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ABSTRACT

Machine learning models can pick up biases and spurious correlations from training

data and projects and amplify these biases during inference, thus posing significant

challenges in real-world settings. One approach to mitigating this is a class of methods

that can identify filter out bias-inducing samples from the training datasets to force

models to avoid being exposed to biases. However, the filtering leads to a consider-

able wastage of resources as most of the dataset created is discarded as biased. This

work deals with avoiding the wastage of resources by identifying and quantifying the

biases. I further elaborate on the implications of dataset filtering on robustness (to

adversarial attacks) and generalization (to out-of-distribution samples). The findings

suggest that while dataset filtering does help to improve OOD(Out-Of-Distribution)

generalization, it has a significant negative impact on robustness to adversarial at-

tacks. It also shows that transforming bias-inducing samples into adversarial samples

(instead of eliminating them from the dataset) can significantly boost robustness

without sacrificing generalization.
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Chapter 1

INTRODUCTION

Machine learning models are universal function approximators (Hornik et al., 1989),

and in theory, with enough data (Hoeffding, 1963), can generalize to diverse data

distributions. However real-world data, however large, tends to be biased (Torralba

and Efros, 2011; Wang et al., 2019; Jiang and Nachum, 2020). When trained on biased

data, models can replicate these biases during prediction Bolukbasi et al. (2016), and

in many cases also amplify biases (Zhao et al., 2017; Bender et al., 2021). These

biases can be attributed to several causes such as historical, social, representational,

algorithmic, observer and annotator bias and so on (Mehrabi et al., 2019).

In natural language processing, Neural language models, empowered by recent

advances in machine learning have achieved human-level performances in various

held out datasets such as SQuAD Rajpurkar et al. (2016) and SNLIBowman et al.

(2015b). However, similar model performance is not reflected in ”data in the wild”,

Hendrycks and Dietterich (2019); Eykholt et al. (2018); Jia and Liang (2017a) i.e,

Out of Distribution (OOD) and Adversarial Datasets. A growing number of studies

are now raising concerns about using accuracy on the held out set as the single

evaluation metric due to the potential model performance inflation Bras et al. (2020a);

Sakaguchi et al. (2020) accuracy produces; accuracy’s large scale negative impact

in overestimating capabilities of AI systems hinders the adoption of AI in many

promising applications.

A key source of the model performance inflation with accuracy on held out dataset

is spurious bias, the unintended correlation between model input and output Torralba

and Efros (2011). For e.g., crowdworkers created a large number of contradiction
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samples with the word ‘NOT’ in the hypothesis while creating SNLI. This has given

rise to spurious bias and the model trained on these datasets tend to label any sample

with the word ‘NOT’ in hypothesis as contradiction Gururangan et al. (2018). Held

out datasets, being part of I.I.D, carry the same bias as the training dataset, so

the model succeeds in solving the heldout dataset, even with its misconception of

the word ‘NOT’. However, as expected, model performance drops for ”data in the

wild” because of overreliance of models on these spurious biases. Biases manifest

as spurious correlations between input features and output variables (Poliak et al.,

2018; Gururangan et al., 2018; Kaushik and Lipton, 2018), thus posing a significant

obstacle in the reliability of machine learning models in the real-world setting.

Solutions designed to mitigate the risk of spurious correlations can be categorized

as:

1. data augmentation – rule-based, adversarial, or counterfactual augmentation of

existing datasets to increase diversity,

2. model de-biasing – algorithms that seek to exploit prior knowledge of existing

biases in order to learn robust models,

3. dataset filtering – algorithmic methods that seek to filter bias-inducing samples

from training datasets.

Several approaches have been proposed to remove data samples containing spuri-

ous biases Bras et al. (2020a); Wu et al. (2020); Utama et al. (2020); Li and Vasconce-

los (2019). The goal in all these works is to improve the zeroshot OOD generalization

performance on several independently created datasets where the spurious biases in

the SNLI training set are less likely to hold. However, to our surprise, none of these

works talk about robustness to adversarial attack Jin et al. (2019a)Morris et al. (2020)

while removing dataset biases. We want our model to generalize better but not at the

cost of losing robustness to adversarial attacks, another important capability essen-
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tial for models to succeed in real world. We argue that such a study is important,

specifically when the correlation between robustness to adversarial attack and OOD

generalization is unknown.

When we learn from a large set of very similar samples, the risk of spurious bias

increases which provides shortcuts to models that subsequently negatively impact

generalization 1. On the other hand, a set of very similar samples are still distinct

among each other and may represent word/phrase perturbed forms of others. Learn-

ing from those samples makes models stay aware of various perturbations and increase

its robustness to adversarial attacks which are essentially perturbations. This intu-

itive understanding compels us further to conduct this study regarding the effect of

spurious bias on robustness to adversarial attacks, along with OOD generalization.

In this work, we seek to study the effect of dataset filtering methods such as

AFLite (Bras et al., 2020b) on two metrics – robustness to adversarial attacks (Adv-

Rob) and generalization to out-of distribution samples (OOD-Gen). This study

is done in comparison with vanilla model training, data augmentation, and model

debiasing, for the task of natural language inference (NLI).

In summary, we make the following contributions while addressing the aforemen-

tioned gap in model evaluation.

• We show that deletion of datasets containing spurious biases hurts model ro-

bustness to adversarial attacks, advocating to conduct robustness study along

with generalization while analyzing/removing spurious biases.

• Even though the addition of data samples containing spurious biases improves

robustness, it hurts generalization, and inflates accuracy on the held out set. So,

1Henceforth generalization implies zeroshot OOD generalization, and robustness implies robust-

ness to adversarial attack

3



we propose a data augmentation mechanism using adversarial transformation

and show that our mechanism results in higher boost in robustness (than addi-

tion of biased samples without transformation), with competitive generalization

performance and reduced inflation in model performance. In this process we

also address the issue of data deletion prevalent in most approaches to remove

spurious bias; deletion of data samples wastes the resources invested in their

creation.

• We propose a framework to repair legacy datasets and revamp existing bench-

marks which are not really solved (in contrast to inflated leaderboard perfor-

mance). We demonstrate our framework by proposing the RSNLI (repaired

SNLI) dataset.

• Our data quality analysis shows that RSNLI has higher diversity and contains

lesser number of artifacts such as word overlap, sentence length variation across

labels than SNLI, etc.; this justifies the efficacy of our framework to revamp

legacy datasets.

4



Chapter 2

BACKGROUND AND RELATED WORK

2.1 Machine Learning Bias

The term ”bias” in machine learning, sometimes referred to as algorithmic bias or

AI bias, was introduced by (Mitchell, 1980). As stated, it means ”any basis for choos-

ing one generalization [hypothesis] over another, other than strict consistency with the

observed training instances.” Simply put, machine learning bias is the phenomenon

when the model chooses one hypothesis over another due to erroneous assumptions.

AI bias can be introduced at any stage of the machine learning pipeline. The basis of

these erroneous assumptions helps us classify these biases into various categories. For

example, a race-agnostic loan approval would be undesirable; therefore, if a model

predicted based on race for such a scenario, it would have a racial bias. Another

example is exclusion bias, where a fraction of the real data is not represented either

knowingly or unknowingly.

Spurious bias, in short, is the unintended correlation between the input and the

output. See figure 2.1 one example from Vigen (2015), a collection of spurious cor-

relations. This example shows a high correlation(99.79%) between the ”US spending

on science, space, and technology” and ”suicides by hanging, strangulation, and suf-

focation” for a given duration of time. Even though common sense dictates that we

should not relate these two entities if a model trained on a set of features(including

the US spending on science) to predict the suicides in the same time period. The

model will likely depend on only this feature to make the prediction.

When we do not know the actual ”cause” of a result, a ”leakage” from any direction

5



in the data will lead the model to gold prediction. These unwanted correlations are

the primary reason for the recent success of machine learning models, where we solve

a dataset but fail at the task. For example, numerical reasoning in natural language

is still a challenge (Mishra et al., 2020d) even though we have an accuracy of 90% on

datasets like DROP (Dua et al., 2019), which are not easy for an average human.

Figure 2.1: Spurious Correlations

Several studies Gururangan et al. (2018); Poliak et al. (2018); Mishra et al.

