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ABSTRACT

With the formation of next generation wireless communication, a growing number of

new applications like internet of things, autonomous car, and drone is crowding the

unlicensed spectrum. Licensed network such as LTE also comes to the unlicensed

spectrum for better providing high-capacity contents with low cost. However, LTE

was not designed for sharing spectrum with others. A cooperation center for these

networks is costly because they possess heterogeneous properties and everyone can

enter and leave the spectrum unrestrictedly, so the design will be challenging. Since

it is infeasible to incorporate potentially infinite scenarios with one unified design, an

alternative solution is to let each network learn its own coexistence policy. Previous

solutions only work on fixed scenarios. In this work we present a reinforcement learn-

ing algorithm to cope with the coexistence between Wi-Fi and LTE-LAA agents in 5

GHz unlicensed spectrum. The coexistence problem was modeled as a Dec-POMDP

and Bayesian approach was adopted for policy learning with nonparametric prior to

accommodate the uncertainty of policy for different agents. A fairness measure was in-

troduced in the reward function to encourage fair sharing between agents. We turned

the reinforcement learning into an optimization problem by transforming the value

function as likelihood and variational inference for posterior approximation. Simula-

tion results demonstrate that this algorithm can reach high value with compact policy

representations, and stay computationally efficient when applying to agent set.

i



ACKNOWLEDGEMENTS

There are a number of people to whom I would like to dedicate my uttermost appre-

ciation in the journey of pursuing my degree at Arizona State University. First and

foremost, it is my advisors, Bahman and Antonia. To Bahman, you are more than

an advisor, but a mentor and a friend. Your supervision has inspired my interest and

has been pushing forward my research. Thank you for advising not only on academic

work, but also on life and future careers. Thank you for opening the doors of Bayesian

inference and reinforcement learning for me, as well as training me to be a problem

solver. Your encouragement always reminds me never to flinch every time I suffer

from frustration. To Antonia, thank you for being teaching me random signal theory

and signal processing, which established my background for my research, and inviting

me to your house. Your kindness and humor always relax me when I feel nervous. To

Gautam, thank you for teaching me theory behind machine learning, and being my

committee members. To YiChang, thank you for your time and advice in my defense.

I also need to thank Si-Hua, one of my best friend. Although we could not meet in

person, you still keep in touch with me through network. Our communication makes

me feel close to my friends in Taiwan. Your messages always warm my heart. In no

uncertain terms, I am indebted to my family in Taiwan. Since the first day I came

here, mother, father, and sister, you have been my strongest backing. Thank you for

giving me a sound mind, keeping reminding me to take care of myself even if we are

tens of thousands of miles apart. Thank you for being my best listeners whenever

I feel down. Our video calls have been alleviated my loneliness, especially in these

tough days. To friends from Arizona State University - Henry, Shawn, Richard, and

Russell - thanks for your help in projects and coursework and many funny moments

during these years. To everyone who helped me, thank you for making me feel at

home.

ii



TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

CHAPTER

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Spectrum Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Bayesian Nonparametric Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Chinese Restaurant Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Stick-Breaking Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.3 Application of Bayesian Nonparametric Model . . . . . . . . . . . . . 13

2.3 Sampling Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Gibbs Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Variational Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 (Partially-Observable) Markov Decision Process . . . . . . . . . . . . . . . . . . . 19

2.5.1 Decentralized Partially-Observable Markov Decision Process 21

2.6 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6.1 Bayesian Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 BAYESIAN REINFORCEMENT LEARNING IN SPECTRUM SHAR-

ING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Problem Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.2 Model Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Nonparametric Bayesian Policy Learning . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.1 Policy Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

iii



CHAPTER Page

3.2.2 Nonparametric Policy Prior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.3 Global Empirical Value Function . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.4 Variational Inference for Posterior Approximation . . . . . . . . . . 37

4 SIMULATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1.1 Convergence of Variational Inference . . . . . . . . . . . . . . . . . . . . . . 44

5 CONCLUSIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.1 Vignette of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 Future Works. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

APPENDIX

A LIST OF ACRONYMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

B EMPIRICAL VALUE FUNCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

C COMPUTATION OF VARIATIONAL DISTRIBUTIONS . . . . . . . . . . . . . . 60

D DISTRIBUTIONS OF RANDOM VARIABLES . . . . . . . . . . . . . . . . . . . . . . . 73

iv



LIST OF TABLES

Table Page

4.1 Pre-Defined Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

v



LIST OF FIGURES

Figure Page

1.1 The Vision of 5G Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Illustration of The Stick-Breaking Process With Simulation . . . . . . . . . . . 11

2.2 SB Construction for DP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Reinforcement Learning in MDP Environment . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 5G Spectrum Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 LTE-LAA Spectrum Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 FSC Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 DBN Expression for POMDP Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.5 Mixture of DBNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1 Evolution of The ELBO Value and Policy Size . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Discount Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Evolution of The Parameters for q(ρ|g, h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

vi



Chapter 1

INTRODUCTION

With the population of wireless devices growing exponentially comes the massive

demand for spectrum resources in the fifth generation wireless network (5G). As

Figure 1.1 illustrates, one ambition of the 5G network is to fulfill the requirements

for various ultra-dense, scalable, and highly customizable networks while boosting

the throughput. To satisfy this, it is essential for the cellular networks to provide

more capacity but not to raise the operational costs significantly. Since the licensed

spectrum is limited and has been crowded, the unlicensed spectrum is attracting

attentions from network operators. Offloading to the unlicensed spectrum provides

two major advantages: access flexibility for unexpected incoming loads and cost effi-

ciency since it is free. According to the Cisco annual internet report [1], the number

of Wi-Fi hotspots is expected to be up to 628 million, and the number of cellular

network subscribers will reach 5.7 billion by 2023. However, currently many het-

erogeneous wireless networks have been crowding the unlicensed spectrum, including

Wi-Fi, bluetooth, various internet of things (IoTs), and other new applications, such

as autonomous car, radar, drone, still keep arriving. These applications suggest po-

tentially infinite number of wireless devices are entering and leaving the spectrum

continually. The existing networks are divergent in their properties such as quality

of services (QoS), protocols, bandwidth requirements, and access timing. The nature

that resource requests are not constant obstructs the coordination between networks.

For example, wireless wide area networks such as the Long-Term Evolution (LTE) de-

mand stable and massive throughput for its high-quality, heavy-load content, whereas

countless cloud-integrated IoTs devices may require frequent and burst-like service.
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Figure 1.1: The 5G wireless network is anticipated to provide various high-quality

services1.

This problem has motivated the study for spectrum sharing techniques [2–4].

In this work, we consider a fair spectrum sharing between Wi-Fi and LTE networks

in the 5 GHz unlicensed band. An infinite-horizon decentralized partially observable

Markov decision process (Dec-POMDP) is adopted to simulate the interaction be-

tween wireless nodes and the spectrum environment. A cumulative reward function

is proposed to measure the quality of sequential decision on the competition for lim-

ited spectrum resource. We utilize an off-policy, mode-free reinforcement learning

to learn policies for each agent from episodes collected by behavior policy. To ac-

commodate the various policy representations for different types of wireless nodes,

our reinforcement learning applies Bayesian approach to infer the distribution over

policies with nonparametric policy prior. For posterior model approximation, the

variational inference is utilized in consideration of model complexity. To our best

knowledge, this is the first work on spectrum sharing for LTE and Wi-Fi utilizing
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reinforcement learning with variable policy representations.

The rest of this work is organized as follows. In chapter 2 we first review previous

researches on spectrum sharing and applications of Bayesian nonparametric models

on signal processing. Then the nonparametric model utilized in this work is intro-

duced. Markov chain Monte-Carlo method and variational inference are two major

approaches to estimate the posterior model in Bayesian inference; their fundamentals

and implementations, the Gibbs sampling and coordinate ascent variational inference,

will be presented in this chapter. Reinforcement learning is an optimization process

based on the (partially-observable) Markov decision process model, which components

will be discussed in the last section of chapter 2. Chapter 3 exhibits our approach of

modelling a spectrum sharing problem to partially-observable Markov decision pro-

cess, and elaborates the iterative algorithms of proposed Bayesian inference for policy

learning. Performance evaluation of proposed algorithm in comparison with previous

method is demonstrated with discussion in chapter 4. Chapter 5 summarizes our

contributions and proposes some future extension of this work.

1From https://www.qualcomm.com/media/documents/files/whitepaper-making-5g-nr-a-reality.

pdf.
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Chapter 2

BACKGROUND

In this chapter, we are going to discuss background of the problem and some under-

lying techniques in our method. First, review on recent researches about application

of reinforcement learning on spectrum sharing is delivered. Then the fundamentals

of Bayesian nonparametric model utilized and its application in signal processing are

introduced. For discrete cases, Dirichlet process is a classical model widely-used in

Bayesian inference. Dirichlet process has several convenient realization methods, in-

cluding the Chinese restaurant process and the stick-breaking process.. In order to

gather information from the posterior distribution, Markov chain Monte Carlo method

is a direct way to draw samples from it, and Gibbs sampling is one implementation

of this theory. Although sampling method like Markov chain Monte Carlo can de-

liver accurate statistical information about the distributions, its resource-demanding

property indeed restricts its application to problems with high dimension. Variational

inference, on the other hand, provides a less accurate but faster alternative to approx-

imate the posterior distributions. In the last section the Markov decision process, the

cornerstone of reinforcement learning, and how reinforcement learning optimizes it,

will be introduced.

2.1 Spectrum Sharing

Spectrum sharing has been a popular research topic. Some mechanisms have

been employed [5] in existing networks. The Carrier Sense Multiple Access/Collision

Avoidance (CSMA/CA) was encoded in IEEE 802.11 Wi-Fi standard to handle the

homogeneous coexistence for Wi-Fi access points and user equipments. CSMA/CA is

4



an uncoordinated scheme, which incorporates Lister-Before-Talk (LBT) mechanism

to avoid collisions. LBT requires each node (could be access point or user equipment)

to perform spectrum sensing for the channel it is going to access before transmission

commences. By sensing before transmission, new coming node suspends its transmis-

sion when the channel is sensed busy. Even if the channel is sensed idle, the node is not

allowed to access the channel immediately, since there might be other nodes waiting

to utilize the same channel. All waiting nodes start their transmission immediately

after channel becomes idle will cause severe collision. To avoid coincident transmis-

sion, CSMA/CA mandates node to execute back-off sensing for several time slots, and

transmission can start only when the back-off sensing result is idle for the given time

slots. With the number of time slots being stochastic for each node, probability of

colliding transmission is reduced. As we mentioned in Chapter 1, with the increasing

demand for high-quality, low-latency contents, LTE operators seek to expand their

spectrum usage to unlicensed spectrum. Some LTE-unlicensed (LTE-U) mechanisms

have been proposed for LTE networks to operate in unlicensed spectrum. LBT and

Almost Blank Subframe (ABS) are two branches. LBT-based mechanism can be

deployed in areas like Europe and Japan where channel assessment before transmis-

sion is mandatory, whereas ABS-based mechanism can be implemented immediately

in areas without requirement of sensing before transmission, such as United States,

China, Korea, and India. Unlike aforementioned LBT, ABS employs duty-cycle for

LTE nodes to share spectrum with other networks. LTE node actively interrupts its

transmission for other networks to access the channel in every period of time, and

the interrupt period depends on the measurement of channel occupancy. Compare to

LBT mechanism, ABS-based method needs less channel sensing actions and less mod-

ification on current LTE framework in exchange of higher probability of collision. For

standardization, ABS-based mechanism has been incorporated in 3GPP LTE release
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10. Among all candidate methods, the LTE-Licensed Assisted Access (LTE-LAA) is

one of the most competitive schemes because its operation is similar to Wi-Fi and

can be adopted in all regions in the world. The LTE-LAA adopts LBT mechanism,

and has been standardized in 3GPP LTE release 13 to offload downlink traffic for

LTE to the unlicensed spectrum in 5 GHz [5].

Previous researches have proposed some solutions to advance the spectrum sharing

efficiency. Kota in [6] and Sodagari et al. in [7] proposed a joint design for multi-input

multi-output communication systems and radar to minimize the co-channel interfer-

ence. The multi-objective loss functions were defined for all channel users to find

the jointly optimal waveform. However, these optimization methods only work for

specific configurations, and need to start over for every condition change or compute

all potential configurations in advance and memorize them. Furthermore, they need

all information available, including number of spectrum users, user types, or band-

width allocation, etc., which is impractical for real-world applications. In the last

decade, reinforcement learning (RL) has been a popular solution to spectrum sharing

problem. Q-learning was applied in [8] to intelligently manage transmitting power of

radar and communication systems for a joint radar-communication receiver. [9–11]

discussed the coexistence between the LTE-U and Wi-Fi networks, adopting con-

ventional Q-learning methods to learn the optimal active duration in duty-cycle for

LTE-U users to maximize throughputs while keeping fair access rights. The author

of [12] formulated the radar tracking problem as Markov decision process and uti-

lized policy iteration to search the optimal linear frequency modulation for different

target conditions and interference. Beside above methods, an analytical model was

proposed in [13] to evaluate the throughput of Wi-Fi and LTE-LAA networks and

multi-armed bandit algorithm was utilized to tune the contention window for through-

put maximization subject to fairness constraint. These works require a full picture
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about the whole spectrum and maintain predefined Q-table which includes all possi-

ble state-action combinations; the learned policies usually struggle in stochastic and

non-stationary spectrum dynamics, and face troubles when applying to complicated

problems. On the other hand, some other solutions are based on partially-observable

environments. [14–17] considered partially-observable Markov decision processes for

wireless transceivers and sought for maximizing the transmitting efficiency in noisy

spectrum. Gaussian process was adopted in [18] for a time-series POMDP model

to approximate each Q function in Q-table in consideration of correlation between

channels. Author of [19] proposed dynamic Q dictionary which allowed adding new

state-action pair during training. Secondary users of cognitive radio networks in

[20–22] utilized Q-learning to find the optimal policies for locating the clear bands

in different spectrum configurations. Except these, deep learning is also grasping

attentions. A model-free decentralized deep Q-learning method was combined with

model-based Q-learning in [23] to compensate the imperfectness of each other while

accelerating the learning rate. Although deep Q-learning can handle partial observ-

ability, it still needs a pre-defined Q-table and approximates each Q function with

a neural network (NN), which means a significant number of NNs and each NN re-

quires a great bunch of data to train, let alone extra regularization in avoidance of

overfitting.

