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ABSTRACT  

   

Over the past thirty years, research on teachers’ mathematical knowledge for 

teaching (MKT) has developed and grown in popularity as an area of focus for improving 

mathematics teaching and students’ learning. Many scholars have investigated types of 

knowledge teachers use when teaching and the relationship between teacher knowledge 

and student performance. However, few researchers have studied the sources of teachers’ 

pedagogical decisions and actions and some studies have reported that advances in 

teachers’ mathematical meanings does not necessarily lead to a teacher conveying strong 

meanings to students. It has also been reported that a teacher’s ways of thinking about 

teaching an idea and actions to decenter can influence the teacher’s interactions with 

students.  

This document presents three papers detailing a multiple-case study that 

constitutes my dissertation. The first paper reviews the constructs researchers have used 

to investigate teachers’ knowledge base. This paper also provides a characterization of 

the first case’s mathematical meaning for teaching angle measure and the impact of her 

meaning on her interactions with students while teaching her angle measure lessons. The 

second paper examines another instructor’s meaning for an angle and its measure and 

illustrates the symbiotic relationship between the teacher’s mathematical meanings for 

teaching and decentering actions. This paper also characterizes how an instructor’s 

commitment to quantitative reasoning influences the teacher’s instructional orientation 

and instructional actions. Finally, the third paper includes a cross-case analysis of the two 

instructors’ mathematical meanings for teaching sine function and their enacted teaching 
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practices, including their choice of tasks, interactions with students, and explanations 

while teaching their sine function lessons.  
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DEDICATION 

   

To all young women in STEM, if not you, who? 
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CHAPTER 1 

STATEMENT OF THE PROBLEM 

The need to improve mathematics education in the United States has been broadly 

documented, with research identifying procedurally focused curricula and poor-quality 

teaching as two primary sources of the problem (Stigler & Hiebert, 1999; Thompson & 

Thompson, 1994; Thompson & Thompson, 1996; Thompson, 2013). Researchers have 

reported that students in the United States are not learning as much or as deeply as their 

European and Asian counterparts and are scoring significantly lower on international 

assessments (National Council of Teacher of Mathematics, 2014; Stigler & Hiebert, 

1999). Lack of resources and professional development for teachers (Stigler & Hiebert, 

1999), along with a cultural inattention to mathematical meaning and coherence, has 

contributed to U.S. students’ low scores (Thompson, 2013).  

Over the past thirty years, research on teachers’ mathematical knowledge for 

teaching (MKT) has developed to improve teaching and students’ learning. Ball and 

many of her colleagues have investigated the various types of knowledge teachers use 

when teaching (Ball, 1990; Ball & Bass, 2003; Ball, Hill, & Bass, 2005) and the 

relationship between teacher knowledge and student performance (Ball, Thames, & 

Phelps, 2008; Hill & Ball, 2004; Hill, Ball, & Schilling, 2008; Hill, Schilling, & Ball, 

2004, Hill et al., 2008). This area of research has primarily focused on investigating what 

teachers do in their teaching and the knowledge required to engage in these teaching 

actions (Ball & Bass, 2003). Although many mathematics educators have investigated the 

relationships among the mathematics that teachers know, their instruction, and students’ 

learning, few researchers have studied the sources of teachers’ pedagogical decisions and 

actions, teachers’ mathematical meanings for teaching (MMT) (Thompson, 2016). 
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The affordances of attending to teachers’ meanings as opposed to teachers’ 

knowledge is illustrated in the following example. If two teachers, Teacher A and 

Teacher B were asked to determine the value of  𝑠𝑖𝑛(𝜃) in Figure 1 below, both Teacher 

A and Teacher B may correctly answer 𝑠𝑖𝑛(𝜃) =
1.78

3.96
= 0.45 indicating that they know 

how to answer this question. However, this correct answer provides mathematics 

educators with limited insight into the teacher’s approach to teaching students how to 

think about and answer this question. 

 

 
 

 

 

 

 

However, a shift in focus to what teachers mean by sin(𝜃) = 0.45 can uncover 

more about what a teacher might say or do in a classroom, and thus, the meanings 

students have the opportunity to construct. For instance, imagine that Teacher A uses the 

commonly applied trigonometric ratios (SOHCAHTOA) to answer this question. With 

this way of thinking, Teacher A might only convey that the word sine is a command to 

divide the length of the side opposite an angle in a right triangle by the triangle’s 

hypotenuse. In contrast, imagine that Teacher B conceives of sin(𝜃) as a function that 

represents how a length varies with an angle’s measure. Namely, that sine is a function 

that relates the measure of an angle (whose vertex lies at the center of a circle) swept out 

from the 3 o’clock position of a circle with the vertical distance of a terminal point above 

the horizontal diameter of the circle in radius lengths. A teacher with this meaning may 

Figure 1. The Value of the Sine Function 
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conceive of 𝑠𝑖𝑛(𝜃) =
1.78

3.96
= 0.45 as a relative size measure that represents a vertical 

distance of a point on the terminal ray of the angle that is approximately 0.45 radii or 

0.45 times as large as the circle’s radius when the terminal ray of an angle has been 

rotated 𝜃 radians counterclockwise from the 3 o’clock position on the circle; and will 

likely have the goal to convey this meaning to her students (Silverman & Thompson, 

2008). As such, uncovering teachers’ meanings for an idea is essential for understanding 

a teacher’s instructional goals and actions. Although attention to teachers’ mathematical 

meanings for teaching has been repeatedly called for (Byerley & Thompson, 2017; 

Musgrave & Carlson, 2017; Tallman & Frank, 2018; Thompson, 2013; 2016), few 

researchers have investigated teachers’ MMT for teaching specific ideas.  

 In response to calls for more investigations of teachers’ MMT and the need to 

improve U.S. mathematics teachers’ instruction, I investigated the relationships between 

teachers’ MMT, their decentering actions, and subsequent instructional practices. 

Thompson (2013) proposes that a teacher’s mathematical meanings for an idea constitute 

their image of the mathematics they teach, their pedagogical decisions, and the language 

they use to cultivate similar images in students’ thinking. More recently, Tallman (2015, 

2021) has provided empirical support for Thompson’s claims that a teacher’s teaching 

actions are strongly related to their mathematical meanings. Thus, it seems reasonable 

that a teacher’s MMT may be related to their ability to attend to and effectively leverage 

students’ thinking while teaching. The primary questions motivating this dissertation 

study are: 

1. What mathematical meanings for teaching angle measure and sine function do 

teachers construct when using a research-based curricula? 
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2. What is the relationship between a teacher’s mathematical meanings for teaching 

angle measure and sine function, and the teacher’s instructional practices, including 

their instructional decisions, explanations, and interactions with students when 

teaching? 

3. What is the relationship between a teacher’s mathematical meanings for teaching an 

idea and their decentering actions? 
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CHAPTER 2 

INTRODUCTION TO THREE PAPERS 

 

     In the following three chapters, I present three papers detailing a multiple-case 

study that constitutes my dissertation. As part of this study, I investigated two pre-

calculus instructors’ mathematical meanings for and teaching of angle measure and the 

sine function. The first paper begins by distinguishing two constructs Mathematical 

Knowledge for Teaching (MKT) and Mathematical Meanings for Teaching (MMT), that 

researchers have used to characterize teachers’ knowledge base as it relates to their 

teaching. After introducing these constructs and their uses, I discuss the affordances of 

attending to a teacher’s mathematical meanings for teaching an idea. Following this, I 

provide a characterization of a teacher’s mathematical meanings for teaching angle 

measure and an example of the impact of her MMT for angle measure on her interactions 

with students while teaching her angle measure lessons.  

     In the second paper, I introduce a construct my colleagues and I have used to 

characterize teachers’ ways of thinking as they relate to teaching. I then illustrate the 

usefulness of this construct by presenting an example of a second instructor’s ways of 

thinking about teaching angle measure. In this paper, I also present data that illustrates 

the symbiotic relationship between the teacher’s mathematical meanings for teaching and 

decentering actions. The data included in this paper also provides empirical evidence of 

the affordances of a teacher’s engagement in quantitative reasoning and the ways his 

commitment to quantitative reasoning supported his instructional actions.  

      The third paper presents a cross-case analysis of the two instructors’ 

mathematical meanings for teaching the sine function and their enacted teaching 
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practices. In particular, this paper illustrates the relationship between each instructor’s 

mathematical meanings for teaching sine function and the nature of their (1) goals for 

students’ learning, (2) explanations, and (3) interactions with students. This paper 

illuminates the ways in which a teacher’s mathematical meanings for teaching an idea 

influence their images of ways to support students’ learning of an idea, how these images 

influence their instructional choices and actions, and ultimately how their instructional 

choices and actions influence the meanings that students have the opportunity to 

construct. 

Collectively these three papers make a case for the critical role a teacher’s 

mathematical meanings for teaching an idea have on the mathematics instruction that a 

student experiences. Furthermore, a comparison of the two teachers’ MMT for sine 

function and professional development experiences suggests that the process of 

supporting a teacher in constructing strong MMT needs further investigation.  
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CHAPTER 3 

PAPER 1: INVESTIGATING A TEACHER’S MATHEMATICAL MEANINGS FOR 

TEACHING ANGLE MEASURE AND HER ACTIONS WHILE TEACHING: THE 

CASE OF SHIRA 

LITERATURE REVIEW 

Research on Teachers’ Mathematical Knowledge for Teaching 

In the last three decades, researchers have turned their attention to teachers’ MKT 

to improve the quality of mathematics teaching and learning in the United States. The 

literature on teachers’ MKT is vast, with diversity in ontological stances and research foci 

among studies.  

A Practice-Based Theory of MKT 

Ball and colleagues (e.g., Ball, 1990; Ball & Bass, 2003; Ball, Hill, & Bass, 2005) 

sought to answer the question, “what do teachers do in teaching mathematics, and in what 

ways does what they do demand mathematical reasoning, insight, understanding, and 

skill?” (Ball, Hill, & Bass, 2005, p. 17). Ball’s work on teacher knowledge began in 1990 

when she studied 252 pre-service elementary teachers’ understanding of division with 

fractions. In this study, most teacher candidates could correctly complete the procedures 

of dividing fractions. However, few were able to describe a situation that represented the 

division of fractions accurately to students (Ball, 1990). 

Following Ball’s (1990) findings of teachers’ limited mathematical 

understandings, Ball and Bass (2003) proposed focusing on the mathematical work of 

teachers, including how and where teachers use their mathematical knowledge in 

practice. Ball and Bass’ analyses revealed that the mathematical knowledge needed for 

teaching differs from that of mathematicians and other practitioners of mathematics. 

Namely, mathematics teaching requires teachers to have knowledge of (1) the work 
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involved in problem-solving, (2) how to “unpack” their mathematical understandings, 

and (3) how to help students in making connections across mathematical domains (ibid). 

These empirical analyses lead to Hill, Schilling, and Ball’s (2004) proposal that teachers’ 

MKT is multi-dimensional, and their refining of Shulman’s (1986) original category of 

subject matter knowledge to include teachers’ common content knowledge (CCK) and 

specialized content knowledge (SCK). 

In the past twenty years, these researchers have explored the multi-dimensional 

nature of teachers’ knowledge when teaching and classified teachers’ MKT into five 

types of specialized knowledge (Ball, 1990; Ball & Bass, 2003; Ball, Hill, & Bass, 2005). 

These researchers have also identified positive links between teacher knowledge and 

student performance (Ball, Thames, & Phelps, 2008; Hill & Ball, 2004; Hill, Ball, & 

Schilling, 2008; Hill, Schilling, & Ball, 2004; Hill et al., 2008).  

A Piagetian Theory of MKT 

While Ball and colleagues (e.g., Ball, 1990; Ball & Bass, 2003; Ball, Hill, & Bass, 

2003; Hill, Rowan, & Ball, 2005) conducted empirical studies that categorized 

qualitatively-distinct domains of teachers’ knowledge, Silverman and Thompson (2008) 

developed theories on the nature of teachers’ MKT and how it develops. Silverman and 

Thompson (2008) made two propositions, (1) teachers’ MKT is grounded in personally 

powerful understandings of mathematical concepts, and (2) teachers’ MKT is created 

through the transformation of those concepts from an understanding having pedagogical 

potential to an understanding that has pedagogical power.  

Mathematical understandings are personally powerful if they carry throughout an 

instructional sequence, are foundational for learning other ideas, and play into a network 



   9 

of ideas that do significant work in students’ reasoning (Thompson, 2008). According to 

Silverman and Thompson (2008), Key Developmental Understandings (KDUs) (Simon, 

2006) are an example of mathematical understandings that are personally powerful. A 

KDU is an individual’s understanding of an idea that is critical to their learning of other 

related ideas (Simon, 2006). We say an individual has developed a KDU for a 

mathematical idea if they (1) make a conceptual advance or have “a change in [their] 

ability to think about and/or perceive a particular mathematical relationship” (Simon, 

2006, p. 362) and (2) develop an understanding for the idea through their own activity 

and reflection on their activity.  

Silverman and Thompson (2008) propose that “developing MKT involves 

transforming [personal] KDUs of a particular mathematical concept to an understanding 

of: (1) how this KDU could empower their students’ learning of related ideas; (2) actions 

a teacher might take to support students’ development of it and reasons why those actions 

might work” (p. 502). More concretely, the development of MKT involves transforming 

teachers’ KDUs into Key Pedagogical Understandings (KPUs). A KPU is a mini theory a 

teacher has regarding how to help students develop the meanings she intends (Byerley & 

Thompson, 2017). As such, these researchers developed a framework to describe the 

process by which teachers’ MKT-their KDUs and awareness of their KDUs- develop.  

Silverman and Thompson’s (2008) developmental framework enables teacher 

education to shift its focus from developing teachers’ MKT to helping teachers develop 

practices that support their ability to continually develop their MKT throughout their 

career. “These practices include development of KDUs, becoming reflectively aware of 
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them, and placing them within a model of student learning in the context of instruction 

(Silverman & Thompson, 2008, p. 509).”   

In his 2015 dissertation study, Tallman presented results that support Silverman 

and Thompson’s claim that the mathematical knowledge needed to teach involves more 

than powerful understandings of mathematics. Tallman’s analysis revealed that a 

teacher’s particular ways of understanding, as demonstrated in a clinical interview, 

differed from and sometimes contradicted the meanings the instructor conveyed while 

teaching. Tallman (2015) described the inconsistencies in the teacher’s mathematical 

knowledge as a consequence of the teacher’s MKT consisting of “disorganized and 

disconnected cognitive schemes” (p. 592). As such, Tallman (2015) suggested that 

mathematical knowledge for teaching involves an awareness of the mental actions and 

operations that constitute productive ways of understanding mathematical ideas. Tallman 

further elaborated, 

A teacher’s awareness of the mental actions and operations that constitute 

powerful ways of understanding mathematical ideas supports him or her in: (1) 

defining instructional goals and objectives in cognitive rather than behavioristic 

terms, (2) designing and/or selecting curriculum materials that seek to engender 

intended mental activity, (3) employing pedagogical actions that support students 

in engaging in—and thereby constructing internalized representations of—the 

mental actions that constitute productive mathematical meanings, (4) developing a 

disposition to attend to students’ thinking, and (5) constructing models of 

students’ epistemic ways of understanding (p. 598).  
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Figure 2. Tallman’s Theoretical Framework for Mathematical Knowledge for Teaching 

 As such, Tallman (2015) proposed a framework that suggests teachers’ awareness of the 

mental actions and operations that constitute productive ways of understanding 

mathematical ideas is a critical component of teachers’ MKT as it supports them in 

reorganizing their mathematical knowledge to engage in effective teaching practices (see 

Figure 2).  

Comparing Research on Teachers’ MKT 

There are three distinguishing characteristics in research programs focused on 

teachers’ MKT. First, Ball and colleagues conducted empirical studies of teachers’ 

knowledge. In contrast, Silverman and Thompson (2008) proposed a framework for 

developing teachers’ MKT based on theory and their research experiences. The second 

involves the focus of each program. For example, Ball and colleagues’ investigations 

primarily focused on what teachers do in their teaching and the knowledge required to 

engage in these teaching actions (Ball & Bass, 2003). 

In comparison, Silverman and Thompson (2008) and Tallman (2015) focus on the 

cognitive mechanisms that enable teachers’ behaviors. These researchers seek to uncover 
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the nature of teachers’ knowledge and how it develops. According to Silverman and 

Thompson (2008), the third distinguishing feature of MKT research involves their 

ontological stance that an individual’s knowledge is constructed and is idiosyncratic. Ball 

and colleagues (e.g., Ball 1990; Ball & Bass, 2003; Ball, Hill, & Bass, 2005) describe 

teachers’ knowledge as a truth about a reality external to the knower. In comparison, 

Silverman and Thompson (2008) and Tallman (2015) describe teacher knowledge in the 

sense of Piaget and von Glasersfeld (1995)- as schemes and ways of coordinating them 

that explain how a person might act when teaching. Moreover, Silverman and Thompson 

describe a teacher’s knowledge base in terms of her individual cognitive structures and 

thought patterns. These researchers use the phrase Mathematical Knowledge for Teaching 

(MKT) to describe teachers’ schemes or meanings for the ideas they teach and hold at a 

reflected level.  

Research on Teachers’ Mathematical Meanings for Teaching 

 In 2016, Thompson proposed using the construct Mathematical Meanings for 

Teaching (MMT) rather than MKT to make explicit that he used the word knowledge to 

describe an individual’s schemes or meanings for an idea. An individual’s meaning is the 

space of implications resulting from assimilation to a scheme (Thompson, 2016). Thus, to 

say an individual has a meaning for a word, symbol, expression, or statement means that 

the individual has assimilated that word, symbol, expression, or statement to a scheme. A 

scheme is a mental structure that “organize[s] actions, operations, images, or other 

schemes” (Thompson et al., 2014, p. 11). When defining Mathematical Meanings for 

Teaching, Thompson (2016) extended the construct of mathematical meaning to account 

for characterizations of teachers’ actions related to teaching. As such, a teacher’s 
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mathematical meanings for teaching an idea include (1) the meanings (schemes) the 

teacher uses while teaching or thinking about teaching and (2) the teacher’s image of the 

meanings (schemes) they want students to develop for the idea. 

The construct of Mathematical Meanings for Teaching differs from the construct 

of Mathematical Knowledge for Teaching in two distinct ways. First, Thompson’s use of 

the word meaning connotates something personal (i.e., meanings existing in the knower’s 

mind) to readers rather than knowledge, which seems less personal and disjoint from the 

knower (Thompson, 2016). Second, arguably most important, the construct 

of Mathematical Meanings for Teaching describes the status of an individual’s 

understanding relative to teaching. Although Ball and Thompson defined teachers’ MKT 

differently, both researchers used the construct MKT to describe teacher knowledge as a 

target for teachers to achieve, not a state of teacher’s knowledge that may be advanced. 