(2020b); Bras et al. (2020a); Kaushik and Lipton (2018) have identified that lan-

guage models are overfitting to various benchmark idiosyncrasies and do not truly

learn the underlying task. Spurious bias, the unintended correlation between model

input and output, is the carrier of these benchmark idiosyncrasies. In case of NLI, the

association of the word ’not’ with the contradiction label is an example of spurious

bias. Spurious bias has even higher implications as it gives rise to overestimation of

AI capabilities Bras et al. (2020a); Hendrycks et al. (2020b); Mishra et al. (2020a).

This further hinders the adoption of AI systems in safety critical applications like

healthcare. While inductive bias is wanted in machine learning, spurious bias is

unwanted and needs to be avoided. Due to the observation on spurious bias, data
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quality Rogers (2021); Sambasivan et al. (2021); Mishra et al. (2020c) is also getting

attention recently similar to the attention model development has received over past

several years. Our primary objective in this work is to get rid of the spurious bias in

data. In contrast to other works, we are also interested in studying several different

aspects such as generalization, robustness, model accuracy along with spurious bias.

2.2 Dataset Pruning

Dataset pruning removes strategically selected samples from the dataset to im-

prove the model’s performance. The concept of dataset pruning was first defined

in (Angelova et al., 2005) as the process of noise removal. In the same article, the

measure of success of these models was defined by SVC and AdaBoost algorithm. In

the modern context, noise can be used as an umbrella term for annotator artifacts

and various other kinds of biases that negatively affect the performance of a model.

Dataset pruning has been performed across various works to identify the represen-

tative samples that can replace the bigger dataset. Smaller dataset requires lesser

computation and time to train model and are also easier to control quality. Also, the

pruning process can unfold various characteristics of the necessary samples compared

to the redundant samples. Dataset Distillation Wang et al. (2018b) shows that ten

synthetically created samples can potentially replace the MNIST dataset. Adversar-

ial Filtering was first proposed by (Zellers et al., 2018) for constructing the SWAG

question-answering dataset. Adversarial Filtering iteratively trains an ensemble of

classifiers to identify and easy samples and replace them with adversarial samples.

Versions of AF have also been used to construct challenging datasets Zellers et al.

(2019b); Bhagavatula et al. (2020) or to prevent models from answering multiple-

choice questions by elimination Zellers et al. (2019a); Fang et al. (2020). These

methods adversarially perturb instances and require re-training of the model at ev-
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ery iteration of dataset filtering. AFLite (Sakaguchi et al., 2020; Bras et al., 2020b)

does not rely on curated strategies or rules for generating perturbations and does

not need model re-training. Other approaches such as REPAIR (Li and Vasconce-

los, 2019), RESOUND (Li et al., 2018), (Sagawa et al., 2020) suggest re-sampling or

sub-sampling of datasets reduce biases.

2.3 Adversarial Filtering

The concept of adversarial filtering was introduced in (Zellers et al., 2018) to

construct the SWAG dataset. The corpus consisted of 113k multiple-choice questions

derived from ActivityNet Captions (Krishna et al., 2017). The goal in the conception

of the dataset was to achieve diversity while minimizing the annotation artifacts,

conditional stylistic patterns such as sentence similarity and word preference biases.

What is an adversarial dataset? If a model M is trained on a dataset, the

dataset is said to be adversarial if it will not generalize even if evaluated on the same

distribution. The dataset is adversarial for a model M if we expect high empirical

error I overall leave-one-out train/test splits (Vapnik, 2013)

I(D,M) =
1

N

N∑
i=1

L
(
Mθ?i

, {(xi, yi)}
)

(2.1)

where θ?i = argmin
θ

L (Mθ,D\{(xi, yi)}) , (2.2)

How to generate an adversarial dataset? Let us assume we have N contexts

for a given problem statement, each having one positive example
(
x+
i , 1
)
∈ X × Y ,

where X is the input space and the Y is the output space. Similarly, we have a

range of negative examples corresponding to each context
(
x−i,j, 0

)
∈ X × Y , where

1 ≤ j ≤ N− for each i. The goal of adversarial filtering in this setting is to identify a

subset of negative examples for each context instance i to a minimal set k � N−. If

8



we for the sake of this argument identify the returned subset as A the filtered dataset

would be :

DAF =
{

(xi, 1) ,
{(
x−i,j, 0

)}
j∈Ai

}
1≤i≤N

(2.3)

Unfortunately, this problem is non-tractable. The adversarial filtering algorithm

as shown in Algorithm 1 is proposed solution for this problem. The idea is to split

the existing dataset iteratively and train model f to remove the sample that model

classifies correctly and replace them with the samples which the model is not able to

identify correctly.

Algorithm 1: Adversarial Filtering (Zellers et al., 2018)

1 Adversarial filtering (AF) of negative samples.

2 Inputs: N easy = 2 for refining a population of N− = 1023 negative examples to

k = 9

3 while convergence not reached do

4 - Split the dataset D randomly up into training and testing portions Dtr and

Dte.

5 - Optimize a model fθ on Dtr. for index i in Dte do

6 - Identify easy indices:

Aeasy
i =

{
j ∈ Ai : fθ

(
x+
i

)
> fθ

(
x−i,j

)}
7 - Replace N easy easy indices j ∈ Aeasy

i with adversarial indices k /∈ Ai

satisfying fθ

(
x−i,k

)
> fθ

(
x−i,j

)
8 end for

9 end while

Lightweight adversarial filtering(AFLite) (Sakaguchi et al., 2020) is an im-

proved version of adversarial filtering(AF). It is an improvement in two key aspects.
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• avoiding overgeneration of data thus more generally applicable.

• it is lightweight as it does not require the model to be retrained at each iteration

of the filtering.

The problem with the generation of samples at this point is the risk of distribu-

tional bias. The model identifies the artificial samples as separate entities in distri-

butional bias and learns to solve them separately. To operate filtering by training

neural language models like BERT is an extensive computation process. The AFLite

works with a slightly different setting. Instead of using models like BERT, it uses an

ensemble of linear and basic non-linear models such as logistic regression and support

vector machines(SVMs). In addition to that, rather than using manually selected

lexical features, the model uses RoBERTa based sentence embeddings as features.

The complete algorithm is shown in Algorithm 2.

To demonstrate the identified bias using the AFLite algorithm, we see a few exam-

ples in figure 2.2 from the Winogrande dataset created using the AFLite algorithm

from the Winogrande schema challenge. The Winogrande task is formulated as a

fill-in-the-blank question with binary answers. The goal is to choose the right option

for a given sentence which requires commonsense reasoning. In figure 2.2, the first

two examples, there is an undesirable correlation between the sentiment between the

answer option and the target pronoun. Given the correlation, the problem can be

solved by exploiting the polarity pattern (positive or negative) in the sentence. The

model would not be using any extra commonsense knowledge, which is required part

of the task’s goal. One more thing to be noted here is that the bias is present at the

structural level and not at the token level, which is hard to detect using heuristics

such as PMI-filtering.

Are these filtering algorithms really working? To answer this question, we

10



Figure 2.2: A Few Examples from Winogrande Dataset Sakaguchi et al. (2020) Show-

ing Selected Biased Samples Using Aflite

see an analysis of AFlite on two relative baselines.

• Random data reduction

• PMI based filtering

Figure 2.3 shows the plots of RoBERTa based pre-computed embeddings visualized

in 2 Dimensions and 1 Dimension with the help of PCA dimension reduction. The

figure suggests that the distinction between the two labels is quite prominent for other

datasets except for the debiased one. For the debiased Winogrande, the distinction

between the labels is not very distinct. This indicates the reduction of spurious

correlation in the dataset. Another interesting finding here is that even though there

is a high separation between the two labels after principal component analysis on

PMI-filtered subsets there is a minimal reduction in the KL divergence.
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Algorithm 2: AFLite Sakaguchi et al. (2020)

1 Input : Dataset D = (X,Y ),

2 Hyper-Parameters: Model Family M , Number of random partitions m,target

dataset size n, training set size t < n,slice size k < n and early stopping

thresh-hold tau

3 Output : Pruned dataset S

4 S = D

5 while |S| > n do

6 // Filtering Phase

7 forall i ∈ S do

8 Initialize multiset of out-of-sample predictions E(i) = ∅

9 end

10 forall j ∈ m do

11 Randomly partition S into (Tj , S\Tj) s.t. |S\Tj | = t

12 Train a classifier L ∈M on {(Φ(x), y) | (x, y) ∈ S\ Tj} (L is typically a linear classifier)

13 forall i = (x, y) ∈ Tj do

14 Add the prediction L (Φ(x)) to E(i)

15 end

16 end

17 forall i = (x, y) ∈ S do

18 Compute the predictability score p̃(i) =| {ŷ ∈ E(i) s.t. ŷ = y}|/|E(i)

19 end

20 Select up to k instances S′ in S with the highest predictability scores subject to p̃(i) ≥ τ

21 S = S\S′

22 if |S′| < k then

23 break

24 end

25 return S

26 end

What are the issues with Adversarial filtering techniques?