2.2 Bayesian Nonparametric Model

Bayesian statistics exploits the prior belief and provides an update of our belief

about the unknown variables in a model using samples from the model. Denote z as

the desired variable in the model of interest, and D = (x1, x2, ..., xN) as the data set

with each element drawn from the model, the Bayesian update for the belief about z

7



is represented through inverse probability rule

p(z|D) =
p(D|z)p(z)

p(D)
(2.1)

The main difference that distinguishes Bayesian inference from point estimation tech-

niques like maximum likelihood is that Bayesian approaches regard unknown value

z as random variable. The prior p(z) is the belief about how the value of z will

distribute before observing the first sample. The distribution p(z) encodes all infor-

mation known to us about the value of z a priori. Since each z value defines a unique

estimate of the true model, the distribution over z determines the inference over the

true model. Once sample (x1, x2, ...) is collected from the true model, we can utilize

it to update the belief to the posterior p(z|D) by applying Bayes rule. p(D|z) is

represented by the distribution family (usually a parametric model) over true model

and is controlled by z, indicating the likelihood of observing D given some z drawn

from p(z); the denominator p(D) is the marginal likelihood over D and is obtained

by marginalizing z from the numerator.

The prior model in Bayesian inferences can be categorized into two classes: para-

metric and nonparametric models. Parametric models have fixed structure and are

simple to understand. These models are often utilized when the structure of the dis-

tribution family over the true model is well-defined. Nonparametric models, on the

other hand, generalize the parametric models to infinite dimension to address a wider

range of problems. The idea of utilizing nonparametric model is to reserve flexibil-

ity of adjusting model structures. In general, parametric priors can work well when

the structure of true model is simple and some critical information can be known

a priori. However, strong prior assumption is imposed on the structure of models,

which is not the case in most real-world applications. For example, in an inference

problem for Gaussian mixture model (GMM), if the number of Gaussian components
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is known, the prior model can be clearly defined and the inference task can be ac-

complished very efficiently and accurately. But if such information is unavailable,

parametric methods may need to perform inference many times, each with different

setting about the number of components, and incorporate extra algorithms like cross

validation to select the optimal setting, which causes the solution inefficient and bur-

densome. Nonparametric models, on the other hand, can solve such inference problem

with single algorithm. Nonparametric models treat the structure of the model as ex-

tra variable, loosening the limitation of parametric models. By incorporating infinite

possibility over model structure, nonparametric models allow the learning machine

to learn model parameter and structure together from data, thus can apply to wider

range of models with less prior information required.

Dirichlet process (DP) is a commonly-used nonparametric model in discrete cases.

It is a generalization of Dirichlet distribution and is first proposed by Ferguson in 1973

[24]. Denote G0 as a distribution over probability space Θ and α as some positive

real value, θ1, θ2, ... are drawn i.i.d from Θ given G0 with corresponding probability

p1, p2, ..., a random measure G is represented as discrete distribution with infinitely

countable components,

G =
∞∑
i=1

piδθi ,
∞∑
i=1

pi = 1,

where δ means the Dirac delta function. From definition, G is distributed according

to DP(α,G0) if for arbitrary finite measurable partition (A1, ..., An) over Θ, the vector

of random measure G(A1), ..., G(An) follows Dirichlet distribution,

(G(A1), ..., G(An)) ∼ Diri(αG0(A1), ..., αG0(An))

Chinese restaurant process (CRP) [25] and stick-breaking (SB) process [26] are two

different metaphors for realization of DP(α,G0), both incorporate unbounded process

of generating samples. I particularly focus on two methods of constructing Dirichlet
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processes.

2.2.1 Chinese Restaurant Process

Chinese restaurant process defines random distribution over partitions of samples.

Given a finite set of samples x1, ..., xN and an infinite set of clusters, first sample is

assigned to the first cluster with probability 1, and the nth sample is assigned to the

kth non-empty cluster with probability proportional to nk, the number of samples

already in the cluster in previous n−1 samples, and to a new cluster with proportional

to α. Denote θn as the cluster parameter for xn, and (θ∗1, ..., θ
∗
K) represents the unique

set of cluster parameters i.i.d drawn from G0 for previous n − 1 samples, the CRP

can be expressed as

p(θ1 = θ∗1) = 1

(θn|θ1, ...θn−1) =


θ∗k with probability nk

n−1+α

G0 with probability α
n−1+α

(2.2)

It can also be written in equation

p(θn|θ1, ...θn−1) =
K∑
k=1

nk
n− 1 + α

δθ∗k +
α

n− 1 + α
G0

De Finetti’s theorem implies that the order of both the clusters and the samples in

each cluster is exchangeable because of conditional independence given G, thus each

sample can be placed at the last position so that it is conditional on all others. It is

obvious that the value of α determines the increase of clusters. Equation (2.2) exhibits

that probability of cluster assignment only depends on the cluster size, which means

the larger the nk is, the higher the probability to cluster k is. This rich-gets-richer

phenomenon helps govern the growth of cluster number.
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(a) Visualization (b) Simulation with α = 2

Figure 2.1: Illustration of the stick-breaking process with simulation. (a) Visualiza-

tion of the infinite process of breaking a unit-length stick into pieces, (b) Simulation

for the stick-breaking process; the process is truncated at 5. All values of breaking

portion are generated with α = 2.

2.2.2 Stick-Breaking Process

The stick-breaking process provides a straightforward approach to construct G.

The approach to generate the probability weights of G in stick-breaking process is

analogous to breaking a unit-length stick into infinite number of pieces. Consider a

stick with length 1 initially, we first break a portion V1 off from the stick. As the

process proceeds, at time i a portion Vi will be broken off from the remaining part

of the stick. The values of the breaking portion are determined by Beta distribution.

Figure 2.1a visualizes this process with simulation results. Given a random variable

V with beta distribution Beta(1, α), and point mass θ1, θ2, ... drawn from G0, the

random probability weights (p1, p2, ...) in G can be construct through an unbounded

11



Figure 2.2: A stick-breaking construction for G with base distribution as standard

normal distribution and α = 2.

process: 
θi|G0

i.i.d∼ G0

Vi|α
i.i.d∼ Beta(1, α)

, i = 1, 2, ...

p1 = V1, pi = Vi

i−1∏
j=1

(1− Vj) for i > 1

G =
∞∑
i=1

piδθi

(2.3)

Figure 2.1b demonstrates different simulation results for α = 2. Figure 2.2 illustrates

an example of stick-breaking construction for G with standard normal distribution

as G0 and Beta(1, 0.2) for generating the probability weights pi (in this example,

the stick-breaking process is bounded for simplicity, but it can proceed to infinity).

The stick-breaking process can construct the random measure G fast and guarantee

the probabilities pi sum to 1. The distribution over pi is also known as GEM(α)

distribution [27].

12



2.2.3 Application of Bayesian Nonparametric Model

Bayesian nonparametric modeling has been adopted in signal processing, espe-

cially when the data pattern is uncertain a priori. In [28–34] the author proposed a

dependent Dirichlet process to infer the unbounded number of objects and charac-

teristics of each object together in a radar tracking scenario. Hierarchical Dirichlet

process is also used in tracking multiple time-varying objects [31, 35]. Guo et al.

in [36] suggested that the Dirichlet process mixture model can be utilized to ex-

tract insights from deep neural networks, assisting understanding and interpretation

of machine learning models, and demonstrating its ability to generalize to different

machine learning frameworks. A variance Gamma process was proposed in [37] to

encode probabilistic assumptions in the model prior, interpreting sparse and discrete

data points in time-series data better than traditional machine learning algorithms,

which usually yield smooth function. The author of [38] adopted Beta-Bernoulli pro-

cess over the model prior to learn an unbounded set of visual recurring patterns from

data, and utilized this learned set to augment image resolution from low-resolution

images.

2.3 Sampling Algorithm

A central task in the application of probabilistic inference is the evaluation of

the posterior distribution p(z|D), and consequently computing the expectations with

respect to the desired distribution. In Bayesian inference, the most straightforward

way to obtain the information from the posterior is Monte Carlo method. Monte Carlo

methods directly draw independent samples from the posterior distribution. However,

drawing independent samples from the posterior distribution is not always possible.

Markov chain Monte Carlo (MCMC) is a general framework for drawing dependent
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samples from various distributions. Monte Carlo methods, in general, estimate the

statistical property of the desired distribution from random samples generated from

it; Markov chain property means that samples are randomly generated by a sequence

of process, where each samples is drawn from the conditional distribution given only

its previous sample (Markov property), which means

p(xn|xn−1, ..., x1) = p(xn|xn−1)

2.3.1 Gibbs Sampling

One the widely used and well-understood MCMC algorithms in practice is Gibbs

sampling. The main idea behind Gibbs sampling is that it adopts iterative proce-

dure to drawing samples from the target distribution. Consider a joint posterior

distribution of variables p(z|D) = p(z1, ..., zK |D), the objective is to drawing samples

(z1, z2, ..., zt, ...), where each zt is a vector of samples (zt1, ..., z
t
K). At tth Markov

state, Gibbs sampling sequentially draws sample of each zti conditioned on the latest

sampled values of all other variables, that is, sample of zti is generated from the condi-

tional distribution p(zi|zt1, ..., zti−1, z
t−1
i+1 , ..., z

t−1
K ,D). The sample of next variable zti+1

is then drawn from the distribution given the sampled value of zti . Once all variables

are sampled at tth state, the sample vector zt is complete and iteration proceeds to

next state. The process is shown in the following
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Algorithm 1: Gibbs sampling for p(z|D)

Initialize: values of z0
i , i = 1, ..., K

for t = 1, ..., T do

sample zt1 ∼ p(z1|zt−1
2 , ..., zt−1

K ,D)

sample zt2 ∼ p(z2|zt1, zt−1
3 , ..., zt−1

K ,D)

...

sample zti ∼ p(zi|zt1, ..., zti−1, z
t−1
i+1 , ..., z

t−1
K ,D)

...

sample ztK ∼ p(zK |zt1, ..., ztK−1,D)

construct zt = (zt1, ..., z
t
K)

end

Output : sample sequence (z1, ..., zT )

2.4 Variational Inference

MCMC methods provide straightforward and feasible solution to approximate the

exact models. However, there are some drawbacks in practical applications when the

model complexity is increasing. First, it can be difficult to predict when the stochas-

tic process converges. How converged results deviates from the true models is also

difficult to quantify due to stochastic nature. Stochastic sampling means the statisti-

cal properties extracted from those samples usually require a lot of time and samples

to reach stationary state, which means large storage space is necessary. Second, the

amount of computation can increase exponentially when new variables are introduced

to model. Such computationally demanding nature often refrains them from scaling

to problems with high dimension. Finally, Gibbs sampling requires the conditional

distribution to be analytical or the sampling from it will be complicated. Although

stochastic approach can yield theoretically most accurate results given infinite com-

putational resource, in practice only approximate estimates can be obtained due to
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finite amount of time and samples, which means the accuracy is determined by the

limit of computational resource, and may never reach its theoretically optimum.

In contrast, variational inference(VI) provides a useful alternative to compensate

the drawbacks of sampling method. First, unlike directly sampling from the exact

models, VI are approximate models, which serves as surrogate to estimate the statis-

tical properties of true model. Second, its computation requires less computational

resource than sampling method so is easier to apply to large problems. The deriva-

tion is deterministic and easy to measure how approximate the surrogate is to the

true model. The result is guaranteed to be the optimal possible approximate to the

objective models in its distribution family. Finally, it formulates the derivation of

unknown distribution into an optimization problem so that it is convenient to apply

many optimization techniques to improve the computation.

The core concept of VI is to utilize variational distribution q(z) as surrogate to

approximate the true posterior distribution p(z|D). The VI utilizes Kullback–Leibler

divergence (KL-divergence) to quantify the deviation of q(z) from p(z|D), which is

defined as [39]:

KL(q‖p) :=

∫
Z

q(z) ln
q(z)

p(z|D)
dz = Eq

[
ln

q(z)

p(z|D)

]
(2.4)

If q(z) is defined discrete distribution, the integration is then replaced by summation.

