
Towards Scalable Security State Management in The Cloud

by

Abdulhakim Sabur

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved August 2022 by the
Graduate Supervisory Committee:

Ming Zhao, Chair
Guoliang Xue

Hasan Davulcu
Yanchao Zhang

ARIZONA STATE UNIVERSITY

May 2023

ABSTRACT

Modern data center networks require efficient and scalable security analysis approaches

that can analyze the relationship between the vulnerabilities. Utilizing the Attack

Representation Methods (ARMs) and Attack Graphs (AGs) enables the security ad-

ministrator to understand the cloud networks current security situation at the low-

level. However, the AG approach suffers from scalability challenges. It relies on the

connectivity between the services and the vulnerabilities associated with the services

to allow the system administrator to realize its security state. In addition, the security

policies created by the administrator can have conflicts among them, which is often

detected in the data plane of the Software Defined Networking (SDN) system. Such

conflicts can cause security breaches and increase the flow rules processing delay.

This dissertation addresses these challenges with novel solutions to tackle the scal-

ability issue of Attack Graphs and detect security policy conflicts in the application

plane before they are transmitted into the data plane for final installation. Specif-

ically, it introduces a segmentation-based scalable security state (S3) framework for

the cloud network. This framework utilizes the well-known divide-and-conquer ap-

proach to divide the large network region into smaller, manageable segments. It

follows a well-known segmentation approach derived from the K-means clustering al-

gorithm to partition the system into segments based on the similarity between the

services. Furthermore, the dissertation presents unified intent rules that abstract the

network administration from the underlying network controllers format. It develops

a networking service solution to use a bounded formal model for network service

compliance checking that significantly reduces the complexity of flow rule conflict

checking at the data plane level. The solution can be expended from a single SDN

domain to multiple SDN domains and hybrid networks by applying network service

function chaining (SFC) for inter-domain policy management.

i

To My Mother, Samar, Who Sacrificed Her Life To Raise Us

To My Son, Hashem, Your Smile Will Always Keep Me Motivated

ii

ACKNOWLEDGMENTS

To whoever is reading this part. You are the reason for me to write it. You kept

me working, motivated, and reaching to where I am today. My words cannot express

how grateful I am to you, my professors, my siblings, my parents, and above all, my

better half.

Dr. Dijiang Huang, you have accepted me and included me among your SNAC

family. You taught me how to become a good researcher, how to write papers, and

how to conduct effective research. Thank you for meeting me anytime I wanted, thank

you for keeping me motivated, and thank you for pushing me outside my comfort zone.

You are the corner stone and the enabler for me to achieve my dream.

My committee members, Dr. Ming Zhao, who stepped-in in a critical time and

guided me to complete my dissertation. Prof. Guolinag Xue, Prof. Hasan Davulcu,

and Prof. Yanchao Zhang, thank you for all the support and the time commitment

you have given me to successfully finish my dissertation

My mentor, best friend, brother, role model, and counselor, Mohammad. Thank

you for being there for me whenever I needed you. Thank you for going through all

of this experience before me, and telling me about your mistakes. You are my moti-

vational engine and I could not have done this without your support, your guidance,

and your honest advises to me. You held my hand since day one in school, and you

helped me grow up a better man. I will never return all of your favors to me, but I

promise you that I will be there whenever you need me, my dear brother.

My father, Mansour. Thank you dad for planning my future. Thank you for

protecting me and my siblings from all kinds of risks and danger in the world. While

you could not get your own Ph.D., this work would not have been possible without

your guidance, your love, support, and positive discussions. You raised me to be a

good man, an honest man, and that I seek pure to please Allah. I promise you I will

iii

be like that for the rest of my life.

My mother, Samar. You are my shine, my love, my joy. Thank you for your

sacrifices in this life to raise me and my brothers. Thank you for making the best

food in the world for us. Thank you for bringing us anything we wanted. This

dissertation is dedicated for you mom, and I will always pray Allah to protect you

and help me to return part of the favors you did for us.

Above all, my friend, partner, love and wife, Maryam, who stood by me every

moment and gave me her endless and constant support. Thank you for being in my

life, without your existence, I would not have been able to finish my degree on time,

thank you for your understanding and patience while I worked long hours during

nights. Thank you for waiting for me to come back home. Thank you for taking care

of our son. Your efforts are countless and I will never forget what you do for our

family. You are the one who brings peace and love to our home.

My sisters, Roah, Halah, and Zain. Your smiles makes me happy and motivated.

Thank you for a great childhood, each one of you has a special place in my hurt. Your

motivation to me enabled me to succeed.

My SNAC group friends, Ankur Chowdhary, Sowmya Myneni, Adel Alshamrani,

Garima Agrawal, Yuli Deng, Krit Jha, and Neha Vadnere . Thank you for the great

time and comapny while we were conducting an amazing research work and to help

me succeed at ASU. I could not have made it without your help on different projects,

long discussions, and papers collaboration.

Lastly, I gratefully acknowledge the financial support and scholarship I received

from Taibah University through Saudi Arabian Cultural Mission (SACM).

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . x

CHAPTER

1 INTRODUCTION . 1

2 BACKGROUND AND MOTIVATION . 7

2.1 Software Defined Networking . 7

2.1.1 OpenFlow . 8

2.2 Motivation . 9

2.3 Attack Graph . 12

2.3.1 Attack Graph Scalability Challenge: . 14

2.4 Security Policy Conflict Checking . 14

3 A DISTRIBUTED FIREWALL APPROACH FOR LARGE SCALE DATA

CENTER NETWORK SECURITY ANALYSIS . 16

3.1 Abstract . 16

3.2 Introduction . 17

3.2.1 Chapter Contributions . 20

3.3 Related Work . 21

3.3.1 The Scalability of Attack Graphs . 21

3.3.2 Attack Graph Segmentation: . 24

3.4 System Model and Architecture . 25

3.4.1 System Architecture . 26

3.4.2 DFW System Model . 29

3.5 S3 Framework Segmentation Approach . 31

3.5.1 Segmentation Procedure . 37

v

CHAPTER Page

3.5.2 Segments Analysis . 41

3.6 Scalable Attack Graph Generation . 47

3.6.1 AG Validation: . 51

3.6.2 AG Update: . 52

3.6.3 DFW Dynamic Traffic Match and Flow Update 58

3.6.4 Scalable Attack Graph Generation Cost Analysis 59

3.6.5 Sparse Graph Connectivity Using DFW 61

3.7 Experimental Results . 63

3.7.1 Experimental Setup . 63

3.7.2 Attack Graph Scalability Evaluation . 64

3.7.3 Attack Graph Generation Time and Automatic Graph Up-

date Evaluation . 66

3.7.4 AG Generation Time . 67

3.7.5 SDN Controller Overhead . 71

3.7.6 Cycle Detection Time . 73

3.8 Conclusion and Discussion . 74

4 INTENT-DRIVEN SECURITY POLICY MANAGEMENT FOR SOFTWARE-

DEFINED SYSTEMS . 77

4.1 Abstract . 77

4.2 Introduction . 78

4.2.1 Chapter Contributions . 81

4.3 Related Work . 82

4.3.1 Intent-based Policy Configuration . 82

4.3.2 Network Policy Conflict Checking . 84

vi

CHAPTER Page

4.4 INTPOL System and Model Descriptions . 86

4.4.1 INTPOL Framework . 86

4.4.2 Policy Conflict Detection . 88

4.4.3 Programming Network Functions (NFs) 92

4.4.4 INTPOL Model Checking Framework . 93

4.4.5 Intent Handling in INTPOL . 95

4.4.6 Application Layer Packet Caching and Policy Composition . . 104

4.4.7 Policy Conflict Detection . 106

4.4.8 Motivation . 107

4.5 System Architecture and Implementation . 108

4.5.1 Experimental Setup . 108

4.5.2 INTPOL Implementation . 109

4.5.3 Intent Processing Module . 115

4.6 Performance Evaluation . 117

4.6.1 Hybrid Network Scenario . 118

4.6.2 Composition Time Analysis . 123

4.6.3 Policy Conflict Checking for Large Network Scenario 125

4.7 Conclusion and Discussion . 130

5 CONCLUSION AND FUTURE WORK . 132

5.1 Future Work . 134

REFERENCES . 136

APPENDIX

A A PERMISSION FROM CO-AUTHORS . 149

vii

LIST OF TABLES

Table Page

3.1 A Summary of Related Work of AG Generation Approach and Com-

plexity. N is the Number of AG Nodes, E is the Number of AG Edges,

V is the Number of Vulnerabilities, X is the Number of Graph Branch

Points, and K is the Total Number of Segments. 22

3.2 Example of Network Topology Vulnerabilities and Connectivity Infor-

mation. 31

3.3 Chapter 3 Table of Notations . 33

3.4 Ranking Network Services into Different Categories. 35

3.5 Example of 10 Services Ranked into the Categories According to Actual

Traffic the Service Provides. 43

3.6 S3 Components Used in The Experimental Evaluation. 64

3.7 Sub-AG Generation Time, Graph Density, and the Number of Nodes

and Edges for Each Sub-AG When the Number of Services Is Increas-

ing. 68

3.8 Mean and Standard Deviation for the AG Generation Time for the

Displayed Number of Segments in Table 3.7. 69

3.9 The AG Generation Time After a Service Update . 70

3.10 Sub-AG Scalability Generation Time by Using a Firewall, and Both

with and Without Segmentation. The Segmentation Approach Proved

to Be Effective in Reducing the Generation Time of AG. 71

4.1 Formal Semantics of LTL, Which Is Used for Expressing Network In-

variants . 95

4.2 INTPOL Components Used in the Implementation 109

viii

Table Page

4.3 Policy Composition Time (s) Analysis Between INTPOL, Fireman [156],

PGA [125], Distributed LTL Approach [57] and Covisor [75]. 125

4.4 INTPOL Model Checking Framework Applied to Stanford Topology [81].

The Overhead of Generating a Model Using LTL-BMC is Lower Com-

pared to LTL Full-Scale Framework. 126

ix

LIST OF FIGURES

Figure Page

2.1 OpenFlow Protocol Header Fields. 8

2.2 Representation Of Vulnerability Information and Corresponding At-

tack Graph in a Multi-tenant Data-center Network. The Absence of

Distributed Firewall (Dfw) Allows the Attacker to Compromise the

First Tenant Node and Laterally Move Towards the Second Tenant

Node to Compromise and Achieve Their Attack Goal. 10

3.1 Representation Of Vulnerability Information and Corresponding At-

tack Graph in a Multi-tenant Data-center Network. The Absence of

Distributed Firewall (Dfw) Allows the Attacker to Compromise the

First Tenant Node and Laterally Move Towards the Second Tenant

Node to Compromise and Achieve Their Attack Goal. 25

3.2 S3 System Architecture and Operating Layers. 27

3.3 S3 Data Structures Utilzed by a Control Plane Software (a), (B) and

Application Plane Rest Api Used by Network Admin (c), (d). 28

3.4 Cloud Network with Multi-tenant after Deploying DFW Rules. Net-

work Traffic from Tenant Node 1 to Tenant Node 2 Is Blocked Due to

Enforcing DFW Rules. The Attacker Is Now Confined to One Machine,

and They Are Unable to Move Laterally in the System. 30

3.5 The Process of Establishing and Choosing the Best Number of K Seg-

ments Based on the Compactness Requirements. 38

3.6 The Output of the Segmentation Process with Dfw Rules Highlighted

in Red. 44

3.7 The Segmentation Cost Drops as the Number of Segments Increases

until an Elbow Shape Is Created. 45

x

Figure Page

3.8 The Output of the Attack Graph (a) Before & (B) After Applying

The Segmentation Approach. The Cumulative Exploitation and Risk

Probability Values Are Shown in The Graphs, Where The Segmenta-

tion Approach Reduces The Cumulative Risk Value. 50

3.9 Distributed Firewall (DFW) Security Policy Rule Match and Flow Ta-

ble Update. The Flow Table Is Dynamically Updated Based on Secu-

rity Policy Present in Security Policy Database (SPD). 58

3.10 Distributed Firewall-based Multi-level AG Generation. Vulnerabilities

Have Been Color-coded Based on Their Severity. The Red Color: High-

severity, Yellow Color: Medium Severity, Green Color: Low Severity.

After DFW-based Optimal Segmentation, High Severity Vulnerabilities

Are Blocked, as Presented in the Figure. 61

3.11 Comparison for the Number of Nodes (Blue) and Edges (Red) with No

Segmentation (NS) and After Using S3 Segmentation (S). 65

3.12 Segments Establishment Time (in Seconds) Using the S3 Approach for

Different Number of Network Services and Different Segments. 67

3.13 SDN Controller Overhead When the Number of Services is Different

in the 5 Segments Test Case. 72

3.14 SDN Controller Overhead When the Number of Segments Is Different

Using 100 Services in Each Segment. 73

3.15 S3 Cycle Detection Time With a Linear Scaling. 74

4.1 SDN Control Flow for multi-Tiered Network Policy Checking Using

INTPOL Framework. 79

xi

Figure Page

4.2 Intent Specification and Formal Modeling. The Users Can Specify

Policy and Query Intents at the Application Plane. 87

4.3 INTPOL Intent Rules Describing Different Kind of Intents Where the

User Can Specify at the Application Plane. 90

4.4 Data Collected by nDPI that Identifies Main Format, Protocol, and

Information Related to Subprotocol. 92

4.5 Expression of DPI Function from OpenDPI As an INTPOL Network

Function . 93

4.6 A Service Function Chain (SFC) Scenario with Multiple Network Func-

tions (NFs). 96

4.7 Example Usage of LTL-based Model Checking Framework for Imple-

menting Three Separate Service Function Chains. 97

4.8 An Example of a Bounded LTL Model Utilizes Network Topology

from the SDN Controller to Create a Model Specification. The Last

Line Represents a Query Intent to Check If Any Packet Starting from

(src=h2) Can Eventually Reach (dst=h4) . 99

4.9 A Hybrid Network Scenario With Network Components Based on Tra-

ditional Networking (BGP Routing) and Openflow Network (High-

lighted in Blue). 101

xii

Figure Page

4.10 An Example of a Bounded LTL Model Utilizes Network Topology from

the Hybrid-SDN Example in Figure 4.9 to Create a Model Specifica-

tion. The Last Line Represents a Query to Check If Any Packet Start-

ing from (src=h1) Can Eventually Reach (dst=h20). The Example

Is Shortened to Simplify the Presentation, but It Can Be Extended

Between Hosts h1 & h100. 103

4.11 Example of Network Intents Expressed at The Application Plane. 106

4.12 Example of Policy Translation and Flow Rule Insertion Using Two Dif-

ferent Northbound REST-based Controller Modules (e.g., ODL, ONOS).107

4.13 INTPOL Data Flow Diagram Describing Multi-level Network Policy

Processing. The Formal Model Analyzes the Policies at the Application

Plane, and the Policy Conflict Checker Checks the Conflicting Flow

Rules at the Control Plane. 116

4.14 An Encapsulated Representation of Hybrid Network Scenario as a Spe-

cial Case of Service Function Chaining (SFC).. 119

4.15 The Experimental Analysis of INTPOL in Inter-domain Hybrid Net-

work. The LTL-BMC Model Verification Time Scales Well as the Num-

ber of Domains Increase in the Network. 120

4.16 The Experimental Analysis of INTPOL in Inter-domain Hybrid Net-

work Scenario. The BDD Nodes LTL-BMC Model Scales Well as the

Number of Domains Increases in the Network. 121

xiii

Figure Page

4.17 INTPOL Model Checking Framework Evaluation in a Single Domain

Environment. As We Increase the Number of Hosts in Domain As6501,

the State Nodes, Data Size of the Model, and Time of Model Checking

Are Reduced. 122

4.18 A Comparison Between The Application Plane Conflict Detection Time

Using INTPOL Approach (Blue Line) and Without Using INTPOL

(Red Line). 128

4.19 A Comparison Between The Flow Rule Conflict Detection Time With

and Without Using INTPOL. The Data Plane Conflict Detection Time

is Significantly Increased in The Absence of INTPOL Framework. 129

xiv

Chapter 1

INTRODUCTION

The advancement of technology and reliant on automated systems in the day-to-

day organization’s operations poses a challenge on the security and privacy of these

systems. There has been extensive research on the analysis and understanding of the

security state of the different computing systems. Because of the huge advancement

of cloud computing, many companies are migrating their IT infrastructure into the

cloud. Furthermore, managing the cloud infrastructure involves managing advanced

networking infrastructure as well.

With new technology comes new challenges. The security challenges are nowa-

days considered the top challenges and concerns for IT administrators because of the

severity and how one attack can damage the entire network or cause data loss. This

massive prices made the network administrators think twice about which services to

put in the cloud, and it presented a problem for them to analyze the security state

of those services. Managing the security situation requires analyzing the security

vulnerabilities in the system and understanding how those vulnerabilities are inter-

connected. Research shows analyzing and predicting vulnerabilities at an early stage

can save the organization from being exploited [4, 3].

System and Network vulnerabilities are defined as the weaknesses in the software,

hardware, or network resources on the network that can be exploited by a persistent

attacker who would use it to enter to or shut down a network. Another definition

states that the vulnerability is the set of conditions, a weakness of or an absence of

security procedure, or technical, physical or other controls that could be exploited by

an adversary [123]. Vulnerabilities can exist also due to misconfigurations in policies

1

and procedures, especially security policies that state the access rule and the security

processes to handle the computing resources and data [85].

The sources of vulnerabilities vary due to the nature of the computing systems.

The vulnerabilities can spread across any part of the system and thus we cannot iden-

tify a clear list of vulnerabilities sources. However, there are agencies that finds and

classify vulnerabilities into their prospectus categories. These agencies include but

not limited to: a) Computer Emergency Response Team (CERT) b) National Vulner-

ability database (NVD) and c) ExploitDB, a database of exploitable vulnerabilities

and their proof of exploitation. These sources report vulnerabilities that are discov-

ered due to poor design flaws, poor security management, incorrect implementation,

exploited resources such as data leakage, etc.

Research has shown consistent increase in the number of vulnerabilities year-after-

year [112] due to the increasing attention cybersecurity is getting from governments

and private sectors. The huge number of vulnerabilities will posses a challenge on

the network administrators on how they can prioritize the one vulnerability over the

other. Furthermore, these rapid increase forces the administrator to ask how can they

know the vulnerabilities that can create a dedicated attack path for an adversary to

exploit the back-end system resources? This type of analysis is referred to as a low

level-security analysis which requires the administrator to analyze the relationship

between the vulnerabilities in order to prioritize security defense mechanism.

Security analysis has been an effective research area that attracted a lot of at-

tention due to its importance as part of the defense mechanism for any system

[29, 98, 155, 88, 95, 71, 154]. With growing networks, the need for automating the

security defenses rise. Automation would allow the administrator to setup the high-

level security and networking requirement such that the turn their attention into more

important problem, or problems that are newly discovered such as zero-day attacks.

2

One of the analysis approaches that allows for such automation is the Graphical se-

curity models (GrSM) such as Attack Graphs (AGs) and Attack Trees (ATs). AGs

are defined as a data structure, used to model all possible critical attack paths and

vulnerabilities of a system, which an adversary can exploit in order to achieve his/her

attacking goals. Researchers have developed methods and approaches to enhance

the GrMS usability However, generating and analyzing AG in a security system re-

quires a significant generation a AG usability and efficiency. However, due to the

development of networks (e.g., static network to dynamic networks such as the cloud

computing networks), and also the availability of AG generation tools like MulVal

[115], led to new challenges in using the AG for security analysis. Specifically, the

AG scalability problem when the AG is computed, the attack path searching when

performing AG-based attack scenario analysis can be an NP-hard problem as noted

by [49, 130], which depends on the density of a given AG. In a large network system,

AGs are often incomprehensible to a user due to its complex interdependence among

vulnerabilities. The identification of information regarding vulnerability dependen-

cies becomes increasingly difficult as the number of services and vulnerabilities are

increasing in the network system.

Another challenge the security administrator faces is that when the network IT

infrastructure is migrated into the cloud, it requires them to specify different security

and networking policies to ensure smooth operation of the networking services. Poli-

cies are defined as rules that correspond to the characteristics of the data plane flows,

switches, or hosts. Because the cloud networks are often run on advanced networking

solutions such as Software Defined Networking (SDN) [117, 5, 86, 30], researchers

have focused on developing solutions for detecting the policy conflicts in SDN-based

networks [34, 66, 124, 35]. Because the SDN networks allows for shared control do-

main by allowing the SDN controllers to of multiple domains to form a cluster, the

3

shared control plane policies can create a conflict between each other and between

the implemented policies in the data plane. Furthermore, unlike conventional net-

works, SDN allows diverse applications to establish flow rules on the data plane using

application plane APIs. These flow rules and will not be checked by the network

administrator, which makes them vulnerable to policy conflict violation. In addition,

the security policy conflict can occur due to overlapping between the header space of

the rules, redundant action, or when a rule is a subset of another rule.

Security policy conflicts have severe consequences. They can create security vul-

nerabilities allowing attackers to exploit the system, or they can limit the efficiency

and effectiveness in the system. Some of the issues that are heightened in an SDN-

based network are issues caused by the flow rules chaining,, cross-layer policy conflicts,

partial matches and by set-field actions as denoted by Pisharody et al. [124]. Re-

cently, the SDN networks allowed the administrators to add policies using high-level

intents. The application plane policies that are used to specify a certain action(s) for

a target network are called to an intent[35, 117]. The intent help the administrator to

use an abstracted language without knowing the details of the control and data planes

to specify their requirements. Applications on the cloud can also use the intents using

the APIs without the administrators interference. Once the intent is specified, it is

translated into the prospective control domain’s controller language. The controller

then implement the received policy and install it on the data plane. Because of the

multiple parties installing and modifying intents, the policies that are specified at the

higher-level are often conflicted between each other and/or between existing policies.

The network verification and testing domain often allows the administrator to check

for bugs in the networks through error in the detailed configurations, which forces

the control plane to reconverge to a new path.

The objective of this dissertation is to present a scalable security state analysis

4

solution for the cloud networks. Specifically, we design and present a solution to

overcome the AG scalability problem, which is the foundational layer for analyzing

the low-level security state in the system. Furthermore, we present an intent-based

security policy conflict checking and resolution that depends utilizing the bounded

model checking [18] for formal verification of the high-level security policies. The

dissertation is organized as follows:

• Chapter 2: Background and Motivation. In this chapter, we shed the light

on the key technology used in this dissertation like Software Defined Networking

(SDN), OpenFlow protocol as a foundational SDN protocol, Attack Graph (AG)

scalability problem, and security policy conflict checking.

• Chapter 3: S3: A DFW-based Scalable Security State Analysis Frame-

work for Large-Scale Data Center Networks. This chapter focuses on 1)

explaining in detail the AG scalability problem. 2) present a distributed firewall

(DFW) model to control the AG reachability, 3) present a segmentation model

using the DFW to divide the large graph into smaller manageable graphs using

the divide and conquer approach, 4) present an optimization approach that de-

termines the best number of segments for the graph, and 5) through a series of

experiments, we evaluate the proposed DFW-based AG segmentation approach

and test the graph density, AG generation time, the SDN controller overhead,

and measure the cycle detection time.

• Chapter 4: Intent-Driven Security Policy Management for Software-

Defined Systems. In this chapter, we provide an overview of the Intent-based

Networking. We provide a rational and abstraction approach for the network

administrator such that they are do not have to adhere to every SDN controller’s

language to specify the high-level intents. Specifically, we 1) present INTPOL,

5

an intent-based framework for translating security policy requirements into a

unified format, 2) INTOPOL allows easy expression of complex scenarios like

service function chaining (SFC) and hybrid network scenario, 3) we present

a bounded-model checking (BMC) approach for the application plane policies

to compose the translated intent’s policies into control and data plane rules

and checking for a possible conflict between those rules, 4) we demonstrate

the benefits of INTPOL by showing the composition verification, and conflict

resolution times are reduced when INTPOL is utilized for application plane

policy checking. We used the Stanford Topology [81] dataset for the purpose of

showing how the data plane conflict checking time is reduced using INTPOL as

opposed to not using it.

• Chapter 5: Conclusion and Future Work. This chapter summarizes our

work in this dissertation. We provide an overall description of the presented

solutions summarize the results. The chapter concludes with a possible future

work to extend the work in this dissertation.

6

Chapter 2

BACKGROUND AND MOTIVATION

2.1 Software Defined Networking

Software Defined Networking (SDN) is a networking paradigm that has emerged

to enable high and scalable networking communication [13, 136, 23, 60, 163, 59]. The

open networking foundation (ONF) defines SDN as “In the SDN architecture, the

control and data planes are decoupled, network intelligence and state are logically

centralized, and the underlying network infrastructure is abstracted from the appli-

cations. In SDN architecture, the system is composed of three layers: the control

plane, the data plane, and the application plane. SDN decouples the control plane

and the data plane. Using SDN-based networking, the administrator is able to imple-

ment a centralized control plane such that all of the forwarding rules and policies are

implemented and specified in one entity. The data plane will have all the forwarding

devices such as OpenFlow switches and routers. Because of the control plane and data

plane separation, the data plane devices become a simple forwarding entities. The

application plane will have several applications to enable high-level user requirements

to be implemented at the data plane devices. Using APIs, there are two interfaces in

the SDN architecture that enables the communication through the layers; The north

bound interfaces enables the communication between the application plane and the

control plane. The south bound interface enables the control plane to communicate

with the data plane. Later in chapter 4, we expand the definition of high-level user’s

security and networking policy and we explain how these high-level security policies

can have conflicts among them.

7

Figure 2.1: OpenFlow Protocol Header Fields.

2.1.1 OpenFlow

OpenFlow is an standardized protocol used to enable southbound communication

between the SDN controller and forwarding elements (switches). OpenFlow properties

can be summarized as follows:

• OpenFlow is one of the first software-defined networking (SDN) standards and

defined the communication protocol between SDN controllers and the forward-

ing plane of networking devices.

• Benefits include its programmability, centralized intelligence, and how it ab-

stracts network architecture We show a reference architecture of OpenFlow

protocol in Figure 2.1 adopted from [44].

8

2.2 Motivation

To realize the effect of DFW on AG, we present a motivating example of lateral

movement attack. In a large system such as a data-center network, traditional and

centralized firewall system capabilities lay within the north-south flow [130]. The

firewall acts as a central entity that determines the trust level associated with the

traffic under considerations (allowed vs denied traffic). However, cyber attackers are

gaining more power and knowledge. That said, once an attacker is inside the sys-

tem, by compromising an internal user and using their credentials, they can laterally

move inside the network and exploit key resources. Moreover, centralized firewalls do

not protect networks from multi-stage attacks using lateral movement [32]. Usually,

everyone on the internal networks is considered an allowed user, and the traditional

firewall-based defense mechanisms do not rigorously inspect the traffic within the in-

ternal network as the firewall initially allows the access to the internal nodes. In a

data-center environment, the amount of east-west traffic is about 76%, while it is 17%

only for north-south traffic. Therefore, there is a high possibility of attacks involving

lateral movement.

Consider the system shown in Figure 2.2 (a). The system is built in a general cloud

computing platform framework. There are four end-hosts in the system, each of which

runs a different service. In this example, the attacker is located on the internet, and

the attack goal is to compromise the database server at node VM4 that is running

MySQL Server. Thus, the attacker is conducting a vulnerability exploitation attack

to obtain privileged access and then exfiltrate data. In this threat model, the attacker

will reach their goal by exploring multiple attack paths, as illustrated in Figure 2.2

(b). In Figure 2.2 (a), compromising the Web-server running on VM1 is the first

step of the multi-stage attack. An attacker can use privileges gained from step (1)

9

SDN Controller

API Network

OpenFlow Network

Tenant
Node

Attacker
(Internet)

execCode
(VM4)

Exploit(VM1,
Web Server)

Exploit(VM2,
FTP Server)

Root(VM1) Root(VM2)

Exploit(VM3,
LDAP Server)

Attacker
(User, VM1)

Attacker
(User, VM2)

Attacker
(User, VM3)

Attacker
(User, VM4)

Exploit(VM4,
MySQL Server)

Root(VM3)

1

2

3

(a) Cloud network with multi tenant. Lateral movement
attack steps to compromise Database server are shown.