Even though Adversarial filtering seems to be an ideal approach for pruning, there

are certain drawbacks to the existing approach:

• In algorithm 2, there is no restriction on the number of samples belonging to a
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Figure 2.3: Roberta’s Pre-computed Embedding Visualized in 2d and 1d

specific class; therefore, entire classes can also vanish.

• Due to the lack of similar restriction samples, though easy, might be outliers

and be representative of a context N .

• The whole algorithm depends heavily on the parameter m, the number of it-

eration is needed to reach a conclusive debiased dataset, causes computational

issues. For example, to give bird eye perspective to this problem for a dataset

like SNLI (Bowman et al., 2015a) having a data size of 550k for every 10k itera-

tions if linear or a non-linear model has to run 64 times, there are 3520 models

trained. Even if it takes 5 minutes to run a normal SVM for such big data, it

will take 12 days to complete the filtering process.

Apart from these technical fallacies, one major issue with the pruning methodolo-

gies, in general, is the wastage of resources in creating the data in the first place. In

a recent field survey Alegion (2019) it was noted that it needs around 1,00,000 data

samples to perform well. Using a service like Amazon’s Mechanical Turk software

to crowdsource the data creation of 100000 samples takes around $70000 on aver-

age. Further to annotate the same data based on its complexity costs anywhere from
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$8000 to $80000. If, at the end of the day, after pruning, one is throwing 80 percent

of the data created, it is a waste of 80 percent of the money spent on the creation.The

estimates for the cost per sample is shown in the Figure 2.4. Resolution for this flaw

is the primary motivation behind our overall research.

Another major issue with the pruning methodologies is lack of a feedback mecha-

nism. There is no feedback provided to a dataset creator therefore no further restric-

tion on creating these biased samples again in future Arunkumar et al. (2020).

Figure 2.4: Wastage of resources with pruning

2.4 Robustness and Generalization Evaluation

Accuracy has been shown to be not a reliable indicator of model capabilities

Ribeiro et al. (2020a) and various alternate metrics have been proposed. Robustness

Hendrycks et al. (2020b,a); Mishra and Arunkumar (2021) is an important aspect

of model evaluation beyond accuracy. Various kinds of robustness metrics have been

proposed in literature that measure model performance under perturbed instances Jia
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et al. (2019); Jones et al. (2020). We incorporate several types of such perturbation

based robustness evaluation metrics in our work. However, perturbation accuracy

based evaluation does not incorporate ordering of samples, unlike in a typical inter-

view setup where the interviewer gauge a candidate’s potential by asking followup

question to a given question in a particular order ie. easy to hard. We bring in order

of samples and propose new evaluation metrics to study robustness. In this process,

we expand on a recent work Jin et al. (2019a) which has used ‘query number’ as the

average number of queries to fool a model.

Generalization on the other hand, refers to how model’s learning transfers from

the training to the test split. Recently, with the IID generalization achieving super-

human performance across various benchmarks, focus has been shifted towards evalu-

ating Out of Distribution (OOD) generalization Hendrycks et al. (2020b); Talmor and

Berant (2019); Bras et al. (2020a); Mishra et al. (2020b); Mishra and Sachdeva (2020).

Often these two terms ”robustness” and ”generalization” are used interchangeably in

literature, we study the interplay between robustness and generalization to see if they

are positively correlated or not.

2.4.1 Generalization

What is supervised learning? Many of the success in Deep learning can be

attributed to the supervised learning framework that leverages large scale datasets

such as Imagenet Deng et al. (2009) in vision and SQuAD Rajpurkar et al. (2016)

and SNLIBowman et al. (2015a) in NLP. Large scale neural models such as Efficient

Net Tan and Le (2019) in Vision and BERT Devlin et al. (2019), RoBERTA Liu

et al. (2019) in NLP have achieved super-human performance leveraging the super-

vised learning setup. Supervised learning typically involves fine-tuning of models on

task-specific data. Note that, these models are already pre-trained on large train-
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ing corpus in a self-supervised manner such as mask language modelling and next

sentence prediction.

Even though supervised learning is very successful, there are several issues at-

tached with it. First, it requires a large labelled dataset of the downstream task. Sec-

ond, it requires some time and computation for the model to get trained on. Each of

these is associated with various disadvantages. For example, getting a large labelled

dataset is an expensive process and various data creation approaches like crowd-

sourcing contain the risk of creating biased data. Requirement of computational time

for training hinders application of supervised systems in real world applications e.g.

in conversational agents the inference time has to be real time and users can not wait

for a system to get trained on before answering a question.

Generalization is one of the critical problems in the field of supervised learning.

The supervised learning task is to learn a mapping function given training data of

input-output pairs. With training data, the outputs are already known. The initial

success of the model is measured in terms of how many of the inputs successfully

map to the correct outputs in a held-out part of the original dataset. This measure

is known as accuracy. Generalization refers to the success of the model on new data.

After training on the train set, how much the model can digest the new data for the

most accurate predictions.

In the generalization literature, apart from data augmentation, many other strate-

gies are used to avoid overfitting the Deep Learning models. One central focus idea is

to improve the model architecture itself, which led to the development of more com-

plex architectures such as RNN, LSTM, Word2Vec, Glove and Transformers(Wolf

et al., 2019).

To avoid overfitting and achieve more generalization, there have been more func-

tional solutions as well, such as:
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• Dropout: Dropout is used in Deep Learning to reduce the overfitting in

large neural networks. Previous regularization methodologies such as L1 and

L2 weight penalties could not wholly solve the overfitting issue due to Co-

adaptation. Therefore, it became difficult to expand a neural network’s size,

and consequently, its accuracy was limited. Dropout is a regularization ap-

proach that solved the issue of co-adaptation. It is a technique in which neurons

are randomly ignored during the training process. Weights were now learned

infractions instead of learning all the wights in each iteration. This results in

learning more critical features that are useful with different random subsets of

other neurons.

• Batch Normalization: Dealing with Deep Neural Networks can be a chal-

lenging task, especially when it comes to handling data with the addition of

extra layers. Training the deeper layers can be tricky as they can be sensitive

to initial random weights and the configuration used in the learning algorithm.

The distribution of data to the inner layers might be affected by a small delta

change in the weights introduced by the mini-batch as they pass deeper into

the network. So, one of the best solutions to handle such a distortion in the

data is by using Batch Normalization. Normalization is the process of data pre-

processing that is used to bring the data to a common ground without distorting

the shape of the data. It’s a method used by the model to generalize the data

when we input data to the machine learning or deep learning model. Similarly,

Batch Normalization is the process to enhance of the performance of the Deep

Neural Networks by the inclusion of extra layers. The newly added layers are

expected to normalize the data coming from the previous layers and hence help

the model in generalizing the data. Since this normalization happens over a

17



set of data provided to the model, hence the name Batch Normalization. This

process is proved to increase the speed of the training process of the model,

handles the internal covariate shift, and smoothens the loss function

• Transfer Learning:Transfer Learning is a process where we leverage the la-

beled data from a pre-existing model trained on more generic tasks and have

a sizeable dataset. Apply this knowledge to a different model designed for a

similar/related task with a more specific domain. For example, To detect pedes-

trians on night-time images, we can pre-trained model designed for a similar

domain, i.e., daytime images.