For instance, Ball, Hill, and Bass (2005) use the example of multiplying two integers to 

demonstrate that a teacher’s sole ability to compute 35 x 25 correctly is insufficient 

knowledge. These researchers argue instead that teaching involves knowledge of an 

effective way to represent the meaning of the algorithm to multiply. In this example, Ball, 

Hill, and Bass (2005) state what teachers must be able to do and know, but they do not 

make explicit the ways of thinking that enable the teacher to do or know. As a second 

example, Silverman and Thompson (2008) outline a framework for developing teachers’ 

knowledge that supports conceptual teaching of a particular mathematical topic. This 

framework frames teachers’ MKT as something to be attained instead of a status of 

teachers’ knowledge that may be advanced.   
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The Affordances of Attending to Teachers’ MMT 

Attending to teachers’ mathematical meanings for teaching an idea has many 

affordances. Investigations into teachers’ meanings enable researchers to focus their 

attention on the mathematical conceptions teachers have and the implications of these 

understandings on students’ learning. In particular, focusing on teachers’ MMT enables 

researchers to shift their focus from the behaviors that a teacher exhibits while teaching to 

the cognitive mechanisms, meanings, and ways of thinking that enable these behaviors. 

This shift in focus to teachers’ meanings allows mathematics educators to explain why 

teachers act as they do and how we can improve their teaching (Thompson, 2013; 2016). 

“A focus on MMT would also foster the field’s conceptualization of bridges 

among what teachers know (as a system of meanings), how they teach (their 

orientation to high-quality conversations), what they teach (meanings that an 

observer can reasonably imagine that students might construct, over time, from 

teachers’ actions), and what students learn (the meanings they construct)” 

(Thompson, 2013, p. 82).  

By investigating instructors’ meanings for ideas, we, as mathematics educators, are 

positioned to enhance our understanding of teachers’ practice and develop ways to 

improve it. Researchers who study teachers’ MKT describe teacher knowledge as a target 

for teachers to achieve, not a state of teacher’s knowledge. These researchers focus their 

lens on teacher performance instead of studying and characterizing the meanings teachers 

exhibit in relation to their instructional practices (Thompson, 2013). 
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Research on Mathematics Teaching Practices 

Research on secondary and post-secondary mathematics teachers has 

predominantly focused on examining the relationship between various teaching practices 

and student learning. A teacher’s practice includes everything a teacher does that 

contributes to their teaching (planning, assessing, interacting with students) and 

everything teachers think about, know, and believe about what they do (Simon & Tzur, 

1999). 

In 2010, Speer, Smith III, and Horvath proposed a framework that describes the 

dimensions of post-secondary instructors’ practice and differentiates teaching practices 

from instructional activities. These researchers propose that a teachers’ practice includes 

“what teachers do and think daily, in class and out, as they perform their teaching work” 

(Speer et al., 2010, p.99). In contrast, Speer et al. describe instructional activities as “the 

organized and regularly practiced routines for bringing together students and instructional 

materials (textbooks, whiteboards, overhead projectors, computer-generated graphic 

displays, etc.) to support students’ learning of mathematics” (Speer et al., 2010, p.101). 

Speer et al. contend that investigations into collegiate mathematical instructors’ practice 

could benefit from researchers attending to the following practices included in their 

framework: (1) allocating time within lessons, (2) selecting and sequencing content 

within lessons, (3) motivating specific content, (4) posing questions, using wait time, and 

reacting to student responses, (5) representing mathematical concepts and relationships, 

(6) evaluating and preparing for the next lesson, and (7) designing assessment problems 

and evaluating student work. 



   16 

Since 2010, research on various teaching practices has become more prominent in 

mathematics education literature. Jacobs, Lamb, and Philipp (2010) introduced the 

construct of professional noticing to describe teachers’ attention to, interpretation of, and 

response to students’ mathematical thinking as it is expressed in writing or classroom 

video recordings. Jacobs and Empson (2016) extended Jacobs et al.’s (2010) work by 

introducing teacher responsiveness, “a type of teaching in which teachers’ instructional 

decisions about what to pursue and how to pursue it are continually adjusted during 

instruction in response to children’s content specific thinking, instead of being 

determined in advance to noticing” (Jacobs & Empson, 2016). They have also captured 

aspects of teaching moves characteristic of teacher responsiveness in a framework that 

can be used in the moment with students to support and extend students’ mathematical 

thinking. 

Several researchers have also extended Jacobs et al.’s (2010) work by 

investigating teachers’ abilities to attend to and leverage others’ thinking when 

interacting with another (Bas Ader & Carlson, 2021; Carlson, Bowling, Moore, & Ortiz, 

2007; Teuscher, Moore, Carlson, 2016). In particular, these researchers have argued that 

decentering or setting aside one’s thinking in an attempt to understand what students 

understand (Steffe & Thompson, 2000) is a useful construct for explaining and 

characterizing teachers’ responses and interactions with students while teaching. This 

perspective differs from the research on teacher noticing as it “moves beyond discourse 

analysis by including a focus on the teacher’s interpretations of students’ verbal and 

written explanations to make decisions in the moment of teaching” (Teuscher, Moore, 

Carlson, 2016, p. 437). 
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THEORETICAL PERSPECTIVE 

Quantitative reasoning- the analysis of a situation into a quantitative structure, a 

network of quantities, and quantitative relationships (Thompson, 1990, 1993, 2011), has 

been identified as a critical way of thinking that supports students’ development of 

coherent meanings for angle measure and trigonometric functions (Hertel & Cullen, 

2011; Moore, 2010, 2014; Tallman, 2015; Thompson, 2008).  

Within the theory of quantitative reasoning, a quantity is a quality of something 

that one has conceived as admitting some measurement process (Thompson, 1990). 

Quantities exist in the mind of the individual conceiving them. To comprehend a 

quantity, an individual’s conception of “something” must be elaborated to the point that 

they “see” characteristics of the object that are admissible to the process of quantification 

(ibid). Quantification is a direct or indirect measurement process that results in a value. A 

quantity’s value is the numerical result of a quantification process. Numerical operations 

are used to calculate a quantity’s value, however, numerical operations differ from 

quantitative operations. A quantitative operation is the conception of two quantities taken 

to produce a new quantity. Put another way, a quantitative operation is a description of 

how quantities come to exist (Thompson, 1990). One cannot have a completed 

quantitative operation without having created a quantitative relationship. A quantitative 

relationship involves conceiving three quantities, two of which determine the third by a 

quantitative operation. However, one cannot construct a quantitative relationship without 

conceiving a quantitative operation. 

A Quantitative Meaning for Angle Measure 

An angle is a geometric object formed by two rays that meet at a common vertex. 

Many students and teachers recognize that measuring an angle involves quantifying the 
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openness between two rays that meet at a common vertex. However, the openness of an 

angle is a quantity only to those who conceive of an attribute to measure, an appropriate 

unit of measure, and a process by which to measure it (Thompson, 2008; Tallman & 

Frank, 2018). For example, one may conceptualize measuring the openness of an angle 

by measuring the length of the arc of a circle subtended by the angle whose vertex lies at 

the center of the circle. However, for the measure of the angle to be independent of the 

size of the circle, the arc length needs to be measured in units that covary with the length 

of the subtended arc so that the ratio of the subtended arc length to a unit length is always 

constant for an angle with a fixed amount of openness (Tallman, 2015). Thus, the unit of 

measure must be proportional to the subtended arc length and, by extension, the circle’s 

circumference (Thompson, Carlson, & Silverman, 2007).  

 

Figure 3. Measuring an Angle in Units Proportional to the Circumference 

For example, we could measure the angle in Figure 3 by multiplicatively 

comparing the length of the subtended arc to the length of the circle’s circumference. As 

such, the angle would have a measure of 1/3 as it subtends an arc that is 1/3 times as large 

as the circumference of the circle centered at the vertex of the angle. One could also 

imagine measuring the angle’s openness in Figure 3 by multiplicatively comparing the 

length of the subtended arc to the length of 1/6th of the circumference of the circle 

1

6
 th of circumference  
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centered at the angle’s vertex. Again, the angle would have a measure of 2 since the angle 

subtends an arc that is always two times as large as 1/6th of the circumference of the 

circle centered at the angle’s vertex. Thus, a productive conceptualization of angle 

measure involves conceiving angle measure as a measurement process that defines a 

multiplicative relationship between a subtended arc and some unit proportional to the 

circumference of the circle centered at the angle’s vertex (Moore, 2014). 

However, to understand the need for the unit of measure to be proportional to the 

circumference of the circle that contains the subtended arc requires one to realize that a 

fixed angle always subtends the same fraction of the circumference of any circle centered 

at the vertex of the angle (Moore, 2010). For example, an angle measures one radian if it 

subtends a class of arcs that each measure one radius length or are 1/2𝜋 times as long as 

the circumference of the circle (for which the arc is a part) centered at the vertex of the 

angle. Similarly, an angle measures one degree if it subtends a class of arcs that are 1/360 

times as long as the circumference of the circle (for which the arc is a part) centered at 

the vertex of the angle. As such, one could measure the angle in Figure 4 by 

multiplicatively comparing the length of either of the three subtended arcs (red, green, or 

blue) to the length of the respective circle’s radius. Thus, the angle in Figure 4 measures 

1.2 radians as it subtends a class of arcs that are each 1.2 times as large as the length of 

the radius of the respective circle that contains the subtended arc.  
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Figure 4. Class of Arcs 

 

METHODS 

This study aimed to investigate the relationship between a teacher’s mathematical 

meanings for teaching angle measure and her instructional practices. To this end, I 

conducted an exploratory multiple-case study (Stake, 1995; Yin, 2009). The primary goal 

of an exploratory case study is to expand and generalize theories (ibid). As such, the 

reader must keep in mind that case studies are less about accurate descriptions of “the 

case” and more about generalizing theoretical propositions. I chose to do an exploratory 

multiple-case study because the data I had access to was limited to contemporary events 

(e.g., classroom observations and clinical interviews). This methodology also served as 

the most appropriate method for closely investigating the interaction between a teacher’s 

MMT and instructional actions by allowing me to focus in-depth on two cases (Yin, 

2009). Lastly, I selected to conduct a multiple case study to provide contrasting cases of 

two instructors’ MMT angle measure and sine function and the interaction between their 

meanings and their practices.  

This paper presents an in-depth analysis of one instructor, Shira, who was a 

graduate student instructor (GSI) in her first year (second semester) of teaching 

precalculus using the Pathways to Calculus research-based curriculum (Carlson, 
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Oehrtman, Moore, & O’Bryan, 2020) at a large research university in the southwest 

United States. Shira was a Ph.D. student studying applied mathematics at the time of this 

study. I selected Shira as the case for this study because: 

1. she was in her first year of teaching precalculus using the Pathways curriculum. 

2. she had limited experience (one and a half semesters) attending professional 

development seminars led by the leaders of the Pathways Precalculus research 

team. 

3. she was willing to let me video-record her classroom instruction.  

Concurrent with this study, Shira was enrolled for the second semester in a 

required professional development seminar that met weekly for ninety minutes. The 

purpose of the professional development seminar was to (1) support the graduate student 

instructors in developing coherent meanings and ways of thinking about the ideas to be 

taught during the upcoming week and (2) support the GSIs in clearly explaining their 

meanings for these ideas to others. The professional development seminar primarily 

focused on the mathematical content and what was entailed in understanding and learning 

the key ideas of each lesson. During the seminar, GSIs and the seminar leader regularly 

discussed and engaged in the Pathways Conventions for supporting quantitative 

reasoning that included reinforcing patterns for speaking about quantities and 

relationships among quantities (speaking with meaning), conceptualizing a graph as a 

record of how two quantities’ values vary together (quantity tracking tool), representing 

the quantitative structure of a problem context (quantitative drawing), and consistent 

expectations and methods for defining variables, constructing algebraic expressions and 

defining formulas (emergent symbolization) (Carlson, O’Bryan, & Rocha, 2023). During 



   22 

the weekly seminar, the GSIs were also asked to demonstrate (to the seminar leader and 

their teaching peers) how they intended to support their students in learning the key ideas 

in the upcoming lessons. Materials for such discussions and presentations stemmed from 

the instructor materials for the Pathways Precalculus curriculum and were supplemented 

by the PD leader’s research background and online lessons that were developed for 

entirely online courses during the COVID-19 pandemic.  

The Pathways Precalculus curriculum is a research-based curriculum that was 

designed as a result of many years of research on students’ learning and instructors’ 

teaching of precalculus ideas (Carlson, 1995; 1997; 1999; Carlson, Jacobs, Larsen, Coe, 

& Hsu, 2002; Carlson, Madison, & West, 2015; Carlson, Oehertman, & Engelke, 2010; 

Engelke, Carlson, & Oehertman, 2005; Kuper, 2018; Marfi, 2017; Moore, 2010; 

O’Bryan, 2019; Tallman, 2015). The Pathways curriculum was designed to (1) increase 

the retention and success of students in STEM and (2) shift instructors’ practice to have a 

greater focus on developing students’ understandings of precalculus ideas (Carlson, 

2019). In particular, the Pathways curriculum materials (Carlson & Oehrtman, 2010) 

were designed to support instructors in fostering productive reasoning patterns in their 

students that research has revealed to be essential for students’ construction of 

meaningful function formulas (e.g., Moore & Carlson, 2012; Thompson, 1988; 1990, 

1992) and graphs (e.g., Carlson et al., 2002; Moore & Thompson, 2015). 

Experimental Methods 

The first phase of this study consisted of a task-based clinical interview (TBCI) 

(Clement, 2000; Goldin, 1997; Hunting, 1997) designed to elicit Shira’s (1) meanings 

and ways of thinking about angles and their measures, (2) commitment to quantitative 
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reasoning, and (3) image of how to support students in developing coherent meanings for 

angles and their measures. The second phase of this study consisted of a series of lesson 

observations and semi-structured clinical interviews that I engaged Shira in before and 

after her instruction on angles and their measures. 

Before Shira’s teaching, I conducted short semi-structured clinical interviews in 

which she posed questions that probed Shira’s meanings for angle measure, her approach 

to planning lessons, and her image of the understandings she wanted students to 

construct. During these pre-teaching clinical interviews, I also inquired about the 

activities and conversations about the activities Shira anticipated having with students 

during her lessons on angle measure. Following this pre-teaching interview, I observed 

and video-recorded Shira’s teaching. Immediately following Shira’s teaching, I 

conducted short semi-structured clinical interviews in which I probed her rationale for 

specific instructional actions that I observed during her teaching. 

Two days after Shira’s respective lesson on angle measure, I conducted “video-

analysis” clinical interviews with Shira. These video-analysis clinical interviews were 

conducted immediately before the subsequent pre-teaching interview with Shira. During 

the video analysis clinical interview, I showed Shira short video segments from her 

previous lesson. For these interviews, I selected clips in which the instructor: 

1. interacted with a student or multiple students. 

2. leveraged students’ thinking in their teaching. 

3. used an applet, table, or diagram to support their discussion of a mathematical 

idea. 

4. deviated from their original lesson plan. 
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While watching the video segments with the instructor, I prompted her to explain 

their motive for specific comments, actions, and questions. I also posed questions to 

understand and characterize the mental actions the teacher engaged in when interacting 

with students. Table 1. outlines the timeline of the research activity conducted in each 

phase of the study. 

Date Research Activity Duration 

Phase 1 

3/27 Angle Measure TBCI 90 Minutes 

Phase 2 

3/28 Pre-Teaching Clinical Interview 1 30 Minutes 

3/28 Classroom Observation 1 50 Minutes 

3/28 Post-Teaching Clinical Interview 1 20 Minutes 

3/30 Video Analysis 1& Pre-Teaching Clinical 

Interview 2  

60 Minutes 

3/30 Classroom Observation 2 50 Minutes 

3/30 Post-Teaching Clinical Interview 2 20 Minutes 

4/1 Video Analysis 2 & Pre-Teaching Clinical 

Interview 3 

30 Minutes 

Table 1. Schedule of Phase 1 and Phase 2 of Data Collection 

Analytical Methods 

Preliminary Analysis 

The angle measure TBCI constituted the only data for my preliminary analysis. 

During the TBCI, I took notes on the meanings Shira expressed. At this stage of my 

analysis, I was alert to moments when Shira (1) engaged in quantitative reasoning or (2) 

expressed a desire to support students’ engagement in quantitative reasoning. After the 

interview, I took notes to record my initial thoughts and impressions of Shira’s meanings 

for angles and their measures. Within 24 hours of the TBCI, I watched the video 

recording of the interview and wrote detailed memos that described Shira’s responses and 
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the understandings she expressed when responding to each task included in the TBCI. 

These memos constituted my initial model of Shira’s MMT for angle measure. 

Ongoing Analysis 

My initial analysis occurred during the data collection phase of the study. 

Throughout the pre-teaching, post-teaching, and video analysis clinical interviews, I 

wrote detailed notes about Shira’s responses and the understandings I interpreted her to 

be expressing. I also noted instances when she attempted to support her students’ 

engagement in quantitative reasoning and interacted with students while teaching. In 

addition, I made note of instances when Shira discussed the meanings she wanted 

students to have for an angle and its measure. During the post-teaching and video 

analysis interviews, I noted any instances when Shira expressed interest in a student’s 

thinking or discussed her image of how she thought a student(s) was thinking. Following 

each clinical interview, I wrote detailed memos on (1) how I hypothesized Shira to be 

reasoning about angles and their measures, (2) expressions that provided insights about 

the degree to which she engaged in quantitative reasoning, and (3) her attention to and 

expressions of how a student was thinking.  

My ongoing analysis of Shira’s instruction involved taking detailed notes as I 

observed her teaching. As I observed Shira’s teaching, I noted moments when she (1) 

expressed a meaning for angles and their measures, (2) interacted with students in their 

groups, and (3) attended to or leveraged student thinking while teaching. Within twenty-

four hours of a lesson, I watched the video recording of Shira’s instruction. During this 

time, I selected segments of her instruction according to the three criteria above. These 
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selected segments constituted the video clips Shira watched with me during the clinical 

interview video analysis. 

Retrospective Analysis 

The goal of my retrospective analysis was to i) construct a model of the 

instructor’s meaning for angle measure, ii) characterize her interactions with students 

while teaching, and ii) document instances when the teacher’s mathematical meaning for 

teaching angle measure appeared to influence her actions while teaching, and when her 

interactions with students while teaching appeared to influence her mathematical 

meaning for teaching angle measure.  

My lens for analyzing the data included: i) the conceptual analysis of the idea of 

angle measure, described in the prior section, and ii) Bas Ader and Carlson’s (2021) 

decentering framework (see Table 3). My conclusions were primarily based on my 

retrospective analysis of the data. My implementation of Simon’s (2019) three-phased 

method for performing a qualitative analysis began with a line-by-line analysis of the 

TBCI to generate hypotheses about the subject’s thinking. In this phase, I wrote detailed 

memos about my conjecture for (1) what the subject was doing and why they might have 

been doing it, (2) what the subject might have meant by what they said at this point, (3) 

what the subject might have been thinking, and (4) what this might show about the 

subject’s understanding (Simon, 2019).  