The problem of finding a distribution is thus reformulated as an optimization problem

which seeks an optimal q∗(z) such that

q∗(z) = argmin
q(z)

KL(q‖p)
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Decompose Equation (2.4), we get

KL(q‖p) = Eq [ln q(z)]− Eq [ln p(z|D)]

= Eq [ln q(z)]− Eq

[
ln
p(z,D)

p(D)

]
= Eq [ln q(z)]− Eq [ln p(z,D)] + Eq [ln p(D)]

= Eq [ln q(z)]− Eq [ln p(z,D)] + ln p(D)

(2.5)

ln p(D) is the log marginal likelihood of data set D and has nothing to do with

variable set z, so the expectation over it is not functioning. Rearrange Equation (2.5)

we obtain

ln p(D) = KL(q‖p) + Eq [ln p(z,D)]− Eq [ln q(z)]

= KL(q‖p) + ELBO(q)

(2.6)

The term ELBO(q) is the evidence lower bound of q distribution. Since the left-

hand side of Equation (2.6) is constant, the q(z) that minimizes KL(q‖p) is just the

one that maximizes ELBO(q). If we maximize ELBO(q) by optimization with unre-

stricted choices of q(z), the maximum value of ELBO(q) happens when KL(q‖p) is

equal to 0, which means the resulting q∗(z) is just the objective distribution p(z|D).

However, such setting will cause the problem intractable. To guarantee the optimiza-

tion to converge, it is necessary to place some assumption on the form of q(z). A

commonly applied assumption is the mean-field approximation. Suppose we partition

the variable set z into K disjoint groups, and each group contains at least 1 variable.

Denote each group as zi where i = 1, 2, ..., K, we then assume the joint distribution

q(z) can factorize into the product of all q(zi)s,

q(z) =
K∏
i=1

q(zi). (2.7)

By decomposing q(z) into the product of independent marginal q(zi)s, we then

can maximize ELBO(q) with respect to each q(zi) individually and multiply them to
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obtain the joint q(z). It is necessary to emphasize that the mean-filed approxima-

tion is the only assumption we place on q distribution. The process of optimization

turns to seek the q∗(z) which satisfies Equation (2.7) with maximum ELBO(q) value.

Substitute Equation (2.7) into the form of ELBO(q), we obtain

ELBO(q)

=Eq [lnp(z,D)]−Eq

[
ln

K∏
i=1

q(zi)

]

=Eq [lnp(z,D)]−
K∑
i=1

Eq [lnq(zi)]

=

∫
q(z)lnp(z,D)dz−

K∑
i=1

∫
q(z)lnq(zi)dz

=

∫∫
q(zi)q(z−i)lnp(z,D)dz−idzi−

K∑
i=1

∫∫
q(zi)q(z−i)lnq(zi)dz−idzi

=

∫
q(zi)

[∫
q(z−i)lnp(z,D)dz−i

]
dzi−

K∑
i=1

∫
q(zi)lnq(zi)

[∫
q(z−i)dz−i

]
dzi

=

∫
q(zi)Eq−i [lnp(z,D)]dzi−

K∑
i=1

∫
q(zi)lnq(zi)dzi

=

∫
q(zi)Eq−i [lnp(z,D)]dzi−

∫
q(zi)lnq(zi)dzi−

∑
j 6=i

∫
q(zj)lnq(zj)dzj

(2.8)

q(z−i) =
∏K

j 6=i, j=1 q(zj) is the joint distribution of all variable groups other than

zi. To maximize ELBO(q) with respect to some q(zi), we take partial derivative on

Equation (2.8) with respect to q(zi) and set it equal to 0, subject to the condition

that q(zi) must integrate to 1,

∂ELBO(q)

∂q(zi)
= Eq−i [ln p(z,D)]− ln q(zi)− 1 = 0

→ ln q(zi) = Eq−i [ln p(z,D)]− 1

→ q∗(zi) ∝ exp
{

Eq−i [ln p(z,D)]
} (2.9)

This formula exhibits what optimal q∗(zi) would look like. In general, we do not
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specify the form of q(zi) a priori, however, if prior distribution p(zi) and likelihood

p(D|zi) have conjugacy, the approximation q∗(zi) to the posterior p(zi|D) inherently

shares the same form of p(zi). This is useful in computing each q(zi) analytically when

p(z,D) is well-defined. and A commonly utilized algorithm to optimize each q(zi) is

the coordinate ascent variational inference (CAVI). CAVI iteratively optimizes each

q(zi), while keeping all others fixed. It guarantees the ELBO(q) to converge to local

maximum. This algorithm is presented as follows:

Algorithm 2: Coordinate Ascent Variational Inference

Input : data set D and p(z,D)

Initialize: each q(zi) with respective initial parameters

while ELBO(q) not converged OR iteration < max do

for i = 1, ..., K do

determine q∗(zi) ∝ exp
{

Eq−i [ln p(z,D)]
}

end

compute ELBO(q)

end

Output : variational distribution q(z) =
∏K

i=1 q(zi)

On the other hand, the proxy q(z) can estimate the mean of the true posterior

p(z|D) accurately, but tend to underestimate the variance. Mean-field assumption

simplifies the computation by dismissing potential dependency between variables, so

the joint q(z) can perform well but the marginal q(zi) may not. Conjugacy is not

required in VI, but extra variables may be needed to govern q(z) for non-conjugate

cases, which could cause the problem intractable.

2.5 (Partially-Observable) Markov Decision Process

Markov decision process describes the interaction between agent and a (stochastic)

environment. A typical Markov decision process comprises a tuple 〈n,A,S, T, R, γ〉,
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where each element represents one component of Markov decision process. n is the

agent of Markov decision process. An agent is a decision maker that can determine

what action to perform based on its current state from the environment and receive

feedback from the environment. In control system, it can be regarded as input gener-

ator which provides input to a system given the readings of the system. A represents

the action set; the agent determines an action a ∈ A to perform. By performing

action, the agent receives feedback from the environment and observes a new state.

The state set S is utilized to describe the dynamic of the environment. At each time

moment, a state s ∈ S is a variable to demonstrate the current configuration of the

the environment. At each time an action is performed, the state will transit to an-

other one with some probability. T (s′, a, s) = Pr(s′|a, s) ∀s, s′ ∈ S, a ∈ A denotes

the state transition probability given current state and action. Markov decision pro-

cess assumes Markov property for the state transition, which means the distribution

over state at time t only depends on the state at t − 1, that is, previous one state

encompasses all information of the past state transition history.

Pr(st|st−1, st−2, ...) = Pr(st|st−1)

R : S × A → Z is the immediate reward function which feeds back a real value

r to the agent for every (s, a) pair. It is worth to note that the design of reward

function encodes the core objective in the learning process, that is, what is the prior

concern for the agent; different reward functions will guide the learning process to

different results. To avoid divergence of the learning process, discount factor γ is

introduced, which is a predefined positive real constant between [0, 1) utilized to

reflect the importance of future rewards in contrast to the current one.

When the states of the environment are not fully-observable to the agent, the

Markov decision process transforms to partially-observable. In such case, a partially-
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observable Markov decision process can be described by the tuple 〈n,A,S,O, T,Ω, R, γ〉.

n, A, S, T , R, and γ are the same as MDP model. But for POMDP model, an obser-

vation o ∈ O will be observed by the agent instead of s after each action is performed.

Each o carries partial information about the true global state, and the observation

function Ω(o) = Pr(o|s, a) describes the probability distribution over observations

when performing action a at state s at each time.

2.5.1 Decentralized Partially-Observable Markov Decision Process

When POMDP model generalizes to multi-agent scenario with each agent exe-

cutes its own reinforcement learning without cooperation or information exchange, it

becomes a decentralized POMDP model. A Dec-POMDP model can be represented

by 〈N ,A,S,O, T,Ω, R, γ〉 [40, 41]. S and γ are identical to POMDP model, and

N , A, and O generalize to multi-agent case. N = 1, ..., N is the finite set of agents.

A =
⊗

nAn and O =
⊗

nOn correspond to the sets of joint actions and observations,

where An and On are local action and observation sets for agent n. At each state,

a joint action ~a = {an}Nn=1 ∈ A is formed by the local actions an ∈ An, and Joint

observation ~o = {on}Nn=1 ∈ O, where on is only accessible to agent n. T , R, and Ω are

now functions of the joint action and observation. T (s′,~a, s) = Pr(s′|~a, s) ∀s, s′ ∈ S,

~a ∈ A, Ω(~o) = Pr(~o|s,~a), and R is the global immediate reward function which yields

rewards r = R(s,~a) for all agents.

2.6 Reinforcement Learning

In a (PO)MDP environment, a policy π is a function mapping current state/observation

to a probability distribution over actions.

π(st) = Pr(at|st)
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Figure 2.3: The process of reinforcement learning is to find an action decision strategy

given states which rewards the agent the most in the long run.

As we mentioned above, the (PO)MDP feeds back an immediate reward for every

action performed, as time proceeds, the agent collects all received rewards. The value

of a policy π at each state is evaluated by the Bellman equation Vπ, which is the

expected sum of discounted future rewards for an amount of time with respect to the

policy.

Vπ(st) = Eπ

[∑
t

γtR(st, at)

]
The optimal policy π∗ is defined as the one which yields the maximal value at every

state.

Vπ∗(st) = max
π

Eπ

[∑
t

γtR(st, at)

]
, ∀st ∈ S

Figure 2.3 illustrates the fundamental about how reinforcement learning works. At

each time moment, the agent will select an action to perform to the environment

given the current state the agent has observed, a real-valued reward will be received

from the environment as feedback for the action; then the time index proceeds to

next one. The state of the environment at next moment may change due to the
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action and will be observed by the agent. The above procedure is termed as an

interaction. By interacting with the (PO)MDP environment many times, the agent

gathers rewards and gradually learns a decision-making strategy, which suggests the

agent how much the environment will reward the agent in the long run for the action it

selects given current state. Reinforcement learning is thus the process of learning the

optimal decision-making strategy, i.e., the policy, that will yield the most reward for

underlying (PO)MDP model. Reinforcement learning is categorized as unsupervised

learning, which has no correct answer to compare with during learning. Unlike other

types of machine learning, the data for learning is not provided a priori but collected

by interaction between agent and environment in each learning iteration. In Dec-

POMDP model, due to lack of cooperation, each agent maintains its local policy πn

which maps local observation history to local actions. All local policies constitute the

joint policy. For all agent, the objective is to figure out a joint policy Π =
⊗

n πn

that maximizes the long-term value function.

2.6.1 Bayesian Reinforcement Learning

Bayesian reinforcement learning applies Bayesian inference to the values to be esti-

mated in reinforcement learning, placing prior model over the desired values and infer

the posterior model. In this work we adopt policy-based learning, which learns policy

directly without knowing the underlying environment. Thus the desired values are

policy parameters. Denote Θ the parameters of policy and D the data collected from

interaction with the environment, the Bayesian policy learning infers the posterior

model from the prior and data:

p(Θ|D) =
p(D|Θ)p(Θ)

p(D)
∝ p(D|Θ)p(Θ).
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p(Θ) is the prior model indicating belief about Θ before observing the first datum. By

applying distribution over Θ, it is easy to encode auxiliary constraints to avoid unde-

sired results, and quantify our confidence about the value of Θ. Through interaction

with the environment, data is collected and utilized to derive likelihood p(D|Θ) to

infer the posterior p(Θ|D). In iterative reinforcement learning, the posterior distribu-

tion obtained at current iteration can serve as the prior distribution at next iteration.

By performing the iteration many times, the convergence of p(Θ) can be guaranteed.

Bayesian learning provides a faster and simpler comparison to deep learning since the

presence of prior model provides a bias to the learned model to avoid overfitting in

nature so that extra regularization is not needed; prior knowledge encoded in prior

models also mitigates the desire for data to obtain the matching performance as deep

learning.
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Chapter 3

BAYESIAN REINFORCEMENT LEARNING IN SPECTRUM SHARING

In this chapter the LTE and Wi-Fi coexistence mechanism in working IEEE specifi-

cation is presented, then a Dec-POMDP model based on it is formulated, involving

a cumulative reward function to reflect the continuous channel dynamics. Then the

nonparametric models placed for prior distribution is proposed. We utilize variational

inference to approximate the posterior distribution, the analytical approximation re-

sult will also be demonstrated.

3.1 Problem Setup

The 5 GHz unlicensed band has approximately 600 MHz and is divided into non-

overlapping channels. Figure 3.1 illustrates the current frequency allocation scenario

in 5 GHz unlicensed spectrum. The minimum unit for channel allocation has band-

width of 20 MHz. If the spectrum is not crowded, the wireless node is allowed to utilize

channel with wider bandwidth (40, 80, or 160 MHz), which is formed by combining

multiple consecutive 20-MHz channels. In unlicensed spectrum, a wireless node can

be either LTE evolved node B (eNB) or Wi-Fi access point (AP). Due to the property

of unrestricted access, it is infeasible to have a control center to manage all hetero-

geneous nodes that attempt to access the spectrum; information exchange between

heterogeneous networks also suffers trouble because of their divergent protocols and

the consideration of extra costs. Thus a practical spectrum sharing scheme should be

decentralized, which means cooperation between nodes is minimized and each node

learns its own spectrum accessing policy independently. Additionally, nodes like user

equipment only possess limited spectrum sensing capability and obtain partial in-
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Figure 3.1: Illustration for current frequency allocation in 5 GHz spectrum1.

formation about the spectrum. Without observing the global configuration, nodes

determine what action to take based on the sufficient statistics of past observations

and actions, which is termed as belief or decision state in some documents. Given

aforementioned conditions, the spectrum dynamic can be described as a Dec-POMDP

model.

It is worth to note that the unbounded possibility of policy should be considered.