• Pre-training: Pre-training is a process in which we use weights from a pre-

viously trained model as initial weights to perform a task with different but

related testing datasets. As the previous model has already optimized it on the

training dataset, the weights are more inclined than the random weights, which

have nothing in common with the dataset. For example, training on a dataset

of images will require a large number of resources and time for a car recognition

model. So, we can use a pre-trained model in this case to transfer the optimized

weights.

• Zero-Shot evaluation Owing to the disadvantages of the supervised learning

setup that limits adoption of Machine Learning sytems in real-world application,

Zero-shot evaluation Radford et al. (2019) has become popular, where model

is not trained on downstream task and instead, is directly evaluated. Since

zero data is used for training, its called zero shot. There are several variants of

zeroshot learning such as one-shot and the recently popular few-shot learning

Brown et al. (2020) and Mishra et al. (2021). We also adopt zero shot evaluation

in our work, similar to the zeroshot learning paradigm set up by prior works
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Bras et al. (2020a) and Hendrycks et al. (2020b).

2.4.2 Independently and Identically Distributed Dataset

In mathematical statistics, an independent event is one that is not influenced

by the chance of any other event happening or not happening. The probability of

occurrence of that event is not dependent on any other event. There is no connection

between various observations. An excellent example of independent events is flipping

a coin. As one flips the coin, the result is not dependant on the flip of another coin

or subsequent coin flips.

Identically Distributed relates to the probability distribution that describes the

characteristic you are measuring. Specifically, one probability distribution should

adequately model all values you observe in a sample. Consequently, a dataset should

not contain trends because they indicate that one probability distribution does not

describe all the data. Developing further on the coin toss example, if one tossed the

coin 100 times and got 80 times head and 20 times tail. On the 101st toss, will the

outcome be dependant on the previous tosses? The probability of getting a head

or a tail remains the same, i.e., 0.5. Therefore the outcomes we get from flipping a

coin are independent and identical. It is independent because one outcome does not

depend on the other outcome. It is identical because every sample comes from the

same distribution.

why is IID necessary? The independent and identical distribution of data is

essential for the stability of the results. The identical data is created by random

sampling from the whole feature space. For the data to be IID, there should not be any

trend in the dataset. The In-domain or Independent and identically distributed(IID)

performance is evaluated because of the assumption that the data distribution will

remain same across training and evaluation spits. This thesis shows an experiment
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to understand the contribution of biased or bad samples on model performance.

NLI

Natural Language Inference is a subtask of the Natural language processing domain.

It involves two given statements, usually referred to as a premise and a hypothesis.

The inference task is to tell the hypothesis is going to be true or ”entailed”; not true

or ”contradiction”; cannot say or ”neutral” given the premise is true. Large scale

NLI datasets such as SNLI Bowman et al. (2015b), MNLI Williams et al. (2018) have

accelerated the development of NLI Research. Variants of these such as Adversar-

ial NLI Nie et al. (2019) and Uncertain NLI Chen et al. (2020) have been recently

proposed to study NLI in various circumstances. In our setup, we use a mix of NLI

datasets, some of which we use to train models and some to evaluate models in OOD

setup.

SNLI

SNLI or Stanford Natural Language Inference dataset is a collection of 570k sentence

pairs in the NLI setting. All the sentence pairs are labeled as either entailment,

contradiction, or neutral. The premises are initially taken from the image captioning

dataset Flickr30k; while human annotators created the corresponding hypothesis.

2.4.3 Out of Domain Datasets

Conventionally, Machine Learning operates on Independently and Identical Distri-

bution (IID), where the training and test sets are selected from the same distribution.

However, in the real world, the test set distribution may differ from the training set.

This difference can be due to various reasons:

• it is hard for a test set to characterize the entire distribution Torralba and Efros
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Figure 2.5: A Few Examples from the Snli Dataset (Bowman et al., 2015a)

(2011),

• because of various environmental reasons test distribution might change over

time Hendrycks et al. (2020b). For example; Covid-19 may be an Out of distri-

bution (OOD) sample for a general model trained on various diseases.

One straightforward solution is to create a new training set for everything the test

distribution changes. However, it gets exponentially expensive to catch a data dis-

tribution that evolves quickly over time. It will almost always be the case that the

models will encounter an unexpected situation at test time. Ideally, models should

generalize to the OOD samples, but often this is hard. Humans, on the other hand,

prefer to abstain from answering when they detect OOD samples and are not confi-

dent about answering Kamath et al. (2020); Varshney et al. (2020). Considering the

importance of OODs, we use several OOD datasets in our experimental setup and

evaluate the capability of models in distributions that are different from the training

set.

Stress NLI dataset:

This work proposes an evaluation methodology consisting of automatically constructed

”stress tests” that allow us to examine whether systems can make accurate inferential
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decisions.

For the creation of the stress NLI dataset Naik et al. (2018) sampled 100 misclas-

sified examples from each category of genre-matched and mismatched sets, analyzed

their potential sources of errors, and grouped them into a typology of common rea-

sons for the error. The causes for errors can broadly be divided into categories shown

below:

• Word Overlap (29%): Large word-overlap between premise and hypothesis sen-

tences causes wrong entailment prediction, even if they are unrelated. Minimal

word overlap causes a prediction of neutral instead of entailment.

• Negation (13%): Strong negation words (”no”, ”not”) cause the model to pre-

dict contradiction for neutral or entailed statements.

• Antonymy (5%): Premise-hypothesis pairs containing antonyms (instead of ex-

plicit negation) are not detected as a contradiction by the model.

• Numerical Reasoning (4%): For some premise-hypothesis pairs, the model can-

not perform reasoning involving numbers or quantifiers for correct relation pre-

diction.

• Length Mismatch (3%): The premise is much longer than the hypothesis, and

this extra information could act as a distraction for the model.

• Grammaticality (3%): The premise or the hypothesis is ill-formed because of

spelling errors or incorrect subject-verb agreement.

• Real-World Knowledge (12%): These examples are hard to classify without

some real-world knowledge.
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• Ambiguity (6%): For some instances, the correct answer is unclear to humans.

These are the most difficult cases.

• Unknown (26%): No obvious source of error is discernible in these samples

Figure 2.6: One example for each miss-classified error category.

Adversarial NLI

ANLI Nie et al. (2020) uses a human and model in the loop approach to manually

generate adversarial examples with the help of a model with an increasing level of

complexities. Each subset of the ANLI OOD test is generated by a model trained

on the previously generated samples, thus making it more difficult in every iteration.

The process of generating the samples consist of four steps.

• Data Collection, the premise is taken from a previously defined corpus such as

Wikipedia. A Human writer is asked to write the hypothesis given a target

label and premise or context from corpora.
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• Get model Feedback, the generated sample consisting or a premise and a hy-

pothesis are given to a model.

• Verify Samples and make splits, the samples are compared with the help of

different human if the human verifies the model is correct and the human is

also correct the samples contributes to the train set otherwise if the model is

wrong and human was correct the sample goes to the validation or the test set.

• Retrain the model, in this step we perform the adversarial training in order to

generate even more difficult samples in the future.

Figure 2.7: The Process of Generating Adversarial Samples Through Human and

Model in the Loop Strategy Nie et al. (2020)

See figure 2.7 for more detail for the process of adversaries generation using human

and model in the loop methodology.

NLI Diagnostics

This dataset is used to analyse the performance of model on the language. It uses

Natural Language Inference (NLI) problems to analyse the given sentence. It supports
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from straightforward evaluation of the sentence to resolving high-level reasoning and

syntatic ambiguity.

Lexical Semantics: This phenomena is used to analyse the sentences on the basis

of the word meaning.

This includes words which are related to each other. For eg. dog lexically en-

tails animal because any characterics that applies to dog also apply to animal but it

contradicts cat because it’s impossible to be both at once

Words which are condradicting in meaning but one word is derived from another.

For eg. affordable and unaffordable, agree to disagree, ever and never.

Context of the words appearing the sentence and thier position in relation to

lexical triggers (verbs and adverbs) Symmetry relations where both words can be

treated as one subject and both are connected to each other. Reduncy where words

that can be removed from the sentence without changing its meanings.

Predicate-Argument Structure: This entails to how the different parts of the sen-

tence come together to form the whole sentence. These are issues with this phenom-

ena. For eg. Syntatic ambiguity, prepositional phrases, core arguments where verbs

used for subject and object etc.