I then used the memos constructed in the first phase of analysis as data for the 

second phase. Specifically, I coded each memo using the codes shown in Table 2. My 

decision to use the codes in Table 2 was informed by prior research that has identified 

quantitative and covariational reasoning as essential ways of thinking for supporting 
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teachers’ conveyance of coherent meanings while teaching (Carlson, O’Bryan, & Rocha, 

2023; Tallman, 2015; 2021; Tallman & Frank, 2018; Thompson, 2008; 2013) and 

students’ construction of meaningful function formulas (e.g., Moore & Carlson, 2012; 

Thompson, 1988; 1990, 1992) and graphs (e.g., Carlson et al., 2002; Moore & 

Thompson, 2015). 

Code Description 

Quantitative 

Reasoning 

(QR) 

Instructor engaged in quantitative reasoning.  

Quantitative 

Reasoning 

Students 

(QRS) 

Instructor encouraged students to engage in quantitative reasoning 

(QR), took actions to support students’ engagement in QR, or 

talked about wanting to support students’ engagement in QR; OR 

students engaged in QR. 

Covariational 

Reasoning 

(CR) 

Instructor engaged in covariational reasoning 

Covariational 

Reasoning 

Students 

(CRS) 

Instructor encouraged students to engage in covariational 

reasoning (CR), took actions to support students’ engagement in 

CR, or talked about wanting to support students’ engagement in 

CR; OR students engaged in CR 

Angle 

Measure 

(AM) 

Instructor expressed a meaning for angle measure 

Angle 

Measure 

Students 

(AMS) 

Instructor described meanings they want students to have for angle 

measure OR student expressed meaning for angle measure. 

Sine 

Function 

(SF) 

Instructor expressed a meaning for the sine function.  

Sine 

Function 

Students 

(SFS) 

Instructor described meanings they want students to have for the 

sine function OR student expressed meaning for the sine function. 

Instructor-

Student 

Interaction 

(ISI) 

Instructor interacted with student while teaching, discussed an 

interaction with a student from previous teaching, discussed an 

anticipated interaction with students while teaching. 
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Image of 

Student 

Thinking 

(ImgStu) 

Instructor described their image of how students were thinking. 

Table 2. Codes Used During Analysis 

The goal of the second phase of analysis was to hypothesize (1) the 

understandings the subject was exhibiting and (2) how the subject was thinking as they 

progressed from one task to the next (Simon, 2019). I refined the angle measure codes to 

further categorize the subjects’ thinking about angles and their measures. As one 

example, if a subject discussed radians or degrees, these instances were coded using the 

“Measurement unit” code. Similarly, if a subject discussed measuring the length of an arc 

subtended by an angle using some unit, these instances were coded using the 

“Measurement Process” code. 

 

 

 

 

 

 

 

Figure 5. Angle Measure Subcodes. 

Following my initial coding, I conducted a second pass that involved validating 

and refining my initial coding of the data. In the third and final analysis phase, I 

identified themes in the conceptual analysis that best characterized and modeled the 

instructor’s MMT for angle measure. In this analysis phase, I reviewed the lines of the 

transcript that exemplified each theme and wrote a detailed summary that elaborated on 

Angle Measure

Angle (object) Attribute
Measurement 

Process 
Measurement 

Unit

Radian

Degrees

Starting Point 
and Direction of 

Measurement
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each theme. I recorded each of these summaries beneath the transcript of the individual 

interview. These summaries constituted my emerging model of the instructor’s MMT for 

angle measure. 

When analyzing the instructor’s classroom instruction, I used instructor-student 

interactions, including instructor-led discussions, as my unit of analysis. In the first round 

of analysis, I identified segments of the instructors’ teaching in which (1) they expressed 

a meaning for angles and their measures or (2) interacted with students. During this round 

of analysis, I wrote detailed memos of each selected segment that detailed my hypotheses 

of how the instructor was thinking and/or why they interacted with students in the way 

they did. In the second round of analysis, I coded the previously selected segments using 

the codes shown in Tables 2 and 3 and Figures 4 and 5. When coding instructor-student 

interactions, I broke the instructor-student interaction code down into the subcodes shown 

in Table 3 and Figure 6. I then analyzed each code from the second phase of analysis and 

looked across the codes for themes to model how the instructor was thinking and/or the 

nature of the instructor’s interaction with students.  

Code Description 

Decenter 0 

(D0) 

Instructor shows no interest in the student’s thinking but shows 

interest in the students’ answer. Makes no attempt to make sense of 

the student’s thinking but takes actions to get the student to say the 

correct answer. 

Decenter 1 

(D1) 

Instructor shows interest in student’s thinking but makes no attempt 

to make sense of the students’ thinking. Attempts to move the 

student to their way of thinking without trying to understand or build 

on the expressed thinking and perspective of the student. 

Decenter 2 

(D2) 

Instructor makes an effort to make sense of the student’s thinking 

and perspective but does not use this knowledge in communication. 
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Decenter 3 

(D3) 

Instructor makes sense of the student’s thinking and/or perspective 

and makes general moves to use the student’s thinking when 

interacting with the student. 

Decenter 4 

(D4) 

Instructor constructs an image of the student’s thinking and/or 

perspective and then adjusts their actions to take into account both 

the student’s thinking and how the student might be interpreting 

them. 
Table 3. Decentering Framework (Bas Ader & Carlson, 2021) 

Figure 6. Codes Used to Characterize Instructor’s Image of Student Thinking 

RESULTS 

Shira’s Meanings for Angle Measure 

Shira participated in one task-based clinical interview (TBCI) prior to her lessons 

on angles and their measures. During the TBCI, Shira completed a series of tasks 

designed to elicit her meanings and ways of thinking about angles and their measures. As 

described in the conceptual analysis section, a quantitative meaning for angle measure 

necessarily entails: 

1. an understanding that the openness of an angle can be quantified by measuring the 

length of the arc subtended by an angle whose vertex lies at the center of the 

circle the angle subtends. 

2. an understanding that an angle subtends the same fraction of the circumference of 

all circles centered at the vertex of the angle. 

3. an understanding that the length of the subtended arc must be measured in a unit 

proportional to the circumference of all circles centered at the angle’s vertex. 

Instructor-Student 
Interaction

D0 D1 D2 D3 D4
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4. and an understanding that the measure of an angle can be determined by 

multiplicatively comparing the length of the subtended arc and some unit 

proportional to the circumference of the circle containing that arc.  

Throughout the TBCI, Shira consistently distinguished an angle from its measure. 

She also consistently expressed that an angle’s measure quantifies the openness between 

the angle’s rays (see Excerpt 1). 

  

Figure 7. Shira’s Drawing of an Angle That Measures 3.5 Radians 

Excerpt 1 

1 Shira: It says, what does it mean for an angle to measure 3.5 radians. Umm I am 

2  trying…. [long pause]. So, If I had an angle, we would need like a  

3  concept of how a radius relates to… I don’t want to say relates to an  

4  angle, because a radius doesn’t necessarily relate to an angle. So, if we  

5  have a radius length that measures r then for an angle to measure 3.5  

6  radians means that it is 3.5 radius lengths. So, I could take this distance  

7  [points to r] and kind of imagine overarching it over an arc 3.5 times. So  

8  that would be about 3.5. 

9 Int: Could you draw an angle that measures 3.5 radians? 
10 Shira: I can try. So, it would be approximately it wouldn’t be exact (see Figure 7). 

11 Int: Can you tell me a little bit about how you drew that? How do you know  

12  where to put those tick marks? 

13 Shira:  I thought about the length of this distance [points to the radius of the circle]  

14  and kind of thought about placing the length of this distance [the radius]  

15  around the circle and doing that 3 and a half times. 

16 Int: Why did you do that? 

17 Shira: Because that is what the definition of what a radian is. 

18 Int: What meaning do you want students to have for what the definition of a  

19  radian is? 

20 Shira: A radian is a unit of measurement for measuring the openness of an angle.  
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21  But one radian corresponds to one radius length along the subtended arc. 

 

When asked to draw an angle that measures 3.5 radians, Shira did so by drawing a 

circle and placing the vertex of an angle at the center of the circle. She then determined 

where to draw the terminal ray of the angle by envisioning laying the length of the 

circle’s radius along the circle’s edge three and a half times. These actions indicate that 

Shira had conceptualized the radius of a circle as a unit of measure for quantifying the 

openness of an angle and a process (laying the radius along the circle’s arc) for 

measuring an angle. However, Shira’s statement of “one radian corresponds to one radius 

length along the subtended arc” (Excerpt 1, line 21) suggests that she may have been 

thinking about a radian as a unit length (1 radian = 1 radius length).  

She expressed similar thinking when she described what a degree was. As one 

example, Shira described a degree as the length of an arc that results from “[cutting] up a 

circle into 360 pieces evenly” (Excerpt 2, lines 8-9). Shira’s descriptions of radian and 

degree in Excerpts 1 and 2 indicate that she was thinking about these units of measure as 

specific lengths to iterate along the arc of a circle. Although Shira recognized that radians 

and degrees correspond to particular lengths (a radian is one radius length, and a degree is 

the length of an arc that results from cutting a circle into three hundred and sixty pieces), 

as is supported in a later section, her statements and actions did not demonstrate an 

understanding that these measures (degrees and radians) always subtend the same 

fraction (1/360th or 1/2𝜋th respectively) of the circumference of any circle centered at the 

vertex of the angle. 

Excerpt 2 

1 Int: What would it mean for an angle to measure 30 degrees? 

2 Shira: I could draw you a thirty-degree angle [draws a 90-degree angle and  
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3  partitions it into three smaller angles]. I would say that this angle   

4  [highlights one of the three smaller angles] is 30 degrees. 

5 Int:  Okay, and how do you know that? 

6 Shira: Because I know this is a 90-degree angle [points to right angle] and if I  

7  were to divide it by three I would get this thirty-degree angle. But now that  

8  I am thinking about it, if I am not mistaken, one degree is… if you imagine  

9  a circle being cut up into 360 pieces evenly. Then I guess you could say  

10  one of those, arc lengths would correspond to one degree. 

11 Int: What are you imagining cutting up? 

12 Shira: I would say kind of like [pauses]… 

13 Int: Can you draw where you are imagining cutting the circle? 

14 Shira: Yeah it would kinda deal with cutting the circle in half, or just making sure   

15  the line goes through the center. 

16 Int: Okay, so then you said this angle right here is 90 degrees [draws red  

17  rectangle near corner of the angle] so, how’d you know that? 

18 Shira: It’s just something that I’ve always been told. It is not something that I  

19  necessarily know. 

20 Int: Yeah how do we determine that openness? Like how do we know it’s 90  

21  and not 110? 

22 Shira: Yeah, I don’t think I could tell you. 

 
Figure 8. Shira’s Drawing of an Angle That Measures Thirty Degrees 

 

In Excerpt 2, I asked Shira what it means for an angle to measure thirty degrees. 

Shira responded by drawing a right angle and partitioning it into three smaller angles. 

Shira then said that one of the three smaller angles measures thirty degrees. When I asked 

Shira how she knew that the openness of a right-angle measures ninety degrees, she was 

unable to answer. Shira’s inability to explain why a right-angle measures ninety degrees 

as opposed to one hundred and ten degrees further supports that she was solely thinking 

about degrees as a unit length (measuring 1/360th of the circumference of a circle 

centered at the angle’s vertex) as opposed to also thinking about a ninety-degree angle as 
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subtending a class of arcs that measure ninety-three hundred sixtieths or one-fourth of the 

circumference of any circle centered at the vertex of the angle. I also noticed Shira’s 

inability to recognize that a fixed angle always subtends the same fraction of the 

circumference of any circle centered at the angle’s vertex when she asked Shira to draw 

angles with various measures. For example, when asked to draw an angle measuring 2.7 

radians, Shira drew an angle with the initial ray at a 3 o’clock position and the terminal 

ray in the third quadrant (see Figure 9). 

 

 Figure 9. Shira’s Drawing of an Angle That Measures 2.7 Radians 

At the end of the first TBCI, I asked Shira to explain why degrees and radians are 

appropriate units for measuring angles (see Excerpt 3). Shira responded by stating radians 

and degrees are “independent of distance” (Excerpt 3, lines 3-5). However, when probed 

to explain why radians and degrees were independent of distance, Shira was unable to do 

so. I hypothesize that Shira was unable to answer this question because she did not 

conceive of these units as always subtending an arc that measures the same fraction 

(1/360th or 1/2𝜋th, respectively) of the circumference of any circle centered at the vertex 

of the angle.  

  

Figure 10. Shira’s Drawing to Illustrate That Degrees and Radians Are Independent of Distance 
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Excerpt 3 

1 Int: So, you have talked a lot today about radians and degrees. So why are we 
2  allowed to use those? Why are they appropriate units of measure? 
3 Shira: Umm… [long pause] I would say it goes back to the fact because those 
4  are…independent of the… [long pause] hmmm… I guess you could say 
5  they are independent of distance. When I say distance, I mean like in 
6  essence I wouldn’t be able to measure it with this [draws short blue  
7  vertical line] because this is a fixed distance and that is not necessarily  
8  [draws longer blue vertical line between angle’s rays] but yet this is still  
9  as open here [draws inner blue arc] as it is over here [draw outer blue arc]. 
10  And likewise, with again thinking about the openness it’s independent of 
11  the arc length because this length [highlights inner blue arc] is obviously 
12  smaller than this length [highlights outer blue arc]. 
13 Int: Would you be able to articulate why it is independent? Like with degrees  
14  if we measured that angle that you just drew, why is it that using degrees  

15  would be okay? 
16 Shira: [very long pause] I really don’t know. 
17 Int: Okay, that’s okay. 

 

I posed the task in Figure 11 for the purpose of determining if Shira recognized 

that she could measure any angle by multiplicatively comparing the length of the arc 

subtended by the angle’s rays and any unit proportional to the circle’s circumference 

(including the circumference itself). Excerpts 4, 5, and 6 include Shira’s response to this 

task.  

 

Suppose you give students the angle below. Lamonte, a student in your class claims 

that the measure of the angle is 3/8ths. Arlyse, another student in your class, claims 

that the measure of the angle shown below is 3. How is Lamonte thinking about 

measuring the angle? How is Arlyse thinking about measuring the angle? Are they 

both correct?  
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Figure 11. Angle Measure TBCI Unit of Measure Task (Adapted from Tallman, 2015). 

 

Excerpt 4 

1 Shira: 3/8ths so I am assuming there is 8 dots? [counts to check] Okay [long  

2  pause]. 
3 Int: What are you thinking? 

4 Shira:  I am trying to think if… Like earlier I made the claim that cutting up the  

5  circle into 360 pieces I guess then the openness of one of those is one  

6  degree… Umm and so, I am trying to think if that is what Arlyse is doing? 

7 Int: When you say “that”, what do you mean? 

8 Shira: If Arlyse is cutting the circle into 8 pieces instead of three sixty. 

9 Int: Is that a valid way of measuring the angle? 

10 Shira: In part I want to say yes, because even if I had a bigger circle, umm the  

11  angle is still the same. The angle would still equal 3 whatever name units  

12  we want to give it. And then I am also trying to think about Lamonte.  

 
Figure 12. Shira’s Description of How Arlyse is Thinking 

Shira responded to this task by relating Arlyse’s (hypothetical student) activity to 

her own activity of splitting a circle into three hundred and sixty pieces to determine the 

measure of an angle that is one degree. Shira then expressed that Arlyse’s splitting the 

circle into eight pieces is a valid way of measuring the angle because she could iterate 

one of those eight pieces on a larger circle and still get a measure of 3. Shira’s initial 

response to this task further indicates that she was thinking about measuring angles by 

iterating units; however, when asked what Arlyse’s unit of measure was, Shira expressed 

that Arlyse’s unit was the openness of one of the eight pieces (see Excerpt 5).  

Excerpt 5 

1 Int:  Before we jump to Lamonte, what unit is Arlyse using? 

2 Shira:  Umm I would say, I don’t know. I feel like we can’t give it a name. I think  

3  we would have to give it a name. 
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4 Int:  Like, we could just make anything up? Like doggos? 

5 Shira: Yeah [laughs] 

6 Int: What is one doggo then? 

7 Shira: One doggo is this [highlights arc of 1/8th of circumference of small circle]. 

8  Well, it wouldn’t necessarily be the arc length… 

9 Int: So, what is one doggo? 

10 Shira: This openness [draw arced arrow]. Yeah…. 

 

Although Shira correctly identified that Arlyse was measuring the angle using one 

of the eight pieces of the circle, Shira did not identify Arlyse’s unit of measure as the 

length of an arc that subtends one-eighth of any circle’s circumference centered at the 

angle’s vertex. Furthermore, Shira’s activity of iterating one of the eight pieces of the 

circle indicates that she may have been thinking about iterating a slice or sector of the 

circle that measures one-eighth of the circle’s area as opposed to the length of an arc that 

measures one-eighth of the circle’s circumference.  

Excerpt 6 

1 Int:  Okay, so let’s go to Lamonte. How is he thinking? 

2 Shira:  He is thinking about it in terms of a fraction. So, he says this [highlights  

3  arc in blue] measures 3 of the whole. Ummm… [long pause]. 

4 Int:  Yeah, what is Lamonte’s unit of measure? 

5 Shira: I would say the distance from here to here. Like the length of one of these  

6  segments [highlights black arc]. 

7 Int: Okay. So, is Lamonte’s unit of measure the same as Arlyse’s? 

8 Shira: I want to say no, but I am not sure that I have the full reasoning behind it  

9  umm… 

10 Int: Do you think Lamonte and Arlyse are both correct? Or do you think one  

11  or both of them are incorrect? 

12 Shira: I want to say that Arlyse is correct. I am not sure if Lamonte is correct. 

 

 
Figure 13. Shira’s Description of Lamonte’s Unit of Measure 
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In Excerpt 6, Shira expressed that Lamonte was measuring the length of the arc 

subtended by the angle’s rays using the length of the black arc (see Figure 13) instead of 

the circle’s circumference. When asked if Lamonte’s unit of measure was the same as 

Arlyse’s, Shira said no. This further supports that Shira may have thought Arlyse’s unit 

of measure was a sector of the circle instead of an arc length. When asked if Lamonte’s 

answer was correct, Shira said she was unsure. Shira’s response to this task indicates that 

she had not conceptualized the circumference of a circle as an appropriate unit for 

measuring an angle’s openness. Her response to this task also provides further evidence 

that she was solely thinking about units of angle measure as unit lengths (or potentially 

unit sectors) to be iterated and not simultaneously as measures of an angle’s openness 

that subtend a class of arcs that always measure the same fraction of the circumference of 

any circle centered at the vertex of the angle. 

Shira’s Meanings for Degree as Expressed While Teaching 

Following the angle measure TBCI, I attended Shira’s classes in which she was 

leading lessons on angles and their measures. Shira had about thirty-five students in her 

class. The students were seated at six round tables around the classroom. Each table had 

approximately six students seated together. During Shira’s class, students worked 

together at their tables most of the time.1 They worked with their group to complete the 

workbook investigations that included conceptually focused problems and scaffolded 

questions that prompted them to explain their thinking. After completing specific 

questions in their groups, Shira typically led a discussion by asking particular groups or 

 
1 The students sitting at one table worked together as one group. 
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individuals to share their answers and thinking. Shira repeated this pattern of group work 

followed by a short class discussion for the duration of the 50-minute class period.  

