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ABSTRACT  
   

The role of movement data is essential to understanding how geographic context 

influences movement patterns in urban areas. Owing to the growth in ubiquitous data 

collection platforms like smartphones, fitness trackers, and health monitoring apps, 

researchers are now able to collect movement data at increasingly fine spatial and temporal 

resolution. Despite the surge in volumes of fine-grained movement data, there is a gap in 

the availability of quantitative and analytical tools to extract actionable insights from such 

big datasets and tease out the role of context in movement pattern analysis. As cities aim 

to be safer and healthier, policymakers are in need of methods to generate efficient 

strategies for urban planning utilizing high-frequency movement data to make targeted 

decisions for infrastructure investments without compromising the safety of its residents. 

The objective of this PhD dissertation is to develop quantitative methods that combine big 

spatial-temporal data from crowdsourced platforms with geographic context to analyze 

movement patterns over space and time. Knowledge about the role of context can help in 

assessing why changes in movement patterns occur and how those changes are affected by 

the immediate natural and built environment. In this dissertation I contribute to the rapidly 

expanding body of quantitative movement pattern analysis research by 1) developing a 

bias-correction framework for improving the representativeness of crowdsourced 

movement data by modeling bias with training data and geographical variables, 2) 

understanding spatial-temporal changes in movement patterns at different periods and how 

context influences those changes by generating hourly and monthly change maps in bicycle 

ridership patterns, and 3) quantifying the variation in accuracy and generalizability of 

transportation mode detection models using GPS (Global Positioning Systems) data upon 



  ii 

adding geographic context. Using statistical models, supervised classification algorithms 

and functional data analysis approaches I develop modeling frameworks that address each 

of the research objectives.  The results are presented as street-level maps,  and predictive 

models which are reproducible in nature. The methods developed in this dissertation can 

serve as analytical tools by policymakers to plan infrastructure changes and facilitate data 

collection efforts that represent movement patterns for all ages and abilities.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Problem Statement 

The recent technological advances in acquiring high-quality movement data from global 

positioning systems (GPS) and other satellite tracking technologies (radiotelemetry, fitness 

apps, health monitoring devices, smartphones, accelerometers, etc.) have opened up a new 

avenue for researchers to study movement processes using data-driven analysis of 

movement patterns. Movement is defined as a continuous process that is represented 

discretely in space by a sequence of an object’s locations (in the form of (X, Y) coordinates) 

captured synchronously in time. The abundance of temporally dense movement data has 

outpaced the available methods for analyzing such data. Analytical approaches to 

movement processes have evolved, however, methods to develop a standardized 

framework integrating movement data with geographic covariates to define a specific 

behavior is limited. There is a need within Geographic Information Science to 

contextualize readily available ‘big’ movement data generated by ubiquitous platforms like 

smartphones and fitness trackers using geographic covariates that quantify the immediate 

surroundings of users. Such knowledge from a geographic context can facilitate a better 

understanding of the underlying factors that govern human mobility patterns and can go a 

long way in planning more resilient cities in the face of natural hazards like floods and 

hurricanes or pandemics like COVID-19 (Roy and Kar, 2020). To strategically develop 

generalized analytical methods of spatial-temporal patterns an overall understanding of the 
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underlying structure of movement data is essential along with an overview of the methods 

already in place.  

 

1.2 Background Literature and Research Gaps 

Movement can be defined as a process that operates in both space and time. It is a 

continuous process where an object follows a unique trajectory between an initial and a 

final point in space and time. Movement data are used to represent the continuous process 

of movement for geographical analysis. Current and existing geospatial data collection 

techniques represent movement data most commonly as a collection of point objects with 

time stored as an additional attribute. A more formal definition of movement data is the 

collection {Mt } of t = 1, …, n ordered records each comprising the triple <ID, S, T>, where 

ID is a unique object identifier, S are spatial (x,y) coordinates, and T a sequential (non-

duplicated) timestamp (Hornsby and Egenhofer 2002).  Each of the points specifies a 

unique trajectory of an object’s motion. Additional attributes such as distance, speed, and 

azimuth (or relative turning angle) that help generate a trajectory can be derived from the 

raw spatial locations. The temporal component is usually captured in the form of a time 

series represented as a set of locations ordered in time for each trajectory. In this 

dissertation, I have used data from different crowdsourced platforms including Strava 

Metro (Strava Metro,2017) which is an anonymized bicycle trip data collection and storage 

platform, and applications like MTL Trajet (MTL Trajet, 2017) and Itinerarium (Patterson 

et al., 2019), which collects mobility data from GPS enabled smartphones, to represent 

movement data.  
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While movement data have been collected using a variety of techniques like GPS 

(Laube et al, 2007; Laube and Dennis, 2006; Laube and Purves, 2011; Dennis et al, 2010), 

RFID (Bleisch et al, 2014), radio telemetry (Stewart et al, 2013; Laberee et al, 2014; 

Calenge et al., 2009) the more current acquisition schemes include crowdsourced fitness 

apps (Jestico et al., 2016), LiDAR (Kirkeby et al, 2016), accelerometers (Roy et al, 2020) 

and data from smartphones (Roy and Pebesma, 2017). Local authorities have traditionally 

offered manual and automated counts through sensor tracking technologies to capture 

pedestrian movement and bicycle ridership data for enhanced transportation planning. 

Although these methods of movement data collection were at the coarser spatial and 

temporal resolution, with the evolution of crowdsourced data from platforms like Strava 

Metro, it is now possible to capture finer granularities associated with frequent sampling 

intervals that provide a detailed representation of movement. More recently, GPS-enabled 

rideshare vehicles such as Lime Bike, JUMP, GriD, and OFO that capture active modes of 

transportation along with motorized rideshares such as Uber and Lyft offer a new addition 

to the movement data paradigm.  

Despite being an emerging area of research there are some limitations in bicycling 

ridership studies in the United States. Official data on active modes of transportation are 

usually sparse.  Active transportation data are typically collected by traditional methods 

such as manual counting or tubes. When traditional methods are used questions about the 

representativeness of the spatial distribution of count locations and the spatial sampling 

scheme may arise (Roy et al., 2019; Nelson et al., 2021). More recently sampling efforts 

have shifted to use ecocounters, which are automated counters that sample a number of 

bicyclists crossing any single intersection or street segment continuously in time, are being 
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installed but the placement of counters are not spatially uniform (Roy et al., 2019). The 

authorities typically place counters in high ridership areas which leaves low ridership areas 

under- or unrepresented in the sample and hence not stratified enough to capture different 

sets of population groups. This gap in our data measuring active transportation is limiting 

the use of such count data for modeling ridership patterns that is representative of the entire 

population. New sources of data are now emerging to fill this gap in the data. One such 

source is the data collected by crowdsourced fitness apps like Strava. Strava data are a huge 

source of high-resolution data for planning and policymaking.  

Several studies have confirmed that crowdsourced data from fitness apps can be used 

for modeling movement patterns for example – mapping bicycling ridership patterns 

(Jestico et al., 2019; Garber et al., 2019) from GPS data,  detecting changes in bicycling 

volumes based on infrastructure changes (Boss et al., 2018) or studying route choice of 

individual bicyclists from smartphone apps (Pritchard et al., 2019). However, further 

research is necessary to understand how bias in crowdsourced data can be addressed before 

making reliable policy decisions from such emerging data sources. Failure to address bias 

in the data can lead to biased policy outcomes that can lead to an ‘overinvestment’ in 

infrastructure in high ridership places. However, to evaluate if such overinvestments are 

needed we must properly estimate riders in other areas as well. Additionally, if local 

authorities invest in high ridership areas, they are more likely to also invest in wealthy, 

white neighborhoods than socially vulnerable (i.e., low income, non-white population, less 

access to cars) areas which may further exacerbate social inequalities.  

Movement data from fitness apps like Strava once corrected for sampling bias, can play 

an important role in monitoring trends over time which is critical to understand travel 
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behavior and plan interventions. These datasets are temporally dense and could be used as 

a mappable timeseries for planning purposes. However, sampling inaccuracies and 

temporal variability introduced during data collection may lead to misalignment issues in 

such timeseries representations. If the misalignment in the data is not accounted for they 

might distort features and distance measures when calculating change or modeling 

similarity from functional representations of such ‘big’ data resulting in an incorrect visual 

representation of change. For example, street segments with a decrease in bicycle ridership 

volume annually may turn out to show no change at all leading planners to ignore invest in 

better bicycle infrastructure in that area.  It is therefore essential to account for such data 

misalignment issues when dealing with temporal analysis.  

Additionally, combining movement data from multiple sources for spatial-temporal 

analysis is challenging too as different data modalities have varying granularity. The pre-

processing techniques for one modality might not be appropriate for another data source, 

due to a lack of a uniform standardized framework for data preprocessing. For example, in 

the case of transportation research, bias correction in crowdsourced data often requires 

matching GPS data in terms of spatial and temporal resolution with official counts data 

(Jestico et al., 2016). This could be overcome through a generalized framework that 

accounts for variations in data resolutions and models the inputs from multiple sources in 

a uniform representation. In terms of predicting travel modes from crowdsourced data, the 

planners and policymakers are also limited by the process of extracting meaningful features 

from such data that can deliver actionable insights for decision-making (Roy et al., 2020). 

Moreover, geographic context plays an important role in movement pattern analysis and 
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there is a research gap in methods that combine context with crowdsourced movement data 

to understand travel mode choice or changes in transportation patterns (Boss et al., 2018). 

Quantifying spatial-temporal patterns at different scales is also an important component 

of movement analysis to be considered by researchers, as it facilitates the comparison of 

movement trajectories between individuals across space and time (e.g., Fryxell et al., 2008; 

Graham and Stenhouse, 2014). For instance, changes in movement patterns occurring at 

one space-time scale may be masked if represented at another scale (Fleming et al., 2014; 

Gurarie et al., 2009; Schick et al., 2008). Existing methods for movement analysis can be 

used in an exploratory capacity to quantify changes in movement patterns(Sur et al., 2014), 

or in an explanatory capacity to link pattern changes back to changes in underlying 

processes (Barraquand & Benhamou, 2008). However, increasing model complexity with 

the growing volume of data necessitates models that can tackle such big data with an 

increase in technical capabilities and computational power (Morales et al, 2004; Nams, 

2014). Differing assumptions amongst movement models could result in different 

characterizations of the same data (Gurarie et al., 2015; Schick et al., 2008), resulting in a 

mismatch between model assumptions and movement processes which might generate 

erroneous results (Nams, 2014). Therefore, to effectively apply model-based approaches, 

a well-grounded knowledge of the geographic context which captures underlying processes 

and immediate environment influencing movement is essential (Barraquand and 

Benhamou, 2008). 

Existing approaches for modeling big movement data requires a great amount of 

preprocessing that involve data fusion from different platforms, trajectory segmentation 

from large GPS traces but they are challenging owing to the noise introduced in such data 
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by GPS devices that overrides the natural variation in movement patterns (Nams, 2014) as 

well as differences in scales.  Methods like frequent pattern mining (Han and Yin, 2000; 

Roy and Pebesma, 2017), similarity analysis from time-series databases (Agarwal et al, 

1993; Michelot et al., 2016), and spatial similarity using applying Euclidean distance 

between trajectories (Yanagisawa et al, 2003) have been used for capturing similar 

movement patterns. Methods like the Edit Distance (Chen et al, 2005), One-Way Distance 

(Lin & Su, 2008), Hausdorff distance (Goodrich et al, 1999), Fourier descriptors (Rafiei 

and Mendelson, 2002), Longest Common Subsequence (LCSS) (Vlachos et al, 2002) have 

been used for grouping trajectories into clusters from timeseries. However, further 

investigation is needed to contextualize why similarity in movement patterns emerge. 

In summary, although crowdsourced data can overcome some of the existing 

challenges in movement pattern analysis by providing more fine-grained data, there is a 

gap in the literature in terms of analytical methods that can demonstrate their appropriate 

usage along with geographic context and identify the limitations in movement pattern 

analysis. Identifying these gaps I have identified specific research objectives defined in 

section 1.3 to move the research in movement pattern analysis forward.  

 

1.3 Research Objectives  

With the growing volume of movement data, addressing transportation planning from 

a data and computation-intensive perspective has become inevitable. Unfortunately, there 

are large gaps in the data resolution, coverage, and quality for transportation at the street 

segment level. Traditional data sources like manual counts travel diaries and questionnaires 

- data have poor spatial detail and/or limited temporal coverage. Crowdsourcing has, 
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therefore, emerged as a tool of interest for collecting data at a finer resolution at a higher 

sampling frequency.  

Although crowdsourcing has facilitated the mechanism of data collection by reducing 

cost and time, such data are a biased sample of the entire population. The bias in 

crowdsourced data has limited its use in the real world by practitioners. Decision-makers 

are also in need of better and more efficient tools to convert crowdsourced data into 

actionable insights by combining geographic context along with movement metrics like 

speed and acceleration. An overall mechanism of correcting bias in crowdsourced data as 

well as integrating mobility data along with geographic correlates in space and time can 

ease the process of decision-making for practitioners.  

In this dissertation, I have identified three primary research questions and developed 

quantitative methods to understand patterns emerging from movement data by adding 

geographic context. I have used statistical and machine learning approaches to develop 

modeling frameworks that address these questions in the context of transportation planning 

in urban areas.  

 

a. How can we correct bias in crowdsourced GPS data to map ridership of all bicyclists 

in a city? 

Crowdsourced data, although dense in spatial and temporal resolution, are biased 

towards users with access to a mobile device and willing to record trips. It is a subsample 

of true counts observed on the ground and hence needs to be checked for representativeness 

before using it to make decisions related to policymaking. Thus, there is a need to quantify 

and correct the inherent bias in crowdsourced data (Lieske et al., 2017) for a better 
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representation of the ridership patterns of all riders, across varying ages and abilities. A 

mechanism for identifying additional geographic covariates to adjust for the bias in Strava 

ridership is desirable to facilitate mainstream usage of crowdsourced fitness app data for 

public health and urban planning. To address this gap I have developed a bias correction 

framework using a machine learning based variable selection operator. This framework 

aims to identify significant variables that could account for the Strava ridership bias and 

help predict annual ridership volumes at the street segment level. The goals for bias-

correction in crowdsourced data are —first, to quantify which geographical variables can 

help in correcting bias using a Least Absolute Shrinkage and Selection Operator (LASSO); 

and second, to predict overall bicycle ridership volumes using the LASSO selected bias-

adjustment factors and generate maps representative of all bicyclists at a street-level spatial 

resolution.  

 

b. How can we detect changes in movement patterns from big spatial-temporal data?  

Monitoring change is an important aspect of understanding variations in spatial-

temporal processes. Recently, big data on mobility, which are detailed across space and 

time, have become increasingly available from crowdsourced platforms. New methods are 

needed to best utilize the high spatial and temporal resolution of such data for monitoring 

purposes. These data can be considered mappable time series, but are challenging to use 

owing to varying sampling rates and issues of temporal misalignment. However, there is a 

gap in understanding the efficient use of high-resolution crowdsourced data for change 

detection as automated approaches of change detection from big datasets are not 

commonplace. These methods can open a new avenue for urban planners for decision-
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making ahead of time and stay prepared for urgent scenarios. I introduce a novel functional 

data analysis framework in Chapter 3 for quantifying temporal change in mobility patterns 

from crowdsourced GPS data. The framework utilizes crowdsourced data from Strava and 

automates change detection employing a functional k-means clustering technique that 

calculates distance matrices based on the Fisher-Rao metric after aligning the functional 

curves using the square root velocity function. Hourly and monthly changes are classified 

into four categories and mapped along with exposure density. Using spatially and 

temporally continuous data our study advances the existing approaches to mobility 

analysis, by capturing data about the underlying processes, rather than monitoring change 

between discrete snapshots of time. This method is reproducible by practitioners for 

monitoring changes from crowdsourced ridership data and for making necessary 

infrastructure changes to assure the safety of bicyclists.  The possibility of utilizing such 

fine-grained data for detecting temporal changes can help planners resolve controversies 

over new infrastructure (Nelson et al., 2020) and identify long term trends in changes in 

human mobility patterns during natural hazards (Han et al., 2019) like hurricanes or 

pandemics like COVID-19 (Roy et al, 2020). 

 

c.  How can we classify transportation modes from movement patterns combining 

geographic context? What are the key challenges and outcomes in terms of the 

generalizability of results? 

The increasing availability of health monitoring devices and smartphones has created 

an opportunity for researchers to access high-resolution (spatial and temporal) mobility 

data for understanding travel behavior in cities. Although information from GPS data has 
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been used in several studies to detect transportation modes, there is a research gap in 

understanding the role of geographic context in transportation mode detection. predictive 

models lack generalizability. Integrating the geography in which mobility occurs, provides 

context clues that may allow models predicting transportation modes to be more 

generalizable. In Chapter 4, I developed a data-driven framework for transportation mode 

detection using GPS mobility data along with geographic context and second, to assess 

how model accuracy and generalizability varies upon adding geographic context. The 

method will account for GPS data of varied resolution and be able to combine it with nearby 

points of interest thereby adding geographic context which can help detect travel modes. 

The method can assess the change in predictive accuracy and generalizability of multiple 

machine learning algorithms upon the addition of contextual variables in terms of 

built/natural environment, land use types, and availability of transportation infrastructure. 

With additional research using travel surveys and user inputs, the study can be used for 

planning strategic data collection efforts by identifying which geographic factors 

contribute towards specific travel mode choice and how the built environment influences 

travel mode choices. 

 

1.4 Dissertation Overview 

The following chapters elaborate further on each of the research questions including 

the methods applied to answer these questions along with their results, limitations, and 

future work necessary to expand the research. In the first two chapters, bicycling data from 

the Strava fitness app is used as a case study for movement pattern analysis at a fine spatial 
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and temporal resolution that is relevant to understanding the role of geographic context and 

its role in active transportation. 

Chapter 1 begins by motivating the problem followed by identifying the main research 

goals of this dissertation followed by an extensive review of the existing literature available 

on traditional and emerging sources of movement data, current approaches to movement 

pattern analysis, and identifying the research gaps and limitations of the methodologies in 

place. The following chapters highlight three different quantitative approaches to 

understand movement patterns using crowdsourced data.  

In Chapter 2, I introduce a generalized bias correction approach across all spatial and 

temporal scales that is desirable to facilitate mainstream usage of crowdsourced fitness app 

data from platforms, such as Strava, for public health and urban planning. The bias-

corrected bicycle ridership is used to generate maps representative of all bicyclists at a 

street-level spatial resolution for the city of Tempe. 