Logic: After getting the structure of the sentence, we draw more conclusions from

it using logical operators. These are operators which are commonly used to under-

stand the sentence: Negation, Double Negation, Conjunction, Disjunction, Condi-

tionals. There are other ways to analyse the sentence using natural language analog

of universal and existential quantifiers for eg. all, some, many and no.

Knowledge and Common Sense: World knowledge and common sense is required

to understand the language. For Instance, In world knowledge, we focus on knowledge

that be expressed as facts, as well as common geological, legal and political, technical

and cultural knowledge. Common sense is the knowledge that is expected to be
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possessed by most people independant of their educational and cultural background.

This includes understading of basic common social and physical dynamics as well as

lexical meaning.

2.4.4 Robustness

Data Augmentation

Deep Neural Networks(DNNs) have shown high performance on various vision and

natural language tasks. The success of DNNs has been fueled by advances in model

architectures, intense computation capabilities, and access to big data. However,

sometimes the required data to learn a task without overfitting is limited. Overfitting

refers to the concept of learning a function with high variance. It perfectly fits the

training data to the finest detail, which includes the noise as well.

A practical example of limited data is the medical domain, where the amount of

crucial and verified data is scarce.

Data augmentation circumscribes a collection of the techniques used to increase

the amount of data by slight ”addition to,” ”subtraction from,” or ”modification of”

existing data.

Data augmentation for vision vs NLP Data augmentation is an integral part

of vision applications. Images are relatively easy to augment by small perturbations

such as cropping, rotating, zooming, noise injection, etc., without changing the overall

sense of the image.

For natural language processing, augmentation is much more complicated due to

the high complexity of the language and the grammatical structure of the text. The

augmented dataset is generated with the train set as shown in the figure 2.8

Augmentation Techniques Used
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Figure 2.8: Augmentation Is Done on the Train Set.

1. Contextualized Perturbation for Textual Adversarial Attack

CLARE, short for Contextualized Perturbation for Textual Adversarial Attack,

was introduced in (Li et al., 2020a). CLARE follows a mask-the-infill procedure.

It masks a word in the sentence and then predicts that word using a pre-trained

masked language model. In the sentence for every chosen position, either of the

three perturbation actions is performed: Merge, Replace, and Insertion. The

process is shown in figure 2.9

• Replace: A word is selected in the sentence, and another word replaces

that keyword of similar meaning. For example, ”The trailer of the movie

was scary.” can be changed to ”The trailer of the movie was horrifying.”,

changing the word ”scary” to ”horrifying.”

To ”replace,” first, the word wi will be masked, from the candidate list Z

a word z will be chosen and will be placed at the position of the mask.
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Figure 2.9: Illustration of Clare.

This process is summarized in equation 2.4

x̃ = x1 . . . xi−1[MASK]xi+1 . . . xn,

replace (x, i) = x1 . . . xi−1zxi+1 . . . xn.

(2.4)

• Insert: ”Insert” differs from the ”Replace” regarding how the mask is

placed in the sentence. In replace, we put the mask in place of a word

wi. However, in case of insertion, we put the mask after the word wi. For

example, ”I insist that...” can be changed to ”I highly insist...”, ”highly”

being the keyword added to the sentence. The equation 2.5 shows how

the mask is added after wi, and a new word is predicted by the masked

language model to be added at that location.

x̃ = x1 . . . xi[MASK]xi+1 . . . xn

insert(x, i) = x1 . . . xizxi+1 . . . xn.

(2.5)

• Merge: For the merge operation, a bigram is chosen from the sentence
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xixi+1 and is replaced by a single mask. The masked language model tries

to predict a single word in place of two words, thus merging them. This

process is further explained in the equation ?

x̃ = x1 . . . xi−1[MASK]xi+2 . . . xn

merge(x, i) = x1 . . . xi−1zxi+2 . . . xn

(2.6)

2. CharSwap

Traditionally words could be represented as vectors using word-level or character-

level embedding. For word embeddings, each word is mapped into low dimen-

sional dense vectors directly from a lookup table. Character embeddings are

usually obtained by applying neural networks on the character sequence of each

word, and the hidden states are used to form the representation.

There are several strategies to integrate word-level and character-level embed-

ding for a fine-grained word representation. The following techniques can be

used to augment data at the character level.

• OCR Augmenter: Substitute character by pre-defined OCR error.

• Keyboard Augmenter: Substitute character by keyboard distance.

• Random Augmenter: Insert character randomly.

• Substitute character randomly from a position in the word another char-

acter.

• Swap character randomly from a given position in the word with another

position.

• Delete character randomly from the given word.

3. CheckList
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A CheckList is a task agnostic methodology for testing NLP models. A Check-

List proposes a general framework for writing behavioral tests for any NLP

model and task.

The idea behind CheckList is a conceptual matrix that is composed of linguistic

capabilities like Named Entity Switching, Negations, Robustness to Typos as

rows and test types like Minimum Functionality Test (MFT), Directional Ex-

pectation (DIR), and Invariance Test (INV) as columns (Ribeiro et al., 2020b).

It facilitates extensive test ideation to generate a large, diverse number of test

cases easily. The components behind the conceptual matrix are described below.

(a) Test Types: These are the columns in the CheckList matrix. There are

three test types proposed by the CheckList framework.

i. Minimum Functionality Testing: A collection of (text, expected label)

pairs is built from scratch and the model on this collection. The goal

of this test is to make sure the model is not taking any shortcuts and

possesses linguistic capabilities.

ii. Invariance Test: In this test, we perturb our existing training examples

in a way that the label should not change. Then, the model is tested

on this perturbed example and the model passes the test only if its

prediction remains the same (i.e invariant).

iii. Directional Expectation Test: This test is similar to the invariance test

but here we expect the model prediction to change after perturbation.

(b) Linguistic Capabilities: These are the rows in the CheckList matrix. Each

row contains a specific linguistic capability that applies to most NLP tasks.

i. Vocabulary and POS: We want to ensure the model has enough vo-

cabulary knowledge and can differentiate words with a different part
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of speech and how it impacts the task at hand.

ii. Named Entity Recognition: It tests the capability of the model to

understand named entities and whether it is important for the current

task or not.

iii. Temporal: Here we want to test if the model understands the order of

events in the text.

iv. Negation: This ensures the model understands negation and its impact

on the output.

v. Semantic Role Labeling: This ensures the model understands the agent

and the object in the text.

4. Easy Data Augmentation

EDA, short for Easy Data Augmentation (Wei and Zou, 2019), is a combination

of simple yet powerful operations inspired by computer vision-based augmenta-

tion techniques, namely:

• Synonym Replacement (SR): In synonym replacement, the idea is to choose

’n’ words from all the words in the sentence except the stop words and

replace them in place with their synonyms.

• Random Insertion (RI): In random insertion, the idea is to choose a word

from the sentence except for the stop words. Pick a random synonym of

the chosen word and insert it randomly somewhere in the sentence. This

process has to be repeated n times.

• Random Swap (RS): In the random swap, the idea is to choose two words

n times and swap them with each other.
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Operation Sentence

None A sad, superior human comedy played out on the back roads of life.

SR A lamentable, superior human comedy played out on the back roads of life.

RI A sad, superior human comedy played out on funniness the back roads of life.

RS A sad, superior human comedy played out on roads back the of life.

RD A sad, superior human out on the back roads of life.

Table 2.1: Sentences Generated Using Eda. Sr: Synonym Replacement. Ri: Ran-dom

Insertion. Rs: Random Swap. Rd: Random Deletion (Wei and Zou, 2019)

• Random Deletion (RD): Randomly remove each word in the sentence with

probability p.

5. Embedding based augmentation

Augments text by transforming words with their embeddings.

6. WordNet In WordNet augmentation, the text is augmented by replacing it

with synonyms from the WordNet thesaurus. WordNet-based augmentation

methodology randomly selects n words from the sentence based on the parts-

of-speech tag. A Geometric Distribution calculates the probability of choosing

a word in the sentence. This distribution, in turn, is also dependent on the

probability of success. Even for the synonym selection, a similar geometric

distribution-based approach is followedMarivate and Sefara (2020). The aug-

mentations are performed on the nouns or verbs or event their combinations by

replacing them with their synonyms.
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Adversarial Examples

Given the recent progress in machine learning and natural language processing meth-

ods, there has been an increasing need to generate models that can generalize better

on various data and are robust. These requirements came because the data used in

developing such models are filled with various biases. For example, natural language

processing models are prone to be influenced by various societal biases like gender

bias while dealing with a corpus.

