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ABSTRACT  

 

 This dissertation focused on the implementation of urine diversion systems in 

commercial and institutional buildings in the United States with a focus on control of the 

urea hydrolysis reaction. Urine diversion is the process by which urine is separately 

collected at the source in order to realize system benefits, including water conservation, 

nutrient recovery, and pharmaceutical removal. Urine diversion systems depend greatly 

on the functionality of nonwater urinals and urine diverting toilets, which are needed to 

collect undiluted urine. However, the urea hydrolysis reaction creates conditions that lead 

to precipitation in the fixtures due to the increase in pH from 6 to 9 as ammonia and 

bicarbonate are produced.   

 Chapter 2 and Chapter 3 describes the creation and use of a cyber-physical system 

(CPS) to monitor and control urea hydrolysis in the urinal testbed. Two control logics 

were used to control urea hydrolysis in realistic restroom conditions. In the experiments, 

acid was added to inhibit urea hydrolysis during periods of high and low building 

occupancy. These results were able to show that acid should be added based on the 

restroom use in order to efficiently inhibit urea hydrolysis.  

 Chapter 4 advanced the results from Chapter 3 by testing the acid addition control 

logics in a real restroom with the urinal-on-wheels. The results showed that adding acid 

during periods of high building occupancy equated to the least amount of acid added and 

allowed for urea hydrolysis inhibition. This study also analyzed the bacterial 

communities of the collected urine and found that acid addition changed the structure of 

the bacterial communities.  
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 Chapter 5 showed an example of the capabilities of a CPS when implemented in 

CI buildings. The study used data mining methods to predict chlorine residuals in premise 

plumbing in a CI green building. The results showed that advance modeling methods 

were able to model the system better than traditional methods. These results show that 

CPS technology can be used to illuminate systems and can provide information needed to 

understand conditions within CI buildings.  
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CHAPTER 1  

INTRODUCTION 

 

In recent years, water scarcity and drought has affected large areas of the 

southwest and southern United States and it is expected that climate change will 

exacerbate water issues across the country (Georgakakos et al., 2014). As cities face 

variable water quantity, policymakers have implemented programs for water conservation 

and have explored new water sources that can be added to their portfolios, such as 

indirect potable reuse (National Research Council, 2012). As one such solution, drinking 

water treatment plants have invested in source water protection programs to ensure that 

available water supplies are treatable to drinking water standards (Price & Heberling, 

2018). The building construction industry has also responded to calls for water 

conservation and resource efficiency by creating certification programs focused on green 

design, such as the U.S. Green Building Council’s Leadership in Energy and 

Environmental Design (LEED) program (US Green Building Council, 2019). 

Approximately 17% of public water supplies in the United States are used in commercial 

and industrial (CI) buildings (US Environmental Protection Agency, 2012). This includes 

office buildings, hotels, restaurants, hospitals, and schools. Within the wide variety of CI 

buildings, the largest amount of water (approximately 30%) is used for restrooms and 

domestic use (US Environmental Protection Agency, 2012). Therefore, water savings 

within restrooms are an area of focus for those seeking to lower their environmental 

impact. 
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Urine diversion has been proposed as a process for source water protection, via 

diversion of nutrients and micropollutants, and water conservation, via the collection of 

urine without the use of flush water in urinals and toilets (Larsen & Gujer, 1996). Urine 

diversion is the process by which urine is separately collected at the source in order to 

capture its many benefits, with one being water conservation. Landry and Boyer found 

that campus wide implementation of urine diversion at the University of Florida would 

equate to potable water savings of 69,000,000 gallons and $231,000 per year for the 

university, while reducing energy and resource demands at the water treatment facility 

(Landry & Boyer, 2016). Additionally, removing the urine stream from wastewater 

collection dramatically changes the composition of wastewater entering wastewater 

treatment plant, which provides the opportunity to reduce energy and resource 

consumption (Jimenez, Bott, Love, & Bratby, 2015). This is largely due to the fact that 

urine contributes 80% of the nitrogen (N) and 50% of the phosphorus (P) to wastewater 

treatment plants, while only contributing to 1% of the volumetric flow (Wilsenach & van 

Loosdrecht, 2006). Rauch et al. also showed that diverting human urine from wastewater 

collection could reduce peak ammonia loads by as much as 30%, eliminating the need for 

expansion of centralized wastewater treatment infrastructure (Rauch, Brockmann, Peters, 

Larsen, & Gujer, 2003). Hence, urine diversion becomes a solution for the inefficient 

removal of nutrients during wastewater treatment that leads to eutrophication of natural 

water ways (Anderson, Glibert, & Burkholder, 2002; Lapointe, Herren, Debortoli, & 

Vogel, 2015; Van Drecht, Bouwman, Harrison, & Knoop, 2009). Once urine is collected, 

nutrient recovery technologies can be used to recover a sustainable source for fertilizers 

and other N, P, and K products. One of the most studied technologies for nutrient 
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recovery from human urine is struvite precipitation for phosphorus recovery, which is a 

relatively simple technology requiring the addition of magnesium at a 1:1 molar ratio to 

precipitate NH4MgPO4·6H2O (Etter, Tilley, Khadka, & Udert, 2011; Kabdaşlı et al., 

2006; Ronteltap, Maurer, & Gujer, 2007; K. M. Udert, Larsen, & Gujer, 2003b). 

Moreover, due to the aforementioned benefits of urine diversion, technology 

development has led to the creation of systems for recovery of nutrients via a wide 

variety of physical, chemical, and electrochemical systems (Patel, Mungray, & Mungray, 

2020).  

As stated above, urine diversion also provides the opportunity to remove 

pharmaceuticals and micropollutants prior to conventional wastewater treatment. Urine 

diversion allows for targeted pharmaceutical removal because approximately 64% of 

pharmaceuticals used by humans are excreted in urine as the active ingredient (Lienert, 

Burki, & Escher, 2007). Concern for pharmaceutical pollution has been increasingly 

covered by the U.S. media, with a major focus being on their effects on “public health 

and harm to the environment” (Blair, Zimny-Schmitt, & Rudd, 2017). Novel 

technologies, such as ion exchange and biochar adsorption, and advanced oxidation, have 

been proposed as methods for removal of pharmaceuticals in human urine (Landry, Sun, 

Huang, & Boyer, 2015; Solanki & Boyer, 2017; Zhang, Sun, Boyer, Zhao, & Huang, 

2015). As such, urine diversion is a process by which the benefits of water conservation, 

nutrient recovery, and targeted pharmaceutical removal are possible, but specific hurdles 

impeding the implementation of these systems exist that need to be studied prior to 

adoption of the process. 
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The first step in the process of urine diversion is the separation and collection of 

undiluted urine at the source. It is imperative to have seamless and functional collection, 

as it is the first step in the process (Boyer & Saetta, 2019). It is also imperative to collect 

undiluted urine, as the addition of dilution water creates conditions that lead to the failure 

of the collection fixtures (Liu, Wen, Wang, Zhu, & Hu, 2014; K. M. Udert, Larsen, & 

Gujer, 2003b). However, urine-collecting fixtures, i.e., nonwater urinals and urine 

diverting toilets, have been shown to malfunction under real operation when precipitation 

leads to clogging in the fixtures and collection pipes (Abeysuriya, Fam, & Mitchell, 

2013; Berndtsson, 2006; Bristow, McClure, & Fisher, 2006). Urine enters the collection 

system as fresh urine, which is excreted at pH 57 (Putnam, 1971). As it comes in 

contact with the restroom environment, bacterial and free urease enzyme rapidly 

hydrolyzes the urea molecule to form ammonia and bicarbonate, a chemical reaction 

known as urea hydrolysis (K. M. Udert, Larsen, Biebow, & Gujer, 2003).  

 

(𝑁𝐻3)2𝐶𝑂 +  3𝐻2𝑂 
𝑢𝑟𝑒𝑎𝑠𝑒
→    2𝑁𝐻4

+ + 𝐻𝐶𝑂3
− + 𝑂𝐻− 

 

The addition of ammonia into solution increases the pH from 57 to pH 9 and increases 

the conductivity as charged ions are added to solution (K. M. Udert, Larsen, Biebow, et 

al., 2003). At pH 9, calcium and magnesium solids, such as struvite and hydroxyapatite, 

become supersaturated and precipitate. These hard crystals lead to clogging within the 

collection systems, beginning at the urinals and toilets. Ironically, these crystals are the 

slow-release fertilizer product recovered during struvite precipitations from urine and are 
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therefore a loss in nutrients that can be recovered with subsequent nutrient recovery 

technologies (Ronteltap et al., 2007). Nitrogen losses also become apparent as ammonia 

volatilizes in the collection systems (Rossi, Lienert, & Larsen, 2009). Therefore, 

inhibiting urea hydrolysis is a manner of maintaining the function of nonwater fixtures 

and increasing the efficiency of nutrient recovery, i.e., reducing clogging reducing losses 

of nutrients due to precipitation and ammonia volatilization (Hannah Ray, Saetta, & 

Boyer, 2017; Saetta & Boyer, 2017). Research has proven two methods for urea 

hydrolysis inhibition in urine diversion systems: (1) acid addition and (2) base addition to 

increase or decrease pH above or below the activity limit of the urease enzyme 

(Hellstrom, Johannson, & Grennberg, 1999; Jonsson & Vinneras, 2007; Dyllon G. 

Randall, Krähenbühl, Köpping, Larsen, & Udert, 2016; Hannah Ray et al., 2017; Saetta 

& Boyer, 2017; Senecal & Vinnerås, 2017). Past research by Saetta and Boyer and Ray et 

al. has used acetic acid addition because it does not cause any additional precipitation that 

could harm the collection system (Hannah Ray et al., 2017; Saetta & Boyer, 2017). Saetta 

and Boyer were able to show that the viability of acid addition at the urinal with the 

proof-of-concept study published in 2017. Conversely, calcium hydroxide addition has 

been shown to successfully inhibit urea hydrolysis with an added benefit of precipitating 

calcium phosphate in collection tanks (Dyllon G. Randall et al., 2016). However, if added 

at the urinal or toilet, as proposed with acetic addition in this dissertation, precipitation in 

the collection system would hinder the effectiveness of the inhibition chemical. Hence, 

acid addition needs to be explored as a way to increase the function of nonwater urinals 

for continued water conservation and future implementation of urine diversion system. 
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While the opportunities and drivers exist for urine diversion, a gap exists between 

research and implementation of the process (see Figure 1-1). This PhD dissertation will 

propose use the use of cyber-enabled technology as a bridge between the operation and 

the function of the system in an effort to increase the adoption of urine diversion systems. 

Cyber-physical systems (CPSs) are the integration of cyber-enabled technologies with 

physical systems, which are connected via communication technologies (Baheti & Gill, 

2011). A CPS designed to control urea hydrolysis in urine diversion systems could be a 

tool by which the opportunities of urine diversion are actualized at the building-scale. 

Additionally, a CPS can collect data needed to create data driven models for control of 

urine diversion systems. Eggimann et al. proposes that real time control and model 

predictive control has the ability to awaken existing infrastructure by augmenting systems 

that have been viewed as passive components of our aging infrastructure (Eggimann et 

al., 2017). A horizon scan of urban wastewater management found that resource 

recovery, decentralization, and real-time models were among the top 10 most important 

topics in the field (Blumensaat et al., 2019). This dissertation proposes that data driven 

models can be used to enlighten conditions within the built environment that can be used 

to control urine diversion systems and water system within CI buildings.  
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Figure 1-1. The benefits and challenges of urine diversion system implementation 

identified in the literature and previous research. The system components are proposed to 

ensure functionality within urine diversion systems. 

 

Thus, the implementation and adoption of urine diversion systems in commercial 

and institutional buildings is highly dependent on the functionality of the collection 

system. The goal of this dissertation was to advance the knowledge of urea hydrolysis 

process and its inhibition so as to (1) maintain and expand the use of nonwater urinals for 

water conservation in conventional building plumbing and (2) advance the 

implementation of urine diversion in the United States. The specific objectives of this 

research will be answered with the following questions: 

1. Can a cyber-physical system monitor and control urea hydrolysis in 

nonwater urinals? 

2. How can urea hydrolysis be monitored and controlled in real time in 

commercial and institutional buildings?  

3. How does urine chemistry and microbiology change as real urine is 

treated with acetic acid for urea hydrolysis inhibition? 
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4. How can data driven models advance the implementation of novel water 

and wastewater systems? 
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CHAPTER 2  

WATER AND WASTEWATER BUILDING CPS: CREATION OF CYBER-

PHYSICAL WASTEWATER COLLECTION SYSTEM CENTERED ON URINE 

DIVERSION 

 

Text from: Saetta, D., Padda, A., Li, X., Leyva, C., Mirchandani, P. B., Boscovic, D., & 

Boyer, T. H. (2019). Water and Wastewater Building CPS: Creation of Cyber-Physical 

Wastewater Collection System Centered on Urine Diversion. IEEE Access, 7, 182477-

182488. doi:10.1109/ACCESS.2019.2959992 

Abstract 

Decentralized treatment of wastewater has been identified as an area of growth for 

cyber-enabled sensing and control. One such system that would benefit from embedded 

cyber components is urine diversion. This research sought to create a cyber-physical 

system for wastewater collection and treatment. Two subsystems were integrated into the 

CPS: sensing and actuation. Real-time sensing using low-cost pH and conductivity 

sensors was used to monitor urine chemistry. Actuation was used to deliver urine to the 

system and to control urine chemistry. Once integrated, the system used the sensing data 

to determine when to actuate urine chemistry control pumps. By using urine diversion as 

a test case, two demonstrations were able to show the applicability of the system created. 

The first demonstration was able to characterize the flow characteristics of the physical 

system. The second demonstration was able to mimic and inhibit urea hydrolysis under 

realistic conditions. Ultimately, the use of this novel CPS approach was able to confirm 

the benefits of sensing and actuation in wastewater collection and treatment within 

buildings. 
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Introduction 

“Cyber-physical systems (CPS) are integrations of computation, networking, and 

physical processes. Embedded computers and networks monitor and control the physical 

processes, with feedback loops where physical processes affect computations and vice 

versa,”(Lee, 2008) with application domains in: communication, security, energy, 

infrastructure, health care, manufacturing, military robotics, and transportation (Asare, 

Broman, Lee, Torngren, & Sunder, 2012; Baheti & Gill, 2011; Ponsard, Dallons, & 

Massonet, 2016; Volkan, Steffen, Tony, & Frank, 2014). A particular focus of CPS is 

cities and the movement toward “smart” cities. For example, sensor networks can be 

deployed throughout cities to monitor air quality and inform residents of unsafe levels of 

pollutants and appropriate level of outdoor activity (Bacco, Delmastro, Ferro, & Gotta, 

2017). Underrepresented in CPS research is application to drinking water and wastewater 

systems. For instance, an article on the applications of water CPS for water sustainability 

highlights source water quality monitoring and water distribution system monitoring, and 

mentions control technologies as an area of future research (Z. Wang et al., 2015). 

Although monitoring water flow and water composition can provide useful information 

about the system, control is needed to make the system “smart” for smart cities 

applications. 

Water and wastewater systems are poised to leverage the advances in electronics 

and computer science that is exemplified by CPS. For example, Eggimann et al. discuss 

how a CPS approach could transform urban water management where sensing and data-

driven modeling could be used to monitor and control weather, flooding, green 

infrastructure, wastewater collection and treatment, and decentralized treatment 
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(Eggimann et al., 2017). However, just like the article on CPS applications to water 

sustainability (Z. Wang et al., 2015), the paper by Eggimann et al. is mostly at the idea 

stage and lacking experimental testing and verification. Finally, Blumensaat et al. 

conducted a horizon scan of urban water management to identify future opportunities and 

threats many of which centered on data—emerging data, interaction of data and 

stakeholders, and data-driven modeling (Blumensaat et al., 2019). Again, the horizon 

scan was focused on the idea stage and not demonstrations of CPS for water 

management.  

One area that Eggimann et al. identify as an area of growth for CPS applications 

is decentralized wastewater treatment. Decentralized treatment allows for separation of 

valuable waste streams at the source of production. One such example is urine diversion, 

whereby urine is passively separated from wastewater at the point of collection by using 

nonwater urinals or urine-diverting toilets and separate collection pipes from those 

conveying wastewater to a wastewater treatment plant (Larsen & Gujer, 1996). Urine is 

stored and treated to recover beneficial nutrient products that would otherwise be 

produced in highly intensive resource and energy processes. Urine diversion systems 

(i.e., collecting urine without flush water) also contribute to water conservation. 

However, due to a naturally occurring reaction called urea hydrolysis, the nitrogen and 

phosphorus in urine are unstable as urine enters a collection system (K. M. Udert, Larsen, 

Biebow, et al., 2003). Urea hydrolysis transforms the urea-nitrogen into ammonia and 

bicarbonate, which raise the pH in urine from 6 to 9. At pH 9, phosphorus-containing 

minerals are more likely to precipitate on the restroom fixtures and pipe networks (K. M. 

Udert, Larsen, Biebow, et al., 2003; K. M. Udert, Larsen, & Gujer, 2003a). This loss of 
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nutrients in the collection system adversely affects the nutrients that can be recovered in 

subsequent technologies, which are seeking to recover the greatest amount of valuable 

product. Controlling urea hydrolysis has been an active research topic, with literature 

pointing to the addition of acid or base as a strategy for inhibiting the reaction (Boyer & 

Saetta, 2019; Hellstrom et al., 1999; Dyllon G. Randall et al., 2016; Saetta & Boyer, 

2017; Simha, Senecal, Nordin, Lalander, & Vinnerås, 2018). As such, a cyber-physical 

system could be of great benefit for urine diversion systems as an automated, cyber-

enable method for controlling the addition of inhibiting chemicals. 

The goal of this research was to create a wastewater subcomponent of a building 

water and wastewater cyber-physical system using urine diversion as a test case. The 

specific objectives were to (1) design cyber-physical system (CPS) to meet wastewater 

collection criteria, (2) construct and implement CPS, (3) evaluate accuracy of CPS, (4) 

demonstrate operation and application of the CPS, and (5) identify the implications of the 

CPS on wastewater systems within buildings. The objectives were accomplished by 

integrating sensors, controllers, actuators, data storage, and data analysis with nonwater 

urinals and wastewater piping. 

System Description 

Biodesign C is a laboratory building on ASU’s Tempe Campus. It was 

constructed to LEED Platinum status and it was opened in May 2018. The building is 

classified under the commercial and institutional (CI) building construction category. CI 

buildings are defined as those that are used for healthcare, education, recreation, public 

works, office space, warehousing, or retail. In CI buildings, water use and wastewater 

production takes place in the restrooms, cooling and heating, and landscaping (US 



  13 

Environmental Protection Agency, 2012). A CPS was created for water and wastewater 

monitoring and control within the building with the premise that building occupancy 

impacts the water use, water quality, and water conservation within the building. 

Research has shown that water quality can change in premise plumbing, with increased 

water age in green buildings being a factor towards decreased water quality (William J. 

Rhoads, Pruden, & Edwards, 2016). Decreasing water use inside the building from water 

conservation increases the water age within the premise plumbing, as less water is 

flowing through pipes to meet indoor water demand. Low-flow water fixtures, such as 

faucets, toilets, and urinals, reduce water use and are features included in LEED buildings 

for water conservation. Yet, the sizing of premise plumbing remains virtually unchanged 

from those found in conventional buildings. The decreased flow within the pipes, due to 

water conservation, and the conventionally sized pipes leads to increased water age and 

reduced water quality (W. J. Rhoads, Pearce, Pruden, & Edwards, 2015). 

 

Figure 2-1. Water and wastewater building CPS for real-time water quality sensing and 

increased nonwater urinal functionality for water conservation. 
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This water and wastewater building CPS seeks to study the changes in water 

chemistry as a function of time and space (see Figure 2-1). With the use of water quality 

sensors, water quality can be monitored and controlled depending on floor-specific data. 

The building has been outfitted with a drinking water CPS, which includes pH, 

conductivity, temperature, chlorine, dissolved oxygen, and oxidation-reduction potential 

(ORP) sensors at every breakroom sink. As stated above, the drinking water system is 

highly influenced by water consumption. In the literature, systems have been described 

that monitoring water quality in the environment and at specific locations, such as within 

buildings or at points throughout the distribution system. However, a major component of 

a CPS are the actions taken from the feedback on the system (Baheti & Gill, 2011) and a 

gap exists in the literature when it comes to including control in environmental 

monitoring. As such, the subcomponent on the CPS monitoring the drinking water within 

the building will fill the gap by controlling water quality via actuating valves. The 

specific design and operation of the drinking water CPS will be described in an upcoming 

research paper. The second subcomponent of the CPS described in this research paper 

seeks to monitor and control urea hydrolysis in nonwater urinals using urine chemistry 

sensing so as to keep their functionality as a method for water conservation. Nonwater 

urinals are a common addition to green buildings because of their ability to conserve 

large amounts of water. Nonwater urinals are also used in urine diversion systems 

because they are able to collect urine without diluting urine with flush water. However, 

past implementation has caused to unforeseen difficulties in management of nonwater 

urinals (Abeysuriya et al., 2013; Blume & Winker, 2011; Bristow et al., 2006). Solutions 

for increased functionality of nonwater urinals are needed to keep nonwater urinals as 
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viable options for water conservation in commercial and institutional buildings and 

ultimately paper of a future urine diversion system (Boyer & Saetta, 2019). 

Experimental Methods 

A. Physical Components 

The urinal testbed held three Kohler Standard Waterless Urinals and three urine 

storage tanks (see Figure 2-2). The urinals were piped with cast iron to mimic the way 

urinals are piped in restrooms in CI buildings. Two P-traps were added to the pipe runs to 

allow for two sampling locations as urine traveled from the urinal to the storage tanks. Each 

urinal had three sampling locations: trap 1, trap 2, and the storage tank. Three solutions 

were delivered to the urinal testbed to mimic urine diversion systems: (1) synthetic fresh 

urine, (2) urease solution, and (3) acetic acid to the urinals. The synthetic fresh urine was 

made following the recipe presented in Saetta & Boyer, 2017 (Saetta & Boyer, 2017). Its 

major components include 500 mM as N of urea, 20 mM of phosphate, 4 mM of calcium, 

and 4 mM of magnesium. The urease solution was made by dissolving 12.64 g of jack bean 

urease (EC 3.5.1.5, Sigma Aldrich, powder, ~1 U/mg) in 250 mL of deionized water (DI). 

The acetic acid solution was made by diluting glacial acetic acid (CH3COOH, Fisher 

Chemicals) to make a 2500 meq/L solution.  

B. Cyber Components 

Sensing of the urine chemistry in the urinal testbed was conducted using low-cost 

sensors and microcomputers. Each urinal used three pH and conductivity sensors from 

Atlas Scientific that were connected to a VizLore U-IoE controller, which holds a 

Raspberry Pi 3 Model B. The three urinal controllers were in communication with the 

cloud, which was responsible to listen to telemetry events from the device, i.e., receive 
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payload and send command to devices from cloud. Google cloud platform was used for 

data analysis and data storage.  The Cloud Datastore is a Not Only Structured Query 

Language (NOSQL) database where the payload from the controllers from each experiment 

was stored. NOSQL is a key value pair store, which can be easily extended to add more 

attributes. This helps in using the same database after adding more sensors to the system 

to add capabilities to the urinal testbed as sensors are developed. The Cloud App Engine 

was used to host the website and to see the datastream during the experiments. The 

controllers were connected to the Internet using an Ethernet connection because of poor 

Wi-Fi connection in the laboratory. Cloud IoT Core was used to authenticate and ingest 

the datastream from the controllers. Cloud IoT Core helps by adding more devices and 

ingesting data from devices in a scalable manner. Each controller was authenticated by a 

using a public private key pair. The controller was connected to Cloud IoT Core via 

Message Queuing Telemetry Transport (MQTT). MQTT was preferred because of lower 

bandwidth usage, lower latency, higher throughput and continuous device connection. 

MQTT also guarantees a Quality of Service 1, which is that the message is delivered at 

least once. This leads to no data loss. Also, a device connection status is maintained which 

helps in knowing whether the device is online or offline. Cloud IoT Core uses Pub/Sub for 

the datastream. The datastream was pushed to an endpoint where the data format was held 

and then stored the data in Cloud Datastore. Another pull on the datastream was done to 

show the data visualization on the website. The controller was controlled from the website 

via Cloud IoT Core Representational State Transfer Application Programming Interfaces 

(REST APIs). REST API helps in transferring data/command from the website to the cloud. 

The cloud further interprets the message and send the appropriate command to the 
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device(s). This also helps in exposing different levels of device control to different users 

in a secure way.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-2. Front and back of urinal testbed. Pumps were used to deliver synthetic urine, 

urease solution, and acetic acid to the three urinals. The sensors were placed inside the 

two P-traps and in the urine storage tanks. 
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Figure 2-3. Urinal testbed cyber-physical system schematic showing two subsystems of 

sensing and actuation. 

 

Three peristaltic pumps were used as actuators on the system. To control the synthetic 

urine pumps a Raspberry Pi 3 was used as the controller running a custom python program. 

A cable assembly was created to connect the DB-25 connection on the pump to the General 

Purpose Input Output (GPIO) outputs on the Raspberry Pi 3, via this connection the pump 

could be started, stopped, and the pumping direction reversed. 

In the cloud, two control logics were used to determine when actuation would occur 

for one of pumps. The first control logic was a reactive control logic that would activate the 

pump once a threshold pH > 7 was reached for 4 consecutive measurements by one of the 

sensors in the first P-trap. The second control logic was a predictive model control logic. 

Four lasso regression models were used to predict the future 4 pH measurements in the first 

P-trap. The lasso regression models used the last 20 pH measurements, the last 20 

conductivity measurements, the time since the last urination event, and the volume of the last 

urination event to predict the following pH measurement. The logics were held on the urinal 

controllers, and data was analyzed based on the logic in use locally. Once the measurements 
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and data met the requirements for the logics, a message was sent from the urinal controllers 

to the pump controller, and the pumps were actuated accordingly. 

Results and Discussion 

A. Design, Construction, and Implementation of the CPS 

The CPS was designed to monitor and control urea hydrolysis in nonwater urinal 

systems. A urinal testbed was built as a representative for nonwater urinal systems in 

commercial and institutional buildings. The cyber components were overlaid on the urinal 

testbed to create the CPS (see Figure 2-3). The first component of the CPS that was designed 

was the actuation control. Actuation on the system is an integral component of a CPS. 

Without actuation, the system cannot respond to the physical components that it is 

monitoring. The CPS designed in this study was able to control the urine chemistry by way 

of activating and pausing the system pumps. The pumps were used to mimic the use of 

nonwater urinals by delivering urine and urease at average volumes. Ultimately, the pump 

system was designed to have three functions: (1) constant inputs at constant frequencies, (2) 

constant inputs at random frequencies, and (3) random inputs at random frequencies. The 

urine and urease delivery pumps acted as a simulator during the creation of the control CPS. 

The variability found in real restrooms would have introduced too many variables, and would 

not have provided the data needed to model the system. Therefore, the urine and urease 

pumps were implemented while the CPS was created and tested, but the pumps for urine and 

urease are not components of implementation of the control CPS once the system is applied 

in the real restrooms. By implementing this simulation of urination events into the urinal 

testbed, the testbed became a tool that could be used to test a myriad of treatments and 

scenarios for urine diversion research. 
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The pump controller was able to control up to 3 pumps at a time and in its original 

iteration could start, stop, or reverse direction on any individual pump. To run an automated 

pumping experiment the program accepted three input values; “On Time”, “Off Time”, and 

“Cycles”. The “On Time” variable determined the pump run time, it would remain off for a 

period determined by the “Off Time” variable in seconds and would repeat for the set number 

of “Cycles.” The second iteration of the pumping program added a random parameter that 

would make the pumping events happen at random intervals. The urination events would 

occur at random intervals between 10–20 min and the urination event duration would also be 

a random variable between 10–40 s for the input number of cycles. There would be a 20 s 

urease addition event immediately following each urination event.  