The license-free property allows every node to enter and leave the spectrum unre-

strictedly, albeit each time there is only a finite set of nodes has the opportunity to

occupy the spectrum. Hence we should not expect the number of potential nodes

1From https://www.wlanpros.com/5ghz-frequency-allocations-2/.
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is bounded and known a priori. The policy learning for each node must considers

interactions with uncertain number of coexisting nodes, thus nonparametric models

which can accommodate infinite policy representations are more appropriate than

parametric models. On the other hand, fair spectrum sharing is another factor which

is crucial to the coexisting networks and worth more attention. The LTE data frame

is constituted by sub-frames, where each sub-frame lasts 1ms. The number of sub-

frames conveyed in one transmission is determined by the access priority of the node

[42]. The Wi-Fi data frame, on the other hand, is packet-based. Each Wi-Fi trans-

mission contains only one packet. The frame aggregation in IEEE 802.11n/ac, which

enhances airtime efficiency by combining multiple packets in single transmission [43],

is not the case in our problem. The different composition of data frame makes LTE

transmission a lasting channel occupation while Wi-Fi a short burst, which causes

LTE nodes more easily dominates the time allocation and thus winner keeps winning,

expelling Wi-Fi nodes from the spectrum. If only the global performance of the spec-

trum is considered, sometimes the learning process will tend to sacrifice vulnerable

nodes to benefit powerful ones, which is what we want to avoid. In our algorithm, we

incorporate the most commonly-utilized Jain’s fairness indicator [44] as a measure in

the reward function to resolve the potential unfairness. The Jain’s fairness indica-

tor was initially proposed to evaluate the network performance thus it is a favorable

choice for our model. By introducing the fairness factor to weigh the reward from

each node, the usage balance between nodes can be secure.

3.1.1 Signal Model

As we mentioned in Section 2.1, the Wi-Fi standard has been utilizing CSMA/CA

for spectrum sharing among access points in the unlicensed spectrum. The CSMA/CA

adopts sensing before transmission to avoid channel overload at a time. Before trans-
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mission starts through a channel, Wi-Fi nodes must perform an initial channel sensing

for a Distributed Inter-Frame Spacing (DIFS) duration to evaluate channel status,

access is suppressed if the channel is judged to be busy. If channel is sensed idle,

Wi-Fi nodes then performs an additional back-off sensing to further inspect the chan-

nel status. During back-off sensing phase, a positive integer is generated randomly

from a predefined range [0, CW ] as a down counter, where CW means contention

window. The counter counts down by 1 for each time the channel is sensed idle in a

fixed-length time slot. The countdown will freeze for any non-idle result and resume

when the sensing result is idle again. The node has access to the channel once the

counter reaches 0. Stochastic back-off counters generated by different Wi-Fi nodes

avoids collisions by staggering their access timing. Similar to W-Fi, The LTE-LAA

standard enables LTE nodes to coexist with other nodes in unlicensed spectrum by

implementing LBT mechanism. The main difference lies on the length of time slots

in initial and back-off channel sensing phases. According to [42], the CW set and

maximum allowed channel occupation time a LTE node can select depends on the

channel access priorities. With larger CW value, the LTE nodes are able to occupy

the channel for a longer duration, so there is a trade-off between sensing duration

and channel occupation time. The initial and back-off channel sensing mechanisms

in LTE standard is termed as Initial Clear Carrier Assessment (ICCA) and Extended

Clear Carrier Assessment (ECCA). It is important to note that in our model, the

access priorities are equal for both Wi-Fi and LTE nodes, and the back-off sensing

shall be performed by any means after the channel is judged as idle in the initial

sensing phase. A simple example of our spectrum sensing scheme is illustrated in

Figure 3.2.

28



Figure 3.2: Illustration of the spectrum sharing mechanism between LTE-LAA and

Wi-Fi nodes.

3.1.2 Model Formulation

Here we define each component of the Dec-POMDP model for our spectrum shar-

ing scenario to apply reinforcement learning algorithm.

• Agents: each agent in our framework is the network manager, which can be either

a LTE-LAA eNB or Wi-Fi AP. There are L number of LTE-LAA agents and W

number of Wi-Fi agents attempting to access the spectrum. Due to limited resource,

only a subset of N = L+W agents are able to access the spectrum at a time. We

utilize notation n for agent index.

• Actions: for our wireless agents, each element ai in action set {a1, a2, ...} is a number

representing the value of the contention window CW . Once an agent has selected

an action ai from the action set, it will then sample an integer randomly from the

region [0, ai] as its back-off counter. LTE and Wi-Fi agents share the same set of

contention windows while the channel occupation time for LTE agents depends on
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the selected CW value. All agents operate on the same channel, that is, frequency

domain multiplexing is not our concern.

• States: each global state sk corresponds to one spectrum configuration. A configu-

ration is an integer which indicates the number of agents currently occupying the

spectrum. There are total (N + 1) number of unique states.

• Observations: in LTE-LAA and Wi-Fi standards demand agents to inspect the

occupational status of the channel for additional time slots before transmission;

the observation received by agent after each action is performed is defined as the

duration between initial sensing starts to the end of back-off sensing, which is the

time an agent actually spends in waiting for the channel resource, reflecting the

occupation of the channel.

• Reward Function: we want the reward function to reflect the influence from past

history of actions and observations, thus the local reward is a cumulative function

dependent of current and accumulation of past rewards. For wireless agents, it is

desirable to exploit the channel resource as more efficient as possible. For each

agent, the local reward is a function of the effective throughput Thtn for agent n

at time t reweighted by the Jain’s fairness indicator. Denote PLtn as the effective

transmitted payload without colliding with any other transmission, and Dt
n as the

duration from initial channel sensing starts to transmission ends, the global reward

received by nodes which complete their actions at time t is defined in Equation (3.1).
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Global reward Rt =
N∑
n=1

rnt

Local cumulative reward rnt = rnt−1 +Rn(t)

Rn(t) = ln
{∣∣∣T̃ htn∣∣∣+ 1

}
T̃ h

t

n = J tnTh
t
n, Thtn =

PLtn
Dt
n

(3.1)

where J tn is the Jain’s fairness indicator [44] and is computed by

J tn =

(∑
∀i 6=n x

t−1
i + xtn

)2

N
(∑

∀i 6=n x
t−1
i

2
+ xtn

2
) , xti =

Thti
Oi

, ∀i ∈ [1, N ] (3.2)

Oi is the theoretical fair throughput for agent i; in our algorithm, it is defined as

Oi =
(Maximum data rate)

(Total spectrum users)
, ∀i ∈ [1, N ]

It is worth to point out that our Dec-POMDP model does not possess an explicit

objective state, that is, there is not a state which terminates the mission of all agents

when some agents have arrived at the state. In contrast, our model is infinite-horizon,

which means theoretically the agent-model interaction will never stop (definitely the

agents will stop at some point in practical learning process).

3.2 Nonparametric Bayesian Policy Learning

To accommodate action selection in infinite horizon Dec-POMDP model, we adopt

finite state controller for policy representation and utilize Bayesian inference to esti-

mate the parameters of the policy. In this section we introduce the structure of finite

state controller and our nonparametric Bayesian learning method.

3.2.1 Policy Representation

Finite State Controller (FSC) is an appropriate policy representation for infinite-

horizon stochastic Dec-POMDP models [45, 46] when the action, observation, and
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reward space is discrete. It is subsumed a special case of the regionalized policy rep-

resentation (RPR) [47] when each belief region concentrate to one node. In [47, 48],

each node in the FSC policy is referred to a decision state or local belief state and

treated as latent variables, and integrated out to yield a policy that directly map-

ping past history of actions and observations to probability distribution over current

actions, thus estimation of the true states can be omitted. Figure 3.3 illustrates a

simple example of FSC policy with 3 nodes and 2 actions at each node. The FSC

policy representation for agent n can be described by a tuple 〈An,On,Zn, ηn, ωn, πn〉.

An and On have been defined in Section 2.5.1; Zn is a finite set of nodes; ηn is node

probability distribution at t = 0. ωn : Zn × An × On → [0, 1] is the node transi-

tion probability, mapping from node, action, and observation sets to node set, which

indicates how the agent will traverse the nodes after an action is performed and an

observation is received. πn represents the action selection probability at each node.

Each node serves as sufficient statistics of histories of past actions and observations,

saving memory space by removing the need of storing histories. Thus FSC is effi-

cient in operating on small devices. FSC policy representation is suitable for our

problem since it can stay simple and compact even for large problem space. Since

our problem does not have an explicit end point, a map-like policy representation

is not a proper choice. Even though the observation or reward space is enormous,

generally there is only a relatively small part of it assigned positive rewards, which is

desired for the agent. The cyclic graph of FSC policy captures these necessary parts

of our infinite-horizon POMDP model and yields a (ideally) concise framework for

the optimal policy, which makes FSC policy popular in various reinforcement learning

problems.
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Figure 3.3: Diagram for a simple FSC policy representation with |Z| = 3 and |A| = 2.

Left: each arch shows the transition probability from one node to another; Right:

action probability at each node.

3.2.2 Nonparametric Policy Prior

One of the main problems in learning the FSC policies for decentralized agents is

determining the sizes of the FSC policies. As we have emphasized, our coexistence

problem is dynamic and non-cooperative. With decentralized learning, the local ac-

tion and observation sets possessed by each agent differ, causing the number of nodes

and transition between nodes in different policies deviate from each other. Para-

metric models impose strong assumption over policy structures, yielding fixed-size

policy, which is not applicable to decentralized models. Bounding the space of policy

representation may force the learning process to sub-optimal results. In contrast,

nonparametric model treats the FSC size as extra variable, which enables it to ac-

commodate unbounded variety of nodes sets and transition probabilities, allowing

each agent to optimize its own policy individually.

Definition 1 Providing the FSC policy representation described above, the stick-
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breaking process is utilized to generate the prior distributions for node transition prob-

abilities ωn, and Dirichlet distribution is adopted for prior distribution over actions

πn at each node. Gamma distribution is placed over α in beta distribution for stick-

breaking construction as hierarchical prior [49]:

η1
n = u1

n, η
i
n = uin

i−1∏
m=1

(1− umn )

ωi,1n,a,o = V i,1
n,a,o, ω

i,1:j
n,a,o = V i,1:j

n,a,o

j−1∏
m=1

(
1− V i,m

n,a,o

)
u1:∞
n ∼ Beta(1, ρn), ρ1:N ∼ Gamma(e, f)

V i,1:∞
n,a,o ∼ Beta(1, αin,a,o), α1:∞

n,a,o ∼ Gamma(cn,a,o, dn,a,o)

π
1:|An|
n,i ∼ Dirichlet

(
θ

1:|An|
n,i

)
for node indices i, j = 1, ...,∞

Hyper-parameters (c, d, e, f, θ) determine the distributions of η, ω, and π. | · | repre-

sents the cardinality of a set. For notational elegance, we utilize the same abbreviation

in [49]. Let consecutive sequence (i, i+ 1, ..., j) reduce to i : j, so (ωi,1n,a,o, ..., ω
i,j
n,a,o) =

ωi,1:j
n,a,o represents the node transition probabilities from node i to nodes 1, ..., j for agent

n, after performing action a ∈ An and observing o ∈ On. Similarly,
(
π1
n,i, ..., π

|An|
n,i

)
=

π
1:|An|
n,i means the probabilities of selecting actions a1, ..., a|An| for agent n at node i.

3.2.3 Global Empirical Value Function

In general, the objective of reinforcement learning is to maximize the value func-

tion. In order to adopt Bayesian approach, the value function is translated into

likelihood to exhibit the value of collected data given policy [50]. An Dec-POMDP

can be formulated as one single Dynamic Bayes Network (DBN) with a binary re-

ward variable R at each time step. However, this DBN can be decomposed into

an infinite mixture of DBNs [51], where reward only emerges at the end of each
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Figure 3.4: The dynamic Bayes network graph for an infinite-horizon POMDP model

with a FSC policy for one agent, only the components in dash-line box are visible to

the agent when learning policy.

DBN. Figure 3.4 illustrates the Bayes network representation of one agent for our

Dec-POMDP model including the nodes in FSC policy, where arcs exhibit the depen-

dency between variables; variables in dash-line box are visible to the learning agent.

Figure 3.5 represents the result of decomposing the Bayes network in Figure 3.4 into

mixture of sub-networks. There is only one unique DBN for each time length T = t.

Denote rT (Θ) as immediate reward received by following policy Θ in DBN of length

T , the value r̂T (Θ) obtained by by normalizing rT (Θ) into range [0, 1] is proportional

to the likelihood p(R = 1|T,Θ),

r̂T (Θ) =
rT (Θ)−Rmin

Rmax −Rmin

∝ p(R = 1|T,Θ) (3.3)

This implies maximizing the likelihood p(R = 1|T,Θ) is equivalent to maximizing the

reward. After imposing a geometric distribution with parameter equal to the discount

factor γ over the mixture of DBNs, the joint likelihood p(R = 1|Θ) is obtained by
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Figure 3.5: Decomposing the DBN of our POMDP model in Figure 3.4 into mixture

of sub-networks, where reward at each step only emits at the end of each DBN.

marginalizing T ,

p(R = 1|Θ) =
T∑
t=0

p(t)p(R = 1|t,Θ)

=
T∑
t=0

(1− γ)γtp(R = 1|t,Θ)

=
T∑
t=0

(1− γ)γt
rt(Θ)−Rmin

Rmax −Rmin

=
1− γ

Rmax −Rmin

[
T∑
t=0

γtrt(Θ)−
T∑
t=0

γtRmin

]

=
1− γ

Rmax −Rmin

V̂ (Θ),

(3.4)
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where V̂ (Θ) is the shifted value function given policy Θ. So maximizing this likelihood

amounts to maximizing the value of the Dec-POMDP given policy Θ. In [47] Li et al.

proposed an empirical value function V̂ (DK ; Θ) to acquire the value of desired policy

Θ with K trajectories.