Cloud Computing Platform

(b) Attack graph with attack goal
VM4 (MySQL Server)

VM1(Web Server) VM2(FTP Server)

vSwitch

XSS Vulnerability Remote Code
Execution

Segment 1

VM1(Web Server) VM2(FTP Server)

vSwitch

XSS Vulnerability Remote Code
Execution

Segment 1

VM3(LDAP Server) VM4(MySQL Server)

vSwitch

Local Privilege
Escalation

SQL Injection

Segment 2

VM3(LDAP Server) VM4(MySQL Server)

vSwitch

Local Privilege
Escalation

SQL Injection

Segment 2

VM1(Web_
Server)

VM2(FTP_
Server)

VM3(LDAP_
Server)

VM4(Database_
Server)

Tenant Node

Figure 2.2: Representation Of Vulnerability Information and Corresponding Attack

Graph in a Multi-tenant Data-center Network. The Absence of Distributed Firewall

(Dfw) Allows the Attacker to Compromise the First Tenant Node and Laterally Move

Towards the Second Tenant Node to Compromise and Achieve Their Attack Goal.

to advance in the system by exploring and exploiting the rest of the machines, as

shown in steps (2) and (3), respectively. Traditional security architectures, such as

centralized firewalls, will not detect nor prevent such lateral movement attacks since

their purpose is to protect the network from attackers located outside the network.

Also, the communication that allows the attacker to move laterally will look legitimate

to the centralized firewall. However, suppose the system administrator adopts a

DFW-based framework. In this case, it will be possible to analyze such exploits and

create security policies using DFW rules to prevent attackers from achieving their

attack goal (lateral movement).

Note that detection of lateral movement in a real attack scenario cannot be con-

10

ducted using a vulnerability scanner such as Nessus alone. The identification of lateral

movement can be done using the traffic received by the SDN controller, and the con-

nectivity information between different tenants. The simulation of a lateral movement

in the example Figure 2.2 (a) is based on the assumption that since VM1 has a Web

Server, and the service present on VM1 is vulnerable, the goal of the attacker is to

compromise key network services such as VM3 (LDAP), and VM4 (Database). It

is likely that once attacker compromises VM1, he/she can scan for services present

on local network, that are vulnerable, and compromise them (post-condition of the

attack graph).

This attack model that involves lateral movement can be reinforced using network

traffic analysis. The traffic information can be collected using an SDN controller. If

there is a traffic request between VM1 and VM3, the SDN controller can log this

information, and consider this as a possible case of lateral movement. We can addi-

tionally use an intrusion detection system (IDS) between different tenants to check

traffic signature for the signs of lateral movement. This will increase the confidence

in the possible attack path taken by an attacker with lateral movement as an inter-

mediate step. The use of IDS agents if done in-line can increase the network latency,

and it is a reactive solution, thus we can conduct cost-benefit analysis of selectively

using IDS and traffic captured using an SDN controller to identify lateral movement.

The system administrator can configure the DFW to have granular rules that

inspect the source of communication (attacker’s L2 & L3 addresses) and inspect the

user credentials for the required service access. The DFW can also prevent normal

users who are not authorized to access a particular service in another tenant. For

example, Palantir corporation explains that the most critical windows vulnerabilities

is the SMB vulnerability. It allows the attackers to create backdoor and access to an

administrative privileges which then can be used to remove certain restrictions on an

11

internal network service. The use of DFW rule policy to block communication on the

SMB ports is an effective solution that prevented such exploitation.

2.3 Attack Graph

The attack graph (AG) is a data structure developed to model the system’s se-

curity state and identify the possible attack scenarios. The AG is a tuple consisting

of states and transitions between the states. The first state is the initial state, which

indicates the attacker’s location. After that, the transition between states is condi-

tioned upon exploiting the next node and connecting the current node and the target

node. Hence, the AG has stages where the attacker transitions from one stage to an-

other under exploiting the existing vulnerabilities. AG aims to model the vulnerable

services and their relationship only because the idea is developed to understand the

security situation in the system and not to emphasize normal or benign services.

There are two main types of AGs: 1) A directed graph that model network states

as nodes, and exploits as edges that change the states of the network, depending on

what exploits are performed [36]. 2) A exploit dependency graph, in which there are

pre-conditions that need to be satisfied in order for an exploitation to be successful

and result in post-conditions. Therefore, the movement of an adversary in the graph

is based on the ability to exploit a pre-condition.

In this proposal, we use the exploit dependency graph [64], since it directly models

dependencies between the vulnerabilities in a computer networked system. Also, all

services for application-based on networked-based attacks are related in this graph

and it shows what are the pre-requisites (pre-conditions) and post-conditions for

those attacks. Nodes in such an AG are not the network states, but rather, they are

vulnerabilities. AG can be formally defined as follows:

12

Definition 1 (Attack Graph (AG)) An attack graph is represented as a graph G =

{V,E}, where V is the set of nodes and E is the set of edges of the graph G, where

1. V = NC ∪ ND ∪ NR, where NC denotes the set of conjunctive or exploit nodes

(pre-condition), ND is a set of disjunctive nodes or result of an exploit (post-

condition), and NR is the set of a starting nodes of an attack graph, i.e. root

nodes.

2. E = Epre ∪Epost are sets of directed edges, such that e ∈ Epre ⊆ ND ×NC, i.e.,

NC must be satisfied to obtain ND. An edge e ∈ Epost ⊆ NC × ND means that

condition NC leads to the consequence ND.

MulVAL [115] is a well-known open-source tool to generate an attack graph. It

uses datalog and logic programming as its modeling language [25]. The input to

MulVAL is vulnerability information, which includes but is not limited to: Com-

mon Vulnerabilities and Exposures (CVE-ID) [109], affected applications or services,

vulnerability consequences (whether the vulnerability results in data loss, remote ex-

ploitation, data integrity, etc.). Besides, network reachability information is required

for each host, including IP address, vulnerable services or applications, and corre-

sponding ports and protocols.

An example of vulnerability information, network service information, and Host

Access Control List (HACL) represented in datalog format as described in MulVAL

model [115] is shown as follows:

vu lEx i s t s (ipaddr , cve−id , s e r v i c e)

ne tworkServ i c e In fo (ipaddr , s e r v i c e , prot , port)

hac l (s r c ip , dst ip , prot , port)

13

The AG uses HACL tuples to model network and firewall configurations. It uses

a general rule to test and specify reachability information (i.e., any host can access

any host using any port and protocol).

2.3.1 Attack Graph Scalability Challenge:

As can be seen in Figure 2.2 (b), a network consisting of 4 hosts resulted in a graph

of 13 nodes. Large data-center networks have thousands of services, servers, and VMs.

The expected AG size of such a system is enormous due to representing the network

state using a conditional or combination of conditional and exploit representation of

the security situation. This complicated representation leads to a massive number

of nodes and edges in the AG. The attack graph generation is polynomial in terms

of the number of hosts O(N6) [6], and O(N2)-O(N3) [115]. Attack graph generation

takes 2-3 minutes for current attack graph methods, even when the number of hosts

is ∼ 450 [80]. Naturally, this leads to the state space explosion problem in generation

and analysis of attack graph as Yi et al. [153] discussed.

2.4 Security Policy Conflict Checking

The large size of the typical data center networks imposes a multi-domain nature

for the network infrastructure. The configuration of this network requires setting-up

a certain policies. These policies are divided into a security and networking policies.

The way the administrator sets up the policies is by implying a high-level intent,

where he/she can specify a generic requirement through the intent’s syntax such

as ”host H1 in domain D1 can communicate with host H2 in Domain D2”. The

submitted intent will be then compiled and transmitted into the control plane of

the prospective intent’s hosts. Now each domain’s control plane is responsible for

generating the data plane flow rules by checking the received parameters from the

14

intent. Next, the control plane needs to check for a possible conflict between the

data plane’s flow rules [34]. This process is considered expensive and inefficient in

detecting the conflict between the policies, because it was performed after the SDN

controller received intent and it started to compile it into a flow rules. We will show

later in Chapter 4 that the number of SDN flow rules was much higher using this

approach as opposed of detecting the conflict at the application plane.

Why Security Policy Conflict Checking is Important?

Misconfiguration of Virtual Network Functions (VNFs) such as intrusion preven-

tion system and firewall can lead to security violations and business outage for an

organization. In July 2019, Capital One bank, one of the largest banks in the United

States suffered from a data breach. The breach caused leakage of over 100 Million

customer’s private data such as credit card numbers, Social Security Numbers SSN,

and other information [102]. An attacker was able to access this critical informa-

tion by exploiting a security vulnerability that existed in the company’s cloud server,

which was hosted by Amazon Web Services (AWS). A misconfigured firewall applica-

tion on AWS allowed the attacker to access the user’s data without authentication.

Although the AWS instance was itself secure, the bank’s misconfigured security policy

led to the data breach. An effective and efficient policy checking module is required

to identify and address issues associated with misconfigured and conflicting security

policies. The VNFs perform operations over the traffic received such as forwarding,

packet header modification, and routing. The domain of operations provided by dif-

ferent VNFs shows dependence upon each other. For instance, a Firewall can also

provide Network Address Translation (NAT) feature.

15

Chapter 3

A DISTRIBUTED FIREWALL APPROACH FOR LARGE SCALE DATA

CENTER NETWORK SECURITY ANALYSIS

3.1 Abstract

Cloud-based systems and services are seeing exponential growth in the last few

years. Many companies and digital services are actively migrating their storage and

computational needs to the cloud. With such an expansion of virtual services, se-

curity threats are also significantly increasing. Utilizing the Attack Representation

Methods (ARMs) and Attack Graph (AG) enables the security administrator to un-

derstand the cloud network’s current security situation. However, the AG suffers

from scalability challenges. It relies on the connectivity between the services and

the vulnerabilities associated with the services to allow the system administrator to

realize its security state. This approach caused the AG to be vast and challenging

to generate and analyze. To address the scalability challenges, this chapter intro-

duces a segmentation-based scalable security state (S3) framework for the network.

The framework utilizes the well-known divide-and-conquer approach to divide the

large network region into smaller, manageable segments. We follow a well-known

segmentation approach derived from the K-means clustering algorithm to partition

the system into segments based on the similarity between the services. A distributed

firewall (DFW) separates the segments to ensure the attacker cannot move later-

ally and compromise them. Our evaluation shows that the separation of segments

not only preserves the original reachability and connectivity but also enhances the

scalability of the AG. The presented framework (a) provides a scalable attack graph

16

generation algorithm by reducing attack graph generation time and density, which

in turn reduces the complexity of security analysis on an extensive cloud network,

(b) ensures a loop-free attack graph through the utilization of cycle detection and

removal algorithm, and (c) presents an approach to provide the optimal number of

segments based on the cost of implementing the segmentation using the distributed

firewall rules.

3.2 Introduction

Understanding any computerized system’s security situation requires a detailed

analysis of the existing vulnerabilities and potential threats. According to an article

published in Forbes [50], by the year 2025, 80% of enterprise IT infrastructure will

be migrated into the cloud. The same article points out that the most significant

concern for IT administrators is the security and privacy of cloud data. The amount

of IT companies using Amazon Web Services (AWS) have been steadily increasing.

An average data center in AWS consists of around 50,000 to 80,000 servers [76].

These huge servers, virtual machines, and virtual services require a significant effort

to develop and maintain robust security analysis methods. Applying appropriate

security solutions require the administrator to know the current security situations,

the vulnerabilities in the running services, and how those vulnerabilities can create

dependencies to allow an adversary to exploit the system. Specifically, administrators

better understand the security situation by identifying dependencies between security

vulnerabilities. Moreover, the administrator should know which attack path is the

most critical and should be fixed before the others.

One of the well-known approaches to evaluating the network’s current security

situation is the attack graph (AG). AG allows the system administrator to analyze the

connectivity relationship between network hosts, dependencies between the services,

17

and the services’ vulnerabilities. AG provides a framework to formally model the

network attacks, as Husak et al. [69] discussed. The network administrator can utilize

AG to analyze the possible attack paths for an attacker and the corresponding attack

goals. The attack graph nodes, which represent conditions necessary for exploiting a

vulnerability, also known as pre-conditions. The privileges obtained by an attacker

from the pre-conditions are described in the form of attack graph nodes, known as

post-conditions. In effect, the administrator can utilize the information from AG

to make an informed decision for securing a network and selecting an appropriate

countermeasure [36].

There are various types of AGs. According to Hong et al. [64], AG categories

can be identified as: (1) Exploit Dependency Graph [111], (2) Topological Vulner-

ability Analysis [73], (3) Logical Attack Graphs [114], (4) Bayesian Attack Graph

[96], (5) Multiple Pre-requisites Attack Graphs [71], (6) Conservative Attack Graph

[162], (7) Compromise Attack Graph [103], (8) Hierarchical Attack Graph [150], (9)

Countermeasure Attack Graph [11], and (10) Attack Scenario Graph [2]. Each of

these works present a different modeling technique for AG generation and security

analysis. The focus of this dissertation is the utilization of an exploit-dependency

graph [111] for security analysis. In this research work, we analyze the relationship

between vulnerabilities across the services (pre-conditions), and consequence of ex-

ploiting vulnerabilities (post-conditions). An exploit dependency graph is more fitting

to our threat model, hence the attack graph formalism in our research work is based

on exploit-dependency graph. We aim to provide an approach to generate a scalable

graph.

Although the AG is used for security state analysis, its scalability issue concerns

many researchers [130, 70, 155]. An early approach by Amman et al. [6] achieved

AG generation with the scalability of the order O(N6). MulVAL [115], a well-known

18

attack graph tool, reduces the AG generation and analysis complexity from O(N6)

to O(N2) − O(N3), where N is the number of network hosts. However, these AG

complexities are not practical, and the utilization of AG based on these solutions will

make the final graph output extremely huge and difficult to analyze by the system

administrator. Furthermore, AG is used for graphical security analysis and used as

a modeling tool for many security analysis applications. For example, game theory-

based solutions utilize the AG to analyze the possible implementations of defense

systems when the attacker is changing their behavior [133].

This chapter presents a distributed firewall (DFW) based micro-segmentation

[26, 67] approach that provides a scalable AG solution for security state monitoring

and analysis. By utilizing Software Defined Networking (SDN) as the base network-

ing architecture for the system, we create a cloud-based system to model a network’s

security state. Our segmentation algorithm partitions the cloud network into smaller

regions using the well-known divide-and-conquer approach [43]. Our framework con-

structs a sub-attack graph (sub-AG) for each segment after getting all the vulnerabil-

ities and connectivity information. The exploit-dependencies between sub-AGs can

also lead to cycles across sub-AGs, as Homer et al. [62] illustrated. The resulting sub-

AGs are analyzed for cycle presence at both the intra-graph and the inter-graph levels

to address the cyclic dependencies between network services’ vulnerabilities. Lastly,

the sub-AGs are merged according to the DFW rules that may allow connectivity

between segments.

Our approach utilizes a segmentation heuristic, which is equivalent to clustering,

to enhance the AG generation process. The segmentation divides the services among

segments based on the similarity measure and study the cost of implementing the

segmentation algorithm taking into account the number of DFW rules. This approach

will help us identify the optimal number of segments and reduce the segmentation

19

cost. We further address two important problems (i) the impact of loops in the

attack graph generation - we provide a depth-first search-based solution to detect

and remove loops (Section 3.7.6). (ii) the effects of frequent updates in the network

topology. We use empirical evaluation to show that the attack graph generation

algorithm converges quickly, even in the case of a dynamic network (new services

added frequently) (Section 3.7.3).

3.2.1 Chapter Contributions

The contributions of this chapter are summarized as follows:

• We present our framework, namely S3 (Scalable Security State). S3 utilizes

a new segmentation algorithm that is derived from the well-known K-means

clustering algorithm. S3 provides segmentation based on the similarity between

the services and considers the cost of separating the services using distributed

firewall (DFW) rules. We measure the cost of the segmentation using the

Bayesian Information Criterion (BIC) [120] that adds a penalty for using the

DFW rules to separate the generated segments. We utilize the BIC to get the

optimum number of segments that minimize the cost of segmentation and DFW

rules.

• Based on the complexity analysis of the proposed algorithm, S3 scales well in

comparison to prior works addressing the problem of attack graph generation

[115, 65, 107]. Our segmentation algorithm achieves a complexity O((N
K

)2),

where N is the total number of vulnerable services and K is the number of

established segments. The proposed algorithm in this work shows how the sys-

tem is segmented by distributing the vulnerable services into multiple segments

to achieve a scalable state for security analysis and evaluations. The essential

20

technique used in our work is divide-and-conquer, where we distribute the AG

generation into multiple sub-graphs. We combine all the small graphs to get the

final output. Moreover, our empirical evaluation shows a significant reduction

in constructing AG for many services compared to existing research works.

• To ensure that the attack graph is loop-free, we utilize an algorithm for cycle

detection and removal - Algorithm 5, that traverses the graph and checks for

the cases where an attacker can use an existing post-condition in one segment

and exploit a node in one of the previous segments in a monotonic attack path

(pre-condition), which in effect leads to cycles. Our algorithm resolves all such

cyclic dependencies in linear time, with the number of services present across

all segments, as shown by the experimental results in Section 3.7.6.

The rest of the chapter is organized as follows; we discuss existing literature on

attack graph generation and scalability in Section 3.3. The system architecture, the

Attack Graph formalism and scalability challenges, are discussed in Section 3.4. Our

main segmentation approach, algorithm description, optimal number of segments cal-

culations, and cycle detection algorithm are elaborated in Sections 3.5 & 3.6, respec-

tively. Section 3.7 provides a detailed performance evaluation of the S3 framework in

terms of graph density reduction, generation time, and cycle detection time. Finally,

we summarize some related topics that we could not address in this research work

and conclude the chapter in Section 3.8.

3.3 Related Work

3.3.1 The Scalability of Attack Graphs

The Generation of scalable attack graphs has been a popular area of research.

Amman et. al. [6] presents a scalable solution compared to prior research works

21

Table 3.1: A Summary of Related Work of AG Generation Approach and Complexity.

N is the Number of AG Nodes, E is the Number of AG Edges, V is the Number of

Vulnerabilities, X is the Number of Graph Branch Points, and K is the Total Number

of Segments.

Research AG Approach Complexity

Amman et al. [6] AG Monotinicity O(N6)

Ou et al. [114]
Logic-based AG engine with

vulnerability correlation
O(N3)

Wang et al. [148] Probabilistic AG vulnerability correlation Not Reported

Hong et al. [63] Hierarchical AG Structure

Kaynar and Sivrikaya [80]
Distributed AG generation

using shared memory
O(N ∗ E)

Mjihil et al. [107] AG Decompositon O(|V |+ |E|

Cao et al. [22] Parallel AG computation Not Reported

Chen et al. [29] Process mining to find AG branches O(E(N +X))

This work DFW-based AG generation O((N
K

)2)

[137] by assuming that attack progression in a network will be monotonic. This as-

sumption allowed them to achieve scalability of O(N6) [64]. To mitigate the state

space explosion problem, most of the existing solutions try to reduce the dependen-

cies among vulnerabilities by using logical representation [115]. Hong et. al. [63]

applied a hierarchical strategy to reduce the computing and analysis complexity of

constructing and using AGs by grouping and dividing the connectivity of the system

into hierarchical architecture. The performance time is, however, ∼ 50 seconds for 50

services. Our framework generates a scalable AG of a similar scale in 2.2 seconds.

Ou et. al.[115] introduced a logic-based network security analyzer called MulVAL

22

to model the interaction of software bugs with system and network configurations. It

correlates system vulnerabilities to predict the possible threats and attacks in the net-

work. Wang et al. [148] proposes attack-graph-based on probabilistic metrics utilized

to calculate attack resistance based on probabilistic measurement obtained by com-

bining CVSS scores. They consider a fixed probability for measuring vulnerabilities

in the network where each exploits e and condition c associate with two probabilities

p(e) and p(c) for the individual score and P (e) and P (c) to calculate the cumulative

score. These scores can indicate possible exploit e being executed. However, this

work’s limitation is that the probability calculation assumes the probabilities along

multiple paths leading to a node are independent, which is not valid for attack graphs.

Kaynar and Sivrikaya [80] proposed a framework for distributed AG generation

that utilizes a shared memory approach. However, the graph generation time is of the

order 2-3 minutes for 450 hosts, which cannot be used for real-time security analysis.

Cao et al. [22] proposes an approach to compute AG in parallel. Nevertheless, the

division is based on each host’s privileges and based on the network topology, so

their approach has a different level of division and merging, which introduces greater

complexity. In contrast, we utilize connectivity information and DFW rules to split

the graph in our approach. The experimental analysis in this work shows that the

required generation time for ∼ 500 hosts is ∼ 20 seconds, while in our work, it takes

only ∼ 6.5 seconds.

Mjihil et al. [107] uses a parallel graph decomposition approach. The evaluation

in this research work tests the effects of the number of vulnerabilities on the AG

generation time, which is not reliable since it does not explain how the number of

vulnerabilities is related to each service in the system, as we do in this chapter. The

research work tested a maximum of 50 vulnerabilities in which they obtained an AG

in ∼ 10 seconds, while in our work, we obtain an AG of a similar number of vulnera-

23

bilities in ∼ 2 seconds.

Hong et al. in [64] provides a comprehensive study to identify the usefulness of

Graphical Security Models (GrSMs) in the context of modern networked systems that

are typically very large and dynamic. This study is conducted based on efficiency,

application of metrics, and availability of tools. These three significant points fo-

cus on the scalability of GrSMs, distinguishing which types of security metrics can

be used, and how the user may access the GrSM in the form of tools. The au-

thors summarize the complexity of multiple GrSMs, which are generally categorized

into tree-structured, graph-structured, or hybrid-structured. This study considers

different metrics to evaluate AG’s types: (Dependent, Scalable, Heuristic, and Ex-

ponential). A summary of attack graph based works and thier complexity has been

provided in Table 3.1.

3.3.2 Attack Graph Segmentation:

The graph segmentation solutions are classified into approximate and exact al-

gorithms. The approximate algorithms are based on heuristic algorithms like ge-

netic [51], ant colony [118], spectral clustering [27, 47, 134], K-L algorithms [82], and

linear programming [90]. The exact algorithms can get an exact segmentation results

of the graph such as branch-and-cut [21]. The problem with these graph segmentation

approaches is that the time complexity increases significantly as the number of nodes

and edges increases [151]. Some researchers proposed a similar approach towards the

segmentation approach presented in this chapter. Chen et al. [29] uses a process

mining algorithm to find branches of the AG. This algorithm aims to search the en-

tire AG to find branch points where the subgraphs are split. Hence, their approach

first generates the complete AG and then they establish the segments. The algorithm

complexity is O(E(N + X)), where N is the number of vertices in the attack graph,

24

SDN Controller

API Network

OpenFlow Network

Tenant
Node

Attacker
(Internet)

execCode
(VM4)

Exploit(VM1,
Web Server)

Exploit(VM2,
FTP Server)

Root(VM1) Root(VM2)

Exploit(VM3,
LDAP Server)

Attacker
(User, VM1)

Attacker
(User, VM2)

Attacker
(User, VM3)

Attacker
(User, VM4)

Exploit(VM4,
MySQL Server)

Root(VM3)

1

2

3

(a) Cloud network with multi tenant. Lateral movement
attack steps to compromise Database server are shown.

Cloud Computing Platform

(b) Attack graph with attack goal
VM4 (MySQL Server)

VM1(Web Server) VM2(FTP Server)

vSwitch

XSS Vulnerability Remote Code
Execution

Segment 1

VM1(Web Server) VM2(FTP Server)

vSwitch

XSS Vulnerability Remote Code
Execution

Segment 1

VM3(LDAP Server) VM4(MySQL Server)

vSwitch

Local Privilege
Escalation

SQL Injection

Segment 2

VM3(LDAP Server) VM4(MySQL Server)

vSwitch

Local Privilege
Escalation

SQL Injection

Segment 2

VM1(Web_
Server)

VM2(FTP_
Server)

VM3(LDAP_
Server)

VM4(Database_
Server)

Tenant Node

Figure 3.1: Representation Of Vulnerability Information and Corresponding Attack

Graph in a Multi-tenant Data-center Network. The Absence of Distributed Firewall

(Dfw) Allows the Attacker to Compromise the First Tenant Node and Laterally Move

Towards the Second Tenant Node to Compromise and Achieve Their Attack Goal.

X represents the number of branch points and N the number of edges. Our approach

does not require generation of the entire AG. Rather, we apply the segmentation

algorithm on the extracted system information and we construct the sub-AG based

on that.

3.4 System Model and Architecture

In this section, we provide a motivating example of the benefit of using DFW to

reduce the AG scalability problem. We then describe the system architecture of S3.

Moreover, we provide a model for the Attack Graph and DFW, respectively.

We showed in Chapter 2 a motivational scenario (provided again in Figure 3.1

25

for ease of readability) about how an attacker can move laterally in the system, and

how the AG can help us model this movement. We will utilize the same example to

explain the system model in this chapter. The Figure 3.1 (a) shows how the lack of

DFW rules allowed the attacker to transition between the two cloud tenant networks.

Figure 3.1 (b) shows the corresponding AG for that threat model.

3.4.1 System Architecture

We consider the cloud infrastructure shown in Figure 3.2 as the architecture for

the S3 framework, where the networking infrastructure is based on Software Defined

Networking (SDN) solution. SDN is an advanced technology aiming to enhance the

current networking protocols by separating the control plane from the data plane.

The choice of using SDN benefits the network administrator by facilitating the pro-

gramming and unifying the communication with the data plane devices. If we do not

use SDN, we will need to design a controller software that can be integrated with mul-

tiple vendor devices such as CISCO and JUNIPER. Furthermore, the SDN controller

can be integrated in a hybrid-network scenario as highlighted by [5]. The SDN can

be used to fetch the global network topology of SDN-based devices and traditional

networking devices like BGP router. The Application Plane comprises a vulnerability

scanner (Nessus) that collects vulnerability information from each network host. On

the other hand, the vulnerability scanner interacts with the individual hosts at the

data plane using API network.

The Security Policy Database (SPD), as shown in Figure 3.2, creates security

policies to define what security rules should be applied when implementing the DFW

rules. These policies dictate how segments are separated. The traffic between seg-

ments is regulated using security policies defined by SPD. The SPD interacts with the

SDN controller using northbound REST APIs to update security policy information.

26

Figure 3.2: S3 System Architecture and Operating Layers.

The Attack Graph Generator module is a wrapper program we developed for the

generation of sub-attack graphs sub-AGs at the level of each segment. This module

interacts with a vulnerability scanner and SPD to create segments using an algorithm

(proposed later), where we generate a sub-AG for each segment, and finally, utilize a

merge algorithm to merge sub-AGs into fully connected AG.

S3 framework utilizes OpenFlow southbound APIs to provide flexible and pro-

grammable segmentation architecture. OpenFlow protocol is also used to commu-

nicate with the switches at the data Plane level. As shown in the Figure 3.2, the

SDN controller (control plane) collects connection information from software switches

situated at the data plane using getConnInfo() API. The security policies are imple-

mented on each switch using addFlow() API as shown in the communication channel

between controller and switch - Figure 3.2. Each OpenFlow switch has flow tables

used to store incoming/outgoing flow rules based on the packet header match. The

27

Figure 3.3: S3 Data Structures Utilzed by a Control Plane Software (a), (B) and

Application Plane Rest Api Used by Network Admin (c), (d).

rules are stored in the Ternary Content Addressable Memory (TCAM) format.

The Flow Table consists of other necessary fields besides match and action fields.

Each flow entry has priority, counter, and timeout fields, as shown in the Figure 3.3

(a). The header structure - Figure 3.3 (b) of each flow is used for matching traffic

against incoming traffic. The REST API at the application plane helps in the man-

agement of the distributed control plane. For instance, if a new controller needs to be

added to the control plane, the POST API - Figure 3.3 (c) is used by the controller

in order to announce an intent to join the network. The application plane checks the

vulnerability, network topology, and reachability information periodically to update

28

the network segments. Information about each segment can be obtained using GET

API as shown in Figure 3.3 (d). The network segment generated by S3 framework

in this case int-net segment, with segment ID 10 consists of services present on ports

80-40000 on all machines in the range from 192.168.1.25 to 192.168.1.89.

3.4.2 DFW System Model

Software-Defined Networking (SDN) [86] simplifies network management by de-

coupling the control plane and data plane. The SDN controller can dynamically

configure multiple physical or virtual network switches. A network should be split

into secure zones for comprehensive security coverage, each zone with its own security

requirements. These requirements should identify which traffic can access a resource

by identifying the access control list (ACL) policy.

Micro-segmentation is an approach that utilizes SDN capabilities to create security

zones in the system. This approach is primarily utilized in a cloud-based architecture

to isolate critical services and strict access to those services from unauthorized users.

This can be achieved by deploying Firewall rules at the granularity of the service

level. By using a distributed firewall (DFW) and micro-segmentation approach, we

can establish segments in the network and assign services to them. The services in

the threat model shown in Figure 3.1 is divided into two segments. The reachability

from one segment to the other is controlled by a DFW rule to limit the attacker’s

movement in the system and apply security policy at the individual service level.