Chapter 3, further elaborates on the functional data analysis framework for quantifying 

change in mobility patterns from Strava data across hourly and monthly scales. The 

framework utilizes crowdsourced data from Strava and automates change detection 

employing a functional k-means clustering technique that calculates distance matrices 

based on the Fisher-Rao metric after aligning the functional curves using the square root 

velocity function. The change clusters are used to generate change maps for hourly and 

monthly bicycling ridership in the city of Phoenix. 

Chapter 4 showcases a data-driven framework for transportation mode detection using 

GPS mobility data along with geographic context and second, to assess how model 

accuracy and generalizability varies upon adding geographic context. Finally, chapter 5 
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elucidates some of the key findings, major contributions, existing limitations to each study, 

and concluding remarks highlighting future work revolving around each research 

objective. 
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CHAPTER 2 

CORRECTING BIAS IN CROWDSOURCED MOVEMENT DATA 

 

2.1 Abstract 

Traditional methods of counting bicyclists are resource-intensive and generate data 

with sparse spatial and temporal detail. Previous research suggests big data from 

crowdsourced fitness apps offer a new source of bicycling data with high spatial and 

temporal resolution. However, crowdsourced bicycling data are biased as they oversample 

recreational riders. Our goals are to quantify geographical variables, which can help in 

correcting bias in crowdsourced, data and to develop a generalized method to correct bias 

in big crowdsourced data on bicycle ridership in different settings in order to generate maps 

for cities representative of all bicyclists at a street-level spatial resolution. We used street-

level ridership data for 2016 from a crowdsourced fitness app (Strava), geographical 

covariate data, and official counts from 44 locations across Maricopa County, Arizona, 

USA (training data); and 60 locations from the city of Tempe, within Maricopa (test data). 

First, we quantified the relationship between Strava and official ridership data volumes. 

Second, we used a multi-step approach with variable selection using LASSO followed by 

Poisson regression to integrate geographical covariates, Strava, and training data to correct 

bias. Finally, we predicted bias-corrected average annual daily bicyclist counts for Tempe 

and evaluated the model’s accuracy using the test data. We found a correlation between the 

annual ridership data from Strava and official counts (R2 = 0.76) in Maricopa County for 

2016. The significant variables for correcting bias were: The proportion of white 

population, median household income, traffic speed, distance to residential areas, and 
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distance to green spaces. The model could correct bias in crowdsourced data from Strava 

in Tempe with 86% of road segments being predicted within a margin of ±100 average 

annual bicyclists. Our results indicate that it is possible to map ridership for cities at the 

street level by correcting bias in crowdsourced bicycle ridership data, with access to 

adequate data from official count programs and geographical covariates at a comparable 

spatial and temporal resolution. 

 

2.2 Introduction 

Lack of physical activity is identified as one of the primary factors leading to increased 

risk of chronic diseases, including obesity, cardiovascular diseases (Sallis et al., 2012), and 

type 2 diabetes (Colberg et al., 2010) as well as cancer (Kushi et al., 2012). The World 

Health Organization recommends a minimum of 150 min of moderate physical activity per 

week (WHO, 2010). Active transportation modes (bicycling and walking) help to 

incorporate routine physical activity among adults with a sedentary lifestyle to reduce 

health risks. Consequently, public health and urban planning agencies are increasingly 

recognizing the importance of active transportation (Mansfield et al., 2016) in their pursuit 

of broader public health goals (Lyons et al., 2012), creating a demand for a better 

understanding of the influences on bicycle ridership. Previous studies (Larsen et al., 2013; 

Lovelace et al., 2017) have used empirical methods to inform policymakers about 

necessary infrastructure changes using origin-destination surveys to help increase physical 

activity levels among adults. 

Unfortunately, there are large gaps in the data resolution, coverage, and quality for 

active transportation at the street segment level. Existing approaches to bicycle counting 
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result in data with poor spatial detail and/or limited temporal coverage (Ryus et al., 2014). 

The three most common ways to collect bicycle ridership data are manual counts (Griswold 

et al., 2011), temporary, and continuous counters (Ryus et al., 2014). Manual counts, often 

conducted by volunteers, typically enumerate the number of cyclists at major street 

intersections during peak commuting periods for a few days of the year (Nordback et al., 

2011), and lack dense spatial coverage and temporal detail (Griffin et al., 2018). Temporary 

counts (i.e., tube counters set out for a week or two) provide a snapshot of ridership at a 

location over time, but, typically, the spatial coverage is limited. Automated counters 

(counting bicyclists crossing a specific street intersection continuously) (El Esaway et al., 

2015) have great temporal detail but often lack spatial coverage. 

Crowdsourcing has, therefore, emerged as a tool of interest for collecting data on 

bicycling ridership (Shen & Stopher, 2014; Griffin & Jiao, 2015; Heesch & Langdon, 

2016), comfort mapping for bicyclists (Bil et al., 2015), understanding the effects of the 

built environment on ridership (Winters et al., 2010), and promoting safety among riders 

(Nelson et al., 2015). The emergence of crowdsourced data generated by fitness apps 

(e.g.,Strava.com) has provided a new source of ridership data with enhanced spatial and 

temporal resolutions (Jestico et al., 2016). With the proliferation of smartphones, fitness 

apps, such as Strava, have emerged as one of the most popular and rich sources of data for 

physical activity tracking; Strava records an average of 2.5 million GPS routes weekly by 

users across 125 cities all over the world (Strava Metro, 2018). 

However, the primary concern with crowdsourced data is the bias towards recreational 

riders, who are frequent users of GPS-enabled fitness apps. Thus, there is a need to quantify 

and correct the inherent bias in crowdsourced data (Lieske et al., 2017) for a better 
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representation of the ridership patterns of all riders, across varying ages and abilities. A 

generalized bias correction approach across all spatial and temporal scales is desirable to 

facilitate mainstream usage of crowdsourced fitness app data from platforms, such as 

Strava, for public health and urban planning. Most studies on bias in crowdsourced data 

(Feick et al., 2013) focus on characterizing the nature of the bias (Solymosi et al., 2017; 

Ton et al., 2018). We hypothesize that crowdsourced data in urban settings can be used to 

map bicycling ridership (Jestico et al., 2016; Sun & Mobasheri, 2017). Here, we move the 

research forward by developing a generalized approach to bias correction that combines 

traditionally collected ridership data with crowdsourced data to fill gaps in the spatial and 

temporal detail. 

Our goal is twofold—first, to quantify which geographical variables can help in 

correcting bias in crowdsourced data; and second, to develop a generalized method to 

correct bias in big, crowdsourced data on bicycle ridership in different settings to generate 

maps representative of all bicyclists at a street-level spatial resolution. Maps were created 

with enhanced spatial and temporal detail given the ‘big data’ provided by crowdsourced 

fitness apps. Bias correction was framed as using crowdsourced fitness app user counts 

along with additional geographic covariates to predict average annual daily bicyclist 

(AADB) counts on a street network. The result is a map that shows the ridership of 

bicyclists of all ages and abilities, even those that do not use the app. 

 

2.3 Study Area 

Our study area was Maricopa County in the state of Arizona, USA, and covers 9200 

square miles (Figure 2.1). Maricopa County includes 27 cities anchored by Phoenix (MAG, 
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2016). With a population of over 3.3 million people, it is the fourth most populous county 

in the USA (US Census Bureau, 2012). The weather is mostly arid with summer 

temperatures ranging from 50 °F (10 °C) to 108 °F (42 °C) and winter temperatures 

between 35 °F (1 °C) and 90 °F (26 °C), with an average precipitation of 132 mm in 

summer and 236 mm in winter. The city of Tempe, within Maricopa County, specifically 

has more than 175 miles of bikeways and the highest percentage of residents commuting 

by means of bicycles at 4.2%, far higher than the Maricopa County average of 0.8% (City 

of Tempe, 2015). 

 

Figure 2.1: Map showing the geographic location of the study area within Maricopa 

County, AZ, USA along with the street network layout. 

 
2.4 Data 

Two official count data sets were used, the first to train the model and the second 

to test the model. To train the model, we used temporary, automated bicycle counts 
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completed by the Maricopa Association of Governments (MAG) at 44 locations in 2016 

(Figure 2.2). We used the commonly reported time period, the annual average daily 

bicyclist (AADB) count, for the official counts as provided by the MAG. Bicyclists were 

counted by the MAG using automated counters with pneumatic tubes over a span of eight 

continuous two-week periods in the months of April, May, October, and November to 

understand and capture the variation in seasonal cycling volumes. 

 

Figure 2.2: Average annual daily bicyclist counts in Maricopa County in 2016. 

 

The count locations covered the most populated regions within Maricopa County and 

spanned 12 major cities, including Avondale, Carefree, Chandler, Gilbert, Glendale, 

Litchfield Park, Mesa, Peoria, Phoenix, Queen Creek, Scottsdale, and Tempe. Figure 

3.2 shows the AADB counts in order of the population density of each city within Maricopa 

County. The counters were located across a range of locations, including freeways and 

arterials with and without bike facilities, as well as bike paths, such as near canals and 
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trails. The AADB counts were extrapolated based upon the 2-week period counts. Also, 

owing to the extreme weather conditions, overall ridership is generally lower in the study 

area compared to other North American cities. 

We used an independent test dataset to evaluate the model prediction accuracy, from 

the city of Tempe, where manual bicyclist counts across 60 locations were available. These 

manual counts were conducted by a non-profit organization, the Tempe Bicycle Action 

Group (TBAG), at peak periods in the morning (0700–0900) and evening (1600–1800) on 

weekdays in the months of April to May and October to November in 2016, and 12,345 

cyclists were recorded. The bicycle ridership data collected by the TBAG were used to 

evaluate the global model accuracy at a smaller spatial scale, just for the city of Tempe. 

 

Figure 2.3: Distribution of Strava riders in Maricopa County for 2016. 
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The Maricopa Association of Governments distributed Strava bicycling data for 2016 

for the entire Maricopa County. Strava data included street network shapefiles with 

anonymized bicyclist count information along with each street segment as well as at street 

intersections, at a one-minute temporal resolution. The high spatial and temporal coverage 

of the Strava data in Maricopa County allowed for counts to be obtained in the same 

locations and time periods as those collected through automated count stations. The total 

number of Strava riders throughout Maricopa County in 2016 is shown in Figure 2.3. 

Among all the Strava riders, nearly 76.5% of Strava riders in 2016 in Maricopa County 

were male, 17.6% were female, and 5.9% did not specify a gender, as shown in Figure 2.4, 

which indicates Strava riders were not fully representative of the entire population and 

there was an inherent bias in the ridership data, which requires correction. 

 

Figure 2.4: Age–gender distribution of Strava riders in Maricopa County for 2016. 
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In Table 2.1, we list the explanatory geographical covariates used in our model along with 

their potential relationship with bicycling. The geographical covariates were provided by 

the MAG for each census block group in Maricopa County. We identified those census 

block groups which were intersected by a unique street segment and assigned the mean of 

all the variables in the intersected polygons to the respective street segment. We also used 

the shortest distance technique to compute the proximity to green spaces, residential areas, 

and commercial areas for each individual street segment. The shortest distance is the 

Euclidean or straight-line distance from the nearest land-use polygon of a specific type 

(e.g., green space/residential area/commercial area) to the street segment. The MAG also 

provided the shapefiles on land-use classes, which were used to categorize green spaces, 

residential, and commercial areas. 

 

Table 2.1: Geographical covariates influencing ridership in Maricopa County (2016). 

Description Measure Source Year Resolution Relevance 

Crowdsourced 
Fitness App  

Bicyclist count 
across street 
segments grouped 
by location and 
timestamp 

Strava Metro 2016 Street 
Segment 

Crowdsourced 
cycling data help 
predict categories of 
cycling volumes in 
urban environments 
[20,15]. 

Built 
Environment 

(a) Average daily 
traffic volume 

(b) Average 
segment speed 
limit 

(a) USDOT Federal 
Highways 
Administration 

(b) OpenStreetMap 

2016 Street 
Segment 

Built environment 
has a significant 
influence on active 
transportation 
choices 
[30,31,18,1]. 
Improving traffic 
promotes 
bicycling[33]. 

Demographics 

(a) Population 
density 

(b) % white 
population 

(c) Median age 
(d) % veterans 

Maricopa Association 
of Governments Open 
Data Portal 

2010 
AZ Census 
Block 
Group 

Densely populated 
areas have higher 
number of cyclists 
[32,34]. 
Ethnicity variations 
affect bicycle 
ridership 
levels.[35]. 
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(e) % high school 
educated 

Land Use Mix 

(a) Proximity to 
greenspace 

(b) Proximity to 
residential 
areas 

(c) Proximity to 
commercial 
areas 

Maricopa Association 
of Governments Land 
Use Data 

2016 Street 
Segment 

Nearness to 
residential areas and 
green open spaces 
has shown positive 
associations with an 
increase in physical 
activity [36,1]. 

Socio-
Economic 

(a) Median 
household 
income 

Maricopa Association 
of Governments Open 
Data Portal 

2010 
AZ Census 
Block 
Group 

Areas with lower 
income levels tend 
to bike more 
[37,38,10]. 

Commute 
Patterns 

(a) % of 
population 
who commute 
to work with 
bicycles 

Maricopa Association 
of Governments Open 
Data Portal 

2010 
AZ Census 
Block 
Group 

Frequent bicycle 
commuters are more 
likely to have a 
higher level of 
education [39]. 

 

2.5 Methods 

2.5.1 Overall design of the bias-correction framework 

We performed the following steps for correcting bias in the Strava data: 

(i) The relationship between the Strava ridership data and official counts across 44 

locations in Maricopa County (train data) was quantified using ordinary least 

squares regression. 

(ii) Additional geographic data from multiple disparate sources (Table 2.1) were 

then aligned, controlling for variable multicollinearity, with ridership data from 

Strava, and a variable selection technique—LASSO—was used to identify the 

most significant geographical variables from all the listed variables in Table 

2.1. 
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(iii) A generalized linear model with a Poisson distribution was fitted using the 

observed AADB counts as a dependent variable and the Strava ridership data 

along with the geographical covariates selected by LASSO, which were 

outcomes of step (ii), at comparable spatial and temporal scales as independent 

variables. Using this model, we corrected the bias in the crowdsourced bicycle 

ridership data by age and ability across Maricopa County using a 10-fold cross-

validation across the 44 locations. 

(iv) The coefficients of the model fitted in step (iii) were then used to explain the 

variation in the AADB counts and the bias-corrected predictions. 

(v) The best-fitted model from step (iii) was cross-validated, which is a technique 

used to test the model fit by holding out 10% of the data and training the model 

with 90% of the data in multiple iterations, and the model with least cross-

validation error was used to predict the observed AADB at unknown locations 

and to create a street-level map of bias-corrected AADB counts in Tempe. 

(vi) Finally, the prediction accuracy of the model, shown in step (iii), was evaluated 

in Tempe across 60 locations where ground truth data for the AADB counts 

were available (test data). 

 

Each of the steps is explained in further detail in the sections that follow. The 

exploratory analysis and data preprocessing were performed using Jupyter Notebooks 

(Kluyver et al., 2016). Spatial analyses were undertaken in ESRI® ArcGIS 9.3 and the 

model was partly built using both Python 3.5 (Python.org, 2019) and R 3.4 (R Statistical 

Software).  
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2.5.2 Quantifying representativeness of crowdsourced movement data 

To quantify how the bicycle ridership of all riders is represented by sampling the 

crowdsourced app ridership, we compared the ridership counts from Strava with official 

counts from automated bike counter systems installed by the MAG (MAG, 2016) across 

44 locations in Maricopa County for a two-week period in the months of April, May, 

October, and November. The Python package, PANDAS (Python data analysis library) 

(McKinney, 2012), was used to summarize, match, and extract crowdsourced data counts 

for each individual road segment in Maricopa County to account for ridership estimates. 

Comparisons between the two datasets were made at daily, monthly, and annual 

levels. We used regression analysis to quantify how much of the variation in bicycle 

ridership was explained by the crowdsourced data. To do this, we matched counts from 

Strava, aggregated them into hourly intervals, and matched those to the time windows when 

official counts were conducted by the MAG. Once counts were matched temporally, we 

compared both datasets at daily, monthly, and annual levels. We obtained R2 values using 

simple linear regression for each time period and retained the volumes with the highest 

R2 for further analyses. 

 

2.5.3 Selecting geographic covariates for bias correction using LASSO 

In order to correct for the bias in the crowdsourced ridership data, we included the 

geographical covariates from Table 2.1. Variable multicollinearity, which is the state of 

high inter-correlations among independent variables, was limited by retaining only those 

variables which had a variance inflation factor (VIF) below 7.5 (Crawley, 2005). If the 

variance inflation factor of a predictor variable was 7.5, this meant that the standard error 
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for the coefficient of that predictor variable was 2.73 (√7.5) times as large as it would be if 

that predictor variable was uncorrelated with the other predictor variables. These covariates 

were hypothesized to influence bicycle ridership at a geographic scale comparable to that 

of the Strava data. Spatial joins from the Python library, Geopandas (Jordahl, 2019), were 

used to link bicycling count data with the geographical covariates. 

We used an average of the geographical covariates for all the census block groups that 

a particular street segment intersected. The distance variables were calculated in ArcGIS 

using a simple Euclidean distance measured in miles. Since the number of independent 

variables for our analysis was 15, even after accounting for inter-correlations through VIF, 

we used a statistical method to select only those variables that explained most of the 

variance in the overall bicycle ridership. A variable selection technique using LASSO (least 

absolute shrinkage and selection operator) (Tibshirani, 1996) was applied to select 

covariates that best explained the bias in the Strava data while accounting for the bias-

variance tradeoff (Tibshirani, 1996). 

The purpose of LASSO is to apply a constraint on the sum of the absolute values of 

the model parameters with a fixed upper bound. To do so, the method applies a shrinkage 

process (also known as regularization), where it penalizes the coefficients of the 

independent variables, shrinking some of them to zero. The variables that still have a non-

zero coefficient after the shrinkage was selected to be inputs of the final Poisson regression 

model. By using LASSO, we intended to minimize the prediction error of the final AADB 

counts. The LASSO can be thought of as an additional step, which can help transportation 

planners choose, from a large set of variables in a study area, only those which can in effect 
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help improve the prediction results and contribute significantly in explaining variation in 

the overall bicycle ridership. 