Definition 2 The k-th history for agent n from time 0 to t is defined as the se-

quence (akn,0, ..., a
k
n,t−1; okn,1, ..., o

k
n,t) = (akn,0:t−1, o

k
n,1:t) = hkn,t, and the k-th trajectory

Dk with length Tk is the sequence (~ak0, r
k
0 , ~o

k
1, ..., ~o

k
Tk
,~akTk , r

k
Tk

). The value V̂ (DK ; Θ) is

the expected value of discount sum of rewards with respect to reweighted policy:

V̂ (DK ; Θ)

= EΘ

[
K∑
k=1

Tk∑
t=0

γt
(rkt −Rmin)

K

]

=
K∑
k=1

Tk∑
t=0

∏t
τ=0

∏N
n=1 p(a

k
n,τ |hkn,τ ,Θ)∏t

τ=0

∏N
n=1 p(a

k
n,τ |hkn,τ ,Π)

γt
(rkt −Rmin)

K

∏t
τ=0

∏N
n=1 p(a

k
n,τ |hkn,τ ,Θ) can be substituted with p(~ak0:t, ~z

k
0:t|~ok1:t,Θ) (proof in Chap-

ter B). Θ is reweighted by the behavior policy Π which is utilized for collecting

trajectories. By law of large number, V̂ (DK ; Θ) approximates V̂ (Θ) as K approaches

infinity. Definition 2 enables us to utilize existing trajectories to compute the likeli-

hood instead of collecting them ourselves. Combining equation Equation (3.4) and

Definition 2, the likelihood is connected to the empirical value function,

p(DK |Θ) ∝ p(R = 1|Θ) ∝ V̂ (DK ; Θ)

3.2.4 Variational Inference for Posterior Approximation

Providing prior distributions and likelihood function, the objective is to infer the

posterior distribution p(Θ|DK). By Equation (2.6) we can derive the expectation
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term for joint likelihood

Eq

[
lnV̂ (DK ;Θ)p(Θ)p(ρ)p(α)

]
=Eq

[
ln

K∑
k=1

Tk∑
t=0

∏t
τ=0

∏N
n=1p(a

k
n,τ |hkn,τ ,Θ)∏t

τ=0

∏N
n=1p(a

k
n,τ |hkn,τ ,Π)

γt
(rkt −Rmin)

K
p(Θ)p(ρ)p(α)

]

=Eq

[
ln

K∑
k=1

1

K

Tk∑
t=0

r̃kt p(~a
k
0:t|~ok1:t,Θ)p(Θ)p(ρ)p(α)

]

=Eq

 K∑
k=1

1

K

Tk∑
t=0

|Z|∑
~zk0:t=1

ln
[
r̃kt p(~a

k
0:t,~z

k
0:t|~ok1:t,Θ)p(Θ)p(ρ)p(α)

]
=

K∑
k=1

1

K

Tk∑
t=0

|Z|∑
~zk0:t=1

∫
q(Θ)q(ρ)q(α)q(~zk0:t)lnr̃kt p(~a

k
0:t,~z

k
0:t|~ok1:t,Θ)dΘdρdα

+
K∑
k=1

1

K

Tk∑
t=0

|Z|∑
~zk0:t=1

Eq [lnp(Θ)+lnp(ρ)+lnp(α)]

=
K∑
k=1

1

K

Tk∑
t=0

|Z|∑
~zk0:t=1

∫
q(Θ)q(~zk0:t)lnr̃kt p(~a

k
0:t,~z

k
0:t|~ok1:t,Θ)dΘ

+Eq [lnp(Θ)]+Eq [lnp(ρ)]+Eq [lnp(α)]

=Eq(Θ,z)

[
lnr̃kt p(~a

k
0:t,~z

k
0:t|~ok1:t,Θ)

]
+Eq(Θ,ρ,α) [lnp(Θ)]+Eq(ρ) [lnp(ρ)]

+Eq(α) [lnp(α)]

(3.5)

where r̃kt = γt
rkt−Rmin∏N

n=1 p(a
k
n,0:t|okn,1:t,Π)

. Θ denotes the policy variables (u, V, π). The proba-

bility of node transition history p(zkn,0:t|akn,1:t, o
k
n,1:t,Θ) also needs to be inferred since

(η, ω, π) depend on z. Applying mean-field approximation, the expectation over q

distribution can be derived

Eq

[
ln q(Θ, ρ, α)q(~zk0:t)

]
= Eq

[
ln q(Θ)q(ρ)q(α)q(~zk0:t)

]
= Eq [ln q(Θ)] + Eq [ln q(ρ)] + Eq [ln q(α)] + Eq

[
ln q(~zk0:t)

]
= Eq(Θ) [ln q(Θ)] + Eq(ρ) [ln q(ρ)] + Eq(α) [ln q(α)] + Eq(z)

[
ln

N∏
n=1

q(zkn,0:t)

] (3.6)
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Combining Equation (3.5) and Equation (3.6), we obtain the ELBO(q) as

ELBO(q) = Eq

[
ln V̂ (DK ; Θ)p(Θ)p(ρ)p(α)

]
− Eq

[
ln q(Θ, ρ, α)q(~zk0:t)

]
(3.7)

Mean-field assumption is imposed over the joint variational q(Θ) to divide it into

the product of marginal q(u)q(V )q(π) conditional on their corresponding parameters.

Since the likelihood is assumed as discrete distribution, the Dirichlet distribution and

Dirichlet process we place for policy priors are conjugate prior; thus the true posterior

distributions for (u, V, π, ρ, α) are reasonably assumed to belong to the same family of

their corresponding prior distributions. The variational distributions q for posterior

approximation are defined as follows:

q(zkn,0:t) = ν̃kt p(z
k
n,0:t|akn,0:t, o

k
n,1:t, Θ̃), ∀(n, k, t) indices

q(uin) = Beta(δin, µ
i
n), ∀(n, i) indices

q(V i,j
n,a,o) = Beta(σi,jn,a,o, λ

i,j
n,a,o), ∀(n, a, o, i, j) indices

q(ρn) = Gamma(gn, hn), ∀n indices

q(αin,a,o) = Gamma(ain,a,o, b
i
n,a,o), ∀(n, a, o, i) indices

q(πn,i) = Dirichlet
(
φ1
n,i, ..., φ

|An|
n,i

)
, ∀(n, i) indices

ν̃kt = γt(rkt −Rmin)

∏N
n=1 p(a

k
n,0:t|okn,1:t, Θ̃)∏N

n=1 p(a
k
n,0:t|okn,1:t,Π)V̂ (DK ; Θ̃)

(3.8)

Θ̃ = (η̃, π̃, ω̃) is the point estimate of optimal policy parameters from previous itera-

tion of variation inference. It is worth to note that each node transition probability

q(zkn,t) is a multinomial distribution. By placing Dirichlet process prior over it, we

can approximate the posterior with mean-field variational distribution qkn,t(z
k
n,0:t). For

simplicity, expectation maximization approach is adopted for qkn,t(z
k
n,0:t) [47]. By tak-

ing derivative on ELBO(q) with respect to each q distribution and set as zero while

keeping all others fixed, the Coordinate Ascent VI (CAVI) is adopted to obtain each

optimal q∗ distribution
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Theorem 1 With conjugate prior and mean-field approximation, the derivation of

each variational distribution can be reduce to the parameter computation for each q

in Equation (3.8):

δin=1+
K∑
k=1

1

K

Tk∑
t=0

qkn,t(z
k
n,0=i)

µin=
gn
hn

+
K∑
k=1

1

K

Tk∑
t=0

|Zn|∑
m=i+1

qkn,t(z
k
n,0=m)

φan,i=θ
a
n,i+

K∑
k=1

1

K

Tk∑
t=0

t∑
τ=0

qkn,t(z
k
n,τ=i)I(akn,τ=a)

σi,jn,a,o=1+
K∑
k=1

1

K

Tk∑
t=0

t∑
τ=1

qkn,t(z
k
n,τ−1=i,zkn,τ=j)I(akn,τ−1=a,okn,τ=o)

λi,jn,a,o=
ain,a,o
bin,a,o

+
K∑
k=1

1

K

Tk∑
t=0

t∑
τ=1

|Zn|∑
m=j+1

qkn,t(z
k
n,τ−1=i,zkn,τ=m)I(akn,τ−1=a,okn,τ=o)

gn=e+|Zn|, hn=f−
|Zn|∑
i=1

[
Ψ(µin)−Ψ(δin+µin)

]
ain,a,o=cn,a,o+|Zn|, bin,a,o=dn,a,o−

|Zn|∑
j=1

[
Ψ(λi,jn,a,o)−Ψ(σi,jn,a,o+λ

i,j
n,a,o)

]
where

qkn,t(z
k
n,τ = i) = ν̃kt p(z

k
n,τ = i|akn,0:t, o

k
n,1:t, Θ̃)

qkn,t(z
k
n,τ−1 = i, zkn,τ = j) = ν̃kt p(z

k
n,τ−1 = i, zkn,τ = j|akn,0:t, o

k
n,1:t, Θ̃)

are marginal distributions of qkn,t(z
k
n,0:t) for τ = 0, ..., t.

Ψ(·) is the digamma function. The detail of Theorem 1 is presented in Chapter C.

Each Bayesian learning iteration for our Dec-POMDP model is exhibited in the fol-

lowing
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Algorithm 3: CAVI for Bayesian Reinforcement Learning

Input : p(Θn), p(ρn), p(αn), trajectories Dk, k = 1, ..., K

Initialize: initial ELBO0(q)

for Iter = 1, ...,max do

Update Θ̃n = (η̃n, ω̃n, π̃n) for n = 1, ..., N

Compute each marginal qkn,t(z
k
n,τ ) for τ = 0, ..., Tk

Compute each q∗(Θn), q∗(ρn), and q∗(αn) according to Theorem 1

Compute ELBOIter(q) by Equation (3.7)

∆LB(q) = |(ELBOIter(q)−ELBOIter−1(q))/ELBOIter−1(q)|

if ∆LB(q) < 10−5

break;

end

end

Output : variational distributions q∗(Θn), q∗(ρn), and q∗(αn) for

n = 1, ..., N
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Chapter 4

SIMULATIONS

In this chapter we detail the system setup for performance evaluation of our Bayesian

reinforcement learning algorithm and demonstrate the simulation results along with

discussions.

Parameter Name Value

Number of LTE eNB 2

Number of Wi-Fi AP 2

Number of channel 1

Channel bandwidth 20 MHz

DIFS duration 34 µs

Wi-Fi back-off slot 9 µs

ICCA duration 43 µs

ECCA slot 9 µs

Contention window 15,31,63,127,255,511,1023

LTE sub-frames per transmission 3,6,8,10 ms

Wi-Fi packets per transmission 1

size of Wi-Fi packet 15000 bytes

Transmission rate 30 Mbps

Discount factor γ 0.9

Table 4.1: Pre-Defined Parameters

Due to limited computing resource, we only performed our simulation with small
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data set to obtain the results. Table 4.1 lists the parameters for establishing our

simulation environment [42]. For simplicity, the sets of available contention windows,

are identical for both LTE and Wi-Fi agents. Our scenario simulates the spectrum

sharing in time domain, which mean only one channel can be accessed by wireless

agents; frequency domain multiplexing is beyond our scope. In [42], the maximum

channel occupation time and contention window for LTE agents differ with spec-

trum access priorities. In our scenario, the channel occupation time a LTE agent can

utilize depends on the contention window it selects in consideration of fair coexis-

tence with Wi-Fi agents. For instance, if a LTE agent selects window size 15 for its

back-off sensing, then it can occupy the channel for 3ms after the channel sensing is

finished. This occupation time is 6ms for window sizes {31, 63}, 8ms for window sizes

{127, 255}, and 10ms for window sizes {511, 1023}. Wi-Fi packet is fixed whichever

the contention window it selects. Each Wi-Fi packet amounts of 15000 bytes includ-

ing overhead. During back-off sensing, the agent perform spectrum sensing each 1µs

to judge whether the channel is clear. However, the correctness of judgement is af-

fected by path loss, fading, and shadowing effect between the sensing and transmitting

agents. Each active agent has probability pe to be judged as idle when it is occupying

the channel. Each back-off sensing slot is considered as clear if the channel is assessed

as busy no more than 5µs out of 9µs. A Wi-Fi packet or LTE sub-frame is assumed

to be lost if collision happens during its transmission, and one fail sub-frame does

not affect other sub-frames in the same LTE transmission. Finally, all wireless agents

have infinite amount of data to transfer, which and all wireless nodes access the same

channel. For discrete model, rewards and observations are rounded to integer values.
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(a) ELBO value (b) Number of FSC nodes

Figure 4.1: Evolution of the ELBO value and policy size. (a) The convergence of

evidence lower bound, (b) The arameter h are fluctuating around a certain level for

each agent.

4.1 Performance Evaluation

For the optimization of Algorithm 3, the learning of FSC policies for all agents

are based on K = 10 episodes with each episode of length T = 50. To accelerate

the optimization, cross validation was implemented for better initializing the hyper-

parameters of the prior distributions in our variational inference. In our simulation,

the hyper-parameters are set to c = e = 0.1, d = f = 100 in order to pursuit the

minimum optimal FSC policy. TO obtain the initial size of the FSC policy for for each

agent, all episodes collected are converted into FSC structures by adopting method

similar to [52].

4.1.1 Convergence of Variational Inference

Figure 4.1a illustrates the convergence of the evidence lower bound. As iteration

was proceeding, the lower bound value was ascending fast to a certain level and the

iteration stopped when the value fluctuation satisfied the stop criterion. As lower
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Figure 4.2: Evolution of the discount values with the variational inference.