 

 

Figure 2-4. Architecture of the nonwater urinal CPS. 

 

 The second component of the CPS was the ability to monitor urine chemistry. Two 

measurements, pH and conductivity, have been shown to acts as surrogates for the urea 

hydrolysis reaction when ammonia and urea cannot be directly measured (Hannah Ray et 
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al., 2017). In order to control urea hydrolysis, the CPS had to have the capability of 

measuring pH and conductivity in real-time. The collection pipes for each urinal were 

designed to have two P-traps that would hold urine between urination events. The pH and 

conductivity sensors were placed in the P-traps as a way of monitoring the urine chemistry 

as a function of time and space. The storage tank for each urinal also held a set of pH and 

conductivity sensors as a means of monitoring the urine chemistry as urination events 

occur. When experiments began, the cloud sent a universally unique identifier (UUID) with 

the start message to all the 3 controllers. This UUID was used to give each experiment a 

unique fingerprint. Table 2-1 shows the attributes sent by each controller in each payload 

and Figure 2-4 shows the final architecture of the CPS. 

For the third iteration of the program, a publish-subscribe method was used to listen 

for a message informing the system that pH had risen above the specified set point. When 

this message was received a third, independent from the other two, pumping event would 

be initialized for 20 s to add acetic acid to the system. The system would then ignore 

messages for 10 min and then would return to listening for the message again after that 

time period elapsed. The 10 min cool down period was used as a buffer to prevent acid 

addition overdose, because there was a delay in pH readings as they only change after a 

urination event occurs and moves new liquid into the p-traps where the sensors are located. 

If an acid addition event occurs just after a urination event ends, it could be up to 20 min 

until the next urination event occurs. After the cool down period the program would 

continue to monitor for the acid addition flags until the number of cycles were completed 

for the urine and urease additions. Details on experimental results using the third iteration 

of the system can be found in Saetta et al, 2019 (Saetta et al., 2019a). 



  22 

The system design was compared to systems described in the literature and it can be 

seen that this design fills the gap that exists between the implemented environmental 

monitoring systems and those proposed in papers of the future applications (see Table 2-2). 

The vast majority of papers were focused on monitoring environmental systems with 

sensor networks and data acquisition. While it allows for better understanding of the 

systems, the monitoring alone does not allow for control of the systems as a CPS proposes. 

As the popularity of CPS implementation has grown in energy and air handling systems, 

the water and wastewater field has been slow to implement the control mechanisms in 

conjunction with monitoring systems.  Only five papers proposed the use of monitoring and 

control in environmental applications. The research presented in this paper is the first 

application of CPS in urine diversion systems and can be used as a prototype for 

wastewater monitoring and control within CI buildings. 

Table 2-1. Attributes sent to the cloud with each payload of data 

Attribute Description 

Controller_id <string> Unique identifier to identify the controller 

UUID <string> Unique identifier to identify the experiment number 

datetime <datetime> Datetime when the measurement was taken on controller 

c_data1 <float> Value of conductivity Sensor 1 (in μS/cm) 

c_data2 <float> Value of conductivity Sensor 2 (in μS/cm) 

c_data3 <float> Value of conductivity Sensor 3 (in μS/cm) 

ph_data1 <float> Value of pH Sensor 1 

ph_data2 <float> Value of pH Sensor 2 

ph_data3 <float> Value of pH Sensor 3 

 

 



  23 

B. Accuracy of the CPS 

Data received from the sensors and controllers was compared to data measured with 

benchtop pH and conductivity meters. The sensors were placed in a beaker to monitor the 

pH and conductivity of urine undergoing urea hydrolysis. During urea hydrolysis, the urea 

in urine is hydrolyzed to form ammonia and bicarbonate. The pH of the solution increases 

from 6 to 9 as ammonia is formed and the conductivity increases as more charged ions are 

created (urea is an uncharged organic compound). The reaction is catalyzed by the urease 

enzyme, which was supplied to the urine at t = 0 and at t = 1000 min. The reaction was 

monitored for 22 h and measurements were taken every 1 min. Fig. 2-2 shows the results 

for pH and conductivity measured by the 9 CPS sensors and the benchtop analogs. As seen, 

pH measured by the CPS sensors was less than 1% different from the pH measured by the 

benchtop meter, showing agreement between a known measurement and the CPS sensors 

(i.e., pH). On the contrary, the CPS sensor measurements for conductivity were not in 

alignment with the measurements taken by the benchtop conductivity meter. All 9 CPS 

conductivity sensors were in agreement with each other, while the measurements by the 

benchtop conductivity meter were offset by a constant value. This may be due to 

temperature compensation in the benchtop meters that is not incorporated in the CPS 

sensors. However, the goal of this project was to monitor the changes in urine chemistry 

over time. The CPS sensors were able to observe the trend of increasing conductivity over 

time. 
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Table 2-2. Literature related to environmental monitoring and proposed cps use for water 

or wastewater management 

Reference Year Title 

Monitoring 

location 

Limitations 

(Hart & Martinez, 

2006) 

2006 Environmental Sensor 

Networks: A revolution in the 

earth system science? 

Natural 

environment 

Proposed 

application 

(Eggimann et al., 

2017) 

2017 The Potential of Knowing 

More: A Review of Data-

Driven Urban Water 

Management 

Water and 

wastewater 

Proposed 

application 

(Z. Wang et al., 

2015) 

2017 Cyber-Physical Systems for 

Water Sustainability: 

Challenges and Opportunities 

Water 

environment 

Proposed 

application 

(Boyer & Saetta, 

2019) 

2019 Opportunities for Building-

Scale Urine Diversion and 

Challenges for Implementation 

Urine diversion Proposed 

application 

(Blumensaat et al., 

2019) 

2019 How Urban Storm- and 

Wastewater Management 

Prepares for Emerging 

Opportunities and Threats: 

Digital Transformation, 

Ubiquitous Sensing, New Data 

Sources, and Beyond - A 

Horizon Scan 

Water and 

wastewater 

Proposed 

application 
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(Pule, Yahya, & 

Chuma, 2017) 

2017 Wireless sensor network: A 

survey on monitoring water 

quality 

Water quality Monitoring 

review 

(Kelly, 

Suryadevara, & 

Mukhopadhyay, 

2013) 

2013 Towards the Implementation of 

IoT for Environmental 

Condition Monitoring in 

Homes 

Hot water, power 

consumption 

Monitoring 

(Wu, Kong, & 

Zhang, 2013) 

2013 Water Environment Monitoring 

System Based On ZigBee 

Wireless Sensor Network 

Water quality Monitoring 

(Lambrou, 

Anastasiou, 

Panayiotou, & 

Polycarpou, 2014) 

2014 A Low-Cost Sensor Network 

for Real-Time Monitoring and 

Contamination Detection in 

Drinking Water Distribution 

Systems 

Water quality Monitoring 

(Cloete, Malekian, 

& Nair, 2016) 

2016 Design of Smart Sensors for 

Real-Time Water Quality 

Monitoring 

Water quality Monitoring 

(Bacco et al., 

2017) 

2017 Environmental Monitoring for 

Smart Cities 

Air quality, 

ambient 

conditions, traffic 

Monitoring 

(Csáji, Kemény, 

Pedone, Kuti, & 

Váncza, 2017) 

2017 Wireless Multi-Sensor 

Networks for Smart Cities: A 

Prototype System With 

Statistical Data Analysis 

Air quality, 

ambient 

conditions 

Monitoring 
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(Dong, Meyland, 

& Karaomeroglu, 

2018) 

2017 A Case Study of an 

Autonomous Wireless Sensor 

Network System for 

Environmental Data Collection 

Water quality Monitoring 

(Bhardwaj, Gupta, 

& Gupta, 2018) 

2018 Towards a cyber-physical era: 

soft computing framework 

based multi-sensor array for 

water quality monitoring 

Water quality Monitoring 

(Y. Chen & Han, 

2018) 

2018 Water quality monitoring in 

smart city: A pilot project 

Water quality Monitoring 

 

The reaction was monitored for 22 h and measurements were taken every 1 min. 

Fig. 2-2 shows the results for pH and conductivity measured by the 9 CPS sensors and the 

benchtop analogs. As seen, pH measured by the CPS sensors was less than 1% different 

from the pH measured by the benchtop meter, showing agreement between a known 

measurement and the CPS sensors (i.e., pH). On the contrary, the CPS sensor 

measurements for conductivity were not in alignment with the measurements taken by the 

benchtop conductivity meter. All 9 CPS conductivity sensors were in agreement with each 

other, while the measurements by the benchtop conductivity meter were offset by a 

constant value. This may be due to temperature compensation in the benchtop meters that is 

not incorporated in the CPS sensors. However, the goal of this project was to monitor the 

changes in urine chemistry over time. The CPS sensors were able to observe the trend of 

increasing conductivity over time. 
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Figure 2-5.  pH and conductivity results comparing CPS sensors to benchtop meter 

measurements. Each CPS sensors is denoted as the PXCY or CXCY where X 

corresponds to the sensor number and Y corresponds to the controller number. There 

were 3 sensors per controller. 
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Figure 2-6.  Conductivity measurements in Trap 1 for the three urinals on the urinal 

testbed. Tracer tests were run for urination events every (a) 3 min, (b) 10 min, and (c) 30 

min. A sodium chloride solution was pumped into the urinals after 20, 5, and 3 urination 

events, respectively. 
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C. Demonstration and application of the CPS 

Once the CPS sensor accuracy was established, the CPS was used in two 

demonstration experiments to illustrate the range of capabilities and new insights that could 

be gained with a CPS of this design. The first demonstration experiment was used to 

characterize the flow in the urinal testbed as plug flow reactor (PFR) versus completely 

mixed flow reactor (CMFR). A PFR is an ideal reactor type where there is no mixing in the 

direction of flow (Howe, Hand, Crittenden, Trussell, & Tchobanoglous, 2012). A CMFR is 

a second ideal reactor type that has uniform conditions within the reactor, as reactants 

instantaneously mixes with the contents within the reactor (Howe et al., 2012). In ideal 

conditions, a tracer test on PFR shows a spike in concentrations that is sharp and fast 

moving through the systems, which returns to background levels after the “plug” of fluid 

has gone through the reactor. In a CMFR, the tracer will have more mixing, which 

elongates tracer curve, showing an increasing in the amount of time it takes the tracer to 

exit the reactor and for the system to go back to background levels. This research allows for 

a feasible solution to study the flow patterns within wastewater plumbing systems, as there 

has never been implementation of sensors within wastewater plumbing for this purpose. 

Figure 2-5 shows the results of conductivity as a sodium chloride solution was pumped into 

the testbed. With that data, the mean residence time can be calculated. The mean residence 

time was compared to the theoretical hydraulic residence time (HRT, τ = V/Q), as seen in 

Figure 2-7a. 

It can be seen that the theoretical HRT overestimated the time it takes the pulse to 

travel through the system for the 10 min and 30 min frequencies, while it underestimates 

the time for the 3 min frequency. According to Howe, et al, the mean residence time is “the 
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average amount of time that water stays in the reactor as determined by the tracer test” and 

that, “ideally, the mean residence time is equal to the hydraulic residence time, but that is 

generally not the case (Howe et al., 2012).” 

 

 

Figure 2-7.  (a) Calculated mean residence time (colored bars) and theoretical hydraulic 

residence time (striped bars) for the three urinals at three urinations frequencies. (b) Urea 

concentrations for first-order rate reactions of urea hydrolysis using calculated mean 

residence time (colored bars) and theoretical hydraulic residence time (striped bars). 

Results for modeling the system as a PFR are seen in blue and for a CMFR in orange. 

 

These results are important when it comes to modeling the chemical reactions 

occurring in the system because using the theoretical HRT instead of the mean residence 

time will give different results. Figure 2-7b shows the calculations of the urea 

concentrations in the effluent of PFR and CMFR reactors using the calculated mean 

residence time and the theoretical HRT. The first-order rate equations were solved using k 

= 8.0 × 106 s1, the theoretical HRT of the system (V = 1550 mL and Q3min = 79 mL/min, 

Q10min = 23.7 mL/min, and Q30min = 7.9 mL/min), and the mean residence time calculated 

from the tracer test. The differences between the concentrations calculated with the 
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theoretical HRT and the mean residence time increase as the frequency of urinations 

increases, with the 30 min urination frequency showing the largest difference between the 

theoretical HRT and the mean residence time concentrations. At lower urination 

frequencies, i.e., 30 min between urinations, the results show the importance of having an 

accurate HRT of the system, especially because the modeled urea concentrations can differ 

by approximately 5%. Based on prior research, it was determined that restrooms with lower 

use frequency could lead to increased urea hydrolysis, and therefore more malfunctions in 

the urinals (Saetta et al., 2019a).  A second result from Figure 2-7b is the similarity 

between the PFR and CMFR performance. This is due to the low k value that is 

characteristic of urea hydrolysis equations and was determined in previous studies (Saetta 

et al., 2019a). 

Prior research into urea hydrolysis in nonwater urinals was not able to show the 

reactor characteristics that the CPS was able to illuminate. Saetta and Boyer, 2017 

concluded that a study on nonwater urinal flow dynamics was necessary to illuminate the 

reactions that occur as urine travels through collection systems (Saetta & Boyer, 2017). 
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Figure 2-8.  Flow chart of the information the CPS was able to provide and how it 

combines with previously known information to control the chemical reaction in 

nonwater urinals. 

 

Using the CPS allows for characterizing of the effects of use frequencies on the 

reactor dynamics (seen in Figure 2-7), which was then combined with the known reaction 

kinetics (data from laboratory experiments), to create the needed logics to control the urea 

hydrolysis reaction in nonwater urinals. Figure 2-8 shows a flow chart of the information 

attained from the CPS to control urea hydrolysis. Without the CPS, nonwater urinals would 

remain a black box, where urine chemistry undergoes rapid change without being fully 

understood. Implementation of the CPS allowed for enhanced data acquisition, as prior 

experiments were only able to see the reaction occurring at a lower resolution. Saetta and 

Boyer, 2017 was only able to show measurements taken every 30 min, which was not 

specific enough to determine the flow characteristics of the nonwater urinals (Saetta & 

Boyer, 2017).  

Building on the results from the tracer test, the second demonstration experiments, 

as detailed in Saetta, et al, 2019, was to use the CPS to conduct mimicking urea hydrolysis 

experiments (Saetta et al., 2019a). Urea hydrolysis is the reaction that converts the urea in 

urine into ammonia and bicarbonate under the presence of the urease enzyme (K. M. Udert, 

Larsen, Biebow, et al., 2003). As this reaction occurs, pH increased from 6 to 9 due to the 

formation of ammonia and the conductivity increases as more charged molecules are 

introduced into the urine matrix (the urea molecule is neutral) (Hannah Ray et al., 2017). 

The CPS was used to monitor urine pH and conductivity in real time as synthetic urine and 

jack bean urease were delivered into the urinals at a constant flow and volume for 4 h (see 
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Figure 9). The real time measurements were able to capture the increase in pH and 

conductivity as urine rested in the collection pipes between urination events. Previous 

studies were only able to show the upward overall trend in measurements, as opposed to 

the gradual increase in the measurements before the measurements decreased as fresher 

urine entered the pipes (Hannah Ray et al., 2017; Saetta & Boyer, 2017). 

The CPS was then used to control urea hydrolysis by three control logics: acid 

addition after every urination event, reactive pH threshold control logic, and predictive 

model control logic (Saetta et al., 2019a). Results of the different control logics can be seen 

in Saetta et al. 2019 (Saetta et al., 2019a). The reactive and predictive control logic 

experiments were made possible by the use of the sensors and cloud computing. The 

determination of reaching either control logic actionable point was conducted in the cloud, 

and the message for actuation was sent to the controllers via the internet. A user interface 

was created to set up experiments on the urinal testbed. The interface was used to calibrate 

the sensors and to decide experiment parameters, such as volume of urine additions and 

frequency of additions. The user interface also updated data visualization graphs in real-

time as experiments were conducted. In combination with the CPS, the user interface 

makes the urinal testbed a tool for future research on urinal operation and design. 
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Figure 2-9.  Results for demonstration experiment mimicking urea hydrolysis. CPS 

sensor measurements are shown by the light circles. Accuracy of the CPS conductivity 

sensors was monitored by spot checks using a benchtop meter, as indicated by the filled 

circle, diamond, and triangle. 

 

D. Implications and contributions of the CPS 

The CPS created in this research project is the first system to monitor and control 

urea hydrolysis in nonwater urinals. As such, it has the ability to transform wastewater and 

urine collection within buildings. Acid addition at the urinal increases the functionality of 

nonwater urinals, by inhibiting the urea hydrolysis reaction and decreasing the possibility 

of precipitation of minerals that lead to clogging (Saetta et al., 2019a). Therefore, it 

eliminates malfunctioning due to clogging, and allows for continued water conservation in 

existing buildings and opportunities for increased water conservation in new buildings. 

Moreover, this CPS could be implemented within existing infrastructure where nonwater 

urinals are used to reduce indoor water use, or it could be implemented as novel 

infrastructure whereby the urine diversion system controls the ratio of urea to ammonia in 

the collected urine for subsequent resource recovery (Hannah Ray, Perreault, & Boyer, 

2019). The specific contributions of the CPS are: (1) improve water conservation in 
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existing buildings by reducing precipitation-induced clogging and malfunction, (2) 

facilitate the implementation of urine diversion by removing the single point of failure in 

urine collection, and (3) enable tailored recovery of urea or ammonia in multi-story 

buildings.  

The CPS described in this research was also able to manipulate a reversible 

enzymatic reaction in real-time by reacting to changes in urine chemistry. Urea hydrolysis 

can be reversibly inhibited in order to create desired chemical conditions at the point of 

collection, while allowing for the chemical reaction to progress in the storage tanks to a 

predetermined final composition (Hannah Ray et al., 2017). The ability to respond to the 

changes in urine chemistry in real-time make this CPS unique and a system that uses 

sensing data and actuation to control urea hydrolysis is not currently available. At the scale 

of multi-story buildings, there has not been any application of CPS technology to control 

urine chemistry for urine diversion or water conservation, as shown in this study. 

Applications of urea hydrolysis control at the point of collection have focused on redesign 

of urinals and toilets, mainly through the use of calcium hydroxide as the inhibiting 

chemical, where precipitated nutrient products must be manually collected from each 

individual urinal and toilet (Flanagan & Randall, 2018; Dyllon G. Randall et al., 2016). 

Saetta et al, 2019 used calcium hydroxide in existing nonwater urinals and found losses of 

phosphate in the system due to precipitation of calcium phosphate (Saetta et al., 2019a). 

Therefore, base addition creates unwanted precipitation and would directly impact the two 

main goals of implementing the CPS (i.e., improving the function of existing nonwater 

urinals and inhibiting urea hydrolysis).  
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Finally, depending on the acid addition frequency and control logic used, the CPS 

allows for control of nitrogen speciation. If coupled with a urea recovery technology, such 

as recovery via membrane separation (Hannah Ray et al., 2019), then acid addition would 

be implemented to prolong urea hydrolysis inhibition necessary to keep urea as the main 

form of nitrogen.  Conversely, if the goal of the system is to recover ammonia, such as 

recovery via ammonia stripping (Jagtap & Boyer, 2018), then acid addition is only 

necessary for urea hydrolysis in the urinals and drainpipes and urea hydrolysis can progress 

in the storage tank.  

Conclusions 

The cyber-physical system created for this research project was able to illuminate 

what was previously a black box in urine collection systems. In combination with a 

drinking water CPS, the water and wastewater building CPS will have the unique 

opportunity to monitor and control water quality and urine chemistry in real time. The 

system fills a gap in research that has been identified between environmental monitoring 

and proposed use of CPS in smart cities. The urine diversion CPS described in this research 

paper was able to mimic realistic conditions of real restrooms in the lab setting. The CPS 

was used as a tool to understand the system that had not been studied to this detail prior to 

this study. Moving forward, the CPS components used here should be applied to real 

nonwater urinal systems in an effort to find an actuation control that could be implemented 

without needing to build a CPS for every nonwater urinal in use.  
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CHAPTER 3  

REAL-TIME MONITORING AND CONTROL OF UREA HYDROLYSIS IN CYBER-

ENABLED NONWATER URINAL SYSTEM 

 

Text from: Saetta, D., Padda, A., Li, X., Leyva, C., Mirchandani, P. B., Boscovic, 

D., & Boyer, T. H. (2019). Real-Time Monitoring and Control of Urea Hydrolysis in 

Cyber-Enabled Nonwater Urinal System. Environmental science & technology, 53(6), 

3187-3197. doi:10.1021/acs.est.8b06126 

Abstract 

This research used a cyber-physical system (CPS) to monitor and control the 

extent of urea hydrolysis in nonwater urinals. Real-time pH and conductivity data were 

used to control urea hydrolysis inhibition under realistic restroom conditions with acetic 

acid addition. Variable urination frequencies and urination volumes were used to 

compare three conditions that affect the progression of urea hydrolysis. Mechanistic and 

conceptual models were created to evaluate the factors that influence the progression of 

urea hydrolysis in nonwater urinals. It was found that low urination volumes at low 

frequencies created ideal conditions for urea hydrolysis to progress. Alternatively, high 

urination volumes at high frequencies created pseudo-inhibitory conditions because it did 

not allow for sufficient reaction time or mixing with older urine in the urinal trap. The 

CPS was used to control urea hydrolysis inhibition by two logics: (1) reactively 

responding to a pH threshold and (2) predictively responding to past measurements using 

four lasso regression models. Results from the control logic experiments showed that acid 

was added once per hour under low use conditions and once in a 4 h experiment for high 

use conditions. The CPS allowed for full control of urine chemistry in the nonwater 
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urinal, reducing the conditions (i.e., clogging and malodor) that have led to the removal 

of nonwater urinals in the United States. 
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Introduction 

The process of separately collecting urine, known as urine diversion, has been 

proposed and trialed as an alternative to conventional wastewater treatment because it 

opens the possibilities of nutrient recovery, pharmaceutical removal, and reduced 

environmental impact (S. K. Ishii & Boyer, 2015; Larsen & Gujer, 1996; Larsen, Lienert, 

Joss, & Siegrist, 2004). Urine diversion begins at the restroom fixtures, where urine is 

diverted from the wastewater collection system using nonwater urinals and urine-

diverting toilets (UDTs). In the United States, an opportunity exists to implement urine 

diversion where nonwater urinals are planned for water conservation in new green 

buildings (American Society of Mechanical Engineers, 2006). According to green 

building design guidelines, such as Leadership in Energy and Environmental Design 

(LEED) and Building Research Establishment Environmental Assessment Method 

(BREEAM), designers are given a choice between high-efficiency urinals or nonwater 

urinals.(Kubba, 2017) Additionally, LEED’s crediting system allots 1 credit to 

“sustainable wastewater management” implementation, which includes reduction of 

wastewater production or nutrient recovery (US Green Building Council, 2013). 

Therefore, when designing green buildings, urine diversion for water conservation and 

added nutrient recovery benefits could be of value to the building stakeholders (D. G. 

Randall & Naidoo, 2018). These techniques could be implemented immediately using 

nonwater urinals since they are commonly used in commercial and industrial (CI) 

buildings in the United States and extended to UDTs when they become more widely 

used. 
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A concern when implementing urine diversion systems is the possible loss of 

nitrogen during collection and storage (K. M. Udert, Larsen, & Gujer, 2003b). Nitrogen 

undergoes rapid transformation from urea in fresh urine to ammonia in hydrolyzed urine 

due to the presence of the urease enzyme (K. M. Udert, Larsen, Biebow, et al., 2003). 

This reaction is called urea hydrolysis and it rapidly occurs in urine diversion systems (K. 

M. Udert, Larsen, Biebow, et al., 2003). Those seeking to recover nitrogen from urine 

have an interest to inhibit or control urea hydrolysis because of potential losses due to the 

formation of ammonia (K. M. F. Udert, C.; Münster, M.; Larsen, T.A.; Siegrist, H.; 

Gujer, W.;, 2003). In the literature, urine stabilization has been shown by two methods: 

partial nitrification or urease inhibition (Feng, Wu, & Xu, 2008; Hellstrom et al., 1999; 

Dyllon G. Randall et al., 2016; Hannah Ray et al., 2017; K. M. Udert, Fux, et al., 2003). 

Biological nitrification has been shown to partially nitrify the ammonia (which was 

originally present in urine as urea) into nitrate, creating ammonium nitrate as a fertilizer 

product (Feng et al., 2008; K. M. F. Udert, C.; Münster, M.; Larsen, T.A.; Siegrist, H.; 

Gujer, W.;, 2003). Conversely, urease inhibition in human urine has only been successful 

by increasing or decreasing the pH of urine to create conditions where the enzyme is not 

active and the urea remains unchanged (pHoptimal = 7–8) (Hellstrom et al., 1999; Dyllon 

G. Randall et al., 2016; Hannah Ray et al., 2017). Previous research has shown that acetic 

acid addition inhibited urea hydrolysis when added after every urination event and 

calcium hydroxide has been shown to inhibit urea hydrolysis when added in the urine 

storage tanks (Flanagan & Randall, 2018; Dyllon G. Randall et al., 2016; Saetta & Boyer, 

2017). However, there is no published research on optimizing the inhibition of urea 

hydrolysis and stabilization of urea under realistic restroom conditions such as random 
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frequency of users. In real restrooms, humans interact with the system by varying their 

use in the following three ways: (1) variable urination volume, (2) variable urination 

frequency, and (3) natural fluctuations in urine composition (Rossi et al., 2009). An 

experiment on urine chemistry in nonwater urinals should be able to manipulate these 

factors in order to be as close as possible to a real restroom. The research presented 

below varied the urination volume and frequency, making it the closest representation of 

urea hydrolysis in nonwater urinals in real restroom systems during times of use.  

There is an opportunity to control urea hydrolysis conditions in restrooms using a 

cyber-physical system (CPS). A CPS “[represents] the integration of physical and 

embedded systems with communication and [information technology (IT)] systems,” that 

range from small to large, city-wide applications (Törngren et al., 2017). Cyber-physical 

systems in commercial and industrial buildings have been used mostly for energy systems 

management (Kleissl & Agarwal, 2010; Vasavada & Sasidhar, 2017; S. Wang, Zhang, 

Shen, & Xie, 2011). The water and wastewater infrastructure sector has been identified as 

an area of critical infrastructure that can benefit from integration with cyber systems 

(Baheti & Gill, 2011; Volkan et al., 2014). A CPS would give the ability to monitor and 

control urea hydrolysis in real-time, which is a novel approach when studying urine 

diversion systems. Past research has shown that monitoring of pH and conductivity can 

be used as a surrogate for urea hydrolysis progression (Hannah Ray et al., 2017). 

Therefore, a CPS equipped with pH and conductivity sensors was built for this study. 

Using that data, actuators controlling the addition of acid or base can be controlled to 

deliver chemical inhibitor only when necessary. With such a system, green CI buildings 
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would be able to continue conserving water, while a CPS aids in maintaining the function 

of nonwater urinals. 