There have been several techniques proposed to deal with this situation. One of

those techniques is to use adversarial examples to train the model. An adversarial

example generally refers to a set of inputs specifically designed to fool a machine

learning model. The modulation in input is an adversarial perturbation when the

minimal change in the input causes the output to change completely.

There exist two types of adversarial examples - Black-Box examples and White-

box examples. Black-box examples are those where information about the model,

like gradients or parameters, is unknown while creating the adversarial examples. In

contrast, for the White-box examples, we have access to the model and its parameters.

When it comes to algorithms that generate adversarial examples for NLP, most of

them deal with character/word/sentence level perturbations. For example, (Jia and

Liang, 2017b) added extra sentences to fool comprehension models without altering

the answer of the question, whereas (Jin et al., 2019b) identified important words

and replaced them with their synonyms while maintaining the true meaning and

essence of the sentence. Adversarial perturbations are plugged into the model in

two ways. First, re-training the original model using some adversarial examples that

have successfully fooled the model. The second is to incorporate perturbations in the

model training process. Even though adversarial training improves the robustness of
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models and makes them less vulnerable to adversarial attacks, there exists a trade-

off between the generalization of a model (i.e., the standard test accuracy) and its

robustness (accuracy on an adversarial dataset). Models trained with an adversarial

objective often show an increase in the robustness but a decrease in the standard

accuracy. (Min et al., 2020) showed that the trade-off between generalization and

robustness exists even in infinite data limit.

Adversarial attacks

Adversarial attacks, on the other hand, refer to the process of generating adversarial

perturbations. The perturbations to the original input are minimalistic because if we

consider too large perturbations, the output would be different for the two completely

different inputs. A major reason that limits the application of Machine Learning sys-

tems in various applications is the security aspect. For example, a patient can die in

a healthcare application if the system is not reliable. Similarly, an economy can go

down if the security system gets broken in a Machine Learning application. Adver-

sarial attacks where models are probed against various perturbations have been the

most prevalent approach to evaluating systems’ security aspects. Robustness to Ad-

versarial attacks is well-studied literature in Vision Kurakin et al. (2016); Zhao et al.

(2018)– is still under-explored in NLP. The discrete space in NLP makes it hard to

maintain semantic coherence and language fluency while generating adversarial data.

In our study, we adopt recent adversarial attack approaches Garg and Ramakrishnan

(2020a), Li et al. (2020b), Jin et al. (2019a) which have reduced these issues to a large

extent.
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TextAttack

Textattack is a framework built using python language for streamlining the recent de-

velopment in robustness and generalization literature of natural language processing.

It provides us with the most recent implementation for adversarial attacks, adversar-

ial training, and data augmentation in NLP. To make the process more streamlined,

the TextAttack library provides essential components of NLP such as sentence en-

coding, language model training on standard datasets, grammar checking, and word

replacement strategies. In the following subsections, we will be explaining the compo-

nents of the TextAttacj used in this research. Importance of words for attacking

Given a sentence of n words X = {w1, w2, . . . , wn} only some of the words are influ-

ential signals for the model F to make a prediction for a task. Niven and Kao (2019)

reached a similar conclusion that BERT attends to statistical cues of some words.

Therefore we need some kind of selection mechanism to identify these specific words.

The idea of selecting important words is only applicable in black box scenario, as the

words can be identified by the gradients of model F . In most of the recent black box

adversarial attack techniques the importance score Iwi
of a word wi towards a classifi-

cation result F (X) = Y is used to identify which words are to be replaced to possibly

create adversarial examples. This was introduced by Jin et al. (2019a). The Iwi
score

is defined as the reduction in the confidence of a result after deleting the concerned

word. Once we have the importance score as the difference in the predictability score

with and without that word we sort them based on importance and filter out the stop

words.

Iwi
=


FY (X)− FY

(
X\wi

)
, if F (X) = F

(
X\wi

)
= Y(

FY (X)− FY
(
X\wi

))
+
(
FȲ
(
X\wi

)
− FȲ (X)

)
if F (X) = Y, F

(
X\wi

)
= Ȳ , and Y 6= Ȳ

(2.7)
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BAE ”Bert-based Adversarial Examples for Text Classification” (Garg and Ra-

makrishnan, 2020b) is one of the state-of-the-art methods that help generate ad-

versarial examples for the downstream task of text classification. The central idea of

BAE is based on a black-box attack that uses contextual perturbations obtained from

a BERT masked language model. It tries to replace tokens in the original text by

masking a portion of it and leveraging BERT-MLM to generate alternatives for the

masked portion. It first calculates each token’s importance by selectively removing

each token and noting the decrease in prediction probability. Then in the decreas-

ing order of the token importance, it masks them and predicts top k tokens for the

masked portion. After obtaining the top k tokens, the model uses a sentence simi-

larity scorer to ensure the generated sentence is semantically identical to the original

sentence. Suppose multiple sentences can successfully flip the label. In that case, the

model chooses those sentences that are most similar to the input sentence. Suppose

none of the generated sentences can change the prediction. In that case, the model

selects the sentence that decreases the probability of prediction the most. The paper

proposes four forms of attack:

• BAE-R: Replace tokens to generate perturbations,

• BAE-I: Insert tokens around the important tokens to generate perturbations,

• BAE-R/I: Either replace or insert a token

• BAE-R+I: First, replace a token and then insert a token to the left or right of

the original token.

They evaluate their proposed method on benchmark datasets such as IMDB for sen-

timent classification, TREC for question type classification, and MPQA datasets for

online polarity detection.
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Original samples Adversarial Examples

P: A young boy with a blue fin with red

stripes sitting on a concrete ledge.

P: A young boy with a blue cap with red

stripes sitting on a concrete ledge.

H: The boy is swimming. H: The boy is swimming.

P: Two men, both wearing bright yellow

vests and jeans, are working on a roof.

P: Two boys, both wearing bright yellow

vests and jeans, are working on a roof.

H: Two men are working outside. H: Two men are working outside.

Table 2.2: Adversarial Examples from B.A.E.

2.5 Neural Language Models

In NLP, a language model is a probability distribution over sequences on an alpha-

bet of tokens. A central problem in language modeling is to learn a language model

from examples, such as a model of English sentences from a training set of sentences.

2.5.1 BERT

BERT makes use of Transformer, an attention mechanism that learns contextual

relations between words (or sub-words) in a text. In its vanilla form, Transformer

includes two separate mechanisms — an encoder that reads the text input and a

decoder that produces a prediction for the task. Since BERT’s goal is to generate a

language model, only the encoder mechanism is necessary.

Unlike directional models, which read the text input sequentially (left-to-right or

right-to-left), the Transformer encoder reads the entire sequence of words at once.

Therefore it is considered bidirectional, though it would be more accurate to say that

it is non-directional. This characteristic allows the model to learn the context of a

word based on its surroundings (left and right of the word).
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The chart below is a high-level description of the Transformer encoder. The input

is a sequence of tokens, which are first embedded into vectors and then processed

in the neural network. The output is a sequence of vectors of size H, in which each

vector corresponds to an input token with the same index.

Figure 2.10: High Level Description of Transformer Encoder.

2.6 Dataset Cartography

Large datasets are a significant prerequisite for the latest neural models. As the

size of the data increases, it becomes harder to evaluate these datasets. Swayamdipta

et al. (2020) provides a way of automatically characterizing data instances concerning

their role in achieving good performance on IID as well as OOD. In this study, training

dynamics, i.e., the model’s behavior as the training progresses, is used to contextualize
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examples in a dataset creating data maps. The training dynamics include confidence

and variability, i.e., the mean and standard deviation of the gold label probabilities

for individual samples.

Triaining Dynamics Let us assume we have a train set of size N,D defined as

D = {(x, y∗)i}
N
i=1 (2.8)

Here, the ith instance consists of the observation, xi and its true label under the task,

y∗i . The training is performed for E epochs. To calculate the confidence the mean

probability of the true label (y∗i ) across E epochs is defined as:

µ̂i =
1

E

E∑
e=1

pθ(e) (y∗i | xi) (2.9)

In the equation 2.9, pθ(e) is probability given by the model F with parameters θ(e) at

the end of the eth epoch. The number of times the models predicts the correct label

is defined as the correctness of the model at instance i.