This granular level of controlling reachability between vulnerable services turned out

to effectively reduce the AG generation time, which we will demonstrate in section

3.7. From Figure 3.4, using DFW will allow the system administrator to control

the reachability access from Web Server (VM1) and FTP Server (VM2) in the first

segment. Likewise, in segment 2, the DFW rule will limit the access from LDAP

29

SDN Controller

API Network

OpenFlow Network

Tenant Node
1

2

3

Cloud Computing Platform

VM1(Web Server) VM2(FTP Server)

vSwitch

XSS Vulnerability Remote Code
Execution

Segment 1

VM1(Web Server) VM2(FTP Server)

vSwitch

XSS Vulnerability Remote Code
Execution

Segment 1

VM3(LDAP Server) VM4(MySQL Server)

vSwitch

Local Privilege
Escalation

SQL Injection

Segment 2

VM3(LDAP Server) VM4(MySQL Server)

vSwitch

Local Privilege
Escalation

SQL Injection

Segment 2

VM1(Web_
Server)

VM2(FTP_
Server)

VM3(LDAP_
Server)

VM4(Database_
Server)

Tenant Node
dfw
rule

dfw
rule

dfw
rule

Network traffic
blocked
between
tenants.

Figure 3.4: Cloud Network with Multi-tenant after Deploying DFW Rules. Network

Traffic from Tenant Node 1 to Tenant Node 2 Is Blocked Due to Enforcing DFW

Rules. The Attacker Is Now Confined to One Machine, and They Are Unable to

Move Laterally in the System.

Server (VM3) to SQL Server (VM4) that will eventually protect the database server

from the data exfiltration attack. The attacker is now unable to transition from

segment 1 to segment 2, as can be seen in Figure 3.4.

Table 3.2 shows the services in Figure 3.4, as well as the vulnerability on the

services and the attack path to compromise the service. If DFW is not deployed, the

attacker will access any service from the internet and exploit its vulnerability, as can

be seen from Figure 3.1. Figure 3.1 (b) is a simple example to illustrate how the

AG looks like and how multi-step attacks can be initiated. For large systems such

as data-center networks, the AG will be huge and will have a significant amount of

30

Table 3.2: Example of Network Topology Vulnerabilities and Connectivity Informa-

tion.

Segment VM Service Vulnerability Attack Path

Segment 1
VM1 WebServer Cross-Site Scripting Internet- VM1 port 80

VM2 FTPServer Remote Code Execution VM1 - VM2 port 25

Segment 2
VM3 LDAP Server Local Buffer Overflow via Segment 1

VM4 SQL Server SQL Injection VM3 - VM4 port 3306

nodes and edges.

3.5 S3 Framework Segmentation Approach

In the previous section, we discussed the AG scalability issues in the absence of the

segmentation approach. In this section, we provide our approach on how to achieve an

efficient segmentation. This problem can be looked at as a clustering problem, where

the goal is to develop the best clustering approach and get the best K clusters that

correspond to optimal segmentation. In this proposal, we consider ‘segments’ instead

of ‘clusters.’ There are two main requirements for our proposed segmentation process;

segment compactness and segment separation. The compactness means we examine

the similarity between the vulnerable services and put similar ones together in one

segment. The separation means we aim to make the segments separated by DFW

rules without increasing them. The growth in the number of DFW rules will have

a high cost of managing the rules and will add high overhead to the administrator

to ensure conflict-free rules. However, where do these DFW rules come from? After

assigning the services to the segments, the benefits will still connect to services in

other segments. This connectivity is now being controlled by a DFW rule to limit the

attacker’s reachability to new segments. The definition of vulnerability dependency is

31

given by definition 2. We show Table 3.3, which has all the used symbols throughout

the chapter to enhance the readability.

Definition 2 Vulnerability Dependency is defined by the connectivity relationship be-

tween two vulnerable services. Suppose there are two vulnerable services, vsi & vsj,

in the system. Suppose the attacker wants to exploit service vsj. In that case, they

must first exploit the vulnerable service vsi, where vsi & vsj are connected via com-

munication link C. There is no security rule to block this communication, then we

say vsi & vsj have vulnerability dependency, and exploiting vsi is a pre-condition to

exploit vsj.

Consider there are N vulnerable services V S = {vs1, ..., vsN}. There are a total

of K established segments, i.e. P = {p1, ..., pK}, such that the services are assigned

to the segments as: {vs1, .., vsi} ∈ p1, {vsi+1, ..., vsj} ∈ p2, {vsj+1, ..., vsN} ∈ pK . We

define the following segmentation properties that are used as a criteria and constrains

for the segmentation process.

32

Table 3.3: Chapter 3 Table of Notations

Symbol Definition

C Communication link between services

CAG Composite attack graph

d Number of service features

DFW Distributed firewall

E Edges in CAG

i Number of iterations

K Total number of segments

µpi Centroid of segment pi

N Nodes in CAG

pi A particular segment i, i ∈ K

R The set of DFW rule

r Distributed firewall rule

s A network service

scom Segment compactness

sd Segment separation

v A vulnerability

VS All the vulnerable services

vs A vulnerable service

1. Segment Compactness: The compactness is defined as the relationship be-

tween entities, or points in the euclidean space being closed (having all limit

points) and bounded (having all its points lie within the same amount of dis-

tance from each other). The segment compactness in this proposal is defined by

33

the similarity between the services in the segment, such that the distance from

one service to the center of the segment is minimum. To measure the similarity,

it is essential to note that the network services are considered categorical data,

i.e., the services are categorized into groups like the web-server group, file ex-

change group, etc. The problem of measuring the similarity between categorical

groups has been studied for a long time, according to [61]. In this research, we

rely on the Spearman’s Correlation similarity function to calculate the simi-

larity between the network services. Spearman’s Correlation is well known for

measuring non-linear data similarities by creating a mapping function between

the data and ranking the data into prospected categories. The administrator

can define the categories. However, we have provided a broad set of categories

covering the most popular types of services in networks. Our approach converts

each network service into a vector representation, which is the pre-processing

step before calculating Spearman’s similarity. The vectors act as the ranking

of every service to match it with one of the pre-defined categories. We consider

every network service belonging to one or more of the following categories:

• Web-based category such as HTTP/HTTPS.

• File exchange category such as FTP.

• Remote access category such as ssh, telnet.

• Storage category such as SQL.

• Timing category such as NTP.

• User management category such as LDAP/AD.

• Mail server category such as IMAP/POP3.

• Other service groups.

34

The service is ranked from 1-8 (number of available categories) were 1 indicates

the highest-ranking and 8 is the minor ranking.

To map service to one of these categories, we should take several factors such

as the service’s properties and the network environment. If we only consider

the service’s properties, we will not have a complete understanding of how this

service is utilizing the network. To overcome this problem, we examine the

network service’s traffic to check the type of data this service provides and

exchange with other services and remote hosts. For example, a web-server is

generally used to host web applications, but it can also be used for file transfer.

Suppose an http server is used to store files primarily and host web applications.

In that case, this HTTP server will be ranked under the storage category first

and then the web categories. Table 3.4 shows an example of ranking the services

among the categories.

Table 3.4: Ranking Network Services into Different Categories.

Service Web File Transfer Storage Timing User

Manage-

ment

Mail Remote

Access

Other Port

HTTP 1 2 3 8 8 7 6 8 80

SQL 3 2 1 0 0 0 0 0 118

FTP 4 1 2 8 8 6 3 7 21

The HTTP service, for example, have the following ranking: [1, 2, 3, 8, 8, 7, 6, 8]

which indicates the service is ranked in the Web servers group firstly, and in the

file transfer group secondly, and so on. This ranking is essential for Spearman’s

correlation coefficient to compute the similarity score between the services. The

Spearman’s Correlation is defined by the following equations, where x & y are

the data input after converting them into a ranking format, x̄ & ȳ are the mean

35

of x & y respectively, and n is the total number of features (categories) in the

data:

SCORR(x, y) =

∑n
i=1(x

r
i − x̄)(yri − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(3.1)

Where:

x̄ =
1

n

n∑
i=1

xi ȳ =
1

n

n∑
i=1

yi (3.2)

The Spearman’s score is a correlation coefficient. That means if the value of the

SCORR is 1, the services have a ‘positive’ relationship, or they are positively

correlated. On the contrary, if the SCORR is -1, then the services have a

‘negative’ relationship, or they are negatively correlated. A value of zero means

the services do not correlate with them. The positive correlations mean the two

services are “ moving” in the same direction in the euclidean space. The two

services are providing the same type of traffic, according to the categorization

they fall under. The negative correlation means that the two services are moving

in the opposite direction in the euclidean space. The two services are providing

different types of network traffic according to the category they fall under. Since

this similarity measure is a correlation function and depends on the variance

between the data, equation 3.1 will not yield a number if the variance between

the data is zero (the service is equally ranked among all categories). This

will mean the service does not have a variance and cannot be measured and

compared with its mean or another service (or segment centroid, as we will see

later).

2. Segment Separation: The segment separation is defined by the set of DFW

rules (ri,j ∈ R) from pi to pj, where i, j ∈ K. |ri, j...K | is then the total number of

firewall rules specified from segment pi to all other segments pj . . . pK . Note that

36

in our definition ri,j 6= rj,i and they are directional firewall rules. For example,

the firewall rule that will block the communication from the VM1 in Figure

3.4 and prevent the attacker from going to VM3, is a directional firewall rule

and we will have to add another firewall rule to block the communication from

VM3, to VM1. In our proposed framework, the segment separation between pi

and pj is defined by sd(i,j) :

sd(i,j) = |ri,j ∪ rj,i|. (3.3)

Then, the overall segment separation sd for all segments is defined as:

sd =
R∑
i 6=j

sd(i,j) (3.4)

Assuming we only have 2 DFW rules between segment 1 & segment 2 in Figure

3.4, then the value of sd(p1,p2) = 2 and the total sd value = 2.

3.5.1 Segmentation Procedure

Category Extraction:

The network traffic category extraction problem has been studied extensively before.

Our final goal of this step is to rank a particular network service into the prospective

services’ categories. For this purpose, we follow famous works in network traffic

classifications presented in [152, 157]. The details of these algorithms were skipped

due to space constraints. Once the categories are obtained, they are transferred to the

segment initialization module for the next processing step. Note that if the number of

services in the system is not large, the administrator may perform this step manually

as they know the exact usage of the service.

37

Services
Collector

Segments
Initialization

Services
Categorization

Compactness
Mesasure

Network
Services

Segments
Creation

Centroid
changed?

Yes

No

Re-compute
Centroids

Segments
Refinements

List of Segments with high
similarity score

(for each segment)

Figure 3.5: The Process of Establishing and Choosing the Best Number of K Segments

Based on the Compactness Requirements.

Segments’ Establishment:

To establish the segments, we follow the famous K-Means clustering algorithm ap-

proach [48]. The goal of the process is to partition the data points into K segments

such that all points (services) in a given segment are close to the segment’s centroid

(i.e., they belong to the same segment). The algorithm keeps track of the segments’

centroids and continues the rest of the iterations as follows. Our overall segmenta-

tion process is shown in Figure 3.5. After collecting the services and extracting their

categories, the next step is to initialize the segments by setting the centroids, usually

randomly. We do not consider completely random centroids; instead, we consider the

centroids that represent each category. For example, if we pick three initial centroids,

then we may choose the centroids that correspond to the commonly used services

that exist in our system. For example, if the system has many Web,FTP, and storage

services, then the corresponding ranking of the centroids should be [1.2.3.4.5.6.7.8],

38

[3, 1, 2, 4, 5, 6, 7, 8], and [3, 2, 1, 4, 5, 6, 7, 8], respectively. The choice of picking a cen-

troid depends on the type of services in the given system environment, which the

administrator determines.

Segments Compactness Measurement:

After establishing the segments, we measure the compactness between the centroids

and the services based on Spearman’s similarity measure. Find the closest centroid

with the highest similarity score for each service and associate the service with this

centroid. Each segment has a centroid represented by µpi . Equation 3.1 will calculate

the correlation coefficient. To get the distance between the centroids and the services,

the following equation is utilized:

d(vs, µpi) =
1− SCORR(vs, µpi)

2
(3.5)

The services will be assigned to the centroid with the minimum distance (minimum

distance means the highest similarity). If the services are similar to the centroid, i.e.,

the similarity score is closer to 1, then the distance will be closer to 0. Likewise, if

the similarity score is closer to -1, i.e., the services are not similar, the distance will

be closer to 1. Hence, the segmentation goal is expressed using the following formula,

which creates segments with services identical to each other:

Step 1: Iterate until convergence:

vsi = arg minpi {d(vsi, µpi)} ∀ vsi ∈ V S , pi ∈ K (3.6)

Segments Refinements:

After we establish the segments, we need to make sure that the centroids are rep-

resentative of each segment, i.e., each service in the segment belongs to the correct

segment. We complete this and re-estimating the centroids by taking the center of

39

Algorithm 1 Segments’ Establishment

1: In: VS, µk

2: out: Established segments with services

3: procedure Segment Establishment

4: Choose initial number of Segments K

5: for vsj ∈ V S, µi ∈ K do

6: Compute similarity between vsj & µi...K

7: Assign vsj to nearest µ

8: Re-compute centroids µi...K

9: if Centroids µ1...K do not change: then

10: break

the mass points (services) associated with it. For every segment, we calculate the

adjusted centroid by taking the average distance between the services. Suppose the

total number of services in the segment pi is nspi , the new centroid becomes:

Step 2: Set each segment’s centroid to the mean of all assigned services:

∀pi ∈ K, µpi =
1

nspi

∑
vs∈pi

vs (3.7)

These steps are repeated until the data converge and all the similar services are

assigned to the same segment. The final output is the list of segments that contain

services with a high similarity between them.

The above algorithm spans the vulnerable services VS and tries to group them

according to the similarity measure. Assume we have a total number of d features for

the services (the number of possible categories each service may belong to), a total

number of i iterations. The output is K segments. Consequently, this algorithm’s

time complexity is bounded by O(K ∗ i ∗ d ∗ V S). In practice, the algorithm is

40

fast in finding the K segments according to [8]. We show in the evaluation section

3.7.3 an experiment of how much time is required to establish the segments using the

proposed segmentation algorithm. In the next section, we will investigate when the

algorithm should stop and the criteria that we should consider when calculating the

segmentation cost.

3.5.2 Segments Analysis

In the previous section, we explained how to establish the segments and assign

services to the segments. This section analyzes the segments based on the cost func-

tion and how we choose the best K segments that yield the optimum cost function

(minimum segment’s connectivity). In the K-means clustering algorithm, the cost

function is mainly defined by the average error between the points and the centroids,

as shown in the equation. 3.8.

Cost(V S, µ) =
∑
i

||vsi − µpi||2 (3.8)

However, K-means’ standard error function (usually the Euclidean distance) does

not reflect the actual loss/gain from the segmentation approach we proposed in this

research. Also, it does not take into account the segment separation requirement

as defined in the previous section. Therefore, the cost function should consider the

penalty of adding the number of DFW rules to isolate the segments and control the

inter-segment reachability.

We utilize the Bayesian Information Criterion (BIC) function to improve the cost

function and include the penalty parameter. The BIC is an index to assist in quanti-

fying and choosing the least complex probability model among multiple options [120].

The BIC ignores the prior probability model and measures the efficiency of different

models at predicting the results. The efficiency is calculated by establishing an in-

41

dex of each model’s parameters using the likelihood function and then implementing

a penalty function for models with more parameters. These parameters contribute

to the model complexity. The model complexity is used to represent the penalty

function and is composed of the segment separation parameter. Using the BIC, We

want to know which segmentation model yields the best cost function, considering

the segment separation as defined earlier. The new cost function is calculated using

the following equation:

Cost(V S, µ) = log

[
1

sdd

∑
i

||vsi − µpi ||2
]

+K
log(sd)

sd
(3.9)

where d is the number of features (services categories), K is the number of segments,

and sd is the segment separation variable.

To show an example of how the segmentation approach finds the best number of

segments, we show a case for a fixed number of services, but with randomly changing

topology and service categories. Consider we have ten services ranked into the pre-

defined categories as shown in Table 3.5:

Note the connectivity between the services in the above table. This connection

represents the actual communication between the vulnerable services. It does not

reflect the placed DFW rules that we will utilize later to limit the attacker’s reach-

ability from one node to another. Since we know the type of services in the system,

we can initialize the centroids according to the type of the available services, i.e., we

may initialize the centroids to represent http, SQL, and FTP services. This assign-

ment of K is not finalized as we will calculate the error to determine the best K

later on, according to equation 3.9. We will assume the data converges from the first

iteration for simplicity, and the average of the centroids does not change. The output

of the segmentation process and assignment of the services to the segments is shown

in Figure 3.6. This figure shows the relationship between the services in the seg-

42

Table 3.5: Example of 10 Services Ranked into the Categories According to Actual

Traffic the Service Provides.

Service Connected to Ranking CVSS Score

http 1 http 3, FTP 1 {1,2,3,8,8,7,8,8} 0.75

http 2 FTP 2, SQL 2 {3,1,2,8,7,4,5,8} 0.75

http 3 http 1, Mail 1 {4,3,1,7,2,3,3,8} 0.75

http 4 SQL 1, SQL 2 {8,8,7,2,3,5,6,1} 0.75

SQL 1 FTP 2, http 4 {8,2,1,8,6,3,7,7} 0.65

SQL 2 http 2, Mail 1, LDAP 1 {8,1,2,8,3,4,5,8} 0.6

FTP 1 http 1 {3,1,2,8,8,5,4,6} 0.7

FTP 2 http 2, SQL 1 {5,3,2,6,4,1,2,8} 0.7

LDAP 1 SQL 2 {8,8,8,2,1,3,7,4} 0.7

Mail 1 SQL 2 {8,2,3,8,7,1,4,5} 0.6

ments, where the red lines represent the inter-segment connection and the blue lines

indicate the intra-segment connection. These rules reflect the original connectivity

between the services, as shown in Table 3.5. Moreover, a link from http 1 to http 3,

for example, indicates a pre-condition to exploit the service http 3 from the service

http 1. In other words, the post-condition of compromising service http 1 becomes a

pre-condition to exploit service http 3. Similarly, the pre-condition to exploit Mail 1

in segment 3 is to compromise service http 3 in segment 2. Figure 3.6 also indicates

that the segmentation process preserves the original connectivity between the services

such that the end-to-end service delivery is maintained to the users.

The next step is to calculate the error (segmentation cost) according to equation

3.9. This equation will help us calculate the optimal number of segments. To do this,

43

Figure 3.6: The Output of the Segmentation Process with Dfw Rules Highlighted in

Red.

we need to examine the effect of the segment separation (DFW rules) variable that

is calculated according to equation 3.4. To get the number of optimal segments, we

test two cases as follows;

• Case 1: We perform fine-tuning of the parameters K & sd. The cost function

will result in a decreasing curve, as shown in Figure 3.7. We rely on the elbow

approach to choose the best number of segments, where the error curve starts to

take an elbow shape. This approach is well known in the literature for selecting

the best K option. Figure 3.7 shows the testing of changing the DFW rules in

the blue line, where the best number of K segments is four.

• Case 2: Let’s examine another situation where the services have different fea-

44

tures (categories) from the one shown in Table 3.5. The error (distance between

the services and the centroid) is going to be changed, and we notice in the red

line in Figure 3.7 that it is increasing for a bit before it starts to decrease and

form the elbow shape. We also change the segment separation variable’s value

similarly to the first case. The best optimum number of segments here is six,

as indicated by the red line. The two cases show that the type of services, their

properties, and the DFW rules affect the number of optimal segments.

3 4 5 6 7 8 9 10

−2

−1.5

−1

Number of Segments K

S
eg

m
en

ta
ti

on
C

os
t

Case 1
Case 2

Figure 3.7: The Segmentation Cost Drops as the Number of Segments Increases until

an Elbow Shape Is Created.

Special Cases:

The previously described example illustrates when the system is running with different

types of services, with a similarity between them. However, we may have a system

running services of the same type (all web servers, for instance) or a system running

different types as such there is no relationship between the services at all. We analyze

the two cases as follows:

45

1. System running different services:

Consider we have a system running 2 services, an http server and a mail server.

The ranking values of the http server will be [1, 2, 3, 8, 8, 7, 6, 5] whereas the mail

server will be [6, 2, 2, 7, 8, 1, 2, 3]. If we extend the number of services to 100,

we will have a low similarity score (closer to -1). One solution to this case is to

adjust the segments’ initial centroids using the K-means++ algorithm [9]. The

steps to choose the centroids are:

(a) Choose one of the services at random as an initial centroid µinit.

(b) Calculate the distance d(µinit, V S), from the initial centroid to all other

services V S.

(c) Choose the next centroid from the remaining data points (services) such

that the probability of the remaining data points is proportional to d(µinit, V S)2

(d) Repeat the steps until all centroids have been assigned.

The K-means++ algorithm has been proven to have a complexity of O(logK)

[9]. This approach will solve the problem of having services of different types

and avoids creating a segment for every service individually.

2. System running similar services: Consider we have a system that runs only

Web servers. In this case, the similarity measure will be one, and the distance

between the services is zero. This scenario will make the segmentation process

difficult as all the services will be added to the same segment based on the

similarity score indicator. To overcome this issue, we can separate the connected

services by placing them into different segments to minimize the connectivity

between the services within the same segment. The purpose of separating the

connected services is to control the reachability from one service to another by

46

utilizing the DFW rule functionality. The process of separating the services

into the segment should consider the optimal number of segments and the cost

of adding DFW rules as described earlier.

3.6 Scalable Attack Graph Generation

In the previous sections, we presented our approach for establishing segments and

obtaining the optimal number of segments. In this section, we show our algorithm

for generating the attack graph (AG). The process to get the scalable attack graph

includes generating a sub-AG for every segment and examining the connectivity be-

tween the segments. If two or more segments are connected through the DFW rule,

we need to merge the sub-AGs of the connected segments. The final graph is called

the Composite Attack Graph (CAG), which has segments as nodes and DFW rules as

edges connecting the segments based on the service connectivity that may lead to pre

or post-conditions to exploit the vulnerabilities. Procedure Attack Graph Generation

in Algorithm 4 shows these steps, where the input to the Algorithm is the established

segments, the vulnerable services, and the list of DFW rules (R). After analyzing this

algorithm, the complexity of generating the AG becomes O((N
K

)2) because the total

AG’s cost is divided by the total number of segments.

Definition 3 Composite Attack Graph (CAG) is a tuple CAG={K, E, N}.

• K denotes the set of all segments. Each segment has a sub attack graph (sub-

AG), i.e., sub-AG1, sub-AG2 ∈ K. The sub-AG represents the vulnerable ser-

vices (vs1 . . . vsN) and the connectivity relationship between the vulnerable ser-

vices within the same segment.

• N denotes the set of all nodes present in the CAG. A node is an individual

segment p that can be denoted by Np. The nodes can be conjunct nodes Np
C,

47

disjunct node Np
D or root node Np

R. A link from segment pi to segment pj

indicates reachability to a vulnerability in the target segment pj. In other words,

this link is the result of exploiting segment pi, which we call post-condition that

is needed for the attacker to reach and exploit pj. Hence the post-condition from

pi becomes a pre-condition pj.

• E ⊆ EK
pre ∪EK

post is the edges present across all segments and corresponds to the

DFW rules. If an edge from segment pi creates a post-condition in segment pj,

we denote the post-condition edge using E
pj
post = Npi

C ×N
pj
D .

We showed how to establish the segments and how to establish an AG for each one.

Yet, there will be a connecting link from one segment to the other, as shown by the

red links in Figure 3.6. This communication link can be a directional or bi-directional

link. We need to establish the DFW rule that will prevent the attacker from exploiting

this communication link for every case. Placing a DFW rule can also be for the

directional link or bi-directional communication. For example, the administrator may

only place a DFW rule to allow communication from http 2 to SQL 2. Controlling

such reachability at the granularity of communication between services allows us to

separate the sub-AG and enhance the AG generation’s scalability. We can also add

one or multiple DFW rules for one communication link. The difference will be the

direction of the communication and the specified port number of the running services.

Note that a bi-directional communication link might create a cycle in the graph. To

break the cycle, we need to place a DFW rule that manages both communication

directions. To show the resulting AG of the example in Figure 3.6, We provide Figure

3.8 (a), which shows the AG for the system without considering any segmentation.

It is noticed that the graph is huge and complicated to analyze. The graph has more

than 40 nodes and 100 edges. To enhance the visibility of the Figure, we highlighted

48

the Figure with colored boxes. Once our segmentation approach is applied, Figure 3.8

(b) below shows the resulting AG after using the segmentation approach. The red

arrows indicated the placed DFW rule that controls the reachability from one node in

one segment to the other. These firewall rules also indicate the pre-conditions for the

attack to be successful and for the attacker to transition from one segment to another.

It can be noticed that the provided Figure is cycle-free. The difference between the

two figures is the massive number of nodes present in the top Figure due to the

nodes’ available reachability. By utilizing the proposed segmentation approach in this

research, we can develop a scalable graph representing the vulnerability dependency

between the vulnerable services and showing how an attacker can exploit one node

and transition to multiple other nodes. Another advantage of reducing the AG’s size

is reducing the overall security risk. As the graph size decreases, the administrator

will be able to effectively identify the critical attack paths based on the number of

connected nodes or using other attack path identification methods and effectively

securing the attack path [110, 88].

49

(a) Before Segmentation

(b) After Segmentation

Figure 3.8: The Output of the Attack Graph (a) Before & (B) After Applying The

Segmentation Approach. The Cumulative Exploitation and Risk Probability Values

Are Shown in The Graphs, Where The Segmentation Approach Reduces The Cumu-

lative Risk Value.

50

3.6.1 AG Validation:

The validation of the generated AG can be achieved using a risk-based calculation

that utilizes the attack paths within the AG to measure the security state. For this

purpose, we utilize the work by Chung et al. [36] that derives probability-based

scoring to compute the cumulative risk probability of each node in the AG.

The priori risk probability for the root nodes of the graph is denoted using GV .

Usually, this probability is in assigned a high probability, e.g., from 0.7 to 1. Also, in

the segmented AG, the probability of the priori nodes from one segment to another

has the same value range due to the complexity the DFW rule adds to exploit nodes

between segments. For internal exploitation nodes, each attack-step node, e ∈ NC ,

has a probability of vulnerability exploitation denoted as GM [e] that is assigned accord-

ing to the Base Score (BS) from the Common Vulnerability Scoring System (CVSS)

that is obtained from the NVD database [109]. For the presented vulnerable services,

we provide their corresponding CVSS score in Table 3.5. The base score value ranges

from 0 to 10. In our AG, each internal node is assigned a BS value divided by 10

such that:

GM [e] = BS(e)/10, ∀e ∈ NC (3.10)

The risk probability of AG nodes are determined based on the relationships with its

predecessors. This relationship is calculated using the conditional probability. We

use the CVSS score to calculates the conditional probabilities as follows:

• For any attack-step node n ∈ NC with immediate predecessors setW = Parent(n) :

Pr(n|W) = GM [n]× Πp∈WPr(p|W) (3.11)

For example, nodes 2, 4 & 3 are predecessors to node 5. Hence, Pr(n|W) for

node 5 = 0.3937.

51

• For any privilege node n ∈ ND with immediate predecessors setW = Parent(n) :

Pr(n|W) = 1− Πp∈W (1− Pr(p|W) (3.12)

For example, nodes 7 & 8 are predecessors for node 9. Hence, Pr(n|W) = 0.502.

After calculating the conditional probabilities for all the internal nodes in the AG and

CAG, the risk values from all the predecessors can be merged to get the cumulative

risk probability for each nodes as follows:

• For any attack-step node n ∈ NC with immediate predecessors setW = Parent(n) :

Pr(n) = Pr(n|W)× Πp∈WPr(p) (3.13)

For example, nodes 2, 4 & 3 are predecessors to node 5. Hence, Pr(n) for node

5 = 0.155.

• For any privilege node n ∈ ND with immediate predecessors setW = Parent(n) :

Pr(n) = 1− Πp∈W (1− Pr(p)) (3.14)

For example, nodes 7 & 8 are predecessors for node 9. Hence, Pr(n|W) = 0.845.

Using these equations, we show on Figure 3.8 that the total risk value in the first case

is ∼ 0.86 and it decreases to ∼ 0.721 in the segmented graph. The reason for the

reduction is due to the fact that the segmented AG has less number of attack paths

due to the utilization of the DFW rules. The user can benefit from this approach in

order to validate the output of the AG and whether or not the segmentation approach

has benefited the risk assessment of the system.