The goal of this research was to use a nonwater urinal cyber-physical system to 

control urea hydrolysis in multi-story, commercial and institutional (CI) building 

restrooms under realistic conditions. The specific objectives were to (1) mimic and 

inhibit urea hydrolysis in nonwater urinals using constant conditions, (2) create a 

mechanistic and conceptual model for urea hydrolysis in nonwater urinals, (3) compare 

two control logics for urea hydrolysis inhibition based on low frequency of use 

conditions, and (4) compare low and high frequency of use conditions using the same 

control logic. The motivation of controlling urea hydrolysis in these experiments was 

twofold: (1) to decrease clogging and malfunction of nonwater urinals and collection 

pipes and to (2) maximize nutrient content in the storage tanks at the end of the 

experiment for subsequent nutrient recovery. The objectives were accomplished by 

conducting the experiments with a physical system modeled after a multi-story CI 

building restroom considering restroom plumbing codes and real-time sensing, with 

ultimate progression towards a system that included realistic restroom use and urea 

hydrolysis control using the real-time sensing data. 

Materials and Methods 

Materials and Urinal Testbed 

Synthetic urine and jack bean urease (EC 3.5.1.5, Sigma Aldrich, powder, ~1 

U/mg) were used throughout the experiments (recipe in supporting information (SI, 

Appendix A), Table 3-S1). The synthetic urine recipe was made to contain 500 mM urea 

as N, 20 mM P (NaH2PO4), 4 mM Mg (MgCl2·H2O), and 4 mM Ca (CaCl2·H2O) and has 
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been used in previous literature (Landry & Boyer, 2013; Hannah Ray et al., 2017; Saetta 

& Boyer, 2017). The synthetic fresh urine was adjusted pH 6 using sodium hydroxide 

prior to each experiment to ensure all experiments began with urine at pH 6. The jack 

bean urease solution was made by dissolving 12.64 g of jack bean urease in 250 mL of 

deionized (DI) water. The solution was kept on ice throughout the experiments to avoid a 

loss in urease activity. Glacial acetic acid (CH3COOH, Fisher Chemicals) was used to 

make an acetic acid solution with a concentration of 2500 meq/L. Calcium hydroxide 

(Ca(OH)2, Fisher Chemicals) was dissolved in 18.2 MΩ water and stirred continuously 

overnight to make a 0.64 M Ca(OH)2 slurry. This concentration was made to equal 5 g 

Ca(OH)2 per liter of urine, as documented in the literature (Dyllon G. Randall et al., 

2016). It was made the day prior to the experiments and was sealed to the atmosphere 

while it stirred overnight. All experiments were conducted at a laboratory temperature of 

22°C.  

The urinal testbed held three Kohler Steward Waterless Urinals. Three peristaltic 

pumps and tubing were used to deliver the three solutions into each urinal (synthetic 

urine, jack bean urease solution, and acid or base solution). The outlet of the urinals was 

piped with 2 in. (5.08 cm) cast iron pipes, which were constructed to have two 

consecutive P-traps (photos of the urinal testbed in SI). The distance between trap 1 and 

trap 2 was approximately 25 cm in length. The consecutive P-traps allowed for 

monitoring of urine chemistry as a function of time and space. The urinal testbed had an 

approximate residence time of 65 min when operating with constant parameters (see SI 

for details). The first P-trap also served as a surrogate measurement for urine chemistry 

closest to the chemistry inside the urinal trap because sensing inside the urinal trap was 
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not possible. Conductivity and pH sensors were placed at each P-trap for real-time 

monitoring and samples were collected from the P-traps at 30 min intervals. Two 

peristaltic pumps were used for sample collection from the P-traps. The pipes conveyed 

the urine into 37.9 L linear low-density polyethylene (LLDPE) tanks (Tamco, US 

Plastic). Each storage tank also held a conductivity and pH sensor. A total of three 

locations per urinal were monitored in real-time for conductivity and pH throughout the 

urinal testbed.  

Hardware 

Each urinal was outfitted with its own controller, which was in communication 

with a central controller. The controllers consisted of a Raspberry Pi 3 Model B and six 

sensors. Each urinal controller controlled 3 pH sensors (Atlas Scientific) and 3 

conductivity sensors (Atlas Scientific). The three solution pumps were connected a 

Raspberry Pi, which controlled the length of time each pump was turned on and the 

frequency at which it delivered its solution to the urinals. 

Software 

Python 2.7.13 code was used to create programs for the sensors controllers and 

the pump controller. The data collected with the sensor controllers was uploaded to the 

cloud via Google Cloud Pub/Sub. Data were stored in a Google Cloud Datastore, where it 

was archived for future analysis. Measurements at the nine locations within the urinal 

testbed were taken at 1 min or 15 s intervals depending on the experiment. The sensors 

were instructed to begin logging measurements at t = 0, even though the urine did not 

reach all sensors until the testbed traps and tanks were filled. 
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Table 3-1. Experiments and parameters used for urination volume, urination frequency, 

addition used, and addition frequency. 

 

Mimicking and inhibiting urea hydrolysis 

Three experiments were conducted to mimic and inhibit urea hydrolysis on the 

urinal testbed (see Table 3-1). The experimental design was based on experiments 

presented by Saetta and Boyer, 2017 (Saetta & Boyer, 2017). For the mimicking 

experiments, synthetic urine (237 mL) and jack bean urease (2.5 mL) solutions were 

Experiment 

Urination 

Volume, 

mL 

Urination 

Frequency, 

min 

Addition Addition frequency 

Mimicking urea 

hydrolysis 

237 10 – – 

Inhibiting urea hydrolysis 

with acetic acid 

237 10 Acetic acid 10 min 

Inhibiting urea hydrolysis 

with calcium hydroxide 

237 10 

Calcium 

hydroxide 

10 min 

Reactive control logic 

with low urination 

frequency 

118.5 – 

474 

10 – 20 Acetic acid pH 7 threshold 

Predictive control logic 

with low urination 

frequency 

118.5 – 

474 

10 – 20 Acetic acid Predictive model > pH 7 

Reactive control logic 

with high urination 

frequency 

118.5 – 

474 

1 – 10 Acetic acid pH 7 threshold 
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added to the urinals concurrently for 20 s every 10 min for 4 h (25 urinations per urinal). 

Conductivity and pH measurements in the P-traps and storage tanks were taken every 1 

min. Grab samples for further analysis were drawn from the P-traps every 30 min. For 

urea hydrolysis inhibition experiments, the experimental design remained unchanged, 

except for the addition of either acetic acid or Ca(OH)2 addition (2.5 mL, 20 s) to the 

urinals immediately following the urine and jack bean urease additions.  

Urea hydrolysis control logic and random use frequency experiments 

In order to realistically mimic urea hydrolysis in nonwater urinals, a less-

prescribed experimental design was used in the following three experiments (see Table 3-

1). For the remaining experiments, conductivity and pH measurement frequency was 

increased to take measurements every 15 s. Two major parameters were changed in the 

experimental design: (1) urination volume and frequency and (2) acid addition frequency. 

First, using the pump controller described above, a code for variable urination volume 

and frequency was included in the remaining experiments. This accounted for 

randomness in use of real restrooms. The pump controller program was given a range of 

time to turn on the pumps (urination volume) and a range of time to wait between 

urination events (urination frequency). Maintaining the urine pump at the same flow rate 

(711 mL/min), the pump controller logic chose a variable urination time between 10–40 

s, which is range that includes a volume half and double the size in the mimicking and 

inhibiting experiments above (118.5–474 mL of urine per urination event). For urination 

frequency, two frequency ranges were used in the pump controller logic: (1) low 

frequency and (2) high frequency. The low frequency logic allowed the controller to 
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randomly decide the time between urination events between 10–20 min and the high 

frequency was between 1–10 min.  

Two control logics were used to determine the frequency of acid addition as a 

proof of concept. The first control logic was a reactive control of urine pH in trap 1. After 

the experiments were started, the sensor controllers were directed to measure pH, while 

counting the amount of measurements that were above pH 7.0. Once four measurements 

were above pH 7.0 for urine in trap 1 of any urinal, the sensor controllers sent a message 

to the pump controller to activate the acid addition pump. Four measurements correspond 

to 1 min in the experimental time and add up to the frequency of measurements used in 

the mimicking urea hydrolysis experiment (measurements every 1 min). This was chosen 

to ensure that pH was constantly above pH 7 and not fluctuating below and above pH 7. 

The threshold of pH 7 was chosen as the limit in order to allow the urea hydrolysis 

reaction to increase the pH of fresh urine from 6 to 7, which is one magnitude increase in 

H+ concentration. Acid additions were kept constant to be 20 s in length, which was equal 

to 2.5 mL of acid added. The second control logic was a predictive control of urine pH in 

trap 1. Four lasso regression models were made with the data collected in the reactive 

control experiments that would predict the future four steps in pH measurements, using 

the previous 20 pH measurements, 20 conductivity measurements, the length of time 

since the last urination event, and the urination time of the previous urination event (lasso 

regression models in SI). The R2 values for the four models were as followed: 0.99, 0.97, 

0.95, and 0.94. The root mean square errors for the four models were as followed: 0.02, 

0.04, 0.05, and 0.06. Once all four models (meaning the next 4 pH steps) predicted a pH 
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above 7.0, the sensor controllers sent a message to the pump controller to activate the 

acid addition pump.  

Three experiments were conducted using a combination of the realistic 

experimental parameters (see Table 3-1). The first experiment used the low-use 

frequency and the reactive pH control. The second experiment used the low-use 

frequency and the predictive pH control. Lastly, the third experiment used the high-use 

frequency and the reactive pH control. These experiments will be compared for their 

ability to inhibit urea hydrolysis. This study did not optimize the pH threshold, volume of 

acid added per event, or the control logics. Future research is needed to further optimize 

the methods used in this research for urea hydrolysis inhibition. 

Analytical methods 

The pH and conductivity of urine in the testbed was measured using the controllers 

described in the sections above. Grab samples were taken using a peristaltic pump from 

trap 1 and trap 2 of the testbed every 30 min for further chemical analysis. Samples were 

only taken when urine was present in the traps, therefore the t = 30 min sample was not 

taken for experiments with low urination frequency. Samples were immediately acidified 

with sulfuric acid to pH < 2. All samples were filtered prior to analysis using a 0.2 μm 

nylon syringe filters (Environmental Express). Samples were diluted with acidified 18.2 

MΩ water with a 150× dilution factor to fall within the calibration curves. Ammonia and 

phosphate were measured using a Lachat QuikChem 8500 Series 2 Flow Injection 

Analysis system. Ammonia was measure following the EPA NPDES Method 350.1 

phenolate method. Phosphate was measured following the EPA NPDES Method 365.1 

molybdate based method. Cations (sodium, potassium, calcium, and magnesium) were 
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measured using a Thermo Scientific Dionex ICS-5000+ with a Dionex IonPac CS12A 

column.  

Mechanistic and conceptual models of urea hydrolysis inhibition control 

A mechanistic, first-order rate model was made to evaluate factors that influence urea 

hydrolysis in the urinal testbed in the urinal trap and trap 1. Urea hydrolysis has been 

shown to follow first-order reaction in published literature (Connolly, Jackson, Rothman, 

Klapper, & Gerlach, 2015; Singh, Singh, & Singh, 1992). The model predicted the 

concentration of ammonia as a function of time using the volume of urination, volume of 

urine remaining from previous urination event, and experimental time. The model 

parameters can be seen in Table 3-S4. The model assumed that the urine in the trap is 

displaced in a plug flow manner as new urine enters the urinal trap, then completely 

mixes to form a new concentration in the urinal trap before reacting for 10 min (see Fig. 

3-S5). The resulting first-order decay of urea was used to find the first-order rate constant 

for the conditions tested, including urease activity. The first-order rate constant was 

found to be 8.0 × 106 s1, which is of same order of magnitude to values found in the 

literature (2.9 × 106–2.6 × 105 s1) (Singh et al., 1992; Yadav, Kumar, Singh, & Relan, 

1987). A sensitivity analysis was conducted on the k-constant value and results are shown 

in the SI. Insights from the mechanistic model were used to create a causal loop diagram 

(CLD) as a conceptual model for the effects of urination frequency and volume on urea 

hydrolysis in order to understand the external forces, i.e., human interactions and 

randomness that are exerted on the system (Wolstenholme, 1999). 
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Results and Discussion 

Mimic and inhibit urea hydrolysis 

The first objective of this research was to mimic and inhibit urea hydrolysis using 

the urinal testbed CPS. Urea hydrolysis was mimicked using full-scale urinals in previous 

research (Saetta & Boyer, 2017). Previous research has also shown that synthetic urine 

and jack bean urease were able to mimic urea hydrolysis in real urine (Hannah Ray et al., 

2017; Saetta & Boyer, 2017). However, this study sought to completely characterize the 

urea hydrolysis process in the urinals, through the drain pipes, and in the storage tanks. 

The CPS allowed for real-time measurements of pH and conductivity, with a resolution 

of 1 measurement per min. Fig. 3-1 shows the pH in trap 1 for three experiments that 

were conducted, as these measurements are the closest to pH inside the nonwater urinal 

trap. It is an improvement from the data collected in Saetta and Boyer, 2017, where pH 

and conductivity of urea hydrolysis in nonwater urinals was measured every 30 min. The 

pH results show that urea hydrolysis was successfully mimicked in the nonwater urinals, 

as expected. The pH increased from pH 6 to pH above 8 in 2 hours. With this higher 

resolution, it is interesting to see the effects of new urine being added every 10 min, as 

seen in the step changes in pH every 10 min after urination events occur. While the urine 

sits in the trap, the pH increases with a constant slope, before fresh urine replaces the 

hydrolyzed urine out of the trap. Subsequent modeling was used to understand the effects 

of mixing on urea hydrolysis in the urinal trap. pH and conductivity results for trap 2 and 

the storage tank can be seen in Fig. 3-S1. 

Two chemicals were used for the urea hydrolysis inhibition experiments to ensure 

that a pH above and below the optimal pH of urease was created (pHoptimal 7–8) 
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(Krajewska, 2009). Acetic acid was used in previous work to inhibit urea hydrolysis by 

decreasing the pH of urine to below the optimal pH for the urease enzyme (Hellstrom et 

al., 1999; Hannah Ray et al., 2017; Saetta & Boyer, 2017).  

  

  

  

Figure 3-1. Trap 1 synthetic urine pH and conductivity for (a) mimicking urea hydrolysis, 

(b) inhibiting urea hydrolysis with acetic acid, and (c) inhibiting urea hydrolysis with 

calcium hydroxide experiments. Data is shown for each urinal. The solid lines correspond 

to the values at t = 0 of the synthetic urine.  Data points were taken every 1 min. Data for 

urinal 1 in (b) is not shown due to technical difficulties with the sensor controller. 
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Calcium hydroxide has been used as an inhibitor by increasing the pH to above 12.5 

(Flanagan & Randall, 2018; Dyllon G. Randall et al., 2016). During each inhibition 

experiment, inhibition chemicals were added after every urination event. The pH for the 

two inhibition experiments show that the pH was decreased and increased to the expected 

pH, where it then stabilized for the entirety of the experiment (Fig. 3-1). pH and 

conductivity results for trap 2 and the storage tank can be seen in Fig. 3-S2 and 3-S3 for 

acetic acid and calcium hydroxide addition, respectively. 

In order to confirm if urea hydrolysis was occurring, grab samples were taken 

from traps 1 and 2 every 30 min. Results for ammonia, phosphate, calcium, magnesium, 

sodium, and potassium are shown in Fig. 3-2. Phosphate and calcium were measured by 

Saetta and Boyer; hence the additional measurements shown here provide a better insight 

into the inhibition capabilities of these chemicals (Saetta & Boyer, 2017). To begin with, 

ammonia is a direct product of the urea hydrolysis reaction, so urea hydrolysis inhibition 

can be confirmed if ammonia is not produced. Fig. 3-2 shows the average concentrations 

of ammonia in the grab samples for the three urinals normalized by the total N 

concentration in the synthetic fresh urine recipe. Trap 1 and trap 2 samples are shown, 

with an additional data bar at the end for the concentration in the storage tanks at the end 

of the experiment. The results show that about 20% of urea was hydrolyzed in the 

mimicking experiment. The highest ammonia concentrations were seen in the storage 

takes at the end of the experiment, with trap 2 concentrations being higher than trap 1 

concentrations throughout the experiment. This corresponds correctly with the 

assumption that urine was becoming more hydrolyzed because the progression of urine 

through the system allowed for more time for the urea hydrolysis reaction to occur. For 
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the inhibition experiments, minimal concentrations of ammonia were measured, 

confirming that the urea hydrolysis reaction was inhibited by either decreasing the pH 

with acetic acid or increasing the pH with calcium hydroxide. The ammonia results are 

important because they provide unequivocal evidence that the CPS effectively monitored 

and controlled the extent of urea hydrolysis  
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Figure 3-2. Results for the mimicking and inhibiting experiments with no treatment, 

acetic acid addition, and calcium hydroxide addition. Normalized concentrations for 

ammonia, phosphate, calcium, magnesium, sodium, and potassium in grab samples taken 

every 30 min. Ammonia concentrations were normalized by the total N in synthetic urine. 

All other concentrations were normalized by the concentration in the synthetic urine at t = 

0. Each bar is the average concentration from the three urinals or storage tanks. Trap 1 

(orange bars), trap 2 (dashed bars), and the storage tank (white bars) are shown with error 

bars corresponding to one standard deviation.  
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potassium over time can be seen in Fig. 3-1. This could be due to the precipitation of the 

struvite potassium-analog (KMgPO4·6H2O). Xu et al, 2015 found that the precipitation 

potential of the potassium-analog was higher than the precipitation potential of struvite at 

ammonium concentrations below 20 mM (Xu et al., 2015). In the inhibition experiments, 

a C/C0 value of 1 means that there were no nutrient losses observed in the urine grab 

samples. It can be seen that the acetic acid and calcium hydroxide experiments were able 

to maintain C/C0 closer to 1 than the mimic urea hydrolysis, despite the variation in the 

samples due to differences from urinal-to-urinal. The increase in calcium concentrations 

in the calcium hydroxide experiments was due to the addition of the inhibition solution. 

The sharp decrease in the phosphate at the end of the experiment is also due to the 

addition of calcium hydroxide, which forms a calcium phosphate precipitate as seen in 

the literature (Dyllon G. Randall et al., 2016). Using a chemical equilibrium software, it 

was confirmed that calcium phosphate, magnesium oxide, and magnesium phosphate 

minerals precipitate when using calcium hydroxide as a urea hydrolysis inhibition 

chemical (details found in SI).  

The difference between the synthetic fresh urine and the storage tanks can be seen 

with more clarity in Fig. 3-S4. The figure shows the concentration of the measured ions 

for grab samples of the synthetic fresh urine at the beginning of the experiment, the 

storage tanks, and the synthetic fresh urine at the end of the experiment. The 

concentrations difference between the untreated synthetic fresh urine at the beginning and 

end of the experiment is minimal for the three experiments. As seen, the concentrations 

of ammonia are highest in the storage tanks for the mimicking urea hydrolysis 

experiment as expected. The phosphate results show that the concentrations in the storage 



  57 

tanks are the lowest when the urine was treated with calcium hydroxide, for the reasons 

mentioned above. Calcium concentrations are seen to be most stable when urine was 

treated with acetic acid, while there were losses when no treatment was used and elevated 

when calcium hydroxide was used. Magnesium followed a similar trend as calcium, with 

the exception that it was decreased in the storage tanks in the calcium hydroxide 

experiment. Sodium and potassium are seen to remain stable throughout the three 

experiments, because urea hydrolysis and subsequent precipitation does not affect the 

concentrations of sodium and potassium. Fig. 3-S4 concludes that acetic acid is a better 

chemical for urea hydrolysis inhibition in this context as it met the requirements to inhibit 

urea hydrolysis and to maximize the nutrient concentrations in the storage tanks. 

However, microbiology was not quantified during these experiments and future research 

should be conducted to determine the effects of acetate addition in urine diversion 

systems. 
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Figure 3-3. Mechanistic model results. Part a shows the results for the model using the 

parameters from the mimicking urea hydrolysis experiment. Ammonia and urea 

concentration results are shown for the modeled concentration inside the urinal trap (TU, 
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solid) and in trap 1 (T1, dashed). The experimental results for ammonia concentration 

from Fig. 3-2 are shown as triangles and squares. Part b shows the model results for 

variable urination volumes between 10–40 s. Part c shows the model results for variable 

urea concentrations between 400–600 mmol/L as N. Random selections in SI. 

 

Ultimately, both base and acid addition were able to inhibit urea hydrolysis and 

they can both be used to inhibit urea hydrolysis in urine storage tanks (Flanagan & 

Randall, 2018; Hellstrom et al., 1999; Dyllon G. Randall et al., 2016). In some instances, 

such as stabilization of urea once urine enters the storage tanks, it could be beneficial to 

precipitate these minerals in situ using base addition, as they can be used as a form of 

nutrient recovery (Dyllon G. Randall et al., 2016; Simha, Senecal, et al., 2018). However, 

the long-term use of a calcium hydroxide slurry can lead to the adsorption of carbon 

dioxide by the slurry, creating calcium carbonate (Han, Yoo, Kim, & Wee, 2011). 

Alternatively, the addition of solid calcium hydroxide would require a redesign of 

nonwater urinals to allow for the fertilizer precipitate to be removed once it forms. 

Previous research applying solid calcium hydroxide has employed redesigned urinals that 

allow for the precipitate to be collected at each urinal, which would not fit the context of 

this study (Flanagan & Randall, 2018). As such, because the goal is to inhibit urea 

hydrolysis at the existing urinals and to decrease the possibility of precipitation 

throughout the collection pipes, it is important to consider the effects of the chemical 

addition on the functionality of the nonwater urinals and the pipes leading to the storage 

tanks. In the vision of urine diversion in this research on the scale of multi-story CI 

buildings with retrofitted drain pipe networks, it would be less difficult to implement the 

use of dilute acetic acid in the maintenance routine of nonwater urinals, than it would be 

to implement the addition of solid calcium hydroxide or a calcium hydroxide slurry.  For 
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that reason, acetic acid was chosen as the urea hydrolysis inhibition chemical for the 

remainder of this study, with the acknowledgment that base addition could be a viable 

approach under suitable conditions.  

Mechanistic and conceptual models of urea hydrolysis inhibition control 

The model with rate constant fit from the experimental data was used to evaluate 

the effects of variable urination volumes and initial urea concentrations (Figure 3-3). The 

model showed that variability in ammonia concentrations was dampened as the urine 

moved from the urinal trap to trap 1 due to intermittent flow conditions, which resulted in 

a combination of plug flow and completely mixed behavior in the traps. The ammonia 

and urea concentrations has less variability in trap 1 than they were in the urinal trap for 

the conditions of variable urination volume and variable initial urea concentrations. The 

model shows that urea hydrolysis continues to advance in the three cases presented, 

showing that physiological variability, i.e. urination volume and urea concentration, 

cannot be used to control urea hydrolysis.  

Fig. 3-4 shows the conceptual model for the effects of urination frequency and 

urine volume on urea hydrolysis progression. Fig. 3-4 illustrates that urea hydrolysis can 

occur by the combination of two factors. It begins in two settings: a low frequency 

restroom and a high frequency restroom (see dark boxes in Fig. 3-4). The frequency of 

use is a function of design and setting. The outcomes of these factors are seen in the 

white boxes. Urea hydrolysis tends to progress when low urine volumes and low 

frequencies of use are combined because the urination does not fully replace the urine 

from the previous urination and it has sufficient time for urea hydrolysis to progress. The 

urinal trap holds approximately 450 mL of liquid. If a urination is below that volume, it 
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will mix with some of the urine held in the trap from the previous urination events. In 

contrast, the most of the urine in the trap will be replaced if the urination is greater than 

450 mL. The combination of urine from the previous urination event and urine from the 

current urination creates a feedback loop for urea hydrolysis. Urea hydrolysis can also 

occur when low urination volumes are added at a high frequency due to the partial 

replacement of urine in the urinal trap. However, the amount of time between urinations 

can have an inhibitory effect on urea hydrolysis if urinations occur at high frequencies, 

no matter how low the urination volume.  

 

 

Figure 3-4. Conceptual model for urea hydrolysis in nonwater urinals. The dark boxes 

indicate the two settings where urea hydrolysis can take place. The white boxes are the 

outcomes of urea hydrolysis under these two settings. The dark arrows indicate the 

reinforcing factors, i.e. low frequency and low volume or high frequency and high 

volume. The dashed arrows indicate balancing factors, i.e. low frequency and high 

volume or high frequency and low volume. 
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There are also two combinations of factors that lead to pseudo-inhibition of urea 

hydrolysis. It is called pseudo-inhibition because it does not use any urease enzyme 

inhibition mechanism that have been proposed in literature but urea hydrolysis does not 

progress as expected. Instead, it constrains the time allowed for the urea hydrolysis 

reaction to take place in the urinal trap. The first combination occurs when high volumes 

of urine are added at high frequencies, which replaces the entire volume in the urine trap 

at a high rate. Pseudo-inhibition can also occur when high volumes of urine are added at 

a low frequency because the urine in the trap is constantly replaced. Importantly, the CPS 

was created to test the conceptual model predictions presented in Fig. 3-4, which would 

be difficult to do without cyber components. Two control logics were used to inhibit urea 

hydrolysis using acetic acid addition. The urination volume and frequency where varied, 

within limits, to create conditions for urea hydrolysis progression and pseudo-inhibition. 

Comparison of two control logics 

The next major objective was to use acetic acid as a urea hydrolysis inhibitor 

under more realistic conditions. Prior to these experiments, the experimental design was 

prescribed in that all urination events were the same volume, occurred at the same 

frequency, and inhibition chemicals were added after every urination event. Moving 

forward, the CPS allowed for varying of urination volume, urination frequency, and 

frequency of addition of the inhibition chemicals. The first set of experiments sought to 

compare two urea hydrolysis inhibition control logics: (1) a reactive control logic using a 

threshold for action and (2) a predictive control logic using predictive models for action. 

For these experiments, the pump controller was allowed to pick a urination frequency 

between 10–20 min, to mimic restrooms with low frequency of use. Because urine flow 
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within the urinal testbed only occurs during urination events and the pH sensors are in the 

first trap, a 20 min lag was implemented after acid additions in order to avoid the addition 

of acid between the time of addition and the time it would reach trap 1. All experiments 

moving forward employed the same range for urination volume (10–40 s urinations). One 

limitation of this work was the inability to vary the flow rate, as it is expected that flow 

rate and urination volume will differ in the real world.  

 

 

Figure 3-5. Results for the reactive control logic experiment using the low urination 

frequency experiment. pH in trap 1 for the three urinals is shown as circles. Urination 

events are shown by the green bars and the acid addition events are shown by the black 

bars. The height of the bars correspond to the urination time (between 10–40 s), which 

directly corresponds to the urination volume (118.5–450 mL). The acid addition bar 

height (20 s) corresponds to 2.5 mL acetic acid addition. The red dashed line corresponds 

to the pH threshold used for the reactive control (pH 7.0).  

 

Fig. 3-5 shows the pH results for the reactive control logic experiment using the 

low urination frequency. The pH for all three urinals is displayed. The reactive control 

logic follows this rule: a message for acid addition was sent to the acid pump 
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immediately after 4 consecutive pH measurements (15 s per step) in trap 1 were above 

pH 7.0 for any of the three urinals. Fig. 3-5 shows that this occurred 6 times in 

approximately 6 hours. Therefore, the pH was controlled by the addition of acetic acid 

and it was not allowed to increase past pH 7 for an extended period of time. Two 

consecutive acid additions happened about 4 hours into the experiments, because the 20 

min lag between acid additions matched the 20 min urination frequency that was 

randomly chosen for those two urination events. The acid addition from the previous 

urination was still in the urinal trap, and the pH sensor triggered an acid addition 

immediately after the 20 min lag was over. A urination within the 20 min lag would have 

pushed the acidified urine from the urinal trap into trap 1, decreasing the pH to below pH 

7.0. Because that did not happen, the acid addition and urination event occurred at the 

same time. 