I collected the data in the next section during Shira’s second lesson on angles and 

their measures. At the start of this class, Shira introduced degree angle measure. Shira’s 

description of a degree is in Excerpt 7. 

Excerpt 7  

1 Shira: What you can imagine, right, is that degrees come from cutting up this  

2  circle into 359 equal pieces [draws multiple diameters through center of  

3  circle]. The reason why it would be 359, right, is because we want it to be  

4  cut into 360 pieces. Does that make sense? Okay, so then one of those, so  

5  then one degree is gonna be a really small sliver [motions with her hands  

6  to indicate the whole sector]. And that would measure one degree. 

 

 

 

 

 

Figure 14. The Image Shira Drew on the Board While Introducing Degree Angle Measure 

Shira followed her introduction of one degree by prompting students to work on 

the task shown in Figure 15 with their groups. As students worked on the task, Shira 

walked around the room and observed the students’ work. Excerpt 8 shows Shira’s 

interaction with a group of students as they worked through the task shown in Figure 15.  

 

Figure 15. Degrees Task That Students Completed in Groups 

 

Excerpt 8 

1 Shira: So, what are we thinking? What does it mean? 

Describe what it means for an angle to have a measure of 10 degrees. 
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2 Student 1: It has a measure of 10 degrees. 

3 Shira: What has a measure of 10 degrees? 

4 Student 2: The circle. 

5 Student 1: The angle. 

6 Shira:  Okay… Umm… 

7 Student 1: The space between the two rays. 

8 Shira: What do you mean by space? 

9 Student 1: Like right here [can’t see what the student is pointing to]. 

10 Shira:  Okay, so the openness? 

11 Student 1:  Yeah, the openness. 

12 Shira:  Okay, but we just defined what a degree was, right, what was a  

13  degree? 
14 Student 3: A unit of… 

15 Student 2: Of angle measure! 

16 Shira:  Okay, so it is a unit of angle measure, but like specifically, where does  

17  it come from? 

18 Student 1: from splitting it 359 ways. 

19 Shira: Okay, good so then 10 degrees would equal… 

20 Student 3: Ten slices 

21 Shira: Ten slivers right, ten slices. Alright. Okay keep it going [walks toward  

22  group 2]. 

 

In this interaction, Shira asked students to describe what it means for an angle to 

measure ten degrees. A student in the group responded by explaining that ten degrees 

come from splitting a circle three hundred and fifty-nine ways. Another student in the 

group further clarified that ten degrees would equal ten slices that result from splitting the 

circle three hundred and fifty-nine ways. Shira responded to students by confirming that 

ten degrees are “ten slivers [or] ten slices” (Excerpt 8, line 21). Shira’s response to these 

students further suggests that she may have been thinking about degrees as sectors of a 

circle. Shira concluded this interaction with students by telling them to continue working 

on the remainder of the task (which contained two other parts). She then moved to a 

second group of students. Excerpt 9 shows Shira’s interaction with the second group of 

students.   
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Excerpt 9  

1 Shira: Alright what did we say over here? 

2 Student 4: Ten over three sixty 

3 Shira: Ten over three sixty, what do you mean ten over three sixty, what  

4  does that mean? 

5 Student 4: Umm, you know how each degree is one over three sixty? 

6 Shira:  Well, one over three sixty of the circle’s circumference, yeah. 

7 Student 4: So, ten degrees would be like ten over three hundred and sixty. So, it  

8  would be like ten of the little dashes [motions with hands in an arc  

9  motion]. 
10 Shira: Okay, so I would make the argument that it would be ten of those arc  

11  lengths, right, but I wouldn’t say it’s like, like ten degrees does not  

12  mean ten over three sixty [moves to group 3]. 

 

Following her discussion with group 1, Shira immediately moved to group 2. 

When Shira prompted group 2 to explain what it means for an angle to measure ten 

degrees, Student 4 said, “ten over three sixty,” to which Shira disagreed (Excerpt 9). 

Shira’s response of “it would be ten of those arc lengths right, but I wouldn’t say… ten 

degrees does not mean ten over three sixty” (Excerpt 9, lines 10-12) supports that Shira 

was thinking about degrees solely as units to iterate.  

While working with group 2, a student from a nearby table overheard Shira tell 

Student 4 that ten degrees does not equal ten over three sixty. After hearing Shira say 

this, Student 5 immediately raised their hand, and Shira moved to the third group to assist 

Student 5 (see Excerpt 10). 

Excerpt 10  

1 Shira: Student 5 how are we doing? 

2 Student 5: We’re confused now that you said it wouldn’t just be ten over three  

3  sixty because that is what it shows. Because one degree is one over  

4  three sixty so, wouldn’t ten degrees be ten over three sixty? 

5 Shira: So, we’re saying we have ten of those one over three sixtieths but  

6  we’re not saying… It’s like if I had a pizza and I cut it up into like  

7  eight things. And I had a slice. Right, I take a slice out. I could say I  

8  only have one slice. Now granted I could say I have one of the eight  

9  slices, right, but you would not say I have one eighths of a slice. So,  

10  what I am saying, the angle measure would be ten degrees. That’s  
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11  without dividing by three sixty. What you’re finding there is a portion  

12  of the whole when you say ten divided by three sixty, but the angle  

13  measure is just ten degrees. It wouldn’t be ten divided by three sixty. 

 
Figure 16. The Image Shira Drew on the Board When Discussing Pizza Slices 

 Shira’s response to group 3 further shows that she was thinking about degrees as 

units to iterate and not as a unit of measure that subtends an equivalence class of arcs that 

each measure one three hundred and sixtieth of the circumference of any circle centered 

at the angle’s vertex. Shira’s response to group 3 also shows the impact an instructor’s 

mathematical meaning for teaching angle measure can have on their interaction with 

students and the meanings students can reasonably construct. In this example, Shira’s 

conception of degrees solely as units to iterate led to her confusing students about the 

meaning of ten degrees. It is also noteworthy that Shira was inconsistent in describing 

degrees as measures of “slivers or slices” and as “little arc lengths.”  

 Immediately following Shira’s lesson on degree and radian angle measure, I 

conducted a semi-structured clinical interview. During this interview, I asked Shira about 

her discussion of the meaning of ten degrees during class and probed her rationale for 

discussing slices of pizza. Excerpt 11 shows my discussion with Shira about her teaching 

of the task shown in Figure 16.  

Excerpt 11 

1 Shira: They wanted to say ten degrees meant ten divided by three sixty. So that  

2  was kind of…. I’m just not one hundred percent sure they understood. 
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3 Int:  Were you surprised by that? When they said ten divided by three sixty? 

4 Shira: Uh, in part I was, like I wasn’t expecting them to say ten divided by three  

5  sixty, but in part I understood where it was coming from. Like the  

6  definition. But no, I wasn’t expecting it. 

7 Int: Yeah, why do you think they said that? 

8 Shira: Umm… [long pause] I think they said that because, I think they were  

9  trying to say like we had ten of the one hundred and three sixtieths of the  

10  circle.  

11 Int: So, you responded to students by talking about slices of pizza. 
12  What were you hoping to draw students’ attention to by talking about  

13  slices of pizza? 
14 Shira: Like if I say I have one slice of pizza, that does not mean that we have  

15  one eighth of a slice of pizza. And true if you look at the whole pizza,  

16  and you have one slice, then yes you do have one eighth of the entire  

17  pizza, but you don’t have one eighth of a slice. Which I feel like is what  

18  they were doing, or what it meant for them to take ten degrees divided by  

19  three sixty degrees. 
 

Shira conveyed that she wasn’t sure if 10 degrees represented 10/360; and she 

was surprised when students said, “ten degrees meant ten divided by three sixty” (Excerpt 

11, lines 1-6). Shira’s response further supports that she was not thinking about ten 

degrees as the measure of an angle that subtends a class of arcs that are 10/360 times as 

large as the corresponding circumference of any circle centered at the angle’s vertex. 

Excerpt 11 also shows that Shira interpreted students’ statement of ten divided by three 

sixty to mean ten three hundred sixtieths of a degree (a fraction of a degree) instead of 

conceiving of ten divided by three sixty as representing a fraction of a circle’s 

circumference. It is also noteworthy that when I asked Shira why she thinks the student 

might have said “ten divided by three sixty,” she responded by stating what she believed 

the student meant to say (which also happens to be how Shira thinks about degrees) as 

opposed to considering that the student may be thinking differently than she was. As 

such, I characterized Shira’s interaction with these students as Decentering level 1 

behavior. Shira showed interest in the students’ thinking but tacitly assumed the student 
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was trying to express a meaning for ten degrees that aligned with her meaning for 

degrees.  

Two days after her lesson on radians and degrees, Shira was shown a video clip of 

this segment of her teaching in a clinical interview setting. While watching this segment 

of her teaching, I asked Shira for the second time how she believed Student 4 (from 

Excerpt 9) to be thinking when they said, “ten divided by three sixty.” Shira said she 

believed the student was thinking about ten over three sixty as “ten of those little arc 

lengths.” Shira also expressed that she wanted the student to think about ten degrees as 

ten arc lengths that each measure 1/360th of the circle’s circumference and “not as a 

portion of the whole.” This further illustrates that Shira conceived of degree angle 

measure as unit lengths (measuring 1/360th of the circumference of a circle centered at 

the angle’s vertex) to iterate and not simultaneously a unit that always subtends a 

constant portion (1/360th) of the circumference of any circle centered at the vertex of the 

angle. Moreover, Shira’s second interpretation of Student 4’s statement of “ten over three 

sixty” as “ten of those little arcs” further supports that Shira made no attempt to 

understand student 4’s thinking and instead assumed they were thinking in the same way 

she was. 

CONCLUSIONS AND DISUSSION 

This paper illuminates the affordances of attending to an instructor’s 

mathematical meanings for teaching an idea by providing a model of an instructor’s 

meanings for angles and their measures and an example of how an instructor’s MMT for 

angle measure contributed to student confusion and ultimately limited the meanings 

students could reasonably construct. Shira’s conception of degrees solely as units to 
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iterate and not simultaneously as a unit of measure that always subtends an equivalence 

class of arcs that measure one three-hundred and sixtieth of the circumference of any 

circle centered at the angle’s rays led to her conveying meanings that were incoherent, 

inconsistent, and confusing for students.  

During a lesson on degree and radian angle measure, Shira was inconsistent in 

describing a process for measuring angles. In one instance, Shira described ten degrees as 

subtending ten little arcs that each measured one three-hundred sixtieth of the 

circumference of a circle centered at the angle’s vertex. However, in another instance, 

Shira described ten degrees as  “ten slivers or slices” to iterate. Moreover, Shira’s 

conception of degrees and radians as unit lengths (or sectors) to iterate led to her telling 

students that ten degrees are “ten little arc lengths or slivers.” Thus, it is likely that 

students who took Shira’s statement at face value conceptualized angle measure as the 

result of an iteration process (laying down ten slivers or arc lengths) and not as a measure 

of openness that subtends an equivalence class of arcs that each measure the same 

fraction (10/360th or 1/36th) of any circle centered at the vertex of the angle.  

The results of this study also provide empirical support for Silverman and 

Thompson’s (2008), and Carlson et al.’s (in press) claims that the nature of an 

instructor’s meanings for a specific mathematical idea influences the nature of the model 

the instructor builds of a student’s thinking and her subsequent instructional actions. In 

particular, this paper provides an empirical example of a teacher operating from a first-

order model of students’ thinking. This paper further illustrates the ways an instructor is 

constrained to using their own thinking and meanings to make sense of students’ 

activities when operating from a first-order model of students’ thinking.  
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The results of this study also echo Tallman and Frank’s (2018) claims that 

teaching angle measure coherently requires teachers to have made subtle mathematical 

connections. Shira’s instruction often lacked coherence because she was inconsistent in 

identifying quantities, attending to units of measure, and constructing quantitative 

relationships. As such, the results of this study suggest that a teacher’s inattention to 

conceptualizing and relating quantities contributed to her conveying incoherent meanings 

for angle measure. These findings motivate mathematics teacher educators to engage 

teachers in experiences that support their development and conveyance of mathematical 

meanings grounded in quantitative reasoning.   

Moreover, these findings challenge assumptions that graduate students in 

mathematics have strong meanings for foundational mathematical ideas (Ellis, 2014). 

These findings also challenge claims that requiring teachers to take more high-level 

mathematics classes will significantly advance their mathematical understandings and 

enacted teaching practices. Although Shira had taken numerous PhD-level mathematics 

courses and attended a weekly professional development seminar for almost two-full 

semesters before this study, she still struggled to develop and convey coherent 

mathematical meanings to students. As such, this paper echoes Carlson, O’Bryan, and 

Rocha’s (2023) claim that transitioning teachers’ mathematical meanings for teaching an 

idea is a slow process that requires sustained professional development that provides 

teachers with repeated opportunities to construct coherent meanings for the ideas they are 

teaching. 
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CHAPTER 4 

PAPER 2: AN INVESTIGATION INTO THE INTERACTION BETWEEN A 

TEACHER’S MATHEMATICAL MEANINGS FOR TEACHING ANGLE MEASURE 

AND HIS DECENTERING ACTIONS: THE CASE OF ENZO  

INTRODUCTION AND LITERATURE REVIEW 

Researchers have developed constructs in the last few decades to investigate 

teachers’ knowledge base and how it relates to their teaching. These constructs include 

Mathematical Knowledge for Teaching (MKT) and Mathematical Meanings for Teaching 

(MMT). While research on teachers’ knowledge base is vast, scholars’ use of these 

constructs varies greatly. The constructs MKT and MMT differ in the nature of the 

phenomena they describe. Researchers have used the construct MKT to describe a 

knowledge base as a target for teachers to achieve. In contrast, the construct MMT has 

been used to describe the current state of teachers’ mathematical understandings relative 

to teaching. While many researchers have advocated for more attention to teachers’ 

MMT (Byerley & Thompson, 2017; Musgrave & Carlson, 2017; Tallman & Frank, 2018; 

Thompson, 2013, 2016), others have proposed that a sole focus on advancing teachers’ 

MMT is insufficient for explaining a teacher’s instructional planning and subsequent 

actions while teaching (Carlson, O’Bryan, & Rocha, 2023; Rocha, 2021; Tallman & 

Frank, 2018; Tallman, 2021).  

Instead, scholars have proposed that teachers’ ways of thinking are critical to their 

ability to develop, advance, and convey coherent meanings to students (Carlson, 

O’Bryan, & Rocha, 2023; Carlson et al., in press; Musgrave & Carlson, 2017; O’Bryan & 

Carlson, 2016; Rocha & Carlson, 2020; Rocha, 2022; Tallman, 2015; Tallman & Frank, 

2018). As one example, Musgrave and Carlson (2017) investigated graduate teaching 

instructors’ understanding of average rate of change (AROC) before and after an 
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intervention designed to support instructors in engaging in conceptually oriented teaching 

(Thompson & Thompson, 1996).  

Musgrave and Carlson (2017) found that only one of seven mathematics graduate-

student instructors initially expressed a meaning for average rate of change as a tool for 

characterizing a function’s change over some interval of the domain prior to engaging 

them in professional development focused on advancing their MMT for key ideas of 

precalculus mathematics. Following a summer workshop and weekly seminar that 

encouraged instructors to reason about quantities and provide conceptually oriented 

explanations of precalculus ideas and their problem solutions, most instructors expressed 

meanings for AROC that were conceptually focused and aligned with what Musgrave and 

Carlson (2017) deemed to be a productive meaning. Musgrave and Carlson argued that 

the impoverished nature of graduate student instructors’ initial meanings for average rate 

of change may be widespread. As such, they call for researchers to attend to graduate 

instructors’ meanings for foundational mathematical ideas and interventions to support 

their development of productive meanings for these ideas. 

Moore & Carlson (2012) and Tallman & Frank (2018) have documented the 

importance of quantitative reasoning in learning and teaching precalculus ideas, and 

O’Bryan and Carlson (2016) have provided evidence that a teacher’s engagement in 

quantitative reasoning and commitment to supporting their students’ engagement in 

quantitative reasoning can lead to advancement in the teacher’s mathematical meanings 

and enacted teaching practices. These researchers engaged a teacher in multiple 

professional development sessions focused on supporting the teacher in reasoning 

quantitatively, stating her goals for student learning in terms of student thinking, 
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reasoning about mathematical expressions as representing relationships between two 

quantities’ values, and thinking about how mathematically equivalent statements can 

represent individuals’ different ways of conceptualizing a relationship among quantities’ 

values. The results of their study revealed that a teacher’s fluency in using quantitative 

reasoning and commitment to support her students’ engagement in quantitative reasoning 

was associated with her being mentored in: 

1. Expressing her meanings for algebraic expressions and processes. 

2. Designing activities to create similar opportunities for students to reason 

quantitatively. 

3. Interpreting and responding to student thinking during classroom interactions. 

 Recently, Carlson, O’Bryan, and Rocha (2023) proposed a set of conventions for 

supporting teachers in reasoning quantitatively and representing quantitative 

relationships. These conventions reinforce patterns for speaking about quantities and 

relationships among quantities (speaking with meaning), conceptualizing a graph as a 

record of how two quantities’ values vary together (quantity tracking tool), representing 

the quantitative structure of a problem context (quantitative drawing), and consistent 

expectations and methods for defining variables, constructing algebraic expressions, and 

defining formulas (emergent symbolization) (Carlson, O’Bryan, & Rocha, 2023). These 

researchers propose that the design of conventions for representing quantitative 

relationships can support instructors’ construction of robust meanings for the key ideas 

taught in precalculus. Carlson, O’Bryan, and Rocha (2023) also propose that teachers’ 

consistent implementation of the Pathways Conventions may advance their meanings for 

the key ideas of precalculus to include quantitative reasoning as a critical way of 
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thinking. These researchers have also found that many teachers who have consistently 

implemented the Pathways conventions have also come to recognize the affordances of 

their consistent engagement in quantitative reasoning on students’ thinking and learning. 

(Carlson, O’Bryan, & Rocha, 2023). 

Thompson, Carlson, and Silverman (2007) and Silverman and Thompson (2008) 

argued that quantitative reasoning would not become a meaningful part of instructors’ 

teaching practices until they have an image of the conceptual affordances of this way of 

reasoning for students’ learning. Carlson and colleagues reported that an instructor’s 

enactment of the Pathways Conventions can be effective in supporting their students’ 

engagement in quantitative reasoning. In particular, the Pathways Conventions specify 

expectations and actions for supporting students in i) conceptualizing and speaking about 

quantities and how their values vary together, ii) representing how two quantities change 

together using a graph, and iii) representing quantitative relationships with expressions 

and formulas (Carlson, O’Bryan, & Rocha, 2023). 

Researchers have also identified the nature of a teacher’s decentering actions as a 

mechanism for advancing teachers’ MMT and their ability to convey coherent meanings 

to students while teaching (Bas Ader & Carlson, 2021; Carlson et al., in press; Rocha & 

Carlson, 2020; Teuscher, Moore, & Carlson, 2016). Researchers have argued that 

decentering or setting aside one’s thinking to understand what students understand (Steffe 

& Thompson, 2000) is useful for explaining and characterizing teachers’ responses and 

interactions with students while teaching (Bas Ader & Carlson, 2021; Carlson et al., in 

press; Rocha & Carlson, 2020; Teuscher et al., 2016). As one example, Teuscher et al. 