Given the set of explanatory variables, x1, x2… xp, and the outcome, y, the observed 

bike counts, LASSO fits the linear model: 

 (1) 

by minimizing the following criterion: 

 (2) 

In doing so, the non-contributing geographical covariates are shrunk to zero. We ran 

200 iterations of the LASSO on our training data using a 10-fold cross-validation approach 

to obtain the optimal value for λ (tuning parameter), which yielded the minimum cross-

validation error on the training dataset for all iterations. The variable selection was 

performed using the randomized LASSO scores provided by the scikit-learn Python library 

based on the stability function proposed by (Meinshausen & Buhlmann, 2010). For a cut-

off, πi, with 0 < πi < 1 and a set of regularization parameters, Λ, the set of stable variables 

is defined as: 

(3) 

With the chosen λ, we retained the variables with a high selection probability and 

disregarded those with low selection probabilities using a score function, which provided 

the coefficient of determination, R2, of the prediction ranging from 0 to 1. The coefficient, 

R2, is defined as (1 − u/v), where u is the residual sum of squares and v is the total sum of 
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squares of the variables retained with the chosen value of λ. The LASSO module from the 

Python machine learning library, scikit-learn, was used to perform variable selection. 

 

2.5.4 Predicting counts using bias-corrected movement data 

We fitted the geographical covariates selected by LASSO to a generalized linear 

model following a Poisson distribution to explore the relationships among the selected 

covariates, and the bicycle ridership counts in Maricopa County using Equation (3). We 

chose the Poisson model as it generates non-negative predictions, which are appropriate 

for modeling count data. 

As shown in Figure 2.2, the geographical variables, as well as the official counts and 

counts from the crowdsourced app, were provided as inputs to the model. The LASSO 

variable selection algorithm determined the stable covariates that best replicate the bicyclist 

counts. Following variable selection, the Poisson model predicted the AADB counts along 

all street segments in Maricopa County. The regression model was specified as a Poisson 

distribution with a log-link function (Dobson & Barnett, 2008) as follows: 

(4) 

where: 

• Yi = the AADB counts at site i 

• βi = vector of parameters for count site i 

• Xi = vector of the observed geographical covariates for count site i. 
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The AADB counts were generated by the model across the entire road network in 

Maricopa County, including paved streets with and without bike facilities. The segments 

from Strava that were matched in spatial and temporal resolution to the official MAG 

counts were used in fitting the Poisson model. Hence, we could compare the counts from 

both sources at only those locations, where both counts were available, which were then 

used to train our model. The remaining segments that only had Strava counts were used to 

test the predictive power of the model. The average annual counts from Strava along with 

the geographical covariates were the independent variables for the model. The significant 

variables were those with a p-value < 0.001. Since we assumed that our dependent 

variables (the MAG counts) follow a Poisson distribution with a mean that depends on 

some covariates, we used a generalized linear model that takes into account the 

heteroscedasticity in the data. 

The Poisson model coefficients were used to predict ridership at all street segments in 

Tempe. A k-fold cross-validation technique (Kohavi, 1995) was used to determine the best 

fit for our training data using the Poisson model, and Akaike’ s information criterion (AIC) 

was computed at each step to determine the best-fitting model for our training data. The 

bias-corrected ridership estimates were then classified using a histogram into five different 

categories—very low, low, medium, high, and very high. 

 

2.5.5 Mapping predicted counts from bias-corrected movement data 

For ease of visualization and to support our validation of the prediction accuracy with 

independent data, we generated a map for a smaller area and compared the bias-corrected 

map with the annual Strava ridership map for the city of Tempe, where ground truth data 
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were available from the TBAG. Results were visualized across the city of Tempe with a 

uniform color scheme representing each category with varying widths of street segments. 

As the ultimate goal of the model was to predict bicycling volumes that were corrected 

for sampling bias, we applied the model to spatially continuous data from 60 locations 

across the city of Tempe and predicted annual bicycle ridership across all street segments. 

The bicycle counts provided by the TBAG were used to determine the prediction accuracy. 

We verified our model using a 10-fold cross-validation approach in order to account 

for overfitting. We performed 100 iterations of the model, splitting the dataset into a train-

test sample ranging from 15% to 85%, and chose the model with minimum cross-validation 

error as the best fit. We then calculated the differences between the predicted and observed 

AADB counts and analyzed the variation of the differences with the percentage of 

segments predicted. 

 

2.6 Results 

The crowdsourced data from Strava captured 642,298 trips for 28,571 unique 

bicyclists across Maricopa County for the entire year of 2016. A total of 24,917 riders were 

captured using automated counters in Maricopa County in 2016. The AADB counts ranged 

from 0 to 522 with the highest ridership in the city of Chandler and the lowest in Litchfield 

Park. The average number of daily Strava cyclists at the same locations ranged from 0 to 

34 when compared with the Strava data. The manual counts from the TBAG comprised 60 

locations within Tempe with a total of 12,151 riders. The ordinary least squares regression 

analysis between the AADB counts from the MAG and Strava accounted for 76% of the 

variation between the two datasets.  
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In Table 2.1, the geographical covariates along with the month and day of count 

used for determining the most significant variables to use as input for the Poisson model 

are shown. The tuning parameter, λ, was 1.85, based on the minimum cross-validation error 

of 0.014 on the training set. In Table 2.2, all input variables used by LASSO are listed. The 

most significant variables which were not shrunk to zero (λ = 1.85) and had a score above 

0.65 were: Distance to residential areas, distance to green spaces, percentage of the white 

population, median household income, average segment speed limit, and average number 

of Strava riders. In Table 2.3, a list of the parameter estimates of the Poisson regression on 

the six variables chosen from Table 2.2 through LASSO is provided. 

 
 

Table 2.2: Variable importance based on LASSO variable selection (λ = 1.85). 

Covariates LASSO 
Scores 

Distance to residential areas 1.00 
Distance to green spaces 1.00 
% white population 1.00 
Median household income 1.00 
Average segment speed limit 0.98 
Strava counts 0.96 
Average daily traffic volume 0.59 
% veterans population 0.43 
Population density 0.4 
% population who commute with bicycles 0.05 
Distance to commercial areas 0.02 
Median age 0 
% Population with at least high school education 0 
Count month 0 
Count day 0 

 

The model had an AIC of 1832.9 and yielded the lowest mean-squared error of 0.0045 after 

100 iterations of cross-validation. The pseudo-R2 of the fitted model was 0.59. In Table 
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2.3, the standard errors and 95% confidence intervals of the associated parameter estimates 

are also highlighted.  

Table 2.3: Parameter estimates using Poisson regression. 

Dependent Variable: AADB Counts from MAG 
Explanatory Variables 

("!) 
Estimate(log) 

(#!) Std. Error p-value 95% CI 
Lower Upper 

Strava counts 0.17 0.01 <0.001 0.15 0.18 
Average segment speed limit −0.09 0.01 <0.001 −0.11 −0.08 
Distance to residential areas −0.51 0.01 <0.001 −0.59 −0.43 

Distance to green spaces −0.74 0.07 <0.001 −0.88 −0.59 
Median household income −0.09 0.01 <0.001 −0.01 −0.08 

% white residents 0.11 0.01 <0.001 0.09 0.14 
Intercept 3.78 0.08 <0.001 3.63 3.92 

 

The variables, distance to green spaces, distance to residential areas, median household 

income, and traffic speed, have an overall negative impact on ridership while the number 

of Strava riders and the percentage of white population have an overall positive influence 

on bicycle ridership. The in-sample fit for the entire Maricopa County (where ground truth 

was available from the MAG) using the Poisson model resulted in an R2 of 0.64 between 

the observed and predicted counts (Figure 2.5). 

 

Figure 2.5: Poisson model predicted vs. actual AADB counts for Maricopa County (2016). 
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Changes in the predicted ridership volume relative to changes in each of the 

covariates in the model help to demonstrate the contribution of geographic covariates in 

correcting bias in the overall ridership volume estimates. To provide a baseline for 

comparison, the intercept of the Poisson model alone provides an estimate of the mean 

observed counts on a street segment, independent of all other covariates. Table 2.4 shows 

the factor by which each covariate influences overall ridership. 

In this study, the mean AADB count on each street segment represents 43 bicyclists. 

The parameter estimate for the average number of Strava riders was 1.18 (Table 2.4), which 

indicates that if the average number of Strava riders on a particular street segment increases 

by 1, given that all other variables were held at their respective average values, the 

estimated ridership on that segment would increase to approximately 50.74. In other words, 

Strava counts account for 1 in every 50 bicyclists along a particular street segment. 

 

Table 2.4: Variation in predicted AADB counts for each variable, with all other attributes, 

held constant, when the variable is changed by a factor, e(β_i ). 

Variables 
("!) 

Scale 
(per 
unit) 

Change 
Factor 
($"!) 

Change in Observed Bicyclist Counts (y) 
(all other Variables Held Constant at Their 

Mean) 
Intercept - 43 - 
Strava riders 1 rider 1.18 18% increase 
Distance to residential areas 1 mile 0.6 40% decrease 
Distance to green spaces 1 mile 0.48 52% decrease 
Average segment speed limit 10 mph 0.91 9% decrease 
Median household income $10,000  0.91 9% decrease 
% white population 10%  1.12 12% increase 
 

The proximity of a street segment to a residential neighborhood and green spaces was 

found to impact overall ridership significantly. With every 1 mile increase in the shortest 
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distance of a street segment from a residential neighborhood, the predicted number of 

bicyclists decreases by 40% (Table 2.4). Similarly, for every 1-mile increase in the shortest 

distance between a street segment and green space, the observed bicyclist counts decrease 

by 52%, ceteris paribus. Ethnicity is a weaker, but still significant, contributing factor to 

ridership volumes, with ridership counts being positively related to the percentage of the 

white population in the neighborhood of a street segment. The number of observed 

bicyclists on a street segment that is located in a neighborhood with a 60% white population 

will have 12% more observed bicyclists than if it is located in a neighborhood with a 50% 

white population, ceteris paribus. 

 

Figure 2.6: Predicted bicycle AADB counts for the entire street network of Tempe in 2016. 
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Additionally, high values of median household income and increased speed limits 

were found to be associated with low overall ridership. The parameter estimates show that 

the observed number of bicyclist counts decreases by 9% for every $10,000 increase in 

average income whereas for every 10 mph increase in the average speed limit on a 

particular street segment, the predicted number of bicyclists decreases by 9%, ceteris 

paribus. 

Based on our model, we predicted bias-corrected ridership volumes across the city of 

Tempe, shown in Figure 2.6, classified using Jenks’ classification into five categories: 

Very low (0–25), low (25–100), medium (100–750), high (750–2500), and very high 

(2500+).  

 

Figure 2.7: Model Prediction Accuracy for Tempe in 2016. 
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The thin lines indicate streets with a low volume of bicyclists while the thicker lines 

indicate streets with a high volume of bicyclists. In Figure 2.7, the result of the prediction 

accuracy as a function of the difference in the predicted AADB counts from the observed 

counts across 60 count locations in Tempe is given. Overall, for 59% of the segments, we 

predicted ridership volumes within ±50 AADB, 86% of the segments were within a ±100 

AADB, and 95% within ±200 AADB. 

 

2.7 Discussion 

We were able to correct the bias in crowdsourced data from Strava using a set of 

covariates describing the street location and from this we were able to generate maps 

representative of all bicyclists at a street-level spatial resolution. The correlation between 

the Strava and official counts alone can explain nearly 52% of the variation in overall 

bicycle ridership, however, we were limited by the availability of ground truth data, which 

could help improve the R2 further. Our goal in combining geographic covariates with 

Strava counts was to account for additional factors that influence bicycle ridership and may 

not be captured solely by crowdsourced sampling. These variables helped in making 

necessary adjustments for the estimation of observed counts of all bicyclists, including 

those not using the Strava app, thereby correcting bias in crowdsourced data from Strava. 

The Poisson regression approach has frequently been used in bicycle crash analysis by 

(Griswold et al., 2011) and (Hankey et al., 2012) as well as for exposure measurement of 

accidents by (Hamann & Peek-Asa, 2013). A probabilistic joint analysis approach has been 

used for correcting sampling bias in species distribution models by (Fithian et al., 2015). 
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Using the mixed-model approach, this paper proposes a new technique in the bias 

correction of crowdsourced data for physical activity mapping from bicycle ridership. 

The results of our study indicate that bias correction of crowdsourced data may prove 

to be a useful method for the estimation of bicycle ridership in North American cities. Our 

results for the city of Tempe (Figure 2.7) indicate that for 80.3% of road segments, where 

ground truth data were available, estimated bicycle counts were correct to within 25% of 

the observed counts (± 50 riders). Our findings are in alignment with recent research by 

(Jestico et al., 2016) and (Griffin & Jiao, 2015), who found strong relationships between 

Strava and all bicycling ridership in North American cities. 

As expected, the proximity of a street segment to a residential neighborhood had a 

significant influence on the overall bicycle ridership. Most segments that are close to a 

residential area in Tempe have better road infrastructure, including paved sidewalks and 

dedicated bike lanes. This encourages inexperienced bicyclists to ride safely and also adds 

comfort to the overall bicycling experience in general for riders of all ages and abilities. 

Hence, transportation planners should pay more attention to the use of wider streets with 

dedicated bike lanes in residential areas to help increase active transportation among riders 

irrespective of their age and ability. Similarly, closer proximity to green space also had a 

positive influence on ridership. One reason for the relationship between bicycling and 

green space may be that green corridors, which connect the bicycle network within a city, 

facilitate increased overall bicycle ridership. 

The positive coefficients for Strava counts and the white population percentage are in 

alignment with the fact that ethnicity influences ridership and that in urban areas, generally, 

a higher proportion of white residents ride bicycles than non-white residents. Previous 
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studies by (Winters et al., 2010) and (Huang et al., 2009) have shown that positive 

relationships exist between ethnicity (white, non-white) and physical activity. Our model 

results also show that ethnicity is an important factor to use when correcting bias Strava 

sampled bicycle ridership volumes. 

Median household income was also significant in influencing overall bicycling 

ridership. It has been found in previous research (Reis et al., 2013) that people from lower 

economic backgrounds are less likely to adopt an active lifestyle and our results also 

indicate a similar trend. Bicycling should be made more cost-effective for daily use by 

commuters in order to promote active transportation. 

High-speed limits are often correlated with roads having greater concentrations of 

larger-sized vehicles and more traffic, both of which are major deterrents to bicycling in 

general (Winters et al., 2010; Piatkowski & Marshall 2015) and often result in crashes 

(Chen & Shen, 2016). These results suggest policy directions for the safety of bicyclists by 

means of the reduction of speed limits on busy traffic corridors, and the provision of 

dedicated bike lanes or green zones on major streets connecting areas of interest (schools, 

business centers, parks, shopping complex, etc.) to attract riders of all ages and abilities. 

The model framework proposed in this study can be used for correcting bias in Strava 

riders from other cities or bicyclist counts comparable in space and time obtained from 

other bicycling apps. However, our study has a few limitations. The official counts from 

the MAG were collected at 44 locations scattered across the whole of Maricopa County. 

As the segments containing available ground truth data were mostly within the city limits, 

data from open spaces on the outskirts of cities were sparse. The choice of geographic 

covariates was specific to the study area and might vary for different geographic settings, 
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depending upon their relevance. The model could have been improved in terms of 

prediction accuracy if more ground truth data were available across diverse locations to 

train the model. Street conditions with a low prediction accuracy can be targeted for future 

sampling and organized data collection efforts can be proposed for better quality data, 

which could help in the improvement of the model. With the availability of sufficient data, 

further studies could examine the spatial heterogeneity of bias-corrected ridership across 

varying geographies using localized regression on more realistic conditions across larger 

spatial scales. 

 

2.8 Conclusion 

Big, crowdsourced data from fitness apps, like Strava, on bicycling volumes, can 

be used to make informed decisions on factors that influence ridership in urban areas on a 

much finer spatial scale. We introduced a new method for correcting bias in crowdsourced 

data with the help of a three-step mixed-model approach by quantifying crowdsourced data 

and official counts in a specific geographic region, using LASSO to choose the most 

significant geographic variables that could correct bias, and finally, fitting the covariates 

along with the crowdsourced data by means of Poisson regression to predict and map 

overall ridership in the region. The method developed in this study is broadly applicable 

for correcting bias in crowdsourced bicycling data when official counts and geographical 

data are available at comparable spatial and temporal resolution. Based on the results of 

this paper, in the future, it is suggested that local transportation authorities should work 

closely with researchers to improve the coverage of official count data, helping them to 

identify locations to place counters so that a denser spatial coverage, as well as more ground 
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truth data, are obtained to improve the model’s performance. The proposed bias correction 

model, with detailed data that is continuous through space and collected repeatedly in time, 

can help transportation planners in making informed decisions related to bicycle 

infrastructure planning to promote healthier lifestyles among urban residents of all ages 

and abilities. Detailed maps of bicycling ridership are critical to professionals in making 

decisions regarding infrastructure investment and policy changes that support active 

transportation. The framework developed in this paper can be used as a generalized risk 

assessment and exposure modeling tool to benefit accident prevention among bicyclists, 

with sufficient availability of accident data from crowdsourced platforms, like 

Bikemaps.org (Nelson et al., 2016) and provide an estimate of bias-corrected bicyclist 

volumes for infrastructure planning to enhance comfort among bicyclists and promote 

active modes of transportation for healthier lifestyles among wider demographics. 
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CHAPTER 3 

DETECTING CHANGES IN MOVEMENT PATTERNS FROM 

CROWDSOURCED DATA 

 

3.1 Abstract 

Monitoring change is an important aspect of understanding variations in spatial-

temporal processes. Recently, big data on mobility, which are detailed across space and 

time, have become increasingly available from crowdsourced platforms. New methods are 

needed to best utilize the high spatial and temporal resolution of such data for monitoring 

purposes. These data can be considered mappable time series but are challenging to use 

owing to varying sampling rates and issues of temporal misalignment. We present a 

functional data analysis technique for change detection from spatial-temporal data by 

analyzing big, crowdsourced data captured continuously in time while addressing non-

elastic rate variations in the underlying spatial-temporal processes. Using data from the 

Strava fitness app, captured every minute, we quantified ridership changes in Phoenix 

between 2017 and 2018 at the street-segment level. Hourly and monthly changes were 

classified into four categories and mapped along with exposure density. Using spatially 

and temporally continuous data our study advances the existing approaches to mobility 

analysis, by capturing data about the underlying processes, rather than monitoring change 

between discrete snapshots of time. Our method is reproducible by practitioners for 

monitoring changes from crowdsourced ridership data and for making necessary 

infrastructure changes to assure the safety of bicyclists.   
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3.2 Introduction 

Monitoring change from continuous time-series data is critical for cities to 

understand travel behavior and make targeted decisions related to transportation 

infrastructure changes that can improve the overall safety of their residents. Through 

monitoring, policymakers are more prepared to meet rising infrastructure demands 

(Miranda-Moreno et al. 2013) and ensure accessibility to existing infrastructure more 

expeditiously (Boss et al. 2018). Change detection is essential to characterize the impacts 

of sudden fluctuations on overall spatio-temporal processes (Alaya et al. 2020), particularly 

where we observe changes in the frequency and/or in the intensity across multiple scales. 