Fig. 3-6 shows the pH results for the predictive control logic experiment using the 

low urination frequency. Acid addition was determined by the results of four predictive 

models made to predict the next 4 steps (15 s per step) in pH (Li, Saetta, Mirchandani, & 

Boyer, 2019). The models used 42 variables: the most recent 20 pH values, the most 

recent 20 conductivity values, the time value since the last urination event, and the time 

value for the length of the last urination event. Acid was delivered to the urinals 

immediately after all four models for any urinal predicted pH values above pH 7.0. As 

seen in Fig. 3-6, the acid was delivered 6 times during the 7 h experiment. The 

coincidence between the acid delivery lag and the longest time between urinations 

occurred two times, as seen in the cases where acid was delivered for two consecutive 

urinations. This is due to chance, as the program was written to randomly choose a length 
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of time between urination events within the set range. The results from this experiment 

show that the pH increased past pH 7.0 more than it did in the reactive control logic 

experiment. The effects of that increased pH can be seen in Fig. 3-7, where the 

normalized concentrations of calcium and magnesium in trap 1 are shown. For the 

predictive control logic experiment, the concentrations of calcium and magnesium were 

lower than the concentrations in the reactive control logic experiment across the entire 

experiment because urea hydrolysis will allowed to proceed to a great extent, reaching 

pH as high at pH 8 and creating conditions for precipitation that were more favorable 

than they were at pH 7.  

 

Figure 3-6. Results for the predictive control logic experiment using the low urination 

frequency experiment. pH in trap 1 for the three urinals is shown as circles. Urination 

events are shown by the green bars and the acid addition events are shown by the black 

bars. The height of the bars correspond to the urination time (between 10–40 s), which 

directly corresponds to the urination volume (118.5–450 mL). The acid addition bar 

height (20 s) corresponds to 2.5 mL acetic acid addition. The red dashed line corresponds 

to the pH threshold used for the predictive control (pH 7.0).  
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Figure 3-7. Normalized concentrations for phosphate, ammonia, calcium, and magnesium 

in grab samples from trap 1 taken every 30 min. Concentrations for phosphate, calcium, 

and magnesium were normalized by the concentration in the synthetic urine at t = 0. 

Concentration of ammonia was normalized by the total N concentration in the synthetic 

urine recipe. Each bar is the average concentration from the three urinals. Reactive 

control logic experiment (blue bars) and predictive control logic experiment (dashed 

bars) are shown with error bars corresponding to one standard deviation. 

 

In terms of urea hydrolysis inhibition, Fig. 3-S7 shows the normalized 

concentrations of ammonia, phosphate, calcium, magnesium, sodium, and potassium for 

grab samples taken from trap 1 and trap 2 every 30 min throughout the experiment, with 

an additional sample of the storage tanks at the end of the experiment. Based on the 

ammonia concentrations, it can be seen that both the reactive and the predictive control 

logic experiments with low urination frequencies were able to inhibit urea hydrolysis. 

However, the predictive experiment allowed the pH to increase to as much as pH 8, 
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which created conditions for more hydroxyapatite and struvite to precipitate with the 15 

mmol/L of NH3 that had formed from the small amount of urea hydrolysis that occurred. 

The reactive control logic experiment was able to keep the concentrations of ions more 

stable, which could be attributed to the pH staying more stable throughout the 

experiment.  

Comparison of two restroom use frequencies 

The last objective of this study was to compare the use of urea hydrolysis 

inhibition control with two restroom use frequencies. The low frequency reactive control 

logic experiment that was discussed above was compared with the high frequency 

reactive control logic experiment (see Fig. 3-8). The pump code was changed to allow for 

urinations every 1–10 min, compared with the 10–20 min frequencies used in the 

previous experiments. Figure 3-7 shows that acid was only delivered one time during the 

5 h experiment. The high urination frequency did not allow sufficient time for urea 

hydrolysis to occur, keeping the pH below 7.0 for the majority of the experiment. The pH 

was also affected by the volume of the urinations, as it is evident that high volume 

urinations in high frequencies decreased the pH. The opposite case, low volumes with the 

lowest frequencies allowable, increased the pH to above 7.0, triggering the acid addition. 

The volume and frequency of addition were contributing to a change in the flow patterns 

in the testbed. High volumes at high frequencies were acting as a plug flow throughout 

the system. Low volumes at low frequencies were able to create a system with 

characteristics of a continuously mixed flow reactor. The effect of the high use frequency 

can be seen in Fig. 3-S8. The cumulative volume shows that close to double the volume 

was introduced into the urinals in less time than the low use frequency experiments. The 
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time needed for urea hydrolysis was not attained; therefore most of the urine went 

through the testbed unchanged from its initial composition. Fig. 3-S7 shows that urea 

hydrolysis did not occur but acetic acid was not added for most of the experiment. A 

pseudo-inhibition occurred due to the manipulation of time between urination events. 

 

 

Figure 3-8. Results for the reactive control logic experiment using the high urination 

frequency experiment. pH in trap 1 for the three urinals is shown as circles. Urination 

events are shown by the green bars and the acid addition events are shown by the black 

bars. The height of the bars correspond to the urination time (between 10–40 s), which 

directly corresponds to the urination volume (118.5–450 mL). The acid addition bar 

height (20 s) corresponds to 2.5 mL acetic acid addition. The red dashed line corresponds 

to the pH threshold used for the predictive control (pH 7.0).  

 

Implications 

The results of this research show that cyber-enabled nonwater urinals, and eventually 

UDTs, can be monitored and controlled to inhibit urea hydrolysis, which has direct 

benefits for water conservation in traditional plumbing and would benefit nutrient 

recovery in urine diversion mode. As a CPS, the acid addition can be automated to 
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respond to changes in pH and other important variables in the urinal system. Depending 

on the use of the restrooms, acid would only be delivered to the urinals about once per 

hour, and because this would be fully automated, no manual labor (e.g., custodial staff) 

would be required. For restrooms with high use such as high traffic common areas, acid 

would only be added during times of low use, such as nighttime or weekends, further 

reducing the amount of acid needed for the urinals. For nighttime and weekends, the CPS 

could be programmed to deliver the amount of acid needed to maintain the pH of the 

urine inside the trap below pH 4. A redesign of the urinal to include pH sensors inside the 

trap would increase the capabilities of the CPS by providing a monitoring point closest to 

the fresh urine. If the urinal is not redesigned, the CPS could be instructed to “sleep” 

during the nighttime, with the informed assumption that the urine in the urinal trap is 

acidified but not reaching the pH sensor outside of the urinal. Both methods of nighttime 

urea hydrolysis control would be difficult to implement if a CPS is not employed. 
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CHAPTER 4  

IMPACT OF ACETIC ACID ADDITION ON NITROGEN SPECIATION AND 

BACTERIAL COMMUNITIES DURING URINE COLLECTION AND STORAGE 

 

Text from: Saetta, D., Zheng, C., Leyva, C., & Boyer, T. H. (2020). Impact of acetic acid 

addition on nitrogen speciation and bacterial communities during urine collection and 

storage. Science of The Total Environment, 745, 141010. 

doi:https://doi.org/10.1016/j.scitotenv.2020.141010 

Abstract 

The rate of urea hydrolysis in nonwater urinals is influenced by the volume of 

urination events and the frequency of urinal use. Inhibition of urea hydrolysis with acetic 

acid addition has been demonstrated at the laboratory scale but it was not able to fully 

represent the conditions of a real restroom with real urine collection. The goal of this 

study was to understand the effects of acid addition for control of urea hydrolysis on 

nutrient concentrations and bacterial communities in human urine during collection and 

storage. Three control logics were used to determine the schedule of acid addition: (i) 

acid addition after every urination event, (ii) acid addition during periods of high building 

occupancy, and (iii) acid addition during periods of low building occupancy. Wifi logins 

were used to approximate building occupancy and to create the control logics used in the 

study. All three control logics were able to inhibit urea hydrolysis. The bacterial 

communities were identified to determine the impact of acid addition on the community 

structure. The collection of urine by nonwater urinals alone did not reduce the presence 

of enteric bacteria commonly found when collecting urine with urine-diverting toilets. 

Acid addition reduced the community diversity and created conditions for higher relative 
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abundances of the order Enterobacteriales. Finally, results from stored acidified urine 

showed that urea hydrolysis inhibition is reversible and is influenced by the amount of 

acid added at the urinal. The amount of acid added can influence the rate of hydrolysis in 

the storage tanks and can be used to select for urea- or ammonia-nitrogen for nutrient 

recovery. This study is the first of its kind to inhibit urea hydrolysis in nonwater urinals 

in a real restroom with real urine, and is the first to identify the bacterial communities in 

urine collected solely with nonwater urinals.  
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Introduction 

Urine diversion has the possibility of dramatically altering wastewater collections 

systems in commercial and institutional (CI) buildings, led by its benefits towards water 

conservation and resource recovery (Larsen & Gujer, 1996). Urine diversion has been 

proposed as a sustainable source for nutrients and fertilizers, for the ability to target 

pharmaceuticals, and for its connections to water conservations (Boyer & Saetta, 2019; 

Patel et al., 2020; D. G. Randall & Naidoo, 2018). Life cycle assessments have also 

shown that urine diversion can be equally or better than conventional wastewater 

treatment in terms of environmental impact (S. K. Ishii & Boyer, 2015; Landry & Boyer, 

2016). It is now imperative to move towards the transition from laboratory-scale 

development to full-scale operation of urine diversion systems. The vision for urine 

diversion systems in CI buildings is as follows. Urea hydrolysis inhibition is needed at 

the point of collection, regardless of downstream treatment in order to remove the 

collection fixtures as points of failure in the systems (Boyer & Saetta, 2019; D. G. 

Randall & Naidoo, 2018). For example, in the United States, plumbing codes have been 

amended to include nonwater urinals (American Society of Mechanical Engineers, 2006), 

providing the opportunity for implementation of urine diversion without needing 

additional codes for the collection fixtures. Next, based on stakeholder needs, on-site 

storage and treatment would produce location-specific products that can enter the local 

supply chain. Sensors and automation throughout the collection and treatment system 

would reduce the amount of labor needed on-site, such as cyber-physical systems (CPSs) 

proposed for urea hydrolysis inhibition (Saetta et al., 2019b). This vision allows for less 

change to the conventional wastewater system within buildings and thus reducing the 
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need for altering behaviors by building occupants. This vision relies on only the 

collection of urine from nonwater urinal users in order to comply with the US plumbing 

codes. Using nonwater urinals is the prime opportunity to implement urine diversion 

while the plumbing codes are revised to allow for urine-diverting toilets across the US, at 

which point the vision would include collection from all users.  

Hence, functionality of collection fixtures is necessary in order to fulfill this 

vision of urine diversion. Improving the function of nonwater urinals and developing 

urine-diverting toilet technology has been identified as a research need in the urine 

diversion literature (Boyer & Saetta, 2019; Larsen, 2020; McConville, Kvarnström, 

Jönsson, Kärrman, & Johansson, 2017). Malfunction occurs as the urea hydrolysis 

reaction creates conditions for precipitation of urine salts in the fixture. Acid addition at 

the urinal has been shown to inhibit urea hydrolysis in synthetic urine (Hannah Ray et al., 

2017; Saetta & Boyer, 2017; Saetta et al., 2019a, 2019b). Urea hydrolysis is the 

enzymatic reaction which hydrolyzes urea into ammonia and bicarbonate, raising the pH 

from 6 to 9 (K. M. Udert, Larsen, Biebow, et al., 2003). Acid addition lowers the urine 

pH to below the optimal pH for the urease enzyme (Krajewska, 2009). Additionally, the 

lowered pH reduces the precipitation potential of struvite (NH4MgPO4·6H2O) and 

hydroxyapatite (Ca₁₀(PO₄)₆(OH)₂) by shifting the speciation of PO4
3 to H2PO4

. Research 

has also shown the use of base addition to inhibit urea hydrolysis by increasing the pH 

past the optimal pH (Dyllon G. Randall et al., 2016; Senecal & Vinnerås, 2017; Simha, 

Senecal, et al., 2018). This technique is more amendable to a urine diversion system 

where nutrient recovery occurs at the urinal or toilet due to the co-benefits occurring in-

situ, such as the precipitation of calcium phosphate (Flanagan & Randall, 2018). As such, 
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acid addition reduces precipitation that would otherwise hinder the functionality of 

existing nonwater urinals that are targeted in this research. 

In Saetta et al. 2019, a conceptual model for urea hydrolysis identified two major 

factors that lead to urea hydrolysis progression: (1) frequency of urinal use and (2) 

volume of urination events (Saetta et al., 2019a). A urinal in a restroom with high use 

frequencies, e.g. in an airport, may need minimal acid addition due to the fact that fresh 

urine is readily replenishing the urine in the urinal trap. Inversely, a urinal in a restroom 

with low use frequencies, e.g. in a seldom occupied corner of an office building, may 

require more frequent acid addition, as urine in the trap is not readily replaced with fresh 

urine. While the volume of each urination is difficult to measure, the use frequency can 

be measured by motion sensor or other occupancy detection technology. This paper 

proposes the use of motion sensors to directly measure the use frequency. However, it is 

understood that motion sensors cannot be ubiquitously implemented to all nonwater 

urinal systems due to a vast landscape of urinals with different designs and CI buildings 

that cannot accommodate for additional technical expertise. Therefore, Wifi technology is 

proposed as a predictor for urinal use frequency.  

The proposal for using Wifi logins to predict occupancy has been used by energy 

CPSs in buildings to increase energy savings (W. Wang, Hong, Li, Wang, & Chen, 

2019), as Wifi logins have been shown to correlate with energy load increases (J. Chen & 

Ahn, 2014). Recently, Wifi logins have also been applied to drinking water systems 

within CI buildings, as its tied to water use and water quality (Richard, Hamilton, 

Westerhoff, & Boyer, 2020). Wifi logins may also be connected to urinal use and could 

be used as a manner for approximating the urinal use by way of building occupancy. 
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Inherently, multiple benefits exist for using Wifi as a predictor of occupancy, including it 

being a low-cost data set, it being widely available, and it being a standard method for 

communication within buildings. Hence, a system using Wifi logins as a predictor of 

occupancy can be easily transferred to multiple buildings with the same algorithms.  

A CPS for urea hydrolysis inhibition has the ability to control urine chemistry 

(Saetta et al., 2019b). However, the impacts on the microbiology present in urine has not 

been studied, especially as they pertain to the addition of acetic acid. Contrary to general 

assumptions, new microbiology tools have shown that urine is not sterile (Hilt et al., 

2014; Wolfe & Brubaker, 2015). Studies have shown that urine from healthy men and 

women contain a microbiota that is unique to the bladder and urethra (Gottschick et al., 

2017). Immuno-compromised individuals may also excrete pathogens, such as those 

related to urinary tract infections (Schönning, 2001). Additionally, urine may become 

cross-contaminated by fecal material during the collection process in traditional urine 

diversion systems (i.e., where at least a portion of the urine is collected using toilets). 

This is the first study of its kind to collect urine solely from nonwater urinals in a public 

restroom. In theory, this will reduce the amount of fecal contamination. However, it is 

unknown whether the restroom ecosystem and toilet plumes will have an impact on the 

urine bacterial community (Johnson, Lynch, Marshall, Mead, & Hirst, 2013). Höglund et 

al. 1998 found that some bacteria, such as E. coli died off rapidly during hydrolysis, 

while others, such as fecal streptococci, persisted during storage (Hoglund, Stenstrom, 

Jonsson, & Sundin, 1998). Hence, there is an interest to understand the changes in 

bacterial community structure after acid addition to inform the community about the 

benefits or risks of acid addition on the presence of harmful or pathogenic bacteria.  
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This research proposes the use of acetic acid to inhibit urea hydrolysis, which 

inherently inhibits the formation of biocidal ammonia (Hellstrom et al., 1999; Hannah 

Ray et al., 2017; Saetta & Boyer, 2017; Saetta et al., 2019a). Additionally, the addition of 

the simple organic carbon in acetic acid can alter the bacterial life in urine storage tanks. 

Acetic acid has a pKa of 4.75. At pH below the pKa, acetic acid is able to enter to 

bacterial cells by diffusion, where the internal pH is above the pKa. Once inside the cell, 

the acid deprotonates, pH inside the cell decreases, and acetate accumulates until cell 

death occurs (Trček, Mira, & Jarboe, 2015). However, at pH above the pKa, acetic acid 

deprotonates in the bulk liquid and acetate acts as a carbon source for microbial life. For 

example, acetic acid is used in wastewater treatment as an external carbon source for 

nitrogen removal, which stimulates the growth of biomass in the system (US 

Environmental Protection Agency, 2013). Therefore, monitoring the pH of urine storage 

tanks receiving acetic acid is necessary to understand the relationship between the pH and 

pKa of acetic acid in terms of bacterial inhibition and growth. 

With all of this in mind, this paper serves to inform the future implementation of 

urine diversion systems in CI buildings by taking the next step towards radical change of 

our wastewater treatment landscape (Kemp, Schot, & Hoogma, 1998). As such, the goal 

of this research was to understand the effects of acid addition for control of urea 

hydrolysis on nutrient concentrations and bacterial communities in human urine during 

collection and storage. The specific objectives were to quantify the impacts of acetic acid 

addition on (1) urine chemistry during collection, (2) bacterial communities during 

collection, and (3) urine storage. In this research, collection is defined as dynamic process 

where fresh urine is added to the system whereas storage is defined as static process 
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where no fresh urine enters the system. Experiments were conducted using a novel 

“urinal-on-wheels” that was wheeled daily into a public restroom to monitor and control 

urine conditions in real-time during collection (See Figure 4-S1 and 4-S2). Following 

collection, the urine was stored for 120 days to monitor further changes in composition.  

Materials and Methods 

Urinal-on-wheels 

A Sloan Water-Free urinal and 17 gal (64 L) storage tank was mounted on a metal 

frame with wheels to create the “urinal-on-wheels” (see pictures in Supporting 

Information (Appendix B), Fig. 4-S1 and 4-S2). Human urine collection was approved by 

the Arizona State University Institutional Review Board. The urinal was hung on the 

outside of the box, while the tank, sensors, microcontroller, and battery were housed 

inside the box. The collection tank was outfitted with Atlas Scientific pH and temperature 

sensors for real-time monitoring. An OSEPP Passive Infrared Sensor (PIR) Sensor and an 

URTONE UR198 Momentary Push Button Switch was placed on the outside wall above 

the urinal to count the number of users (users were asked to press the button after 

donating urine). An Atlas Scientific EZO-PMP peristaltic pump was used for acetic acid 

delivery into the urinal for acid addition experiments. The sensors and pump were 

controlled using a Raspberry Pi 3 Model B with a python-coded program. Data was 

stored locally on the microcontroller SD card. Measurements for the four sensors were 

logged every 5 min. The urinal-on-wheels was placed inside a multi-stall restroom in a 

seven-story institutional building on the Arizona State University campus. The restroom 

had 2 water-flushing urinals and three toilets. A “run” consisted of 2 weeks (Wednesday 

to Wednesday) of urine collection, with the urinal in the restroom for at least 4 h per day. 



  78 

The urinal was not placed in the restroom during the two weekends (Saturday and 

Sunday) in the run period but the sensors were used to monitor the urine in the tank 

during the weekends. The urinal-on-wheels was stored in a laboratory space during 

nighttime and weekends. With this experimental design, runs consisted of 11 days of 

collection, in which collection was a dynamic process. The Wifi login data was collected 

by the Arizona State University Information Technology (ASUIT) and was reported as 

the sum of all Wifi logins per hour that occurred on the restrooms’ floor level.  

Four experiments were conducted: (1) monitoring urea hydrolysis, (2) acetic acid 

addition after every urination, (3) acetic acid addition when occupancy is above the 

occupancy threshold, and (4) acetic acid addition when occupancy is below the 

occupancy threshold (see Table 4-1). Each experiment had two runs. The first experiment 

monitored urea hydrolysis, meaning that no acetic acid addition was delivered to the 

urinal and the urea hydrolysis reaction was allowed to progress. The second experiment 

delivered acid to the urinal after each time the button was pushed. The third and fourth 

experiments added acid based on the occupancy threshold selected. The urinal-on-wheels 

was not inoculated with anything prior to experiment 1. Between runs, the urine tank was 

emptied but it was not cleaned. The tank used for Runs 1 and 2 (no acid addition) was 

replaced with a new tank for Runs 3 and it was used for Runs 38 (acid addition). The 

Sloan urinal has a removable cartridge (Falcon Water Technologies Velocity Cartridge) 

that acts as the p-trap. A new cartridge was used for each run and fresh sealant was 

poured into the trap at the beginning of each run.  
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Table 4-1. Experimental details  
Experiment 

1 

Experiment 

1b 

Experiment 2 Experiment 

2b 

Experiment 

3 

Experiment 4 

Name Urinal-on-

wheels: Urea 

hydrolysis 

Glass Urinal: 

Urea 

hydrolysis 

Urinal-on-

wheels: Urea 

hydrolysis 

inhibition 

acetic acid 

Glass 

Urinal: Urea 

hydrolysis 

inhibition 

Urinal-on-

wheels: Urea 

hydrolysis 

above 

threshold 

Urinal-on-

wheels: Urea 

hydrolysis 

below 

threshold 

Total Length 2 weeks 20 days  2 weeks 20 days  2 weeks  2 weeks 

Name of Runs Run 1 & 2  Run 3 & 4  Run 5 & 6 Run 7 & 8 

Number of 

Pumps 

0 0 1 0 1 1 

Pump details 

(flow rate) 

    Pump = acetic 

acid (7.5 

mL/min) 

  Pump = 

acetic acid 

(7.5 mL/min) 

Pump = acetic 

acid (7.5 

mL/min) 

Urination events 

timing 

Random use 2 urination per 

day 

Random use 2 urination 

per day 

Random use Random use 

              

Constant inputs 

(frequency) 

  

  Urination = 37 

mL  

  

Acetic acid 

soln, 2.5 mL 

(every time 

button is 

pressed) 

Urination = 

37 mL  

  

  

Acetic acid 

= 0.39 mL 

 

Variable inputs 

(frequency) 

    
Acetic acid 

soln, 2.5 mL 

(every 1 h 

during 

periods of 

high 

occupancy) 

Acetic acid 

soln, 2.5 mL 

(every 1 h 

during periods 

of low 

occupancy) 
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Urine samples for nutrient concentration analysis were taken at the end of each 

collection day within 15 min when the urinal is taken out of the restroom. The tank mixed 

on the way back from the restroom due to the movement from the restroom to an elevator 

and to the laboratory space for storage. Samples were taken inside the laboratory space to 

comply with biohazard rules. The samples were acidified with sulfuric acid to pH < 2 and 

were stored at 4°C until analysis of the samples was conducted. Prior to analysis, samples 

were filtered using 0.2 μm nylon syringe filters (Environmental Express). Samples were 

diluted by 100× for phosphate and ammonia analysis with a Lachat Flow Injection 

Analyzer and by 1000× for total nitrogen (TN) and total organic carbon (TOC) analysis 

using a Shimadzu TOC-TN analyzer.  

At the end of the collection period, urine samples for microbiology analysis were 

taken for Runs 18. Four 50 mL samples were collected into Falcon tubes. Samples were 

centrifuged at 4000 G for 12 min. The pellet was removed and placed into a 1.5 mL 

centrifuge tube. Pellets were stored at 20°C for short-term shortage and 80°C for long-

term storage until all samples from the runs were collected. To study the storage period, a 

2L urine sample was taken at the end of each acid addition run (Runs 38) to assess 

changes to urine chemistry for urine storage conditions. The samples were stored at room 

temperature in 1 gal (3.8 L) clear glass bottles. pH and conductivity measurements were 

taken once per week during storage. Periodic grab samples were taken from the storage 

bottles for TN, TOC, ammonia, and phosphate measurements. The methods above for 

analysis were followed for the storage samples. In terms of experimental timelines, day 0 

of storage began on day 11 for Runs 38. The storage samples were stored and sampled 

for 120 days. 
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Glass urinal 

A glass urinal was made by the Arizona State University Glassblowing Facility 

(see picture in Supporting Information (Appendix B), Fig. 4-S3). It consisted of a 2L 

round bottom flask (or “tank”) with two joints. One joint was used as the inlet from the 

urinal trap to the flask. The second joint was used as the vent to allow for air to pass and 

for urine to flow through the glass urinal. The glass urinal trap was blown to hold 

approximately 70 mL of fluids and it has a funnel shaped top to catch the urine as it is 

poured into the trap. Based on the dimensions of the trap, the corresponding fluid 

volumes (urinal sealing liquid and urine held in the trap) were calculated to match the 

ratios of the fluids in the real nonwater urinals used in Saetta and Boyer (Saetta et al., 

2019a). Kohler Waterless Urinal Sealing Liquid (containing >80% vegetable oil, > 10% 

polyamide gel, and >10% proprietary blend of nonhazardous components) was used as 

the sealing liquid (Kohler, 2015). The ratios used in the glass urinal were 14 mL of 

sealing liquid and 37 mL of urine per urination event. 

 Two experiments were conducted with the glass urinal (see Table 4-1). The first 

experiment was conducted to monitor urine chemistry and microbiology in urea 

hydrolysis conditions. The second experiment was conducted to monitor the urine 

chemistry and microbiology in acetic acid addition conditions. Each experiment was 

conducted three times to assess accuracy. The runs consisted of 3 weeks of urine 

collection. Urine donors were asked to collect urine in sterilized urine collection cups in a 

nearby restroom. Urine was added as soon as collected to ensure freshness. Urine was 

added to the glass urinal twice per day. The pH and conductivity of the fresh urine 

samples was taken prior to the urine being poured into the urinal (see Figure 4-S8). 
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During each run, a 30 mL sample of the urine in the collection flask was taken at the 

beginning of every Monday and at the end of every Friday. The pH and conductivity of 

the flask samples was taken immediately after collection.  

 At the end of each run, a 20 mL sample was taken from the flask. The sample was 

acidified with sulfuric acid to pH < 2 and was stored at 4°C until further TN, TOC, 

ammonia, and phosphate analysis using the methods described in the section 2.1 (see 

Figure 4-S9). The flask was magnetically stirred at 400 rpm for 3 min to allow for 

homogenization of the urine solution and a 50 mL Falcon tube was filled for pellet 

recovery. The samples was centrifuged at 4000 G for 12 min and a pellet was recovered 

and stored at 20°C for short-term storage and 80°C for long-term storage until all 

experiments are finalized.  

DNA extraction and data analysis 

DNeasy Powersoil Kit were used for DNA extraction of the frozen pellets and 

instructions were followed. A BioTek Synergy H1 Hybrid Multi-Mode Reader was used 

as a quality check to determine the concentration of DNA extracted in the samples. DNA 

sequencing was conducted by the ASU Biodesign Institute Genomics Facility. Bacterial 

community analysis was performed via next generation sequencing in MiSeq Illumina 

platform. Amplicon sequencing of the V4 region of the 16S rRNA gene was performed 

with the barcoded primer set 515f/806r designed by Caporaso et al. 2011 and following 

the protocol by the Earth Microbiome Project (EMP) for the library preparation 

(Caporaso et al., 2011). PCR amplifications for each sample were done in triplicate, then 

pooled and quantified using Quant-iT™ PicoGreen dsDNA Assay Kit (Invitrogen). A no 

template control sample was included during the library preparation as a control for 
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extraneous nucleic acid contamination. 200 ng of DNA per sample were pooled and then 

cleaned using QIA quick PCR purification kit (QIAGEN). The pool was quantified by 

Illumina library Quantification Kit ABI Prism® (Kapa Biosystems). Then, the DNA pool 

was diluted to a final concentration of 4 nM then denatured and diluted to a final 

concentration of 4 pM with a 25% of PhiX. Finally, the DNA library was loaded in the 

MiSeq Illumina and run using the version 2 module, 2x250 paired-end, following the 

directions of the manufacturer. Data was analyzed using QIIME2 (Quantitative Insights 

Into Microbial Ecology), which was used to determine the relative abundance of bacterial 

communities in the samples (Bolyen et al., 2018). 