(2016) propose that a teacher’s ability to decenter is related to the nature of their 



   57 

interactions with students and the development of their mathematical meanings for 

teaching. Teuscher et al.’s., (2016) empirical study revealed that teachers’ explanations 

advanced to become more conceptually oriented as the instructors made their speaking 

and listening to others a specific object of focus and reflection. In 2020, Rocha and 

Carlson corroborated Teuscher et al.’s (2016) proposal by providing empirical evidence 

of the reflexive relationship between teachers’ meanings and their decentering actions. 

Rocha and Carlson’s (2020) analysis of an instructor’s teaching revealed that the 

teacher’s actions to decenter advanced her MMT by providing the teacher with more 

refined images of a student’s ways of understanding the sine function.  

Based on these claims of the relationship between a teacher’s MMT and their 

decentering actions (Carlson, Bowling, Moore, & Ortiz, 2007; Carlson et al., in press; 

Rocha & Carlson, 2020), there is a need for research to investigate teachers’ decentering 

actions and the impact of these actions on advancing teachers’ MMT and ways of 

thinking about learning and teaching an idea. This paper provides an example of the 

interaction between a teacher’s MMT for angle measure and their ability to construct an 

image of students’ thinking and spontaneously leverage it when interacting with students 

during classroom instruction. 

THEORETICAL PERSPECTIVE 

Meanings and Mathematical Meanings for Teaching an Idea 

To Piaget, meanings and understandings were synonymous and grounded in the 

knower’s schemes (Montanegro & Maurice-Neville, 1997). Individuals construct their 

meanings through assimilation to a scheme (Thompson, 2013). Thus, to say an individual 

has a meaning for a word, symbol, expression, or statement means that the individual has 
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assimilated that word, symbol, expression, or statement to a scheme. A scheme is a 

mental structure that “organize[s] actions, operations, images, or other schemes” 

(Thompson et al., 2014, p. 11). As such, an individual’s meaning for a word, symbol, 

expression, or statement is the space of implications resulting from assimilation to a 

scheme (Thompson, 2016). 

In 2016, Thompson extended the construct of mathematical meaning when 

defining mathematical meanings for teaching (MMT) to account for characterizations of 

teachers’ actions related to teaching. More specifically, a teacher’s mathematical 

meanings for teaching an idea include (1) the meanings (schemes) the teacher uses while 

teaching or thinking about teaching and (2) the teacher’s image of the meanings 

(schemes) they want students to develop for the idea. The construct of Mathematical 

Meanings for Teaching differs from the construct of Mathematical Knowledge for 

Teaching in two distinct ways. First, Thompson’s use of the word meaning connotates 

something personal (i.e., meanings existing in the knower’s mind) to readers rather than 

knowledge, which seems less personal and disjoint from the knower (Thompson, 2016). 

Second, arguably most important, the construct of Mathematical Meanings for Teaching 

describes the status of an individual’s understandings relative to teaching. 

Conveyance of Meaning 

Mathematics educators who adopt a radical constructivist perspective contend that 

an individual’s meanings are idiosyncratic and reside in the individual’s mind. With these 

theoretical assumptions, it is natural to ask, “how does a teacher convey meaning to 

students?” Thompson (2000; 2013) proposed a theory for the negotiation of meaning 

based on Piaget’s notion of intersubjective operations and Pask’s conversation theory. 
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According to Thompson (2013), person A in Figure 17 holds something in mind that she 

intends person B to come to understand. Figure 17 shows person A considering how to 

express what they intend to convey and how person B might interpret them. Assuming 

both individuals act as second-order observers (Steffe & Thompson, 2000), person A 

constructs their model of how they think person B might interpret them, and person B 

does the same thing. Namely, person B constructs their understanding of what person A 

said by thinking of what they (person B) might have meant had they (person B) said it. 

Thus, person B’s understanding of what person A said comes from what they know about 

person A’s meanings; thereby, person B’s understanding of person A’s utterance need not 

be the same and likely is not the same as what person A meant. 

 

Figure 17.  An Example of a Reflective Interaction (Thompson, 2013, p. 64) 

The above example is a description of a reflective interaction. A teacher acts 

reflectively if they decenter - attempt to understand their students and use their 

understanding of students’ thinking (second-order model) to guide their instructional 

actions (Bas Ader & Carlson, 2021). However, teachers do not always act reflectively. A 

teacher interacts with a student unreflectively if they are constrained to using their 

meanings of an idea (first-order model) when interacting with students (Bas Ader & 

Carlson, 202; Teuscher et al., 2016). In either interaction (reflective or unreflective), the 



   60 

teacher’s meanings create a space for their students’ meanings (Thompson, 2013). In the 

case of a reflective interaction, if a teacher’s image of what students are to learn entails 

weak meanings or no meanings, then intersubjectivity can be attained with students 

collectively possessing a wide variety of meanings that fit the discourse, many of which 

we would identify as problematic. When a teacher’s image of what students should learn 

entails a strong system of meanings, the space for possible student meanings is much 

smaller, assuming that the teacher and students mutually adapt their understanding of the 

other (Thompson, 2013, p. 69). As such, a teacher who has coherent meanings for an idea 

and a strong image of how they intend to support students in constructing compatible 

meanings is more likely than a teacher with weak meanings composed of disconnected 

facts and procedures to place themselves in positions to be interpreted (by students) in the 

ways they intend (Thompson, 2000). 

Decentering, First-Order Models, and Second-Order Models 

Piaget (1995) introduced the construct of decentering to describe the cognitive 

and social processes that occur during a child’s transition from the pre-operational to the 

concrete operational stages of development. Piaget used the term decentering to describe 

a child’s transition from egocentric thought to the capability of (1) adopting a perspective 

of another and (2) coordinating multiple aspects of an object or situation simultaneously 

(Piaget, 1995). More recently, researchers have adopted the term “decentering” to 

describe an individual’s attempts to understand another’s actions from the perspective of 

the other (Carlson & Bas Ader, 2021; Carlson, Bowling, Moore, & Ortiz, 2007; Carlson, 

Bas Ader, O’Bryan, & Rocha, in press; Carlson, O’Bryan, & Rocha, 2023; Rocha & 

Carlson, 2020; Teuscher, Moore, & Carlson, 2016). More specifically, an individual is 
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acting in a decentered way when they attempt to understand another’s perspective by 

considering how the individual may have been thinking, which led to them acting in the 

way they did. In contrast, individuals act in a non-decentered way when they project their 

“own reasoning, goals, beliefs, worldview, or understandings onto another person to 

explain their actions” (Carlson, Bas Ader, O’Bryan, & Rocha, in press, p. 5).  

As such, decentering may be best understood as an individual’s ability to 

construct a model of another’s thinking. A teacher’s first-order models are “models the 

observed subject constructs to order, comprehend, and control his experience (i.e., the 

subject’s knowledge)” (Steffe et al., 1983, p.xvi). When forming a first-order model, a 

teacher is constrained to using her own thinking and meanings to make sense of students’ 

activities. As a result, a first-order model is always constructed by an actor in an 

interaction rather than by an observer. In contrast, a teacher constructs a second-order 

model of a student’s thinking when they “[put themself] into the position of the student 

and attempts to examine the operations that they (the teacher) would need and the 

constraints [they] would have to operate under in order to (logically) behave as the 

student did” (Thompson, 1982, p.159). The result of this construction is the teacher’s 

second-order model of the student’s thinking that explains the teacher’s observations of 

the student’s states and activities. Moreover, suppose the teacher constructs a second-

order model of a student’s mathematics by attempting to understand the student’s actions 

and operations and uses their (the teacher’s) understanding of the student’s thinking to 

guide their (the teacher’s) actions. In that case, they are said to have decentered (Bas 

Ader & Carlson, 2021).   

 



   62 

Ways of Thinking About Teaching an Idea 

Carlson, Bas Ader, O’Bryan, and Rocha (in press) proposed a theoretical framework 

to make explicit the role teacher’s decentering actions play in advancing their MMT to 

include images of teaching that include ways of thinking about students’ ways of learning 

an idea. In particular, these researchers leveraged Harel’s (1998) construct of a way of 

thinking to describe a “habitual form of reasoning that governs the application of a 

variety of specific mathematical schemes” (Thompson et al., 2014, p. 12). These 

researchers proposed that a teacher has a way of thinking about teaching an idea if they 

have an image of how an idea might be productively understood and learned and 

image(s) of the thinking a student might engage in when learning an idea. Moreover, a 

teacher’s Way of Thinking about Teaching an Idea (WTTI) includes the following: 

1. How the teacher reasons about and understands the idea (the teacher’s MMT, 

which includes the ways of thinking the teacher engages in when reasoning about 

the idea) (Thompson, 2016).  

2. The teachers’ images (second-order models) of students’ thinking about and 

learning that idea (Steffe et al., 1983; Thompson, 2000).  

3. The teachers’ image of ways of thinking students may engage in to develop and 

refine their understanding of an idea (ways of learning an idea) (Carlson et al., in 

press; Silverman & Thompson, 2008). 

Carlson, Bas Ader, O’Bryan, and Rocha (in press) also claim that a teacher’s WTTI 

becomes more connected and refined as the teacher engages with students while 

attempting to model students’ thinking. More specifically, Carlson and her colleagues 

propose that there is a symbiotic relationship between teachers’ MMT for an idea and 
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their decentering actions. These researchers claim that the teacher’s mathematical 

meanings for an idea (first-order model) advance as the teacher’s actions to decenter 

advance. Conversely, a teacher’s decentering actions advance as the teacher’s 

mathematical meanings for teaching become more stable and refined. That is, as a 

teacher’s image of a student’s mathematics (the teacher’s second-order model) becomes 

more stable through reflecting on acts of decentering, the teacher’s images of students’ 

generalized ways of thinking (epistemic students, i.e., reflected abstractions) inform (are 

assimilated into) the teacher’s first order model or mathematical meaning for teaching 

that idea (see Figure 18). Thus, Carlson, Bas Ader, O’Bryan, and Rocha propose that 

through perturbations and accommodations to the teacher’s scheme for knowing, 

learning, and teaching an idea, the teacher constructs a more connected way of thinking 

about teaching that idea.  
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Figure 18. The Development of  Ways of Thinking About Teaching an Idea- Included in Carlson, Bas Ader 

O’Bryan, and Rocha (in press) 

 

CONCEPTUAL ANALYSIS 

Researchers have proposed quantitative reasoning, the analysis of a situation into 

a network of quantities and quantitative relationships (Thompson, 1990, 1993, 2011), as a 

way of thinking for supporting students in conceptualizing angle measure (Hertel & 

Cullen, 2011; Moore, 2010, 2014; Tallman, 2015, 2021; Tallman & Frank, 2018; 

Thompson, 2008). Within the theory of quantitative reasoning, a quantity is a quality of 

an object or situation that one conceives of as admitting a measurement process. “A 

person comprehends a situation quantitatively by conceiving of it in terms of quantities 

and quantitative operations. Each quantitative operation creates a relationship: The 
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quantities operated upon with the quantitative operation in relation to the result of 

operating” (Thompson, 1994, p. 14). A quantitative operation is the conception of two 

quantities taken to produce a new quantity. Put another way, a quantitative operation is a 

description of how quantities come to exist (Thompson, 1990). Although researchers 

have proposed quantitative reasoning as a way of thinking for supporting students and 

teachers in conceptualizing angle measure, students and teachers often develop meanings 

that do not involve this way of thinking (Tallman, 2015; 2021; Tallman & Frank, 2018; 

Thompson, 2008).  

A Quantitative Meaning for Angle Measure 

A key component of quantitative reasoning involves distinguishing an object from 

its measure. An angle is a geometric object formed by two rays that share a common 

vertex or endpoint. “A quantitative understanding of angle measure involves identifying 

an attribute of a geometric object to measure and conceptualizing a unit with which— 

and process by which—to measure it” (Tallman & Frank, 2018, p. 5). When determining 

the measure of an angle, one quantifies the openness of the angle’s rays by measuring the 

length of an arc subtended by the rays of an angle whose vertex lies at the center of a 

circle. However, for the measure of the angle to be independent of the size of the circle, 

the arc subtended by the angle’s rays must be measured in a unit that covaries with the 

length of the subtended arc so that the ratio of subtended arc length to unit length is 

always constant for an angle with a fixed amount of openness (Tallman, 2015). Thus, the 

unit of measure used to quantify an angle’s openness must be proportional to the 

subtended arc length and, by extension, the circle’s circumference. As such, a 

quantitative understanding of angle measure involves conceptualizing angle measure as a 
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measurement process that defines a multiplicative relationship between the subtended arc 

length and some unit proportional to the circle’s circumference (Moore, 2014). 

 For example, one could measure the angle in Figure 19 using any made-up unit, 

so long as the unit is proportional to the circumference of any circle centered at the 

angle’s vertex. As such, suppose an angle measures “1 Oscar” if it subtends an arc that 

measures 1/9th  of the circumference of any circle centered at the vertex of an angle. 

Then, the angle shown in Figure 19 would measure 3 “Oscars” as it subtends a class of 

arcs that are each three times as large as 1/9th of the circumference of the respective circle 

centered at the angle’s vertex. 

 

Figure 19. An Angle that Measures 3 “Oscars” 

Similarly, we could measure the angle in Figure 19 in degrees. An angle measures 

one degree if it subtends a class of arcs that are 1/360 times as large as the circumference 

of any circle centered at the angle’s vertex. The angle in Figure 19 measures 120 degrees 

since it subtends an arc that is 120 times as long as 1/360th (or 
120

360
=

1

3
) of the 

circumference of any circle centered at the angle’s vertex. 
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METHODS 

A teacher’s WTTI is a status of their current meanings and ways of thinking about 

teaching and learning. As such, a teacher’s WTTI can be more or less productive for 

teaching. In this paper, I present an example of a precalculus teacher’s ways of thinking 

about teaching angle measure and his teaching practice. More specifically, this paper 

illustrates how a teacher’s mathematical meanings, ways of thinking, and decentering 

actions supported him in interacting productively with students while teaching.  

Context 

This paper presents one case from an exploratory multiple-case study (Stake, 

1995; Yin, 2009). I chose to conduct an exploratory multiple-case study because this 

methodology provided an empirical inquiry into the interaction between a teacher’s 

MMT and decentering actions by allowing me to perform an in-depth analysis of two 

cases (Yin, 2009). Furthermore, an exploratory case study methodology was most 

appropriate because it allowed me to (1) investigate phenomena over which I had very 

little or no control and (2) the data I had access to was limited to contemporary events 

(e.g., classroom observations and clinical interviews). The primary goal of the case study 

methodology is to corroborate, modify, reject, or advance theoretical propositions (Stake, 

1995; Yin, 2009). As such, this method is productive to the degree it generates viable 

explanatory models of some phenomena. Thus, the reader must keep in mind that case 

studies are less about accurate descriptions of “the case” and more about generalizing 

theoretical propositions. 

  The subject for this study was a graduate student instructor, Enzo, who was in 

his second semester of teaching precalculus using the research-based Pathway 
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Precalculus curriculum at a large research university in the southwest United States. I 

selected each of the two cases in the multiple case study to provide contrasting examples 

of the teachers’ MMT angle measure and sine function and the interaction between their 

meanings and practice. I selected Enzo as a subject for this study because: 

1. He had experience teaching with the Pathways Precalculus and Algebra II 

Curriculum for approximately three years prior to the study. 

2. He had been mentored in advancing his mathematical meanings for teaching 

precalculus ideas by participating in extensive professional development (over 

a 4-year period) led  by the leaders of the Pathways Precalculus research team. 

3. He was willing to let me video-record his classroom instruction.  

Concurrent with the study, Enzo was enrolled in his first year of a Ph.D. program 

studying mathematics education. Enzo taught one section of precalculus that met for fifty 

minutes three times a week as part of his teaching assistantship with the university.  

 Before entering the Ph.D. program, Enzo earned a bachelor’s degree in 

mathematics education from the same university. During his undergraduate studies, Enzo 

completed two courses for preservice secondary mathematics teachers that used the 

Pathways pre-calculus curriculum to support preservice teachers in advancing their 

mathematical meanings for key ideas of secondary mathematics and to explore lesson 

design and methods for teaching secondary mathematics. Enzo also taught high school 

mathematics for four years after completing his undergraduate degree. In the last three of 

these four years, Enzo taught both pre-calculus and algebra II using the Pathways 

Curricular Materials. In addition, as mentioned in item (2) above, while teaching with the 

Pathways curriculum materials in the high school, Enzo participated in approximately ten 
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(three to four each school year) 2-hour professional development seminars led by a 

Pathways Project research team member. 

The Pathways Project is an NSF-supported research project that includes 

curricular materials for Algebra I, Algebra II, Geometry, and Precalculus. The goals of 

the Pathways Project are to (1) increase student learning, success, and retention in STEM 

fields and (2) support mathematics instructors to shift their instruction to have a greater 

focus on student understanding (Carlson, 2019). The Pathways curricular materials were 

designed as a result of many years of research on students’ learning and instructors’ 

teaching of precalculus ideas (Carlson, 1995; 1997; 1999; Carlson, Jacobs, Larsen, Coe, 

& Hsu, 2002; Carlson, Madison, & West, 2015; Carlson, Oehertman, & Engelke, 2010; 

Engelke, Carlson, & Oehertman, 2005; Kuper, 2018; Marfi, 2017; Moore, 2010; 

O’Bryan, 2019; Tallman, 2015). The curricular materials are organized into modules that 

are further divided into investigations that students complete in small groups during class.   

Concurrent with the study, Enzo was enrolled for the second semester in a 

required professional development seminar that met weekly for ninety minutes. The 

professional development seminar was led by a designer of the Pathways Curricular 

Materials and focused on (1) supporting GSIs in developing coherent meanings and ways 

of thinking about the ideas to be taught and (2) supporting the GSIs in clearly explaining 

their meanings for these ideas to others. During the seminar, GSIs and the seminar leader 

regularly discussed and engaged in the Pathways Conventions for supporting quantitative 

reasoning. These conventions included reinforcing patterns for speaking about quantities 

and relationships among quantities (speaking with meaning), conceptualizing a graph as a 

record of how two quantities’ values vary together (quantity tracking tool), representing 
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the quantitative structure of a problem context (quantitative drawing), and consistent 

expectations and methods for defining variables, constructing algebraic expressions and 

defining formulas (emergent symbolization) (Carlson, O’Bryan, & Rocha, 2023).  

Experimental Methods 

 In addition to collecting video data of Enzo’s instruction, I engaged him in a task-

based clinical interview (TBCI) (Goldin, 1997) and a series of semi-structured clinical 

interviews (Clement, 2000). The purpose of the TBCI was to construct a model of Enzo’s 

(1) meanings and ways of thinking about angles and their measures, (2) commitment to 

quantitative reasoning, and (3) image of how to support students in developing coherent 

meanings for angles and their measures. I also engaged Enzo in a series of semi-

structured clinical interviews that occurred before, directly following, and two days after 

each of his lessons on angles and their measures.  

