Cycle 
(Treat Vacation 
at 10% of start) 

0.25 (0.15-0.40) <0.001 0.46 

DM Ping-Pong 
Alternate Every 
Cycle (Treat 
Vacation at 80% 
of start) relative 
to DM Ping-
Pong Alternate 
Every Cycle 
(Treat Vacation 
at 50% of start) 

 n.s. 
(0.31) 

 

DM Ping-Pong 
on Progression 
(Treat Vacation 
at 10% of start) 
relative to ST 

1.38 (1.03-1.84) 0.0311 0.096 



   213 

DM Ping-Pong 
on Progression 
(Treat Vacation 
at 50% of start) 
relative to ST 

0.13 (0.08-0.22) <0.001 0.045 

DM Ping-Pong 
on Progression 
(Treat Vacation 
at 80% of start) 
relative to ST 

0.16 (0.11-0.25) <0.001 0.19 

DM Ping-Pong 
on Progression 
(Treat Vacation 
at 50% of start) 
relative to DM 
Ping-Pong on 
Progression 
(Treat Vacation 
at 10% of start) 

0.13 (0.07-0.24) <0.001 0.73 

DM Ping-Pong 
on Progression 
(Treat Vacation 
at 80% of start) 
relative to DM 
Ping-Pong on 
Progression 
(Treat Vacation 
at 50% of start) 

 n.s. 
(0.76) 

 

Table S8: Hazard ratios along with the 95% confidence intervals (c.i.), p-values, 
and test for proportionality of hazards p-values  for various dose-modulation and 
fixed-dose adaptive therapy protocols relative to standard treatment (ST) under 
conditions when cells can undergo forward mutations only but no reverse 
mutations. 
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Protocol Hazard Ratio 
(95% c.i.) relative 
to standard 
treatment 

p value Test for proportionality 
of hazards p value 

DM Cocktail 0.33 (0.24-0.45) <0.001 1.3e-7 

DM Ping-Pong 
Alternate Every 
Cycle 

0.46 (0.33-0.64) <0.001 0.59 

DM Ping-Pong 
on Progression 

0.30 (0.20-0.44) <0.001 0.38 

FD Intermittent 1.79 (1.33-2.40) <0.001 1.1e-12 

FD Dose-
Skipping/Drug 
Holiday 

1.67 (1.24-2.24) <0.001 9.1e-12 

Table S9: Hazard ratios along with the 95% confidence intervals (c.i.), p-values, 
and test for proportionality of hazards p-values  for various dose-modulation and 
fixed-dose adaptive therapy protocols relative to standard treatment (ST) under 
conditions when the doubling time of each cell type is increased by one order of 
magnitude relative to the default values. 

 

Protocol Hazard Ratio 
(95% c.i.) 
relative to 
standard 
treatment 

p value Test for proportionality of 
hazards p value 

DM Cocktail 1.62 (1.21-2.17) 0.0011 0.016 

DM Ping-Pong 
Alternate Every 
Cycle 

0.88 (0.66-1.19) n.s. (0.42) 0.33 
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DM Ping-Pong 
on Progression 

1.00 (0.75-1.33) n.s. 
(0.997) 

0.018 

FD Intermittent 1.00 (0.75-1.34) n.s. 
(0.997) 

1.7e-6 

FD Dose-
Skipping/Drug 
Holiday 

0.31 (0.21-0.44) <0.001 0.95 
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CONTRIBUTIONS TO CHAPTERS 2, 4, & 5 
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