The variability is defined as the spread of pθ(e) (y∗i | xi) across E epochs, using the

standard deviation.

σ̂i =

√√√√√∑E
e=1

(
p
θ(e)(y∗i |xi)−µ̂i)

2

E
(2.10)

Based on these two metrics, the model identifies various regions of the dataset. The

samples are ”easy to learn” if the model consistently predicts such instances correctly

with high confidence. The samples are ”hard to learn” if they have low variability

and low confidence. The third notable group contains ”ambiguous” examples or those

with very high variability. The model tends to be indecisive about these instances,

as they do not show high confidence or correctness.
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Figure 2.11: Data Map Showing Different Types of Samples Present in Winogrande

Dataset.
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Chapter 3

EXPERIMENTAL SETUP

3.1 Identifying biased Data Samples

To analyse relationship between the biased and non biased part of the dataset, first

we have to identify them. To do so we leverage AFLite Bras et al. (2020a); Sakaguchi

et al. (2019), a recent and successful approach for adversarial filtering of dataset. The

following nomenclature is used in the literature and for rest of the discussion.

• biased data samples (which are deleted by AFLite) i.e. ‘bad data’ and

• non biased data samples (which are retained by AFLite) i.e. ‘good data’.

3.2 Evaluation Metrics

For evaluating the in domain and out of domain performance we count the

number of correct predictions divided by the total number of predictions

which is defined in the equation 3.1. In the given equation, ’TP’ stands for True

Positive, ’TN’ strands for True negative, ’FP’ stands for False positive and ’FN’

stands for False negative.

Accuracy =
TP + TN

TP + TN + FP + FN
(3.1)

With the advent of various adversarial attacks, the notion of a metric to quantify

the robustness of a model also came into existence. The initial work focused on

generating adversarial examples and model accuracy on these examples. The issue
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with that was that it provides little to no information about the level of perturbations

required to attack the model. Goodfellow et al. (2015) proposed to use adversarial

examples to retrain a model, and the difference in the number of adversarial examples

generated is regarded as the level of robustness of the model. However, adversarial

training, in general, increases the tolerance towards adversarial examples. Measuring

robustness using this methodology would be unproductive. Additionally, suppose

there is a high number of adversarial examples. In that case, the model runs a risk

of overfitting, which will skew the metrics mentioned above.

In natural language literature, a recent work Jin et al. (2019a) used ‘query number’ as

the average number of queries to fool a model, more formally defined as in equation

3.2. This measure gives us an upper bound to the number of attacks, which is useful

in many situations but not always ideal.

Query Number =
successful attacks

successful attack + number of unsuccessful attacks
(3.2)

Based on the recent development of various attack methodologies in the natural

language domain. We propose the Robustness Score as the average number

of queries before the first successful attack or, more simply put, the min-

imum number of perturbations required for a successful attack as shown

in equation 3.3. Even though the equation 3.2 is a good measure of the number

of perturbations, however, it is not practical because, in an ideal scenario, we are

concerned about attacking a sample if it is successful once that is enough. Still,

both the formulas have their advantage. For example, consider software to suggest

how to improve your credit score by explaining why you were rejected and suggest

improvement using adversarial examples. In that case, one might have to see more

adversarial generations until a specific adversarial example makes sense. In this case,

the equation 3.2 might be a better metric, but for training a model to be more robust,
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we do not create specific examples.

Robustness Score = Count the number of queries before successful attack (3.3)

The idea behind defining this new robustness metric

3.3 In domain accuracies

To calculate the in domain accuracies we first segregate the biased samples from

the non biased samples using AFlite. Once we have good data and bad data we train

BERT models by sampling n bad samples and m good samples. The resultant model

is tested on the good part of the evaluation set. The value of n and m vary from 0

with a step size of 18000 till 90000. We choose 90k as an upper bound because the

final data size for the SNLI dataset after pruning is 92k.

Figure 3.1: Procedure for Calculating in Domain Accuracy.
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3.4 Robustness

For evaluating effect of biased samples, unbiased samples and repaired samples on

robustness we perform two sets of experiments.

3.4.1 Robustness Scores

For comparing the robustness in one scenario we keep the same setting for the

models as before, i.e., a BERT model trained on n bad samples and m good samples.

With this model we attack the evaluation set using the given attack strategy, in our

case as stated before we are using BAE, Bert-based Adversarial Examples for Text

Classification. for every sample we calculate the robustness score as the number of

queries taken to reach the first successful attack. The total score for a given pair of

model and dataset is average of robustness scores of individual samples.

3.4.2 Model free Robustness

The central ideology behind model-free robustness experiments is to corroborate

the results of robustness metrics by not using the same model agnostic approach for

evaluation. We take BERT models trained on Randomly sampled original dataset,

Randomly sampled original dataset and randomly augmented data using easy data

augment methodologies Wei and Zou (2019), AFLite identified good dataset, and

randomly sampled repaired dataset. All the experiments with randomness were per-

formed 5 times and averaged. All the datasets used with exception of full data

baselines are trained of data size of 92k to keep the comparisons fair. Once we have

all these model ready we evaluate them on the augmented evaluation set. The aug-

mentations vary from most basic character manipulation with char swap to masked

language model based augmentation with CLARE.The higher value of accuracy on
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Figure 3.2: Procedure for Calculating Average Robustness.

the augmented evaluation sets indicate more robustness.

3.5 Generalization

For measuring the generalization capabilities, using BERT and RoBERTa model

trained on a given size of data, we run evaluations on the Out Of Domain(OOD)

datasets defined in section 2.4.3. Both the models are trained on different datasets of

size 92k and 182k such as AFLite identified good samples, randomly selected samples,

and augmented samples.
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Figure 3.3: Procedure for Model Free Text Attack.
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Chapter 4

RESULTS

4.1 In domain accuracies

Unlike conventional software engineering algorithms, machine learning algorithms

are not reliable. In machine learning, the results rely on training data and overfit to

underlying correlations. However, the model’s association to underlying biases should

adversely affect the out-of-distribution examples.

As we remove such artifacts, the in-domain accuracy should decrease because the

trained model would not have access to spurious correlations. We compare the sam-

ples selected with adversarial filtering against randomly chosen samples from the

datasets to strengthen our hypothesis. The results are shown in Table 4.1 and the

setup is highlighted previously in section 3.3.

The model trained just on the non-biased dataset shows a drop of 18.51%

accuracy on the non-biased evaluation set of the SNLI dataset compared

to the model trained on only the biased part of the dataset. When the

model trained on 90k good samples is compared with a model with 90k

good samples and 90k bad samples, we see a drop of 17.78% accuracy.

Overall, we see that the significant contribution to accuracy comes from a minimal

amount of ”biased” or ”bad” data. A small set of biased samples are the primary

source of accuracy is shown by the first entry in the biased dataset row. A model

trained on only 18k data samples shows an accuracy of 83.81% of the fil-

tered dev set, which is only 4.77 % less than the model’s accuracy trained

on complete SNLI data.
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Good Data Size ->

/ Bad Data Size
0 18000 36000 54000 72000 90000

0 66.65 65.85 66.71 67.99 68.11

18000 83.81 83.26 83.57 81.61 81.61 79.05

36000 85.95 84.54 85.16 84.85 82.59 83.57

54000 86.01 85.28 85.95 84.12 85.09 85.64

72000 87.17 87.97 86.81 86.32 85.89 86.19

90000 86.62 86.62 87.48 86.13 86.68 85.89

Table 4.1: Snli Good Data I.I.D. Accuracy with Bert Model

These findings shows biased samples inflate model’s performance that leads ti an

overestimation of their capabilities. By seeing near-total data accuracy on a small

number of samples and as the number of unbiased samples increases, the model’s

accuracy decreases but not significantly. We can say that spurious correlations are

easy to learn but hard to forget.

4.2 Robustness

For an ideal model, we expect it to be both generalizable and robust. For exam-

ple, consider a hypothetical situation where you need to make payments using face

recognition. The model should be generalizable enough to work for different races

and communities. It should be robust enough to avoid changing decisions if you wear

glasses or a turban.