Results and Discussion 

Urine chemistry during collection 

Wifi logins were used as a surrogate measurement of building occupancy for the urinal-

on-wheels experiments. Saetta et al. concluded that urea hydrolysis could be controlled 

based on frequency of urinal use (Saetta et al., 2019a). Using building occupancy to 

create control logics would eliminate the use of sensors at the urinal, simplifying acid 

addition at the urinal for urea hydrolysis inhibition and eliminating the cost and 

maintenance of the sensors. However, most buildings lack occupancy sensors. Wifi has 

been used as a surrogate for occupancy in energy CPSs (W. Wang et al., 2019) and water 

quality studies (Saetta, Richard, Leyva, Westerhoff, & Boyer, 2020) in buildings, as it 

provides an accurate estimation for building occupancy. In this case, control logics were 

created using historic data from the year before the experiments were conducted. Fig. 4-1 

shows the historic Wifi logins per day for the specific floor where the experiments were 

conducted (September 2018 to August 2019). Weekly patterns are easily seen in these 



  84 

data, as well a dramatic decrease in logins during the December holiday break and a 

decrease in the summer months. The 70th, 80th, and 90th percentile of the data was taken 

and the resulting values for the total data set, fall, spring, and summer semesters are seen 

in the table insert in Fig. 4-1. The Wifi login values would indicate the point at which the 

building went from low to high occupancy based on the percentiles calculated. 

Ultimately, the 80th percentile values for the specific semesters were chosen as the cut-off 

value for the urinal-on-wheels experiments. The average number of Wifi logins per hour 

per day can be seen in Fig. 4-S4.  

 

Figure 4-1. Time series of the floor-specific Wifi logins per day for September 2018 to 

August 2019. Wifi login thresholds are displaying on the graph for the total time series, 

the fall, spring, and summer semesters. The 80th percentile values were chosen for this 

study.  

 

The proposed Wifi logins method could be implemented in a similar manner with 

real-time data. Daily averages can be calculated by algorithms at the edge, meaning that 

the algorithms are located as close to the sensors as possible (Corcoran, Lemley, 

Costache, & Varkarakis, 2019), which would be compared to real-time Wifi login data to 
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determine the acid addition schedule with as much specificity as desired, e.g. logins per 

building by aggregating logins for all Wifi access points in the building, logins per floor 

by aggregating logins for all Wifi access points on each floor, or logins per restroom by 

selecting Wifi access points nearest to each restroom. The specificity to which the control 

logics are designed would depend on the use frequency of each restroom and the 

difference from restroom to restroom. This research assumes that the number Wifi logins 

influences frequency of urinal use, when in reality, a Wifi user can enter a building a 

never use a urinal. However, the trends taken calculated from the Wifi logins do not have 

to be granular in their measurements. The Wifi logins are used as a measure of periods of 

high and low occupancy. The assumption lies on the idea that more people will use the 

urinals during high occupancy than during low occupancy and that is why the Wifi logins 

provide a good measurement without needing additional intervention around each urinal.  

Four urinal-on-wheels experiments were conducted (2 runs per experiments for a 

total of 8 runs). The objective of the first experiment was to monitor the extent of urea 

hydrolysis occurring in the urinal-on-wheels without acid addition. These runs served as 

a check on the monitoring equipment and the design of the urinal-on-wheels. Three 

subsequent experiments were conducted to test three acid addition control logics: (1) Run 

34 tested acid addition after every urination event by asking donors to press a button 

after using the urinal, (2) Run 56 tested acid addition once an hour during periods of 

high floor occupancy, and (3) Run 78 tested acid addition once an hour during periods 

of low floor occupancy. During Runs 5 and 6 (acid addition during periods of high 

occupancy), acid was added between 4 and 9 times per day because the experiments were 

conducted in the summer semester and historically, the number of Wifi logins were above 
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13 during 4 to 9 hours of the day. For Runs 7 and 8 (acid addition during periods of low 

occupancy), acid was added between 15 to 24 times per day because those experiments 

were conducted in the fall semester and historically, the number of Wifi logins were 

below 28 during 15 to 24 hours of the day. 

 First, the urinal-on-wheels was able to provide interesting results when it comes 

to use patterns and the efficiency of the acid addition logics. Fig. 4-2 compares the 

outcomes of the all 8 runs. Part (a), (b), and (c) shows the use patterns and average 

urination volume for each run. Parts (a) and (b) show that the number of users varied 

widely between runs, even though the urinal-on-wheels was placed in the restroom for an 

equal amount of time across all runs. The average urination volume for all the runs was 

283.3 ± 38.6 mL, which is within 50 mL of the average urination volume of 237 mL that 

has been reported in the literature (Latini, Mueller, Lux, Fitzgerald, & Kreder, 2004). 

Interestingly, the urination volumes were the lowest when the ambient air temperatures of 

Arizona were the highest in mid-Summer, confirming that urination volumes are 

negatively correlated to air temperatures because increased temperatures increase water 

loss due to sweat but does not increase water intake (Mora-Rodriguez et al., 2016). And 

although not the focus of this research, the ability to monitor urination volume and 

composition suggests the potential to monitor human health conditions such as hydration 

and dehydration. 
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Figure 4-2. Comparison of all treatments. (a) Total number of users per run as indicated 

by the button push. (b) Total time the urinal-on-wheels was in the restroom per run. (c) 

Calculated urination volume per urination event based on total volume collected and 

number of users per run. (d) Total volume of acid added per run. (e) Calculated volume 

of acid added per urination event per run. (f) Calculated percent of acid added to the urine 

tank by volume. (g) Final pH measurement of the urine tank per run. (h) Final ammonia 

concentration in urine grab samples taken at the end of Day 11. (i) Final phosphate 

concentration in urine grab samples taken at the end of Day 11. Error bars for duplicate 

analysis are shown with the standard deviation for (h) and (i). 

 

Parts (d), (e), and (f) show the results for acid addition. As expected, the least 

amount of acid added to the urinal was seen during experiments testing addition at 

periods of high occupancy. This is because acid was only added once per hour for 6 to 9 



  88 

hours per work day depending on the day and there was no addition during the weekends. 

The opposite effect can be seen with the acid addition results for Runs 7 and 8. Acid was 

added once per hour at periods of low occupancy, which includes nights and weekends. 

Part (e) was used as a method of calibrating the acid addition. Whenever the pump was 

activated, whether due to button push or occupancy logics, 2.5 mL of acetic acid was 

added. The actual total addition of acid was impacted by interruptions in operation, such 

as loss of power or program failure. Ideally, the volume of acid per user for Runs 3 and 4 

would be 2.5 mL, as that was what the program was coded to deliver. As calculated, 2.4 

mL and 2.3 mL of acid were added in Runs 3 and 4, respectively. This is less than 10% 

different than the desired 2.5 mL of acid, therefore the method of acid addition was 

determined to be adequate for future runs. The greatest amount of acid added per 

urination event was seen in Runs 7 and 8 at 5.0 mL and 5.5 mL, respectively. That is 

more than 2 times the amount of acid added during runs of acid addition after every 

urination event. The implications of these results will be discussed subsequently. 

Parts (g), (h), and (i) show a snapshot of the results in terms of urea hydrolysis 

inhibition. The pH at the end of each run is seen in part (g). As expected, the pH during 

urea hydrolysis monitoring experiments was 8.85 and 8.93 for Runs 1 and 2, respectively. 

During acid addition experiments (Runs 38), the final pH was between 4.565.54. This 

pH range spans the pKa of acetic acid of 4.75. Part (h) shows the concentration of 

ammonia in the Day 11 sample taken from the urinal tank (expanded data for seen in Fig. 

4-3). As a result of acid addition, the average concentration of the final ammonia samples 

for Runs 38 was 20.2 ± 2.2 mmol/L as N, meaning that urea hydrolysis was inhibited by 

all three acid addition logics. This concentration falls within the range of ammonia in 
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fresh urine given in the literature: 1242 mmol/L as N (Putnam, 1971). Part (i) shows the 

concentration of phosphate in the Day 11 sample taken from the urinal tank. The acid 

addition did not affect the phosphate concentration, as expected. The increase in pH in 

Runs 1 and 2 should have led to the precipitation of phosphate as struvite 

(NH4MgPO4·6H2O) but that was not evident in the final concentration of phosphate in 

the Day 11 samples (K. M. Udert, Larsen, & Gujer, 2003b). There was no observed 

precipitate in the samples but there was precipitate on the sensors when they were 

cleaned after between runs. The trends in the measured phosphate concentrations could 

be due to the sampling method, mainly because acidifying the sample upon collection 

could have dissolved any precipitated phosphate. Overall, the acid addition was able to 

inhibit urea hydrolysis in real urine as seen in the urine chemistry results. This confirms 

the trends seen in synthetic urine urea hydrolysis experiments (Saetta & Boyer, 2017; 

Saetta et al., 2019a). 

Fig. 4-3 shows the pH of urine during each run. For Runs 1 and 2, the pH 

increased rapidly from pH 7 to pH > 8.5 within the first week in use, where it is then 

buffered at pH 9. The increase in pH is indicative that urea hydrolysis was happening, but 

it does not give an indication of the extent of hydrolysis due to the buffering at pH 9 

(Hannah Ray et al., 2017). The pH in the acid addition experiments (Runs 38) can be 

seen to react to the logics in different ways. Because the sensors were in the urine tank, 

the effects of acid addition on pH in the tank was dependent on the frequency of urinal 

use. In Runs 3 and 4, acid was added after every urination event, leading to a constant pH 

throughout runs because acid was constantly added and entering the tank with the 

incoming urinations.  
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Figure 4-3. Urine pH measurements taken every 5 min for Runs 18. In the legend, D 

denotes days, N denotes nights, and W denotes weekends.  

 

 

In Runs 5 and 6, acid was added at periods of high occupancy, leading to less consistency 

in the pH when compared to the the pH in Runs 3 and 4. However, the acid was able to 

enter the tank during periods when the urinal was being used. In Runs 7 and 8, acid was 

added at periods of low occupancy, leading to a build up to acid in the urinal trap. This 

build up would only enter the tank once the urinal was used during the workdays and the 

acid would then build up again at night. The pH responded to this acid addition logic with 
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the most inconsistency. Conductivity was not used in the study because the probe 

malfunctions with small amounts of scaling across the sensing window. 

The temperature sensor in the tank monitored the conditions in the tank and the 

results show an interesting parameter that could be used to monitor urine storage tanks in 

future applications. The temperature in the storage tank reacted to the daily use of the 

urinal and the volume of urine collected (see Fig. 4-S5). Urine is excreted at body 

temperature (37°C). As more urine is collected, the temperature inside the storage tank 

rises. At night, when urine is not collected, the stored urine temperature decreases to 

room temperature (22°C). As the volume of urine in the tank increases, the influence of 

fresh urine on the tank temperature decreases. However, changes in temperature were still 

evident on the last day of the runs. Hence, variance in temperature of urine in small to 

medium collection tanks could be used in conjunction with occupancy sensing (e.g., 

Wifi) to control urea hydrolysis via acid addition. 

Fig. 4-4 shows the concentration of ammonia, TN, and the calculated 

concentration of urea for daily urine samples in each run. The concentrations for samples 

during Runs 1 and 2 confirm that urea hydrolysis was occurring, as the ammonia 

concentrations increase from day 1 to day 11. The coefficient of variation for ammonia 

concentration in these runs was 44% and 39%, respectively. Comparatively, the 

coefficient of variations for ammonia concentration in the acid addition runs (Runs 38) 

were below 15%, with the lowest coefficient found in Run 8 at 4%. These results are 

direct measurements of the urea hydrolysis reaction and are better indicators of the extent 

of urea hydrolysis (Hannah Ray et al., 2017). The percent of urea hydrolysis based on the 

reported measurements was between 4.66.4% for Runs 38. Run 38 were all able to 
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inhibit urea hydrolysis, while Runs 1 and 2 showed increasing extents of urea hydrolysis. 

Fig. 4-S6 and 4-S7 show the results for phosphate and TOC in a similar fashion. 

 
Figure 4-4. Ammonia and total nitrogen (TN) measurements of daily urine samples 

during urine collection for Runs 18. Urea is calculated as the difference between TN 

and ammonia concentrations. 

 

This study was designed to inform future implementation of urine diversion 

systems in CI buildings. The acid addition allows for control of nitrogen speciation, 

specifically allowing for a decision between inhibiting urea hydrolysis and allowing 

hydrolysis to ammonia in the stored urine. The amount of acid added had an impact on 

the concentrations of urea and ammonia in the stored urine and the time to hydrolysis 

during storage. It is conceivable to design a system which inhibits urea hydrolysis at the 

urinal and storage tank to enable urea recovery (Hannah Ray et al., 2019) or inhibit urea 

hydrolysis at the urinal but allow for complete hydrolysis at the storage tank to enable 
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ammonia recovery (H. Ray, Perreault, & Boyer, 2020). This allows for tailoring suite of 

technologies that could be used to recover products based on local needs. With this in 

mind, it is also important to account for the amount of acid needed based on economic 

impact for the raw materials and the labor needed to replenish acid storages at the urinals. 

However, when the recovery of urea is more economically favorable in a specific 

location or situation, the extra addition of acetic acid to keep hydrolysis inhibited in 

storage tanks may not be a hindrance on the economics of the whole system. 

Urine bacterial communities during collection 

Biological samples for DNA sequencing were taken from the urinal-on-wheels 

and compared to the results from the glass urinal experiments. The glass urinal 

experiments were conducted in a laboratory and the glass urinal was autoclaved between 

runs to remove the influence of the restroom and the urinal-on-wheels plumbing on the 

bacterial communities. Fig. 4-5 shows the bacterial orders for the samples taken from 

Run 2 (no acid), Run 6 (least amount of acid added), and Run 8 (most amount of acid 

added) compared to samples from the glass urinal. Three glass urinal samples were 

sampled: a sample taken from the glass urinal trap after a urea hydrolysis experiment, a 

tank sample taken after a urea hydrolysis experiment, and a tank sample taken after an 

acid addition experiment. Results showing the pH and conductivity over time and the 

nutrient concentrations in the final samples can be seen in the SI (Fig. 4-S8 and 4-S9). 

The bacterial community results show that there was higher diversity in bacterial orders 

during experiments with no acid addition. When acid was added, a larger relative 

abundance can be classified as belonging to the Enterobacteriales order. The orders found 

in this study were in agreement with the orders of bacteria found in fresh urine samples in 
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previous studies, even though the samples were taken after 2 to 3 weeks of urine 

collection (Lahr et al., 2016). This indicates that the bacterial communities had not begun 

to transition into the bacterial communities found in urine that has been stored for long 

storage periods. Lahr et al. found that pH and urine age were major drivers for changes 

bacterial community structures (Lahr et al., 2016). The urine pH in this study reached pH 

8.9 at the end of Run 2 and was at pH 5.5 and 4.6 for Runs 6 and 8, respectively. 

Combined with the two week collection period, where fresh urine was continuously 

added to the tank, it can be concluded that the tank had not achieved the changes in pH 

and the storage time for a change in the community structure indicative of stored urine.  

 

 
Figure 4-5. Bacterial communities based on 16S rRNA analysis for urinal-on-wheels 

Runs 2, 6, and 8 and glass urinal experiments.  

 

 This is the first study of its kind to sequence bacterial DNA from urine collected 

solely with nonwater urinals. There was a possibility that the bacterial community would 

not contain the enteric bacteria found in urine collected with urine-diverting toilets, 

where fecal contamination is a risk. However, that was not the case in this study, as seen 
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in Fig. 4-6. Only fifteen of the genera found in this study (n = 29) have been identified in 

previous studies on the urinary microbiome (Fouts et al., 2012; Hilt et al., 2014; Lewis et 

al., 2013; Nelson et al., 2010). Nine of the identified genera are characterized as gut 

microbiome bacteria. Specifically, Escherichia was one of the most abundant genera 

found in the urine samples from the urinal-on-wheels and the glass urinal experiments. 

The urine tanks without acid (Run 2 and Tank no acid in Fig. 4-8) had lower relative 

abundances of Escherichia compared to those with acidified urine, indicating that acetic 

acid addition selected for higher abundances of Escherichia. This difference in 

abundance may be due to the high pH conditions after urea hydrolysis, as E. coli survival 

decreases 100-fold at pH 8 (Small, Blankenhorn, Welty, Zinser, & Slonczewski, 1994). 

The presence of gut microbiome bacteria indicates that environmental factors played a 

role in introducing fecal contamination that was not expected when collecting urine with 

nonwater urinals alone. The urinal-on-wheels was placed in a real restroom, where 

aerosol droplets from toilet flushing could have deposited on the urinal surface. 

Flushometer-type toilets that are commonly used in CI buildings have been shown to 

produce higher numbers of droplets, which could carry bacteria and pathogens (Johnson 

et al., 2013). The benefit of reducing gut microbiota from urine collected with urinals 

alone was not realized in this study. Future research on implementation at a larger scale is 

needed to determine how the restroom setting contributes to the presence of fecal bacteria 

in urine collected with nonwater urinals. 
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Figure 4-6. Relative abundance of genera identified in Run 2, 6, and 8 and glass urinal 

experiments with and without acid addition. 

 

Finally, as the urinal-on-wheels experiments served to inform future 

implementation of urine diversion in CI buildings, it is important to address the bacterial 

communities in terms of risk of exposure to those operating the system. An important 

implication is the presence of pathogenic bacteria found in the system, as it could have 

adverse effects on the staff operating the system (Fig. 4-7). With equal importance, while 

not being in the scope of this study, the presence of pathogenic viruses should also be an 

area of focus as urine diversion systems are implemented. Future research is need to 

determine the viability of the identified bacteria and viruses, as well as pathways for 

human exposure. The health and safety of the individuals is of paramount importance and 

their exposure the potentially pathogenic bacterial species identified in this study needs to 

be reduced (e.g., Escherichia, Pseudomonas). Bischel et al. (2019) followed workers in a 
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container-based urine collection program and determined that the highest risk to workers 

existed during the collection process, where exposure to contaminated surface is higher, 

than during the resource recovery phase (Bischel, Caduff, Schindelholz, Kohn, & Julian, 

2019). Therefore, with proper cleaning, personal protective equipment, and a closed 

design, a urine diversion system in a CI setting could reduce exposure to workers.  

 

 
Figure 4-7. Relative abundance of species identified in Runs 2, 6, and 8 and glass urinal 

experiments with and without acid addition. 

 

The engineering significance of identifying the bacterial species in the stored 

urine can be summarized by the following points. This is the first study to identify the 

bacterial communities in urine collected solely with nonwater urinals and from urinals in 

public restrooms, unlike other studies that identify bacterial communities in the medical 

literature or in systems using toilets for collection (Hilt et al., 2014; Lahr et al., 2016). 

Secondly, the results show that urine collected with nonwater urinals can still contain a 

wide range of bacteria, including pathogenic species. This is significant in terms of 
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operation as it pertains to exposure to staff and in terms of the treatment processes used to 

recover urine-derived products. The novel results show that assumptions about collection 

with nonwater urinals alone cannot be made, in terms of bacterial community structure, 

and can be used to inform future implementation of urine diversion systems.  

Urine chemistry during storage 

The third and final objective of this work was to quantify the impact of acid 

addition on urine storage where fresh urine is no longer entering the system. Urine was 

treated with the three acid addition treatments and was stored at room temperature for 

120 days. The results show that urea hydrolysis was still possible after acid addition, as 

seen by the pH, conductivity, ammonia, TN, TOC, and phosphate concentrations (Fig. 4-

8). In general, the amount of acid added had an influence on the rate of hydrolysis in the 

storage bottles. The pH of Run 8 was held consistently at pH 5 for the 120 day storage 

period (Run 8 received the most amount of acid). The samples taken from the Run 8 

storage bottle confirmed that urea hydrolysis was inhibited for the most amount of 

storage days. These results show that there is a possibility to control the speciation of 

nitrogen in storage tanks depending on the amount of acid added at the urinals thereby 

enabling urea recovery at pH 5 or ammonia recovery at pH 9. However, there are some 

exceptions to the assumption that amount of acid added influences rate of hydrolysis in 

storage. Even though Run 6 received the least amount of acid, it did not hydrolyze as 

rapidly as the run with the same control logic (Run 5). Similarly, Run 3 and Run 4 

behaved differently in storage even though they received approximately 1% of acetic acid 

by volume of urine. Additionally, the results show that there was a discrepancy between 
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the ammonia and TN concentrations for Run 3, which is most likely due to error 

introduced by large dilution factors and instrumentation differences. 

 

 
Figure 4-8. Trends in urine chemistry over storage time for urine from Runs 38. Error 

bars show the standard deviation for (c)  (f). The percent acid by volume of urine 

collected per run is displaying in the figure legend. 

 

The results show that there is a relationship between acid addition at the urinals 

and the amount of urea hydrolysis inhibition in the storage tanks, making it possible to 

select for a system to recover either ammonia- or urea-nitrogen. For example, if the 

stakeholders design a system for urea recovery via forward osmosis (Hannah Ray et al., 

2019), then additional acid addition would be needed in the storage tank if the amount of 

acid added at the urinals was not sufficient to inhibit urea hydrolysis in the storage tanks. 
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The urea recovery system could implement membrane separation for urea recovery and 

potassium-struvite precipitation for phosphate and potassium recovery (H. Ray et al., 

2020; Xu et al., 2015). The ammonia recovery system could implement ammonia 

stripping, struvite precipitation for phosphate recovery, and distillation for potash and 

water recovery (N. Jagtap & T. H. Boyer, 2020). A limitation of this study was the 

shortened distance between the urinal and the urine tank on the urinal-on-wheels. In a 

real system, the collection pipes would expose urine to biofilms that could be rich in the 

urease enzyme and it could increase the rate of hydrolysis before the urine reaches the 

storage tank (N. S. Jagtap & T. H. Boyer, 2020; K. M. Udert, Larsen, Biebow, et al., 

2003). This is especially important in multi-story CI buildings, as the distance between 

the urinals and the storage tank is longer than that in household urine diversion systems 

and where the collection system is connected to multiple urinals. The next step towards 

implementation of urine diversion would be to study acid addition for urea hydrolysis 

inhibition in a real multi-story CI building. The opportunity would bring the insight 

needed to operationalize a urine diversion system for nutrient recovery and water 

conservation.  

Conclusions 

A urinal-on-wheels was created that was able to monitor urea hydrolysis in real 

time and control the inhibition of the reaction using three different control logics based 

on historic Wifi login data. This paper was able to prove that Wifi login data can be used 

to inform the operation of urine diversion systems by approximating building occupancy 

and periods of increased urinal use. It was also the first study to identify bacterial 

communities for urine collected solely with a nonwater urinal and the results showed a 
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large presence of gut microbiome bacteria that was not expected due to the avoidance of 

direct fecal contamination from the collection fixture. The shifts in community structure 

due to acid addition should be further investigated to determine increased risk to 

operators. Finally, acetic acid addition at the urinal has impacts on the rate of urea 

hydrolysis in storage tanks and can be used to select for urea- or ammonia-nitrogen 

depending on the nutrient recovery technology available or the targeted nutrient product 

of interest.  
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CHAPTER 5  

DATA MINING METHODS PREDICT CHLORINE RESIDUALS IN PREMISE 

PLUMBING USING LOW-COST SENSORS 

 

Text from: Saetta, D., Richard, R., Leyva, C., Westerhoff, P., & Boyer, T. H. (2021). 

Data-mining methods predict chlorine residuals in premise plumbing using low-cost 

sensors. AWWA Water Science, 3(1), e1214. doi:https://doi.org/10.1002/aws2.1214 

Abstract 

Variable water quality within buildings is of increasing concern due to public 

health impacts (e.g., lead, Legionella pneumophila, Naegleria fowleri, disinfection by-

products). Advances in data acquisition and analytics provide the opportunity to monitor 

real-time building-wide water quality variability. Accordingly, the goal of this research 

was to create a water quality sensor platform including data acquisition, storage, and 

mining methods able to monitor and ultimately improve water quality within buildings. 

The platform was used to monitor water temperature, pH, conductivity, ORP, DO, and 

chlorine using sensors only. Other building data infrastructure, specifically Wifi logins by 

occupants, were used to approximate activity rates and associated water use. An 

advanced machine learning technique, gradient boosting machines, predicted the chlorine 

residuals throughout the building plumbing network better than multivariate linear 

regression models. Finally, the implications of water quality monitoring on costs, 

scalability, reliability, human dimensions, regulatory compliance, and future green 

building designs are considered. 
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Introduction 

Recent incidences of drinking water related illnesses have led to an increased 

interest and need for research on the variable water quality found in buildings (i.e., 

premise plumbing) (Rosen, Pokhrel, & Weir, 2017). The development of low-cost 

monitoring technology has enabled researchers to study drinking water systems that were 

once difficult to monitor. Low-cost sensors and microcontrollers, in conjunction with the 

ease of access to cloud storage technology, has provided the opportunity for real-time 

monitoring and control of water quality at the point-of-use (Cloete et al., 2016; Rao et al., 

2013). Water quality undergoes changes across water treatment plants and within both 

municipal distribution systems plus private home and institutional, or commercial 

premise plumbing systems such as hospitals, hotels, schools, etc. (Hull et al., 2017; 

National Research Council, 2007). Three water quality constituents of interest in premise 

plumbing are opportunistic pathogen  outbreaks, such as Legionella pneumophila and 

Naegleria fowleri, disinfection byproducts (DBPs), such as trihalomethanes (THMs) and 

haloacetic acids (HAAs), and corrosion and leaching of metal pipe materials, such as lead 

and copper (Cope et al., 2015; Dion-Fortier, Rodriguez, Sérodes, & Proulx, 2009; 

Falkinham, 2015; Masters, Welter, & Edwards, 2016). Few premise plumbing systems 

track water quality throughout vast systems of piping and associated storage systems, 

despite emerging recognition that stagnation and building operations (e.g., water 

temperature) impact water quality. There is an opportunity to leverage the advancements 

in water quality sensor technology to address concerns in premise plumbing, especially 

related to the relationship between chlorine residual and Legionella and THMs. If 

strategically located throughout the building water system, a low-cost sensor network 
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would be able to provide real-time measurements of drinking water quality parameters 

with seasonal or spatial variability that would otherwise be unknown with periodic (e.g., 

quarterly) sampling. 