Figure 4.3: Evolution of the parameters for q(ρ|g, h). The parameter g keeps constant

during the variational inference, while h are fluctuating around a certain level for each

agent.

bound was converging, Figure 4.1b demonstrates how the sizes of the FSC policies

for all agents gradually optimized to the minimum values required for maximizing

the lower bound. It is interesting to note that with the rich-gets-richer property, the

number of nodes for FSC policies all shrinked to 1 while optimizing the lower bound

and discounted value, which means the policies reduced to one-state controller similar

to multi-armed bandit. The evolution of the discounted value, which is the sum of

discounted rewards for all trajectories, as a function of iteration of the variational
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inference is exhibited in Figure 4.2. Similar to the convergence of lower bound,

the ascending discounted value verified the improvement of FSC policies through

iterations. The evolution of parameters (g, h) for q(ρ) for each agent is demonstrated

in Figure 4.3; as shown in Theorem 1, the update of g is a constant for each agent

while the value of h fluctuated at different level since it is jointly optimized with other

q distributions.
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Chapter 5

CONCLUSIONS

As wireless technology advances, the coexistence problem in unlicensed spectrum

has been an urgent issue waiting for solutions. Many solutions have been proposed,

however they all left evident problems yet to be answered. We relaxed assumptions

imposed in previous works and exhibited a model close to the real application. Besides

that, reinforcement learning is a thriving topic and has been adopted in many fields

of applications, including coexistence. Bayesian method over reinforcement learning

provides a solution to encode prior knowledge so that the need for large data set is

reduced. Nonparametric model over priors allows the learned result to be determined

by what the agent has observed without being restricted by the prior setting and

simplifies the learning process while sill obtaining excellent result. The combination

of empirical value function and variational inference transformed the process of it-

eratively updating Bellman equation into optimization process, which is superior to

conventional reinforcement learning method when the problem model is scaling up.

5.1 Vignette of Contributions

In this work We formulated a real-world spectrum coexistence problem as a Dec-

POMDP model and utilized reinforcement learning to explore the optimal channel

access policies. An asynchronous model was established for decentralized agents to

cooperate for a global interest and a novel cumulative reward function was proposed

to incorporate the time dependency of over action and observation history. The

Jain’s fairness indicator was introduced in reward to balance the spectrum access

rights among agents. To adapt to the multiple decentralized learning agents, the
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Dirichlet process was placed over policy priors to accommodate variable-sized policy

representations. This is the first work to consider unbounded model sizes over policy

prior in Bayesian reinforcement learning for spectrum coexistence. For posterior

inference, arduous sampling methods were replaced by coordinate ascend variational

inference, an optimization alternative which turns the distribution approximation into

deterministic computation for variational distributions so that scaling up to large

problem models was much easier and computationally efficient. We also worked out

the computation equations for all variational distributions and demonstrated the ease

of implementing them on computer. Simulation results illustrated the efficiency and

robustness of such combination; as the evidence lower bound was converging, the

value for learned policy was also ascending to an optimal level. The policy size also

converged to a lower value, with evolution of parameters of variational distributions

stabilized at certain level in accordance with the computation equations.

5.2 Future Works

A never-ending question in reinforcement learning is how to determine the explo-

ration or exploitation during learning process. When performing exploitation, the

agent utilizes the optimal result obtained so far while exploration means to probe

the potential of higher reward. Generally, exploration should be more encouraged to

explore new possibility in the early phase of learning process. As learning process pro-

ceeds, the unknown dynamic of the world model becomes less and less, exploitation

gradually takes over to finalize the policy. The core is how the curve of exploration

rate shapes. A plummeting curve could incur premature learning result while flat

curve may fail to converge. In this work the most commonly-utilized ε-greedy method

is adopted to determine the exploration rate through learning process. In ε-greedy

method, a parameter ε ∈ (0, 1) is exploited to determine exploration or exploitation
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when selecting action. In each learning iteration whenever the agent is going to select

an action for data collection, a value u is uniformly sampled from interval [0, 1], if

u > ε, the agent performs exploitation and selects action based learned policy so

far, otherwise the action will be selected uniformly from all actions available for ex-

ploration. To demonstrate the trade-off between exploration and exploitation, two

different ε-greedy rates are implemented: both start with exploration rate 0.9 but one

ends at value 0.5 and the other ends at 0.2. Both learning processes are trained with

40 iterations. After each learning iteration, the learning result of each ε rate will be

evaluated by the mean reward obtained from 20 episodes with each length of 50.

In addition to what is mentioned above, there are still outstanding questions yet to

be discussed in this work, as well as interesting improvements which can be introduced

to advance the learning result. We list some of them here:

• Dependent nonparametric model for priors: since our reward function is dependent

of past rewards, a dependent prior model which incorporates previous learned result

is capable of better utilizing the knowledge the agent has accumulated so far to

converge the posterior inference faster.

• Uneven priorities for agents: we only considered equal priorities for all agents in

this work , however, in real-world application wireless nodes can have different

priority levels. If some agents belong to different priority group, weighting factor

may be incorporated in the learning process to reflect the changing priorities of

different agents.

• Joint optimization for global and local interests: in our model there is only one

global reward for all agents to optimize, but if each agent can observe its local

reward, the efforts contributed to the local and global rewards may need to be

balanced with importance weight.
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• Different design of reward function: the design of reward function implies the ulti-

mate objective of the learning agent, with different performance measurement there

can be different design for the reward function.

• Simulation with large data set: due to the lack of computing resource, we only

simulated our model with small data set. A more complete experiment with more

data and large problem model can be performed to demonstrate the robustness of

our algorithm.
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APPENDIX A

LIST OF ACRONYMS

5G fifth generation

3GPP third generation partnership project

IoT internet of things

LBT listen before talk

CSMA/CA carrier sense multiple access/collision avoidance

LTE long-term evolution

LTE-A long-term evolution-advanced

LTE-U long-term evolution-unlicensed

ABS almost blank subframe

LTE-LAA long-term evolution-licensed assisted access

GMM Gaussian mixture model

MCMC Markov chain Monte Carlo

ML maximum likelihood

eNB evolved node B

AP access point
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DIFS distributed inter-frame spacing

CCA clear carrier assessment

ICCA initial clear carrier assessment

ECCA extended clear carrier assessment

CW contention window

DP Dirichlet process

SB stick-breaking

VI variational inference

CAVI coordinate ascent variational inference

DBN dynamic Bayes network

ELBO evidence lower bound

RL reinforcement learning

MDP Markov decision process

NN neural network

RPR regionalized policy representation

POMDP partially-observable Markov decision process

Dec-POMDP decentralized partially-observable Markov decision process
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APPENDIX B

EMPIRICAL VALUE FUNCTION

To prove that p(a0:t|o1:t) =
∏t

τ=0 p(aτ |hτ ) =
∏t

τ=0 p(aτ |a0:τ , o1:τ−1), we expand

p(a0:t|o1:t)

=

Z|∑
z0=1

· · ·
|Z|∑
zt=1

p(a0:t, z0:t|o1:t)

=

|Z|∑
z0=1

· · ·
|Z|∑
zt=1

p(z0)p(a0|z0)
t∏

τ=1

p(zτ |zτ−1, aτ−1, oτ )p(aτ |zτ )

(B.1)

And since observation ot does not influence action before time t,

p(a0:t−1|o1:t)

=

|Z|∑
z0=1

· · ·
|Z|∑
zt=1

|A|∑
at=1

p(at, a0:t−1, z0:t|o1:t)

=

|Z|∑
z0,...,zt=1

|A|∑
at=1

[
p(z0)p(a0|z0)

t−1∏
τ=1

p(zτ |zτ−1, aτ−1, oτ )p(aτ |zτ )

]

× p(zt|zt−1, at−1, ot)p(at|zt)

=

|Z|∑
z0,...,zt−1=1

[
p(z0)p(a0|z0)

t−1∏
τ=1

p(zτ |zτ−1, aτ−1, oτ )p(aτ |zτ )

]

×
|Z|∑
zt=1

|A|∑
at=1

p(zt|zt−1, at−1, ot)p(at|zt)

=

|Z|∑
z0,...,zt−1=1

[
p(z0)p(a0|z0)

t−1∏
τ=1

p(zτ |zτ−1, aτ−1, oτ )p(aτ |zτ )

]

=

|Z|∑
z0,...,zt−1=1

p(a0:t−1, z0:t−1|o1:t−1)

= p(a0:t−1|o1:t−1)

(B.2)
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Decompose each p(aτ |hτ ) as

p(aτ |hτ ) = p(aτ |a0:τ−1, o1:τ ) =
p(a0:τ |o1:τ )

p(a0:τ−1|o1:τ )
=

p(a0:τ |o1:τ )

p(a0:τ−1|o1:τ−1)
(B.3)

Combine Equation (B.2) and Equation (B.3), there is

t∏
τ=0

p(aτ |hτ )

= p(at|a0:t−1, o1:t)p(at−1|a0:t−2, o1:t−1) · · · p(a1|a0, o1)p(a0)

=
p(a0:t|o1:t)

p(a0:t−1|o1:t−1)

p(a0:t−1|o1:t−1)

p(a0:t−2|o1:t−2)
· · · p(a0:1|o1)

p(a0)
p(a0)

= p(a0:t|o1:t)

(B.4)
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APPENDIX C

COMPUTATION OF VARIATIONAL DISTRIBUTIONS

Here we provide the proof of Theorem 1. From Equation (2.9) the optimal q

distribution for each variable can be obtained by taking derivative on ELBO(q) with

respect to the desired q distribution. The ELBO(q) for our problem has been de-

rived in Equation (3.5) to Equation (3.7). By taking derivative on Equation (3.7)

with respect to each q
(
zkn,0:t

)
, q(Θn), q(ρn), and q

(
αin,a,o

)
respectively while keep-

ing all others fixed then reorganize it in terms of the distribution form defined in

Equation (3.8), each optimal q distribution can be computed analytically.

For q
(
zkn,0:t

)
, keep all q(Θn), q(ρn), and q

(
αin,a,o

)
fixed, the optimal q∗

(
zkn,0:t

)
is

obtained from ∂

∂q(zkn,t)
ELBO(q) = 0 with constraint

K∑
k=1

1

K

Tk∑
t=0

|Z|∑
zk1:N,0=1

· · ·
|Z|∑

zk1:N,t=1

N∏
n=1

q
(
zkn,0:t

)
= 1, ∀(n, k, t) indices (C.1)

we have

∂

∂q
(
zkn,t
)ELBO(q)

=
K∑
k=1

1

K

Tk∑
t=0

|Z|∑
~zk0 ...~z

k
t =1

∫ ∏
i 6=n

q
(
zki,0:t

)
q(Θ) ln r̃kt

N∏
n=1

p
(
akn,0:t, z

k
n,0:t|okn,1:t,Θ

)
dΘ

−
K∑
k=1

1

K

Tk∑
t=0

|Z|∑
~zk0 ...~z

k
t =1

∏
i 6=n

q
(
zki,0:t

) [
ln

N∏
i=1

q
(
zki,0:t

)]

−
K∑
k=1

1

K

Tk∑
t=0

|Z|∑
~zk0 ...~z

k
t =1

∏
i 6=n

q
(
zki,0:t

)
= 0

(C.2)
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q(ρ) and q(α) integrate out in above equation since they are not directly associated

to zkn,t. Remove all terms unrelated to q(zkn,t) and rearrange terms, we obtain

K∑
k=1

1

K

Tk∑
t=0

|Z|∑
~zk0 ...~z

k
t =1

∫ ∏
i 6=n

q(zki,0:t)q(Θ) ln r̃kt

N∏
n=1

p
(
akn,0:t, z

k
n,0:t|okn,1:t,Θ

)
dΘ

=
K∑
k=1

1

K

Tk∑
t=0

|Z|∑
~zk0 ...~z

k
t =1

∏
i 6=n

q
(
zki,0:t

) [
ln q

(
zkn,0:t

)]

→
K∑
k=1

1

K

Tk∑
t=0

|Z|∑
~zk0 ...~z

k
t =1

∏
i 6=n

q
(
zki,0:t

) [∫
q(Θ) ln r̃kt

N∏
n=1

p
(
akn,0:t, z

k
n,0:t|okn,1:t,Θ

)
dΘ

]

=
K∑
k=1

1

K

Tk∑
t=0

|Z|∑
~zk0 ...~z

k
t =1

∏
i 6=n

q
(
zki,0:t

) [
ln q

(
zkn,0:t

)]
→ ln q

(
zkn,0:t

)
=

∫
q(Θ) ln r̃kt

N∏
n=1

p
(
akn,0:t, z

k
n,0:t|okn,1:t,Θ

)
dΘdα

= Eq(Θ)

[
ln r̃kt

N∏
n=1

p
(
akn,0:t, z

k
n,0:t|okn,1:t,Θ

)]
(C.3)

The optimal q∗
(
zkn,0:t

)
has the form

q∗
(
zkn,0:t

)
∝ exp

{
Eq(Θ)

[
ln r̃kt

N∏
n=1

p
(
akn,0:t, z

k
n,0:t|okn,1:t,Θ

)]}

= exp

{
Eq(Θ)

[
ln r̃kt

]
+

N∑
n=1

Eq(Θ)

[
ln p

(
akn,0:t, z

k
n,0:t|okn,1:t,Θ

)]}
(C.4)

Due to the independence between agents, remove all term with indices other than
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(n, k, t), the above equation is proportional to

exp
{

Eq(Θ)

[
lnr̃kt

]
+Eq(Θ)