Detection of changes is thus an essential step before performing any descriptive or 

predictive analysis. 

Growth in the availability of crowdsourced GPS data from smartphones has created 

an alternative source of high-resolution spatial-temporal data to enable researchers to 

understand mobility patterns. Although these datasets are biased towards a specific 

demographic (males between 25-45 years of age), they can be used as an indicator of 

ridership once the bias is accounted for by including geographic covariates (Roy et al. 

2019). Crowdsourced fitness apps like Strava (Strava Metro 2016) have been collecting 

anonymized bicycling trip data at the minute level, which can be used for monitoring 

change. These fine-grained bicycling trips can be represented using a functional form, as 

they are collected continuously over time. In the context of bicycling ridership, the major 

problems are that data are captured from different bicyclists who record their trips which 

are then aggregated in the background by Strava. We hypothesize that this data aggregation 

from millions of users at different sampling rates introduces errors that need to be 
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accounted for. The mismatched sampling rates can go a long way in classifying a street 

that shows an increase in ridership as a decrease or no change or vice versa. 

Initial research (Boss et al. 2016, Nelson & Boots 2008) has shown that it is possible 

to detect changes between two time periods – and that the changes are representative of 

actual changes in infrastructure. Such studies quantify the spatial variations of change in 

ridership using two snapshots in time. Some studies (Yang et al. 2018) have looked at 

spatial change detection from GPS trajectories however, they ignored the temporal 

component, whereas other studies (Kang et al. 2019) have addressed the scale issue in land-

cover change and activity zone detection from social-media platforms (Liu et al. 2019).  

To utilize large volumes of raw timeseries data, we must identify analytical 

methods that also account for patterns in changes across multiple scales, as the underlying 

data generating processes vary both in space and time.  There is a lack of a well-defined 

framework for extracting actionable insights from such big data for change monitoring 

across scales. To bridge this gap we propose a functional data analysis (FDA) (Ramsay & 

Silverman 2005) technique for mapping changes in bicycle ridership patterns. FDA is a 

statistical technique that is used to analyze high-frequency data represented as curves 

varying over a continuum like space or time. The fundamental structure of an FDA 

framework is functions representing the underlying data. FDA has found applications in 

several areas of research including ecology (Bourbonnais et al. 2017, Gurarie et al. 20), 

epidemiology (Aston and Kirc, 2012), remote sensing (Bourbonnais et al. 2017), physical 

activity recognition (Choi et al. 2018)) and traffic volume forecasting (Wagner-Muns et al. 

2017, Kim, 2019). 



  44 

We hypothesize that complex phenomena like bicycle ridership patterns, which 

involve several underlying factors involving route choice, built environment 

characteristics, infrastructure availability, and safety, are best viewed as observations from 

a dynamical process. The observed time-series results from a complex entanglement of 

several variables which are difficult to single out. Hence, small changes in certain 

conditions in the data generating process can cause non-elastic effects on the observed 

time-series of such big data, without altering the essential trends of the time series. Failure 

to account for these effects, increases the observation variance, thereby leading to 

erroneous results for variance-based analysis (like clustering). By removing the effect of 

elastic time-warping, we make the results of subsequent cluster-based analysis more stable 

and less prone to small misalignments in time. The novelty of our approach lies in applying 

FDA techniques to timeseries data gathered via crowdsourced platforms like Strava and 

generating a visual representation of those changes through a map for planning purposes.  

In this work, our goal is to demonstrate a method for detecting and mapping change 

in data collected continuously through time. To meet this goal we (1) quantify the change 

in bicycle ridership using a special case of elastic FDA known as the square-root velocity 

function (SRVF) representation and (2) visualize the temporal changes across hourly and 

monthly scales.  We generate street-segment level maps for different time scales that enable 

practitioners to make targeted decisions regarding bicycle infrastructure planning.   

 

3.3 Study Area 

 Our study area is the City of Phoenix (Figure 3.1), which lies within the state of 

Arizona in the USA. Phoenix is the largest metropolitan city in the county of Maricopa in 
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Arizona with a population of 1,563,001 (US ACS 2015, City of Phoenix).  Approximately 

1.12% of the population who commute to their workplace use bicycles as their preferred 

mode to work with the highest weekday ridership exceeding 270 bicyclists per day (City 

of Phoenix, Bicycle Master Plan report, 2015). Bias-corrected Strava ridership in Phoenix 

is representative of nearly 76% of overall bicycling activities with bicyclist safety along 

with income and gender being the strongest indicators of overall ridership (Nelson et al. 

2020). The city has an entire street network stretching to nearly 8,000 km, with about 1,140 

km of total bicycle lanes that include 960 km of on-street bicycle facility and 190 km of 

off-street bicycle paths, 42 bicycle and pedestrian bridges/tunnels spanning the entire city 

(City of Phoenix, Bicycle Master Plan, 2015). 

 

Figure 3.1: Map showing the spatial distribution of Strava riders across all traffic analysis 

zones along with bikeways in the City of Phoenix (2017-2018). 
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3.4 Data 

The total number of bicycle trips in Phoenix increased from 52,976 to 74,191 

between 2017 and 2018 (Strava Metro 2019). The City of Phoenix has gathered bicycle 

ridership from Strava Metro as part of a data acquisition effort by the Maricopa Association 

of Governments for estimating ridership estimates annually. Strava Metro provides 

information about anonymized bicycle trips recorded through the Strava fitness app. The 

data consists of activity counts (i.e. bicycle trips) per segment of transportation 

infrastructure in the Phoenix region, recorded every minute of the day. 

 We chose the period between 2017 and 2018 as several minor/major 

changes took place in the bicycling infrastructure during this period, which enables 

monitoring how ridership patterns varied before and after the changes were put into effect. 

Table 3.1 shows the trip information and the number of total activities recorded in each 

year.  

Table 3.1: Summary of Strava ridership in Phoenix from 2017 to 2018. 

 

 

Strava is commonly used by recreational bicyclists which introduces a bias in the 

overall sampling of bicycle counts, which can be adjusted using additional geographical 

covariates (Roy et al., 2019) but in dense urban areas correlates with all bicyclists (Boss et 

al. 2018). The demographics of the Strava users in Phoenix are not representative of the 

general bicycling population, there are differences in both gender (Table 3.1) and age. The 

Year No. of commute 
trips 

Total no. of 
activities 

No. of street 
segments 

% Male Strava 
riders 

%Female Strava 
riders 

2017 131,081 1.74 million 78,174 76.9% 18.4% 

2018 138,714 1.78 million 74,191 76.5% 19.7% 
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percentage of male Strava users (76%-77%) is higher than the percentage of female cyclists 

in the Phoenix region (17%-19%). The trends in the Strava data used in this study are 

similar to the age and gender trends of crowdsourced data used in other bicycling studies 

(Griffin and Jiao 2015, Romanillos et al. 2016). We also use additional data from the City 

of Phoenix showing the bicycle crashes representative of the time period of study.  

 

3.5 Methods 

Our study can be broken into three main objectives – first, we convert Strava ridership 

volumes to time-series representing it as functional data, second, we then use a temporal 

alignment technique using square-root-velocity-function (SRVF) (Srivastava et al. 2011) 

to account for temporal variability and quantify change. Finally, a functional K-means 

clustering of the change in ridership is used to group street segments into different clusters 

based on the functional means of the change clusters.  

 
3.5.1 Generating functional curves from crowdsourced movement data 

 Before detecting changes, it is essential to estimate the underlying spatio-temporal 

processes first, and the subsequent analysis and inference are performed on the estimated 

continuous processes, which are referred to as the fitted functional data. Therefore, to 

highlight changes in ridership we first pre-processed the Strava Metro data and generated 

functional curves for individual street segments throughout the year aggregated to two 

different periods – each hour of the day to assess daily trends and each month of the year 

to observe annual trends. The typical annual ridership trends (Figure 3.1) appear similar 
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across both years, but as we focus on a finer temporal resolution like 

hourly/weekly/monthly noticeable changes tend to become more prominent. 

 

Table 3.2: Features for functional data analysis on Strava ridership between 2017 and 

2018. 

Name Operationalization Time Period Relevance 

Mean ridership 
The average number of 
bicycle trips at each 
temporal unit 

Daily, Monthly 
Understand hourly variability in 
ridership volumes (Brum-Bastos et 
al, 2019) 

Mean Weekday 
Ridership 

The average number of 
bicycle trips on 
weekdays at each 
temporal unit  

Daily, Monthly 

Weekday peak-period ridership 
helps identify commute patterns 
among riders & scale Strava data 
(Dadashova & Griffin, 2020) 

Mean Weekend 
Ridership 

The average number of 
bicycle trips on 
weekdays at each 
temporal unit 

Daily, Monthly 

Weekend peak-period ridership 
represents higher proportions of 
recreational riders. (Jestico et al., 
2016) 

Normalized Total 
Ridership 

The ratio of the total 
number of bicycle trips 
in the individual 
temporal unit and the 
sum of riders across all 
temporal units 

Daily, Monthly 

Represents the proportion of all 
activity counts that occurred within 
that period on each segment. (Boss 
et al, 2018) 

From the functional curves of bicycle ridership, we computed the average hourly and 

monthly activity count for bicycling on weekdays, weekends, and during the entire year 

for 33,101 segments using the variables listed in Table 3.2.  Next, we normalized the mean 

of all the ridership variables to represent proportions of ridership in each time unit ranging 

from 0 to 1 for both daily and monthly periods. The scaled ridership data were finally used 

to represent the temporal profiles of Strava ridership in the selected periods. 

 

 

 



  49 

3.5.2 Temporal alignment of functional curves 

 In the first step of our analysis, we removed a substantial amount of noise from the 

Strava ridership data and temporally aligned the hourly ridership counts as a function of 

time for similarity analysis. For temporal alignment, we adopted functional data analysis 

techniques based on the square root velocity function (SRVF) representation of the 

normalized hourly and monthly Strava ridership counts that would rectify temporal 

misalignment in the ridership data (which is now considered a signal) by separating its 

phase and amplitude components. The SRVF method allows the development of proper 

Riemannian metrics (Srivastava et al. 2011) over time series. It overcomes some limitations 

of Dynamic Time Warping such as the ‘pinching’ effect (Marron et al. 2015) which aligns 

completely different signals to each other by applying a warping function even though their 

phase and amplitude are not completely in synchronization. 

We first computed hourly ridership volumes (i.e. the average number of bicycling 

trips along each street segment) from raw Strava Metro data. For ease of analysis, we 

defined these hourly ridership volumes across a street segment as our function x. Then, x 

was converted into a corresponding SRVF representation to compute the Fréchet mean 

(Srivastava et al., 2011) for each street segment. For each street segment, the original 

ridership function x was aligned by composition with the estimated warping functions as 

shown in Equation (1). The detailed warping functions are based on the Fischer-Rao metric 

and Frechet means discussed in the paper by Srivastava et al. (2011). 

["]$ = ["] ∘ γ  (1) 

Consequently, a new data set was created from which features could be extracted 

in a sliding window procedure (non-overlapping) with varying window lengths. We chose 
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the warping function that resulted in the best fit. The warping function was computed by 

solving Equation (2) 

(∗ = argmin
"∈$

/0 − (3 ∘ ()√(̇/ (2) 

The ( is the warping function which is solved for using dynamic programming to get the 

optimal alignment of the curves (Srivastava et al., 2011), u is the Frechet mean  (Srivastava 

et al., 2011) obtained from the training phase, 7 is referred to as the warping group, and q 

is the SRVF representations of given functions defined as q(t) = 89:;(<(=)̇ )>?<(=)̇ ?̇ , where 

f is the original timeseries function.  The warped function 3%@  is given by equation (3). 

3%@ = 	
#
#$	((∘	")(%)

+, ##$((∘	")(%),
= (3	 ∘ 	()(=)B(̇(=) =  (3, () (3) 

 

We use the nonparametric form of the Fisher-Rao metric (Srivastava et al., 2011) for 

analyzing SRVFs. In order to align the functions, we define an elastic distance d between 

two curves representing the bicycle ridership for a street segment on the functional space 

S given by equation (4). The solution to the optimization over 7 can be solved using 

dynamic programming. 

D([3-], [3.]) = 	 9;<"∈$‖3- − (3., ()‖  (4) 

The functional curves were aligned in order to remove unnecessary noise from the 

raw ridership data so the difference between the curves and the respective mean curve in 

each year could be compared without altering the phase and amplitude of the functional 

representations. 
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3.5.3 Calculating changes from aligned functional curves 

 Once the alignment for both the years was completed using the Frechet means of 

each curve, we generated a mean signature from the aligned data corresponding to the 

overall hourly and monthly ridership across all street segments for 2017. Next, we 

quantified the functional change in ridership patterns in consecutive years by calculating 

the difference of the aligned function of each street segment in a specific year from the 

functional mean curve for all street segments in the previous year as shown in Equation 

(3). 

F/ =	(/∗ −	G/0- (3) 

where F/ is the functional change in ridership for year ‘i’, (/∗	is the temporally aligned 

functional ridership in the year i and G/0- is the mean functional curve for temporally 

aligned ridership in the previous year (9 − 1). The process was repeated for all street 

segments in the study area to generate an I	 × 	K	matrix where I represents each hour of 

the day and K	represents the number of street segments. We calculated the difference 

between the mean curve of the previous year (2017) with individual curves in the following 

year (2018) as the mean curve computed through SRVF essentially helps in reducing the 

noise in the raw data. We did not compute the difference between individual curves in both 

years due to the high computational cost associated with the process. Since the mean curve 

is the average representation of the ridership trend in a single year we use it as a standard 

signature and subtract individual curves from that mean curve to calculate the difference. 
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3.5.4 Clustering functional changes to generate change classes 

 With the change (F/) computed for each street segment, we ran a functional K-

means clustering to group similar and dissimilar streets into ‘k’ groups. We determined the 

optimal ‘k’ for grouping the street segments using the gap statistic method (Tibshirani, 

Walther & Hastie 2001), based on the within-cluster sum of squares that measures the 

variability of the observations in each cluster. Once the desired number of ‘k’ clusters was 

determined, we visualized these groupings to identify and categorize ridership patterns.  

The functional K-Means is a distance-based clustering technique that defines 

clusters so that the total intra-cluster variation (known as the total within-cluster variation) 

is minimized. Given a set of ‘n’ SRVF-aligned hourly ridership corresponding to ‘n’ street 

segments in Phoenix, we partitioned these street segments into ‘k’ groups which were the 

pre-defined number of clusters we wanted to extract. K-Means groups street segments in a 

manner such that the change in hourly & monthly ridership within the same cluster are as 

similar as possible, whereas street segments from different clusters are as dissimilar as 

possible. The similarity is determined using a similarity index ‘L’ between two curves c1 

and c2 is measured using equation (4) proposed by Sangalli et al. (2009). 

M(c-, c.) 	= 	
-
1∑

∫ 3%&'(4)3%('(4)14)
*

+∫ 3%&'(4)(14)
* +∫ 3%('(4)(14)

*

1
56-    (4) 

Here cip(s): ℝ ➝ ℝd indicates the pth curve representing the SRVF-aligned hourly 

ridership of street p from a set of d curves given by, ci = (ci1,......,cid) aligned using a 

function h(s): ℝ ➝ ℝ, derived using Equation (2). The similarity index (c1,c2) geometrically 

represents the average of the cosines of the angles between the derivatives of homologous 

components of c1 and c2. The two curves are similar when the value of M is 1, which 
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happens when both c1 and c2 are identical except for shifts and dilations in the phase and 

amplitude components. For a set of N curves {c1,....,cn} aligned with a set of k functions φ 

= {φ1,....,φk} obtained from equation (2), we assign a curve ci to cluster ‘j’ which is defined 

as λ(φ,c) in equation (5) 

λ(φ,c) = min{r: c ∈ Δr (φ))}       (5) 

where Δr is the similarity operator selecting the function φ with which the curve c 

achieves the highest similarity index. In effect, this means that if, λ(φ,c) = j then the 

similarity index of curve c when aligned to function φ is at least as large as the similarity 

index obtained by aligning c to any other function φr, where r ≠ j.  

 

3.5.5 Mapping change classes to visualize changes in movement patterns 

 The mean functional change was finally used to categorize street segments into ‘k’ 

groups. We calculated the mean and coefficient of variation of hourly, weekday, weekend, 

and total ridership along with the root mean squared of the functional change of the streets 

within each cluster. We then generated named categories based on the summarized cluster 

statistics and visualize the results of the K-Means clustering by color-coding each street 

segment by a unique color scheme corresponding to the category to which it belongs.  

Finally, we created a map for the entire city of Phoenix highlighting changes between 

2017 and 2018 both at the hourly and monthly scale. To identify the potential causes for 

the change in ridership in each consecutive year we also incorporated an additional map 

layer indicating bicycle crash density in the City of Phoenix and infer the reason for 

changes by overlaying the results. 
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3.6 Results 

The functional curves of the hourly and monthly patterns of the raw ridership 

volumes are shown in Figure 3.2. These curves were then aligned using SRVF to remove 

inconsistencies and mismatches in phase and amplitude of the functions. Figure 3.2 shows 

the original temporal profiles of ridership for all street segments in our study area for 2017-

2018 along with their aligned temporal profiles. Similar profiles have been generated from 

single bicycling counters (Miranda-Moreno et al. 2013) but using Strava allows much 

higher spatial resolution (every single segment within the city’s street network) along with 

the temporal richness (every hour of a day during the entire year).  

 
(a) Before                                                                        (b) After 

 
Figure 3.2: Functional curves of actual Strava ridership in 2017 and 2018 at the hourly and 

monthly scales before (a) and after (b) alignment. 

While Strava provides data based on only a sample of riders and there are 

demographic biases in the app users, research has shown the spatial patterns in this 

ridership data correlate with bicycle ridership volumes, especially in dense urban areas 

(Jestico et al. 2016, Boss et al. 2018). 
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Post-alignment we also calculated the mean signature of the hourly ridership 

patterns in 2017 and 2018 using the Fischer-Rao metric and found changes in mean 

ridership behavior at the hourly level across both years as shown in Figure 3.3.  It clearly 

shows how the overall distribution is bimodal with peak periods around 6 am - 9 am and 6 

pm - 8 pm. There are some outlier peaks throughout the day but these two peaks are quite 

prominent. 

 
(a) Before alignment 

 

 
(b) After alignment 

 
Figure 3.3: Functional curves of normalized mean Strava ridership for 2017 and 2018 

before and after temporal alignment.**Note that the bimodal trends revealed post-alignment are more 

interpretable in general, as also indicated by the scale on the vertical axis. Before alignment, the trends are 

not as clear and the scale on the y-axis shows an order of magnitude lower values, which suggests that 

averaging the unaligned data results in loss of structure.  
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The normalized differences of functional curves for 2018 ridership from the mean 

signature of the 2017 ridership (Figure 3.3) were used to generate clusters. We varied the 

number of clusters as shown in Figure 3.4 to choose 4 as the optimal value for ‘k’ based 

on the gap-statistic.  