So far, we have seen neural models are vulnerable to various sample-level attacks.

Broadly, it can be model in the loop, i.e., small perturbations to the data sample,

and continuously feed to the model to check if the label is flipped. The other way
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model-free using predefined augmentation techniques, as explained in section 2.4.4.

We hypothesize that when we prune the data, we lose some information in the

feature space when we drop samples to avoid biases. This lost information should be

reflected in some way in the model.

The expected negative effect is reflected in robustness. We calculate the robustness

based on equation 3.3. Table 4.2 shows how the robustness scores vary with different

sizes of good(non-biased) and bad(biased) datasets. The results show that we have

less robustness in the non-biased or good dataset. We see a total decrease of

4.57 on 90k samples. We also see 2.02 less robustness when comparing the

robustness of models trained on 90k good samples and 90k good + 90k

bad samples respectively. Therefore, in the process of pruning the dataset, we are

losing robustness.

The model-free experiments further strengthen the notion that non-biased samples

show low robustness. We drop in an average accuracy of 10.97% for the

AFLite identified non-biased samples. The robustness scores reinforce even

further the loss of robustness. The results for model free experiment is shown in

Table 4.3 and are visualized in Figure 4.1

4.3 Generalization

Inspired by recent identifications of various spurious artifacts in the SNLI dataset,

which makes it considerably simpler. This discovery impelled the development of

different Out-of-Distribution datasets. Some of these datasets include HANS McCoy

et al. (2019), NLI Diagnostics Wang et al. (2018a), Stress tests Naik et al. (2018)

and Adversarial NLI Nie et al. (2020). The detailed explanation of these datasets are

given in section 2.4.3.

In Table 4.4 and Figure 4.2 we see the zero-shot evaluation on three out-of-
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Figure 4.1: Visualization for Model Free Robustness Accuracy and Robustness Scores.

distribution evaluation tasks using RoBERTa model trained on original SNLI data,

AFLite Filtered data from SNLI and same size Random data. The reported accuracy

is averaged across 5 random seeds, and the subscript denotes standard deviation.

On the HANS dataset, all models are evaluated on the non-entailment cases of the

three syntactic heuristics (Lexical overlap, Subsequence, and Constituent). The NLI-

Diagnostics dataset is broken down into the instances requiring world and common-

sense knowledge (Knowl.), logical reasoning (Logic), predicate-argument structures

(PAS), or lexical semantics (LxS.). Stress tests for NLI are further categorized into

Competence, Distraction, and Noise tests. Bras et al. (2020a).We observe that

models trained on AFLite non-biased datasets perform better than the

same size random data baseline and full data uniformly. The trend we see in

the baselines is consistent with the recent study Hendrycks et al. (2020b).

We control the size of the datasets on which these models are trained to make

them comparable. The non-biased samples based model, as denoted by SNLI AFLite,
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Good Data Size ->

/ Bad Data Size
0 18000 36000 54000 72000 90000

0 0 9.56 9.36 9.72 9.47 9.65

18000 16.4 12.95 12.1 11.07 11.19 10.92

36000 15.23 13.5 12.22 12.19 11.7 11.25

54000 15.2 13.35 12.69 12.13 11.71 11.62

72000 14.27 13.39 12.66 12.06 12.02 11.52

90000 14.22 13.92 12.99 12.66 12.19 11.67

Table 4.2: Snli Robustness Scores for Different Quantities of Good and Bad Data.

Model Free Text Attack(Accuracy)
Train Data/Method

CLARE Charswap CheckList EDA Emb Word Net

Avg.

New

Robustness

Scores

Old

Robustness

Scores

SNLI-AFLite92k 62.45 65.15 72.29 56.81 66.2 62.55 64.24 9.05 51.13

SNLI-92k 72.83 75.85 86.57 68.09 76.91 71.01 75.21 12.72 53.92

SNLI+EDA 92k 80.45 77.37 86.57 74.09 80.71 80.22 79.9 14.01 55.06

SNLI Full 76.34 81.33 89.41 72.05 81.94 77.07 79.69 12.64 53.56

Table 4.3: Model Free Text Attack

reports higher zero-shot generalization accuracy.

4.4 SNLI-R

It can be concluded from Figure 4.2 and Figure 4.1, even though AFLite improves

OOD generalization, it reduces robustness. To solve the problem for recovering the

lost robustness and avoid the wastage of resources problem, we repair the datasets

using the adversarial attack as shown in Figure 4.3.

Is SNLI-R helping with robustness? In comparison with SNLI AFLite, i.e., the

unbiased part of the dataset SNLI-R shows an increase in robustness through both
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Figure 4.2: Visualization for Zero-shot Snli Accuracy on Ood Datasets

NLI Diagnostics Stress HANS

Know. Lex. Logic PAS Comp. Dist. Noise Lex. Subs. Const. AVG

SNLI Full 51.8 65.7 57.8 72.6 77.9 73.5 79.8 88.4 28.2 21.7 61.74

SNLI-182 Random 56.4 65.6 53.9 71.2 68.4 73 78.6 56.6 19.6 13.8 55.71

SNLI-AFLite 182k 53.9 66.5 58.7 68.9 79.1 72 79.5 94.1 46.3 38.5 65.75

Table 4.4: Zero-shot Snli Accuracy on Ood Datasets with Roberta Based Trained

Model.

model-based and model-free experiments. The results are shown in Table 4.5 and are

summarized in Figure 4.4

Is SNLI-R helping with OOD generalization? In comparison with SNLI AFLite,

i.e., the unbiased part of the dataset, SNLI-R shows an overall increase in generaliza-

tion. We observe an increase in average accuracy by 2.66%. The results are shown in

Table 4.6 and are summarized in Figure 4.5
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Figure 4.3: Repairing the Bad or Biased Samples to Recover Robustness and Avoid

Wastage of Resources.

4.5 Data maps

We further analyse our datasets using the training dynamics i.e. confidence, vari-

ability and correctness and creating data maps as defined in section 2.6. The Figure

4.8 shows the original distribution of the SNLI dataset. We can spot a set of hard-
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Model Free Text Attack(Accuracy)
Train Data/Method

CLARE Charswap CheckList EDA Emb Word Net

Model

Free

Avg

New

Robustness

Scores

Old

Robustness

Scores

SNLI-AFLite 92k 62.45 65.15 72.29 56.81 66.2 62.55 64.24 9.05 51.13

SNLI-R 92k 72.59 75.67 82.76 63.95 77.4 73.3 74.28 22.98 61.28

Table 4.5: Snli-r Helps Improve the Robustness.

ANLI NLI Diagnostics Stress HANS

R1 R2 R3 Know. Lex. Logic PAS Comp. Dist. Noise Lex. Subs. Const. AVG

SNLI-AFLite 92k 30.2 33.2 34.83 39.79 36.68 41.48 45.99 30.93 48.51 52.73 51.8 53.9 51.74 42.44

SNLI-R 92k 28.9 30.6 30.92 45.42 41.58 43.41 49.53 46.65 49.91 57.34 57.63 52.04 52.38 45.1

Table 4.6: Snli-r Helps Improve the Generalization.

Figure 4.4: Snli-r Helps Improve the Robustness.

to-learn, easy-to-learn and ambiguous samples as defined by the different variations

in the training dynamics. The Figure 4.6 corresponds to the non-biased samples as

generated by AFLite. Here we see very distinct structure as all the samples come in
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Figure 4.5: Snli-r Helps Improve the O.O.D. Genearlization.

the hard to learn category even though there are relatively easier samples but not

ambiguous samples. The figure 4.8 shows the data map for equal number of samples

taken from both the adversaries and the non biased samples. We see that the model

has more hard to learn samples now along with many easy to learn sample but these

samples don’t have high correctness, i.e. in each epoch the model’s predictions are

not stable for these samples.
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Figure 4.6: Data Map for Snli Dataset Showing Unique Hard to Learn, Easy to

Predict and Ambiguous Samples.

Figure 4.7: Data Map for ”Good” Part of Snli Dataset as Identified by Aflite.
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Figure 4.8: Data Map for the Adversaries Generated for the ”Bad” Part of Snli

Dataset as Identified by Aflite.
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