[
lnp
(
akn,0:t,z

k
n,0:t|okn,1:t,Θ

)]}
=exp

{
lnr̃kt +Eq(Θ)

[
lnp
(
akn,0:t,z

k
n,0:t|okn,1:t,Θ

)]}
=r̃kt exp

{
Eq(Θ)

[
lnηz0n π

k,a0
n,z0

t∏
τ=1

ωk,zτ−1,zτ
n,aτ−1,oτ

πk,aτn,zτ

]}

=r̃kt exp

{
Eq(Θ)

[
lnηz0n +

t∑
τ=0

lnπk,aτn,zτ +
t∑

τ=1

lnωk,zτ−1,zτ
n,aτ−1,oτ

]}

=r̃kt exp

{
Eq(u) [lnη

z0
n ]+

t∑
τ=0

Eq(π)

[
lnπk,aτn,zτ

]
+

t∑
τ=1

Eq(V )

[
lnωk,zτ−1,zτ

n,aτ−1,oτ

]}

=r̃kt exp
{

Eq(u) [lnη
z0
n ]
} t∏
τ=0

exp
{

Eq(π)

[
lnπk,aτn,zτ

]} t∏
τ=1

exp
{

Eq(V )

[
lnωk,zτ−1,zτ

n,aτ−1,oτ

]}
=r̃kt η̃

z0
n

t∏
τ=0

π̃
akn,τ
n,zkn,τ

t∏
τ=1

ω̃k,zτ−1,zτ
n,aτ−1,oτ

(C.5)

Where Θ̃n = (η̃n, ω̃n, π̃n) and

η̃z0n = exp
{

Eq(u) [ln ηz0n ]
}

π̃
akn,τ
n,zkn,τ

= exp
{

Eq(π)

[
ln πk,aτn,zτ

]}
= exp

Ψ
(
φ
akn,τ
n,zkn,τ

)
−Ψ

|An|∑
a=1

φan,zkn,τ


ω̃k,zτ−1,zτ
n,aτ−1,oτ

= exp
{

Eq(V )

[
lnωk,zτ−1,zτ

n,aτ−1,oτ

]}
(C.6)

η and ω are constructed by the stick-breaking process. For different destination node,

the terms in exponential exp{·} are computed by

Eq(u)

[
ln η1

n

]
= Eq(u)

[
lnu1

n

]
= Ψ(δ1

n)−Ψ(δ1
n + µ1

n) (C.7)

Eq(u)

[
ln ηin

]
= Eq(u)

[
lnuin

i−1∏
m=1

(1− umn )

]

= Eq(u)

[
lnuin

]
+

i−1∑
m=1

Eq(u) [ln(1− umn )]

= Ψ(δin)−Ψ(δin + µin) +
i−1∑
m=1

[Ψ(µmn )−Ψ(δmn + µmn )] for i = 2, ..., |Zn| − 1

(C.8)
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Eq(u)

[
ln η|Zn|n

]
= Eq(u)

ln

|Zn|−1∏
m=1

(1− umn )

 =

|Zn|−1∑
m=1

[Ψ(µmn )−Ψ(δmn + µmn )] (C.9)

and

Eq(V )

[
lnωk,zτ−1,1

n,aτ−1,oτ

]
= Eq(V )

[
lnV k,zτ−1,1

n,aτ−1,oτ

]
= Ψ

(
σk,zτ−1,1
n,aτ−1,oτ

)
−Ψ

(
σk,zτ−1,1
n,aτ−1,oτ

+ λk,zτ−1,1
n,aτ−1,oτ

) (C.10)

Eq(V )

[
lnωk,zτ−1,i

n,aτ−1,oτ

]
= Eq(V )

[
lnV k,zτ−1,i

n,aτ−1,oτ

i−1∏
m=1

(
1− V k,zτ−1,m

n,aτ−1,oτ

)]

= Ψ
(
σk,zτ−1,i
n,aτ−1,oτ

)
−Ψ

(
σk,zτ−1,i
n,aτ−1,oτ

+ λk,zτ−1,i
n,aτ−1,oτ

)
+

i−1∑
m=1

[
Ψ
(
λk,zτ−1,m
n,aτ−1,oτ

)
−Ψ

(
σk,zτ−1,m
n,aτ−1,oτ

+ λk,zτ−1,m
n,aτ−1,oτ

)]
for i = 2, ..., |Zn| − 1

(C.11)

Eq(V )

[
lnωk,zτ−1,|Zn|

n,aτ−1,oτ

]
= Eq(V )

ln

|Zn|−1∏
m=1

(
1− V k,zτ−1,m

n,aτ−1,oτ

)
=

|Zn|−1∑
m=1

[
Ψ
(
λk,zτ−1,m
n,aτ−1,oτ

)
−Ψ

(
σk,zτ−1,m
n,aτ−1,oτ

+ λk,zτ−1,m
n,aτ−1,oτ

)]
(C.12)

In Equation (C.4), the proportional expression is utilized to represent the q
(
zkn,0:t

)
.

To make q
(
zkn,0:t

)
proper distribution of zkn,0:t, i.e., satisfy Equation (C.1), we re-write

63



the final result in Equation (C.5) and substitute it into the constraint equation

1

K

∑
k,t

|Z|∑
zk1:N,0=1

···
|Z|∑

zk1:N,t=1

N∏
n=1

q
(
zkn,0:t

)

=
1

K

∑
k,t

|Z|∑
zk1:N,0=1

···
|Z|∑

zk1:N,t=1

N∏
n=1

r̃kt η̃
z0
n

t∏
τ=0

π̃
akn,τ
n,zkn,τ

t∏
τ=1

ω̃k,zτ−1,zτ
n,aτ−1,oτ

=
1

K

∑
k,t

r̃kt

|Z|∑
zk1:N,0=1

···
|Z|∑

zk1:N,t=1

N∏
n=1

p
(
akn,0:t,z

k
n,0:t|okn,1:t,Θ̃n

)

=
1

K

∑
k,t

r̃kt

|Z|∑
zk1:N,0=1

···
|Z|∑

zk1:N,t=1

N∏
n=1

p
(
akn,0:t|okn,1:t,Θ̃n

)
p
(
zkn,0:t|akn,0:t,o

k
n,1:t,Θ̃n

)

=
1

K

∑
k,t

r̃kt

|Z|∑
zk1:N,0=1

···
|Z|∑

zk1:N,t=1

N∏
n=1

p
(
akn,0:t|okn,1:t,Θ̃n

) N∏
n=1

p
(
zkn,0:t|akn,0:t,o

k
n,1:t,Θ̃n

)

=
1

K

∑
k,t

r̃kt

N∏
n=1

p
(
akn,0:t|okn,1:t,Θ̃n

) |Z|∑
zk1:N,0=1

···
|Z|∑

zk1:N,t=1

N∏
n=1

p
(
zkn,0:t|akn,0:t,o

k
n,1:t,Θ̃n

)

=
1

K

∑
k,t

r̃kt

N∏
n=1

p
(
akn,0:t|okn,1:t,Θ̃n

)

(C.13)

By Definition 2 and r̃kt = γt
rkt−Rmin∏N

n=1 p(a
k
n,0:t|okn,1:t,Π)

, the above result is just equal to

V̂ (DK ; Θ̃). Thus,

1

K

∑
k,t

r̃kt
∏N

n=1p
(
akn,0:t|okn,1:t,Θ̃n

)
V̂ (DK ;Θ̃)

|Z|∑
zk1:N,0=1

···
|Z|∑

zk1:N,t=1

N∏
n=1

p
(
zkn,0:t|akn,0:t,o

k
n,1:t,Θ̃n

)

=
1

K

∑
k,t

ν̃kt

|Z|∑
zk1:N,0=1

···
|Z|∑

zk1:N,t=1

N∏
n=1

p
(
zkn,0:t|akn,0:t,o

k
n,1:t,Θ̃n

)

=
1

K

∑
k,t

|Z|∑
zk1:N,0=1

···
|Z|∑

zk1:N,t=1

N∏
n=1

ν̃kt p
(
zkn,0:t|akn,0:t,o

k
n,1:t,Θ̃n

)

=
1

K

∑
k,t

|Z|∑
zk1:N,0=1

···
|Z|∑

zk1:N,t=1

N∏
n=1

q
(
zkn,0:t

)
=1

(C.14)
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ν̃kt is the reweighted reward that makes q
(
zkn,0:t

)
satisfy Equation (C.1).

For optimal q∗(Θn), use formula in Equation (2.9), keep all other q distributions

fixed and treat terms unrelated to q(Θn) as constants, the result can be obtained as

q∗(Θn)

∝exp
{

Eq(z,ρ,α)

[
lnr̃kt p(a

k
n,0:t,z

k
n,0:t|okn,1:t,Θ)p(Θn)p(ρn)p(αn)

]}
∝exp

{
Eq(z,ρ,α)

[
lnr̃kt p(a

k
n,0:t,z

k
n,0:t|okn,1:t,Θ)p(Θn)

]}
=exp

{
Eq(z)

[
lnr̃kt p(a

k
n,0:t,z

k
n,0:t|okn,1:t,Θ)

]
+Eq(ρ,α)[lnp(Θn)]

}
=exp

{
Eq(z)

[
lnr̃kt η

z0
n π

k,a0
n,z0

t∏
τ=1

ωk,zτ−1,zτ
n,aτ−1,oτ

πk,aτn,zτ

]
+Eq(ρ,α)[lnp(un|ρn)p(Vn|αn)p(πn)]

}

∝exp

{
1

K

∑
k,t,zkn,0:t

q(zkn,0:t)

[
lnηz0n +

t∑
τ=0

lnπk,aτn,zτ +
t∑

τ=1

lnωk,zτ−1,zτ
n,aτ−1,oτ

]

+Eq(ρ)[lnp(un|ρn)]+Eq(α)[lnp(Vn|αn)]+lnp(πn)

}

=exp


 1

K

∑
k,t,zkn,0:t

q(zkn,0:t)[lnη
z0
n ]+Eq(ρ)[lnp(un|ρn)]


+

 1

K

∑
k,t,zkn,0:t

q(zkn,0:t)

[
t∑

τ=1

lnωk,zτ−1,zτ
n,aτ−1,oτ

]
+Eq(α)[lnp(Vn|αn)]


+

 1

K

∑
k,t,zkn,0:t

q(zkn,0:t)

[
t∑

τ=0

lnπk,aτn,zτ

]
+lnp(πn)


=exp


 1

K

∑
k,t,zkn,0:t

q(zkn,0:t)

[
lnuz0n

z0−1∏
m=1

(1−umn )

]
+Eq(ρ)[lnp(un|ρn)]


+

 1

K

∑
k,t,zkn,0:t

q(zkn,0:t)
t∑

τ=1

[
lnV k,zτ−1,zτ

n,aτ−1,oτ

zτ−1∏
m=1

(
1−V k,zτ−1,m

n,aτ−1,oτ

)]
+Eq(α)[lnp(Vn|αn)]


+

 1

K

∑
k,t,zkn,0:t

q(zkn,0:t)

[
t∑

τ=0

lnπk,aτn,zτ

]
+lnp(πn)


(C.15)
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In above formula, there are three parts of variables in the exponential term,

1

K

∑
k,t,zkn,0:t

q(zkn,0:t)

[
lnuz0n

z0−1∏
m=1

(1−umn )

]
+Eq(ρ)[lnp(un|ρn)]

=
1

K

∑
k,t,zkn,0:t

q(zkn,0:t)

[
lnuz0n +

z0−1∑
m=1

ln(1−umn )

]
+Eq(ρ)[lnp(un|ρn)]

(C.16)

1

K

∑
k,t,zkn,0:t

q(zkn,0:t)
t∑

τ=1

[
lnV k,zτ−1,zτ

n,aτ−1,oτ

zτ−1∏
m=1

V k,zτ−1,m
n,aτ−1,oτ

]
+Eq(α)[lnp(Vn|αn)]

=
1

K

∑
k,t,zkn,0:t

q(zkn,0:t)
t∑

τ=1

[
lnV k,zτ−1,zτ

n,aτ−1,oτ
+
zτ−1∑
m=1

ln
(
1−V k,zτ−1,m

n,aτ−1,oτ

)]
+Eq(α)[lnp(Vn|αn)]

(C.17)

1

K

∑
k,t,zkn,0:t

q(zkn,0:t)

[
t∑

τ=0

lnπk,aτn,zτ

]
+lnp(πn) (C.18)

By the conjugacy between prior and likelihood models, we know each q distribution

belongs to the same family of its corresponding prior and they are all in exponential

family, thus the computation of q distribution can reduce to the computation of its

parameters in their exponential expression. By re-positioning components in above

equations in terms of each variable, the parameters for each q distribution can be

computed.

For uin, re-write the prior and variational distributions in terms of exponential

family,

Eq(ρ)

[
ln p(uin|ρn)

]
∝ (1− 1) lnuin +

(
Eq(ρ) [ρn]− 1

)
ln(1− uin)

ln q(uin) ∝ (δin − 1) lnuin + (µin − 1) ln(1− uin)

(C.19)

For lnuin, only (zkn,0 = i) is associated with it and all cases with indices m > i must

be collected for ln(1− lnuin); we rearrange components in Equation (C.16) and obtain 1

K

∑
k,t,zkn,0:t

qkn,t(z
k
n,0 = i)

 lnuin = (δin − 1) lnuin

→ δin = 1 +
1

K

∑
k,t,zkn,0:t

qkn,t(z
k
n,0 = i)

(C.20)
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|Zn|−1∑
m=i+1

1

K

∑
k,t,zkn,0:t

qkn,t(z
k
n,0=m)+Eq(ρ) [ρn]−1

ln(1−uin)=(µin−1)ln(1−uin)

→µin=
gn
hn

+

|Zn|∑
m=i+1

1

K

∑
k,t,zkn,0:t

qkn,t(z
k
n,0=i)

(C.21)

Where Eq(ρ) [ρn] = gn
hn

.