 

Figure 3.4: Determining the optimal number of clusters using different values of ‘k’. 

 

Figure 3.5 represents the individual change in ridership functions associated with 

each street segment grouped into four different clusters. The grey lines indicate the 

functional of the aligned hourly ridership in 2017 and the colored line indicates the overall 

cluster center of the functional curves in that cluster. 

The summary statistics of each cluster shown in Figure 3.5 are listed in Table 3, 

which identifies the percentage of streets (n) in each cluster (k) and the highest, lowest and 
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average daily ridership along with the mean change of ridership (ck) in each cluster ‘k’ 

calculated as the root mean square across all hours of the day and months of the year in 

each group. We also calculated the bicyclist exposure per cluster as the ratio of the number 

of crashes that occurred in the streets network and the total length of streets per cluster. 

 

Figure 3.5: Clusters showing streets grouped by the functional change in ridership for 

hourly and monthly changes. 

We show visualizations of the spatial distribution of the clusters based on the 

functional change in ridership at both hourly and monthly scales in Figure 3.6. The 

different categories of ridership changes listed in Figure 3.6 indicate higher changes during 

peak periods at the hourly scale were more prominent near the downtown area. 

 



   

 

 

Time 
Period Cluster % of 

Segments 
Mean  

Functional 
Change  

Weekday 
ridership 

Weekend 
ridership 

Daily/Annual  
Ridership 

Bicyclist 
Exposure 

(No. of crashes/ 
Road length) 

Category 
Mean C.V. Mean C.V. Mean C.V. 

Hourly 

1 31.15 0.04 3.59 1.13 5.48 0.82 42.16 2.24 0.51 High off-peak 
2 33.64 0.02 2.20 1.22 3.35 0.75 8.64 1.14 0.59 Low off-peak 

3 6.61 0.11 7.21 1.76 9.16 0.79 105.23 1.75 0.60 High peak-
period 

4 28.60 0.05 4.66 0.92 5.67 0.77 82.95 1.80 0.35 Low peak-
period 

Monthly 

1 11.33 0.08 5.01 0.94 7.63 0.78 123.61 0.97 0.41 High Winter 
2 42.53 0.02 4.32 1.12 6.30 1.12 67.90 2.98 0.60 Low Summer 
3 19.87 0.06 5.03 1.03 7.65 0.77 105.43 2.02 0.40 High Summer 
4 26.27 0.05 4.88 0.99 7.56 0.85 118.60 2.11 0.49 Low Winter 

 

Table 3.3: Summary of Strava ridership in each of the 4 clusters shown in Figure 6 based on the functional 

change in Strava ridership from 2017 to 2018 
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Figure 3.6: Maps showing different clusters of the change in hourly and monthly ridership 

between 2017 and 2018 along with bicyclist crash density. 

 

On the monthly scale, more changes were observed in the summer months compared 

to the winter months (Figure 3.6). In Figure 3.6, average crash density is overlain on maps 

to demonstrate variations of ridership change in comparison with bicyclist exposure. The 

high crash density areas overlap with the high off-peak ridership changes at the hourly 

scale and high summer ridership changes at the monthly scale (Figure 3.6). 

 

3.7 Discussion 

 The increase in popularity of health and fitness apps, such as Strava, has provided 

a novel source of high-resolution spatio-temporal big data. Strava data have been used to 
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examine where cyclists ride (Griffin and Jiao 2015), and several studies have examined the 

use of Strava data as a proxy for ridership volumes (Griffin and Jiao 2015, Jestico et al. 

2016). Heesch and Langdon (2016) used heatmaps and counts of cyclists from Strava data 

to assess the impact of infrastructure change on bicycling behavior and Boss et al. (2018) 

use spatial autocorrelation techniques to monitor annual changes in spatial patterns of 

ridership. In the current study, we advance change detection approaches by 

operationalizing a generalized functional data analysis approach using Strava data to detect 

temporal changes in city-wide ridership patterns across hourly and monthly scales. 

 There is a growing interest among researchers in applying functional data analysis 

methods to study spatial-temporal processes across scale in multiple fields including 

ecology (Embling et al. 2012),  environmental monitoring (Lee et al. 2015), and climate 

science (Ballari et al. 2018). Our results show that the use of a functional data analysis 

approach can help detect changes in fine-grained spatial-temporal data across multiple time 

periods.  

The study also highlights the use of temporal alignment before detecting changes to 

account for elastic variations in the functional data (Srivastava et al. 2011). The SRVF 

technique used in this study can overcome the challenges faced by other methods such as 

wavelet analysis (Antoniadis et al. 2013) which have not considered real-world scenarios 

and alignment issues.  

We mapped the changes in bicycle ridership for all street segments in the city of 

Phoenix post-alignment of the functional curves into 4 categories for both hourly and 

monthly scales (Table 3.2). Our results indicate that nearly 32% of the street segments in 

Phoenix show a high hourly change in ridership during the peak period between 8 am and 
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10 am (Table 3.2). There are also 6.6% of segments that account for high off peak-hour 

change in ridership (Table 3.2).  These patterns indicated that improved infrastructure 

between 2017 and 2018 has led to a major increase in peak-period ridership as commuters 

feel safer riding their bikes to work. These results are consistent with previous studies 

(Akar et al. 2009) which show that bicyclists tend to ride more in areas with a high density 

of bicycling infrastructure as they feel safe biking and have a higher sense of comfort 

(Teixeira et al. 2020) bicycling in these areas.  

The average number of bicyclists varies from 82 to 105 during the high and low peak 

periods (Table 3.3) and from 4 to 42 bicyclists during off-peak hours (Table 3.3). The 

changes during peak-period hourly ridership occur mostly around downtown Phoenix. The 

reason being commuters use bike lanes and bike paths for their regular commutes around 

this area the most. The high change areas also overlap with regions of high crash density 

as more incidents occur owing to exposure to a high volume of motorized traffic 

interspersed with bicycle trips during peak periods in these areas which is consistent with 

the results of the study by Fournier et al. (2019) and Saha et al. (2018) which highlight that 

traffic volumes have a positive correlation with bicycle crashes.  

The exposure for high change during peak periods is 0.60 and for off-peak hours is 

0.51 (Table 3.3) indicating a sharp increase in hourly ridership with lack of suitable 

infrastructure might lead to more crashes and affect bicyclist safety. Previous studies 

(Pucher and Buhler 2016, Vanparijs et al. 2020) have shown that North-American cities 

like Portland, Washington DC, and New York have already improved bicycling safety and 

increasing bicycling levels by greatly expanding their bicycling infrastructure. Therefore, 



  62 

to reduce exposure in areas with a high change in ridership authorities need to provide more 

bicycling infrastructure. 

On the monthly scale, most of the changes that occur during the winter months which 

consist of 37.6% of the street segments (Table 3.3) (including high and low changes in 

winter) located mostly on the outskirts of the city with recreational riders making more 

trips along trails and parks (Figure 3.6). However, the changes in summer across the street 

segments in and around the downtown area (Figure 3.6) are comparatively low as those 

areas are mostly used by commuters that have ridership patterns that are not as impacted 

by weather, a trend that is consistent with previous studies (Brandenburg et al. 2007, 

Miranda-Moreno et al. 2011). The remainder of the streets which are used for recreational 

trips experienced a sharp dip in commutes owing to high temperatures in the summer 

season (Brandenburg et al., 2007). The high and low changes during summer overlap with 

high crash density areas as the crashes occur more frequently in and around the high traffic 

zones specifically near the city center.  

Surprisingly, 42.5% of street segments with low change during summer months 

(Table 3.3) have a high exposure of 0.60 (Table 3.3) indicating that the overall risk of 

crashes in streets with bicycle commuters in and around the city center is typically high 

(Loidl et al. 2016) throughout the year. Hence, local authorities should invest more in 

introducing bicycle-friendly infrastructure that reduces exposure in those areas even with 

a low change in monthly ridership. 

The change maps shown in Figure 3.6 are categorized based on the continuous 

temporal changes derived from our functional change (Table 3.3) technique that captures 

fine-grained changes during all hours of a day and each month of the year. Our results also 
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highlight the importance of considering multi-scale temporal changes in bicycling when 

infrastructure changes in a city.  

Hourly changes can be useful to detect commute patterns (e.g., Heinen et al. 2011) 

throughout the day whereas monthly changes give a summary of seasonal ridership patterns 

(e.g., Jestico et al. 2016) in the city. Practitioners can use maps at both scales (Figure 3.6) 

to identify regions that need improved infrastructure for tackling daily bicycle traffic as 

well as make long-term plans for future interventions that assure bicyclist safety within a 

region to quantify the cumulative impact over time.  

Previous studies that have evaluated the mapped change in ridership focused on the 

comparison of two discrete snapshots in time (Boss et al. 2018). Snapshot approaches 

remove much of the temporal detail that could be valuable for understanding more nuanced 

changes. As well, the snapshot selected for evaluating change is often subjective. Our study 

overcomes the challenge of possible information loss by discrete snapshot approaches by 

combining the changes at hourly and monthly scales from continuous time-series data.   

Functional data analysis approaches data have been used for monitoring precipitation 

changes (Suhaila et al. 2011), watershed modeling (Bourbonnais et al. 2019)  as well as 

traffic flow estimation (Guardiola et al. 2014; Wagner-Muns et al. 2017).  Aue et al. (2009) 

developed a mathematical formulation for change detection from the mean function of 

functional data, however, the method was not tested using real-world data. The increasing 

availability of big data from urban sensing technologies such as Strava has enabled 

monitoring change from spatial-temporal processes such as bicycle ridership continuously 

across multiple scales utilizing the functional data analysis framework.  
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We have developed the technique as a way for policymakers to visually represent 

change through maps and identify the infrastructure needs of a city. Often planners and 

policymakers face challenges in extracting actionable insights from raw big data that can 

inform decision-making. Our method is a step forward towards easing the process of 

detecting changes from big data by policymakers using visual approaches using an FDA 

framework.  

The results from this study would be a good starting point for planners to make 

informed decisions on investments for modifying existing infrastructure or installing new 

infrastructure such as paved bike lanes, adding a new bike path, increasing the width of 

lanes, reducing the number of motor vehicle lanes, etc. . Our methods will be an effective 

tool for planners to make such targeted decisions in a more nuanced fashion from a data-

driven approach. Although our study demonstrates a specific case study using Strava data 

for monitoring changes in bicycle ridership in Phoenix, the framework described in this 

study can be used for detecting changes in continuous time-series data obtained from big 

spatial-temporal data while accounting effectively accounts for elastic variations. For 

example, our method can be used to model changes in mobility patterns during an extreme 

event such as a tornado, hurricanes, or floods. It can also be used for environmental 

monitoring of air quality indicators over time in a city, studying temperature trends owing 

to global climate change as well as study variations in movement patterns in ecology. 

 

3.8 Conclusion 

 Big, crowdsourced data pose numerous challenges ranging from the extraction of 

actionable information (Yang et al. 2017) to temporal misalignment (Choi et al. 2018) and 
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bias on app usage (Roy et al. 2019). The need for more accurate and reliable understanding 

and predictions requires improvements to algorithms that can recognize data inaccuracies, 

sampling errors. Efficiently integrating big data from different spatial-temporal scales is 

critical for earth system sciences (Hu et al. 2018).  

Our research opens a new avenue for using functional approaches to data 

preprocessing and analysis across multiple scales from big spatio-temporal 

data.  Functional approaches help in identifying the latent spatial-temporal patterns, which 

cannot be observed directly, through a data-driven perspective.  Inferring such pattern 

changes from a raw noisy stream of individual trips is a rather non-trivial task and an 

ongoing area of GIScience research. Developing generalized techniques as outlined in our 

study, to automatically detect pattern changes from individual-level longitudinal spatial-

temporal data, is therefore critical to developing behavior models that are adaptive over 

time.  

While using big spatio-temporal data it is essential to account for nonlinear 

warpings for proper alignment and co-registration of functional curves. Our method 

highlights the use of square-root velocity functions to overcome such challenges and detect 

changes in hourly and monthly scales from functional data. From a broader perspective, 

this paper contributes to debates in time geography based on the theoretical foundation on 

how time and space constitute social life from the scale of individuals (Hägerstrand 1985). 

Considering previous research (Kwan 2002, Miller 2005, Long and Nelson 2013, Kwan 

and Neutens 2014) that highlight the role of underlying time and scale issues in geography, 

this paper builds a framework for analyzing change from real-world data at fine-grained 
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scales and contributes to the field of urban analytics from a methodological perspective 

which can help policymakers. 
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CHAPTER 4 

CLASSIFYING TRANSPORTATION MODES COMBINING MOVEMENT 

DATA AND GEOGRAPHIC CONTEXT 

 

4.1 Abstract 

The increasing availability of health monitoring devices and smartphones has created 

an opportunity for researchers to access high-resolution (spatial and temporal) mobility 

data for understanding travel behavior in cities. Although information from GPS data 

has been used in several studies to detect transportation modes, there is a research gap 

in understanding the role of geographic context in transportation mode detection. 

Integrating the geography in which mobility occurs, provides context clues that may 

allow models predicting transportation modes to be more generalizable. Our goals are 

first, to develop a data-driven framework for transportation mode detection using GPS 

mobility data along with geographic context, and second, to assess how model accuracy 

and generalizability vary upon adding geographic context. To this extent we extracted 

features from raw GPS mobility data (speed, altitude, turning angle, and net 

displacement) and integrated geographic context in the form of geographic covariates 

to classify active (walk/bike), public (subway, bus, train, rideshare), and private (car, 

taxi) transportation modes in three different Canadian cities - Montreal, St. Johns, and 

Vancouver. To assess the role of geographic context in model generalizability & 

accuracy, we compared results from Random Forests, Extreme Gradient Boost, 

Decision Trees, and Ada Boost classifiers. Our results indicate that the accuracy of the 

models improved up to 4.2% on adding geographic context with Random Forests 
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achieving the highest accuracy of 83.8% upon adding contextual variables. Among the 

contextual variables that contributed to transportation mode detection distance to 

subways, distance to bicycle infrastructure, distance to bus stops, and distance to open 

green spaces were the most significant. We also found that the generalizability (i.e how 

accurately the model predicts modes from new unseen data) reduces upon adding 

contextual variables versus using GPS data alone. Our study highlights how 

policymakers can combine GPS data with geographic context to predict transportation 

modes and assess the generalizability of models in different geographic settings.  

 

4.2 Introduction 

Understanding the modes of transportation people use to travel within cities is key to 

planning safer, healthier, and more inclusive (Boulange et al., 2017) environments. 

Detailed information about mobility patterns and transportation mode usage can help 

planners and policymakers in making targeted decisions about investing in safe and 

equitable infrastructure (Nelson et al., 2021; Roy et al., 2019). The growing availability of 

health monitoring devices and smartphones has facilitated the process of collecting high-

resolution (spatial and temporal) mobility data for cities which can avoid problems 

associated with traditional methods (Forrest & Pearson, 2005; Murakami et al., 2004). Such 

‘big’ mobility data provides an opportunity to get a deeper understanding of transportation 

mode choices (Feng & Timmermans, 2013) highlighting the city’s travel behavior (Bohte 

& Maat, 2009; Chen et al., 2016) and the need for improved infrastructure in terms of better 

accessibility (Ford et al., 2015; Cui et al., 2020) and comfort (Ferster et al., 2021) of its 

residents.  
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Information from mobility data has been used in transportation research (Zheng et al. 

2008; Auld et al. 2009; Schuessler and Axhausen 2009; Stenneth et al. 2011; Hemminki et 

al., 2013) for understanding travel behavior by predicting modes of transportation from 

GPS features alone (Feng and Timmermans 2013; Carlson et al. 2015). However, there is 

a research gap in mode detection literature to comprehensively incorporate measures of 

geographic context and assess how the inclusion of such measures improves prediction 

accuracy. By extension, it is unclear if the inclusion of such measures in the mode detection 

process leads to more accurate predictions at the expense of model generalizability. It is 

therefore essential to understand whether geographic factors like the built and natural 

environment as well as land-use types of individuals could influence travel mode choices 

people make (Wang et al., 2017; Ewing and Cervero 2010).  

While the geographic context may provide clues on modes of travel, geographic data 

has been used less frequently as a feature for classifying GPS data into travel modes. 

Traditionally, the context has been gathered using data from surveys and questionnaires 

(Van Vugt et al. 1996, Rodriguez and Joo 2004, Schwanen and Mokhtarian 2005, Wener 

and Evans 2007).  In terms of existing methodologies for mode detection, traditionally, 

rule-based classifiers have been used more often. Although rule-based classifiers are 

known to have relatively rigorous boundaries on a relatively small number of features 

(Bohte and Maat, 2009, Chen et al., 2010, Gong et al., 2012, Sauerländer-Biebl et al., 

2017, Schuessler and Axhausen, 2009, Stopher et al., 2008, Marra et al., 2019). Tree-based 

classifiers are less restrictive and hence more of an improvement over rule-based 

classifiers. Previous research (Wang et al., 2017; Cheng et al., 2019; Kim et al., 2021) has 

shown tree-based algorithms achieve higher accuracy for transportation mode 
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classification purposes. Tree-based classifiers like Random Forests (Wang et al., 2017; 

Cheng et al., 2019; Nguen & Armoogum, 2020), Gradient Boosting (Wang et al., 2018) as 

well as Decision Trees (Shah et al., 2014; Feng & Timmermans, 2016) have been used in 

previous studies and have proven to be the more appropriate algorithmic approach for mode 

detection while using GIS information. 

Random Forests have been found to have high precision and recall accuracy (Stenneth 

et al., 2011) in classifying motorized and non-motorized transportation modes. More 

specifically, in situations where there are a huge number of features that might affect the 

classification of different modes, decision trees (Reddy et al., 2010), and random forests 

(Ellis et al., 2014, Mäenpää et al., 2017) are the most popular choices. They have the 

advantage of performing quite well while being relatively easy to implement. Extreme 

Gradient Boost algorithms, an ensemble of decision trees that learns by fitting negative 

gradients, are an improvement over decision trees as they (Friedman, 2001) have shown 

considerable success in a wide range of practical applications and could be used to avoid 

overfitting. Ada Boost has gained much popularity among researchers as it can achieve 

higher prediction accuracy with a relatively lesser number of iterations compared to 

Gradient Boost or Decision Trees (Wyner et al., 2017) and simultaneously continues to 

maintain low generalizability errors (Schapire et al., 1998) as they work employing 

interpolation and uses a self-averaging property (Wyner et al., 2017).  