This paper explores the use and implications of a water quality sensor platform to 

monitor and maintain water quality within premise plumbing as a tool in the effort to 

address the water quality conditions that are associated with the occurrence of Legionella 

outbreaks and elevated THM concentrations. Commercial and institutional (CI) building 

facilities mangers are tasked to maintain water systems within buildings while operating 

in a regulatory island where regulations are nonexistent and standards are enforced by 

local building codes; not the federal or state environmental agencies who enforce 

drinking water quality ("Standard 188-2018 -- Legionellosis: Risk Management for 

Building Water Systems (ANSI Approved)," 2018). The question arises, what will 

incentivize facilities managers and owners to install a water quality sensor platform in 

their building? We propose that pressure to install such a system can come from the 

response to awareness of two threats to water quality: (1) a response to acute threats (e.g., 

Legionella outbreaks) from risk assessors such as building insurers, and (2) a response to 

chronic dangers (e.g., lead or DBP exposure) from informed citizens. For example, 

prolonged shutdowns of institutional buildings associated with the COVID-19 pandemic 

and subsequent monitoring in schools is revealing detection of L. pneumophila among the 

types of high profile events that magnify even routine impacts of building operations 

(e.g., weekends) when building activity influence water quality (Horberry, 2020). A low-

cost water quality sensor platform, such as the one designed, implemented, and tested in 

this study, would be able to monitor and predict drinking water in premise plumbing 
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systems in CI buildings to ultimately prevent both acute and chronic threats to water 

quality.  

The goal of the research described in this paper was to create a proof-of-concept 

water quality sensor platform for data acquisition, storage, and mining methods able to 

monitor and inform the process of ultimately improving water quality within buildings, 

and to serve as a testbed to determine the minimum number of sensor types and locations 

needed to understand water quality in real-time. The water quality sensor platform 

focused on measuring and predicting chlorine residual because disinfectant concentration 

drives numerous chemical and microbiological processes that lead to undesirable 

outcomes (e.g., THM, lead and copper corrosion, biofilms, Legionella, tastes and odors), 

and chlorine sensors alone are costly to measure in real-time within premise plumbing 

(Berry, Xi, & Raskin, 2006; Cantor, Park, & Vaiyavatjamai, 2003; Chowdhury, 

Champagne, & McLellan, 2009; Dietrich & Burlingame, 2020). Using lower cost sensors 

(<$300 per sensor) within the water quality sensor platform can be an alternative to the 

high-cost chlorine sensors (>$2000 per sensor) available in the market, as will be 

discussed later in this paper. The specific objectives were to (1) create and implement a 

water quality sensor platform in a multi-story building, (2) assess the water quality 

patterns based on the data collected using water quality sensors, (3) model water quality 

using a traditional regression technique, (4) model water quality using a machine learning 

technique, and (5) discuss system considerations that are important for future 

implementation of water quality sensor platforms. The aim of the models is to design 

smart and responsive system using the minimum number of low-cost sensor types and 

sampling locations needed to improve water quality. The implications of implementing 
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water quality sensing in buildings are proposed in terms of capital and operational costs, 

scalability, reliability, human dimensions, and regulatory compliance.  

Water Quality Sensor Platform 

The water quality sensor platform used in this study was installed in a multi-story 

institutional building (i.e., office and laboratory building) at Arizona State University 

(Tempe, AZ). Interdisciplinary Science and Technology Building 4 (ISTB4) is a seven-

story building opened in May 2012. The building houses laboratory space for a range of 

scientific fields in approximately 300,000 sq.ft. About half the space is dedicated to 

offices for professors and graduate students. The 1st and 2nd floors house the lobby, K12 

educational spaces, and laboratory spaces. Excluding the 1st floor, each floor has a small 

breakroom containing a sink, a microwave, two refrigerators, coffee makers, and a small 

table. Domestic cold water (DCW) for ISTB4 is supplied by City of Tempe, Arizona. A 6 

inch main starts at the basement with one riser to feed the breakrooms and bathrooms. 

The copper riser starts at 2 inch and becomes 1¼ inch by the 7th floor. Floors have one 

breakroom and one alcove with bathrooms and two water fountains. Bathrooms are 

located vertically on top of each other for all floors and breakrooms start at the 2nd floor 

which are also vertically co-located (see floor plans in Fig. 5-S1).  

 To narrow the scope of this pilot sensor network in our testbed building, three 

floors were chosen for this study: 2nd, 3rd, and 7th. Six water quality sensors were installed 

underneath the breakroom sinks to monitor the water quality in real time. The following 

parameters were monitored for this study and the sensors were installed in series: pH 

(Atlas Scientific, ENV-40-pH), conductivity (Atlas Scientific, ENV-40-EC-K1.0), 

temperature (Atlas Scientific, PT-1000), dissolved oxygen (DO, Atlas Scientific, ENV-
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40-DO), oxidation reduction potential (ORP, Atlas Scientific, ENV-40-ORP), and free 

chlorine (Chemtrol, PPM010) (see Fig. 5-1). The flow cell branches off the domestic cold 

water line via a 1/4 inch tee that runs through the flow cell continuously and exits to the 

sink drain pipe after an air gap placed for safety.  

 
Figure 5-1. Architecture of the flow cell used in the water quality sensor platform 

 

A Raspberry Pi 3 Model B was used as the system controller. Two Whitebox 

Tentacle T3 boards were stacked onto raspberry pi 3 Model B GPIO pin headers. The T3 

boards were used to interface Atlas Scientific sensors without the need of wiring or 

breadboards. Each T3 board can accept up to 3 Atlas Scientific sensors and their 

corresponding trademarked circuits (Atlas Scientific EZO circuits) to handle the analog 
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to digital conversions. Each EZO circuit had a unique address that the Raspberry Pi used 

to call individual sensor one at a time to get a reading. When a reading was called for, the 

EZO circuit read the sensors' analog signal, scaled it, and converted it to a digital signal, 

which is read and stored by the calling program via the inter-integrated circuit (I2C) 

communications bus. The free chlorine sensor is a 4 – 20 mA output sensor, therefore an 

MCP3008 analog-to-digital converter integrated circuit was used to convert the signal to 

a 10 bit digital signal that was read by the calling program via the serial peripheral bus 

(SPI) communications bus. All sensor readings were stored into a variable by the calling 

program and written to a local csv file once they are all collected. After being logged on 

the csv file, the program connected to the Google Sheets application programming 

interface (API) via Wifi connection and uploaded the values to the Google Sheet. Next, a 

connection was opened to the Adafruit IO API and the values are uploaded to the online 

dashboard. Measurements were taken serially for every sensor once every 5 minutes. 

Wifi login data was used a surrogate data to aid in understanding activity within 

the building and the difference in activity on different floors of the building, which would 

impact spatial water use patterns within the building. In a novel approach, Wifi login data 

was used for this purpose because it is able to measure activity on each floor as occupants 

move throughout the space and their Wifi devices access the internet through access 

points located throughout the floors. The Wifi login data is collected by the ASU 

Information Technology (ASUIT) department in real-time. The Wifi login data was 

provided for this research as a sum of all Wifi logins that occurred at each hour across all 

access points for all seven floors in the building. Each Wifi login measurement 

represented a single login to a Wifi access point. An increase in Wifi logins is 
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representative of increased activity on the floor level, as more Wifi devices are 

connecting via the access points. Previously, Wifi login data has been used in the 

literature as approximation for occupancy (Ghai, Thanayankizil, Seetharam, & 

Chakraborty, 2012) and most applications have been shown for control of HVAC 

systems in office buildings (W. Wang et al., 2019). Recently, Wifi logins have now been 

correlated to drinking water and wastewater systems within CI buildings (Richard et al., 

2020; Saetta, Zheng, Leyva, & Boyer, 2020).  

Data Analysis and Model Calibration 

Data preprocessing 

Data was preprocessed in order to create two types of models: (1) linear 

regression models and (2) gradient boosting machines. Data acquisition, modeling, and 

predictive parameterization was performed in the modeling language R and Google Sheet 

programs. The six water quality measurements per floor were taken every 5 min. Prior to 

creating the models, the data had to be prepared to merge the water quality sensor data 

and the Wifi login data, to remove outliers within the water quality sensor data, to 

remove blanks found in the data set, and to normalize the data set. The data was first 

entered into Microsoft Power BI to create easy-to-use queries for the data timeframes that 

were desired for the models. In Power BI, the following data sets were exported for data 

analysis in R: time stamps, pH, conductivity (S/cm), temperature (°C), free chlorine 

concentration (mg/L), ORP (mV), and DO concentration (mg/L).  
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Figure 5-2. Data flow schematic showing the steps taken to prepare “normalized data” for 

the linear regression models and “preprocessed data” for the GBM models. 

 

Four steps were taken to preprocess the data before models were calculated (see 

Fig. 5-2). First, in order to match the 5 min water quality data points to the hourly Wifi 

data points, hourly averages of each water quality parameter were calculated in order to 

join the water quality data set with the Wifi login data set. Second, outliers were defined 

as any point outside the whiskers of a box and whisker plot. The outliers were removed 

from each water quality parameter in any case where they were identified. Outlier 

removal is an area of research and many forms of identification and removal of outliers 

are tested in the literature (Phan et al., 2020). The method for identification and removal 

of outliers in this paper were chosen for their low complexity but it is acknowledged that 

more robust methods for treating outliers could have been used. The third step was to 

remove any data rows that contained an NA value. NA values occurred during points 

when the sensors were not operating correctly or during periods where Wifi login data 
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was not available. At this point, this data became known as the “preprocessed data” 

because it was preprocessed (averaged, removal of outliers, etc.), but it was not 

normalized. The preprocessed data was then normalized using the min-max scaling 

method, where the data values were normalized between values of 0 and 1 (data known 

as “normalized data”, see Fig. 5-S2, 5-S3, and 5-S4 for density plots and Pearson 

correlation coefficients of the normalized data). 

In R, Welch’s t-tests were used to compare the means of the water quality 

parameters and the Wifi logins for each floor (Welch, 1947). Welch’s t-tests were chosen 

because they allow for sample groups of varied lengths and unequal variances, as 

opposed to Student’s t-tests or ANOVA analysis (Delacre, Lakens, & Leys, 2017). Three 

pairs of tests were run: (1) comparing the 2nd and 3rd floors, (2) comparing the 2nd and 7th 

floors, and (3) comparing the 3rd and 7th floors. A 95% confidence interval (p-value < 

0.05) was used for all t-tests to determine statistical significance.  

Linear regression models 

The normalized data were used to make multiple linear regression models of the 

free chlorine concentration in premise plumbing. First, the ggpairs function in R was 

used to calculate the correlation coefficients for all pairs of data parameters and the leaps 

function in R was used to search for the best fit among parameter subsets for linear 

regression. The functions were used to determine which subset of parameters (i.e., pH, 

conductivity, temperature, ORP, and DO) were best for modeling the free chlorine 

concentration. Next, linear regression models were created on a variety of parameter pairs 

based on the results.  
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 The linear regression models were trained using 70% of the total data set and they 

were tested with the remaining 30%. Three models per floor were trained and tested: (1) a 

model using only the Wifi login data [Chlorine (mg/L) = a + (b  Wifi)], (2) a model 

using only the ORP and Wifi login data [Chlorine (mg/L) = a + (b  Wifi) + (c  ORP)], 

and (3) a model using all available data [Chlorine (mg/L) = a  + (b   Wifi) + (c  ORP) 

+ (d  pH) + (e  Cond) + (f  Temp) + (g   DO)]. The models’ statistics were returned 

by the R lm function. The adjusted R2 values were used to compare the model fit. Using 

the testing data, the models were used to predict the chlorine concentration and the root 

mean square error was calculated for the actual data (testing data set) and the predicted 

model data. The predicted and actual values were compared using a Welch’s t-test (95% 

confidence interval, p-value < 0.05) to determine if there was a statistically significant 

difference between the two groups.  

Gradient boosting machines (GBMs) 

The preprocessed data was used to make three gradient boosting machine models 

to predict the free chlorine concentration in the premise plumbing. The UC Business 

Analytics R Programming Guide Gradient Boosting Machines (GBM) tutorial was used 

as a guide to create the models used in this paper (Boehmke & Greenwell, 2019). The 

GBMs were trained with 70% of the total data set and tested using the remaining 30%. 

Models for each floor were trained and tested to predict free chlorine concentration using 

(1) the Wifi logins and ORP data, (2) all parameters (Wifi logins, ORP, pH, conductivity, 

temperature, and DO) and (3) data for the top two parameters identified by the relative 

importance results from the all-inclusive models. The R GMB package was used to train 

a model with default parameters (0.001 shrinkage rate, 1 tree depth, and 5-fold cross-
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validation). The cross-validation RMSE (Root Mean Square Error) given by this initial 

model was a close approximation of the RMSE that could be achieved with GBMs. Next, 

a tuning method was used to determine the best model parameters for the data sets. 

Eighty-one different combinations of the shrinkage rate, tree depth, minimum number of 

observations at the tree nodes, and the fraction of training data subsampling to introduce 

stochastic gradient descent were created to train a tuning model and to determine the best 

set of parameters. The tuning models were run multiple times to determine the best 

combination of parameters that resulted in the lowest RMSE. The final parameters can be 

seen in Table 5-S1. Once the final models were made, the parameter relative importance 

was calculated to determine the influence each parameter had on the model (this was used 

to choose parameters for the third type of GBM models). The final models were then 

used to predict the free chlorine concentration for each floor. The RMSE of the predicted 

versus the actual data was calculated to compare across models. The predicted values 

were also compared to the actual values using Welch’s t-test (95% confidence interval, p-

value < 0.05) to determine if there was a statistically significant difference.  

Results and Discussion 

Observed trends in water quality 

This is the first study of its kind to measure water quality parameters in 

institutional building premise plumbing in real-time with low-cost online sensors alone. 

Figure 5-3 summarizes the water quality trends observed in the preprocessed data for the 

six water quality sensors used in the water quality sensor platform (data points for the 

boxplots are listed in Table 5-S2). Three statistically significant trends were shown by the 

data as floor levels increase within the building: (1) temperature increases, (2) free 
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chlorine residual decreases, and (3) ORP decreases (p-values shown in Table 5-S3). More 

specifically, the mean temperature increased from 21.5°C to 25.3°C, the mean chlorine 

concentration decreased from 0.43 mg/L to 0.01 mg/L, and the ORP decreased from 724 

mV to 268 mV from the 2nd floor to the 7th floor. These trends are reasonable based on 

physical and chemical processes and have implications as they pertain to DBP formation 

and microbial risk. Namely, relationships are well known to exist between residence time 

or temperature with chlorine decay, or between ORP measurements and chlorine 

concentrations (Copeland & Lytle, 2014; Ozdemir & Buyruk, 2018; Powell, Hallam, 

West, Forster, & Simms, 2000). The increase in temperature is mirrored by a decrease in 

chlorine concentration, which has negative implications on the water quality. Values for 

the other three parameters (pH, conductivity, and DO) do not show trends based on floor 

level. Conductivity is a measurement of salt content of the water, and since no chemicals 

are being added the lack of change in conductivity was expected but served as a negative 

control to detect potential anomalies (e.g., cross connections with whole-building 

ultrapure water systems, etc.). Likewise, pH was not expected to vary within the building 

mainly because the local tap water (Tempe, AZ) is well buffered by its high alkalinity 

(average 175 mgCaCO3/L; range 130 to 370 mgCaCO3/L)). However, in other 

communities with lower alkalinity in tap water, tracking pH could be a useful analyte 

because it could have an influence on corrosion of heavy metals (Edwards, Ferguson, & 

Reiber, 1994; Reyes, Letelier, De la Iglesia, González, & Lagos, 2008). Conductivity and 

pH can vary seasonally entering the building from the municipal water supply, and can be 

useful to understand or identify influences of different water sources (e.g., in-distribution 

system blending of multiple surface water treatment plants, groundwater pumping, 
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purchased water across different pressure zones) used by municipalities on individual 

building water quality. DO concentrations for the 7th floor were not included in this data 

mining because of sensor error identified during data preprocessing. A majority of the 

DO concentrations were significantly higher than the theoretical maximum of DO in 

water at these conditions (see Fig. 5-S5). This points to the importance of review of data 

trends by experts in water quality, especially when implementing in building locations 

with low chlorine due to the physical constraints of the system (in our system, the 7th 

floor is the highest floor level and inherently, chlorine concentrations were low). Experts 

may also determine that the absolute values of the measurements are not important when 

systems are designed to identify long-term trends in the water quality data. 

 
Figure 5-3. Boxplots for the preprocessed water quality for the 2nd, 3rd, and 7th floors 

prior to normalization. The interquartile ranges (IQR) between the 25th (Q1) and 75th (Q3) 

quartile and the whiskers extend to Q1  1.5IQR and Q3 + 1.5IQR. The center line 

represents the median (Q2) of the dataset. Outliers are shown beyond the whiskers.  
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Welch’s t-tests were used to compare the means of each pair for the six measured 

parameters (2nd vs 3rd floor, 2nd vs 7th floor, and 3rd vs 7th floor). The resulting p-values 

(see Table 5-S3) indicate that there was a statistically significant difference between all 

pairs except for conductivity values between the 2nd and 3rd floor. There was a statistical 

difference in the measured parameters between floors, even when there was no apparent 

increasing or decreasing trend among individual parameter values (pH, conductivity, and 

DO data). These results also demonstrate that the water quality sensor platform was able 

to capture differences in water quality from floor to floor within the multi-story building 

that would otherwise be difficult to capture with grab samples. Thus, the water quality 

sensor platform provided a data set that is far richer than what is possible with traditional 

sampling techniques. The challenge is to determine the number and placement of water 

quality sensors necessary to improve building water quality for its occupants.  

Relationships observed in water quality and building biometric datasets 

The in-line sensor water quality data were augmented with nearly continuous Wifi 

login data which served as our biometric surrogate—building occupant behavioral 

patterns by floor in the building. Figure 5-4 shows the relationship between Wifi logins, 

accumulated on an hourly basis, and the six water quality parameters. Linear regression 

lines are shown to provide insight into the trends observed in the data (see Table 5-S3 for 

adjusted R2 values of the relationships). Two parameters (chlorine residual and 

conductivity) had an increasing trend as Wifi logins increased. The chlorine residual is 

expected to increase as Wifi logins increase because more people would be drawing 

water into the premise plumbing system from the distribution system, where chlorine 

residual is higher (Richard et al., 2020). From Figure 5-3, conductivity values do not 
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depend upon floor level, and the apparent correlation is therefore unexpected. 

Unexpected correlations are common when analyzing big data sets. This is when it 

becomes important to use expert judgement in interpreting the results, as it can become 

evident that the statistical relationship does not always indicate causation between two 

parameters, such as the results showing a relationship between Wifi logins and 

conductivity.  

The other four parameters (ORP, pH, DO, and temperature) have more complex 

relationships with Wifi usage patterns, including when one floor level has the opposite 

relationship to Wifi logins compared to the remaining two floor levels. ORP had a 

negative relationship with increasing floor level (see Fig. 5-3) while a positive 

relationship was observed with increasing Wifi logins on the 3rd and 7th floor (see Fig. 5-

4). This agrees with the relationship between chlorine and ORP shown in the literature 

(Copeland & Lytle, 2014). A recently published study was able to correlate the Wifi 

logins to water use within a university building with a correlation factor as high as 0.74 

(Richard et al., 2020). This creates the opportunity for future research to confirm whether 

Wifi logins could be used to approximate water use within a variety of building types as 

opposed to relying on costly submetering of flowmeters or other direct measurements. 

Using Wifi login data may provide beneficial information with a level of acceptable 

accuracy, without the high cost involved with installing location-specific water meters. 

There may be other biometric data surrogates actively collected within buildings (e.g., 

security cameras, elevator use, temperature sensors, thermostats, motion detectors 

installed to activate lighting, etc.) for reasons unrelated to water use patterns, but which 

could be harnessed to generate high resolution water use patterns in buildings.  
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Figure 5-4. Wifi logins versus the six water quality parameters. Trendlines are shown for 

each floor. 

 

Multivariate linear regression models 

The traditional approach in water quality modeling is to create multivariate linear 

regression models (B. Chen & Westerhoff, 2010; Ged, Chadik, & Boyer, 2015; Lu, 

Krasner, & Liang, 2011). The multivariate linear regression models developed in this 

research to predict chlorine concentration show low predictive capability as indicated by 

the low high RMSE between the actual and predicted values. However, the models are 

discussed here for completeness to compare with advanced modeling technique used in 

section 4.4. Table 5-1 summarizes the multivariate linear regression modeling results for 

the data collected from each floor. The chlorine prediction models were based on three 
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different groupings of parameters: (1) Wifi logins only, (2) Wifi logins and ORP, and (3) 

Wifi logins, ORP, pH, conductivity, temperature, and DO. The second model type was 

selected to explore the possibility of using one low-cost sensor in addition to Wifi logins 

to predict chlorine concentrations. ORP was chosen for this case because of its known 

connection to chlorine concentration; Wifi logins are related to water age via building 

activity and ORP is related to chlorine concentrations (Copeland & Lytle, 2014; Richard 

et al., 2020). The Wifi logins and ORP models represent models made with covariates 

that have a known relationship with chlorine. The coefficients for each grouping of 

parameters are shown in Table 5-1. A few trends can be seen in the model coefficients: 

(1) Wifi logins and ORP have a positive relationship with chlorine concentration, (2) 

temperature has an inverse relationship with chlorine concentration, and (3) pH, 

conductivity, and DO do not influence the models in the same manner from floor to floor. 

In terms of predictive capability, the adjusted R2 values suggest that the models for the 3rd 

floor were the best in predicting the chlorine concentration.  
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Table 5-1. Summary table for linear regression modeling results and statistical analysis. 

Model equation: Free Chlorine = a + Wifi  b + ORP  c + pH  d + Conductivity  e + 

Temperature  f +  DO  g. 

Model 

# 
Floor 

Model parameters and coefficients Statistical analysis 

a  

(int.) 

b 

(Wifi) 

c 

(ORP) 

d 

(pH) 

e 

(cond) 

f 

(temp) 

g 

(DO) 

Adj. 

R2 

RMS

E 

T-

test 

1 2 0.52 0.05 – – – – – 4.3E-04 0.22 0.58 

2 2 0.10 0.08 0.49 – – – – 0.12 0.21 0.93 

3 2 0.15 0.09 0.36 0.17 0.25 -0.28 -0.09 0.15 0.21 0.98 

4 3 0.11 1.08 – – – – – 0.43 0.18 0.14 

5 3 -0.07 0.93 0.43 – – – – 0.59 0.16 0.64 

6 3 -0.19 0.82 0.32 0.21 -0.15 -0.25 0.29 0.69 0.14 0.57 

7 7 0.05 0.41 – – – – – 0.07 0.19 0.24 

8 7 -0.02 0.35 0.18 – – – – 0.12 0.18 0.27 

9 7 0.23 0.39 0.14 -0.29 0.003 -0.14 – 0.14 0.18 0.18 

 

Once the models were trained, they were used to predict chlorine concentrations 

using the testing dataset. T-tests were run on the predicted values versus the actual values 

with a significance level of p < 0.05. The t-test results show that there was no significant 

difference between the predicted and actual values for all models, which is the desired 

result. Figure 5-5 shows the predicted versus actual chlorine concentrations using the 

Wifi login and ORP data models (models 2, 5, 8) from Table 5-1 (see SI (Appendix C) 

for figures showing results of remaining models). The linear regression model for the 3rd 

floor was able to predict the values to a greater extent than the models for the 2nd and 7th 

floors, based on the adjusted R2 > 0.5 as opposed to the other models. Additionally, the 

calculated RMSE for the 2nd and 7th floors show that including an increased number of 

parameters in the model did not decrease the RMSE from the models using Wifi logins 
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alone. The only considerable decrease in RMSE as more parameters were added to the 

model was seen with the models for the 3rd floor (models 4, 5, 6).  

 The multivariate linear regression models were not able to fully capture the trends 

provided by the data. The adjusted R2 values for the models using all water quality 

parameters and the Wifi data was only able to reach 0.16 and 0.14 for the 3rd and 7th 

floors, respectively. There is an apparent ceiling effect occurring in the predicted values 

in Figure 5-5, where the predicted values do not increase past an apparent asymptote at 

0.5 mg/L chlorine. Based on the data gathered for this system, it is evident that linear 

regression models were not able to model the chlorine concentration, even when all 

sensors and data sources were used.  
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Figure 5-5. Linear regression modeling data versus measured data for models using Wifi 

logins and ORP data only (models 2, 5, and 8). The 1:1 line is displaying on each graph.  

Chlorine (mg/L) = 0.10 + (0.08  Wifi) + (0.49  ORP) 

Chlorine (mg/L) = 0.07 + (0.93  Wifi) + (0.43  ORP) 

Chlorine (mg/L) = 0.02 + (0.35  Wifi) + (0.18  ORP) 

 

Gradient boosting machines (GBMs) 

An advanced machine learning method achieved better prediction than the 

multivariate linear regression models. GBMs were chosen in this case because they 

provide a robust method that can be used to model systems without the need for data 

preprocessing (Natekin & Knoll, 2013). This method can produce models with low 

RMSE by using methods to reduce overfitting (i.e., when a model is too specific to the 
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training data and cannot be used to generalize across different data sets). A GBM is built 

by sequentially training weak, small models that learn from error of the previously 

trained models (i.e., an ensemble of models). Three GBM models were created: (1) 

models using Wifi login and ORP data, (2) all-inclusive models using all available water 

quality parameters, and (3) models using top two water quality parameters identified 

from relative importance results of the all-inclusive models. Similarly to the linear 

regression models, the first GBM was made to show the capability of a GBM model 

using one low-cost sensor in addition to Wifi logins to explore a system with a sensor 

pair that has a known relationship with chlorine. The third type of models was created by 

allowing the data to determine the two parameters for prediction, in order to keep 

complexity low while using the data to select the explanatory water quality parameters. 

Table 5-S1 shows the model parameters used in the final GBMs. Each parameter value 

was selected using the matrix method for model tuning and the model parameter values 

resulting in the lowest RSME were chosen.  

Once the final models were trained, the water quality parameter relative 

importance was calculated for each model (see Table 5-2). Each floor has a different 

trend of water quality parameters of high to low importance, which points to each floor 

having unique characteristics. This could be caused by differences in activity and water 

use patterns, or hydraulic plumbing differences among the building floor levels. Based on 

the results, it cannot be concluded that a certain sensor cluster (i.e., water quality 

parameter) can be used to predict the chlorine concentration in premise plumbing across a 

variety of settings (i.e., floor level, sampling node). However, the results can be used to 

create unique models for each floor using the water quality parameters that had the 
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highest importance. The models using the top two parameters (models 12, 15, and 18) 

were able to reduce the RMSE of predicting chlorine concentration when compared to 

Wifi logins and ORP concentrations, the models made with prior knowledge of water 

systems (models 10, 13, and 16). Based on the relative importance of variables in the all-

inclusive models, the following water quality parameters were chosen for the third type 

of GMB models: (1) conductivity and DO, (2) temperature and Wifi logins, and (3) ORP 

and temperature for the 2nd, 3rd, and 7th floors, respectively.  

 

Table 5-2. Summary table of gradient boosting machine modeling results and statistical 

analysis.   
Model 

# 
Floor 

Relative importance, % Statistical analysis 

Wifi ORP pH Cond. Temp. DO RMSE T-test 

10 2 22.6 77.4 – – – – 0.15 0.69 

11 2 3.6 21.5 8.5 27.1 16.2 23.1 0.09 0.61 

12 2 – – – 59.3 – 40.7 0.13 0.69 

13 3 68.9 31.1 – – – – 0.10 0.50 

14 3 28.2 7.6 5.5 7.0 38.4 13.2 0.06 0.83 

15 3 37.9 – – – 62.1 – 0.09 0.86 

16 7 28.6 71.4 – – – – 0.01 0.53 

17 7 20.5 34.2 13.1 9.7 22.6 – 0.01 0.68 

18 7 – 57.4 – – 42.6 – 0.01 0.29 
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Figure 5-6. Gradient boosting machine modeling data versus measured data for (A) 

models using Wifi logins and ORP data only (squares; models 10, 13, and 16), (B) for 

models using all parameters (circles; models 11, 14, and 17), and (C) for the models 

using the top two water quality parameters identified by relative importance for the all-

inclusive GBMs (triangles; models 12, 15, 18). The 1:1 line is displaying on each graph. 