The update of q
(
V i,j
n,a,o

)
is similar to the update of q(uin). Rewrite q(V i,j

n,a,o) and

Eq(α)

[
p
(
V i,j
n,a,o|αin,a,o

)]
in terms of exponential family,

Eq(α)

[
lnp
(
V i,j
n,a,o|αin,a,o

)]
∝(1−1)lnV i,j

n,a,o+
(
Eq(α)

[
αin,a,o

]
−1
)
ln
(
1−V i,j

n,a,o

)
lnq
(
V i,j
n,a,o

)
∝
(
σi,jn,a,o−1

)
lnV i,j

n,a,o+
(
λin,a,o−1

)
ln
(
1−V i,j

n,a,o

) (C.22)

Since only case
(
zkn,τ−1 = i, zkn,τ = j

)
associated with lnV i,j

n,a,o, rearrange terms related

to it,[∑
k,t

1

K

t∑
τ=1

qkn,t(z
k
n,τ−1 = i, zkn,τ = j)I(akn,τ−1 = a, okn,τ = o)

]
lnV i,j

n,a,o

=
(
σi,jn,a,o − 1

)
lnV i,j

n,a,o

→ σi,jn,a,o = 1 +
∑
k,t

1

K

t∑
τ=1

qkn,t(z
k
n,τ−1 = i, zkn,τ = j)I(akn,τ−1 = a, okn,τ = o)

(C.23)

For ln
(
1− V i,j

n,a,o

)
, all cases

(
zkn,τ−1 = i, zkn,τ = m

)
for m > j must be considered, |Zn|∑

m=j+1

1

K

∑
k,t

t∑
τ=1

qkn,t(z
k
n,τ−1=i,zkn,τ=m)I(akn,τ−1=a,okn,τ=o)+Eq(α)

[
αin,a,o

]
−1

ln
(
1−V i,j

n,a,o

)
=
(
λi,jn,a,o−1

)
ln
(
1−V i,j

n,a,o

)
→λi,jn,a,o=

ain,a,o
bin,a,o

+

|Zn|∑
m=j+1

1

K

∑
k,t

t∑
τ=1

qkn,t(z
k
n,τ−1=i,zkn,τ=m)I(akn,τ−1=a,okn,τ=o)

(C.24)

Where Eq(α)

[
αin,a,o

]
=

ain,a,o
bin,a,o

.

For the update of each q(πn,i), rearrange components in Equation (C.18) in terms
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of the q(πn,i) distribution,

1

K

∑
k,t,zkn,0:t

q(zkn,0:t)
t∑

τ=0

ln πk,aτn,zτ + ln p(πn)

=
1

K

∑
k,t,zkn,0:t

q(zkn,0:t)
t∑

τ=0

lnπk,aτn,zτ + ln

|Zn|∏
i=1

|An|∏
a=1

(
πan,i
)θan,i−1

=
1

K

∑
k,t,zkn,0:t

q(zkn,0:t)
t∑

τ=0

lnπk,aτn,zτ +

|Zn|∑
i=1

|An|∑
a=1

(
θan,i − 1

)
ln πan,i

=

|Zn|∑
i=1

|An|∑
a=1

[
θan,i +

1

K

∑
k,t

t∑
τ=0

qkn,t(z
k
n,τ = i)I(akn,τ = a)− 1

]
lnπan,i

=

|Zn|∑
i=1

|An|∑
a=1

(
φan,i − 1

)
lnπan,i

= ln

|Zn|∏
i=1

|An|∏
a=1

(
πan,i
)φan,i−1

= ln q(πn)

→ φan,i = θan,i +
1

K

∑
k,t

t∑
τ=0

qkn,t(z
k
n,τ = i)I(akn,τ = a)

(C.25)

In the optimal formulas for q(Θn), we need qkn,t(z
k
n,τ ) = ν̃kt p(z

k
n,τ |akn,0:t, o

k
n,1:t, Θ̃), where

p(zkn,τ |akn,0:t, o
k
n,1:t, Θ̃) is the marginal distribution of p(zkn,0:t|akn,0:t, o

k
n,1:t, Θ̃). Obtaining

it by directly marginalizing the following joint distribution is extremely computation-

ally cumbersome,

p(zkn,τ |akn,0:t, o
k
n,1:t, Θ̃)

=

|Zn|∑
zkn,∀t 6=τ=1

p(zkn,0:t|akn,0:t, o
k
n,1:t, Θ̃)

=

|Zn|∑
zkn,∀t6=τ=1

p(akn,0:t, z
k
n,0:t|okn,1:t, Θ̃)

p(akn,0:t|okn,1:t, Θ̃)

p(akn,0:t|okn,1:t, Θ̃) =

|Zn|∑
zkn,0:t=1

p(akn,0:t, z
k
n,0:t|okn,1:t, Θ̃)

(C.26)
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Instead, each marginal distribution for τ = 0, ..., t can be computed analytically by

iterative method. The marginal distribution for each τ can be factorized into two

independent sections according to the d-separation property of Bayes network,

p(zkn,τ = i|akn,0:t, o
k
n,1:t, Θ̃)

∝ p(akn,0:t, z
k
n,τ = i|okn,1:t, Θ̃)

= p(akn,0:τ , z
k
n,τ = i|okn,1:τ , Θ̃)p(akn,τ+1:t|zkn,τ = i, akn,τ :t, o

k
n,τ+1:t, Θ̃)

= αkn,τ (i)β
k,t
n,τ (i),

(C.27)

where α and β are similar to the forward-backward messages in hidden Markov mod-

els. For notational simplicity, we remove Θ̃ in the derivation of α and β. The α and

β can be computed recursively via dynamic programming,

αkn,τ (i) = p(akn,0:τ , z
k
n,τ = i|okn,1:τ , Θ̃)

=


ηinπ(akn,0|zkn,0 = i) τ = 0∑|‡n|

j=1 α
k
n,τ−1(j)ω(zkn,τ = i|zkn,τ−1 = j, akn,τ−1, o

k
n,τ )π(akn,τ |zkn,τ = i) τ > 0

(C.28)

βk,tn,τ (i)=p(akn,τ+1:t|zkn,τ=i,akn,τ ,o
k
n,τ+1:t,Θ̃)

=


1 τ=t∑|‡n|

j=1ω(zkn,τ+1=j|zkn,τ=i,akn,τ ,o
k
n,τ+1)π(akn,τ+1|zkn,τ+1=j)βk,tn,τ+1(j) τ<t

(C.29)

So the marginal distributions in q(Θ) update are computed by

p(zkn,τ = i|akn,0:t, o
k
n,1:t, Θ̃) =

αkn,τ (i)β
k,t
n,τ (i)∑|‡n|

i=1 α
k
n,τ (i)β

k,t
n,τ (i)

(C.30)

p(zkn,τ−1 = i, zkn,τ = j|akn,0:t, o
k
n,1:t, Θ̃)

=
αkn,τ−1(i)ω(zkn,τ = j|zkn,τ−1 = i, akn,τ−1, o

k
n,τ )π(akn,τ |zkn,τ = j)βk,tn,τ (j)∑|‡n|

i,j=1 α
k
n,τ−1(i)ω(zkn,τ = j|zkn,τ−1 = i, akn,τ−1, o

k
n,τ )π(akn,τ |zkn,τ = j)βk,tn,τ (j)

(C.31)

For the update of q(ρn), start with the optimal formula and treat all components
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unrelated to ρn as constant,

q(ρn)

∝exp

{
Eq(Θ,α,z)

 1

K

∑
k,t,zkn,0:t

lnr̃kt p
(
akn,0:t,z

k
n,0:t|okn,1:t,Θ̃

)
+Eq(Θ,α,z) [lnp(Θ|αn,ρn)]+Eq(Θ,α,z) [lnp(ρn)]

}

∝exp
{

Eq(Θ,α,z) [lnp(Θ|αn,ρn)]+Eq(Θ,α,z) [lnp(ρn)]
}

∝exp
{

Eq(u) [lnp(un|ρn)]+lnp(ρn)
}

=exp

Eq(u)

ln

|Zn|∏
i=1

p(uin|ρn)

p(ρn)

=exp

Eq(u)

|Zn|∑
i=1

ln
Γ(1+ρn)

Γ(1)Γ(ρn)
uin

1−1
(1−uin)ρn−1

 f e

Γ(e)
ρ(
ne−1)exp{−fρn}

∝exp


|Zn|∑
i=1

lnρn+(e−1)lnρn+(ρn−1)

|Zn|∑
i=1

Eq(u)

[
ln(1−uin)

]
−fρn


=exp

(e+|Zn|−1)lnρn+(ρn−1)

|Zn|∑
i=1

[
Ψ
(
µin
)
−Ψ

(
δin+µin

)]
−fρn


=ρ−1

n exp

(e+|Zn|)lnρn−ρn

f− |Zn|∑
i=1

[
Ψ
(
µin
)
−Ψ

(
δin+µin

)]+Cρn


≈Gamma(gn,hn)

(C.32)

Since q(ρn) is assumed to be Gamma distribution, compare the above expression with

Gamma(gn, hn), we can obtain

gn = e+ |Zn|

hn = f −
|Zn|∑
i=1

[
Ψ
(
µin
)
−Ψ

(
δin + µin

)] (C.33)
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For the update of each q(αin,a,o), from optimal formula we have

q(αn)

∝exp

{
Eq(Θ,ρ,z)

 1

K

∑
k,t,zkn,0:t

lnr̃kt p(a
k
n,0:t,z

k
n,0:t|okn,1:t,Θ)


+Eq(Θ,ρ,z) [lnp(Θn|αn)]+Eq(Θ,ρ,z) [lnp(αn)]

}

∝exp
{

Eq(Θ,ρ,z) [lnp(Θn|αn)]+Eq(Θ,ρ,z) [lnp(αn)]
}

∝exp
{

Eq(V ) [lnp(Vn|αn)]+lnp(αn)
}

=exp
{

Eq(V ) [lnp(Vn|αn)]
}
p(αn)

(for each α with (n,a,o,i) indices)

→exp

Eq(V )

ln

|Zn|∏
j=1

p(Vj|α)

p(α)

=exp


|Zn|∑
j=1

Eq(V ) [lnp(Vj|α)]

p(α)

=exp


|Zn|∑
j=1

Eq(V )

[
ln

Γ(1+α)

Γ(1)Γ(α)
V 1−1
j (1−Vj)α−1

] dc

Γ(c)
αc−1exp{−dα}

∝exp


|Zn|∑
j=1

lnα+(α−1)

|Zn|∑
j=1

Eq(V ) [ln(1−Vj)]+(c−1)lnα−dα


=exp

(c+|Zn|−1)lnα+(α−1)

|Zn|∑
j=1

[Ψ(λj)−Ψ(σj+λj)]−dα


=α−1exp

(c+|Zn|)lnα+α

d− |Zn|∑
j=1

[Ψ(λj)−Ψ(σj+λj)]

−Cα


≈Gamma(a,b)

(C.34)

Similar to q(ρn), q(α) is Gamma distribution with parameters (a, b), apply the above

optimal formula to all q(αin,a,o), the derivation of each q(αin,a,o) can be obtained by
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the following update,

ain,a,o = cn,a,o + |Zn|

bin,a,o = dn,a,o −
|Zn|∑
j=1

[
Ψ
(
λi,jn,a,o

)
−Ψ

(
σi,jn,a,o + λi,jn,a,o

)] (C.35)
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APPENDIX D

DISTRIBUTIONS OF RANDOM VARIABLES

In this work Beta, Gamma, and Dirichlet distributions are utilized for prior mod-

els; their equations are presented here.

Definition 3 A continuous random variable V is Beta distributed with parameters

(σ, λ) if its probability density function p(V ) has the following form:

V ∼ Beta(σ, λ)

p(V ) =
Γ(σ + λ)

Γ(σ)Γ(λ)
V σ−1(1− V )λ−1

Γ(·) is the Gamma function and Γ(n) = (n−1)!. The realization of V is within range

[0, 1], so sample of V can be taken as a probability value. Beta distribution is the

conjugate prior of Bernoulli and Binomial distributions.

Definition 4 A continuous random variable α possesses Gamma distribution with

parameters (c, d) if its probability density function p(α) is described as

α ∼ Gamma(c, d)

p(α) =
dc

Γ(c)
αc−1e−αd

The support of α is positive real numbers (0,∞). Gamma distribution is the con-

jugate prior of Poisson distribution. Dirichlet distribution is generalization of Beta

distribution, expanding Beta random variable to multi-dimension. It is also a special

case of Dirichlet process when the dimension is finite and fixed.

Definition 5 A K-dimensional continuous random vector (π1, ..., πK) follows Dirich-

let distribution with parameters (φ1, ..., φK), if πk ∈ [0, 1] for all k and
∑K

k=1 πk = 1;
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its probability density function can be expressed as

(π1, ..., πK) ∼ Dirichlet(φ1, ..., φK)

p(π1, ..., πK) =
Γ(
∑K

k=1 φk)∏K
k=1 Γ(φk)

K∏
k=1

πφk−1
k

φk > 0 for all k. Dirichlet distribution is the conjugate prior of Multinomial distribu-

tion.
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