In the pre-teaching clinical interviews, I posed questions to Enzo to probe his 

meanings for angle measure, his image of the understandings he wanted students to 

construct, and how he approached his planning of the upcoming lesson. During these 

interviews, I also asked Enzo to share his plan for class, including any activities and/or 

tasks he planned to use. I then inquired about the activities and Enzo’s rationale for the 

selection and/or design of the activities and conversations about the activities he 

anticipated having with students.  

Following Enzo’s teaching, I engaged him in two different post-teaching clinical 

interviews. The first post-teaching clinical interview occurred immediately following his 

lessons on angles and their measures. During this interview, I probed Enzo’s rationale for 

specific teaching actions I observed during his teaching. The second post-teaching 
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clinical interview occurred two days after (on the day of his next lesson) his respective 

lesson on angle measure. I showed Enzo short video segments from his prior lesson 

during this second post-teaching clinical interview. While watching the video segments 

with Enzo, I prompted him to discuss his motive for specific comments, actions, and 

questions. I also posed questions to understand and characterize his mental actions when 

interacting with students. I selected the video clips for use in the second post-teaching 

clinical interview based on one or more of the following criteria: (1) Enzo interacted with 

a student or multiple students, (2) Enzo leveraged a student’s thinking when teaching, (3) 

Enzo used an applet, table, or diagram to support his discussion of a mathematical idea, 

and (4) Enzo deviated from his original lesson plan. 

Date Research Activity Duration 

Phase 1 

3/25 Angle Measure TBCI 90 Minutes 

Phase 2 

3/28 Pre-Teaching Clinical Interview 1 55 Minutes 

3/28 Classroom Observation 1 50 Minutes 

3/28 Post-Teaching Clinical Interview 1 20 Minutes 

3/30 Video Analysis 1& Pre-Teaching Clinical 

Interview 2  

60 Minutes 

3/30 Classroom Observation 2 50 Minutes 

3/30 Post-Teaching Clinical Interview 2 20 Minutes 

4/1 Video Analysis 2 & Pre-Teaching Clinical 

Interview 3 

30 Minutes 

4/1 Classroom Observation 3 50 Minutes 

4/1 Post-Teaching Clinical Interview 3 20 Minutes 

4/4 Video Analysis 3 & Pre-Teaching Clinical 

Interview 4 

60 Minutes 

4/4 Classroom Observation 4 50 Minutes 

4/4 Post-Teaching Clinical Interview 4 20 Minutes 

4/6 Video Analysis 4  40 Minutes 

Table 4. Data Collection Schedule 
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Analytical Methods 

Preliminary Analysis 

The angle measure TBCI constituted the only data for my preliminary analysis. 

During the TBCI, I took notes on the meanings Enzo expressed and moments when he 

either (1) engaged in quantitative reasoning or (2) expressed a desire to support students’ 

engagement in quantitative reasoning. Directly following the interview, I took notes to 

record my initial thoughts and impressions of Enzo’s meanings for angles and their 

measures. Soon after the TBCI, I rewatched the video recording of the interview and 

wrote detailed memos that described Enzo’s responses to the tasks included in the TBCI. 

I then examined the memos to construct an initial model of Enzo’s reasoning about 

angles and their measures.  

Ongoing Analysis 

My initial analysis of the data from Enzo’s teaching sessions and interviews 

occurred soon after I collected the data. During the pre-teaching, post-teaching, and video 

analysis interviews, I took notes detailing moments when Enzo made an attempt to 

engage his students in quantitative reasoning. I also noted moments in which Enzo 

expressed interest in student thinking or discussed his image of how a student was 

thinking during his lessons on angle measure. Following each clinical interview, I wrote 

detailed memos on (1) how I hypothesized Enzo to be reasoning about angles and their 

measures, (2) Enzo’s commitment to quantitative reasoning, and (3) Enzo’s attention to 

and image of students’ thinking.  

My ongoing analysis of Enzo’s instruction involved taking detailed notes as I 

observed Enzo’s teaching. In particular, I noted moments in which Enzo (1) expressed a 



   73 

meaning for angles and their measures, (2) interacted with students in their groups, and 

(3) attended to or leveraged student thinking while teaching. Within twenty-four hours of 

Enzo’s teaching, I watched the video recording of his instruction. During this time, I 

selected segments of his instruction according to the three criteria above. These selected 

video segments were later used during the clinical interviews in which Enzo watched 

clips of his teaching. 

Retrospective Analysis 

 My retrospective analysis can be broken down into three phases. The first phase 

involved my retrospective analysis of the TBCI, pre-teaching, and post-teaching clinical 

interviews. The procedures I used to analyze the TBCIs and clinical interviews with Enzo 

are consistent with Simon’s (2019) approach to analyzing qualitative data. I began my 

analysis of the clinical interviews by reviewing the memos I constructed during the 

ongoing phase of my analysis. I then used these memos to identify passages from the 

respective interviews that revealed Enzo’s ways of thinking about teaching angle 

measure. This included his meanings for angles and their measures, his image of the 

understandings he wanted students to construct for these ideas, his commitment to 

quantitative reasoning, and his attention to and image of his students’ thinking. Next, I 

transcribed these parts of the respective interviews and conducted a line-by-line analysis 

of the transcripts to generate hypotheses about Enzo’s thinking. At this stage, I wrote 

detailed memos that elaborated (1) what the subject was doing and why they were doing 

it, (2) what the subject meant by what they said at this point, (3) what the subject was 

thinking and (4) what this might show about the subject’s understanding (Simon, 2018). I 
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then used the memos constructed in the first analysis phase as data for the second phase. 

Specifically, I coded each memo using the codes shown in Table 5. 

Code Description 

Quantitative 

Reasoning 

(QR) 

Instructor engaged in quantitative reasoning.  

Quantitative 

Reasoning 

Students 

(QRS) 

Instructor encouraged students to engage in quantitative reasoning 

(QR), took actions to support students’ engagement in QR, or 

talked about wanting to support students’ engagement in QR; OR 

students engaged in QR. 

Covariational 

Reasoning 

(CR) 

Instructor engaged in covariational reasoning. 

Covariational 

Reasoning 

Students 

(CRS) 

Instructor encouraged students to engage in covariational 

reasoning (CR), took actions to support students’ engagement in 

CR, or talked about wanting to support students’ engagement in 

CR; OR students engaged in CR. 

Angle 

Measure 

(AM) 

Instructor expressed a meaning for angle measure. 

Angle 

Measure 

Students 

(AMS) 

Instructor described meanings they want students to have for angle 

measure OR student expressed meaning for angle measure. 

Sine 

Function 

(SF) 

Instructor expressed a meaning for the sine function. 

Sine 

Function 

Students 

(SFS) 

Instructor described meanings they want students to have for the 

sine function OR student expressed meaning for the sine function. 

Instructor-

Student 

Interaction 

(ISI) 

Instructor interacted with student while teaching, discussed an 

interaction with a student from previous teaching, discussed an 

anticipated interaction with students while teaching. 

Image of 

Student 

Thinking 

(ImgStu) 

Instructor described their image of how students were thinking. 

Table 5. Codes Used During Analysis. 
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My decision to use the codes in Table 5 was informed by prior research that has 

identified quantitative and covariational reasoning as essential ways of thinking for 

supporting teachers’ conveyance of coherent meanings while teaching (Carlson, 

O’Bryan, & Rocha, 2023; Tallman, 2015; 2021; Tallman & Frank, 2018; Thompson, 

2008; 2013) and students’ construction of meaningful function formulas (e.g., Moore & 

Carlson, 2012; Thompson, 1988; 1990, 1993) and graphs (e.g., Carlson et al., 2002; 

Moore & Thompson, 2015). Following my initial coding, I conducted a second pass that 

involved validating and refining my initial coding of the data. In the third and final 

analysis phase, I identified themes in the conceptual analysis that best characterized and 

modeled the instructor’s MMT for angle measure. I followed this by extracting and 

reviewing the lines of the transcript that exemplified each theme. I then wrote detailed 

summaries of each theme, which constituted my emerging model of Enzo’s mathematical 

meanings for teaching angle measure.  

The second phase of my retrospective analysis involved analyzing Enzo’s 

instruction. I began this analysis phase by reviewing my observation notes of each 

respective lesson. I then reviewed the short video clips of his teaching that I selected for 

the video-analysis interview. I then used my observation notes and the notes I constructed 

when I selected the short clips to identify particularly revealing moments of his 

instruction. At this analysis stage, I used student-teacher interactions, including 

instructor-led discussions, as my unit of analysis. In particular, I identified segments of 

Enzo’s teaching in which (1) he expressed a meaning for angles and their measures or (2) 

he interacted with students. I then transcribed these revealing moments of Enzo’s 

instruction. Following this, I wrote memos detailing my hypotheses of how Enzo was 
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thinking and why he interacted with students in the way they did. In a second round of 

analysis, I coded the segments identified in the first stage using the codes in Figure 20 

and Table 6. I then looked across each code for themes in how the instructor was thinking 

and the nature of the instructor’s interaction with students. These themes constituted my 

emerging model of (1) Enzo’s mathematical meanings as conveyed while teaching and 

(2) the nature of his interactions with students (decentering actions). 

 

 

 

 

 

 

Figure 20. Angle Measure Subcodes 

Code Description 

Decenter 0 Instructor shows no interest in the student’s thinking but shows 

interest in the students’ answer. Makes no attempt to make sense of 

the student’s thinking but takes actions to get the student to say the 

correct answer. 

Decenter 1 Instructor shows interest in student’s thinking but makes no attempt to 

make sense of the students’ thinking. Attempts to move the student to 

their way of thinking without trying to understand or build on the 

expressed thinking and perspective of the student. 

Decenter 2 Instructor makes an effort to make sense of the student’s thinking and 

perspective but does not use this knowledge in communication. 

Decenter 3 Instructor makes sense of the student’s thinking and/or perspective 

and makes general moves to use the student’s thinking when 

interacting with the student. 

Decenter 4 Instructor constructs an image of the student’s thinking and/or 

perspective and then adjusts their actions to take into account both the 

student’s thinking and how the student might be interpreting them. 
Table 6. Decentering Framework (Bas Ader & Carlson, 2021). 

Angle Measure

Angle (object) Attribute
Measurement 

Process 
Measurement 

Unit

Radian

Degrees

Starting Point 
and Direction of 

Measurement
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 My retrospective analysis’s third and final phase involved reviewing the clinical 

interviews in which Enzo watched short video segments of his teaching. During this 

analysis phase, I reviewed the interview and wrote detailed notes on any instances in 

which Enzo (1) discussed his image of how students were thinking, (2) provided a 

rationale for his actions while teaching, or (3) discussed how he planned to sequence his 

next lesson based on the events in his previous lesson. I followed this by coding these 

moments using the framework in Table 6. After this iteration of coding, I looked across 

the codes for themes. These themes constituted my model of Enzo’s decentering actions. 

RESULTS 

Enzo’s Meanings for Angles and their Measures 

Enzo consistently distinguished between an angle as an object and the measure of 

an angle’s openness as a quantity (see Figure 21). Before teaching his first lesson on 

angle measure, Enzo said he wanted students to think about an object, how to quantify it, 

a unit of measurement, and a frame of reference (see Excerpt 12). Enzo also said he 

wanted students to begin thinking about the need to make a relative size comparison 

(Excerpt 12, lines 9-10). When prompted to explain what he meant by a relative size 

comparison, Enzo said, “you know, comparing how many times as large one quantity’s 

value is to another, you know, like the output to a division problem. If we consider or 

conceive of a division as a form of measurement like we’re trying to measure one 

quantity in units of another.” 
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Figure 21. Enzo Distinguishes Between an Angle as an Object and Its Measure as a Quantity 

 

Excerpt 12 

1 Enzo: Well, umm... you know I want students to be able to interpret what is going  

2  on in some dynamic situation, like in an animation and to be able to do that  

3  they have to have some grounding in what is changing and what is not.  

4   Umm… and then beyond just that thing, ya know, how do we label it, how  

5  do we quantify it, you know are we thinking about an object, are we  

6  conceptualizing some unit of measure, are we thinking about a frame of  

7  reference? And so today, maybe those things might be a little bit loose, but  

8  I hope that by the end of today, by the end of the next lesson, that they  

9  might be able to be more precise about that. As far as the relative size  

10  comparison, like today I want to motivate the need for a relative size  

11  comparison rather than just tell them like “hey this is the really smart way  

12  to do it”. 
13 Int: So, if asked you to just bullet point, what are the key meanings and  

14  understandings you want your students to leave your class with today, what 

15  would you say? 

16 Enzo:  Okay, so, I want them to understand that an angle is the union of two rays  

17   with a shared vertex. That, we measure one special thing about angles  

18  which is their openness. And that this is really hard to do without  

19  comparing it to something else… so the openness is the relative size of the  

20  arc that is cut off to the radius of the circle. That’s what I want them to get  

21  at. I want them to also realize that we can compare the relative size of the  

22  arc and the circumference. Umm…and being able to generalize that if an  

23  angle measures theta radians that this is the relationship between the arc  

24  length and the radius. 
 

It is noteworthy that when discussing the meanings he wanted students to develop 

(see Excerpt 12, lines 16-22), Enzo identified an object (an angle), an attribute of the 

object to measure (the angle’s openness), a measurement process (comparing the relative 

size of the arc and the circumference/radius), and a unit of measure (both the 
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circumference and the radius). Enzo’s identification of an object, an attribute of the 

object, a measurement process, and a unit of measure indicates that his meaning for an 

angle measure was grounded in quantitative reasoning and that he was fluent in 

referencing the quantities when speaking. A quantitative understanding of angle measure 

also entails recognition that (1) an angle subtends the same fraction of the circumference 

of all circles centered at the vertex of the angle, and (2) for the measure of the angle to be 

independent of the size of the circle, the subtended arc length needs to be measured in 

units that are proportional to the circumference of the circle centered at the vertex of the 

angle.  

 

Figure 22. Task Included in the Angle Measure TBCI 

 Enzo expressed a quantitative understanding of the idea of angle measure when he 

invented two units of measure, an “Abby” and an “Abby Prime” (see Figure 23 and 

Excerpt 13), while responding to the task in Figure 22. Enzo defined an Abby as the 

“percentage or portion of one full revolution” the angle cuts off. When the interviewer 

asked Enzo to clarify what he meant by an “Abby,” he invented a second unit of measure 

and called it an “Abby Prime,” which measured one-quarter revolution (Excerpt 13, line 

18). Enzo further expressed that an “Abby” or an “Abby Prime” works as a unit of angle 

measure because he could scale or dilate the picture (the size of the circumference of the 

circle centered at the angle’s vertex) and still get the same measure since the percentage 
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of a full revolution, or the ratio of the subtended arc to the radius and the ratio of the 

subtended arc to the circumference all remain the same (see Excerpt 14 lines 3-13).  

 

 
Figure 23. Enzo Chooses an “Abby” and an “Abby Prime” As Units of Measure 

         

Excerpt 13 

1 Enzo: The way to cheat is you know let’s call this [draws pink arc] an “Abby”,  

2  so its measure is one [laughs]. 

3 Int:  Would that work? 

4 Enzo: Why not? 

5 Int:  Like if we just pick any arc length and say the measure of the angle is  

6  one? 
7 Enzo:  Well, okay, what I am saying is that we’re comparing… there’s always a  

8  circle. So, if this is one Abby, there is two and some change in a full  

9  revolution. If we decide to care about full revolutions. It’s awkward, it’s  

10  funky, I don’t like it, but that is one way to do it. Another way to do it  

11  might be, umm…. 
12 Int: So, wait, hang on, before you move on. So, when you talk about an Abby,  

13  what is an Abby? 

14 Enzo:  Well, okay, so my unit is this rotation [highlights blue arc] is this  

15  percentage or portion of one full revolution. So yeah, I mean it’s a little bit  

16  clunky, but suppose you gave me a different one [draws a second angle].  

17  Which was this and this one is an Abby prime. So, then I could say alright  

18  this angle is an Abby prime it measures one quarter revolution, there is  

19  four of them in one full revolution, whatever. So, it’s a little more  

20  awkward over here [points to original angle]because of the size the  

21  openness, but I would say the same thing. 
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Figure 24. Enzo Shows That an Abby Is Invariant of the Size of the Circumference of Any Circle 

 

Excerpt 14  

1 Int: So why would an Abby, or an Abby prime work as a unit for measuring  

2  either of these angles? 

3 Enzo:  I would go back to like this whole invariant thing. Which is ya know we  

4  can scale, or ya know, dilate this picture and get the same measure. So, we  

5  could consider a smaller circle [draws smaller pink circle with the same  

6  center as the yellow circle] and then we have that guy [draws pink angle  

7  with vertex at the center of both circles]. So, then we could say the  

8  percentage of revolution is the same or that (highlights arc subtended by  

9  pink angle’s rays in blue) to that (highlights radius of pink circle in blue) is  

10  the same, or the arc length to the whole circumference is the same. I mean  

11  what I am doing and the reason why I am arguing why it works is because  

12  it’s the same as radians or degrees just taking a larger or smaller unit  

13  measure. So, I am saying implicitly that we’re comparing something that is  

14  changing to something that scales proportionally with it. 

15 Int:  When you say, “we’re comparing something that is changing to something  

16  that scales proportionally with it” what are those “somethings?” 

17 Enzo: So, either the umm arc length to radius, or arc length to circumference, or  

18  though we don’t like this one, shaded area to total area, or percentage of 

19  revolution to one full  revolution [draws table] so if I change one of these  

20  (circles the left column of the table in Figure 25), these will change by the  

21  same factor (circles the right column of the table). And this only works  

22  because a circle is so magical, and it only has one measure [radius].  

Enzo concluded his response to the task in Figure 22 by stating that the angle 

measure does not change because “we’re comparing something that is changing to 

something that scales proportionally with it.” When I prompted Enzo to explain what he 

meant by this, Enzo drew the table shown in Figure 25. Enzo then expressed that he could 
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determine the measure of any angle by multiplicatively comparing the quantities on the 

left side of the table to the quantities on the right side of the table. As one example, Enzo 

expressed that he could determine the openness of an angle’s rays by multiplicatively 

comparing the arc length subtended by the angle’s rays (s) to the radius of the 

corresponding circle (r). 

 

Figure 25. Enzo Draws a Table to Show Quantities He Could Compare to Determine an Angle’s Openness 

Enzo’s description of an “Abby” and an “Abby Prime” as units that measure a 

“percentage or portion of one full revolution” indicates that he understood that an angle 

always subtends the same fractional portion of the circumference of any circle centered at 

the angle’s vertex. Similarly, Enzo’s statement of “we’re comparing something that is 

changing to something that scales proportionally with it,” together with the table he 

constructed (shown in Figure 25), support that Enzo understood that the unit of measure 

he chose needed to be proportional to the arc subtended by the angle’s rays. As such, it 

appears Enzo conceived of the idea of angle measure as the result of a quantitative 

operation or the result of comparing two quantities’ values (the length of the arc 

subtended by the angle’s rays and any unit proportional to this arc).  
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           It is noteworthy, however, that Enzo stated that he could determine the measure of 

an angle by multiplicatively comparing the percent of a full revolution an angle subtends 

to a full revolution (see Excerpt 14, lines 17-22 and Figure 25). Throughout the study, 

Enzo used the term “revolution” often. As one example, Enzo responded to part (a) of the 

task shown in Figure 26 by determining the fraction of a full revolution, that the angle 

with an initial ray at the number four and terminal ray at the number zero would subtend.  