 

Table 5-2 summarizes the results for the statistical analysis of the GBMs. All nine 

models had lower RMSE values than their multivariate linear regression counterparts. 

Figure 5-6 shows the predicted versus actual chlorine concentrations for the GBM 

models. The t-test results (p < 0.05) show that there was no significant difference in the 

predicted versus actual data for all nine GBM models. When comparing the RMSEs, the 

GBMs were able to reduce the RMSEs by half or more from those found with the 

multivariate linear regression models. In all cases, the RMSE of the GBMs was reduced 

by the addition of more model parameters. Overall, these results show that the sensors 
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used in this study could be used to predict chlorine by using GBM model. The resulting 

predictions do not show the ceiling effect on chlorine concentration that was seen with 

the linear regression models (see Figure 5-5). Based on the lower RMSE and the t-tests, 

the GBMs resulted in better predictions than the multivariate linear regression models for 

all three floors. And based on the current understanding of water chemistry in premise 

plumbing, it can be concluded that there is an opportunity to apply GBM-type models as 

prediction tools for building water systems. Future research is needed to determine the 

accuracy of these models during application and their ability to inform the improvement 

of water quality in building water systems. 

 While prediction was better for the GBMs, the prediction of the GBM models 

could be further improved by: (1) improving the raw data quality, (2) including a data 

source that was not included in these models, or (3) by including more raw data. The 

model performance is highly dependent on the accuracy of the sensor measurements. 

Ensure that the sensors are calibrated and operating correctly can aid in improving the 

raw data. The malfunctioning DO sensor on the 7th floor is an example of how a 

malfunctioning sensor can be incorporated into a model if expert knowledge about the 

physical limits of DO in drinking water. The model prediction can also be improved by 

adding explanatory data sources that were not including in the models. For example, the 

7th floor models had low predictive capability due to the low concentrations of chlorine 

measured on that floor. Chlorine was expected to be low in the highest floor levels due to 

increased water age (William J. Rhoads et al., 2016). Is there a data source that could be 

used to account for the physical constraints of chlorine concentrations on the highest 

floor levels? These new data sources could be added to the model to improve prediction 
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where chlorine is limited by a spatial element. Finally, the models could be improved by 

including more raw data. The initial observation period can be longer to include more 

measurements in the training data. The treatment of outliers can also be altered to 

determine if more data points can be included in the models. In the end, this paper serves 

as a proof-of-concept in using GBMs to predict water quality in building water systems 

and future implementation of these machine learning models can be used to tune the 

models for better prediction. 

System considerations 

Advances in sensing technology has increased the number and variety of products 

available to monitor water quality in real time, with the development of a wide variety of 

sensors targeting parameters of interest pertaining to water quality. The capital costs of 

individual sensors can be still be prohibitive in their widespread application. Table 5-3 

shows the cost of each sensor used in this water quality sensor platform and the total cost 

is representative of the cost of one sensing node within the platform. As is evident by the 

cost, installing a chlorine sensor at multiple places within a building can easily become 

very costly. More data, from more sensors may not be necessary – as we have shown 

through machine learning correlations in prior sections. The models in this paper were 

created to predict chlorine concentration data in order to reduce the dependence on the 

high-cost chlorine sensor by using a low-cost suite of sensors in its place.  
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Table 5-3. Cost of each water quality sensor used in the water quality sensor platform. 
Sensor Cost, $ 

ORP, Atlas Scientific 192 

Conductivity, Atlas Scientific 215 

Temperature, Atlas Scientific 68 

Dissolved Oxygen, Atlas Scientific 283 

pH, Atlas Scientific 164 

Free Chlorine, Chemtrol 2134 

Wifi login data 0 

Total cost 3056 

 

The activity data, via the Wifi login data, provides the opportunity to include a 

human dimension into the models while not increasing the capital cost. The model results 

show that it may be viable to create models solely using Wifi login data, or other forms of 

measuring building activity, when including additional sensor data does not significantly 

reduce the RMSE of the models. Figure 5-7 shows the relationship of cost and RMSE for 

the models created in this study. Based on the results, the GBM models using Wifi logins 

and ORP data were able to decrease the RMSE of using Wifi login data alone while not 

increasing the cost of each sensing node in the platform. The GBMs using all parameters 

achieved the lowest RMSE but it increased the cost of each node by almost 5 times. This 

cost difference is expected to become prohibitive across multiple sensing nodes, floors, 

and buildings, which calls to question whether more sensors would be implemented to 

improve the RMSE by a few percentage points. The third type of GBMs (using the top 

two parameters of importance) did increase the cost for floors 2 and 7, due to the fact that 

they did not use the no-cost Wifi login data. However, these pairs of sensors were able to 

reduce the RMSE while not increasing the cost as much as the all-inclusive models. On 
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the 3rd floor, the sensor pairs for the third type of GBM had a lower cost than the Wifi 

logins and ORP model, while also reducing the RMSE. The third type of model could 

become an option for those seeking to improve predictive capability while not increasing 

cost or complexity of the system by including all six data sources. In these cases, it is 

important to determine if the identified pairs of parameters truly have a relationship with 

chlorine concentrations or if they are improving predictive ability due to unknown data 

characteristics. Expert analysis and future research can help in answering whether the 

identified relationships are due to water chemistry and use patterns or if the relationships 

found in this study are unique to this system. 

 

 
Figure 5-7. Sensor cost for one measurement node versus root mean square error for the 

five type of models created with the water quality data and the Wifi logins. The colors 

denote the floors and the shape denote the model types. 
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The final objective of this work was to provide a perspective on the future 

implementation of such systems on the operation of building water systems. A low-cost, 

water quality sensor platform has the potential to transform the current understanding of 

and ability to improve water quality within buildings, and on drinking water 

infrastructure as it pertains to capital costs, installation, operation and maintenance, 

scaling, human dimension, reliability, and regulatory compliance (see Fig. 5-8). It is 

important to account for these factors since the water quality sensor platforms would 

become part of critical infrastructure that delivers drinking water to the community. 

Therefore, a thorough analysis of the implications of sensors on building water systems is 

needed to determine gaps in knowledge towards implementation. 

 

 
Figure 5-8. Implications brought on to drinking water infrastructure by a water quality 

sensor platform. 
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Conclusions 

The low-cost water quality sensor platform was able to predict chlorine 

concentrations in the premise plumbing using Wifi login data and ORP measured in real-

time. Novel use of machine learning, in the form of GMBs, was able to predict water 

quality better than the traditional linear regression models used in water quality 

modeling. Implementation of a water quality sensor platform in buildings should consider 

(1) capital costs, (2) installation, operation, and maintenance, (3) scalability, (4) human 

dimension, (5) reliability, and (6) regulatory compliance. The next steps for a water 

quality sensor platform include the consolidation of data from multiple sampling nodes 

and buildings onto one easy-to-use dashboard, which has been augmented to include the 

modeling capabilities described in this paper. Innovation within the water sector to 

include water quality technologies will likely be slow and face challenges; but being 

proactive and building collaboration with early building adopters could help utilities 

increase confidence among residents while also addressing public health and 

infrastructure resilience. 
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CHAPTER 6  

CONCLUSIONS, FUTURE WORK, AND INCREMENTAL STEPS TOWARDS 

RADICAL CHANGE 

 

Conclusions 

Urine diversion is the process by which human urine is collected at the source due 

to its inherent qualities. Urine diversion has many benefits, especially as they pertain to 

water conservation, nutrient recovery, and pharmaceutical removal, making it a viable 

technological process for future smart cities. This dissertation sought to understand urine 

chemistry and the urea hydrolysis reaction at the point of collection as a way of 

advancing the implementation of urine diversion systems in the United States. Each 

chapter of this dissertation was designed as an incremental step in the research process, 

from the testbed to restroom and towards operationalizing urine diversion systems. The 

following conclusions were drawn from the entirety of the work. 

 The main conclusion of this work is highlighted by the efficacy of acetic acid 

addition as a method for urea hydrolysis inhibition in nonwater urinals. Chapters 2, 3 and 

4 have shown that acetic acid addition is able to inhibit urea hydrolysis in synthetic and 

real urine for the period of collection. This was shown by the low ammonia 

concentrations in samples taken throughout collection during experiments in the urinal 

testbed experiments and the urinal-on-wheels experiments. Acetic acid addition can be 

used in one of three ways: (1) as preventative maintenance for nonwater urinals in 

conventional systems collecting urine for wastewater treatments, (2) as urea hydrolysis 

inhibition for subsequent urea recovery, or (3) as urea hydrolysis inhibition for ammonia 

recovery (see figure 6-1). The ability to select for urea or ammonia recovery comes from 
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the fact that acetic acid addition allowed for reversible urea hydrolysis inhibition, 

meaning that urea hydrolysis was shown to progress unaided in urine storage tanks after 

storage time. In general, adding more acid in the urinals led to longer storage times 

needed for urea hydrolysis, which allows for time to employ a technology for urea 

recovery, and adding less acid in the urinals created conditions for urea hydrolysis to 

progress more rapidly. This is a major break-through because it opens the opportunity for 

ammonia recovery post urea hydrolysis inhibition. Hence, acetic acid addition can be 

tailored to create favorable conditions for urea or ammonia recovery depending on the 

stakeholder needs and the available technology.   

 
Figure 6-1. Three possible applications acetic acid addition for urea hydrolysis inhibition 

in nonwater urinals. 

 

A second conclusion from this work comes from the analysis of the bacterial 

community structures after acetic acid addition. Acetic acid is a simple carbon that can 

serve as a carbon source for bacterial growth. This becomes concerning because bacterial 

growth can uptake nutrients that urine diversion systems seek to recover. Bacterial 

growth can also be concerning for maintenance staff health and safety, especially if 

pathogenic species are present in the stored urine. Therefore, the analysis of the bacterial 
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community structures can be used to determine if the bacterial growth is impacting 

nutrient recovery or if systems have to be designed in a manner that reduces risk to 

operators. This analysis was also able to determine possible sources of the bacteria 

making up the community structure. Specifically, chapter 4 found that the relative 

abundance of E. coli was higher in urine with acid addition than the urine without acid 

addition. Identifying a large abundance of E. coli in this work was not expected, as it was 

assumed that urine collection with nonwater urinals alone would reduce the presence of 

bacteria with enteric origin. This was the first study of its kind to analyze the bacterial 

communities of urine collected solely with nonwater urinals. The presence of enteric 

bacteria can be attributed to influence from the restroom ecosystem, especially the 

influence of aerosols created by powerful flushometers in nearby toilets. These findings 

can be used to inform the implementation of urine diversion systems by providing 

evidence of a shift in the bacterial communities in which there could be increased risk to 

operators.  

This dissertation used CPS technology as a tool in answering the research 

questions. Chapters 2, 3, and 4 answered research questions focused on urine diversion 

systems by using CPSs that allowed for real time monitoring and control of urea 

hydrolysis. Using the CPS created for the urinal testbed led to the ability to test restroom 

conditions that lead to increased rates of urea hydrolysis in the collection system. With 

those results, the urinal-on-wheels control logics that were tested showed that a reduced 

acid addition, i.e. only adding acid at points of high occupancy, was able to reduce the 

amount of acid added while still inhibiting urea hydrolysis. Chapter 5 used a CPS used to 

monitor drinking water quality in the premise plumbing of a green CI building. Similar to 
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the urine diversion CPS created in the earlier chapters, this CPS relied on low-cost water 

quality sensors to monitor water quality at three locations within the building in real-time. 

Advanced data mining techniques were used to predict chlorine concentrations in the 

system. This chapter provides a demonstration of the type of research that can be 

conducted with data collected with CPS technology. In this context, the data mining 

techniques were used on water quality data, but they can be easily translated to other 

building water and wastewater systems. The future implementation of urine diversion 

systems and on-site nutrient recovery operations should rely on cyber tools to ensure that 

systems are run efficiently and that all system components are operating correctly. Data 

mining should be used to predict conditions that increase functionality, decrease nutrient 

losses, and reduces waste of system inputs (i.e, chemicals and energy). Figure 6-2 shows 

the major components of this dissertation. The addition of Chapter 5 completes this 

dissertation and provides a systematic understanding of the relationship between urea 

hydrolysis in urine diversion systems and the capabilities of cyber-physical systems.  

 
Figure 6-2. Major components of this dissertation. Chapter 2 and 3 created and used a 

cyber-physical system called the urinal testbed to monitor and control urea hydrolysis. 

Chapter 4 advanced findings from the urinal testbed to monitor and control real urine in a 

real restroom using a urinal-on-wheels. This study found that the structure of bacterial 

communities was altered after acetic acid addition. Additionally, Chapter 4 proposed the 

acetic acid addition process as a method for tailored nutrient recovery, i.e. urea recovery 

or ammonia recovery based on the amount of acid added during collection. Finally, 

Chapter 5 provided a demonstration of the data mining that can be conducted with CPS 
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technology to better understand conditions within water and wastewater systems in the 

built environment.  

 

Future Work 

Although the Covid-19 pandemic paused work meant for this dissertation, a 

significant amount of planning was conducted to test the acid addition and cyber 

elements of this dissertation in a full-scale urine diversion system in Biodesign C at 

Arizona State University. Additionally, a survey focused on facilities managers was 

planned to determine their level of acceptance for urine diversion systems. The following 

paragraphs will document the planning phases for these two studies and will propose 

future research based on these planned projects. 

Biodesign C is a five story building on the Arizona State University campus. The 

urinals on the top 4 floors are plumbed separately from the restroom waste lines. The 

urine pipe is then intersected on the ground level, where a tank can collect 30 gal (113 L) 

of urine. A CPS was created that would add acetic acid to each urinal using 

predetermined control logics and monitor urine chemistry in the urine storage tank. The 

goal of the study was to define the operation of a urine diversion system with urea 

hydrolysis inhibition in a CI building in the United States. The predetermined acid 

addition control logics were created based on the urinal-on-wheels results: (1) acid 

addition after every urinal event, (2) acid addition during periods of high occupancy 

activity, and (3) acid addition during periods of low occupancy activity. The occupancy 

activity was going to be analyzed based on the Wifi logins for each floor level. This study 

would have been the final phase of this research, which has gone from proof-of-concept 

with the initial study on acid addition in nonwater urinals published in 2017 to the urinal 
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testbed study published in 2019 to the urinal-on-wheels study published in 2020.  With 

each study, the scale increased, automation and control was improved, and characteristics 

of the study were enhanced, such as study location (lab vs real restroom) and urine matrix 

(synthetic vs real). Ultimately, this study and future research on urine diversion systems 

in the United States can fill the gaps in knowledge that exist for the application of these 

systems in the US setting.  

Urine diversion systems have been mostly applied in European countries, with 

Sweden leading the field in number of full-scale applications. According to McConville, 

et at, 2017, the largest contribution of publications (16%) from 19952015 with the key 

words “urine diversion” were published by Swedish researchers (McConville et al., 

2017). Therefore, a large portion of the implicit and explicit knowledge on large-scale 

urine diversion systems exists in Swedish literature and scientific community. Publishing 

on systems based in the United States can answer questions related specifically to 

challenges and opportunities that can only be faced in this context at full-scale. The 

Biodesign C urine diversion system could become a testbed for urine-based technologies, 

from the collection to the treatment, recovery of nutrients and products, and removal of 

micropollutants. And finally, having an operational urine diversion system on the ASU 

campus can serve as an educational tool for the community, based on water conservation, 

nutrient sustainability, and the connections between water and wastewater in the built 

environment.  

The second planned study was a case study on the level of approval for urine 

diversion systems that exists within the facilities management community. Seven studies 

have shown high support and acceptance for urine diversion by users (>60% approval for 
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those surveyed) (Blume & Winker, 2011; S. K. L. Ishii & Boyer, 2016; Lamichhane & 

Babcock, 2013; Lienert & Larsen, 2010; Medilanski, Chuan, Mosler, Schertenleib, & 

Larsen, 2006; Pahl-Wostl, Schonborn, Willi, Muncke, & Larsen, 2003; Simha, Lalander, 

et al., 2018). However, across the studies, most have focused on user perception of urine-

diverting toilets and most have only focused on the users of the systems, not those in 

charge of maintaining the systems. A recent study has surveyed perceptions outside of the 

general user population group. Simha, et al. surveyed farmers on their attitudes towards 

urine-derived fertilizers and found that 59% of farmers held a positive opinion of urine-

derived fertilizers (Simha, Lalander, Vinnerås, & Ganesapillai, 2017). Similarly, 

Medilanski, et al. interviewed 34 decision-makers in China who identified 20 years in the 

future as adequate time for increased implementation of separation of urine (Medilanski 

et al., 2006). While studies have identified social barriers, such as having to dispose of 

soiled toilet paper in a trash bin, as barriers towards acceptance in the general population 

(S. K. L. Ishii & Boyer, 2016; Lienert & Larsen, 2010), there has not been a study on the 

managerial barriers that may arise from implementation of urine diversion systems. The 

closest conclusions that involve management of these systems are seen in papers that 

describe the difficulty of attaining and retaining pathways to agriculture operations that 

are willing to use the collected urine or the urine-derived fertilizers (Berndtsson, 2006). 

Therefore, this study would fill a gap in the literature by focusing on the humans that will 

manage these systems in CI buildings. 

Prior to the Covid-19 pandemic, and IRB approval had been acquired to conduct 

this study. The survey and semi-structured interviews would be conducted using the new 

ecological paradigm and open-ended questions that would allow for open discussion on 
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the topic (Dunlap, Van Liere, Mertig, & Jones, 2000). The Theory of Planned Behavior 

was to be used as a backbone to analyze the results of the study and the survey questions 

were designed to fit within the three pillars of the theory: (1) a person’s attitude towards a 

behavior, (2) their subjective norm, and (3) their perceived behavioral control govern 

their intention to express a behavior (Ajzen, 1991). There is no literature on the 

application of the theory to facilities managers and water or wastewater management. 

However, the following three studies serve as a guide for this research question. Ishii & 

Boyer were able to use the Theory of Planned Behavior to quantify the support for urine 

diversion by University of Florida students (S. K. L. Ishii & Boyer, 2016). In this study, 

they concluded that three determinants were able to predict a person’s acceptance of 

urine diversion: (1) high frequency of pro-environmental behaviors, (2) perception of a 

supportive community towards urine diversion, and (3) a belief that votes in favor of 

urine diversion would influence action by the university (S. K. L. Ishii & Boyer, 2016). 

Following that study, Simha et al. used the Theory of Planned Behavior to asses support 

for urine diversion in South India and found that 68% of those surveyed agreed with 

recycling urine (Simha, Lalander, et al., 2018). By using the theory in the water sector, 

Lynne, et al. found that when studying water conservation among strawberry farmers, 

actual control over the system was an important factor to measure, in addition to gauging 

their perceived control (Lynne, Franklin Casey, Hodges, & Rahmani, 1995). Greaves, et 

al. also found that the theory could be applied to individuals within an organization to 

identify how the organization can implement sustainable goals (Greaves, Zibarras, & 

Stride, 2013). Based on the literature, it is clear that the Theory of Planned Behavior 

could be applied to facilities managers with a focus on urine diversion systems.  
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Incremental Steps Towards Radical Change  

This dissertation sought to fill gaps of knowledge that would aid in the 

implementation of urine diversion systems. In the past, urine diversion systems have been 

implemented as a radical change to the existing system; often executed as complete 

retrofits with available technologies and current understanding of urine chemistry. A 

majority of the systems implemented did not fare well, either due to failure of the 

collection system or a break in the connection between the urine collectors and the end 

users of the urine-derived products. However, it can be argued that “incremental steps” 

towards urine diversion can be used to reduce points of failure and ensure the 

effectiveness of systems in the future. Incremental changes to the technology, as it faces 

pressures from the surrounding environment, move the technology through each 

transitional level and towards more and more widespread adoption (Geels, 2002). If the 

technology cannot adapt to the stressors and pressures, it will fail and will ultimately fall 

out of existence. Therefore strategic niche management is needed to ensure that novel 

technologies, i.e. urine diversion, succeed in changing the landscape.  

One of the most important aspect of strategic niche management is to allow the 

technology to shift and evolve based on landscape stressors in an effort to avoid path 

dependencies that would lead to technological failure (Kemp et al., 1998). Urine 

diversion systems should be implemented with the assumption that aspects of the system 

are flexible and able to change “incrementally.”  Strategic niche management allows for a 

space for development without the presumption of success at the point of installation. 

This awareness of creating a safe space allows for technologies to be shielded, nurtured, 

and empowered (Smith & Raven, 2012). This type of management would allow for the 



  141 

slow, yet intentional implementation of urine diversion systems. Decision-makers need to 

understand that some initial pressures may exist, such as an initial dissatisfaction from 

users. By strategically managing the niche, decision-makers would understand that the 

system would need to be retrofitted throughout its early stages to allow for robustness as 

it responds to tensions from actors within and outside the system. This avoids 

technological lock-in and decreases the existence of path dependencies that are 

detrimental for the unique nature of each new urine diversion system that is implemented 

(Smith & Raven, 2012).  

Once the management of the technological transition is established, the next step 

towards implementation that has to be considered is its connection to existing 

infrastructure. There are two main ways in which urban infrastructure is retrofitted with 

emerging technologies: (1) the “piecemeal” approach, where projects are installed on a 

case-by-case basis, or (2) the “systematic” approach, where there is a methodical 

approach towards installing novel systems (Eames, Dixon, May, & Hunt, 2013). Across 

the world, urine diversion systems have been implemented as “piecemeal” systems by 

early adopters. Eames et al. describe the characteristics of these two types of systems but 

the most unique aspect of systematic systems is their ability to exist in both new 

construction and retrofits, as opposed to piecemeal systems, which exist mostly in new 

construction. Currently, urine diversion systems are not easily implemented as retrofits to 

existing infrastructure and overcoming this disadvantage could have a direct relationship 

towards more implementations of urine diversion systems.  

 Strategic niche management can be a way of ensuring that urine diversion systems 

withstand outside pressures and become a commonplace technology. This would 
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ultimately become the “incremental steps” needed for “radical change.” Urine diversion 

systems currently sit within a very specialized niche of scientific research and early 

adopters. Transitioning outside of the niche would mean that all stakeholders within the 

systems realize the benefits of the system. Applications of urine diversion systems have 

followed a “piecemeal” approach, which makes it hard to shift the way the public thinks 

about urine diversion because success is seen with completion of one project. Changing 

perceptions and attitudes, in combination with more technology development, can aid in 

moving urine diversion to the “systematic” approach of implementation. And finally, a 

paradigm shift is needed that creates a society that welcomes new technologies with new 

habits in order to move our world into a sustainable future (Kuhn, 1962). New habits + 

new technology = prospect for a sustainable planet earth (Newton, 2007). 
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APPENDIX A 

 

SUPPORTING INFORMATION FOR CHAPTER 3: REAL-TIME MONITORING 

AND CONTROL OF UREA HYDROLYSIS IN CYBER-ENABLED NONWATER 

URINAL SYSTEM 
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MATERIALS AND METHODS 

The hydraulic retention time (HRT) of the system was calculated by the following 

equation: 

𝐻𝑅𝑇 =  
𝑉

𝑄
 

𝑉 = 𝑉𝑜𝑙𝑢𝑚𝑒 (𝑚𝐿) 

𝑄 = 𝐹𝑙𝑜𝑤 𝑅𝑎𝑡𝑒 (
𝑚𝐿

𝑚𝑖𝑛
) 

The flow rate was calculated by dividing the volume of urine (mL) that enters the urinal 

testbed in 1 h by 60 min. The total volume of the system was calculated by adding the 

volume of the urinal trap and the two additional traps. The HRT was found to be 

approximately 65 min. Table S2 shows the volumes at all locations of the testbed if 

urinations (V= 237 mL) occur every 10 min, as seen in the mimicking urea hydrolysis 

experiment. The urinal trap holds 450 mL. Trap 1 and Trap 2 hold 550 mL each. It is 

assumed that once a trap is filled, the volume that enters the trap equals to the volume 

that exits the trap. The table shows that urine enters the storage tank after the t = 60 min 

urination event. This coincides with the 65 min HRT that was calculated based on 

urination volumes, volume of the system, and time.    

 

RESULTS 

Chemical equilibrium software results. In order to verify results found in the calcium 

hydroxide experiment, Visual Minteq was used to model the chemistry of urine when 

calcium hydroxide is added. The inputs included all the components of synthetic urine, 

including the ammonia concentrations found in the grab samples, and the calcium 
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hydroxide addition. pH was kept fixed at pH 12.5. Table S2 below shows the saturation 

indexes for possible minerals that could precipitate in the system. The minerals in red are 

oversaturated and the minerals in black are undersaturated. From Table S2, it can be seen 

that calcium phosphate, magnesium oxide, and magnesium phosphate minerals are 

oversaturated and could precipitate in the system.  

 

Predictive control logic models. Four lasso regression models were created to control pH 

of urine in the urinal testbed.(Li, Saetta, Mirchandani, & Boyer, 2019) The models used 

the most recent 20 pH measurements (variables x0–x19), the most recent 20 conductivity 

measurements (x20–x39), the time since the last urination event (x40), and the pump time 

on for the last urination event (x41). The four models are given below with the 

coefficients in scientific notation: 

pH step 1: 

6.655-(8.99E-5)x1-(7.74E-4)x5-(7.67E-5)x12-(3.60E-3)x13-(4.84E-2)x18+(2

.82E-1)x19+(4.82E-4)x40-(5.95E-4)x41 

 

pH step 2: 

6.655-(9.94E-4)x2-(1.48E-3)x5-(3.67E-5)x10-(1.08E-3)x11-(1.48E-3)x12+(2

.31E-1)x19+(2.96E-4)x40-(1.10E-3)x41 

 

pH step 3: 

6.655-(1.92E-3)x2-(4.17E-4)x3-(1.12E-3)x5-(4.98E-3)x12-(1.72E-3)x13+(2

.33E-1)x19+(7.19E-4)x40-(1.85E-3)x41 

 

pH step 4: 
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6.656-(1.82E-3)x0-(9.88E-4)x3-(7.62E-4)x4-(7.78E-4)x5-(5.51E-3)x12-(5.

57E-3)x13+(2.35E-1)x19+(9.19E-4)x40-(2.65E-3)x41 

 

Sensitivity analysis for first-order rate constant. A sensitivity analysis was conducted to 

determine the effects of first-order rate constant, k, on the results of the mechanistic 

model. High and low k values were taken from Yadav, et al and Singh, et al for urea 

hydrolysis rate experiments in soil.(Singh, Singh, & Singh, 1992; Yadav, Kumar, Singh, 

& Relan, 1987) Three percent change scenarios were also calculated by changing the 

experimental k constant used in this study by 10%, 20%, and 50%. Results are shown in 

Fig. S2. The results show that the rate constant must be determined from experimental 

data because most rate constants for urea hydrolysis have been found from soil systems. 

Until a wide variety of urine diversion systems are studied, it is best to determine a case-

specific rate constant for urea hydrolysis in the urine diversion system. 