3.6.2 AG Update:

In a large cloud system such as the data-center network, services are added and

removed rapidly. The change in the services will require reanalyzing the AG to

52

ensure an accurate representation of the security state. To update the AG, we first

need to examine which segment this new service should include. According to the

compactness measurement, this process is simply ‘classifying’ the service to place it

in the most similar segment. We may do so by calculating the distance from the

new service to all existing centroids. The nearest centroid to the new service will be

chosen as a segment for the service. After classification, we examine the effects of

the service on its local segment and the other segments. If the service is connected

to a service within the same segment, we recompute the segment’s sub-AG. If the

service is connected through the DFW rule to other segments, we merge the sub-AGs

of those segments. This ensures that we account for the local and global effect of the

service on the attack graph and the system’s overall security state. Procedure Update

AG in Algorithm 4 shows how the update process occur.

AG Cycle Detection and Removal:

During AG computation and generation, a situation where a cycle appears in the

graph, where there are multiple reasons for AG cycles. One of the most popular

is the redundant post-conditions of vulnerabilities. According to [111, 28, 62], cy-

cle detection and pruning is part of minimizing the AG size (in terms of nodes and

edges) to provide a better analysis, ensure graph correctness, and most importantly,

produce more scalable AG. Because of vulnerability dependency and post-conditions

redundancy, the resulted AG may have a cycle in which the cyber adversary may

transition from the current node back to a previously exploited node. More specifi-

cally, the interconnections between an organization’s networking devices will lead to

connectivity dependency and will not treat those connections independently [62]. In

a real-life scenario, attackers will not go back to exploit a node they already visited

and exploited. This will only increase the chance of getting detected by the secu-

53

rity administrator and require additional effort, which the attacker would want to

exploit other non-previously visited nodes. Consequently, the attack path that leads

to exploiting a node that has already been exploited should be removed. The cycle

detection and removal are shown in Algorithm 5. This algorithm checks the cycle’s

existence at each level of the AG generation process. Lines 31-43 check the vertices

of each segment (sub-AG, line 35). The vertex is checked for cycle using the proce-

dure isCycleUtil (line 1-19). The data structures visited[] and recStack[] check all the

children nodes of the current node using depth-first search (DFS) algorithm. If the

cycle is detected in the sub-AG, the edge causing the cycle is removed - line 13. In

connections across two segments, which can lead to a cycle, the distributed firewall

(DFW) checks the flow rules between two segments. If the rules have similar actions

(except DENY rule) - lines 23 and 24, a DENY rule - line 25 is added to prevent

such rules, creating bi-directional links, which, in effect, removes the cycles created

by such inter-segment rule dependencies.

54

Algorithm 2 Segmentation and Scalable AG Generation.

1: Input: Segments, VS, R

2: Output: CAG

3: procedure Attack Graph Generation

4: for all Segments do

5: Compute sub-AG for segmenti

6: run Detect-Cycle()

7: for all subAGs do

8: if connected (subAGi, subAGj, R) then

9: merge (subAGi, subAGj)

10: procedure Update AG

11: r ← new DFW rule

12: vs← new vulnerable services

13: if (r ∩ vs = φ) then

14: continue

15: else if (vsi & vsj ∈ segmenti) then

16: new attack path(vsi, vsj, r)

17: else

18: get sub-AG of vsi & sub-AG of vsj

19: merge sub-AGs

55

Algorithm 3 Attack Graph Cycle Detection and Removal

1: procedure IsCycleUtil(i, visited, recStack)

2: if (recStack[i]) then

3: return true

4: if (visited[i]) then

5: return false

6: visited[i] = true . Mark node visited

7: recStack[i] = false

8: children = getAdjList(i)

9: for c ∈ children do . Loop over adj list of node

10: if IsCycleUtil(c, visited, recStack) then

11: removeEdge(c,i) . Remove i from adjList of c

12: return true . Back edge removed

13: recStack[i] = false

14: return false . Cycle not found

15: procedure CheckCross-Edge(dfw-rules)

16: for ri ∈ dfw-rules do

17: for rj ∈ dfw-rules do . i 6= j

18: if (ri.act equals rj.act) and (ri.act=FWD or NAT) then . Checking

for cycle

19: if (ri.src ∈ rj.dst) and (rj.dst ∈ ri.src) then

20: rj.append(rj.dst, ri.src, act=DENY)

56

21: procedure Detect-Cycle (Sub-AG[], dfw-rules[])

22: bool visited[]

23: bool recStack[]

24: for s ∈ Sub-AG[] do

25: while i ∈ s.V do . Loop over Sub-AG nodes

26: if IsCycleUtil(i, visited, recStack) then

27: return true . Cycle detected

28: return false

29: Check-Cross-Edge(dfw-rules) . Cross Sub-AG edges

57

3.6.3 DFW Dynamic Traffic Match and Flow Update

Figure 3.9: Distributed Firewall (DFW) Security Policy Rule Match and Flow Table

Update. The Flow Table Is Dynamically Updated Based on Security Policy Present

in Security Policy Database (SPD).

The DFW utilizes OpenFlow and REST API network to match the traffic based

on five tuples, i.e., {srcip, dstip, sport, dstport, protocol}. The process of how DFW

match and rule update process is shown in Figure 3.9.

• Step 1: The end-host (192.168.1.12) from intranet-segment, attempts to send

http traffic to port 80 and ssh traffic to port 22 of host (172.16.0.14) situated

in another segment dmz-segment.

58

• Step 2: Initially, when the flow table is checked using table lookup, there is

no rule present for the matching traffic rule. The flow table only has rules

with Flow ID {1-3} - Figure 3.9 (a). The packet is sent to the controller using

action=OFPP CONTROLLER.

• Step 3: The controller checks the security policies defined by the Security Policy

Database (SPD) rules present in the application plane, using northbound REST

API. The traffic pattern matches the Rule ID {3} - Figure 3.9 (b), (c). The

action defined in the SPD for this traffic is ALLOW.

• Step 4: The flow table is updated with a new OpenFlow rule - Flow ID {4}.

The fields corresponding to layers 3,4 are updated, and layer 2 fields are wild-

carded - Figure 3.9 (d). Thus, communication is enabled between two hosts. If

there is no match for the traffic in either the flow table or SPD, the traffic is

discarded based on white-listing policy.

3.6.4 Scalable Attack Graph Generation Cost Analysis

We consider the mapping between the physical network and virtual network shown

in Figure 3.10 (a). The physical topology consists of two segments, i.e., Segment 1 and

Segment 2, with VM1, V M2 ∈ Segment1 and VM3 ∈ Segment2. Each VM consists

of several services such as apache2, MySQL, etc. The connectivity relation between

the VMs is used to determine the AG for the entire network. For instance, if the

firewall rules are defined between VMs and segments in a coarse-grained manner, the

AG will be huge as shown in Before DFW case in the above Figure 3.10. According to

the white-listing policy, the traffic across each segment might be limited. Whereas,

if we enforce the white-listing policy at segment and service (SSH, MySQL) level

as shown in Figure 3.9 (c), the attack graph generated by incorporating the traffic

59

can be finite for security analysis. Once the DFW is enforced at different levels of

the network, i.e., at the granularity of per-VM, per-segment, or an entire network,

we obtain a sparse AG, as shown in After DFW in Figure 3.10 (a). We define the

Incidence and Laplacian matrices for the attack graph G below:

Definition 4 Incidence Matrix: The incidence matrix In(G) of graph G{V,E} is a

|V | × |E| matrix, as shown in the Figure 3.10 (b), with one row for each node and

one column for each edge. For each edge e(i, j) ∈ E, column entry e of In(G) is zero,

except for ith and jth entries, which are +1 and -1, respectively (if there is an edge

from i to j, the value is +1, whereas it is -1 if there is an edge from j to i in the graph,

the value is zero if there is no edge e(i,j)).

Definition 5 Laplacian Matrix: The Laplacian matrix L(G) of graph G{V,E} as

shown in the Figure 3.10 (c), is a |V | × |V | symmetric matrix, with one row and

column for each node. It is defined by

• L(G) (i,i): is the degree of node I (number of incident edges).

• L(G) (i,j): -1 if i 6= j and there is an edge (i,j).

• L(G) (i,j): 0 otherwise.

The application of DFW at different levels of the physical and logical network

increases graph sparsity. The aggregated graph has reduced state space compared to

the original AG.

60

3.6.5 Sparse Graph Connectivity Using DFW

v1 v6

v4

v3

v7v5

VM1 VM2 VM3

DFW (segment level)

Segment 1 Segment 2

DFW (cluster level)

v2

v6

v4

v5

v2

Attack Graph
Before DFW

Attack Graph
After DFW

VM1

VM2

VM3

VM3

VM2

VM1

𝐺 𝑉, 𝐸 → 𝐷𝐹𝑊 𝐺′{𝑉′, 𝐸′} – (1)

𝐺′ 𝑉′, 𝐸′ = (∀ 𝑖=1
𝑁 𝐺𝑖(𝑉𝑖 , 𝐸𝑖)) – (2)

𝐶𝑜𝑠𝑡(∀ 𝑖=1
𝑁 𝐺𝑖) + 𝐶𝑜𝑠𝑡 𝐷𝐹𝑊 ≪ 𝐶𝑜𝑠𝑡(𝐺) – (3)

(b) Incidence Matrix
of Attack Graph: In(G)

(c) Laplacian Matrix
of Attack Graph: L(G)

(a) Physical Nodes to Attack Graph Mapping

(d) Graph Construction Cost

e1

e2
e3

e4

e5 e6

e7

e8

e4 e6

e7

Figure 3.10: Distributed Firewall-based Multi-level AG Generation. Vulnerabilities

Have Been Color-coded Based on Their Severity. The Red Color: High-severity, Yel-

low Color: Medium Severity, Green Color: Low Severity. After DFW-based Optimal

Segmentation, High Severity Vulnerabilities Are Blocked, as Presented in the Figure.

The incidence graph In(G) and laplacian graph L(G) have the following properties.

• L(G) is symmetric, i.e., eigenvalues of L(G) are real and its eigenvectors are

real and orthogonal. For example, let e = [1, ..., 1]T be a column vector. Then

L(G)× e = 0.

• Matrices are independent of signs chosen for each column of In(G), In(G) ×

In(G)T = L(G).

• Let L(G)× v = λ× v and λ 6= 0, where v is eigenvector and λ is eigenvalue of

61

L(G),

λ = ||In(G)T − v||2/||v||2

λ =

∑
e(i,j)∈E (v(i)− v(j))2∑

i v(i)2

(3.15)

• Eigenvalues of L(G) are non-negative, i.e., 0 = λ1 ≤ λ2... ≤ λn.

• The number of connected components of G is equal to number of λi equal to 0.

In particular, λ2 6= 0 if & only if G is connected.

Using the properties defined above, we check the algebraic connectivity of two graphs

G and G’, which can be compared to checking the density reduction. The graph

G′{V ′, E ′} obtained in the case of After DFW scenario, is composed of sub attack

graphs (sub-AGs), G1, G2..., Gn, i.e., G′{V ′, E ′} = ∪Ni=1Gi, as shown in Figure 3.10

(d). Since G′{V ′, E ′} is obtained from G{V,E} after collapsing vertices and edges at

different layers using a multi-level DFW, it naturally follows that G’ is a subgraph

of G, i.e., G′ ⊆ G. We utilize an important corollary from spectral bisection algo-

rithm [138], and the properties of laplacian matrix discussed in this subsection to

derive the equation λ2(L(G′)) ≤ λ2(L(G)).

Result: G′{V ′, E ′} ⊆ G{V,E} → λ2(L(G′)) ≤ λ2(L(G)), i.e., on application of

DFW, the algebraic connectivity, and in effect, density of the AG reduces. Thus, our

approach, helps in creating scalable AGs (CAG) in a multi-tenant cloud network.

Cost Analysis: Upper bound on the cost can be obtained by considering that

graph G{V,E} is fully connected, in which case, the micro-segmentation will not

be able to achieve noticeable benefits. The cost of generating the full AG in the

absence of DFW, Cost(G), is much higher than using DFW. However, the goal of

micro-segmentation is to ensure that the graph is sparsely connected based on the

white-listing approach.

62

Consequently, Cost(G′) = ∀Ni=1Cost(Gi) + Cost(DFW) - Figure 3.10 (d) and

Cost(G′) << Cost(G) since the effort for generation of graphs G1, .., Gi is computed

in parallel with the help of SDN controller. The only additional efforts Cost(DFW)

is needed for checking DFW rules, and maintaining synchronization between different

DFW agents present on individual segments.

3.7 Experimental Results

In this chapter, we provide evidence of the viability of our approach through a

series of experiments. Our goal is to prove the scalability and effectiveness of the

proposed S3 framework. We conducted the first experiment to test the number of

vulnerabilities on the AG size (section 3.7.2). The second evaluation experiment is to

calculate the AG generation time as the number of services increases, and the number

of segments in the system also increases (Table 3.7 in section 3.7.3). As services are

added and removed to a dynamic system such as the data center network, measuring

the effect of adding new services is essential to understanding the security situation

better. We measured the impact of the services on AG generation time and updated

it according to Algorithm 4 (section 3.7.3). It is essential to check the SDN controller

overhead that is induced by the AG computing. Thus, we examined this overhead to

see how much the end-to-end throughput is affected when the AG is computed. Our

evaluation showed that the maximum overhead does not outpace 12% (section 3.7.5).

3.7.1 Experimental Setup

We created the system shown in Figure 3.2 to implement the experiments. We

utilized an OpenStack-based cloud network comprising two Dell R620 servers and

two Dell R710 servers, all hosted in the data center. Each Dell server has about 128

GB of RAM and 16 core CPUs. In addition to the components in table 3.6, we used

63

the latest version of Open vSwitch (OVS 2.13.90) as OpenFlow switches, and they

are connected to containers in the data plane. The details of software components

and implementation framework used for experimental analysis have been provided in

Table 3.6.

Table 3.6: S3 Components Used in The Experimental Evaluation.

Component Version/LOC Language/Framework

SDN Controller POX controller Python 2.7

Vulnerability

Scanner

Nessus

V. 8.8.0

Attack Scripting Language

(NASL).

Attack Graph

Generator

MulVal

V. 1.1
Datalog Modeling

Security Policy

Database
500 Python & MONGO DB

Data-Plane Variable Containers

3.7.2 Attack Graph Scalability Evaluation

Besides the impact of the vulnerability dependency created due to the interconnec-

tion between the vulnerable services, it is crucial to study how many vulnerabilities

in the system affect the AG. In this experiment, we want to study the number of

vulnerabilities on the AG scalability. To show the scalability of the S3 framework, we

simulated a system with an increasing number of vulnerabilities. Figure 3.11 shows

the experimental data where we emphasize the relationship between the number of

vulnerabilities and the size of the resulted AG in terms of nodes and edges, where

the x-axis shows the total number of vulnerabilities in the entire system. The y-axis

64

1002003004005006007008009001,000
0.1

0.5

1

1.5

2

2.5
·104

Number of Vulnerabilities

N
u
m

b
er

of
N

o
d
es

an
d

E
d
ge

s Nodes (NS)
Edges (NS)
Nodes (S)
Edges (S)

Figure 3.11: Comparison for the Number of Nodes (Blue) and Edges (Red) with No

Segmentation (NS) and After Using S3 Segmentation (S).

shows the number of nodes and edges in the AG. The nodes and edges without seg-

mentation (Nodes (NS), and Edges (NS)) in the AG are equivalent to MulVAL’s [115]

approach), respectively. The blue and red lines show the AG’s number of nodes and

edges respectively. The total number of nodes and edges before using S3, i.e., no-

segmentation (NS) when the system has over 1000 vulnerabilities is about 13k nodes

and 22k edges. This is due to the absence of the DFW rules affecting the reacha-

bility between the individual components in the system. After using S3, i.e., using

segmentation (S) where the DFW is enforcing the exact reachability information, the

number of nodes drops to about 5k, and the number of edges is 7k, respectively (

Figure 3.11). This is a significant reduction compared to an AG without any DFW

rules, which shows how valid the proposed micro-segmentation DFW-based approach

is, especially for large cloud systems.

65

3.7.3 Attack Graph Generation Time and Automatic Graph Update Evaluation

The scalability of AG is measured by the graph size and the time required to

generate the graph. We created several test cases to test the time required to generate

the AG when we have a different number of segments and a vulnerable services in

each of those segments. The process of generating the AG has two parts: a) The

pre-processing step, where the segments need to be established and the based on

the proposed segmentation approach and Algorithm 1. b) The AG generation step:

applying the Algorithm 4 to generate the graph.

Segments Preparation and Creation

To show the effectiveness of the proposed segmentation approach, we measure the time

required to establish the segments based on multiple numbers of vulnerable network

services in the system. The services are assumed to belong to different categories.

Recall that the segmentation complexity depends on the number of services, number

of clusters, the data dimensionality (services categories), and iterations. We present

the result of our experiment in Figure 3.12, where we test the time (Y-axis) required to

establish the segments (in the X-axis) for a different number of services. The number

of services’ categories is fixed to eight, as we discussed earlier. We perform parameter

tuning on the number of segments and services to measure the segmentation time.

We notice that the time in all of the cases is not significant, which indicates the

effectiveness of the proposed segmentation approach. The number of iterations to

establish the segments ranges between 2 minimally (50-100 cases) to 11 iterations

maximally (200-300 cases), with a 0.001 tolerance rate for the centroids convergence.

We compare our approach with the work of Chen et al. [29], where they achieved a

segmentation time of 8 nodes in ∼ 12 seconds. Our approach generates 10 segments

66

5 10 15 20
0

5

10

15

20

Number of Segments K

E
st

ab
li
sh

m
en

t
T

im
e

(s
ec

on
d
s) 50-100 Services

100-200 Services
200-300 Services
300-500 Services

Figure 3.12: Segments Establishment Time (in Seconds) Using the S3 Approach for

Different Number of Network Services and Different Segments.

for 50-100 services in less than 5 seconds. Therefore, our approach is more effective

as it does not require generating an entire AG before implementing the segmentation

in [29] approach.

3.7.4 AG Generation Time

After establishing the segments and assigning the services to them, the next step

is to measure AG’s generation time in the system. In the first test case, we are testing

how much time is needed to generate an AG for a system with 50-100 services with

various vulnerabilities on those services. This resulted in 5 segments, as can be seen

in the experimental analysis. Moreover, we measure the graph density of the resulted

AG using the formula in equation 3.16:

Density =
| E |

| V | (| V | −1)
, (3.16)

where | E | is the total number of edges for the AG, and | V | is the total number of

67

Table 3.7: Sub-AG Generation Time, Graph Density, and the Number of Nodes and

Edges for Each Sub-AG When the Number of Services Is Increasing.

Services 50-100 Services 100-200 Services

#Segments 5 10 15 20 5 10 15 20

Time (seconds) 2.22 3.88 5.925 8.22 2.386 4.93 7.2112 10.229

Edges 6552 12186 18990 27450 14400 28494 40698 52956

Nodes 5829 10842 16895 24420 12805 25338 36191 47092

Density 19.3E-05 10.4E-05 6.6E-05 4.6E-05 8.8E-05 4.44E-05 3.1E-05 2.4E-05

Services 200-300 Services 300-500 Services

#Segments 5 10 15 20 5 10 15 20

Time (seconds) 3.56 7.15 10.6 13.96 6.46 11.05 15.91 19.7

Edges 18819 44100 63918 88065 34242 65922 93117 128580

Nodes 18101 39210 57951 79668 32533 60698 85623 116304

Density 5.7E-05 2.9E-05 1.9E-05 1.4E-05 3.2E-05 1.8E-05 1.3E-05 9.5E-06

nodes or vertices in the AG. The results in the table show a scalable AG generation

time. For instance, in the last case in Table 3.7 where the system has 300-500 services,

68

Table 3.8: Mean and Standard Deviation for the AG Generation Time for the Dis-

played Number of Segments in Table 3.7.

#Segments 5 10 15 20

Mean time (Seconds) 3.66 6.75 9.91 13.03

standard deviation 1.96 3.17 4.46 5.04

and it is divided based on the segmentation approach into 20 segments, the AG

generation time is about 20 seconds, which is a reasonable time for such a large

system. In Table 3.8, we show the average time for the AG generation and the

standard deviation for the 5, 10, 15, and 20 segments cases, respectively. A closer

look into the AG generation time and the segments’ establishment time indicates that

the proposed segmentation approach using the S3 framework can generate a scalable

AG within a reasonable time. Furthermore, S3 proves that dividing the services

into segments and applying the AG into those segments is much more efficient than

establishing an AG for the system when the services are not segmented, as we show

below.

AG Update Time:

To measure updating the AG when a new service is added, we implemented an ex-

periment to test this change in the system. Table 3.9 shows the number of newly

added services and the corresponding AG generation time after the update. When

ten new services are added, the AG generation time takes about 3 seconds. If the

number of new incoming services increases to 50 services, the AG time takes about

4 seconds. This experiment is implemented when the system has 50-100 services,

and these services were present amongst 10 segments. The evaluation proves that an

69

update to the system configuration will not impact the AG generation time, and it

shows how S3 becomes interactive in a real-time fashion.

Table 3.9: The AG Generation Time After a Service Update

#New Services AG Update Time

10 3.02

20 3.2

30 3.5

40 3.64

50 3.88

AG Generation Time without Using S3:

To prove the effectiveness of our DFW-based segmentation approach, S3, we con-

ducted additional experiments to examine the generation time by not considering the

segmentation and using a Firewall (centralized one) and segmentation by DFW. Table

3.10 shows the AG generation time with and without segmentation for the specified

number of hosts. The vulnerable services are simulated to give the displayed number

of segments. The results when using DFW are significantly better than when not

using segmentation and using a centralized firewall. This is due to the absence of

east/west traffic among running services, which did not specify reachability informa-

tion between running services. As a result, AG is computed centrally and resulted in

significant performance improvement compared to traditional generating an AG.

70

Table 3.10: Sub-AG Scalability Generation Time by Using a Firewall, and Both with

and Without Segmentation. The Segmentation Approach Proved to Be Effective in

Reducing the Generation Time of AG.

Services # Segments

Generation Time

without Segmentation

(seconds)

Generation time

using Segmentation

(seconds)

750 5 3.51 0.872

1450 10 17.344 2.083

2490 15 4980 4.468

3360 20 6720 10.027

3.7.5 SDN Controller Overhead

It is crucial to check the communication overhead induced by using our approach

for AG generation and computation on the node that is computing the AG. We

experimented to ensure the AG module is not inundating the computing node and

to ensure the available throughput is not decreasing significantly. Our proposed

Algorithm 4 computes all sub-AGs for each generated segment, and our goal is to

test the effect of these operations on the communication throughput.

The evaluation of the controller overhead is conducted by testing a different num-

ber of services using the same number of segments and with a different number of

segments using the same number of services. Figure 3.13 shows the first case where

the system has a range of services in every case starting from 10 services to 50 services,

and the number of segments in each case is 5. The total number of vulnerabilities in

each case is ∼ 4000 vulnerabilities. We measure the throughput using the iperf tool,

which measures and weighs out the end-to-end bandwidth. A comparison between

71

Figure 3.13: SDN Controller Overhead When the Number of Services is Different in

the 5 Segments Test Case.

the communication throughput is shown in the Figure before the AG computation

(the blue bar) and during the computation process (the green bar). The results are

an average of three runs. It is noticed that the worst-case overhead does not ex-

ceed ∼ 12% in the 40-50 services case. Figure 3.14 shows the experiment results

for changing the number of segments and fixing the number of services to 100. We

also note that the overhead induced by the AG computation does not exceed ∼ 12

in the 15 segments case. The throughput’s decline is justified by the overhead the

AG generation module is causing and affecting the computing node. To generate the

full AG, the following procedures will occur: AG computation, cycle-detection, and

merging of the sub-AGs for each segment into the full AG. These experiments prove

that our approach does not have a significant impact on the SDN controller in such

a large-scale system.

72

Figure 3.14: SDN Controller Overhead When the Number of Segments Is Different

Using 100 Services in Each Segment.

3.7.6 Cycle Detection Time

We utilized the cycle detection and removal Algorithm 5 to experiment to check

the time required to detect and remove cycles in the system using S3. The cycle

detection time for 100 hosts is around 52 ms. The cycle detection time for 300

hosts is approximately 163 ms. As shown from Algorithm 4, after computing each

sub-AG, the procedure of Detect-Cycle() is called where it traverses the output of

the sub-AG and examines nodes and edges of the graph. The implementation of

the cycle detection and removal is done by analyzing the DFW rules present on the

OpenFlow switches and the information we have from the AG generation module. The

experimental results show that cycle detection time scales linearly with the number

of hosts. This is also in agreement with the complexity analysis for the algorithm,

as discussed in Section 3.6. Research work for cycle detection in the context of the

73

0 50 100 150 200 250 300 350 400 450 500
0

30

60

90

120

150

180

210

240

270

300

Number of Services

C
y
cl

e
D

et
ec

ti
on

T
im

e
(m

s)

Figure 3.15: S3 Cycle Detection Time With a Linear Scaling.

attack graph, conducted by Homer et al. [62] was able to identify cycles in ∼150 ms

for ten hosts and 46 vulnerabilities. In comparison, in our work, we can detect cycles

for 200 services in ∼150 ms, which reinforces the scalability of our proposed solution

is in terms of AG generation and graph correctness.

3.8 Conclusion and Discussion

The significant increase of cyber attacks and threats require robust, scalable, and

efficient security analysis approaches to help system administrators defend the system.

A fundamental approach to model the security dependencies in the system is through

attack graphs (AGs). This chapter proposed a scalable security state framework (S3)

that divides the network into smaller components and models each component’s vul-

nerabilities by enforcing granular security policies. The proposed microsegmentation

approach can establish scalable AG for an extensive system such as the data center

network. In effect, S3 reduces the number of critical security states and the AG gen-

eration time, as shown in section 3.7.3. To present an efficient approach to obtaining

the best number of segments, we proposed a segmentation algorithm derived from

74

the K-means clustering approach. The algorithm divides the services into segments

according to their similarity and separates them using the DFW rules.

Furthermore, we introduce a novel cycle detection Algorithm 3.4.2, which can

identify and resolve cyclic dependencies between attack graph nodes. The resulting

loop-free attack graph allows scalable security analysis over an extensive cloud net-

work. In this work, we do not consider the case of policy conflict between the resulted

micro-segmentation approach or the security policy database that may accidentally

allow attackers to access sensitive parts of the system, even if there is no vulnerability.

Also, we did not compare our segmentation algorithm with other graph-based seg-

mentation and clustering algorithms. In the future work, we plan to investigate these

problems and examine their effects on proactive cybersecurity defense mechanisms.

Segment Validation and Segmentation Heuristics: We utilized a Segmen-

tation Index based sub-AG (segment), that has a validation heuristic approach. The

algorithm provides information about each segment’s appropriate size, such that the

complexity concerns for AG generation are addressed. Still, each segment is highly

cohesive (has the same type of services and vulnerabilities). This will help in the

application of security patches to the full segment. There are other segmentation

heuristics, classified under graph clustering algorithms, e.g., k-spanning tree, which

creates k-groups of non-overlapping vertices, shared nearest neighbor (SNN) graph.

We plan to compare the optimal segmentation heuristic discussed in Section 3.5.1

with other state-of-the-art graph segmentation heuristics in future work.

Attack Graph Evaluation: In this chapter, we discussed a scalable approach

for generating the AG. There are other applications of AG for security analysis after

it is generated. For example, AG is widely used for moving target defense (MTD)

[133], a game theory-based approach deployed by the defender to increase the benefit

of the security system and to make the defense mechanism proactive. Moreover, AG

75

can be used to explore zero-day vulnerabilities if we deploy a graph neural network-

based analysis model on the graph to either perform node or link prediction or graph

ranking methods as discussed in [100, 98]. Security policy conflict [66, 124, 31, 34]

handling, however, is another area of research that will be considered as a part of

future work.

Stateful Distributed Firewall-based Segmentation: In this work, we pro-

posed the use of stateless DFW. However, it is essential to account for a stateful-based

firewall [32] for micro-segmentation-based security analysis. A stateful firewall should

provide an understanding of intent-based policies and specifying access control list

policies. Moreover, DFW scalability should be considered to achieve optimal and ef-

ficient security monitoring for system services. In the future, we plan on studying the

effect of stateful distributed firewall functionality on the AG generation and how a

better security scenario analysis can be achieved by considering the stateful capability

to enhance the large-scale data center network.