Although a number of methods exist for classifying transportation modes from GPS 

data, most of the existing methods are limited in terms of assessing the role of geographic 

context on predictive accuracy and how they can translate into policies that could improve 

urban life. The inclusion of measures of geographic context in the mode detection process 
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may lead to more accurate predictions needed for effective policymaking, but we have yet 

to test this hypothesis. An important caveat to the inclusion of geographic context is that 

prediction improvement may possibly come at the expense of model generalizability. 

Hence, we also need to know whether approaches that incorporate geographic context lead 

to overfitting that limits their use across urban areas. Generalizability is impacted both by 

the cost and effort of obtaining diverse datasets for training models for transportation mode 

detection. Some studies (Dexter et al., 2020) have shown how generalizability can be 

assessed in medical applications. However, there is little methodological knowledge on the 

causes of weak generalizability in the transportation mode detection paradigm as well as 

the value of leveraging varied geographic covariates from multiple sources for better 

generalizability of such models. Better assessment of weak generalizability combining 

datasets from multiple cities could improve our understanding of the generalization 

challenge. 

 To address these gaps, we have identified our research goals to examine whether 

combining GPS and contextual features can improve the prediction accuracy of 

transportation mode detection and to assess how generalizability varies when adding 

geographic context to transportation mode detection. To this extent, we first extract 

meaningful features from the GPS traces and combine these features with contextual 

information from geographic features guided by existing literature. Then, we train different 

supervised classification models to predict travel modes in three different Canadian cities 

and finally validate and assess the generalizability and accuracy of the trained models using 

just GPS features alone versus combining GPS and contextual features.  
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We aim to highlight the role contextual variables play in improving the prediction 

accuracy of transportation mode detection algorithms and if there is a trade-off between 

accuracy and generalizability. Our study can be used by practitioners as a guideline to 

choose appropriate contextual variables for accurately predicting transportation modes as 

well as testing the generalizability of prediction by combining those variables with new 

unseen mobility datasets. 

 

4.3 Study Area 

 We performed the study across three Canadian cities: Montreal in Quebec, St. 

John’s in Newfoundland, and Vancouver in British Columbia. Each of the cities used in 

the study has highlighted the role of equitable transportation infrastructure and therefore 

invested data collection at different times to understand travel mode choice using different 

GPS-based platforms. We chose these three cities owing to the availability of data with 

comparable spatial and temporal resolution to assess our hypothesis. In addition, the cities 

selected also have very different transportation systems, geographies, and population sizes 

which is an additional benefit for this study where we are assessing the role of geographic 

context on transportation mode detection. Table 4.1 shows the overall geographic setting 

of the study spanning the three Canadian cities. The weather conditions, population, and 

mode share of commuters for different sustainable and active transportation modes 

gathered from statistics Canada are listed in Table 4.1.  

Montreal is the cultural and economic hub of the province, with the second largest 

population in Canada. It is a port city and is surrounded by St. Lawrence and Ottawa rivers. 

It is a walkable city and is interspersed with bike lanes and bike paths. The city is also well-
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connected by different public transit modes like subways, buses, and trains connecting the 

city to the entire province.  

 

Table 4.1: Description of the weather, population, and transportation mode share for each 

city 

City 

Annual 
Temperature  

Population 
Mode share of commuters 

Min Max Walk Bike Public Transit Carpool 

Montreal -4.7℃ 19.0℃ 4,247,446 5.2% 2.0% 22.3% 8.6% 

St. John’s -3.8℃ 16.4℃ 108,860 4.6% 0.2% 3.1% 17.8% 

Vancouver 3.1℃ 17.9℃ 2,463,431 6.7% 2.3% 20.4% 11.2% 

*Source: Mode share was collected from data provided by Statistics Canada, Commuters using sustainable transportation, 
https://www12.statcan.gc.ca/census-recensement/2016/as-sa/98-200-x/2016029/98-200-x2016029-eng.cfm. The temperature data was 
provided by Environment Canada from highest and lowest temperatures averaged from 2013-2020 
https://climate.weather.gc.ca/climate_data/almanac_selection_e.html 

 

St. John’s is a harbor city with a downtown of steep hills and winding streets. The 

City of St. John's maintains a road network of over 1,400 km, as well as a network of 

sidewalks for pedestrians and parking infrastructure throughout the city. The Metrobus 

transit is a popular public transit service in the city and alongside this, the city also 

maintains a road network of over 1,400 km, as well as a network of sidewalks for 

pedestrians and parking infrastructure throughout the city.  

Vancouver boasts an accessible and convenient public transit system with several 

modes including bus, SkyTrain, ferries as well as bicycles. As the city is surrounded by 

water on three sides, it has several bridges to the north and south. Although similar to most 

other cities in that the automobile serves as the primary mode of transportation, it has 
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alternatives such as the SkyTrain system, which is the longest fully automated light metro 

system in the world, and an extensive network of bicycle paths. 

Vancouver is much warmer than Montreal and St. John’s which reflects higher use of 

active transportation modes including walking and cycling. Montreal has a well-connected 

transit network with nearly 22.3% of its commuters using public transit modes as their 

mode of choice. The overall population of Montreal is nearly 4.3 million with 38.1% (Table 

1) of the population using either active, public, or shared mode of transit for commute 

purposes. On the other hand, St. John’s is much smaller in terms of the total population and 

with much harsher climatic conditions which typically lead people to use private vehicles 

with only about 25.8% people (Table 1) availing active, public, or shared transit modes. 

 

4.4 Data 

 We used GPS-enabled mobile applications to collect a total of 3,226,659 unique 

user-defined trips from Montreal, St John’s, and Vancouver between August and December 

2017. Data for St. Johns’s and Vancouver were collected through a smartphone application 

Itinerum (Patterson et al. 2019) which collected GPS data at 1-minute temporal resolution.  

The data for Montreal were collected using the MTL Trajet mobile application (MTL 

Trajet, 2017) which collected GPS trajectories of user movements from the origin and 

destinations by truncating to the nearest intersection. The data collection mechanism was 

similar to that in St. John’s and Vancouver as the MTL Trajet uses the same underlying 

technology as Itinerum devices. All trips were for both St. John’s and Vancouver were 

labeled by participants and for Montreal were inferred by the mobile app using a trip 

detection algorithm (MTL Trajet, City of Montreal,2020). The transport modes for each 
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trip were labeled by the GPS platforms into several different travel modes (i.e. bike, walk, 

subway, tram, carpool, bus, car, taxi) from all three cities (Table 4.2). To be consistent 

across all three cities we manually reclassified the transportation modes into three primary 

modes – active (walk/bike), private (car/taxi), and public (bus/train/subways). Table 4.2 

summarizes the characteristics of the GPS trajectories obtained from all 3 cities and the 

percentage of trips grouped into different transportation modes. The total number of trips 

includes all trips made in the entire city. The percentages include what percent of each trip 

mode were categorized and labeled as ‘Active’, ‘Public’, and ‘Private’ transportation in the 

original dataset. 

Table 4.2: Trip characteristics collected from GPS devices for multiple cities 

City Total no. of trips 
Trips by Mode (%) 

Active 
(Walk/Bicycle) 

Public 
(Bus/Subway/Carpool) 

Private 
(Car/Taxi) 

Montreal 3,226,147 29.8 12.1 58.2 
St. John’s 12,861 59.7 11.8 28.5 
Vancouver 5,732 74.1 10.6 15.3 
 

Active modes comprised 29.6% of the total trips, followed by public transit modes 

which consisted of 11.9% of the trips and the rest 58.5% of the trips were private modes. 

In order to account for a comparable temporal and spatial resolution, we were limited in 

terms of the balanced number of trips collected by the different GPS platforms in each city.  

 

4.5 Methods 

We used a multi-step approach for mode detection from raw mobility datasets. As a 

preliminary step, we first preprocessed the data by eliminating noisy data points and those 

that are not classified as trips by using a trip detection algorithm. First, we extracted 
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meaningful features from the raw GPS data and then collected contextual information from 

the spatial surroundings of the GPS trajectories using GIS tools. Second, we generated two 

sets of input feature matrices to train the classification models- one using just the GPS 

features alone and the other combining both the GPS and GIS features. Third, we split the 

input feature matrices into training and test sets using an 80:20 split. Fourth, we trained 

different supervised classifiers based on existing literature to predict transportation modes 

using those feature set combinations using the training data and determined their cross-

validation accuracy scores. Finally, each of the classifiers was tested with the remaining 

test data to determine their classification accuracies (using precision, recall, AUC, and F1 

scores) and their generalizability scores (using G-score). A detailed description of each 

step is listed in the subsections that follow. An overall workflow is shown in Appendix A. 

We used programming languages R 3.4 to extract the GPS features and Python 3.6.3 

for developing the travel mode classification framework and used the ArcGIS 10.3 

geographic information systems suite for extracting the GIS covariates for our analysis. 

The classification algorithms were built in Python using the scikit-learn library (Pedregosa 

et al., 2011), and feature selection and manipulation were performed using the pandas 

library (McKinney, 2011). 

 

4.5.1 Extracting trip features from movement data and constructing measures of 

geographic context 

 The GPS records in all datasets were recorded as latitude and longitude and were 

converted to UTM (Universal Transverse Mercator) coordinates (easting, northing) using 

pyproj 1.9.5.1. Features were calculated for all GPS records available throughout each 
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study for each participant. The primary unit of analysis is the participants’ GPS trajectories 

over the entire study period converted into trips. Every second, the GPS device registered 

the position coordinates (i.e., latitude, longitude, and elevation) of a participant, which was 

converted into trajectories using the R package “adehabitatLT” (Calenge, 2015). From the 

trajectories, we extracted the mean of the speed, net displacement, altitude, relative and 

absolute turning angles for each user along a single trip. These features (Table 4.3) were 

combined into a single feature set which we identify as ‘GPS’ in the following subsections.  

To extract contextual information about the surrounding environment through which 

individuals move, we extracted proximity measures as Euclidean distances to the nearest 

points of interest around a GPS trajectory of each user. 

 

Table 4.3: List of features extracted from raw mobility data captured by GPS platforms 

Features Type Operationalization Relevance References 

Speed GPS Speed calculated from 
the consecutive points 
of the trajectory 

Variability in speed can 
highlight the difference 
between motorized and 
non-motorized transport 
modes. 

Stenneth et al., (2011); 
Zheng et al. (2010); 
Bohte & Maat (2009), 
Reddy et al. (2010); 
Shen & Stopher 
(2014); Xiao et 
al.(2015); Roy et al 
(2020) 

Altitude GPS The average altitude 
throughout the trip 

The height can indicate 
whether the user travels in 
underground subways 
versus on foot or larger 
vehicles like buses etc. 

Wang et al. (2017); 
Feng and Timmermans 
(2013); Roy et al. 
(2020) 

Displaceme
nt 

GPS The net displacement 
between consecutive 
locations along the 
trajectory 

The net displacement can 
distinguish between 
motorized and non-
motorized transport 
modes with longer trips 
taken on public or private 
modes versus shorter ones 
are made using active 

Zheng et al. (2010); 
Xiao et al (2015); Feng 
and Timmermans 
(2013); Roy et al. 
(2020) 
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modes. 

Turning 
Angle 

GPS The relative and 
absolute turning 
angles of between 
consecutive points of a 
trajectory 

The orientation can help 
distinguish a motorized 
vehicle that can only drive 
on roads and may not 
usually turn or change to a 
new lane unless necessary 

Wang et al. (2017); 
Roy et al. (2020) 

 

The points of interest were extracted using a data mining approach from Overpass 

API using Python package “geopandas_osm”, which allows choosing all points of interest 

(POIs) around a user’s location which were then imported into ArcGIS to calculate 

Euclidean distances in kilometers using the NEAR functionality. The POIs were 

categorized into land-use types such as residential areas, commercial areas, green spaces, 

and transportation hubs like bus stops, subway stations, bike lanes, and topographic 

characteristics like distance to the shoreline and comfort level of streets. Attributes like 

speed (Stenneth et al., 2011; Zheng et al., 2010; Bohte & Maat,2009, Reddy et al., 2010; 

Shen & Stopher, 2014; Xiao et al., 2015), acceleration (Stenneth et al., 2011; Roy et al., 

2020), proximity to bus stops (Gong et al., 2012; Ngyuen & Armoogum, 2020) and rail 

lines (Stenneth et al., 2011) have been used several times in previous studies, however, 

proximity to different land-use types and infrastructure specific to active modes of 

transportation within the context of mode detection have been newly introduced in this 

research. Additional temporal features like time of day, week of the day, and month of the 

year were also included to capture the temporal context that influenced various 

transportation modes. We refer to the contextual variables shown in Table 4.4 as a separate 

feature set and call it ‘GIS’.  
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Table 4.4: List of features extracted from the geographic context 

Features Type Operationalization Relevance References 

Distance to 
open space 

GIS Mean Euclidean 
distance to the 
nearest open space 
or green space from 
the points along the 
trip trajectory 

People using active 
modes tend to use less 
traffic-prone areas 
and closer to open 
green areas like parks 
etc. 

Roy et al. 
(2019); 
Semanjski et al. 
(2017); Böcker 
et al. (2015) 

Distance to 
residential 
areas 

GIS Mean Euclidean 
distance to the 
nearest residential 
area from the points 
along the trip 
trajectory 

Trips that have a 
longer duration and 
are closer to 
residential areas can 
be made using 
Public/Private modes. 

Roy et al. 
(2019); 
Semanjski et al. 
(2017) 

Distance to 
commercial 
centers 

GIS Mean Euclidean 
distance to the 
nearest commercial 
area from the points 
along the trip 
trajectory 

Typical short trips in 
and around 
commercial areas can 
be used to distinguish 
public transit modes  

Roy et al. 
(2019); 
Semanjski et al. 
(2017) 

Distance to 
subway 
stations 

GIS Mean Euclidean 
distance to the 
nearest subway 
station from the 
points along the trip 
trajectory 

Trajectories that are 
closer to subway 
stations can be used to 
identify public 
transport modes 

Gong et al. 
(2012); 
Stenneth et al. 
(2011) 

Distance to 
bus stops 

GIS Mean Euclidean 
distance to the 
nearest bus stop 
from the points 
along the trip 
trajectory 

Trajectories that are 
closer to bus stops can 
be used to identify 
public transport 
modes 

Gong et al. 
(2012); 
Stenneth et al. 
(2011); 
Ngyuen & 
Armoogum 
(2020) 

Distance to 
bike 
infrastructure 

GIS Mean Euclidean 
distance to the 
nearest bike 
lane/bikeway/bike 
path from the points 
along the trip 
trajectory 

Trajectories that are 
closer to bike 
infrastructure can be 
used to identify active 
transport modes 

Roy et al 
(2019); Jestico 
et al. (2016); 
Semanjski et al. 
(2017) 

Distance to 
shoreline 

GIS Mean Euclidean 
distance to the 
nearest shoreline 
from the points 
along the trip 
trajectory 

Trajectories that are 
closer to the shoreline 
and have lower 
speeds can be used to 
identify active 
transport modes like 
biking or walking 
with an additional 
aspect of scenic effect 
for the comfort of 
pedestrians/bicyclists. 
It could also highlight 

Nelson et al. 
(2021) 
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the use of private 
modes if the trips tend 
to have higher speeds.  

Time of day GPS Morning peak (4 am 
– 10 am), afternoon 
(11 am – 4 pm), 
evening peak (5 pm 
– 9 pm), and night 
(10 pm – 3 am) 

Commute trips are 
typically made during 
peak hours of the day 
& when combined 
with speed and height 
can be used to classify 
three different modes. 

Jestico et al. 
(2016) 

Season of 
year 

GPS Spring, Fall, 
Winter, Summer 
seasons for each 
city 

More outdoor 
activities especially 
using active modes 
are carried out during 
pleasant weather 
conditions and they 
can be used to 
distinguish between 
motorized and non-
motorized modes. 

Jestico et al. 
(2016); Böcker 
et al. (2015) 

Day of week GPS Day of the week 
when the trip was 
made  

Recreational trips are 
made on weekends 
versus weekdays and 
using speed and 
altitude/orientation 
can be used to classify 
different modes 

 
Böcker et al. 
(2015) 

Comfort level 
of streets 

GIS Street comfort level 
classification for 
bicyclists 

Active modes are 
associated with the 
comfort level of 
streets and can be 
separated from 
public/private 
transport modes 

Ferster et al. 
(2021) 

 

4.5.2 Training supervised classifiers to predict transportation modes from 

extracted features 

 Both Tables 4.3 and 4.4 highlights all the features extracted from the raw GPS data 

and contextual information surrounding the trajectories of various trips. All features were 

normalized using a min-max function and used as inputs to supervised classification 

algorithms. We constructed two different feature sets to train the supervised classifiers – 

one with just the ‘GPS’ features capturing the raw mobility metrics and the second with 

‘GPS + GIS’ features capturing the geographic context along with the mobility metrics. 
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We used four supervised classification algorithms – Random Forests (RF), Extreme 

Gradient Boost (XGB), Ada Boost (ADA), and Decision Trees (CART) to classify the 

transportation modes. We used 80% data for training the classifiers with 10-fold cross-

validation and held out the remaining 20% data for testing their predictive accuracy. We 

fitted both the feature set combinations for each classifier. First, we trained the classifiers 

with only GPS features, and then combined both GPS and GIS features to retrain the 

classifiers for predicting the labels – ‘Active’, ‘Public’ and ‘Private’ for three different 

transportation modes. To account for the imbalance in trip distribution across all three 

modes we used a resampling technique called Synthetic Minority Sampling Technique 

(SMOTE) (Chawla et al. 2002). 

 

4.5.3 Comparing accuracy across and assessing generalizability 

 We assessed the classification accuracy of the classifiers first using just the GPS 

features and then again after combining the GIS features. A cross-validation approach was 

used to evaluate the accuracy of the classifiers in the training phase. The 10-fold cross-

validation split the 80% training data into 10 subsamples, and in each validation step, the 

classifiers were trained with 9 subsamples and predicted using the remaining one 

subsample. Each fold generated an accuracy score for the classifiers and finally, a mean 

cross-validation accuracy score was reported from all 10 folds. 

Once the classifiers were trained we used the 20% test data, which the classifiers were 

not trained with, to predict the transportation modes. These predicted modes were used to 

calculate classification metrics – precision, recall, AUC score, and F1-score. Precision 

(Equation 1) is a measure of the relevance of the results while recall (Equation 2) is a 
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measure of how many truly relevant results are returned by the models. A high precision 

score signifies low false-positive rates, and a high recall indicates low false-negative rates. 