 

Figure 26. A second task included in the angle measure TBCI. A Second Task Included in the Angle 

Measure TBCI 

Specifically, he said, to dial the number four, he would need to rotate the number a half 

revolution plus an additional fifth of a half revolution for a total of six-tenths of a 

revolution (see Figure 27). When asked what he meant by “revolution,” Enzo expressed 

that he uses the term revolution to describe a “process.” In particular, he said, “There is 

some dynamism in my mind. So, there’s the process, and there is the result of the process. 
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Figure 27. Enzo’s Response to the Task Shown in Figure 23 

And I can think of them separately and recognize that the end states are the same. So, the 

process is the revolution, and once I am done, I can think this arc length is six-tenths of 

the circumference.” Enzo’s description of the term “revolution” indicates that he is 

thinking about a static image of an angle as the result of varying the angle’s terminal ray 

to some final position. Moreover, Enzo’s statement of, “once I am done I can think this 

arc length is six-tenths of the circumference,” indicates that he is coordinating the varying 

openness of the angle with the varying length of the arc subtended.  

 Excerpt 15 

1 Enzo: So, I want the length of that arc [highlights arc in yellow]. So, this arc is  

2  going to be six tenths the size of the circumference. And the circumference  

3  is two pi times as large as the radius, so this many inches [writes  

4  6/10(2pi*2.5)]. 
5 Int: So, you said that the subtended arc would be 6/10 the size of the  

6  circumference so how did you know that? 

7 Enzo:  Because I am trying to use that reciprocity that I’ve been talking about. So,  

8  since we have rotated six tenths of a full revolution, [pauses] if we revolve  

9  one full revolution then the arc length will be one times as large as the  

10  circumference. Right, the arc length will be the circumference. So, the  

11  fraction of the revolution is going to be the same thing as the fractional part  

12  of the circumference that is subtended. So, if I revolve six tenths of a full  

13  revolution, the arc length will be six tenths times as large as the  

14  circumference. 
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Enzo’s coordinated conception of an angle’s measure varying with the arc length 

subtended by the angle’s two rays supported him in conceptualizing the measure of an 

angle as “the same thing as the fractional part of the circumference that is subtended” 

(Excerpt 15, lines 10-12). With this understanding, Enzo determined that “if [the angle’s 

terminal ray] revolved six-tenths of a full revolution, the arc length [cut off by the angle’s 

rays would] be six-tenths times as large as the [circle’s] circumference.” Enzo then used 

this thinking to determine that he would need to rotate the number four 
6

10
(2𝜋 ∗ 2.5) 

inches to dial it.  

Enzo’s Teaching of Angle Measure 

 I also observed and recorded Enzo’s teaching of lessons on angles and their 

measures. Enzo had approximately thirty-five students in his section of precalculus that 

met three times per week for fifty minutes. The classroom where Enzo taught contained 

six large round tables. Each table had approximately six students seated together. During 

class, the students sitting at a given table worked together. Enzo let each group pick their 

favorite fruit at the start of the semester. Each group’s fruit of choice became their group 

name (e.g., Banana, Papaya, Dragon fruit, etc.). Students spent most of the class time 

working together in their groups on tasks that Enzo designed or chose from the workbook 

investigations. After students completed specific questions in their groups, Enzo typically 

led a discussion by calling on each group by fruit name to share their answers and 

thinking. Enzo repeated this pattern of group work followed by a short class discussion 

led by different groups for the duration of the 50-minute class period. 

           The data in this section is from Enzo’s first lesson (out of four) on angles and their 

measures. Recall (from Excerpt 12) that Enzo’s goals for this first lesson were to support 
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students in (1) distinguishing angles from their measures and (2) recognizing the need to 

make a relative size comparison to determine the measure of an angle’s openness. As 

such, Enzo started this lesson by asking students to define an angle. Once Enzo and the 

students agreed on their definition of an angle, he asked them to discuss with their groups 

how they might measure an angle. While students discussed how to determine the 

measure of an angle, Enzo circulated the room and prompted students to explain how 

they were thinking. After circulating the room for approximately five minutes, Enzo 

brought the class back together and began the group discussion by drawing the image in 

Figure 28 on the board. He then told students that he saw the image in Figure 28 on 

multiple groups’ whiteboards as he circulated the room (see Excerpt 16). 

 
Figure 28. Enzo’s Board Work- A Drawing of What He Saw on Students’ White Boards 

 

Excerpt 16: Enzo asks students “How do we measure angles?” 

1 Enzo: So, I saw this picture [Figure 28] quite a lot and in the room there was sort  

2  of this confusion because some folks were saying what we’re trying to do  

3  is measure this arc length [highlights arc subtended by the angle’s rays in  

4  red]. Which is really nice. We’re trying to measure that red arc length  

5  which is wonderful. But then, the size of circle that we started with was  

6  arbitrary. Okay, and arbitrary means we made a choice, but we could have  

7  made a different one. So here I am making a different one [draws circle  

8  with smaller radius]. But, what didn’t change is the angle. And if the angle  

9  doesn’t change, the measure can’t change. So, what’s happening here is  

10  we have this arc over here, let’s call it “Big S” [labels large subtended arc]  

11  and we have this arc over here, let’s call it “Little s” [labels smaller  

12  subtended arc]. Clearly, this arc length right here is much larger than this  

13  arc length right there [writes S > s]. So how do we reconcile this? I want  
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14  you to take thirty seconds and think, how can we get one number out of  

15  this picture? 

 
Figure 29.  Enzo’s Board Work as He Showed Students that S > s 

Enzo followed this by telling students that it was “wonderful” that they were measuring 

the length of the red arc in Figure 28. He then told students that the size of the circle they 

drew was an arbitrary choice. Enzo then erased the original circle containing the red arc, 

drew a second circle, and labeled the subtended arc of this circle with a lowercase “s” 

(see Figure 29). Following this, he prompted students to discuss how they could get one 

measure for the angle, given that the two circles’ corresponding subtended arcs (“big S” 

and “little s”) were different lengths. Enzo’s decision to draw a second circle and prompt 

students to determine “how to get one measure out of it” further suggests that he 

understood that an angle always subtends the same fractional portion of the 

circumference of any circle centered at the angle’s vertex.  

 As students discussed how to get one measure for the angle’s openness, Enzo 

circulated the room a second time. Excerpt 17 shows a conversation Enzo had with 

Group Banana. When Enzo joined Group Banana’s discussion, he prompted them to 

explain how they could “get one number out of it.” A student in the group immediately 

responded that they could divide the small, subtended arc by the small circle’s 
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circumference and the large, subtended arc by the large circle’s circumference. This 

student then claimed that the result of these two divisions would be the same “because 

it’s like a fraction of the whole, like a portion of it.” Enzo responded to this student by 

asking him why this was true. Enzo’s prompts for the students to explain their thinking 

suggests that he was interested in their thinking in addition to their answer. 

Excerpt 17 

1 Enzo: Any ideas here of how to get one number out of it? 

2 Banana Student 1: Yeah, I was just thinking we could take the arc length and  

3  divide it by the circumference of whichever circle. So, like for  

4  the small one it would just be like little s over that  

5  circumference and for the big s it would just be the big s over  

6  the big circumference. 
7 Enzo: Why would that work? 

8 Banana Student 1: Because it’s like a fraction of the whole, like a portion of it. 

9 Enzo:  Uh huh uh huh. 

10 Banana Student 1: So, it should be the same. 

11 Enzo:  I agree with you, but why? [walks away from group] 

 

 Following this, Enzo continued to circulate the room, and after a few minutes, 

Enzo brought the class back together to discuss how they could get one measure for the 

angle’s openness. Excerpt 18 shows the class discussion that ensued. Once Enzo brought 

the class back together, he asked Group Banana to share their thoughts. After the student 

Excerpt 18 

1 Enzo: Okay, Okay, so we had a cool idea. Actually, we are going to  

2  have Group Banana, they’re going to share their idea. 

3 Banana Student 1: I just said you take the arc length, and you divide it by the  

4  circumference of like the respective circle. So, you either  

5  take the small s over the small circumference, or the big s  

6  over the big circumference. 

7 Enzo: So small s divided by small circumference and big s divided  

8  by big circumference [writes  
𝑙𝑖𝑡𝑡𝑙𝑒 𝑠

𝑙𝑖𝑡𝑡𝑙𝑒 𝑐
 and 

𝑏𝑖𝑔 𝑆

𝑏𝑖𝑔 𝐶
 on the board].  

9  Why do you want to do that? 

10 Banana Student 1: Umm you should get the same angle. 

11 Enzo: You should get the same angle measure? We should get the  

12  same number? 

13 Banana Student 1: Yeah. 



   89 

14 Enzo: [puts an equal sign between 
𝑙𝑖𝑡𝑡𝑙𝑒 𝑠

𝑙𝑖𝑡𝑡𝑙𝑒 𝑐
 and 

𝑏𝑖𝑔 𝑆

𝑏𝑖𝑔 𝐶
] So, the claim  

15  here is that those two numbers are going to be equal. I mean  

16  it sounds reasonable, and in fact it is correct. But I want you  

17  to try to come up with a justification for why that is true. So,  

18  let’s take another minute. Let’s figure it out. Is that true? It  

19  is, but why? 
  

[students work in their groups for 2 minutes]. 

 

from Group Banana shared his thinking, Enzo prompted the class to devise a justification 

for why dividing the subtended arc length of each circle by the respective circle’s 

circumference would give them one measure for the angle’s openness. After allowing 

students to discuss this prompt for two minutes, Enzo asked students to determine how 

many times as large the circumference of the big circle is compared to the circumference 

of the smaller circle (see Figure 30).  

 This sequence of questioning that progressed from asking students to consider 

why an angle that cut off different length arcs of two different circles with the same 

center could have the same measure to his deciding to have the group that recognized the 

proportional relationship between the respective arcs subtended by an angle with its 

vertex at the circle’s center and the two circles circumference suggest that Enzo (1) had 

an image of ways of thinking that would support students’ learning of angle measure and 

(2) that he was attending to students’ expressed thinking and taking actions to leverage it 

during his instruction (Decentering level 3). Moreover, Enzo’s decision to ask students to 

determine the relative size of the two circle’s circumferences also supports that he 

conceived of relative size reasoning as a way of supporting students’ understanding that a 

circle’s radius and circumference were appropriate units for measuring an angle’s 

openness. 



   90 

 
Figure 30. Enzo’s Board Work as He Supports Students in Comparing Arc Lengths to the Circumference of 

Their Respective Circle 

 

After some time, Enzo and the students concluded that the large circle was two 

times as large as the small circle because the radius of the large circle was twice as large 

as the radius of the small circle.2 Enzo followed this by asking students to consider if they 

could replace the circumference in the ratios from Figure 30 with the radius of the 

respective circle. After giving students a few minutes to consider this question, Enzo 

asked students to think about how to make a circle bigger (see Excerpt 19, lines 7-8). He 

then told students that the circle’s radius determines a circle’s size. As a result, they could 

determine any angle’s measure by multiplicatively comparing the arc by the angle’s rays 

to either the circumference of the respective circles or its radius (see Excerpt 19, lines 12-

15).  

Excerpt 19 

1 Enzo: So, if we say that the big circumference is twice as large as the little  

2  circumference, we’re really saying that the big circle has a radius that is  

3  something like twice as large as the little circle. So, I guess what I am  

4  asking is why can I just… is it okay that I just replace circumference here  

5  with radius? Do I lose anything? Talk with your groups, go! 

6  [students work for one minute] 

7 Enzo:  Okay, folks, million-dollar question is on the table. How do you make the  

8  circle bigger? So, we have a circle here, of radius little r. Which by the  

 
2 The students in Enzo’s class were accustomed to thinking about the size of a quantity’s value relative to 

the size of another quantity’s value. In the post-teaching interview that directly followed this class, Enzo 

told me that he had supported the students in this way of reasoning since the start of the semester. 
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9  way, that measurement is the only thing we need to determine a circle.  

10  Anybody here used a compass before? Like a geometry compass. There  

11  is only one setting you get to mess with, how far the needle is from the  

12  pencil. That’s it. Right? That is the only thing you adjust… All of this is  

13  just to say, that yes we can make this comparison of arc lengths to  

14  circumference and that’s cool. But we can also make the same  

15  comparison with the radius. And we will get the same number [regardless  

16  of the size of the circle/radius we choose]. 
 

 Following Enzo’s teaching of this lesson, I interviewed him twice. Once 

immediately after his first lesson on angle measure, and for a second time, two days after 

the class. During the interview immediately following his teaching, I asked Enzo about 

his decision to draw the image in Figure 30. Enzo said he constructed the diagram 

“totally on the fly” because a student in group Banana was comparing the subtended arc 

lengths to their respective circumference. Enzo stated that he originally planned to 

introduce radian angle measure before generalizing to a multiplicative comparison 

between the subtended arc and the circumference. However, he said he wanted to honor 

this student’s thinking by sharing it with the class, but he “needed to think of a way to get 

there.”  

 Two days after this teaching episode, I showed Enzo a video clip of this segment 

of his teaching and asked Enzo about his decision to ask the student in group Banana to 

share his thoughts with the class. Enzo stated, “Sometimes I need to buy time to think 

myself about what I am gonna do next, how I am going to sequence, how I am thinking 

about their thinking.” Enzo then said that he recognized that this student and other 

students in his class were multiplicatively comparing the subtended arc to the circle’s 

circumference. However, he stated that his instructional goal for the day was for his 

students to recognize that they could also multiplicatively compare the subtended arc to 
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the circle’s radius since his goal was to introduce radian angle measure by the end of the 

class. Enzo then indicated that he decided to ask students to consider how to scale a circle 

to support them in recognizing that the circumference of a circle is a constant number of 

times as large as the circle’s radius. He conveyed that he thought this task would support 

his students in multiplicatively comparing the subtended arc to the radius of the 

respective circle. This data also suggests that Enzo’s understanding of angle measure as a 

relative size comparison between an arc length, subtended by an angle’s rays and the 

circle’s radius, influenced his question.    

 In this example, Enzo attended to a student’s thinking, considered how the 

student was thinking and took actions to leverage and advance the student’s thinking in 

the moment of teaching. These interactions (in Excerpts 16-19) with students reveal that 

he adapted his questioning and interactions based on his second-order model of a 

student’s thinking. It also appears that Enzo’s way of thinking about teaching angle 

measure, which includes his MMT angle measure, his commitment to quantitative 

reasoning, and his image of students’ way of thinking about angle measure, supported 

him in decentering and ultimately interacting productively with students in the moment of 

teaching. As one example, Enzo’s conception of angle measure as the result of a relative 

size comparison supported him in recognizing that students were (1) thinking about 

determining an angle’s measure by measuring the length of the arc subtended by an 

angle’s rays in linear units (Excerpt 16, lines 1-3) and (2) posing a question that prompted 

students to consider the reasonableness of their thinking (Excerpt 16, lines 13-15). Thus, 

it appears as though Enzo’s conception of angle measure as the result of a multiplicative 

comparison between the subtended arc length and any unit proportional to the 
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circumference of a circle centered at the angle’s vertex supported him in (1) constructing 

a model of the student’s thinking and (2) spontaneously posing a sequence of questions 

aimed at advancing his students’ thinking. 

Enzo’s Preparation for His Next Class 

The second post-teaching interview with Enzo occurred an hour before his next 

angle-measure lesson. In the second half of this interview (the next pre-teaching 

interview), I asked Enzo about his plan to teach his second lesson on angle measure that 

day. Enzo said he planned to start his lesson with the task shown in Figure 31. Enzo said 

he designed the task because it “highlights two ways of thinking that were present” in the 

last class. Enzo also noted that after giving students time to consider the task, he planned 

to ask them to revise Kyle’s definition to correct it. In particular, Enzo expressed that he 

wanted to provide students with a second opportunity to reflect on (1) the different ways 

of thinking that were present in their last class and (2) how they could refine Kyle’s 

definition so that they would generate only one measure for the angle’s openness.  

 

Figure 31. Enzo’s Bellringer Task Used During His Second Lesson on Angle Measure 
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Enzo’s design of the task presented in Figure 31, together with his plan for 

engaging students in the task, provide an example of how a teacher’s actions to decenter 

supported him in designing a task that directly targets the nature of students’ conceptions 

that contributed to confusion and unproductive actions in the previous class. 

Additionally, this example illustrates how a teacher’s efforts to decenter supported him in 

fostering reflective discourse in his teaching. In particular, the task shown in Figure 31 is 

an example of a teacher using students’ meanings and expressions as an object of 

discussion in his teaching.  

Following the bellringer task, Enzo said he planned to have students think about 

the relative size of a circle’s circumference to its radius length (see Figure 32). In 

particular, Enzo expressed that he wanted to build on the thinking he “tried to get at” 

toward the end of his previous class, and he felt that he executed his goal “very 

inelegantly.” While discussing his plan for using the task (see Figure 32), Enzo stated that 

he wanted to continue supporting his students in recognizing that they need to measure 

the length of the arc subtended by an angle’s rays with “something that changes with it.” 

 

Figure 32. Enzo’s Second Task Used During His Second Lesson on Angle Measure 
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Enzo further conveyed that he planned to have students think about the relative 

size of the circumference and the radius so that they would recognize that these quantities 

are proportional, and as a result, the students could use either as a unit for measuring the 

length of the arc subtended by an angle’s rays. Enzo’s plan to use the circumference task 

(Figure 32) after the class discussions (see Excerpts 7 and 8) supports that his image of 

the understandings he intended his students to construct for angles and their measures had 

advanced to include a more refined image of ways of thinking students might engage in 

to develop and refine their understanding of angle measure.   

CONCLUSIONS AND DISCUSSIONS 

This paper characterizes a teacher’s mathematical meanings for teaching angle 

measure and the teacher’s interactions with students in the context of the teacher’s 

classroom instruction when teaching the idea of angle measure. The findings support that 

there exists a symbiotic relationship between a teacher’s mathematical meanings for 

teaching angle measure and the teacher’s decentering actions when interacting with 

students while teaching. Enzo’s strong mathematical understanding of angle measure, 

together with his commitment to quantitative reasoning as a critical way of thinking, 

appeared to influence (1) the nature and sequencing of the questions he posed to students 

and (2) his ability to select and pose questions that were responsive to students’ thinking 

and effective in advancing his students’ thinking. Enzo’s actions to decenter also 

appeared to advance his mathematical meanings for teaching angle measure to include 

more refined images of how students might be thinking, and more insights into 

instructional moves that might advance students’ thinking.  
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As one example, the second-order model he constructed of students’ thinking led 

to him recognizing the conceptual affordances of supporting students in developing an 

understanding of the relationship between the circumference and the radius of a circle. 