76

Chapter 4

INTENT-DRIVEN SECURITY POLICY MANAGEMENT FOR

SOFTWARE-DEFINED SYSTEMS

4.1 Abstract

Different network controllers are utilized in a multi-domain software-defined sys-

tems (SDx) to manage the networking resources. However, these controllers operate

using a different high-level language (intent). Thus, the admin needs to perform

cross-layer translation from the user requirements to the underlying network con-

troller format, increasing human-in-the-loop overhead. There are two primary secu-

rity and management challenges involved in managing multi-domain controllers. The

first challenge is how to design an SDN controller language that can effectively con-

vert human-specified networking policies at the control plane into the network flow

rules level at the data plane. The second challenge is how to reduce the complexity

of network flow rules conflict checking at the data plane. To address these challenges,

This chapter present a new intent-based security policy enforcement solution called

INTPOL. First, INTPOL provides a unified intent rules that abstracts the network

admin from the underlying network controller’s format. Second, INTPOL develops

a networking service solution to use a bounded formal model for network service

compliance checking that significantly reduces the complexity of flow rules conflicts

checking at the data plane level. Finally, INTPOL is expendable from a single SDN

domain to multiple SDN domains and hybrid networks by applying network service

function chaining (SFC) for inter-domain policy management.

77

4.2 Introduction

In a Software-Defined Networking (SDN) environment, the SDN control plane

manages a global network view. As pointed out in [136, 23, 60, 163, 59], in a multi-

SDN domain networking environment, policy misconfigurations in middleboxes (net-

work functions) is a common cause of middleboxes failure. The papers also provide

details that 67.3% of firewalls, 63.2% of proxies, and 54.5% of intrusion detection

systems (IDS) network functions fail due to misconfigurations. The networks’ safety

and security properties (policies) are also called Invariants [99, 93]. These network

policies need to be verified and checked for policy conflicts such as overlapping be-

tween the flow rules’ headers in a scalable fashion to ensure security, safety, and

smooth functioning of the network functions. To illustrate the described problem,

we present the existing network flow rule generation and management in Figure 4.1.

The SDN control plane is the interface between the application plane and the data

plane. The user specifies a high-level intent at the application plane that reflects their

network/security requirements. The intent is defined by the user’s desired security

goal or business requirement [117]. Our focus in this work is on application plane in-

tents translated into control plane policies. Thus, this chapter focuses on SDN-based

networks, and the proposed framework should not be considered technology-neutral.

78

Figure 4.1: SDN Control Flow for multi-Tiered Network Policy Checking Using INT-

POL Framework.

This chapter covers a broader range of conflicts without increasing the policy

conflict-checking space. The reconciliation mechanism used in this research optimizes

the policy space, which leads to compact policy representation. No exiting work

provides a framework for policy checking at the application plane, i.e., analyzing

the policy requirement when the user inserts a policy at the management interface to

facilitate the data plane conflict checking. Each application plane policy can generate

multiple flow rules (at the data plane) that conflict with each other. We build an

abstracted bounded formal model and potential conflict-inducing queries to analyze

potential conflicts before inserting the user requirements in the form of OpenFlow

rules at the data plane (proactive approach of conflict checking). If the higher-level

user requirements are not checked, the conflict-checking complexity for flow rules on

the data plane will rise dramatically. For example, our evaluation of the Stanford

topology in section 4.6.3 reveals that for every 20 created intents, there are 413

79

conflicting flow rules, a tenfold increase. Therefore, the fundamental issue is that if

policy conflicts exist at the application plane level and are not analyzed until they

get translated into flow rules in the data plane, the policy conflict checking and

management overhead in the data plane increases significantly.

Our goal is to address two questions in this chapter: First, how to design a human

to SDN controller language to effectively translate human-specified networking policies

into network flow-level rules. The framework can be applied to SDN and hybrid

networks that comprise SDN and traditional networking components. Second, how

to reduce the complexity of the policies and flow rules conflict checking? We propose

a novel approach to address the above problems by creating a new intent-driven

policy framework, INTPOL. This framework allows the network administrator to

express security policies at the application plane level. The policy designers can create

network management and operational policies while remaining abstracted from the

underlying SDN controller.

The security policies specified in the application plane are parsed for predicates

of the INTPOL framework. A bounded model representation of state changes of the

network packet is created using NuSMV [37] based framework, which captures the

state changes of the packet as it transitions between network functions and hosts. The

INTPOL intent rules translates the security policies into the REST API call format of

the corresponding SDN controller. Realizing network policies at the data plane level

introduces many more flow rules. Detection and resolution of conflicts amongst those

flow rules at the data plane level can impact network services’ performance. This

problem can be dramatically amplified when expanding SDN systems into multiple

SDN domains, where inter-domain networks consist of SDN and traditional routing

devices.

The key technical novelty of INTPOL lies in how to ensure consistent behavior in

80

the network, which is considered a network-wide invariant verification issue [161, 20].

Existing solutions such as the work conducted by Yuan et al. [158] provides a scalable

formal solution for network policy verification using optimizations like model pre-

computation and query containment. The issue with this research work, however, is

that formal models like Linear Temporal Logic (LTL) and Computational Tree Logic

(CTL) are PSPACE complete in the worst case [12], which limit the scalability of

the model. The NetSMC approach [158] cannot express arbitrary path quantification

scenarios, e.g., a packet will be delivered in the future, whereas INTPOL handles such

policy scenarios. INTPOL models the problem of verifying network policies using a

Bounded Model Checking (BMC) [40] to check for the existence of network policy

violation within the bounds placed on the network, e.g., all paths up to length K. This

approach ensures sufficient coverage for checking policy violation issues in the network

and reduces the space complexity of network policy verification from PSPACE in the

worst case to linear time (linear in the scale of the number of network states).

4.2.1 Chapter Contributions

The contributions of this chapter are summarized as follows:

• We introduce INTPOL, a new intent-based framework for translating network

policy requirements into a unified format. The provided intent rules in INTPOL

will abstract network administrators from underlying network controllers’ pol-

icy specification semantics. The framework allows easy expression of complex

scenarios such as service function chaining (SFC) (Section 4.4.5) and hybrid

networks comprising traditional and open-flow networks (Section 4.4.5). The

INTPOL scales well compared to existing research works in terms of policy com-

position (Section 4.6.2). INTPOL also utilizes bounded model checking (BMC)

and application layer policy optimization (section 4.4.6) to achieve scalable pol-

81

icy composition and conflict checking.

• We utilize two optimization approaches (section 4.4.6) to pre-compute the ap-

plication plane policies. The pre-computation of packet traversal through the

SFC paths will reduce the data plane conflict checking. We demonstrate how

the application plane verification and pre-processing using INTPOL will reduce

the data plane conflict checking time. We utilize a large-scale network dataset,

Stanford Topology [81], to show that conflict overhead at the application plane

is minimal ∼ 250-800x times lower than policy conflict checking at the data

plane as described in section 4.6.3.

The rest of the chapter is organized as follows: section 4.3 discusses the related

work to INTPOL, focusing on intent-based policy configuration and policy conflict

checking. We present INTPOL system model and the intent management of different

network functions in section 4.4. The implementation details of INTPOL are pre-

sented in section 4.5. We evaluate the INTPOL framework and conduct performance

evaluation in section 4.6. Finally, we conclude the chapter and discuss future work in

section 4.7.

4.3 Related Work

4.3.1 Intent-based Policy Configuration

Several research works introduced intent-based policy expression and management

approaches for network policy conflict. PGA [125] proposed the concept of end-

point-group (EPG) to abstract the policy specification from the underlying physical

infrastructure. A high-level tagging is used to define the endpoints instead of low-

level addresses such as IP addresses. This abstraction approach exploits the graphs

feature to resolve and detect policy conflicts. Also, PGA analyzes the Access Control

82

List (ACL) policies and converts them into a graph structure to find conflicts between

ACL policies. The graph structure input is the possible communication between the

network endpoints and the required service function chain for every communication.

The policy checking method for data plane flow rules presented in this chapter covers

a broader range of conflicts. In contrast, the examples presented in the PGA paper

(the load balancer & byte counter) cover one class of conflicts, the polymorphism type

(we emphasize the different conflicts later in the chapter). Furthermore, the PGA

approach does not include cases that include security policies with the same actions

and matching packet header as we do in the presented conflict-checking approach.

The reconciliation of these redundant rules can optimize the speed of the end-to-end

packet processing, unlike PGA’s approach that increases the policy checking space.

JANUS [1] builds upon the policy graph abstraction (PGA) framework proposed

by Prakash et al. [125], which represents dynamic temporal policies and QoS policies

in an intent-based language. Janus also aims to maximize the number of configured

policies by utilizing heuristic algorithms.

Han et al. [58] presented a framework for providing an interface to add intents by

the user and translate them into network policy. The authors do not consider the

scenario of multiple controllers running in the environment, nor do they consider the

added intents’ conflicts. Jacobs et al. [72] discussed how AI can be utilized to allow

networks to be more intelligent. They showcased how intent-based networking (IBN)

can translate high-level policies without the overhead of translating them into net-

work flows. Most existing works lack a framework that can interpret diverse network

requirements and perform end-to-end network property verification using a unified

language.

We compared the scope of policy composition approach used in INTPOL with

similar network modeling research works such as Frentic [54], Pyretic [127], and Cov-

83

isor [75]. These works do not efficiently model hybrid environments (mixture of SDN

and non-SDN environments). Covisor uses a clustering mechanism, which violates

the least privilege security requirement principle. The controller in one domain can

access the resources of another domain. INTPOL uses a unified model for ensuring

resource isolation in a hybrid environment (see Section 4.4.5). Furthermore, INTPOL

provides a scalable formal approach to allow network operators to specify network

intents at the application plane. This abstracts the network operator from the policy

configuration details for each network controller.

4.3.2 Network Policy Conflict Checking

Several existing solutions for network policy checking and invariant verification,

such as [84, 14, 119, 139, 72, 7]. One of the earlier research work for network invariant

verification is Veriflow [84]. Veriflow aims to check the network invariant in real-

time with the change in the network state. Thus, Veriflow only checks the packet

reachability (as one type of invariant) between two machines after the flow has been

deployed [14].

Stateful network function verification has been studied by researchers as well in

[147, 158]. The stateful network function verification goal is to enhance network

invariant property checking by incorporating stateful network functions such as the

stateful firewall. NetSMC [158] uses an existential first-order logic and query con-

tainment to provide stateful network verification. NetSMC framework uses image

pre-computation to help provide a scalable formal model. The formal model for net-

work invariant verification suffers from the number of verification states’ scalability

challenges. We utilize a bounded model checking approach to address the scalability

limitation inherent in existing research works and design INTPOL to scale linearly

in the number of model states. Additionally, the authors described how the NetSMC

84

model is limited since it cannot handle arbitrary path quantification, e.g., in some

future time packet from host h1 to h2 is delivered. As described in the next section,

we use temporal logic to quantify policies for such scenarios. The authors in Epinoia

[147] use bit-vector encoding and path segmentation for optimizing the intent check-

ing procedure. We utilized bounded model checking to optimize the network verifi-

cation. Additionally, we utilized policy conflict checking at the two-levels application

plane and data plane to optimize the performance of conflict checking. Another key

difference between INTPOL and Epinoia is that Epinoia utilized a traditional net-

work setup (Internet Topology Zoo) for evaluating its reachability. In contrast, we

have assessed a hybrid network setup containing both SDN and conventional net-

work components. In addition, INTPOL uses LTL for expressing network behavior

since complex network functions can be expressed using network invariant provided

by LTL, compared to the limited expressive capability afforded by SMT solvers used

in Epinoia. One main difference between LTL and SMT solvers is that the value of

an LTL formula at a particular time instant is logically related to previous time in-

stants [79]. This models the network behavior more closely since the network packets’

behavior is highly dependent on all the network functions that apply to incoming net-

work traffic. A recent study by Varadharajan et al. [140] proposed a new application

that handles the policies between different SDN domains to address multi-domain

SDN policy management. The paper uses a policy handle and policy token. The

handle shows the visited autonomous system (AS) by the flow and the packets. The

evaluation of the paper offers efficient network communication in terms of throughput

and delays. However, one key feature of that work is missing: verifying the policies

effectively and ensuring end-to-end reachability without conflict between the policies,

as we do in this chapter.

85

4.4 INTPOL System and Model Descriptions

In this section, we first describe the design of the INTPOL framework. We then

follow with examples to cover different security policies like Firewall and SFC. Next,

we describe the INTPOL scalable policy checking framework; Furthermore, we present

the intent conflict checking at various SDN infrastructure levels, showing how the pre-

sented framework can easily be expanded to hybrid environments (containing both

SDN and traditional network elements). Finally, We discuss Service Function Chain-

ing (SFC) as an example to explain how INTPOL can handle multiple network func-

tions and complex packet processing scenarios.

4.4.1 INTPOL Framework

Intent refers to application plane policies used for expressing specific actions for a

target network. The intents can be used for expressing routing, packet forwarding, and

monitoring decisions in a network. The purpose of employing an intent is to achieve

a certain business goal that the user has expressed. The intents are compiled into

network policies, e.g., routing intent can be compiled into routing policies, endpoint

intent can be compiled into several endpoint policies, each of which covers partial

flow space of the intent [91, 99]. The intent-based networking developed primarily for

the self-driving network such as SDN networks [117]. The ONOS SDN controller is

one of the famous examples that provides intent-based networking [10].

We present Figure 4.2 that shows the end-to-end handling of network intents at

the application plane. The network operator specifies some intents at the application

plane, as can be seen from the block Network Intents in Figure 4.2.

• Traffic is allowed between hosts h2 and h3 (h2 . h3).

• Traffic is allowed between hosts h3 and h4 (h2 . h4).

86

Intent Type : { Policy Intent | Query Intent }
Policy Intent : { Network Function | SFC }

Query Intent: { Basic Reachability, Policy Conflict }

INTPOL
Intent Specification

Network Topology

Bounded Formal Model
policy/query

2a

1

3a

s1

h1 h2

s3s2

h3 h4 h5model-
success

counter-
example Intent

Datastore

assert-intent
3b

model-
update

3c

SDN Controller

network-
topology

network-intent

2b
flow-rule

4

5

h1 → h5

h2 → h3

h3 → h4

h2 ⇸ h4

Network Intents

Figure 4.2: Intent Specification and Formal Modeling. The Users Can Specify Policy

and Query Intents at the Application Plane.

• Traffic originating from host h2 should never reach host h4 (h2 7 h4).

On the one hand, The Policy Intent is used to perform network updates like

inserting a rule to block particular network traffic (Firewall) or inspecting suspicious

traffic (Intrusion Prevention System). On the other hand, the Query Intent can help

the network operator assert the safety, auditing access control, and service availability

in the network. When the user specifies a network intent (1), the intent is converted

into a formal logic formula (2a). The Bounded Formal Model utilizes the network

topology information extracted from the SDN controller (2b). The intents present

in the Intent Datastore are fetched to construct/update a bounded Linear Temporal

Logic (LTL) model.

The model is evaluated for some basic safety properties, such as packet reachabil-

ity, which conflicts with the existing intents in an automated fashion. Suppose the

intent violates any network safety properties. In that case, the user will respond with

a counterexample from the model to show which state(s) in the network are violating

87

the network properties (3a). If the intent does not violate any network safety or

reachability properties, it is stored in the Intent Datastore (3b), and the bounded

model is updated with a new intent (3c). The intent is passed to the SDN controller

(4) to create an SDN controller-specific intent [122, 10]. The SDN controller installs

flow rule (5) to realize the user intent at the data plane level. Due to space limita-

tions, we refer the reader to the following reference for more details on how the SDN

controller establishes flow rules from the intents [126, 42, 10].

Definition 6 Security Policy is a rule from the ruleset of the entire network R,

i.e., ri ⊆ R, where R = {∀mi=1ri}. Furthermore, each rule ri, can be decomposed based

on packet match condition, and actions ri = {mi, ai}.

The match field of the packet header’s values can be further classified into individual

headers that are part of the packet. The packet match mi consists of physical port

of incoming traffic δi, source and destination hardware address, αsi, αdi, source and

destination IP address, βsi, βdi, source and destination port addresses, γsi, γdi, proto-

col δi, priority value ζi, for a given virtual network function. For instance, a stateless

Firewall (iptables) allows assignment of rule priority besides the packet header entries.

Consider the policy {h1 → h5, ALLOW} defined at the application plane. We

have the source and destination addresses βsi = h1.ip, βdi = h5.ip for the rule ri,

and ai = ALLOW . Similarly, we can use the application layer intents to define

other policies such that we specify the layers 2-4 source and destination addresses

and action to allow or deny the network traffic.

4.4.2 Policy Conflict Detection

Existing intent-based networking approaches [74, 122] require the network admin

to do a cross-layer translation from the high level-intents and network requirements

into the appropriate controller’s format. Based on the translation results, the con-

88

troller can then generate the underlying network flow rules. However, the translated

intents or the generated flow rules can have policy conflict [124, 66]. The policy con-

flict can occur for different reasons, such as a) policy inconsistencies due to service

function chaining processing where multiple flow tables handling the same flow(s)

might have conflicting actions; b) SDN controllers or virtual private network (VPN)

implementations that modify header content could result in flow rules being inadver-

tently being applied to specific flows; c) flow rules injected by different applications

using the northbound APIs (between the control and application planes) can have

conflicting actions for the same flow; d) matching on different OSI layer addresses

resulting in different actions; and e) administrator error where they insert or update

a flow rule that conflict with the existing flow rules in the data plane flow table(s).

The error can be because of the address space overlap between the new and the old

flow rules, or it can be a new action for the flow rules, such as allowing access to

the database server from the public network. In contrast, the previously installed

flow rule prevents such action. While this list is not exhaustive, it demonstrates how

common policy conflicts may be in SDN-based cloud infrastructures. The current

research works [124, 66] primarily focus on flow-rule level conflict checking to ensure

that the requested network resources allocation does not compromise existing flow

and security policies. Moreover, the class of policy conflicts checked in existing re-

search works, PGA & JANUS [125, 1], only covers rules with matching header and

distinctive actions.

Policy Conflict Detection in INTPOL

We introduce two-level conflict analysis in this research work. The conflict checking

at the application plane using a bounded model checking (BMC) approach results in

a significant reduction of policy conflict detection time at the data plane. When an

89

intent is added at the application plane level, and policy optimizations are performed

to eliminate redundant policies, it is translated into the controller-specific intent com-

mand. The SDN controller, e.g., ONOS [16], allows specifying a HostToHost intent,

which allows communication between network hosts, and PointToPoint intent which

allows traffic to pass through two switches’ ports. If we consider a host intent, e.g.,

add-host-intent h1 h5, based on the example network in Figure 4.2, ONOS controller

a) identifies the path between hosts, i.e., h1-s1-s2-s3-s5, and b) generates Openflow

rules to establish communication along the path. Additionally, the controller marks

appId in the flow rule as org.onos.intent to show that the flow rule was added using

the intent module. It is noteworthy that there will be five flow rules installed in Figure

4.2 for a single host intent. If there are conflicts amongst intents at the application

plane, it will, in turn, generate flow rules which will conflict with each other.

Intent−Type : : Pol icy−In tent | Query−In tent

Pol icy−In tent : : Network−Function | SFC

SFC : : Network−Function , NW−Function [∗]

Network−Function : : F i r ewa l l | IDS | Routing | LB | DPI

F i r ewa l l : : Header , Action

Header : : Hw−Src , Hw−Dst , Src−IP , Dst−IP ,

Src−Port , Dst−Port , Proto

Action : : Forward | Drop | Modify

Query−In tent : : Check−Con f l i c t | Check−Loop | Check−Reachabl i ty

Figure 4.3: INTPOL Intent Rules Describing Different Kind of Intents Where the

User Can Specify at the Application Plane.

90

INTPOL Intent Rules Description

Next, we describe the intent rules for the INTPOL framework. Figure 4.11 shows

the step-wise flow for interpreting the user requirements at the application plane and

translating them to the corresponding bounded model program to check the necessary

network policies. If we consider the steps for handling the user intents in Figure 4.2,

then the steps 1-3 that is related to the application of the INTPOL framework are

implemented. If an invariant in the user’s policies are violated, the network admin

is notified as shown in step 3a. We illustrate the example process of translating the

policy and query intents into a formal model using the Firewall as a sample network

function. Consider the network topology described in Figure 4.2. In the rules example,

we have a high-level network intents for hosts, h1 → h5, h2 → h3, h3 → h4, and

rules denying traffic between hosts h2 and h4. Each network host is connected to the

network switch using a layer 2 switch port. Similarly, network switches are connected

to the network controllers (ONOS, ODL) using a layer-2 port. The bounded formal

model accepts these requirements. The network topology information fetched from

the SDN controller creates a model of packet propagation and changes in the packet

state as the packet traverses along different paths from the source to the destination in

the network. Linear Temporal Logic (LTL) [12], a form of model checking technique

provided by NuSMV [37], in particular, characterizes the linear path induced by

the Finite State Machine (FSM) of the network states [12]. The following section

showcases how our model utilizes the bounds based on the network policies and

topology to reduce the number of model checking states at the application plane.

Then, we present the overall complexity of handling policy conflicts in the data plane.

91

4.4.3 Programming Network Functions (NFs)

We consider an example of programming an individual network function in the

INTPOL framework. Consider the Deep Packet Inspection (DPI) as an example,

derived from the Open source DPI tool nDPI [46]. The tool utilizes open-source

libraries to inspect the packet header and payload.

P r o t o c o l s

Format :

tcp : 8 1 , tcp :8181@HTTP

udp:5061−5062@SIP

tcp : 860 , udp :860 , tcp :3260 , udp :3260 @iSCSI

tcp :3000 @ntop

S u b p r o t o c o l s

Format :

host : ” goog l e syndacat ion . com”@Google

host : ” venere . com”@Venere

host : ”kataweb . i t ” , host : ” r epubb l i ca . i t ”

@Repubblica

Figure 4.4: Data Collected by nDPI that Identifies Main Format, Protocol, and

Information Related to Subprotocol.

The traffic collected using nDPI, shows patterns <tcp|udp>:<port>,...@<proto>,

for the main protocol. For example network traffic over ports 81, 8181 is tagged

as HTTP as shown in Figure 4.4. The host:"<value>",...,@<subproto> pattern

shows host, and subprotocol information. If the host’s DNS information is present

in the traffic, the nDPI identifies host, and subprotocol, e.g., ”venere.com”, and

92

”Google”, as domain provider.

Network−Function : : DPI

DPI : : Proto , Subproto

Proto : : <tcp | udp>:<port>,

<tcp | udp>:<port> [∗] @<proto>

Subproto : : host : ” va lue ” [∗] @<subproto>

Figure 4.5: Expression of DPI Function from OpenDPI As an INTPOL Network

Function

TThe INTPOL framework can be used to express the corresponding network

function (NF) based on the ruleset of DPI (see Figure 4.5). The primary network

function of DPI can be classified into protocol and sub-protocol. The protocol and

sub-protocols can be expressed into protocol type (TCP or UDP), port, host website

accessed, and the medium through which the query took place (e.g., Google).

4.4.4 INTPOL Model Checking Framework

Bounded Model Checking

Formal models, such as LTL, suffer from scalability challenges. The total number of

model states can be as large as 1020 for some models [18]. Bounded model checking

(BMC) [40] checks the state space for a counterexample using a user-specified bound

k. BMC builds a boolean formula for each value of K that is satisfiable if a counterex-

ample of length K exists. For a given transition system with ‘s’ states, the model can

be expressed using k×s variables. Once the bounded model is created, SAT [143] is

used to check the boolean formula’s satisfiability. The bounded model checking for-

mula’s completeness is established using completeness threshold, liveliness property,

93

and induction tests, as Biere et al. [18] discussed above.

Establishing Threshold for Bounded Model Checking: The bound K on a

model of the network M can be specified in terms of reachablity diameter rd(M), i.e.,

the minimum number of steps required to reach all reachable states. Another possible

mechanism is recurrence diameter rdr(M) to utilize the minimum number of steps for

reaching all reachable states. In our example 4.8, rdr(M) = 5, i.e., distance from host

h1 to h5, and rd(M) = 11, which indicates the number of steps needed to perform

breadth first search over the network. These thresholds are utilized as a baseline to

define bounds on the model during the empirical evaluation.

Formal Model for Network Verification

Network Invariants is defined as the network properties desired for optimal func-

tioning and security of the network. For instance, virtual network isolation, absence

of forwarding loops in the network, end-to-end packet reachability (absence of black

holes), etc. Network verification is achieved by expressing network invariants based on

the current topology configuration, traffic management rules, and high-level network

requirements. We use temporal logic-based (LTL) network verification [12] to check if

the underlying network meets high-level network requirements. An LTL invariant is

evaluated along the linear path. If the invariant state holds for all the paths starting

in a given state, we consider the invariant to be true.

Table 4.1 describes the formal semantics used for LTL. We can describe the net-

work invariants, such as global reachability G p, conditional packet processing p ∪ q,

and white-listing policy violations for the underlying network using the queries cre-

ated using the LTL model checking rules (invariants). The invariants serve as Query

Intent in our system. The next section discusses how service function chain intent

and network function intents are represented in the INTPOL system.

94

Table 4.1: Formal Semantics of LTL, Which Is Used for Expressing Network Invariants

LTL Rule Rule Interpretation

F p (in the fu-

ture p)

Condition p holds in one of the future time

instants.

G p (globally p) A certain condition p holds globally in all

future time instants.

p U q (p until q) Condition p holds until a state is reached

where condition q holds.

X p (next p) Starting condition p is true in next state.

4.4.5 Intent Handling in INTPOL

We discuss how an intent submitted by the user, as described in Figure 4.11,

is handled by the INTPOL system. We describe scenarios - SFC Intent, Network

Function Intent such as Firewall (FW) that can be defined individually or as part

of SFC Intent. This approach allows the user to check end-to-end reachability and

policy conflict checking with the help of illustrative examples. Also, we provide a use

case that shows how multi-domain SDN scenario verification is achieved.

Service Function Chaining Intent

We consider Service Function Chain (SFC), as shown in Figure 4.6. The example

describes the traffic processing between different end-point groups (EPGs[1-4]). Also,

The network gateway (NAT) in the example acts as a traffic classifier. There are

95

EPG1

FW1

NAT

DPI

FW2

FW3

TO

EPG2

EPG3

EPG4

Figure 4.6: A Service Function Chain (SFC) Scenario with Multiple Network Func-

tions (NFs).

three separate service chains in this example. The HTTP traffic is classified at the

NAT gateway and follows the corresponding service chain path, with Deep-Packet

Inspection (DPI), i.e., SFC1: EPG1 → NAT → FW1 → DPI → EGP2. If the

traffic is meant for video streaming services, it follows an alternate path with Traffic

Optimizer (TO), i.e., SFC2: EPG1 → NAT → FW2 → TO → EGP3. All other

traffic follows SFC3: EPG1 → NAT → FW3 → EGP4. We illustrate the use of

INTPOL intent rules, as described in Figure 4.7, to represent the individual service

chains. We consider the network is following a white-listing approach for stronger

security, and the traffic is only allowed between EPG1 as the source and EPG[2-4] as

the destinations. Therefore, the traffic between EPG [2-4] is blocked as part of the

network policy.

The example in Figure 4.7 illustrates the implementation of complex network ser-

vice chains. Variables dst and sf in lines 1-2 are used to define packet destination and

service function, respectively. The formal model of the packet propagation through

a chain of different network functions is described in lines 5-14. For instance, if the

packet service function is NAT and the destination is EPG2, it indicates the packet

96

MODULE main

VAR dst : {EPG1, EPG2, EPG3, EPG4}

s f : {NAT, FW1, FW2, FW3, DPI , TO}

ASSIGN

next (s f) := case

s f = NAT & (dst=EPG2) : FW1;

s f = FW1 : DPI ;

s f = DPI : EPG2;

s f = NAT & (dst=EPG3) : FW2;

s f = FW2 : TO;

s f = TO : EPG3;

s f = NAT & (dst=EPG4) : FW3;

s f = FW3 : EPG4;

TRUE: NAT;

esac ;

next (dst) := dst ;

INIT s f = NAT;

Figure 4.7: Example Usage of LTL-based Model Checking Framework for Implement-

ing Three Separate Service Function Chains.

belongs to the SFC1, and the packet is forwarded to FW1, DPI, and finally, EPG2,

shown in lines 6-8. Similarly, lines 9-11 represent the implementation of SFC2, and

lines 12 and 13 are the implementation of SFC3.

97

Network Function Intent

We consider an individual network function Firewall (FW) to check how the rules

of network functions can be expressed using the INTPOL framework. Consider two

invariants I1, and I2, that can be expressed using LTL equations (1) & (2) below:

I1: Traffic sent by host h1 should eventually reach host h5.

∀p ∈ Packet : G(send(h1, p) ∩ any(p))→ F (recv(h5, p)) (4.1)

I2: any traffic sent by h2 should not reach h4.