The FI-score (Equation 3) is the harmonic mean of the precision and recall rates which 

measure the classification accuracy of the models based on true and predicted labels.  

The overall predictive accuracy of all models was summarized using an Area-under-

the-curve (AUC) score (Hand and Till, 2001) that was calculated using equation (4), where 

k denotes the total number of classes ( k=3; active/public/private), tp stands for true 

positives, tn for true negatives, fp for false positives and fn for false negatives. The average 

across all classes gives the final AUC score for each model which determined the predictive 

accuracy of the models across all three cities.  
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In addition to the classification accuracy, we also estimated the overall generalizability 

of all four classifiers. We calculated a G-score for all the model and feature set 

combinations to ascertain the generalizability of the models when used to predict modes 

from unseen data across completely new study areas. The G-score can be thought of as an 

L1 norm of the F1 scores for training and test sets on each classifier. 

, = 	‖%1)*+,- −	%1)./)‖ (5)  
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The G-score (Equation 5) is calculated as an absolute difference between the F1-scores 

of the train and test datasets on the same classifier. The approach is somewhat similar to 

the one first introduced by Barbiero et al. (Barbiero et al., 2020) who use the concept of a 

convex hull to assume training data points fall within the convex hull and test data points 

outside of it. The more generalizable the decision boundary of the classifier is, the lesser 

the deviation between the train and test F1 scores will be. Hence, the lower the G-score in 

our case, the more generalizable the classifier is based on the input features. The low G-

score assures that the classifier can accurately predict transportation modes from new 

unseen datasets. Whereas, if the G-score is high it indicates the classifier will fall prey to a 

higher error when predicting transportation modes from trips that were not used to train the 

classifier. However, there may be a trade-off between high classification accuracy and high 

generalizability.  

Based on the ultimate purpose of classifying trips, practitioners may either choose a 

highly accurate model or a highly generalizable model. The highly accurate model may 

produce correct transportation mode labels but would depend on a greater number of 

available training data and would perform well in a single study area. The highly 

generalizable model compromises a little on very high accuracy but will ensure the model 

will perform optimally well in multiple study areas with varying geographic context and 

will not be entirely skewed towards any single city or a high amount of readily available 

correctly labeled trips. 
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4.6 Results 

 The correlation among the variables listed in Tables 4.3 and 4.4 is shown in Figure 

4.1 which highlights the Pearson’s correlation coefficient among all independent features 

used to fit the classifiers. Most of them have a Pearson’s correlation coefficient below 0.3 

and above, 0.1 indicating none of these features suffer from multicollinearity and were 

used as input features to the classifiers listed in Table 4.4. All variables in Figure 4.1 were 

used to prepare two different feature sets – only GPS features comprised speed, distance, 

turning angle, and height whereas the distance variables (Figure 4.1) highlighted the 

features used to account for geographic context. Distance to residential areas, commercial 

areas, and open spaces were found relevant to account for trips closer to home or for 

running errands whereas the distance to bike infrastructure, subway stations, and bus stops 

accounted for access to public transit modes and active transportation mode choices. 

 

Figure 4.1: Correlation matrix of the numeric variables derived from GPS data and 

geographic context  
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We grouped the trips and mode used to extract the mean and variance of the 

variables (Figure 4.1) to train four different supervised classifiers with each of the two 

feature set combinations with a total of 28 features. Table 4.5 shows the accuracy of 10-

fold cross-validation for all six models using the mean and standard deviation of the cross-

validation accuracy metric calculated from 80% training data. All four classifiers typically 

have a higher accuracy when both GPS and GIS features were combined to train the 

models. Among these Random Forests have the highest mean cross-validation accuracy of 

83.8 % using all features gathered from Montreal, St. John’s, and Vancouver. We must 

remember that based on separate geographic settings, the model accuracy is assumed to a 

generalizable across all three cities.  

 

Table 4.5: Model Accuracy of different supervised classifiers fitted to raw GPS and GIS 

data 

Model hyperparameters: ‘k’ = 10-fold; balancing = ‘SMOTE’; max depth = 5, n-trees = 50 

Model Feature 
Set 

Cross-validation Accuracy  Change in max accuracy upon 
adding geographic context Mean S.D. Max 

Random Forest  
GPS 0.783 0.016 0.796 

+ 0.042  
GPS + GIS 0.796 0.022 0.838 

Extreme 
Gradient Boost  

GPS 0.773 0.016 0.796 
+ 0.037  

GPS + GIS 0.783 0.029 0.833 

Decision Trees  
GPS 0.684 0.015 0.709 

+ 0.035  
GPS + GIS 0.695 0.048 0.744 

Ada Boost 
GPS 0.749 0.019 0.778 

+ 0.034  GPS + GIS 0.751 0.026 0.812 

*The accuracy metrics are derived from training the models with 80% of the data (n = 2,138,273) with 10-

fold cross-validation.  
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Overall, the results indicated that the accuracy of all four models improved from 

3.4% up to 4.2% after GIS features were added to the models along with the GPS features 

(Table 5). The highest improvement in accuracy was achieved by Random Forests with an 

overall increase of 4.2% in maximum accuracy. Although a small increase, this confirms 

our hypothesis that contextual variables do matter in improving the accuracy of mode 

detection models. The variables used in our study indicate that they can contribute to more 

accurate prediction of active, private, and public modes of transportation compared to using 

mobility metrics.  

Our results also indicated that among the models with GPS and GIS features 

combined - Random Forests achieved the highest accuracy among all four models (Table 

4.5) with a maximum accuracy of 83.8% and a mean accuracy of 79.6% when both GIS 

and GPS features were combined. Decision trees had the lowest maximum accuracy of 

74.4% and lowest mean accuracy of 69.5%. Although Extreme Gradient Boost (mean = 

78.3%, max = 83.3%)) and Ada Boost (mean = 75.1%, max = 81.2%) had high accuracies 

(Table 4.5), the variability of the results were higher compared to Random Forests which 

had the lowest deviation from the mean accuracy (S.D = 0.022) across all 10-folds of cross-

validation (Table 4.5) compared to Extreme Gradient Boost (S.D. = 0.029) (Table 4.5) and 

Ada Boost (S.D. = 0.026) (Table 4.5). The low variability in cross-validation accuracy of 

Random Forests indicates less overfitting compared to the other classifiers. 
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Figure 4.2: Boxplots showing variability in the predictive accuracy of different supervised 

classifiers using 10-fold cross-validation 

 

Although the mean accuracy is reported in Table 4.5, the models do reach higher 

accuracies in some of the folds during the cross-validation process. The variability of the 

accuracy of each fold of cross-validation is shown in Figure 4.2 to highlight the uncertainty 

in prediction accuracy based on the training set. The model accuracy is highest for all four 

models when the mobility metrics from GPS data and geographic context from GIS data 

are combined to train the models. However, the Random Forest model reaches the highest 

accuracy in both cases. In comparison to Random Forests, the Extreme Gradient Boost is 

the second-best fit but has lesser variability in model accuracy (Figure 4.2). For ease of 

usage, we choose the Random Forest model as it proves to have the highest mean accuracy 

among all models.  
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Figure 4.3: Confusion matrix for all eight models combining GPS features and geographic 

context 

 

We used the trained classifiers to generate confusion matrices using test data as 

shown in Figure 4.4. The highest accuracy is achieved when both GPS and contextual data 

are combined. 89% of trips were accurately classified as active modes using Random 

Forests (Figure 4.4), 87% were classified as public modes and 45% were accurately 

classified as private modes. Other than ADA Boost all models showed an improvement in 

mode-specific accuracies when contextual features were added to the model. Decision 

Trees showed the highest accuracy for private (car/taxi) modes of transportation whereas 

Random Forests classified the active (bike/walk) and public (subways/buses/trains) modes 

most accurately.  

Based upon the inclusion of geographic context, the variables that accounted for 

proximity to seashores, bus stops, green spaces, and subways proved useful to achieve 

higher precision for active and public modes of transportation. 
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  Table 4.6: Comparison of model accuracy, classification metrics, and model 

generalizability 

Model Features AUC Precision Recall F1-
train 

F1-
test 

G-
score 

Change in G-
score upon 

adding 
geographic 

context 

Random 
Forest 

GPS 0.905 0.752 0.742 0.760 0.753 0.007 
-0.025  GPS + 

GIS 0.898 0.762 0.747 0.780 0.710 0.032 

Extreme 
Gradient 

Boost 

GPS 0.892 0.728 0.721 0.756 0.751 0.070 
+0.011  GPS + 

GIS 0.894 0.753 0.744 0.781 0.724 0.059 

Decision 
Trees 

GPS 0.773 0.646 0.652 0.684 0.652 0.005 
-0.060  GPS + 

GIS 
0.766 0.677 0.679 0.706 0.646 0.065 

Ada Boost 

GPS 0.843 0.713 0.697 0.734 0.668 0.057 

+0.022  
GPS + 

GIS 

0.842 0.689 0.683 
0.723 0.688 0.035 

 

However, there was a high misclassification between public and private modes as 

more contextual variables like speed limits, the number of lanes, and traffic volume are 

needed to further classify the mode choices between these two.  

Given the cross-validation accuracy of each model in Table 4.5, we also tested the 

AUC scores to determine the classification accuracy and G-scores to determine the 

generalizability of these models in Table 4.6. The Precision and Recall values for all 

models are higher when GIS features are combined with GPS features (Table 4.6) 

indicating the models can classify the different transportation modes into active, private, 

and public more accurately from unknown data compared to when the models use just GPS 

features. 

For Random Forests, precision is higher when contextual variables are added so 

actual modes (active/private/public) are predicted correctly in 75.2% cases (Table 4.6) 
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when just GPS features are used versus 76.2% cases when both GPS and GIS features are 

used. Similarly, for Extreme Gradient Boost (GPS: 89.2%, GPS + GIS: 89.4%), Decision 

Trees (GPS: 77.3%, GPS+GIS: 76.6%). However, for the AdaBoost model the precision 

deteriorates (GPS: 71.3%, GPS + GIS: 68.9%) when contextual variables are added to it 

(Table 6). A similar pattern is observed for recall values, which indicates the percentage of 

times on an average a trip classified as active/private/public among all trips,  with Random 

Forest having the highest recall (GPS: 74.2%, GPS +GIS: 74.7%) and AdaBoost having 

the lowest recall which decreases with the addition of contextual variables (GPS: 69.7%, 

GPS + GIS: 68.3%). 

In terms of the generalizability of the models, the G-scores are typically higher for models 

when GIS features are combined with GPS features (Table 4.6) than just using GPS 

features alone. This means that as the models predict modes from unseen trip data they 

tend to show a reduction in the overall accuracy of mode classification when contextual 

variables were added. If we consider training points to be within a convex hull whose 

boundary is defined by the classification model, then those models whose difference in 

distance between train & points from the boundary are lower (lower G-score shown in 

Table 4.6) are more generalizable versus those whose distance is greater. That would be 

the case when a model overfits the addition of contextual variables and are more tied to the 

geographic setting of the city it is trained with and becomes less applicable to other cities. 
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Figure 4.4: A bar plot showing the variable importance of GPS and GIS features used in 

the Random Forest model 

The Ada Boost model is an outlier as its G-score lowers further when contextual 

variables (0.035) are added to it compared to just GPS features (0.057). The decrease in G-

score for AdaBoost highlights its potential for higher generalizability when using 

geographic context along with GPS features to predict transportation modes from unseen 

trips in other cities, the trade-off being its lower accuracy compared to Random Forests, 

Extreme Gradient Boost, or Decision Trees. These three models are however more 

generalizable when trained with just GPS features alone as the geographic context does 

seem to overfit them making these three models context-specific to some extent.  

We identified the feature importance using the Random Forest model (Figure 4.4) 

and found that the top five most important features were – average speed, average 

distance, the variance of distance to bike infrastructure, the average distance to subway 
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stations, and average distance to bike infrastructure. These variables can be used to build 

similar models across multiple other cities based on the availability of data. 

 

4.7 Discussion 

 We developed a data-driven framework to classify transportation modes from raw 

GPS data by combining additional geographic context across multiple cities. Our results 

identified the key variables (distance to bike infrastructure, distance to subways, distance 

to shoreline, distance to open spaces) necessary to summarize geographic context across 

multiple cities which can be used to classify transport modes using a similar methodology 

in several different cities based upon the availability of data. We used Euclidean distances 

to subway stations, bus stops, and bike lanes that can determine a particular transport mode 

choice for commuters (Lunke, 2020) who might want to optimize their commute times by 

staying closer to areas with better availability of transportation infrastructure. The natural 

and built environment of a city also plays a key role in the transport mode choice (Winters 

et al., 2010) of its residents as earlier studies have found people using bicycles tend to ride 

near residential areas and (Roy et al., 2019; Semanjski et al., 2017), running an errand in 

an around city centers in either car or on bicycles can also be captured by distance to 

commercial areas (Semanjski et al., 2017) and distance to green spaces or seashores 

(Semanjski et al., 2017; Böcker et al., 2015) are often important for leisure trips made on 

foot, bicycles or in private vehicles who can spare time to interact more with their spatial 

surroundings (Páez and Whalen, 2010) as well as feel safe and comfortable (Ferster et al., 

2021). Aesthetics like the visibility of the sea-shore (Nelson et al, 2021) or proximity to 

open green spaces (Roy et al., 2019) that have lower traffic volumes and safer speed limits 
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(Roy et al., 2019) could be a determining factor for people who use active modes of 

transportation.  

Time of day, day of the week, and season were also considered in terms of capturing 

temporal context which has proven effective in identifying active modes of transportation 

(Jestico et al., 2016). The time of day and day of the week was more significant among 

other variables used in our models (Figure 5). Possible explanations for the relevance of 

temporal context could be related to the time of day barriers to active transportation such 

as reduced daylight, colder nighttime temperatures (Böcker et al, 2016), and concerns about 

safety (Dill and Carr, 2003; Aziz et al., 2018) which may lead to more selection of private 

modes of travel at night compared to public or active modes during the day. Harsh weather 

conditions based on different months can also be a deterrent for active modes (Böcker et 

al., 2016) like walking or biking but could be useful in classifying trips when people might 

prefer to use public transit modes.  

The raw GPS data were converted into meaningful features that were combined with 

the contextual variables to fit supervised classification models and the accuracy of each 

model improved after adding contextual variables. Such improvement in accuracy 

establishes the importance of considering contextual variables in determining 

transportation modes in addition to mobility patterns derived from GPS data. The Random 

Forest model achieved the highest accuracy of 83.8% with the least variability across 10 

levels of cross-validation (Figure 3), which is in alignment with previous research (Wang 

et al., 2017; Cheng et al., 2019; Kim et al., 2021), out as the best model with high recall, 

high precision as well as a high AUC score but the lower generalizability score while using 
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just GPS features is a trade-off that highlights accuracy and generalizability may not go 

hand in hand in certain scenarios.  

Since GPS features are not tied to the local geographic setting, using just those features 

alone with any geographic covariates might seem to make the models more robust. Random 

Forests achieve the lowest G-score of 0.005 (Table 5) making them most robust among all 

other models followed by Gradient Boost with a G-score of 0.007 (Table 5) using just GPS 

features alone. However, when the predictive accuracy of Random Forests need is 

prioritized, we see that the highest AUC score of 0.898 (Table 5) with comparably high 

precision and recall of 0.762 and 0.747 help to classify trips more accurately (Table 5) as 

active, public or private modes using both GPS features and geographic covariates. 

AdaBoost, however, is more generalizable as it lowers the G-score without compromising 

much on the AUC scores- which assures high classification accuracy in different 

geographic settings (Table 4.5). 

Our results indicated that although the cross-validation prediction accuracy of 

Random Forests is the highest when both GPS and GIS features are combined, the 

classification accuracy deteriorates when GIS features are added. This could mean adding 

contextual variables lowered the individual class-specific accuracy as there was a higher 

probability of misclassification between active and private modes as can be seen in the 

confusion matrix (Figure 4). Some of the contextual variables (i.e. distance to residential 

areas or commercial areas) that are used to train the model might not be sufficient to 

separate active modes from private modes as people tend to use their cars for running 

errands and might not do it on foot or a bike.  
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The accuracy and generalizability of the models showed a trade-off with models 

achieving a low G-score need not be the most accurate models. An interesting finding was 

higher generalizability was achieved using just GPS features alone. Adding additional data 

sources such as accelerometers can further improve the accuracy of the predictive models 

(Roy et al., 2020), however, the data preprocessing would need to ensure noise removal 

and matching up temporal signatures of varying datasets (Roy et al., 2020).  

 
4.8 Conclusion 

Overall, our results can inform policymakers to better understand how context 

influences travel behavior in cities. The models are reproducible and can be used to predict 

transportation modes from GPS data and contextual information in other cities depending 

upon the availability of data. However, the results might vary and policymakers need to 

prioritize their goals of higher accuracy versus high generalizability to choose an optimal 

model that suits their needs. 

The results generated in this paper could provide a guideline to policymakers on which 

additional factors to consider for predicting transportation modes beyond the traditional 

instrumental factors like distance, speed, time, and cost. These insights could help 

policymakers to better understand how and why the travel demand for different transport 

modes fluctuates with the dynamics of space, time, and place. The results can be utilized 

in helping them design more equitable infrastructure that could enhance the overall 

livability and usage of outdoor environments for one and all. 

We present a general framework that can be used in different geographic settings to 

assess the classification accuracy as well as the generalizability of different transportation 
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modes from big, crowdsourced datasets utilizing an interdisciplinary perspective 

combining relations between mobility patterns, natural and built environment composition 

of the city as well as the comfort of its residents. Future research could elaborate these 

themes into several directions and utilize the classification framework to categorize 

transport modes for infrastructure management and assessing the exposure of different 

modes in other cities based on the availability of data.  
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CHAPTER 5 

CONCLUSION 

 

5.1 Summary of research 

 Movement data captured by crowdsourced fitness apps pose challenges in terms of 

extracting actionable information (Yang et al. 2017) for policymaking owing to temporal 

misalignment (Choi et al. 2018) or bias on app usage (Roy et al. 2019). The need for a more 

accurate and reliable understanding of movement patterns from such ‘big’ data requires 

improvements to algorithms that can recognize data inaccuracies and sampling errors. 

Often movement pattern analysis techniques involving data captured by crowdsourced 

platforms fail to integrate geographic context and the models developed are not sufficient 

to capture the geographic variations that influence processes that generate such data. The 

research carried out in this dissertation opens a new avenue for movement pattern analysis 

by means of developing novel methods for correcting bias, removing temporal 

misalignment to detect changes, and adding geographic context to movement data captured 

by crowdsourced platforms for transportation planning purposes.  