   

Chemical cost. Chemical costs were estimated using Alibaba as a reference for the cost of 

acetic acid and calcium hydroxide. Alibaba was accessed on October 23, 2018. From 

Alibaba, it was estimated that a metric ton of acetic acid sold for $500 and a metric ton 

for calcium hydroxide sold for $300. Using the concentrations and doses of the chemical 

additions used in this study, it was determined that the acetic acid chemical cost was 

lower than the chemical cost for the calcium hydroxide. That is because the dose of 

calcium hydroxide was 10 times higher than the dose for acetic acid. With the assumed 

costs, it was calculated that the acetic acid method used 5400 doses per dollar of chemical 

while the calcium hydroxide method used 2800 doses per dollar.  
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TABLES 

Table 3-S1. Synthetic urine recipe 

Chemical 

Concentration 

[mmol/L] 

CH4N2O (urea) as N 500 

NaCl 44 

Na2SO4 15 

KCl 40 

NaH2PO4 as P 20 

MgCl2·6H2O 4 

CaCl2·2H2O 4 
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Table 3-S2. Hydraulic retention time simulation for urination events occurring every 10 

min. It is assumed that the volume that enters the trap equals the volume that exits the 

trap once the trap is filled. 

 Urinal trap, V = 450 mL Trap 1, V = 550 mL Trap 2, V = 550 mL 

Storage 

Tank 

Time, t V in V sum V out V in V sum V out V in V sum V out V in 

0 237 237 0 

       
10 237 474 24 24 24 0 

    
20 237 450 237 237 261 0 

    
30 237 450 237 237 498 0 

    
40 237 450 237 237 735 185 185 185 0 

 
50 237 450 237 237 550 237 237 422 0 

 
60 237 450 237 237 550 237 237 659 109 109 

70 237 450 237 237 550 237 237 550 237 237 

80 237 450 237 237 550 237 237 550 237 237 

90 237 450 237 237 550 237 237 550 237 237 
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Table 3-S3. Results for saturation indexes for minerals in synthetic urine with calcium 

hydroxide addition. Minerals in red font are oversaturated and minerals in black text are 

undersaturated. 

 

Mineral 

log 

IAP 

Sat. 

Index 

Anhydrite -7.189 -2.829 

Brucite 21.085 3.985 

Ca3(PO4)2 (am1) -21.708 3.792 

Ca3(PO4)2 (am2) -21.708 6.542 

Ca3(PO4)2 (beta) -21.708 7.212 

Ca4H(PO4)3:3H2O(s) -42.683 5.267 

CaHPO4(s) -20.967 -1.692 

CaHPO4:2H2O(s) -20.973 -1.978 

Epsomite -6.344 -4.218 

Gypsum -7.194 -2.584 

Halite -2.332 -3.882 

Hydroxyapatite -22.451 21.882 

KCl(s) -2.707 -3.607 

Lime 20.225 -12.475 

Mg(OH)2 (active) 21.085 2.291 

Mg2(OH)3Cl:4H2O(s) 28.522 2.522 

Mg3(PO4)2(s) -19.119 4.161 
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MgHPO4:3H2O(s) -20.113 -1.938 

Mirabilite -4.829 -3.715 

Periclase 21.088 -0.497 

Portlandite 20.222 -2.482 

Struvite -13.16 0.1 

Thenardite -4.803 -5.124 

 

 

Table 3-S4. Mechanistic model parameters used for cases presented in Figure 2-3. 

Parameter 

Mimicking urea 

hydrolysis 

Variable urination 

volume 

Variable urea 

concentration 

Volume, urinal trap, mL 450 450 450 

Volume, trap 1, mL 550 550 550 

Urination volume, mL 237 118.5–474 237 

Urination frequency, min 10 10 10 

Urea concentration, mmol as N 500 500 400–600 

Flow rate, mL/min 711 711 711 

k, 1/s 8 × 106 8 × 106 8 × 106 
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Table 3-S5. Random selections for mechanistic model. The program chose a random 

urination time between 10–40 s and a random urea concentration between 400–600 

mmol/L as N. The calculated random urination volume was calculated using a flow rate 

of 711 mL/min. 

Time, 

min 

Random 

urination 

time, s 

Calculated 

random 

urination 

volume, mL 

Random urea 

concentration, 

mmol/L as N 

10 18 213.3 501 

20 21 248.85 593 

30 31 367.35 408 

40 14 165.9 450 

50 31 367.35 405 

60 29 343.65 470 

70 34 402.9 476 

80 10 118.5 547 

90 23 272.55 452 

100 39 462.15 431 

110 36 426.6 521 

120 10 118.5 437 

130 25 296.25 491 

140 38 450.3 435 

150 19 225.15 591 

160 13 154.05 474 

170 34 402.9 579 

180 10 118.5 421 
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190 13 154.05 495 

200 13 154.05 531 

210 33 391.05 562 

220 25 296.25 561 

230 22 260.7 470 

240 17 201.45 554 

250 32 379.2 520 
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FIGURES 

 

 

Figure 3-S1. pH and conductivity results for the mimicking urea hydrolysis experiment in 

trap 2 (a, b) and storage tanks (c, d). Data is shown for each urinal. The solid lines 

correspond to the values at t = 0 of the synthetic urine.  Data points were taken every 1 

min. 
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Figure 3-S2. pH and conductivity results for the inhibiting urea hydrolysis with acetic 

acid experiment in trap 2 (a, b) and storage tanks (c, d). Data is shown for each urinal. 

The solid lines correspond to the values at t = 0 of the synthetic urine.  Data points were 

taken every 1 min. Data for urinal 1 not shown due to technical difficulties with the 

sensor controller. 
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Figure 3-S3. pH and conductivity results for the inhibiting urea hydrolysis with calcium 

hydroxide experiment in trap 2 (a, b) and storage tanks (c, d). Data is shown for each 

urinal. The solid lines correspond to the values at t = 0 of the synthetic urine.  Data points 

were taken every 1 min. 
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Figure 3-S4. Results for the mimicking and inhibiting experiments with no treatment, 

acetic acid addition, and calcium hydroxide addition. Concentrations for ammonia, 

phosphate, calcium, magnesium, sodium, and potassium in grab samples from the fresh 

urine at t = 0 (FU), storage tank 1 at t = end (S1), storage tank at t = end (S2), storage 

tank at t = end (S3) and the fresh urine at t = end (FU END) are shown. Ammonia and 

phosphate concentrations are the average concentrations found when the same sample 

was run two times on the FIA. Error bars correspond to one standard deviation. 
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Figure 3-S5. Mechanistic model assumptions for the steps in calculation. New urine 

displaces old urine in plug flow manner. It instantaneously mixes to form a new 

concentration. Reaction occurs for 10 min. Urine at tfinal corresponds to the urine that has 

mixed and reacted with the old urine. Progression begins again with every new urination. 
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Figure 3-S6. Results of sensitivity analysis of the first-order rate constant, k, on the final 

ammonia concentration in the urinal trap. The centerline corresponds to the concentration 

of ammonia calculated by using the experimental k-constant used in the mechanistic 

models (k = 8 × 106 s1). The percent change scenarios correspond to the respective 

percent change on the experimental k-constant. 
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Figure 3-S7. Results for the reactive and predictive control logic experiments at low and 

high frequencies. Normalized concentrations for ammonia, phosphate, calcium, 

magnesium, sodium, and potassium in grab samples taken every 30 min. Ammonia 

concentrations were normalized by the total N in synthetic urine. All other concentrations 

were normalized by the concentration in the synthetic urine at t = 0. Each bar is the 

average concentration from the three urinals or storage tanks. Trap 1 (orange bars), trap 2 

(dashed bars), and the storage tank (white bars) are shown with error bars corresponding 

to one standard deviation. 

 

 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

30 60 90 120150180210240270end

C
a
lc

iu
m

, 
C

/C
0

Time, min

0.0

0.2

0.4

0.6

0.8

1.0

1.2

6
0

9
0

1
2

0

1
5

0

1
8

0

2
1

0

2
4

0

2
7

0

3
0

0

3
3

0

3
6

0

e
n

d

C
a
lc

iu
m

, 
C

/C
0

Time, min

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

6
0

9
0

1
2

0

1
5

0

1
8

0

2
1

0

2
4

0

2
7

0

3
0

0

3
3

0

3
6

0

3
9

0

e
n

d

C
a
lc

iu
m

, 
C

/C
0

Time, min

0.0

0.5

1.0

1.5

30 60 90 120150180210240270end

M
a
g

n
e
s
iu

m
, 

C
/C

0

Time, min

0.0

0.2

0.4

0.6

0.8

1.0

1.2

6
0

9
0

1
2

0

1
5

0

1
8

0

2
1

0

2
4

0

2
7

0

3
0

0

3
3

0

3
6

0

e
n

d

M
a
g

n
e
s
iu

m
, 

C
/C

0

Time, min

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

6
0

9
0

1
2

0

1
5

0

1
8

0

2
1

0

2
4

0

2
7

0

3
0

0

3
3

0

3
6

0

3
9

0

e
n

d

M
a
g

n
e
s
iu

m
, 

C
/C

0

Time, min

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

30 60 90 120150180210240270end

S
o

d
iu

m
, 

C
/C

0

Time, min

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

6
0

9
0

1
2

0

1
5

0

1
8

0

2
1

0

2
4

0

2
7

0

3
0

0

3
3

0

3
6

0

e
n

d

S
o

d
iu

m
, 

C
/C

0

Time, min

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

6
0

9
0

1
2

0

1
5

0

1
8

0

2
1

0

2
4

0

2
7

0

3
0

0

3
3

0

3
6

0

3
9

0

e
n

d

S
o

d
iu

m
, 

C
/C

0

Time, min

0.0

0.5

1.0

1.5

2.0

30 60 90 120150180210240270end

P
o

ta
s
s
iu

m
, 

C
/C

0

Time, min

0.0

0.2

0.4

0.6

0.8

1.0

1.2

6
0

9
0

1
2

0

1
5

0

1
8

0

2
1

0

2
4

0

2
7

0

3
0

0

3
3

0

3
6

0

e
n

d

P
o

ta
s
s
iu

m
, 

C
/C

0

Time, min

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

6
0

9
0

1
2

0

1
5

0

1
8

0

2
1

0

2
4

0

2
7

0

3
0

0

3
3

0

3
6

0

3
9

0

e
n

d

P
o

ta
s
s
iu

m
, 

C
/C

0

Time, min



  178 

 

Figure 3-S8. Cumulative volume (L) versus normalized time for the three experiments 

using reactive or predictive control logic at low and high frequencies. The high use, 

reactive control logic experiment is shown as the purple circles, the low use, reactive 

control logic experiment is shown as the green triangles, and the low use, predictive 

control logic experiment is shown as yellow squares.   
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Figure 3-S9. Results for the reactive and predictive control logic experiments at low and 

high frequencies. Concentrations for ammonia, phosphate, calcium, magnesium, sodium, 

and potassium in grab samples from the fresh urine at t = 0 (FU), storage tank 1 at t = end 

(S1), storage tank at t = end (S2), storage tank at t = end (S3) and the fresh urine at t = 

end (FU END) are shown. Ammonia and phosphate concentrations are the average 

concentrations found when the same sample was run two times on the FIA. Error bars 

correspond to one standard deviation. 
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Figure 3-S10. Front of the urinal testbed. Pumps for urine, urease, and acid are on the 

right. Two pumps for grab samples are on the left.  
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Figure 3-S11. Back of urinal testbed. Two-inch cast iron pipe is used to convey the urine 

from the urinals to the storage tanks. Two P-traps were used to hold pH and conductivity 

sensors in urine solution. 
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APPENDIX B 

 

SUPPORTING INFORMATION FOR CHAPTER 4: IMPACT OF ACETIC ACID 

ADDITION ON NITROGEN SPECIATION AND BACTERIAL COMMUNITIES 

DURING URINE COLLECTION AND STORAGE 
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FIGURES 

 

 
 

Figure 4-S1  The urinal-on-wheels inside the restroom stall where it was placed during 

urine collection. 
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Figure 4-S2  Inside the urinal-on-wheels. The urine tank was outfitted with pH and 

temperature sensors. The motion sensors and the button were mounted to face the outside 

of the box. The sensors were battery powered and controlled with a Raspberry Pi 

microprocessor. The plastic bottle was filled with activated carbon to allow for airflow as 

urine entered the tank. 
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Figure 4-S3  The glass urinal prior to urine collection. Nonwater urinal sealing liquid 

was placed in the “trap” and can be seen as the green fluid in the picture.  
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Figure 4-S4  A heatmap of average Wifi logins per hour and day of the way for the 

building floor on which the restroom studied is found.  
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Figure 4-S5  The temperature (°C) of urine collected with the urinal-on-wheels for Runs 

18. Data points were taken every 5 min.  
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Figure 4-S6  Phosphate concentrations for daily urine grab samples during urine 

collection. Error bars show the standard deviation for duplicate sample analysis. 
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Figure 4-S7  Total organic carbon concentrations for daily urine grab samples during 

urine collection. Error bars show the standard deviation for duplicate sample analysis. 

 

 

 

 

 

 
 

Figure 4-S8  pH and conductivity measurements of urine samples collected from the 

urine “tank” in the glass urinal experiments.  “Baseline” experiments monitored urea 

hydrolysis without acid addition. “Acid” denoted runs studying the impact of acid 

addition after each urination event. Three runs of each experiment were conducted. The 

samples used for bacterial analysis were Baseline 2 and Acid 3. 
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Figure 4-S9  Total nitrogen, ammonia, phosphate, and total organic carbon 

concentrations for urine samples taken at the end of each glass urinal run. Error bars for 

the standard deviation in duplicate analysis is shown on the bars.  
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APPENDIX C 

 

SUPPORTING INFORMATION FOR CHAPTER 5: DATA MINING METHODS 

PREDICT CHLORINE RESIDUALS IN PREMISE PLUMBING USING LOW-COST 

SENSORS 
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TABLES & FIGURES 

 

Table 5-S1 Summary table of final gradient boosting machine model parameters. 

Model 

# 
Floor 

Final GBM model parameters 

No. of 

trees 

Tree 

depth 

Shrinkage Min. no. observations at 

terminal nodes 

Subsampling 

10 2 45 3 0.1 5 0.65 

11 2 258 5 0.3 7 0.85 

12 2 11 6 0.4 15 0.60 

13 3 21 1 0.2 7 0.65 

14 3 571 5 0.1 5 0.65 

15 3 9 5 0.4 15 0.65 

16 7 6 3 0.3 3 0.50 

17 7 6 7 0.3 8 0.75 

18 7 7 5 0.3 5 0.80 
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Table 5-S2  Preprocessed water quality and Wifi login data for the 2nd floor, 3rd floor, 

and 7th floor prior to normalization. 

  Boxplot Stats pH 
Conductivity, 

uS/cm 
Temperature, °C 

Free chlorine, 

mg/L 
DO, mg/L ORP, mV Wifi Logins 

2nd Floor 

(979 

obs.) 

Min. 7.34 287 20.3 0.00 8.20 527 0 

1st. 

Quadrant 
7.46 611 21.0 0.33 8.84 724 1 

Median 7.64 908 21.7 0.46 9.08 733 6 

Mean 7.60 850 21.5 0.43 9.25 724 17.1 

3rd. 

Quadrant 

7.73 1058 22.0 0.52 9.73 740 22 

Max 7.82 1245 22.5 0.81 10.9 757 131 

          

3rd Floor 

(665 

obs.) 

Min. 7.53 350 20.7 0.00 7.21 237 0 

1st. 

Quadrant 
7.78 741 23.3 0.00 9.24 379 0 

Median 7.82 817 24.3 0.08 9.62 448 2 

Mean 7.81 860 24.2 0.12 9.53 474 11.2 

3rd. 

Quadrant 
7.84 992 25.0 0.18 9.99 555 13 

Max 7.96 1729 28.6 0.62 10.5 759 139 

          

7th Floor 

(1099 

obs.) 

Min. 7.57 555 22.6 0.00  0.650 0 

1st. 

Quadrant 
7.75 724 24.6 0.00  92.6 1 

Median 7.80 972 25.2 0.00  279 4 

Mean 7.79 942 25.3 0.01  268 9.3 

3rd. 

Quadrant 
7.83 1123 25.9 0.00  396 11 

Max 7.98 1572 27.7 0.07  649 106 
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Table 5-S3  Welch’s t-test p-values for each pair of floors for the water quality 

parameters that were measured and the Wifi login data was collected. P-values < 0.05 

indicate significant difference. Bold results indicate samples with no significant 

difference.  
Welch’s t-test p-values for water quality and Wifi logins 

Temp. floor pairs p-value Chlorine floor pairs p-value 

2nd floor & 3rd floor < 2.2E-16 2nd floor & 3rd floor < 2.2E-16 

2nd floor & 7th floor < 2.2E-16 2nd floor & 7th floor < 2.2E-16 

3rd floor & 7th floor < 2.2E-16 3rd floor & 7th floor < 2.2E-16 

pH floor pairs p-value DO floor pairs p-value 

2nd floor & 3rd floor < 2.2E-16 2nd floor & 3rd floor < 2.2E-16 

2nd floor & 7th floor < 2.2E-16 2nd floor & 7th floor – 

3rd floor & 7th floor 3.19E-11 3rd floor & 7th floor – 

Cond. floor pairs p-value Wifi floor pairs p-value 

2nd floor & 3rd floor 0.3819 2nd floor & 3rd floor 1.15E-07 

2nd floor & 7th floor < 2.2E-16 2nd floor & 7th floor < 2.2E-16 

3rd floor & 7th floor 1.70E-14 3rd floor & 7th floor 0.02865 

ORP floor pairs p-value   

2nd floor & 3rd floor < 2.2E-16   

2nd floor & 7th floor < 2.2E-16   

3rd floor & 7th floor < 2.2E-16   
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Table 5-S4 – Summary table of adjusted R2 values for the regression lines shown in 

Figure 5-4. 

 

 Adjusted R2 

Floor 
Wifi logins 

& pH 

Wifi logins 

& ORP 

Wifi logins 

& Cond 

Wifi logins 

& Temp 

Wifi logins 

& Chlorine 

Wifi logins 

& DO 

2nd floor 0.01 4.4E-03 0.12 0.13 2.5E-04 0.11 

3rd floor 0.03 0.07 0.07 0.18 0.44 2.5E-03 

7th floor 3.7E-03 0.02 0.02 -2.8E-04 0.07 – 
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Figure 5-S1  Floor plans for each floor in the study building. The water quality sensor 

platform was installed in the break room on the 2nd, 3rd, and 7th floor. 

1st floor 2nd floor  

3rd floor 4th  6th floor 
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7th floor 
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Figure 5-S2  Plots for the 2nd floor showing the normalized raw data points, the variable 

distribution on the diagonal, and the Pearson correlation coefficient for the pairs in the 

raw data.   
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Figure 5-S3  Plots for the 3rd floor showing the normalized raw data points, the variable 

distribution on the diagonal, and the Pearson correlation coefficient for the pairs in the 

raw data.   
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Figure 5-S4  Plots for the 7th floor showing the normalized raw data points, the variable 

distribution on the diagonal, and the Pearson correlation coefficient for the pairs in the 

raw data.   

 

 



  201 

 
Figure 5-S5  Histogram of the DO concentration measurements for the 7th floor.  
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Figure 5-S6  Linear regression modeling data versus measured data for models using 

Wifi logins only (models 1, 4, and 7). The 1:1 line is displaying on each graph.  

Chlorine (mg/L) = 0.52 + (0.05  Wifi)  

Chlorine (mg/L) = 0.11 + (1.08  Wifi)  

Chlorine (mg/L) = 0.05 + (0.41  Wifi)  
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Figure 5-S7  Linear regression modeling data versus measured data for models using all 

parameters (models 3, 6, and 9). The 1:1 line is displaying on each graph.  

Chlorine (mg/L) = 0.15 + (0.09  Wifi) + (0.36  ORP) + (0.17  pH) + (0.25  Cond) + 

(0.28  Temp) + (0.09   DO) 

Chlorine (mg/L) = 0.19 + (0.82  Wifi) + (0.32  ORP) + (0.21  pH) + (0.15  Cond) 

+ (0.25  Temp) + (0.29  DO) 

Chlorine (mg/L) = 0.23 + (0.39  Wifi) + (0.14  ORP) + (0.29  pH) + (0.003  Cond) 

+ (0.14  Temp)  
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APPENDIX D 

 

INSTITUTIONAL REVIEW BOARD (IRB) APPROVAL FOR HUMAN SUBJECT 

TESTING 
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APPROVAL: EXPEDITED REVIEW 

Treavor Boyer 

Sustainable Engineering and the Built Environment, School of (SEBE) 

- 

thboyer@asu.edu 

Dear Treavor Boyer: 

On 12/6/2016 the ASU IRB reviewed the following protocol: 

Type of Review: Initial Study  

Title: Nutrient Removal and Recovery from Source 

Separated Urine 

Investigator: Treavor Boyer 

IRB ID: STUDY00005328 

Category of review: (3) Noninvasive biological specimens 

Funding: Name: Arizona State University (ASU) 

Grant Title:  

Grant ID:  

Documents Reviewed: • IRB Recruitment Email and Flyer.pdf, 

Category:  

Recruitment Materials; 

• IRB Application Revised.docx, Category: IRB  

Protocol; 

• Treavor Boyer CITI Training 10-30-15.pdf,  

Category: Non-ASU human subjects training (if taken 

within last 3 years to grandfather in); 

• Daniella Saetta CITI Training 4-18-16.pdf,  

Category: Non-ASU human subjects training (if taken 

within last 3 years to grandfather in); 

• Showing Changes, Category: Consent Form; 

• Final Clean Version, Category: Consent Form; 

• Point by Point Response Letter to Changes, 

Category: Other (to reflect anything not captured 

above); 

https://era.oked.asu.edu/IRB/Personalization/MyProfile?Person=com.webridge.account.Person%5BOID%5B732FAAFE3D9B1440973431FC118260FD%5D%5D
https://era.oked.asu.edu/IRB/Personalization/MyProfile?Person=com.webridge.account.Person%5BOID%5B732FAAFE3D9B1440973431FC118260FD%5D%5D
https://era.oked.asu.edu/IRB/RMConsole/Organization/OrganizationDetails?detailView=true&Company=com.webridge.account.Party%5BOID%5BBD631790797AB6419103F124B29C2F59%5D%5D
https://era.oked.asu.edu/IRB/RMConsole/Organization/OrganizationDetails?detailView=true&Company=com.webridge.account.Party%5BOID%5BBD631790797AB6419103F124B29C2F59%5D%5D
https://era.oked.asu.edu/IRB/RMConsole/Organization/OrganizationDetails?detailView=true&Company=com.webridge.account.Party%5BOID%5BBD631790797AB6419103F124B29C2F59%5D%5D
https://era.oked.asu.edu/IRB/RMConsole/Organization/OrganizationDetails?detailView=true&Company=com.webridge.account.Party%5BOID%5BBD631790797AB6419103F124B29C2F59%5D%5D
https://era.oked.asu.edu/IRB/RMConsole/Organization/OrganizationDetails?detailView=true&Company=com.webridge.account.Party%5BOID%5BBD631790797AB6419103F124B29C2F59%5D%5D
https://era.oked.asu.edu/IRB/RMConsole/Organization/OrganizationDetails?detailView=true&Company=com.webridge.account.Party%5BOID%5BBD631790797AB6419103F124B29C2F59%5D%5D
https://era.oked.asu.edu/IRB/RMConsole/Organization/OrganizationDetails?detailView=true&Company=com.webridge.account.Party%5BOID%5BBD631790797AB6419103F124B29C2F59%5D%5D
https://era.oked.asu.edu/IRB/RMConsole/Organization/OrganizationDetails?detailView=true&Company=com.webridge.account.Party%5BOID%5BBD631790797AB6419103F124B29C2F59%5D%5D
https://era.oked.asu.edu/IRB/RMConsole/Organization/OrganizationDetails?detailView=true&Company=com.webridge.account.Party%5BOID%5BBD631790797AB6419103F124B29C2F59%5D%5D
https://era.oked.asu.edu/IRB/RMConsole/Organization/OrganizationDetails?detailView=true&Company=com.webridge.account.Party%5BOID%5BBD631790797AB6419103F124B29C2F59%5D%5D
https://era.oked.asu.edu/IRB/Personalization/MyProfile?Person=com.webridge.account.Person%5BOID%5B732FAAFE3D9B1440973431FC118260FD%5D%5D
https://era.oked.asu.edu/IRB/Personalization/MyProfile?Person=com.webridge.account.Person%5BOID%5B732FAAFE3D9B1440973431FC118260FD%5D%5D
https://era.oked.asu.edu/IRB/Personalization/MyProfile?Person=com.webridge.account.Person%5BOID%5B732FAAFE3D9B1440973431FC118260FD%5D%5D
https://era.oked.asu.edu/IRB/Personalization/MyProfile?Person=com.webridge.account.Person%5BOID%5B732FAAFE3D9B1440973431FC118260FD%5D%5D
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The IRB approved the protocol from 12/6/2016 to 12/5/2017 inclusive. Three weeks 

before 12/5/2017 you are to submit a completed Continuing Review application and 

required attachments to request continuing approval or closure.  

If continuing review approval is not granted before the expiration date of 12/5/2017 

approval of this protocol expires on that date. When consent is appropriate, you must use 

final, watermarked versions available under the “Documents” tab in ERA-IRB. 

In conducting this protocol you are required to follow the requirements listed in the  

INVESTIGATOR MANUAL (HRP-103). 

Sincerely, 

IRB Administrator 

cc: Hannah Ray 

Neha Jagtap 

Hannah Ray 

Avni Solanki 

Daniella Saetta 
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APPROVAL: MODIFICATION 

Treavor Boyer 

SEBE: Sustainable Engineering and the Built Environment, School of 

- 

thboyer@asu.edu 

Dear Treavor Boyer: 

On 2/14/2020 the ASU IRB reviewed the following protocol: 

Type of Review: Continuing Review 

Title: Nutrient Removal and Recovery from Source 

Separated Urine 

Investigator: Treavor Boyer 

IRB ID: STUDY00005328 

Funding: Name: Arizona State University (ASU) 

Grant Title: None 

Grant ID: None 

Documents Reviewed: • Final Clean Version, Category: Consent Form; 

• Showing Changes, Category: Consent Form; 

The IRB approved the modification.  

When consent is appropriate, you must use final, watermarked versions available under 

the “Documents” tab in ERA-IRB. 

In conducting this protocol you are required to follow the requirements listed in the  

INVESTIGATOR MANUAL (HRP-103). 

Sincerely, 

IRB Administrator 

cc: Daniella Saetta 

Uranus Richard 

https://era4.oked.asu.edu/IRB/sd/Rooms/Misc/ResourceContainerFactory?target=com.webridge.account.Person%5bOID%5b732FAAFE3D9B1440973431FC118260FD%5d%5d
https://era4.oked.asu.edu/IRB/sd/Rooms/DisplayPages/LayoutInitial?Container=com.webridge.entity.Entity%5bOID%5bF7ABD7D8DA370A418BBD331F4A08E291%5d%5d
https://era4.oked.asu.edu/IRB/sd/Rooms/Misc/ResourceContainerFactory?target=com.webridge.account.Person%5bOID%5b732FAAFE3D9B1440973431FC118260FD%5d%5d
https://era4.oked.asu.edu/IRB/sd/Rooms/Misc/ResourceContainerFactory?target=com.webridge.account.Person%5bOID%5b732FAAFE3D9B1440973431FC118260FD%5d%5d
https://era4.oked.asu.edu/IRB/sd/Rooms/Misc/ResourceContainerFactory?target=com.webridge.account.Person%5bOID%5b732FAAFE3D9B1440973431FC118260FD%5d%5d
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Rebecca Dietz Urusha 

Regmi 

Angela Egan 

Neha Jagtap Hannah 

Ray 

Lerys Del Moral 

Michael Edgar 

Daniella Saetta 

 

  

 

 