∀p ∈ Packet : G(send(h2, p) ∩ any(p))→ G(¬recv(h4, p)) (4.2)

Equation (1) checks the reachability property between h1 and h5, and equation

(2) checks the firewall rules between hosts h2 and h4. If any network state along the

patch h1-h5 violates the network invariant, it will be produced as a counterexample

of the model. Appropriately, we can verify higher-level network intents using model

checking based on the LTL formal semantics presented earlier.

98

MODULE main

VAR switch : { s1 , s2 , s3 } ;

s r c : {h1 , h2 , h3 , h4 , h5 } ;

dst : {h1 , h2 , h3 , h4 , h5 } ;

ASSIGN

next (switch):= case

switch = s1 & (dst !=h1 | dst !=h2) : s2 ;

switch = s2 & (dst !=h3) : { s1 , s3 } ;

switch = s3 & (dst !=h4 | dst !=h5) : s2 ;

TRUE: s1 ;

e sac ;

next (s r c):= s r c ;

next (dst):= dst ;

INIT switch = s1 ;

check l t l bmc −k 5 ”G (s r c=h1−>F(dst=h5)) ”

check l t l bmc −k 5 ”G (s r c=h2−>G(! dst=h4)) ”

Figure 4.8: An Example of a Bounded LTL Model Utilizes Network Topology from

the SDN Controller to Create a Model Specification. The Last Line Represents a

Query Intent to Check If Any Packet Starting from (src=h2) Can Eventually Reach

(dst=h4)

We consider an example of modeling network intents from Figure 4.2 using a

bounded LTL model. Since the intents are representative of the Firewall rules, a

type of Policy Intent, we model the packet header using the example described in

99

Figure 4.8. The variables switch, src, and dst in the VAR section - lines 2-4 represent

the scope of values for switches, source, and destination addresses, respectively. We

use these variables to represent the values for this example, but depending on the

type of intent, the values can take numeric range, e.g., src=192.168.1.0/24, switch

=of:00000001. The ASSIGN section lines 5-13 check the next state transition of a

network packet. When the packet is located at switch s1, if the packet’s destination

address is not h1 or h2, i.e., (dst!=h1 — dst!=h2) is forwarded to switch s2. Alter-

natively, we can consider the next transition of state switch for this packet to be s2.

Similarly, based on the packet header match conditions, the state transition of the

packet is determined in the program. The block INIT - line 14 is used to specify the

packet’s starting state.

Case Study: Conflict Checking in Hybrid-SDN Networks

SDN domain can be combined with traditional networking such that the traditional

network functions, e.g., BGP routers, establish multi-domain communication. This

type of networking architecture is called hybrid-SDN [5, 128]. Figure 4.9 shows an

example of the hybrid-SDN networking architecture. Some components are Software-

Defined, e.g., Switches (s1-5) and (s11) are managed by ONOS-01, whereas switches

(s6-10) are controlled by ONOS-02. The hybrid environment presents challenges

such as certain parts of the network being managed using Commercial Off the Shelf

(COTS) network management applications as discussed by Vissicchio et al. [142].

It is challenging to address some research questions like a) how will route handling

decisions by BGP be in sync with sub-network managed using SDN? b) can the

disconnection between SDN and non-SDN environments introduce security loopholes?

c) How will different parts of the hybrid network ensure network sync to guarantee

flow propagation, packet delivery, and optimal network performance?

100

OpenFlow
Switch (s1)

OpenFlow
Switch (s10)

SDNIP
ONOS-01
10.10.10.3/24

SDNIP
ONOS-02
10.10.10.4/24

Router
(r10)
10.0.10.1Router (r1)

10.0.1.1

192.168.1.254

192.168.10.254

h1 h10 h91 h100

10.0.2.10110.0.1.101

BGP Router

10.10.10.1

AS 6501 AS 6510

Management
Switch (s11)

(r2-r9)

(s2-s9)

(h11-h89)

Figure 4.9: A Hybrid Network Scenario With Network Components Based on Tradi-

tional Networking (BGP Routing) and Openflow Network (Highlighted in Blue).

We expand the INTPOL framework to provide end-to-end policy verification in

a hybrid network scenario with Border Gateway Protocol (BGP) for communication

across multiple domains, as provided in Figure 4.9. The BGP-based routing technol-

ogy role is to enable communication between the network managed by ONOS-01 and

ONOS-02. Moreover, the end hosts (h1-h100) in each network are connected to the

SDN networking using routers r1-r10. Hence, the Openflow network can only see the

packets coming from routers. This also shows the BGP router is executing control

and data plane functionality. The routers apply NAT functionality to masquerade

the local IP address into the public domain IP to enable BGP communication.

We represent the network elements in the hybrid-SDN as network functions. The

network functions are tested to verify how the rules can be expressed using the

101

bounded model checking approach. For example, if we want to check for network

reachability in a hybrid environment to guarantee packet delivery, we can express

the hybrid network model using the INTPOL framework. The network reachability

invariant I3 can be expressed as:

I3: Network flow sent by host h1 should eventually reach host h100.

∀p ∈ Packet : G(send(h1, p) ∩ any(p))→ F (recv(h100, p)) (4.3)

Where the equation is used to check for reachability property between h1 and

h100. Suppose there is any network state along the path h1-h100 that violates the

network invariant. It will be produced as a counterexample of the model, and the

high-level network intent is verified using the bounded checking model.

102

MODULE main

VAR NF: { s1 , s2 , sm , bgp1 , bgp2 } ;

s r c : {h1 , h20 } ;

dst : {h1 , h20 } ;

ASSIGN

next (NF):= case

NF = bgp1 & dst !=h1 : s1 ;

NF = s1 & dst !=h1 : sm ;

NF = s1 & dst =h1 : bgp1 ;

NF = sm & dst =h1 : s1 ;

NF = sm & (dst =h1 | dst = h20) : { s1 , s2 } ;

NF = bgp2 & dst !=h20 : s2 ;

NF = s2 & dst =h20 : bgp2 ;

NF = s2 & dst !=h20 : sm ;

TRUE: s1 ;

e sac ;

next (s r c):= s r c ;

next (dst):= dst ;

INIT NF = s1 ;

check l t l bmc −k 5 ”G(s r c=h1−>F (dst=h20)) ”

Figure 4.10: An Example of a Bounded LTL Model Utilizes Network Topology from

the Hybrid-SDN Example in Figure 4.9 to Create a Model Specification. The Last

Line Represents a Query to Check If Any Packet Starting from (src=h1) Can Even-

tually Reach (dst=h20). The Example Is Shortened to Simplify the Presentation, but

It Can Be Extended Between Hosts h1 & h100.

103

Figure 4.10 provides an example of modeling network intents that represent hybrid-

SDN connectivity. The example shows the connectivity verification between the

source host h1 under the BGP router bgp1 and the destination host h2 under BGP

router bgp2. Both routers are assumed to be connected to the management switch s11

as shown in Figure 4.9. The variables NF, src, and dst in the VAR section represent

the network function (switches and routers), the source node, and the destination

node, respectively. We used variables to represent values in this example, but nu-

merical values can also be assigned, such as an IP address. The ASSIGN section

lines 5-18 check the next state transition of a network packet. When the packet is

located at router bgp1, it will be transmitted to the switch s1 if the destination is

not h1. Similarly, based on the packet header match conditions, the state transition

of the packet is determined in the program. The section INIT (line 21) is used to

specify the packet’s starting state. In the evaluation section 4.6.1, we show the perfor-

mance of the INTPOL LTL-BMC model, checking for inter-domain and intra-domain

communication.

4.4.6 Application Layer Packet Caching and Policy Composition

The use of INTPOL intent rules creates a formal model for packet processing across

all the network functions and flow rules. We create a multi-level packet processing

model by first processing SFC dependencies and individual network function level

dependencies. As a result, it is possible to pre-compute the paths of all packets

across the network that traverses several network functions. To facilitate the two-

level checking in INTPOL, we perform two approaches at the application plane layers

1) match and action caching and 2) policy composition to reduce the conflict checking

overhead at the data plane.

104

Packet Match/Action Caching

We define a few notations P - set of all packets and R - set of all rules present in

the network functions. The goal of the policy optimization at the application plane

is to pre-compute the path of the packet(s) along the SFC. When the packet arrives

at a network function, two functions are activated: cacheMatch (P) and cacheAction

(P). They check the result of the packet transition along the path in the SFC that

is defined for the packet. If a previous packet transitioned along the service function

chain, the match, action values for the packet are cached at the application plane.

For instance, if p ∈ P matches the rule of FW1 network function rFW1, we check the

result of a similar packet along the path FW1 → DPI → EPG and insert the rule

into the switch flow table at the data plane.

Policy Composition

The role of the policy composition is to check all the rules having overlapping header

space and common actions, i.e., ∀r ∈ SFC, where each rule is defined by match,

action pair, or r = {m, a}. Consider two rules ri, rj, mi ⊂ mj, and ai == aj, we can

create a new rule that combine the two rules by rk = ri ∪ rj. Many policies in the

application plane are a subset of one another, which increases the packet processing

overhead at the data plane since the SFC checks redundant policies. We can compose

such policies at the application plane, which will reduce the packet checking overhead

at the data plane. If ai 6= aj, we can create rule rk, where mk = mi ∪ mj, and

ak = {ai, aj}. This approach shows the case where packet headers (match fields)

have overlap but have different actions. Such policies can be abstracted to apply a

set of grouped actions to the packet instead of sequentially. The joint application of

actions on the packet header reduces the packet processing overhead once the policies

105

Figure 4.11: Example of Network Intents Expressed at The Application Plane.

are applied to the data plane in flow rules.

4.4.7 Policy Conflict Detection

We illustrate the problem that can exist because of a mismatch between high-

level network security and orchestration requirements (intents). In the example Fig-

ure 4.11, we have high-level network intents for hosts, h2→ h3, h3→ h4. This creates

OpenFlow rules at switches s1, s2, s3. The combination of these rules can cause a

violation of security requirements. We can have h2 → h3 ∪ h3 → h4 = h2 → h4.

The problem of identifying such network anomalies can become quite involved in a

network consisting of thousands of sub-networks, hosts, and switches. Moreover, the

example above describes a case of a simple access control list (ACL) intent expressed

at the application plane. The advent of network function virtualization (NFV) [106]

has allowed the creation of network functions such as load balancer, intrusion de-

tection system (IDS), and deep-packet inspection (DPI) as part of a programmable

network. Identifying policy inconsistencies across different network protocol stack

layers and network paths becomes a challenging task. Existing rule-conflict detection

mechanisms [124, 66] focus exclusively on OpenFlow rule conflicts at the data-plane

106

Intent
Composition

Policy Conflict
Cheking

Network Invariant
Verification

Policy Translation
and Mapping

OpenDaylight ONOS RYUFloodlight

Flow ID Match Action

Id=f4b8e appId=org.onosproject.fwd,,
selector=[IN_PORT:1,
ETH_DST:*:00:00:10,
ETH_SRC:*:00:00:01],

treatment=
[OUTPUT:4]

Id= a4b8f appId=org.odl.acl,
selector=[IN_PORT:1,
ETH_DST:*:00:00:10,
ETH_SRC:*:00:00:01],

treatment=
[DROP]

POX

Control Plane

Application Plane

Data Plane

Northbound REST API

OpenFlow API

1 Insert FWD intent

2

Insert ACL
intent

Edge 01 Edge 02Cloud

3 4 invoke ACLinvoke FWD

56

h1 h2 h3 h1 h2 h3

insert flow
(id=f4b8e)

insert flow
(id=f4b8f)

proxyIDS

Figure 4.12: Example of Policy Translation and Flow Rule Insertion Using Two

Different Northbound REST-based Controller Modules (e.g., ODL, ONOS).

level. Conflict detection and resolution mechanism at the switch level can intro-

duce unnecessary read-write latency issues and interrupt the normal functioning of

the network. Symbolic model checking (SMC) can express the network properties

at a higher level of abstraction. The model checkers such as NuSMV [38] allow the

granular representation of network security and end-to-end connectivity properties.

4.4.8 Motivation

We consider the example of networking modules Forwarding present in the SDN

controller ONOS, and Access Control List (ACL), present in the SDN controller

OpenDaylight (ODL) to highlight the problem associated security and network man-

agement policies inserted in an SDN managed data-centric network. In this example

network present in the Figure 4.12, we have OpenFlow switch s1, connected to two

107

SDN controllers ONOS, and OpenDaylight.

Step 1 - network admin inserts an intent to allow packet forwarding along ports of

switch s1 (s1-h1, s1-h2, s1-h3, s1-s2).

Step 2 - during a similar time frame, another network admin inserts an Access Control

List (ACL) Intent.

Step 3 - the northbound REST API present at the application plane invokes ONOS

module org.onosproject.fwd().

Step 4 - OpenDaylight module org.odl.acl() module is invoked by REST API call

from another session. Since there is no inherent mechanism present as part of Open-

Flow framework which checks the dependencies between objectives of two security

policies, we can have conflicting flow rules. As shown in table present in Figure 4.12,

the Flow ID f4b8e is inserted in switch s1 in Step 5 by ONOS controller. This flow

allows traffic entering port 1 of s1, with fields {ETH DST = *:00:00:10, ETH SRC =

*.00:00:01} to be forwarded. On the other hand the Flow ID f4b8e inserted in s1 by

ODL controller in Step 6 blocks the traffic matching the same criteria.

4.5 System Architecture and Implementation

4.5.1 Experimental Setup

We run INTPOL on an OpenStack-based (Openstack Victoria) cloud network

comprising two Dell R620 servers and two Dell R710 servers, all hosted in the data

center. Each Dell server has about 128 GB of RAM and a 16 core CPU. The SDN

controllers ONOS & Opendaylight-Carbon provided network management and orches-

tration in our framework. For the network topology, we used Open Virtual Switch

(OVS 2.13) for the data plane switches and utilized Docker container1 to add hosts

1https://www.docker.com/

108

into the topology. Furthermore, we show the utilized system’s components description

in Table 4.2.

Table 4.2: INTPOL Components Used in the Implementation

Component LOC/Version Language /

Framework

SDN Controller OpenDaylight Car-

bon, ONOS

Java, REST APIs

Intent Specification 500 python with Flask

APIs

Bounded Formal

Model

2.6.0 python, NuSMV

Intent Datastore 3.30.1 SQLite

Network Topology Variable Docker Containers

4.5.2 INTPOL Implementation

We show Figure 4.13 that describes the dataflow in our INTPOL framework and its

different components. INTPOL has an INTENT checking, Policy Composition, Policy

Conflict Detection and Resolution, and Intent Processing modules. Our INTENT

Checking module is responsible for determining the intent type, i.e., a network intent

or query intent. We utilize the administrative panel’s intent to create a formal network

infrastructure and policies model. The network policies are checked for the type of

intent. If the intent is a Network Intent (network function rule or service function

chain requirement), the intent is added to the existing state transition system defined

109

for the formal model. Alternatively, if the type of intent is Query Intent, it is used

to create the LTL queries for checking the network invariants. For instance, if the

query asks about the possible path between two network hosts, we create a query

to check if a packet starting from the source address finally reaches the destination,

as explained in the previous section. We also use the network topology information

to place the bounds on the formal model. The value of the bound depends on the

network diameter for our model. If the invariant results in a counterexample (violation

of network policy), the network admin is informed about the violation.

The Policy Composition module receives the high-level requirements from the ad-

ministrator and compose an appropriate policy based on the target network’s SDN

controller to account for the syntax requirements (see Figure 3). Additionally, the

SDN controller is queried to extract information about network topologies, such as

connectivity between hosts and switches. We formulate a formal model using the

transition system and the topology information. These requirements are then sub-

mitted to the INTENT Processing that will check if the intent is appropriate, send it

to the SDN controller for compilation and installation, and finally report back to the

administrator whether the intent is installed or not. Based on the Policy Composi-

tion, we check using the formal model approach (BMC model) for the conflict in the

policy, and later on in the Flow Rule Conflict Checker.

Algorithm 4 describes the processing of intents at the application plane and the

generation of the formal model. The rules are sent to REQUIREMENT-PARSER (R)

function, which parses the submitted network intents. If the type of intent is Ser-

vice Function Chain - lines 25-27, the intent passes to the SERVICE-FUNCTION-CHAIN

(SF-List) procedure. The source and destination network functions are identified -

on lines 13-14, and the model is updated with state-transition corresponding to the

path between the network functions. Similarly, if the type of intent is an individ-

110

ual Network Function, then a call to NETWORK-FUNCTION (r) checks the matching

criteria for a rule (firewall rule, IDS rule) and corresponding action - lines 19-20.

The formal model is updated with the values of the header match and related ac-

tion - line 21. Suppose the type of intent is Query Intent. In that case, the call to

NETWORK INVARIANT (r) procedure is invoked for processing of the submitted query,

e.g., checking end-to-end packet reachability, application plane conflict check - lines

4-10. If the network invariant is satisfied, the rule is kept in the list of rules that

a call to RULE-CONFLICT-CHECKING (R) in algorithm 5 will further analyze. If the

invariant fails, the admin is notified - line 32, and the affected rules (formal model

states presenting counterexamples) are removed from the set of non-conflicting rules.

The implementation goal of INTPOL is to reduce the data plane conflict-checking

results. If the application plane verification procedures do not find any violations, we

introduce an approach to cash the packet traversal in the SFC path. The procedure

Packet Caching in Algorithm 4 examines the packets in the SFC path. If a packet

belongs to the matching cache, we know it has been seen before, and we obtain the

packet’s action. The traffic header of the incoming network traffic P is examined.

If there is a match, the data plane is populated with the corresponding flow rule

instead of reviewing the entire chain of network function states from the source to

destination lines 39-42. If there is no match, we check the packet processing for

the {header, action} pair along SFC link lines 42-45. This helps in faster packet

processing at the application layer.

111

Algorithm 4 Model Generation and Verification

1: procedure Network-Invariant (r)

2: add-ltl-spec (r)

3: K ← network diameter

4: add-model-bounds (K)

5: if network-invariant-violation (r) then

6: return False

7: else

8: return True

9: procedure Service-Function-Chain (SF-List)

10: for i ∈ range (SF-List[1,n]) do

11: Extract-Path (nfi, nfi−1)

12: add-src (nfi), add-dst (nfi−1)

13: add-state-transition (nfi, nfi−1)

14: procedure Network-Function (r)

15: header, action ← {match, action} ∈ r

16: add-src (header.src), add-dst (header.dst)

17: add-state-transition (header, action)

112

18: procedure Requirement-Parser (R)

19: for r ∈ R do

20: if r.type ∈ Service-Function-Chain then

21: SF-List ← r.extract()

22: call SFC-Create (SF-List)

23: else if r.type ∈ Network-Function then

24: call Network-Function (r)

25: else if r.type ∈ Query-Intent then

26: else if call Network-Invariant (r) == False then

27: send (rc ∈ R to admin) . Rules in violation

28: call RULE-CONFLICT-CHECKING (R)

29: procedure Packet Caching (P)

30: for p ∈ P do

31: if p[header] ∈ cacheMatch (P) then

32: p[header] ← checkMatch (P)

33: p[action] ← cacheAction (P)

34: else

35: checkLinkSFC (p[header])

36: checkLinkSFC (p[action])

113

Algorithm 5 Flow Rule Conflict Checking Algorithm

1: procedure Rule-Conflict-Checking (R)

2: R← current flow rules

3: R = {match(R), A(R)}

4: C ← Conflict Set

5: for i ∈ {1,n} do

6: for j ∈ {1,n} do

7: if match(Ri) ⊆ match(Rj) OR match(Rj) ⊆ match(Ri) AND

action(Ri) == action(Rj) then

8: C.add(Inheritance)

9: else if match(Ri) ⊆ match(Rj) OR match(Rj) ⊆ match(Ri) AND

action(Ri) 6= action(Rj) then

10: C.add(Polymorphism)

11: else if match(Ri) ∩ match(Rj) 6= ∅ AND action(Ri) == action(Rj)

then

12: C.add(Aggregation)

13: else if match(Ri) ∩ match(Rj) 6= ∅ AND action(Ri) 6= action(Rj)

then

14: C.add(Composition)

In the Algorithm 5, we check the network policies for overlapping header and

action pairs. We classify policies into categories Inheritance, Polymorphism, Aggrega-

tion, and Composition. This helps in identifying conflicting policies in a service chain.

If the header of one policy is a subset of another policy, as described in Section 3.4.2,

the rules can be merged. The policy conflict cases Inheritance and Polymorphism -

lines 7-10 cover these scenarios. The policy optimization by merging such overlapping

114

policies will help reduce the overhead of flow rule conflict checking at the data plane.

The conflicts Aggregation, and Composition - lines 11-15, can also pose issues such as

security violations and packet processing overhead. We use the knowledge of domain

experts to resolve conflicts of this nature and ensure there are no sub-optimal policies

or security loopholes in the application plane. Consider two rules, rule 1 - {permit

icmp}, rule 2 - {deny 10.0.0.0/8}. These rules have overlapping header space but

different actions. These rules will conflict under the class Polymorphism. Conflict

resolution can be performed using rule priority. Consider the case where 10.0.0.0/8

is a production network (security-critical). We can assign high priority to rule 2 to

resolve the policy conflict. On the contrary, if the ICMP traffic is important for the

business operation, rule 1 will be assigned a higher priority to resolve conflict. The

policy intents are compiled into a bounded formal model (Section III-B) using the

rules described in Figure 3.

4.5.3 Intent Processing Module

SDN controller’s intent framework allows the users to specify their networking and

security policies. Figure 4.13 shows INTPOL data flow to process the intents and

install the flow rules. Consider an intent that specifies the reachability requirement

between host h1 and host h5. This Intent(s) is sent asynchronously to SDN controller’s

Compiling stage. The Compiling stage performs various checks on the incoming

intent, and if the compilation is successful, a list of installable intents is returned. The

intents need to be validated for their feasibility and connectivity with regards to the

given network topology, network criteria, resource availability, etc. The compilation

process computes a primary shortest path and a backup path between the two given

hosts. Here, the shortest path from host h1 to host h5 would be h1-s1-s2-s3-h5,

given that all the links have the same weights. Suppose a node specified in the user

115

Network
Policies

SDN
Control Plane

Transition
System

Intent
Type?

Network
Invariant

Formal
Model

Query Intent Network Intent

get model bound (K)
mark and return
conflicting policy

non-conflicting policy

Install
Req

Compiling

Installing Recompiling

Failed

Installed

Withdrawing

Withdraw
Req

Withdrawn

Policy
Checking

Call Intent
module

Flow Rule
Conflict Checker

Check flow conflicts

Flow Rule
Conflict Resolution

Send flow
conflict

Flow conflict resolution Underlying
Network Topology

Intent Processing Module

Install flow
rule

Send feedback to admin

Figure 4.13: INTPOL Data Flow Diagram Describing Multi-level Network Policy

Processing. The Formal Model Analyzes the Policies at the Application Plane, and

the Policy Conflict Checker Checks the Conflicting Flow Rules at the Control Plane.

intent cannot be reached by the other node specified due to lack of connectivity, link

failure, resource unavailability, or any other reason. In that case, that intent fails

the compilation. We cannot say if this failure is due to some temporary network

failure or some temporary event. Hence, the failing intent is kept in a Compiling

state. If the compilation fails, the intent’s state is assigned to a Failed state. In the

event of network topology change, or link re-association, failed intents are considered

again for compilation. In the event of topology change, if the network connectivity

is regained, then compilation may succeed. The installable intents are sent from

Compiling state to Installing state. If the installation fails for any reason, then it goes

to Recompiling state. These intents are kept in the temporary state of recompilation

for a short time before sending them to the failed state. However, the intent request

116

may not necessarily fail due to the policy composition. Other external factors like

reconfiguration could also cause the intent to fail. In that case, the intent is only sent

to the failed state instead of notifying the network administrator. Once the intents

pass, the Installing state is also analyzed for Policy Conflict as described in the

following subsection, and in the event of no conflicting policies, the state transitions to

Installed Intent. These intents are installed as flow rules in the underlying OpenFlow

network. The intents that are successfully installed can be sent to the withdraw

state if the admin wishes to remove them from the system. The withdraw request

is processed, and the associated flow rules, links, and devices are unlinked from the

intent. During this stage, the intent is kept in a temporary state of ”withdrawing”

before it is withdrawn.

4.6 Performance Evaluation

This section presents the evaluation of the INTPOL framework using different ap-

plication scenarios and network setups. First, we offer a case study to show how INT-

POL performs in a service function chaining (SFC) scenario, comprising inter-domain

communication in a hybrid-SDN environment and intra-domain policies within the

same SDN domain. Second, we utilize the Stanford topology to apply the INTPOL

approach to a large network scenario [81]. The topology comprises 14 operational

zones (OZ), Cisco routers connected via 10 Ethernet switches to 2 backbone Cisco

routers. The topology has 757,000 forwarding entries, 100+ VLANs, and 1500 ACL

rules. Finally, we use policy conflict checking and the network traffic reachability as

an invariants to assess the INTPOL framework’s scalability on a large scale network

with an increase in the number of intents.

117

4.6.1 Hybrid Network Scenario

Inter-Domain Communication

The overall network described in Figure 4.9 can be represented in the INTPOL frame-

work using two-level of abstractions, i.e., SFC intents and Network Function (NF)

intent. We consider the inter-domain network a special case of Service Function Chain

(SFC). The routers (r1-10) can be interpreted as NAT providers, and switches (s1-

10) perform packet switching and basic traffic filtering, which helps in reducing the

overall overhead of checking network policies. The end-hosts can be represented as an

abstracted group, i.e., {h1, .., h10} ∈ AS6501, {ONOS-01, ONOS-02} ∈ AS6500, and

so forth. We consider the reachability between the hosts and the policy conflict(s) as

the network invariant in this scenario.

The inter-domain level is the autonomous system (AS) level, which has the SDN

controllers and the edge routers r1-r10. We consider this as network function NAT

within each AS. The administrator requirements are specified such that the end-hosts

(h1-h100) can reach each other, or some of them should never be communicating

with any other network function. In this scenario, we note two policy checking levels:

the SDN controller level and the individual traditional routing domain’s level. On

the one hand, The SDN level domain checks for the AS and handles the OpenFlow

rules between ASes. On the other hand, each AS (r1-r10) checks the inter-domain

invariant. This allows the admin to ensure end-to-end packet reachability within and

between domains. Consequently, the evaluation goal of this scenario is to measure

the performance of network invariant checking between the domains.

118

s11 BGP
AS

6500

s10 r10
AS

6510

s1 r1
AS

6501

NAT

NAT

NAT

{ℎ1, ℎ2. . ℎ10} ∈ 𝐴𝑆6501

{ℎ90, ℎ91. . ℎ100} ∈ 𝐴𝑆6510

∈ 𝐴𝑆6500{ONOS-01, ONOS-02}

Figure 4.14: An Encapsulated Representation of Hybrid Network Scenario as a Special

Case of Service Function Chaining (SFC).

We performed an experimental evaluation using LTL full-scale model checking,

and LTL bounded model checking, i.e., LTL-BMC, in a multi-domain scenario de-

scribed in Figure 4.14. We observed that performing network invariant checking by

abstracting the packet processing across domains to a particular SFC case allows

inter-domain packet switching and routing policies to be analyzed quickly and effi-

ciently. Each network domain is comprised of ten hosts. We incremented the number

of domains from 2-to 10 to observe the time required for LTL and LTL-BMC model

construction and packet reachability property checking, as shown in Figure 4.15.

The value of the network bound K was selected based on the diameter of the

current network, i.e., if the maximum path length between two hosts is 10, we utilized

K=10. We can use the bounds based on the policy composition time and the number

of policies in the network. The path length for a large network can be huge, but

the network diameter-based bound helps provide appropriate coverage for the policy

composition. Our inter-domain scenario’s results are shown in Figures 4.15, 4.16.

119

1 2 4 6 8 10
4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

0.14

0.16

Number of Domains

R
u
n
n
in

g
T

im
e

(s
)

LTL LTL-BMC

Figure 4.15: The Experimental Analysis of INTPOL in Inter-domain Hybrid Network.

The LTL-BMC Model Verification Time Scales Well as the Number of Domains In-

crease in the Network.

The invariant checking using BMC for #domains=2 finished in 0.048s, whereas LTL

required 0.108s. We observed a similar trend as we increased the number of domains

to 10. For #domains=10, BMC required 0.07s, whereas the LTL finished in 0.016s.

Overall, the BMC was > 2x faster invariant checking than the LTL framework. This

shows that BMC scales well in a multi-domain scenario. The INTPOL framework

is generalizable to incorporate multiple types of network setups. Furthermore, The

BMC model has a significantly less number of Binary Decision Diagram (BDD) nodes

in comparison to the LTL model (Figure 4.16). For #domains=10, the BDD has 345

nodes, whereas the LTL model has 964 nodes. The increase in the LTL nodes limits

the scalable network verification for large-scale models instead of the BDD model.