 

5.2 Major contributions 

 The major academic contributions of this dissertation are in the context of 

developing novel methods combining geographic context and big, crowdsourced 

movement data to make it usable for practitioners and policymakers to facilitate urban 

planning. 
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5.2.1 Methods development for contextualizing movement data 

Throughout this dissertation, I have made significant contributions to the current 

state of quantitative movement pattern analysis tied predominantly to three overarching 

themes – advancing the use of real-world big spatial-temporal data from crowdsourced 

platforms and its application to statistical and machine learning approaches, developing 

methods for integrating geographic covariates with raw movement datasets to analyze and 

assess the influence of context on movement patterns and applying the methods developed 

to real-world transportation research scenarios for demonstrating their usage in 

transportation planning and policymaking. 

 In Chapter 2, I provide a bias-correction framework for improving the 

representativeness of big movement datasets from crowdsourced fitness platforms. The 

method developed in this study is broadly applicable for correcting bias in crowdsourced 

bicycling data when official counts and geographical data are available at comparable 

spatial and temporal resolution. In this framework, I have identified the key contextual 

variables (i.e., proportion of white population, median household income, traffic speed, 

distance to residential areas, and distance to green spaces) which can account for the bias 

in bicycle ridership patterns, a special case of movement patterns, and predict the annual 

average bicycle ridership volumes of all residents in an entire city at the street-segment 

level. I also quantified the uncertainty in prediction margins of overall ridership from bias-

corrected data with 86% of street segments being predicted within a margin of +/- 100 

bicyclists. 
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 In Chapter 3, I expanded the research on movement pattern analysis across different 

time scales by converting movement data into mappable time series represented as 

functional curves. I used a square root velocity function to correct temporal misalignment 

among the functional curves and then calculated the difference of the aligned function of 

each functional curve in a specific year from the mean curve in the previous year. The 

changes were categorized by k-means clustering and change maps were generated in the 

context of bicycle ridership volumes at hourly and monthly scales.  

 Finally, in Chapter 4, I integrated spatial context using relevant geographic 

covariates (distance to several built/natural environment classes, land use types) to classify 

active (walk/bike), public (subway, bus, train, rideshare), and private (car, taxi) 

transportation modes. The key variables identified for summarizing spatial context were 

distance to subways, distance to bicycle infrastructure, distance to bus stops, and distance 

to open green spaces. The prediction accuracy of Random Forest classifiers increased when 

contextual variables were added compared to using features extracted from raw movement 

datasets. The generalizability of the models was assessed by differentiating between train 

and test F1-scores to indicate how the models performed with new movement datasets in 

varied geographic settings. 

 Chapter 2 has been successfully published (Roy et al., 2019) as a research paper in 

the Urban Science journal, which is a peer-reviewed interdisciplinary journal for urban 

planners, computer scientists, and geographers. The work has already been used to inform 

planners about generalized approaches to mapping bicycle ridership data across multiple 

cities (Nelson et al., 2021), highlighting the role of bias-corrected crowdsourced data in 

monitoring the safety of commuters (Ferster et al., 2021) and highlighting the optimal 
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location to improve spatial coverage of crowdsourced data (Brum-Bastos et al., 2019). The 

choice of Urban Science as a venue for this work was motivated not simply by its impact 

on GIScience, but also due to its broad, multi-disciplinary readership by both researchers 

as well as practitioners. Since the findings of this paper have direct policy implications, the 

venue was appropriate for disseminating the results. Chapter 3 has been revised and 

submitted to the International Journal of Geographic Information Science owing to its 

novel methodological framework for temporal change detection from movement patterns. 

The manuscript is currently under review. Chapter 4 has been prepared for submission to 

the Computers, Environment and Urban Systems journal owing to its broad applicability 

in urban planning and public policy as well as computational complexity demonstrated in 

the development of the mode detection framework and generalizability assessment. 

  

5.2.2 Reproducibility of code development for movement pattern analysis 

 While the development of methods is valuable in and of itself, it is also of much 

importance to make the methods generalizable and reproducible for use by fellow 

researchers and practitioners/policymakers. I have ensured the use of open-source software 

development frameworks including R and Python throughout my dissertation to summarize 

the implementation of the methods discussed in the previous chapters. 

 Through my research, I have developed open-source code available via GitHub 

using R and Python to replicate the model in new study areas contingent upon the 

availability of movement data. My methods are generalizable in the sense that very minor 

modifications need to be made to existing code for applying movement pattern analysis in 

different cities from crowdsourced data. In Chapter 2, I have developed functionality for 
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bias correction in R using generalized linear regression along with a variable selection 

approach for contextual variables in Python. I have also simultaneously developed the 

SRVF functionality to realign functional curves obtained from raw movement data of 

varying spatial and temporal resolution and a functional K-means algorithm to categorize 

changes in movement patterns over time in R used in Chapter 3. For Chapter 4, I developed 

a Python-based machine learning framework for transportation mode detection as well as 

generalizability assessment using supervised classification algorithms like Random 

Forests, Extreme Gradient Boost, Decision Trees, and AdaBoost. 

 

5.2.3 Generating policy-ready outputs from context-driven movement pattern 

analysis 

 A broader implication of the research carried out throughout this dissertation is the 

direct policy implications that the results bear in the context of transportation planning. 

The methods described in Chapter 2 have already been utilized by local authorities in the 

City of Phoenix to predict bicycle ridership in 2020. The results in Chapter 3 will be 

disseminated among transportation agencies in the city of Phoenix and Tempe to track 

changes in active transportation models like cycling and walking over long periods. The 

work is inspired by Boss et al., 2018 but is an improvement over the methodology discussed 

in their study in terms of advocating change detection using temporal signatures from 

movement data. The results of Chapter 4 are of significance to planners and policymakers 

who wish to understand travel behavior in their respective cities but are limited in the 

knowledge of methods used to extract actionable insights from big movement datasets. The 

work has been performed as part of a bigger research endeavor called INTERACT 
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(INTERACT) that involves researchers, city planners, health professionals as well as 

computer scientists who aim to make cities safer and healthier. 

 

5.3 Key Findings 

 Based on the methods and research I have developed through my Ph.D. I have 

identified several key findings related to movement pattern analysis from movement data 

and geographic context which are listed below. 

 
• The significant variables for correcting bias in crowdsourced data for bicycle 

ridership were: The proportion of the white population, median household income, 

traffic speed, distance to residential areas, and distance to green spaces. Combining 

these geographic covariates with Strava counts accounted for additional factors that 

influence bicycle ridership and may not be captured solely by crowdsourced 

sampling. 

 

• The model developed in Chapter 2 was used in the city of Tempe and our results 

showed that for 80.3% of road segments, where ground truth data were available, 

estimated bicycle counts were correct to within 25% of the observed counts (± 50 

riders). The results of our study indicate that bias correction of crowdsourced data 

may prove to be a useful method for the estimation of bicycle ridership in North 

American cities. 
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• Using data from the Strava fitness app, captured every minute, we quantified 

ridership changes in Phoenix between 2017 and 2018 at the street segment level in 

Chapter 3. Hourly and monthly changes were classified into four categories – high 

peak, low peak, high off-peak, and low off-peak for hourly scales and high winter, 

low winter, high summer, and low summer for monthly scales and mapped along 

with exposure density.  

 
• 32% of the street segments in Phoenix show a high hourly change in ridership 

during the peak period between 8 am and 10 am which accounts mostly for 

commute trips. These patterns indicated that improved bicycle-friendly 

infrastructure between 2017 and 2018 led to a major increase in peak-period 

ridership as commuters felt safe to bike to their workplace. 

 
• On the monthly scale, most of the changes occur during the winter months which 

consist of 37.6% of the street segments (Table 3) (including high and low changes 

in winter) located mostly on the outskirts of the city with recreational bicyclists 

making more trips along trails and parks. The changes in summer overlapped with 

high crash density areas within the city center that have higher traffic speed limits. 

 
• Geographic context captured by variables like distance to commercial and distance 

to green spaces or seashores were found to improve travel mode prediction 

accuracy in Chapter 4. These contextual variables are often important for leisure 

trips made on foot, bicycles, or in private vehicles who can spare time to interact 

more with their spatial surroundings as well as feel safe and comfortable. They also 
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seem to be a proxy for routes that have lower traffic volumes and safer speed limits 

which could be used as a distinguishing factor for active and private modes of 

transportation. 

 
• The Random Forest model achieved the highest accuracy of 83.8% when contextual 

variables were combined with features extracted from GPS data indicating 

geographic context plays a significant role in transportation mode choice. The 

accuracy and generalizability of the models showed a trade-off with the addition of 

contextual variables. Since these variables are more closely tied to the immediate 

surroundings of a users’ route, the model tends to overfit in some cases, however, 

AdaBoost was found to be more generalizable than the Random Forests, Gradient 

Boost, and Decision Trees indicating it could be applied to different study areas 

without compromising the accuracy. 

 

5.4 Challenges and Limitations 

The research conducted in each chapter developed a new method for spatial and temporal 

analysis of ‘big’ movement data from crowdsourced platforms. Since the methods were 

developed using a specific study area there are few limitations both in terms of data and 

methodology that must be acknowledged and accounted for before applying the methods 

in a broader context, especially for policymaking purposes. 

 In Chapter 1, the bias correction framework developed was based on ground truth 

data collected from Maricopa County’s permanent counters spread randomly throughout 

the entire county. The placement of the counters was done before conducting our bias-
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correction research, hence, the sampling scheme is not spatially distributed in a way that is 

representative of the entire population. These gaps in data originating as a result of non-

uniform sampling may trickle down as errors generated during the modeling process 

thereby increasing variance in the predicted estimates of overall bicycling ridership.  

Additionally, the model was trained using county-level data but tested with city-

level count data, therefore reapplying the global model to a local setting, which also added 

to the variance in the predictions. It highlights that with different geographic settings the 

same model may not be the best fit for re-estimating the bias-adjusted bicycle ridership 

volumes as to the same set of variables selected may not adjust for Strava bias in all study 

areas. A possible reason could be that the variables that are used for accounting bias vary 

spatially at local scales with the difference in bicycling cultures in different regions or 

cities. A more nuanced or city-specific choice of variables will be needed to improve the 

accuracy of the bias-correction model based on local knowledge about the city and what 

factors might influence ridership in that area. 

Additionally, the point locations of permanent counters were compared with street 

segment level Strava counts and we ignored the directionality of the bicycling trips to get 

an aggregated estimate of total trips that occurred at the same time period for which official 

counts were collected. The choice of comparing two different spatial representations of 

point-based permanent counts with line-based counts from Strava was performed in order 

to generate street-segment level maps for the entire city of Tempe which would be 

otherwise impossible given the data organization and structure of the network level count 

aggregation framework applied by the Strava Metro platform to anonymize the data to 

preserve user’s privacy.  
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A major challenge was the preprocessing of nearly 1.5 million Strava trips to 

assimilate and organize the data in a manner that was spatially and temporally comparable 

to the official counts as well as socioeconomic, demographic, and land-use data collected 

from disparate sources and at different spatial resolutions. The two sets of ground truth 

data one of training from the MAG and the other from TBAG used for testing the 

predictions were also sparse overall – given there were only 65 locations to compare the 

ground truth of predicted AADB counts. Future work will require tailoring data collection 

efforts towards the strategic placement of counters as well as planning to get geographic 

data in a single data platform for ease of researchers in terms of building statistical models 

for planning purposes. The statistical significance of the models can be hugely improved 

with help from well-planned spatial coverage of official permanent counters. 

Chapter 3 highlights the use of FDA techniques for change monitoring purposes. 

Although the data resolution for this study was fine-grained, there was a limitation in terms 

of contextualizing the results of the study to understand why the changes happened. 

Additional data from Bikemaps.org had to be used to overlay the change maps in order to 

visualize which areas were prone to a high change and whether more bicycle-related 

incidents were recorded by the crowdsourcing platform Bikempas.org in those areas. We 

created a visual method to represent the ridership changes via a change map. However, 

developing a technique to determine the statistical significance of the functional change 

values could be useful to quantify the confidence intervals of the results. It will also be 

beneficial for researchers to get infrastructure-related data as an additional attribute along 

with the number of trips from the Strava data itself which can help in drawing inferences 

about why the change occurred in the first place. Further research is also needed to develop 
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a statistical significance measure for changes identified for each change cluster and 

quantify the uncertainties in change detected. In addition, to make the change maps more 

readable and usable by planners an interactive tool for visualizing changes over the entire 

street network will be beneficial. 

In terms of the mode detection study, a major limitation was the availability of GPS 

data with labeled trips from a fourth city which could be used as a test bed for the 

generalizability of the model. Although the paper hypothesizes the generation of a G-score-

based generalizability metric, it is challenging to test its validity without being able to apply 

the method to trips from another city which was not included in the training of the models. 

Additionally, the predictive accuracy of the Random Forest model could be further 

improved by having a more balanced dataset meaning an equal number of trips for each 

mode – active, public, and private or by introducing a weighting technique to account for 

the imbalance in the labeled trip data. As an introductory step to analyzing the 

generalizability of transport mode detection models using contextual data, the study 

highlighted a set of geographic covariates but additional research is needed to understand 

which factors are important predictors and could provide consistent data based on 

availability across multiple cities. This approach is a pilot study and would need further 

validation in different geographic settings to make conclusive remarks about the efficiency 

and applicability of the G-score approach. A major challenge in terms of the trip data 

acquired from three different cities was also that the number of trips varied greatly across 

these cities. Montreal collected the majority of the trip data with over 80% of the trips 

coming from Montreal whereas the remaining trips which came from Vancouver and St. 

John’s were a much smaller subset of the entire data. As a measure to account for the skew 
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in the data volume we combined trip data from all three cities and split them into validation 

and test sets – but the accuracy could be greatly improved if the trip data are comparable 

across all cities. 

 

5.5 Future Work 

 Utilizing the methods developed throughout my dissertation policymakers can 

bridge the gap between computational modeling and targeted decision-making by 

evaluating existing infrastructure as well as planning for future investments in new 

infrastructure to build safer and healthier cities. The findings of my dissertation are key in 

understanding the role of geographic context in movement pattern analysis in 

transportation planning. More specifically, it highlights the use of bias-corrected 

crowdsourced data in examining bicycle ridership patterns for an entire city, understanding 

changes in hourly and monthly bicycle ridership patterns and how safety and infrastructure 

relate to those changes, and the role of geographic context in transportation mode detection 

from movement data.  

 The method for correcting bias in crowdsourced data with the help of a three-step 

mixed-model approach in Chapter 2 is broadly applicable for correcting bias in 

crowdsourced bicycling data when official counts and geographical data are available at 

comparable spatial and temporal resolution. Based on those results, in the future, it is 

suggested that local transportation authorities should work closely with researchers to 

improve the coverage of official count data, helping them to identify locations to place 

counters so that a denser spatial coverage, as well as more ground truth data, are obtained 

to improve the model’s performance. The proposed bias correction model, with detailed 
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data that is continuous through space and collected repeatedly in time, can help 

transportation planners in making informed decisions related to bicycle infrastructure 

planning to promote healthier lifestyles among urban residents of all ages and abilities. 

Detailed maps of bicycling ridership are critical to professionals in making decisions 

regarding infrastructure investment and policy changes that support active transportation.  

The statistical approach developed in this Chapter can be used to help stratify bicycling 

count programmes (Brum-Bastos et al., 2020) by strategic placement of temporary or 

permanent counters and generate a hypothesis on why variation in prediction varies by 

applying it to other cities as an effort to understand the best approaches for modeling 

bicycling volumes from crowdsourced data platforms like Strava Metro (Nelson et al., 

2021). It is suggested that local transportation authorities should work closely with 

researchers to improve the coverage of official count data, helping them to identify 

locations to place counters so that a denser spatial coverage, as well as more ground truth 

data, are obtained to improve the model’s performance. The proposed bias correction 

model, with detailed data that is continuous through space and collected repeatedly in time, 

can help transportation planners in making informed decisions related to bicycle 

infrastructure planning to promote healthier lifestyles among urban residents of all ages 

and abilities. Detailed maps of bicycling ridership are critical to professionals in making 

decisions regarding infrastructure investment and policy changes that support active 

transportation. The framework developed in this paper can be used as a generalized 

approach to include bias-corrected crowdsourced data for planning purposes to generate 

street-segment level maps that can assess crime patterns or model exposure by including 

and testing different sets of geographic covariates that influence mobility patterns. The 
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model also needs to be tested in different cities to quantify the uncertainties in prediction 

and assess its variability at different spatial and temporal scales. 

Chapter 3 contributes to debates in time geography based on the theoretical 

foundation on how time and space constitute social life from the scale of individuals 

(Hägerstrand 1985). Considering previous research (Kwan 2002, Miller 2005, Long and 

Nelson 2013, Kwan and Neutens 2014) that highlight the role of underlying time and scale 

issues in geography, this paper builds a framework for analyzing change from real-world 

data at fine-grained scales and contributes to the field of urban analytics from a 

methodological perspective which can help policymakers. In the future, the work described 

here can be expanded to capture change monitoring for transportation networks in cities 

before and after natural hazards as well as assess the impacts of climate change on land use 

and land cover changes over time. 

Finally, the method and results highlighted in Chapter 4 can inform policymakers 

to better understand how context influences travel behavior in cities. The models are 

reproducible and can be used to predict transportation modes from GPS data and contextual 

information in other cities depending upon the availability of data. The results generated 

in this paper could provide a guideline to policymakers on which additional factors to 

consider for predicting transportation modes beyond the traditional instrumental factors 

like distance, speed, time, and cost. These insights could help policymakers to better 

understand how and why the travel demand for different transport modes fluctuates with 

the dynamics of space, time, and place. The results can be utilized in helping them design 

more equitable infrastructure that could enhance the overall livability and usage of outdoor 

environments for one and all. Future research will employ techniques to improve the 
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accuracy of the models integrating spatial context by predicting the transportation modes 

in different cities using movement data that were not used to train the models previously. 

The results can also be used to motivate streamlined efforts in data collection with 

comparable spatial and temporal coverage across cities from which transportation modes 

could be predicted. 
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WORKFLOWS FOR MODELING FRAMEWORKS IN CHAPTERS 2-4 
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Figure A1: Model design for bicycle ridership prediction using Poisson regression. 
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Figure A2: A general workflow for change detection in Strava ridership using functional 

data analysis 
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Figure A3: Overall workflow showing   transportation mode detection from GPS data and 

geographic context and assessment of accuracy .
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Algorithms and code developed as part of the methods described in Chapters 2- 4 are 

available on Figshare and can be accessed using the following links: 

 

CHAPTER 2: https://doi.org/10.6084/m9.figshare.13171862.v1 

CHAPTER 3: https://doi.org/10.6084/m9.figshare.13171862.v1 

CHAPTER 4: https://doi.org/10.6084/m9.figshare.13171862.v1 
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