120

1 2 3 4 5 6 7 8 9 10

200

400

600

800

1,000
B

D
D

n
o
d
es

LTL-BDD
BMC-BDD

Figure 4.16: The Experimental Analysis of INTPOL in Inter-domain Hybrid Network

Scenario. The BDD Nodes LTL-BMC Model Scales Well as the Number of Domains

Increases in the Network.

Intra-Network Communication

The hosts h1-h10 utilize the traditional routing for communicating with each other,

making the SDN network oblivious to the traffic managed by routers r1. Suppose

we have a distributed geographical network, e.g., 192.168.1.0/24 is managed locally

by r1-5. Each router connects to a switch, e.g., r1-s1, and all switches s1-10 connect

to a management switch s11, which is connected to the BGP router (s11-bgp). The

BGP router connects to ONOS-01, and similarly, 192.168.10.0/24 is managed by r6-

10, which is connected to ONOS-02. We utilize the SDNIP application [94] to allow

ONOS to run and communicate with the BGP router through iBGP protocol and

communicate with routers r1-r10 using eBGP protocol. Due to space limitations, we

refer the reader to SDNIP details in [94] for details about connecting inter-domains

with the controller. Next, we check the scalability of INTPOL by increasing the num-

ber of hosts within one domain. We consider switching and access control functions

121

Figure 4.17: INTPOL Model Checking Framework Evaluation in a Single Domain

Environment. As We Increase the Number of Hosts in Domain As6501, the State

Nodes, Data Size of the Model, and Time of Model Checking Are Reduced.

122

within AS6501 to be managed as part of the routing domain of router r1.

To evaluate the scalability of our proposed INTPOL framework within a single do-

main AS6501, we experimented by measuring the performance of the BMC model

compared to the LTL model. Like the inter-domain scenario, we have evaluated us-

ing the NuSMV program the number of Binary Decision Diagram (BDD) nodes, the

data size, and the time of both the LTL model and the BMC model. Figure 4.17

shows the comparison between the LTL and the BMC model in four different sce-

narios, where the number of hosts in the network initially is set to 5 and gradually

increases up to 40 hosts. The time required for checking invariant (end-to-end reach-

ability) in the case of LTL is 12 (ms) for five hosts, whereas, for LTL-BMC, it is

4(ms). The overall time of LTL-BMC is less compared to LTL as the number of hosts

is increased in the model- Figure 4.17(a). The network width is used as a model

bound for LTL-BMC; the state space for invariant checking is smaller. It can also

be noticed that the number of BDD nodes in the BMC model is much less than in

the LTL model - Figure 4.17(b). Moreover, the data size for the LTL model is more

extensive in all cases. The BMC model reduced the data size with a reduction of

37% in the five hosts case and 60% in the 40 hosts case - Figure 4.17(c). The main

reason for the reduction is that we simulate and account for all the states generated

by the model in the LTL model. In contrast, in the BMC model, we set k=10, which

means the model is simulated for several steps to find the counterexample. Therefore,

this approach helps the model scale well as the network hosts increase within a single

domain.

4.6.2 Composition Time Analysis

To show the effectiveness of INTPOL policy composition time, we compared

our approach with some related works similar to ours. In our research, we con-

123

sider model generation as the composition. The analogous process in PGA [125]

is a D3 graph composition. Additionally, we also compare our composition time

against research works that conducted performance analysis for Firewall rules such

FIREMAN [156], [57]. PGA considers access control list (ACL) and service chaining

policies. FIREMAN uses ACL policies for model composition. Covisor uses state-

less applications such as routing, traffic monitoring, and load balancing. Halle et al.

[57] uses distributed firewall anomaly detection. These research works use layers 2-4

policies or service chaining policies. INTPOL provides coverage for all the scenarios

covered in these research works (see Figure 4.11). It is noticed that the LTL-based

model checking for the Firewall proposed by Halle et al. [57] conducted performance

analysis for 100-1000 Firewall rules and their algorithm used the full-scale model

checking. The runtime for the policy composition is ∼ 8s for 500 rules and nearly

1000s for 1000 rules (see Table 4.3). This abnormality omits any abstraction, whereas

the abstractions created using INTPOL intent rules and conducting the model check-

ing directly on the data plane’s Firewall rules enhance the scalability of the model

checking and reduce the policy composition time. Using the full-scale model checking

induces a high-performance penalty as the network grows. PGA [125] uses an eager

graph composition based on end-point groups (EPGs). Although it is difficult to

determine the exact number of rules, we estimate the number of rules based on the

graph edges in PGA’s graph. PGA conducted graph composition analysis for 500-

3000 rules. The composition time is ∼ 18s for 500 rules, the 30s for 1000 rules, and ∼

70s for 3000 rules. FIREMAN [156] performs symbolic model checking along all paths

of an Access Control List (ACL). The research work uses ACL rules for composition

analysis. FIREMAN conducted an empirical evaluation for 200-800 ACL rules. The

model composition takes 0.1s for 500 rules, ∼ 0.15s for 1000 rules, and 0.2s for 2000

rules. The performance is better than the LTL model checking for Firewall conducted

124

Table 4.3: Policy Composition Time (s) Analysis Between INTPOL, Fireman [156],

PGA [125], Distributed LTL Approach [57] and Covisor [75].

#Policies INTPOL Fireman [156] PGA [125] Distributed LTL [57] Covisor [75]

500 0.01 0.1 18 8 0.05

1000 0.02 0.15 30 1000 0.1

1500 0.048 0.2 40 NA 0.13

2000 0.07 0.24 50 NA 0.15

2500 0.09 0.26 60 NA 0.18

3000 0.1 0.3 70 NA 0.25

by Halle et al. [57]. However, compact representation and bounded model checking

can improve the model checking procedure as introduced in INTPOL. Covisor [75]

utilizes symbolic model checking and parallel policy composition, which leads to im-

proved policy composition 0.05s for 500 rules, ∼ 0.13s for 1500 rules, and ∼ 0.25s

for 3000 rules. We observed that INTPOL performs the model generation for 500

rules in 0.02s and 1500 rules in 0.048s. The generation time for 3000 rules in the

case of INTPOL is ∼ 0.1s. Although it is difficult to have a common baseline for

comparing composition time with current research works due to a varying number

of rules. We found the model representation is compact and scales well compared to

similar research works, e.g., INTPOL takes 0.02s, compared to FIREMAN ∼ 0.15s

for 1000 rules. Thus, INTPOL scales well, and the policy space increases compared

to previous research work in policy composition.

4.6.3 Policy Conflict Checking for Large Network Scenario

In this section, our goal is to measure the scalability of INTPOL’s conflict-checking

models. For this purpose, the Stanford topology dataset [81] is utilized for the ex-

perimental analysis. The topology consists of 14 Operational Zones (OZ) routers,

125

Table 4.4: INTPOL Model Checking Framework Applied to Stanford Topology [81].

The Overhead of Generating a Model Using LTL-BMC is Lower Compared to LTL

Full-Scale Framework.

#Intents Intent Gen. Time LTL Nodes LTL-BMC Nodes

20 3.42 9768 3170

40 4.33 13936 3354

60 5.91 18713 3532

80 8.525 21610 4079

100 11.29 22939 4320

ten switches, and two backbone routers connected to OZs via switches. There are

1500 ACL rules and 757k forwarding entries in the simulated network. We aim to

evaluate the performance of INTPOL in terms of policy translation scalability at

the application plane and the data plan. Specifically, we present how the proposed

BMC model will behave in a large network compared to the traditional LTL model

for checking network invariants. Also, we evaluate the data plane conflict-checking

scalability based on algorithm 5.

The Scalability of Conflict Checking at The Application Plane

Using the Stanford Topology, we start by analyzing the conflicts between the net-

work policies at the application plane. The pre-specified policies, policies that specify

reachability requirements between end-hosts and operational zones’ routers, are con-

verted into a formal model by checking the user requirements and network structure.

The formal model checking occurs by converting these policies into network intents

based on Algorithm 4. The network intents are checked for conflict, reachability,

126

and end-to-end packet flow using network invariant property in the LTL & LTL-

BMC formal models. The hosts in the Stanford Topology are selected to check for

conflict-free policies between them. Each end-to-end packet reachability requirement

between two randomly chosen hosts is inserted into the formal model as a network

intent, and rules for checking conflict between user policies are added as a network

invariant. For instance, when the number of intents (#Intents) is 20, we create 20

host-to-host reachability intents between randomly selected hosts in the network and

check for a reachability conflict between them. The process we are conducting aims

to place bounds on the (LTL-BMC) model such that the network diameter limits

the conflict checking. The application plane conflict checking results are presented in

Figure 4.18, where we show the number of intents and the equivalent number of flow

rules generated by those intents in the X-axis and the conflict checking time on the

Y-axis. Although the LTL & LTL-BMC models have a similar checking time, we can

notice that when the number of intents and flow rules increases beyond a thousand,

the LTL model time starts to rise significantly. The model’s scalability can also be

provided by measuring the resulting BDD nodes of each model. Table 4.4 shows the

comparison between the nodes for the LTL & LTL-BMC models, and we notice how

the number of BDD nodes in the LTL model is way higher than in the LTL-BMC

model. The results in Table 4.4 are expected because we bound the diameter of node

expansion by using the bounded model.

The Scalability of Conflict Checking at The Data Plane

We can observe from Table 4.4 & Figure 4.18 that the overhead associated with iden-

tifying conflicts at the application plane using the bounded model provides enormous

advantages for early identification of conflicts, opportunities for traffic optimization,

and policy composition at the application plane.

127

[20,413] [40,449] [60,462] [80,683] [100,1355]
[Number of Intents, Number of Flow Rules]

0.00

0.05

0.10

0.15

0.20

0.25

0.30
Ti

m
e
(s
ec

)
Without_INTPOL
With_INTPOL

Figure 4.18: A Comparison Between The Application Plane Conflict Detection Time

Using INTPOL Approach (Blue Line) and Without Using INTPOL (Red Line).

Considering the conflict at the data plane, we assume that the application plane

does not handle conflicts (no formal model is present in the system). The intents

are inserted into OpenFlow switches using the intent processing module described in

Figure 4.6. We observe that the number of flow rules (#Flow Rules) generated for

20 intents is 413. This result is because, for realizing an intent, the SDN controller

needs to add flows along the path between two hosts. For instance, in the case of the

network example presented in Figure 4.2, if we add a host intent (add-host-intent h1

h5), we need to insert four flow rules, rule 1 (flow between h1 and s1), rule 2 (flow

between s1-s2), rule 3 (flow between s2-s3), and rule4 (flow between s3-h5). Thus in

128

[20,413] [40,449] [60,462] [80,683] [100,1355]
[Number of Intents, Number of Flow Rules]

25

50

75

100

125

150

175

200

225
Ti

m
e

(s
ec

)
Flow Conflict Time Without INTPOL
Flow Conflict Time using INTPOL

Figure 4.19: A Comparison Between The Flow Rule Conflict Detection Time With

and Without Using INTPOL. The Data Plane Conflict Detection Time is Significantly

Increased in The Absence of INTPOL Framework.

the case of hosts selected for a scalable topology such as described in our experiment,

there can be multiple flow rules for each intent; these flow rules, in turn, conflict with

each other.

The scalability of the INTPOL conflict checking experiment is presented in Figure

4.19. We can observe that conflict checking time is 51.68s for 413 flow rules while

it only takes less than 5s for the same number of flow rules using the INTPOL

approach. As we increase the number of intents from 20 to 100, the number of flow

rules generated increases to 1355. The time required for checking conflicts among

129

flow rules is also increased to 216.01s. This result is significantly greater than the

time needed to check conflicts using the INTPOL framework because we perform

the packet caching and policy composition at the application plane. INTPOL takes

about 50s for conflict detection. Thus, if we identify and remove the conflicts between

the intents at the application plane using the bounded formal model, the number of

flow rules generated and the time needed to check the policy conflict will significantly

decrease.

4.7 Conclusion and Discussion

In this chapter, we presented a multi-level network policy checking framework

for SDN networks. INTPOL aims to reduce the complexity of network-side security

policies and mission requirements in a multi-domain cloud environments by having

a unified representation for the high-level application plane intents. Our framework

utilizes bounded model checking (BMC) to limit policy conflicts checking at the ap-

plication plane, which reduces the conflict detection time at the data plane. The

presented solution can reduce the overhead of network policy conflict-checking sig-

nificantly. We utilized case studies to show that INTPOL is generalized enough to

handle scenarios such as Service Function Chaining (SFC), multiple network func-

tions (Firewall, IDS, DPI), and hybrid networks involving traditional BGP routing

and OpenFlow components.

This chapter has not covered the cases for stateful network functions. Some recent

works such as Epinoia [147], and NetSMC [158] cover stateful network functions. The

bounded formal model can provide coverage based on the network size/diameter. We

have used popular means to establish the network bound (see Section III-D). This will

cover a large set of policies. The framework scales well on a sizeable enterprise-grade

network, as demonstrated by experiments performed on the Stanford topology, but

130

fails to provide coverage for all cases of network policies. The policy composition

used in some of the related works, such as Pyretic [127] and Covisor [75] approaches,

identify parallelism opportunities that are not considered in INTPOL. We plan to ex-

plore complex network policies and network infrastructure, including stateful network

functions with different cloud providers in the future.

131

Chapter 5

CONCLUSION AND FUTURE WORK

Cybersecurity is among the top concern for governments and privet sector around

the world. The increasing number of cyber attacks threats posses a huge challenge

on the IT administrators to ensure the confidentiality, integrity, and availability of

the system services. The migration into cloud-based networks and the amount of

automated services and applications makes the human-based analysis useless and

weak. As human, we understand visual communication better than any other form

of communication. Hence, the idea of Graphical Security Analysis (GrMS) and At-

tack Graph (AG) is introduced to fill the gap between human-based analysis and

automated analysis. However, the AG by itself is not efficient in analyzing the large-

scale systems such as data center networks, and it cannot provide an analysis of the

high-level security policies that are implemented by the administrator.

This dissertation present a solutions to overcome the AG scalability issue and

provide an optimization approach to solve the security policy conflict problem. Our

goal is establish the foundation for scalable security state analysis for cloud-based sys-

tems, where the services are hosted on the cloud tenants and manual or human-based

analysis is not possible. This will require the analysis approach to be fast, scalable,

and readable to the administrator. The current problems with AG is that they are

not scalable, difficult to generate, and hard to read. While AG deals with analyzing

vulnerabilities at the lower level, the security policies that specify the functioning and

security rules of the system at the high-level should also be analyzed. We explained

how the high-level security policies can have conflict among them. We provided an

approach that is based on the Intents to analyze the high-level security policies and

132

detect the conflict early before it occur at the data plane level.

In Chapter 3, we presented S3, a novel framework to solve the AG scalability

problem. S3 follows the divide-and-conquer concept to divide the large networking

system into small manageable segments. Using the Spearman correlation coefficient,

we form the segments based on the networking services’ similarity and the distributed

firewall (DFW) rules that separate the segments. Finally, we generate a sub-AG for

every established segment and we merge all the sub-AGs to form the global AG.

This way, we are able to reduce the complexity of the AG generation from O(N2) to

O((N
K

)2), where N is the total number of vulnerable services and K is the total number

of established segments. Moreover, our evaluation of the S3 framework showed that

we are able to reduce the AG generation time for a system with thousand of vulnerable

services, reduce the AG density, maintain a conservative SDN controller consumption

overhead, and detect cycles in the AG in a reasonable time.

In Chapter 4, we presented INTPOL, an intent-based framework that resolves

high-level security requirements by utilizing the intents to translate the requirements

into low-level flow rules. We showed in INTPOL how we utilize the bounded model

checking (BMC) approach to confine the network verification within a certain bound.

This way we are able to limit the conflict checking based on the number of domains

or based on the maximum number a flow can traverse in the cloud system. INTPOL

is evaluated and compared to other related work, where INTPOL is able to achieve a

better composition, verification, and conflict resolution time. Furthermore, we were

able to reduce the data plane conflict checking time and the number of conflicting

rules. This resulted in helping the control plane to maintain a more stable, scalable,

and efficient network management, which was an obstacle in the current literature

that prevented the control plane from doing its main functionality and managing an

133

efficient data plane.

5.1 Future Work

The work in this dissertation has paved the path for efficient and scalable cy-

bersecurity analysis and modeling. After obtaining a scalable graph that contains

a global view of the security situation, this graph can be used for further security

automation processes. To achieve the optimal cybersecurity defense mechanism, we

believe the introduction of Artificial Intelligence (AI-based) solutions are necessary

due to the complexity and advanced computing capabilities in current systems. Cy-

ber adversaries nowadays have access to super-computing and they are able to launch

an automated cyber attacks towards any target. We have seen in past couple of years

how SolarWinds, a major software provider, was hacked and the administrators did

not know about the breach for a long time before it is discovered. The automated

security analysis requires fetching the current security state in real-time in order to

make accurate decision about deploying the appropriate defense mechanism.

Proactive Security

Proactive security is the key solution to ensure safety and accurate functioning of

the system. This goal requires cyber-interaction between different system and de-

fense components. The scalable AG generation presented in S3 framework can be

utilized as an input to model a cybersecurity game between the attacker and the

defender. This concept is known as Moving Target Defense (MTD) and it involves

game-theory and AI-based planning and strategic movements. The scalable output

from the AG can be used to make assumptions about the attacker’s knowledge about

the networking system. An advanced attacker with an advanced reconnaissance can

obtain the same vulnerability information as the one obtained by the AG. Hence, the

134

attacker has leverage over the defender and they may use this information to craft an

advanced, dedicated attack to help them achieve their goal. Proactive security means

the defender should predict the existence of these vulnerabilities before they occur or

explored by the vulnerability scanning. One way to do that is by using the AG to

build a new correlation models to predict Zero-Day vulnerability. Because the AG

produces all the possible attack paths, combining multiple paths can lead to violating

a security policy and result in a dangerous exploit.

Maintaining Scalable Security Analysis

The INTPOL work presented in Chapter 4 provided an approach to detect conflicts

between security policies at the application plane before they are transmitted into the

data plane. However, there is a lot of improvement opportunities in this domain with

regards to maintaining a scalable security state in the cloud network. As mentioned

earlier, considering the stateful network functions is a key to analyze the security

policies since the dynamic cloud services and application are added and removed

continuously. Also, these services are dependent upon the ‘state’ of the network

flow. Therefore, a network verification and policy checking must consider the state

of the network functions. In addition, the large cloud networks like data center

networks have several controllers in the control domain. Unifying the application

plane policy language between different cloud controllers will require involving a logic-

based algorithms to enable reasoning between the input policies and the existing

policies. This logic approach will be used next to help the network administrator find

bugs in the network, discover black-holes or infinite loops, and build security policies

that aid in achieving the proactive security objective. Because the security policies

are important in specifying the access level, protect confidentiality, integrity, and

availability of the resources, and help to enhance the system network performance.

135

REFERENCES

[1] A. Abhashkumar, J.-M. Kang, S. Banerjee, A. Akella, Y. Zhang, and W. Wu.
Supporting diverse dynamic intent-based policies using janus. In Proceedings
of the 13th International Conference on emerging Networking EXperiments and
Technologies, pages 296–309, 2017.

[2] M. Albanese, S. Jajodia, A. Pugliese, and V. Subrahmanian. Scalable analysis
of attack scenarios. In European Symposium on Research in Computer Security,
pages 416–433. Springer, 2011.

[3] M. Almukaynizi, E. Marin, E. Nunes, P. Shakarian, G. I. Simari, D. Kapoor, and
T. Siedlecki. Darkmention: A deployed system to predict enterprise-targeted
external cyberattacks. In 2018 IEEE International Conference on Intelligence
and Security Informatics (ISI), pages 31–36. IEEE, 2018.

[4] M. Almukaynizi, E. Nunes, K. Dharaiya, M. Senguttuvan, J. Shakarian, and
P. Shakarian. Patch before exploited: An approach to identify targeted software
vulnerabilities. In AI in Cybersecurity, pages 81–113. Springer, 2019.

[5] R. Amin, M. Reisslein, and N. Shah. Hybrid sdn networks: A survey of exist-
ing approaches. IEEE Communications Surveys & Tutorials, 20(4):3259–3306,
2018.

[6] P. Ammann, D. Wijesekera, and S. Kaushik. Scalable, graph-based network
vulnerability analysis. In Proceedings of the 9th ACM Conference on Computer
and Communications Security, pages 217–224. ACM, 2002.

[7] M. T. Arashloo, Y. Koral, M. Greenberg, J. Rexford, and D. Walker. Snap:
Stateful network-wide abstractions for packet processing. In Proceedings of the
2016 ACM SIGCOMM Conference, pages 29–43, 2016.

[8] D. Arthur and S. Vassilvitskii. How slow is the k-means method? In Proceedings
of the twenty-second annual symposium on Computational geometry, pages 144–
153, 2006.

[9] D. Arthur and S. Vassilvitskii. k-means++: The advantages of careful seeding.
Technical report, Stanford, 2006.

[10] Ayaka Koshibe. INTENT-based networking in ONOS. https://wiki.
onosproject.org/display/ONOS/Intent+Framework, May, 24.2016 Accessed:
March, 5,2021.

[11] D. Baca and K. Petersen. Prioritizing countermeasures through the counter-
measure method for software security (cm-sec). In International Conference on
Product Focused Software Process Improvement, pages 176–190. Springer, 2010.

[12] C. Baier and J.-P. Katoen. Principles of model checking. MIT press, 2008.

136

https://wiki.onosproject.org/display/ONOS/Intent+Framework
https://wiki.onosproject.org/display/ONOS/Intent+Framework

[13] F. Bannour, S. Souihi, and A. Mellouk. Distributed sdn control: Survey, taxon-
omy, and challenges. IEEE Communications Surveys & Tutorials, 20(1):333–
354, 2017.

[14] R. Beckett, A. Gupta, R. Mahajan, and D. Walker. A general approach to
network configuration verification. In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication, pages 155–168, 2017.

[15] R. Beckett, X. K. Zou, S. Zhang, S. Malik, J. Rexford, and D. Walker. An
assertion language for debugging sdn applications. In Proceedings of the third
workshop on Hot topics in software defined networking, pages 91–96, 2014.

[16] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, B. Lantz,
B. O’Connor, P. Radoslavov, W. Snow, et al. Onos: towards an open, dis-
tributed sdn os. In Proceedings of the third workshop on Hot topics in software
defined networking, pages 1–6, 2014.

[17] S. Bhattacharya, S. Malhotra, and S. Ghsoh. A scalable representation towards
attack graph generation. In 2008 1st International Conference on Information
Technology, pages 1–4. IEEE, 2008.

[18] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu. Bounded model
checking. 2003.

[19] P. Borril, M. Burgess, T. Craw, and M. Dvorkin. A promise theory perspective
on data networks. arXiv preprint arXiv:1405.2627, 2014.

[20] D. Bringhenti, G. Marchetto, R. Sisto, S. Spinoso, F. Valenza, and J. Yusupov.
Improving the formal verification of reachability policies in virtualized networks.
IEEE Transactions on Network and Service Management, 18(1):713–728, 2020.

[21] L. Brunetta, M. Conforti, and G. Rinaldi. A branch-and-cut algorithm for the
equicut problem. Mathematical Programming, 78(2):243–263, 1997.

[22] N. Cao, K. Lv, and C. Hu. An attack graph generation method based on
parallel computing. In International Conference on Science of Cyber Security,
pages 34–48. Springer, 2018.

[23] M. S. Castanho, C. K. Dominicini, M. Martinello, and M. A. Vieira. Chaining-
box: A transparent service function chaining architecture leveraging bpf. IEEE
Transactions on Network and Service Management, 2021.

[24] L. M. Castro and N. Paladi. Validation of sdn policies: a property-based testing
perspective. Procedia Computer Science, 160:23–29, 2019.

[25] S. Ceri, G. Gottlob, and L. Tanca. What you always wanted to know about
datalog (and never dared to ask). IEEE transactions on knowledge and data
engineering, 1(1):146–166, 1989.

[26] R. Chandramouli and R. Chandramouli. Secure virtual network configuration
for virtual machine (vm) protection. NIST Special Publication, 800:125B, 2016.

137

[27] S. Chauhan, M. Girvan, and E. Ott. Spectral properties of networks with
community structure. Physical Review E, 80(5):056114, 2009.

[28] F. Chen, D. Liu, Y. Zhang, and J. Su. A scalable approach to analyzing network
security using compact attack graphs. Journal of Networks, 5(5):543, 2010.

[29] Y. Chen, Z. Liu, Y. Liu, and C. Dong. Distributed attack modeling approach
based on process mining and graph segmentation. Entropy, 22(9):1026, 2020.

[30] J. C. C. Chica, J. C. Imbachi, and J. F. B. Vega. Security in sdn: A compre-
hensive survey. Journal of Network and Computer Applications, 159:102595,
2020.

[31] A. Chowdhary, A. Alshamrani, and D. Huang. Supc: Sdn enabled universal pol-
icy checking in cloud network. In 2019 International Conference on Computing,
Networking and Communications (ICNC), pages 572–576. IEEE, 2019.

[32] A. Chowdhary, D. Huang, A. Alshamrani, A. Sabur, M. Kang, A. Kim, and
A. Velazquez. Sdfw: sdn-based stateful distributed firewall. arXiv preprint
arXiv:1811.00634, 2018.

[33] A. Chowdhary, S. Pisharody, and D. Huang. Sdn based scalable mtd solution
in cloud network. In Proceedings of the 2016 ACM Workshop on Moving Target
Defense, pages 27–36. ACM, 2016.

[34] A. Chowdhary, A. Sabur, D. Huang, J. Kirby, and M. Kang. Object oriented
policy conflict checking framework in cloud networks (oopc). IEEE Transactions
on Dependable and Secure Computing, 2021.

[35] A. Chowdhary, A. Sabur, N. Vadnere, and D. Huang. Intent-driven security pol-
icy management for software-defined systems. IEEE Transactions on Network
and Service Management, 2022.

[36] C.-J. Chung, P. Khatkar, T. Xing, J. Lee, and D. Huang. Nice: Network
intrusion detection and countermeasure selection in virtual network systems.
IEEE transactions on dependable and secure computing, 10(4):198–211, 2013.

[37] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri,
R. Sebastiani, and A. Tacchella. Nusmv 2: An opensource tool for symbolic
model checking. In International Conference on Computer Aided Verification,
pages 359–364. Springer, 2002.

[38] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. Nusmv: A new symbolic
model verifier. In International conference on computer aided verification, pages
495–499. Springer, 1999.

[39] Cisco. Cisco Open SDN Controller. https://www.cisco.com/c/en/us/
products/cloud-systems-management/open-sdn-controller/index.html,
March 2020.

138

https://www.cisco.com/c/en/us/products/cloud-systems-management/open-sdn-controller/index.html
https://www.cisco.com/c/en/us/products/cloud-systems-management/open-sdn-controller/index.html

[40] E. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded model checking using
satisfiability solving. Formal methods in system design, 19(1):7–34, 2001.

[41] J. Collings and J. Liu. An openflow-based prototype of sdn-oriented stateful
hardware firewalls. In 2014 IEEE 22nd International Conference on Network
Protocols, pages 525–528. IEEE, 2014.

[42] D. Comer and A. Rastegatnia. Osdf: An intent-based software defined network
programming framework. In 2018 IEEE 43rd Conference on Local Computer
Networks (LCN), pages 527–535. IEEE, 2018.

[43] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
algorithms. MIT press, 2009.

[44] T. Dargahi, A. Caponi, M. Ambrosin, G. Bianchi, and M. Conti. A survey
on the security of stateful sdn data planes. IEEE Communications Surveys &
Tutorials, 19(3):1701–1725, 2017.

[45] R. Decker. Automating security policy enforcement with nsx service composer,
2015. Online: accessed 20 Jun 2020.

[46] L. Deri, M. Martinelli, T. Bujlow, and A. Cardigliano. ndpi: Open-source high-
speed deep packet inspection. In 2014 International Wireless Communications
and Mobile Computing Conference (IWCMC), pages 617–622. IEEE, 2014.

[47] L. Donetti and M. A. Munoz. Detecting network communities: a new sys-
tematic and efficient algorithm. Journal of Statistical Mechanics: Theory and
Experiment, 2004(10):P10012, 2004.

[48] R. O. Duda, P. E. Hart, et al. Pattern classification and scene analysis, vol-
ume 3. Wiley New York, 1973.

[49] K. Durkota, V. Lisỳ, B. Bosanskỳ, and C. Kiekintveld. Optimal network secu-
rity hardening using attack graph games. In IJCAI, pages 526–532, 2015.

[50] J. Erickson. Prediction: 80% Of Enterprise IT Will Move To The Cloud By
2025. url=Phttps://www.forbes.com/sites/oracle/2019/02/07/prediction-80-
of-enterprise-it-will-move-to-the-cloud-by-2025/?sh=577772072a67, 2019. On-
line; accessed 11 Nov 2020.

[51] M. Farshbaf and M.-R. Feizi-Derakhshi. Multi-objective optimization of graph
partitioning using genetic algorithms. In 2009 Third International Conference
on Advanced Engineering Computing and Applications in Sciences, pages 1–6.
IEEE, 2009.

[52] S. K. Fayaz, T. Sharma, A. Fogel, R. Mahajan, T. Millstein, V. Sekar, and
G. Varghese. Efficient network reachability analysis using a succinct control
plane representation. In 12th USENIX Symposium on Operating Systems Design
and Implementation ({OSDI} 16), pages 217–232, 2016.

139

[53] A. Fogel, S. Fung, L. Pedrosa, M. Walraed-Sullivan, R. Govindan, R. Mahajan,
and T. Millstein. A general approach to network configuration analysis. In
12th USENIX Symposium on Networked Systems Design and Implementation
({NSDI} 15), pages 469–483, 2015.

[54] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford, A. Story, and
D. Walker. Frenetic: A network programming language. ACM Sigplan Notices,
46(9):279–291, 2011.

[55] D. Gorbatenko, A. Semenov, and S. Kochemazov. Unprovet: Using explicit
constraint propagation to construct attack graphs. In 2019 42nd International
Convention on Information and Communication Technology, Electronics and
Microelectronics (MIPRO), pages 1199–1204. IEEE, 2019.

[56] R. Greiner, R. Hayward, M. Jankowska, and M. Molloy. Finding optimal satis-
ficing strategies for and-or trees. Artificial Intelligence, 170(1):19–58, 2006.

[57] S. Hallé, É. L. Ngoupé, R. Villemaire, and O. Cherkaoui. Distributed firewall
anomaly detection through ltl model checking. In 2013 IFIP/IEEE Interna-
tional Symposium on Integrated Network Management (IM 2013), pages 194–
201. IEEE, 2013.

[58] Y. Han, J. Li, D. Hoang, J.-H. Yoo, and J. W.-K. Hong. An intent-based
network virtualization platform for sdn. In 2016 12th International Conference
on Network and Service Management (CNSM), pages 353–358. IEEE, 2016.

[59] F. He and E. Oki. Main and secondary controller assignment with optimal
priority policy against multiple failures. IEEE Transactions on Network and
Service Management, 18(4):4391–4405, 2021.

[60] M. He, A. Varasteh, and W. Kellerer. Toward a flexible design of sdn dynamic
control plane: An online optimization approach. IEEE Transactions on Network
and Service Management, 16(4):1694–1708, 2019.

[61] Z. He, S. Deng, and X. Xu. Approximation algorithms for k-modes clustering.
In International Conference on Intelligent Computing, pages 296–302. Springer,
2006.

[62] J. Homer, X. Ou, and D. Schmidt. A sound and practical approach to quan-
tifying security risk in enterprise networks. Kansas State University Technical
Report, pages 1–15, 2009.

[63] J. B. Hong and D. S. Kim. Performance analysis of scalable attack represen-
tation models. In IFIP International Information Security Conference, pages
330–343. Springer, 2013.

[64] J. B. Hong, D. S. Kim, C.-J. Chung, and D. Huang. A survey on the usabil-
ity and practical applications of graphical security models. Computer Science
Review, 26:1–16, 2017.

140

[65] J. B. Hong, D. S. Kim, and T. Takaoka. Scalable attack representation model
using logic reduction techniques. In Trust, Security and Privacy in Computing
and Communications (TrustCom), 2013 12th IEEE International Conference
on, pages 404–411. IEEE, 2013.

[66] H. Hu, W. Han, G.-J. Ahn, and Z. Zhao. Flowguard: building robust firewalls
for software-defined networks. In Proceedings of the third workshop on Hot
topics in software defined networking, pages 97–102. ACM, 2014.

[67] D. Huang, A. Chowdhary, and S. Pisharody. Software-Defined Networking and
Security: From Theory to Practice. CRC Press, 2018.

[68] X. Huang, S. Cheng, K. Cao, P. Cong, T. Wei, and S. Hu. A survey of de-
ployment solutions and optimization strategies for hybrid sdn networks. IEEE
Communications Surveys & Tutorials, 21(2):1483–1507, 2018.

[69] M. Husák, J. Komárková, E. Bou-Harb, and P. Čeleda. Survey of attack pro-
jection, prediction, and forecasting in cyber security. IEEE Communications
Surveys & Tutorials, 21(1):640–660, 2018.

[70] A. Ibrahim, S. Bozhinoski, and A. Pretschner. Attack graph generation for
microservice architecture. In Proceedings of the 34th ACM/SIGAPP Symposium
on Applied Computing, pages 1235–1242, 2019.

[71] K. Ingols, R. Lippmann, and K. Piwowarski. Practical attack graph generation
for network defense. In 2006 22nd Annual Computer Security Applications
Conference (ACSAC’06), pages 121–130. IEEE, 2006.

[72] A. S. Jacobs, R. J. Pfitscher, R. A. Ferreira, and L. Z. Granville. Refining net-
work intents for self-driving networks. In Proceedings of the Afternoon Workshop
on Self-Driving Networks, pages 15–21, 2018.

[73] S. Jajodia, S. Noel, and B. Oberry. Topological analysis of network attack
vulnerability. In Managing Cyber Threats, pages 247–266. Springer, 2005.

[74] Y. Jang, S. P. Chung, B. D. Payne, and W. Lee. Gyrus: A framework for
user-intent monitoring of text-based networked applications. In NDSS, 2014.

[75] X. Jin, J. Gossels, J. Rexford, and D. Walker. Covisor: A compositional hyper-
visor for software-defined networks. In 12th USENIX Symposium on Networked
Systems Design and Implementation ({NSDI} 15), pages 87–101, 2015.

[76] P. Johnson. With The Public Clouds Of Amazon, Mi-
crosoft And Google, Big Data Is The Proverbial Big Deal.
url=https://www.forbes.com/sites/johnsonpierr/2017/06/15/with-the-
public-clouds-of-amazon-microsoft-and-google-big-data-is-the-proverbial-
big-deal/409452d02ac3, 2017. Online; accessed 3 Mar 2019.

[77] Jonathan Hart. Basic ONOS Tutorial. https://wiki.onosproject.org/
display/ONOS/SDN-IP, December, 04.2014 Accessed: June, 5,2020.

141

https://wiki.onosproject.org/display/ONOS/SDN-IP
https://wiki.onosproject.org/display/ONOS/SDN-IP

[78] Juniper Networks. Software-Defined Networking, Network Management,
and Operations. https://www.juniper.net/us/en/products-services/
management-operations-sdn/, March, 2020 Accessed: May, 2,2020.

[79] M. M. P. Kallehbasti, M. G. Rossi, and L. Baresi. On how bit-vector logic can
help verify ltl-based specifications. IEEE Transactions on Software Engineering,
2020.

[80] K. Kaynar and F. Sivrikaya. Distributed attack graph generation. IEEE Trans-
actions on Dependable and Secure Computing, 13(5):519–532, 2016.

[81] P. Kazemian, G. Varghese, and N. McKeown. Header space analysis: Static
checking for networks. In Presented as part of the 9th USENIX Symposium on
Networked Systems Design and Implementation ({NSDI} 12), pages 113–126,
2012.

[82] B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning
graphs. The Bell system technical journal, 49(2):291–307, 1970.

[83] A. R. Khakpour and A. X. Liu. An information-theoretical approach to
high-speed flow nature identification. IEEE/ACM transactions on networking,
21(4):1076–1089, 2012.

[84] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey. Veriflow:
Verifying network-wide invariants in real time. In Presented as part of the
10th USENIX Symposium on Networked Systems Design and Implementation
({NSDI} 13), pages 15–27, 2013.

[85] J. M. Kizza. Introduction to computer network vulnerabilities. In Guide to
Computer Network Security, pages 87–103. Springer, 2015.

[86] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky,
and S. Uhlig. Software-defined networking: A comprehensive survey. Proceed-
ings of the IEEE, 103(1):14–76, 2014.

[87] Z. Latif, K. Sharif, F. Li, M. M. Karim, S. Biswas, M. Shahzad, and S. P.
Mohanty. Dolphin: Dynamically optimized and load balanced path for inter-
domain sdn communication. IEEE Transactions on Network and Service Man-
agement, 18(1):331–346, 2020.

[88] J. Lee, H. Lee, and H. P. In. Scalable attack graph for risk assessment. In 2009
International Conference on Information Networking, pages 1–5. IEEE, 2009.

[89] S. Lee, S. Woo, J. Kim, V. Yegneswaran, P. Porras, and S. Shin. Audisdn:
Automated detection of network policy inconsistencies in software-defined net-
works.

[90] V. Lempitsky, P. Kohli, C. Rother, and T. Sharp. Image segmentation with a
bounding box prior. In 2009 IEEE 12th international conference on computer
vision, pages 277–284. IEEE, 2009.

142

https://www.juniper.net/us/en/products-services/management-operations-sdn/
https://www.juniper.net/us/en/products-services/management-operations-sdn/

[91] H. Li, K. Chen, T. Pan, Y. Zhou, K. Qian, K. Zheng, B. Liu, P. Zhang, Y. Tang,
and C. Hu. Cora: Conflict razor for policies in sdn. In IEEE INFOCOM 2018-
IEEE Conference on Computer Communications, pages 423–431. IEEE, 2018.

[92] Y. Li and M. Chen. Software-defined network function virtualization: A survey.
IEEE Access, 3:2542–2553, 2015.

[93] Y. Li, X. Yin, Z. Wang, J. Yao, X. Shi, J. Wu, H. Zhang, and Q. Wang. A
survey on network verification and testing with formal methods: Approaches
and challenges. IEEE Communications Surveys & Tutorials, 21(1):940–969,
2018.

[94] P. Lin, J. Hart, U. Krishnaswamy, T. Murakami, M. Kobayashi, A. Al-Shabibi,
K.-C. Wang, and J. Bi. Seamless interworking of sdn and ip. In Proceedings of
the ACM SIGCOMM 2013 conference on SIGCOMM, pages 475–476, 2013.

[95] X. Liu. A network attack path prediction method using attack graph. Journal
of Ambient Intelligence and Humanized Computing, pages 1–8, 2020.

[96] Y. Liu and H. Man. Network vulnerability assessment using bayesian net-
works. In Data Mining, Intrusion Detection, Information Assurance, and Data
Networks Security 2005, volume 5812, pages 61–71. International Society for
Optics and Photonics, 2005.

[97] J. W. Lloyd. Foundations of logic programming. Springer Science & Business
Media, 2012.

[98] W. W. Lo, S. Layeghy, M. Sarhan, M. Gallagher, and M. Portmann. E-
graphsage: A graph neural network based intrusion detection system. arXiv
preprint arXiv:2103.16329, 2021.

[99] C. Lorenz, V. Clemens, M. Schrötter, and B. Schnor. Continuous verification
of network security compliance. IEEE Transactions on Network and Service
Management, 2021.

[100] L. Lu, R. Safavi-Naini, M. Hagenbuchner, W. Susilo, J. Horton, S. L. Yong, and
A. C. Tsoi. Ranking attack graphs with graph neural networks. In International
Conference on Information Security Practice and Experience, pages 345–359.
Springer, 2009.

[101] K. Madsen and H. Schjær-Jacobsen. Linearly constrained minimax optimiza-
tion. Mathematical Programming, 14(1):208–223, 1978.

[102] R. McLean. A hacker gained access to 100 million capital one credit card
applications and accounts. https://www.cnn.com/2019/07/29/business/
capital-one-data-breach/index.html, July-2019. Online; accessed 17 Oct
2019.

143

https://www.cnn.com/2019/07/29/business/capital-one-data-breach/index.html
https://www.cnn.com/2019/07/29/business/capital-one-data-breach/index.html

[103] M. A. McQueen, W. F. Boyer, M. A. Flynn, and G. A. Beitel. Quantitative
cyber risk reduction estimation methodology for a small scada control system.
In Proceedings of the 39th Annual Hawaii International Conference on System
Sciences (HICSS’06), volume 9, pages 226–226. IEEE, 2006.

[104] J. Medved, R. Varga, A. Tkacik, and K. Gray. Opendaylight: Towards a model-
driven sdn controller architecture. In Proceeding of IEEE International Sym-
posium on a World of Wireless, Mobile and Multimedia Networks 2014, pages
1–6. IEEE, 2014.

[105] Metzler, Jim. Survey shows growing interest in sdn, where and how companies
might deploy the tech, 2016. [Online; accessed 3 Mar 2019].

[106] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and R. Boutaba.
Network function virtualization: State-of-the-art and research challenges. IEEE
Communications surveys & tutorials, 18(1):236–262, 2015.

[107] O. Mjihil, D. Huang, and A. Haqiq. Improving attack graph scalability for the
cloud through sdn-based decomposition and parallel processing. In Interna-
tional Symposium on Ubiquitous Networking, pages 193–205. Springer, 2017.

[108] N. Mojidra. Stateful vs. Stateless Firewalls.
url=https://www.cybrary.it/0p3n/stateful-vs-stateless-firewalls/, 2016. On-
line; accessed 20 Sep 2018.

[109] NIST. National Vulnerability Database. url=https://nvd.nist.gov/. Online;
accessed 3 Mar 2019.

[110] S. Noel and S. Jajodia. Metrics suite for network attack graph analytics. In
Proceedings of the 9th Annual Cyber and Information Security Research Con-
ference, pages 5–8, 2014.

[111] S. Noel, S. Jajodia, B. O’Berry, and M. Jacobs. Efficient minimum-cost network
hardening via exploit dependency graphs. In 19th Annual Computer Security
Applications Conference, 2003. Proceedings., pages 86–95. IEEE, 2003.

[112] A. O’DRISCOLL. 25+ cyber security vulnerability statistics and facts
of 2022. https://www.comparitech.com/blog/information-security/
cybersecurity-vulnerability-statistics/#:~:text=The%20number%
20of%20new%20vulnerabilities,already%20seen%20an%20additional%
20700., May-2022. Online; accessed 7 July 2022.

[113] ONOS Wiki. Basic ONOS Tutorial. https://wiki.onosproject.org/
display/ONOS/Basic+ONOS+Tutorial, August 2020.

[114] X. Ou, W. F. Boyer, and M. A. McQueen. A scalable approach to attack
graph generation. In Proceedings of the 13th ACM conference on Computer
and communications security, pages 336–345. ACM, 2006.

144

https://www.comparitech.com/blog/information-security/cybersecurity-vulnerability-statistics/#:~:text=The%20number%20of%20new%20vulnerabilities,already%20seen%20an%20additional%20700.
https://www.comparitech.com/blog/information-security/cybersecurity-vulnerability-statistics/#:~:text=The%20number%20of%20new%20vulnerabilities,already%20seen%20an%20additional%20700.
https://www.comparitech.com/blog/information-security/cybersecurity-vulnerability-statistics/#:~:text=The%20number%20of%20new%20vulnerabilities,already%20seen%20an%20additional%20700.
https://www.comparitech.com/blog/information-security/cybersecurity-vulnerability-statistics/#:~:text=The%20number%20of%20new%20vulnerabilities,already%20seen%20an%20additional%20700.
https://wiki.onosproject.org/display/ONOS/Basic+ONOS+Tutorial
https://wiki.onosproject.org/display/ONOS/Basic+ONOS+Tutorial

[115] X. Ou, S. Govindavajhala, and A. W. Appel. Mulval: A logic-based network
security analyzer. In USENIX Security Symposium, pages 8–8. Baltimore, MD,
2005.

[116] Palantir. Restricting SMB-based lateral movement in a Windows environ-
ment. url=https://blog.palantir.com/restricting-smb-based-lateral-movement-
in-a-windows-environment-ed033b888721, 7-8-2020. Online; accessed 3 May
2021.

[117] L. Pang, C. Yang, D. Chen, Y. Song, and M. Guizani. A survey on intent-driven
networks. IEEE Access, 8:22862–22873, 2020.

[118] R. S. Parpinelli, H. S. Lopes, and A. A. Freitas. Data mining with an ant
colony optimization algorithm. IEEE transactions on evolutionary computation,
6(4):321–332, 2002.

[119] L. Pedrosa, R. Iyer, A. Zaostrovnykh, J. Fietz, and K. Argyraki. Automated
synthesis of adversarial workloads for network functions. In Proceedings of the
2018 Conference of the ACM Special Interest Group on Data Communication,
pages 372–385, 2018.

[120] D. Pelleg, A. W. Moore, et al. X-means: Extending k-means with efficient
estimation of the number of clusters. In Icml, volume 1, pages 727–734, 2000.

[121] J. G. V. Pena and W. E. Yu. Development of a distributed firewall using software
defined networking technology. In Information Science and Technology (ICIST),
2014 4th IEEE International Conference on, pages 449–452. IEEE, 2014.

[122] M. Pham and D. B. Hoang. Sdn applications-the intent-based northbound in-
terface realisation for extended applications. In 2016 IEEE NetSoft Conference
and Workshops (NetSoft), pages 372–377. IEEE, 2016.

[123] D. L. Pipkin. Information security: protecting the global enterprise. Prentice-
Hall, Inc., 2000.

[124] S. Pisharody, J. Natarajan, A. Chowdhary, A. Alshalan, and D. Huang. Brew:
A security policy analysis framework for distributed sdn-based cloud environ-
ments. IEEE transactions on dependable and secure computing, 2017.

[125] C. Prakash, J. Lee, Y. Turner, J.-M. Kang, A. Akella, S. Banerjee, C. Clark,
Y. Ma, P. Sharma, and Y. Zhang. Pga: Using graphs to express and automat-
ically reconcile network policies. ACM SIGCOMM Computer Communication
Review, 45(4):29–42, 2015.

[126] A. Rafiq, M. Afaq, and W.-C. Song. Intent-based networking with proactive
load distribution in data center using ibn manager and smart path manager.
Journal of Ambient Intelligence and Humanized Computing, pages 1–18, 2020.

[127] J. Reich, C. Monsanto, N. Foster, J. Rexford, and D. Walker. Modular sdn
programming with pyretic. Technical Report of USENIX, 2013.

145

[128] C. Ren, H. Li, Y. Li, Y. Wang, H. Xiang, et al. On efficient service function
chaining in hybrid software defined networks. IEEE Transactions on Network
and Service Management, 2021.

[129] S. Revathi and A. Malathi. A detailed analysis on nsl-kdd dataset using various
machine learning techniques for intrusion detection. International Journal of
Engineering Research & Technology (IJERT), 2(12):1848–1853, 2013.

[130] A. Sabur, A. Chowdhary, D. Huang, M. Kang, A. Kim, and A. Velazquez. S3: A
dfw-based scalable security state analysis framework for large-scale data center
networks. In 22nd International Symposium on Research in Attacks, Intrusions
and Defenses ({RAID} 2019), pages 473–485, 2019.

[131] D. Satasiya, R. Raviya, and H. Kumar. Enhanced sdn security using firewall
in a distributed scenario. In Advanced Communication Control and Computing
Technologies (ICACCCT), 2016 International Conference on, pages 588–592.
IEEE, 2016.

[132] S. Sengupta, A. Chowdhary, D. Huang, and S. Kambhampati. Moving target
defense for the placement of intrusion detection systems in the cloud. In Inter-
national Conference on Decision and Game Theory for Security, pages 326–345.
Springer, 2018.

[133] S. Sengupta, A. Chowdhary, A. Sabur, A. Alshamrani, D. Huang, and S. Kamb-
hampati. A survey of moving target defenses for network security. IEEE Com-
munications Surveys & Tutorials, 22(3):1909–1941, 2020.

[134] H.-W. Shen and X.-Q. Cheng. Spectral methods for the detection of network
community structure: a comparative analysis. Journal of Statistical Mechanics:
Theory and Experiment, 2010(10):P10020, 2010.

[135] J. Shen, J. Xia, S. Dong, X. Zhang, and K. Fu. Universal feature extraction for
traffic identification of the target category. PloS one, 11(11):e0165993, 2016.

[136] J. Sherry, S. Ratnasamy, and J. S. At. A survey of enterprise middlebox de-
ployments. 2012.

[137] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. M. Wing. Automated
generation and analysis of attack graphs. In null, page 273. IEEE, 2002.

[138] H. D. Simon. Partitioning of unstructured problems for parallel processing.
Computing systems in engineering, 2(2):135–148, 1991.

[139] B. Tian, X. Zhang, E. Zhai, H. H. Liu, Q. Ye, C. Wang, X. Wu, Z. Ji, Y. Sang,
M. Zhang, et al. Safely and automatically updating in-network acl configura-
tions with intent language. In Proceedings of the ACM Special Interest Group
on Data Communication, pages 214–226. 2019.

[140] V. Varadharajan, K. Karmakar, U. Tupakula, and M. Hitchens. A policy-
based security architecture for software-defined networks. IEEE Transactions
on Information Forensics and Security, 14(4):897–912, 2018.

146

[141] Y. Velner, K. Alpernas, A. Panda, A. Rabinovich, M. Sagiv, S. Shenker, and
S. Shoham. Some complexity results for stateful network verification. In Inter-
national Conference on Tools and Algorithms for the Construction and Analysis
of Systems, pages 811–830. Springer, 2016.

[142] S. Vissicchio, L. Vanbever, and O. Bonaventure. Opportunities and research
challenges of hybrid software defined networks. ACM SIGCOMM Computer
Communication Review, 44(2):70–75, 2014.

[143] Y. Vizel, G. Weissenbacher, and S. Malik. Boolean satisfiability solvers and their
applications in model checking. Proceedings of the IEEE, 103(11):2021–2035,
2015.

[144] VMWare. Five critical requirements for internal firewalling in the data center
why traditional perimeter firewalls are becoming obsolete for protecting east-
west traffic. March 2020.

[145] R. Wallner and R. Cannistra. An sdn approach: quality of service using big
switchs floodlight open-source controller. Proceedings of the Asia-Pacific Ad-
vanced Network, 35(14-19):10–7125, 2013.

[146] A. Wang, L. Jia, W. Zhou, Y. Ren, B. T. Loo, J. Rexford, V. Nigam, A. Scedrov,
and C. Talcott. Fsr: Formal analysis and implementation toolkit for safe in-
terdomain routing. IEEE/ACM Transactions on Networking, 20(6):1814–1827,
2012.

[147] H. Wang, P. Sharma, F. Ahmed, J.-M. Kang, C. Qian, and M. Yannakakis.
Epinoia: Intent checker for stateful networks. In 2021 International Conference
on Computer Communications and Networks (ICCCN), pages 1–9. IEEE, 2021.

[148] L. Wang, T. Islam, T. Long, A. Singhal, and S. Jajodia. An attack graph-
based probabilistic security metric. In IFIP Annual Conference on Data and
Applications Security and Privacy, pages 283–296. Springer, 2008.

[149] Wikipedia contributors. Compact space — Wikipedia, the free encyclopedia,
2020. [Online; accessed 2-November-2020].

[150] A. Xie, Z. Cai, C. Tang, J. Hu, and Z. Chen. Evaluating network security
with two-layer attack graphs. In 2009 Annual Computer Security Applications
Conference, pages 127–136. IEEE, 2009.

[151] D. Xu and Y. Tian. A comprehensive survey of clustering algorithms. Annals
of Data Science, 2(2):165–193, 2015.

[152] S. H. Yeganeh, M. Eftekhar, Y. Ganjali, R. Keralapura, and A. Nucci. Cute:
Traffic classification using terms. In 2012 21st International Conference on
Computer Communications and Networks (ICCCN), pages 1–9. IEEE, 2012.

147

[153] S. Yi, Y. Peng, Q. Xiong, T. Wang, Z. Dai, H. Gao, J. Xu, J. Wang, and L. Xu.
Overview on attack graph generation and visualization technology. In 2013
International Conference on Anti-Counterfeiting, Security and Identification
(ASID), pages 1–6. IEEE, 2013.

[154] M. Yousefi, N. Mtetwa, Y. Zhang, and H. Tianfield. A reinforcement learning
approach for attack graph analysis. In 2018 17th IEEE International Confer-
ence On Trust, Security And Privacy In Computing And Communications/12th
IEEE International Conference On Big Data Science And Engineering (Trust-
Com/BigDataSE), pages 212–217. IEEE, 2018.

[155] B.-t. YUAN, Z.-l. PAN, and S. Fan. A review on network attack graph tech-
nology. DEStech Transactions on Engineering and Technology Research, (ecar),
2018.

[156] L. Yuan, H. Chen, J. Mai, C.-N. Chuah, Z. Su, and P. Mohapatra. Fireman: A
toolkit for firewall modeling and analysis. In 2006 IEEE Symposium on Security
and Privacy (S&P’06), pages 15–pp. IEEE, 2006.

[157] R. Yuan, Z. Li, X. Guan, and L. Xu. An svm-based machine learning method
for accurate internet traffic classification. Information Systems Frontiers,
12(2):149–156, 2010.

[158] Y. Yuan, S.-J. Moon, S. Uppal, L. Jia, and V. Sekar. Netsmc: A custom sym-
bolic model checker for stateful network verification. In 17th USENIX Sympo-
sium on Networked Systems Design and Implementation ({NSDI} 20), pages
181–200, 2020.

[159] A. Zeineddine and W. El-Hajj. Stateful distributed firewall as a service in
sdn. In 2018 4th IEEE Conference on Network Softwarization and Workshops
(NetSoft), pages 212–216. IEEE, 2018.

[160] S. Zhang, X. Ou, and J. Homer. Effective network vulnerability assessment
through model abstraction. In International Conference on Detection of In-
trusions and Malware, and Vulnerability Assessment, pages 17–34. Springer,
2011.

[161] Y. Zhao, P. Zhang, Y. Wang, and Y. Jin. Troubleshooting data plane with rule
verification in software-defined networks. IEEE Transactions on Network and
Service Management, 15(1):232–244, 2017.

[162] R. Zhuang, S. Zhang, S. A. DeLoach, X. Ou, and A. Singhal. Simulation-
based approaches to studying effectiveness of moving-target network defense.
In National symposium on moving target research, volume 246, 2012.

[163] M. Zoure, T. Ahmed, and L. Réveillére. Network services anomalies in nfv:
Survey, taxonomy, and verification methods. IEEE Transactions on Network
and Service Management, 2022.

148

APPENDIX A

A PERMISSION FROM CO-AUTHORS

149

The author of this dissertation states and confirms that he has obtained permission
from all co-authors of the previously published work and that they have all granted
him permission to include the research work in this dissertation.

150

	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	BACKGROUND AND MOTIVATION
	Software Defined Networking
	OpenFlow

	Motivation
	Attack Graph
	Attack Graph Scalability Challenge:

	Security Policy Conflict Checking

	A DISTRIBUTED FIREWALL APPROACH FOR LARGE SCALE DATA CENTER NETWORK SECURITY ANALYSIS
	Abstract
	Introduction
	Chapter Contributions

	Related Work
	The Scalability of Attack Graphs
	Attack Graph Segmentation:

	System Model and Architecture
	System Architecture
	DFW System Model

	S3 Framework Segmentation Approach
	Segmentation Procedure
	Segments Analysis

	Scalable Attack Graph Generation
	AG Validation:
	AG Update:
	DFW Dynamic Traffic Match and Flow Update
	Scalable Attack Graph Generation Cost Analysis
	Sparse Graph Connectivity Using DFW

	Experimental Results
	Experimental Setup
	Attack Graph Scalability Evaluation
	Attack Graph Generation Time and Automatic Graph Update Evaluation
	AG Generation Time
	SDN Controller Overhead
	Cycle Detection Time

	Conclusion and Discussion

	INTENT-DRIVEN SECURITY POLICY MANAGEMENT FOR SOFTWARE-DEFINED SYSTEMS
	Abstract
	Introduction
	Chapter Contributions

	Related Work
	Intent-based Policy Configuration
	Network Policy Conflict Checking

	INTPOL System and Model Descriptions
	INTPOL Framework
	Policy Conflict Detection
	Programming Network Functions (NFs)
	INTPOL Model Checking Framework
	Intent Handling in INTPOL
	Application Layer Packet Caching and Policy Composition
	Policy Conflict Detection
	Motivation

	System Architecture and Implementation
	Experimental Setup
	INTPOL Implementation
	Intent Processing Module

	Performance Evaluation
	Hybrid Network Scenario
	Composition Time Analysis
	Policy Conflict Checking for Large Network Scenario

	Conclusion and Discussion

	CONCLUSION AND FUTURE WORK
	Future Work

	REFERENCES
	A PERMISSION FROM CO-AUTHORS