After teaching his first lesson on angle measure, Enzo expressed that he had not 

previously thought about how students understanding of the relative size relationship 

between the circumference of a circle and the radius of the circle could support them in 

recognizing that the unit used to measure the length of the arc subtended by an angle’s 

rays needed to be proportional to the circumference of the circle centered at the angle’s 

vertex. Enzo further expressed that supporting students’ understanding of the relative size 

relationship between the circumference of a circle and its radius (see Figure 32) had 

become an explicit learning goal moving forward.  

This paper also provides an example of a teacher’s ways of thinking about 

teaching angle measure. I classify a teacher as having a productive way of thinking about 

teaching an idea if they have an image of how an idea might be productively understood 

and learned and image(s) of the thinking a student might engage in when learning an 

idea. During clinical interviews, Enzo expressed meanings for angles and their measures 

that were grounded in quantitative reasoning. Enzo also expressed that engaging students 

in relative size reasoning supported their understanding that a circle’s radius and 

circumference were appropriate units of measure. Enzo’s expression of coherent 

meanings for angle measure and his images of thinking that supports students in learning 

and understanding the idea of angle measure are useful for characterizing Enzo’s way of 

thinking about teaching angle measure.  
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 This paper also provides an empirical example of how a teacher’s mathematical 

meanings for teaching an idea can support their ability to engage students in reflective 

discourse. Enzo’s robust meanings for angle measure supported him in recognizing and 

reflecting on student thinking, ultimately leading to his task design that prompted 

students to discuss two hypothetical students’ thinking (see Figure 31). In particular, 

Enzo designed the Hypothetical Student Thinking task (see Figure 31) so that each 

student’s thinking included in the task represented the thinking some students expressed 

during the prior class. In this example, Enzo’s mathematical meanings and actions to 

decenter supported him in designing a task that he used to reveal students’ meanings and 

subsequently elevate them to an object of discussion when using them to engage his 

students in the reasoning they expressed in their prior class. 

           Finally, this paper also provides empirical support for the productivity of 

quantitative reasoning as a valuable way of thinking for teachers to engage in. Enzo’s 

commitment to quantitative reasoning as a way of thinking supported him in engaging in 

pedagogical actions that provided students with opportunities to (1) reason quantitatively 

themselves and (2) construct robust mathematical meanings for a foundational 

trigonometry concept. The results of this study also demonstrate that a teacher’s 

commitment to quantitative reasoning as a coherent way of thinking consistently 

supported him in noticing, reflecting on, and effectively leveraging student thinking 

while teaching.   

 I hasten to note that Enzo’s expression of coherent mathematical meanings for 

teaching angle measure grounded in quantitative reasoning, as expressed both in his 

teaching and clinical interviews, is atypical of first-year graduate student instructors. 
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Nevertheless, Enzo’s expression of coherent meanings for angles and their measures 

illustrates the impact that sustained professional development (that provides teachers with 

repeated opportunities to construct coherent meanings for the ideas they are teaching) can 

have on advancing an instructor’s mathematical meanings for teaching an idea and 

teaching practice while teaching that idea. Although Enzo was in his first year of teaching 

this course at the university level, he had approximately six years of experience (in his 

undergraduate studies and teaching in high schools) with the Pathways Pre-calculus 

curriculum before this study. Enzo had also attended approximately fifty hours of 

professional development led by the Project Pathways Professional Development team 

before this study.  

LIMITATIONS 

 This study includes data collected from an instructor who was (1) teaching 

precalculus using a research-based conceptually oriented curriculum and (2) enrolled in a 

professional development seminar designed to support his teaching of the course’s ideas 

with fidelity. The unique experiences of this teacher, together with the nature of this 

empirical investigation, necessitated my conducting a case study which calls into 

question issues of generalizability. The reader needs to keep in mind that case studies are 

generalizable to theoretical propositions, not specific populations (Yin, 2009). As such, 

this study aimed to characterize the interaction between a teacher’s mathematical 

meanings for teaching an idea and their decentering actions. Therefore, the findings of 

this study cannot and should not be applied more generally to a population of 

mathematics instructors.  
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CHAPTER 5 

PAPER 3: A CROSS-CASE ANALYSIS OF TWO INSTRUCTORS’ MMT FOR SINE 

FUNCTION AND THEIR TEACHING PRACTICES 

INTRODUCTION AND LITERATURE REVIEW 

Over the past thirty years, research on teachers’ mathematical knowledge for 

teaching (MKT) has developed to improve teaching and students’ learning. Ball and 

many of her colleagues have investigated the various types of knowledge teachers use 

when teaching (Ball, 1990; Ball & Bass, 2003; Ball, Hill, & Bass, 2005) and the 

relationship between teacher knowledge and student performance (Ball, Thames, & 

Phelps, 2008; Hill & Ball, 2004; Hill, Ball, & Schilling, 2008; Hill, Schilling, & Ball, 

2004, Hill et al., 2008). This area of research has primarily focused on investigating what 

teachers do in their teaching and the knowledge required to engage in these teaching 

actions (Ball & Bass, 2003). Although many mathematics educators have investigated the 

relationships among the mathematics that teachers know, their instruction, and students’ 

learning, few researchers have studied the sources of teachers’ pedagogical decisions and 

actions, teachers’ mathematical meanings for teaching (MMT) (Thompson, 2016). 

In 2016, Thompson introduced a new construct, mathematical meanings for 

teaching (MMT), to make explicit that he was using knowledge in the sense of Piaget and 

not in the sense of Ball and colleagues (e.g., Ball 1990, Ball & Bass, 2003, Ball, Hill, & 

Bass, 2005) (Thompson, 2013). To Piaget, knowledge and meaning were largely 

synonymous and grounded in the knowers’ schemes (Montangero & Maurice-Naville, 

1997). Thompson also proposed using the word meaning as it connotates something 

personal to readers rather than knowledge, which seems less personal and disjoint from 

the knower (Thompson, 2016). The construct of MMT also differs from Ball and 
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Colleagues’ use of the construct of MKT in the nature of the phenomena they describe. 

Most researchers using the MKT construct have done so to describe a knowledge base for 

teachers to achieve. In contrast, Thompson and his colleagues use the MMT construct to 

describe the current state of teachers’ mathematical understandings as they work within 

the dynamics of teaching. 

Thompson and his colleagues have led most, if not all, investigations of teachers’ 

MMT. In 2016, Thompson also proposed a means for gaining insight into teachers’ 

mathematical meanings. Along with his research team (project ASPIRE), he designed a 

43-item diagnostic instrument called the Mathematical Meanings for Teaching secondary 

mathematics (MMTsm). These scholars developed the MMTsm to assess teachers’ 

expressed meanings for variation and covariation, functions (including function notation, 

models, and properties), proportionality, rate of change, frames of reference, magnitudes, 

and structure (Thompson, 2015). In addition, team ASPIRE leveraged prior research on 

students’ understanding of various mathematical ideas to develop the rubrics to assess 

teachers’ mathematical meanings. Thompson and colleagues administered the MMTsm to 

250 US high school mathematics teachers and 364 South Korean teachers. These scholars 

considered teachers’ meanings productive if they prepared students for future learning 

and lent coherence to the meanings students already had (Thompson, 2016).  

The development of the MMTsm led to many investigations into teachers’ 

mathematical meanings for teaching various secondary-level mathematics topics. For 

example, Yoon and Thompson (2020) and Thompson and Milner (2018) reported on 

MMTsm items designed to investigate teachers’ meanings for function and function 

notation. These researchers found that most U.S. teachers they studied thought of the left 
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side of a function definition, e.g., c(v), as a name for the rule on the right side. In 

particular, when responding to different tasks, these researchers found that U.S. teachers 

often input the wrong variable into the left side of a function definition. Yoon and 

Thompson (2020) hypothesized that many teachers used letters other than v inside 

function notation because they thought c(v) was simply a replacement for y. Results from 

a second item included in the MMTsm showed that most of the sampled U.S. teachers 

also believed that every function had to be defined by a rule (Yoon & Thompson, 2020). 

These researchers further claimed that many of the U.S. teachers used function notation 

as a label to replace a word (i.e., A(t) to replace the word “area”) rather than a 

representation of two quantities values (Yoon & Thompson, 2020; Thompson & Milner, 

2018). 

Yoon and Thompson (2020) and Thompson and Milner (2018) proposed that the 

responses to the two function notation items indicate that more than half of the sampled 

U.S. teachers held unproductive and sometimes incoherent meanings for function 

notation. The data that Yoon and Thompson (2020) presented also demonstrated a large 

discrepancy between the meanings held by U.S. teachers and their S.K. counterparts. The 

South Korean teachers’ higher-level responses on both items indicated that most S.K. 

teachers had more productive meanings for function and function notation (Yoon & 

Thompson, 2020).  

Thompson and his colleagues have also reported on the incoherent nature of 

teachers’ meanings of average rate of change. For example, Yoon, Byerley, and 

Thompson (2015) found that the sampled South Korean teachers’ meanings for average 

rate of change were significantly stronger than the sampled U.S. teachers’ meanings. In 



   107 

particular, one-third of the U.S. teachers they studied revealed meanings for average rate 

of change as an arithmetic mean of rates. In contrast, almost all South Korean teachers 

expressed productive meanings for this idea (Yoon, Byerley, and Thompson, 2015). 

These researchers hypothesized that one reason for the disparity in meanings across the 

sampled teachers might be that South Korean teachers developed stronger meanings for 

an average rate of change while they were students (Yoon, Byerley, and Thompson, 

2015). As such, these researchers proposed that researchers focus on improving the 

mathematical meanings students develop in elementary and high school.  

If we wish to improve students’ understanding of mathematics in the U.S., 

researchers and teacher educators must attend to teachers’ mathematical meanings. 

Musgrave and Carlson (2017) have demonstrated that teachers’ meanings for a 

foundational mathematical idea can become more productive if these teachers are 

engaged in interventions designed to support their development of coherent mathematical 

meanings. “A focus on [teachers] MMT would also foster the field’s conceptualization of 

bridges among what teachers know (as a system of meanings), how they teach (their 

orientation to high-quality conversations), what they teach (meanings that an observer 

can reasonably imagine that students might construct, over time, from teachers’ actions), 

and what students learn (the meanings they construct)” (Thompson, 2013, p. 82). 

Thompson, Carlson, and Silverman (2007) claim, “if a teacher’s conceptual 

structures comprise disconnected facts and procedures, their instruction is likely to focus 

on disconnected facts and procedures. In contrast, if a teacher’s conceptual structures 

comprise a web of mathematical ideas and compatible ways of thinking, it will at least be 

possible that she attempts to develop these same conceptual structures in her students” (p. 
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416-417). However, although Thompson and his colleagues have widely investigated 

teachers’ MMT, they have yet to examine how it informs their teaching practices. This 

paper addresses this gap in the literature on teachers’ MMT by providing a model of two 

instructors’ MMT for sine function and a description of their goals for student learning, 

their teaching of the sine function, and their rationale for their pedagogical actions.   

THEORETICAL PERSPECTIVE 

In this study, I leveraged radical constructivism as a background theory 

(Glasersfeld, 1995). Background theories “constrain the types of explanations we give, to 

frame our conceptions of what needs explaining, and to filter what may be taken as a 

legitimate problem” (Thompson, 2002, p.192). Radical constructivism is a model of 

knowing that describes how an individual comes to know an idea and the nature of an 

individual’s knowledge. In particular, “constructivism says that whatever sense people 

make of their experience, they construct that sense themselves — regardless of what 

anyone else does to influence it. What a person actually ends up knowing can be 

influenced by what others do, but communication happens only through interpretation” 

(Thompson, 2002, p.193). Three central tenets of constructivism are (1) that knowledge 

resides in the mind of the knower, (2) knowledge is not passively received but 

constructed by the knower, and (3) “the function of cognition is adaptive and serves the 

organization of the experiential world, not the discovery of an ontological world” 

(Glasersfeld, 1995, p. 114). Constructivism also holds that individuals cannot know an 

objective “Reality.” Adopters of radical constructivism believe that an individual 

constructs their own reality and that the reality of each individual is idiosyncratic and the 

result of prior constructions and experiences. 
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Quantitative Reasoning 

While radical constructivism constrains the kinds of explanations one gives, an 

explanation’s content comes from theories specific to what is being explained or 

described. These domain-specific theories address “ways of thinking, believing, 

imagining, and interacting that might be propitious for students’ and teachers’ 

mathematical development” (Thompson, 2002, p.194). Much of what I discuss and 

investigate in this study derives from a theory of quantitative reasoning (Thompson, 

1990; 1993; 2011). Quantitative reasoning is the analysis of a situation into a quantitative 

structure- a network of quantities and quantitative relationships (Thompson, 1990, 1993, 

2011).  

Within the theory of quantitative reasoning, a quantity is a quality of something 

that one has conceived as admitting some measurement process (Thompson, 1990). 

Quantities exist in the mind of the individual conceiving them. To comprehend a 

quantity, an individual’s conception of “something” must be elaborated to the point that 

they “see” characteristics of the object that are admissible to the process of quantification 

(ibid). Quantification is a direct or indirect measurement process that results in a value. A 

quantity’s value is the numerical result of a quantification process. Numerical operations 

are used to calculate a quantity’s value, however, numerical operations differ from 

quantitative operations. A quantitative operation is the conception of two quantities taken 

to produce a new quantity. Put another way, a quantitative operation is a description of 

how intensive quantities come to exist (Thompson, 1990). 

The discussion of two teachers’ different ways of thinking about the sine function 

presented in problem statement (see Figure 1) provides an example of a teacher’s 
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reasoning about the output of the sine function as the result of a quantitative operation. In 

the example, Teacher B conceives of the output of the sine function as a relative size 

comparison or a multiplicative comparison of the terminal point’s vertical distance above 

the center of a circle and the circle’s radius. In contrast, Teacher A conceives of the 

output of the sine function as the result of a division of two numbers. These two teachers’ 

thinking about the value of the sine function is qualitatively different as Teacher B 

conceived of division as measurement. In particular, Teacher B determined the value of 

sine by multiplicatively comparing two quantities’ values. This teacher was then able to 

express the relative size of these two quantities’ values by thinking about and expressing 

the magnitude of the terminal point’s vertical distance above the horizontal diameter in 

terms of a multiple of the magnitude of the circle’s radius. In contrast, Teacher A 

conceived of the output of the sine function as the result of a numerical operation or 

dividing the length of two sides of a triangle. 

Conceptual Analysis 

Moore (2014) described a meaning for sine grounded in quantitative reasoning. 

Namely, sine is a function that inputs the measure of an angle (measured from the 3 

o’clock position) and outputs the vertical distance of a terminal point above the 

horizontal diameter in radii. As such, the value of sin(𝜃) represents how many times as 

large the vertical distance of a terminal point above the horizontal diameter is compared 

to the circle’s radius when the terminal ray of an angle is rotated to the point that is 𝜃 

radians counterclockwise from the 3 o’clock position. For example (see Figure 33), the 

point (0.8 , 𝑠𝑖𝑛(0.8)  ≈ 0.717) conveys that for an arc length of 0.8 radii 

counterclockwise from the 3 o’clock position on any circle, the terminal point’s 



   111 

corresponding vertical distance above the circle’s horizontal diameter is 𝑠𝑖𝑛(0.8) or 

0.717 times as large as that circle’s radius. 

 

Figure 33. Sine and Cosine 

Adapted from Carlson, Oehrtman, Moore, & O’Bryan 8th Edition 

 

However, to conceive of the sine function in the way described above, a student 

must (1) recognize that for any angle measure (measured from the 3 o’clock position), 

there exists a vertical distance that the terminal point is above the horizontal diameter of 

any circle centered at the vertex of the angle, (2) conceive of the vertical distance as a 

quantity that one can measure-this necessarily requires the student to also conceives of a 

unit for measuring the vertical distance (radius of the circle) and a process to measure the 

vertical distance (multiplicative comparison), and (3) recognize that measuring the 

vertical distance using the radius makes the value of the sine function independent of the 

size of the circle for which the subtended arc is a part (Tallman, 2015).  

A coherent meaning for sine function also involves covariational reasoning 

(Carlson et al., 2002) and robust connections between right triangle trigonometry and unit 

circle trigonometry. An individual engages in covariational reasoning when she 

coordinates two varying quantities while attending to how the quantities’ values vary in 
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tandem. Moreover, when a student or teacher attends to how the value of sin (𝜃) changes 

as the angle measure, 𝜃 varies, she is engaging in covariational reasoning. A teacher with 

a quantitative meaning for trigonometric functions may view the commonly used 

trigonometric ratios (SOHCAHTOA) as using the hypotenuse (radius) as a unit of 

measure for the legs of the right triangle. As one example, the output of the sine function 

can be viewed as the length of the triangle’s leg opposite the angle whose measure is 

input to the sine function, measured in units of the hypotenuse (see Figure 34).  

 

Figure 34. Relating Unit Circle and Triangle Trig 

Adapted from Carlson, Oehrtman, Moore, & O’Bryan 8th Edition 

 

Moreover, the sine function relates angle measures with lengths measured in units 

of the radius or hypotenuse regardless of context (right triangle or circle). As such, the 

values associated with the unit circle and the ratios associated with side lengths of right 

triangles emerge as multiplicative comparisons of quantities that hold across circles and 

triangles (Moore, 2014).  

METHODS 

Context 

This paper presents a cross-case analysis of two cases from a multiple-case study 

(Stake, 1995; Yin, 2009). A case study is “an in-depth exploration of a bounded system 
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(e.g., an activity, event, process, or individuals) based on extensive data collection” 

(Creswell, 2002, p.485). I chose this methodology because it was the most appropriate 

method for examining the relationship between teachers’ MMT an idea and their enacted 

teaching practices. Furthermore, the exploratory case study methodology was most 

appropriate because it allowed me to (1) investigate phenomena over which I had very 

little or no control and (2) the data I had access to was limited to contemporary events 

(e.g., classroom observations and clinical interviews). More specifically, I conducted a 

multiple-case study to provide contrasting cases of two instructors’ MMT angle measure 

and sine function and the relationship between their meanings and their practice. In 

addition, a cross-case analysis of two instructors’ meanings and practice can allow for 

more robust interpretations and “perhaps better theorizing” (Stake, 2000, p. 46).  

The cases for this study are two graduate student instructors (GSIs) who taught 

precalculus using the research-based Pathways Precalculus Curriculum (Carlson, 

Oehrtman, Moore, & O’Bryan, 2020) at a large research university in the southwest 

United States. Enzo was enrolled in a mathematics education Ph.D. program at the time 

of the study, and Shira was enrolled in an applied mathematics Ph.D. program. I selected 

Enzo and Shira as cases for this study because they were both in their first year of 

teaching precalculus with the Pathways Precalculus curriculum at the University level. I 

also selected Enzo and Shira because they had the following: 

1. Different levels of teaching experience. 

2. Different levels of experience using the Pathways Curricular Materials. 

3. Varying levels of experience attending professional development seminars led by 

the leaders of the Pathways Precalculus research team. 
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Lastly, these instructors were selected because they were willing to have their classroom 

instruction video recorded.  

I selected Enzo to participate in this study because he had many unique 

experiences with the Pathways Curriculum and professional development led by a 

Pathways Project research team member. Before entering the Ph.D. program, Enzo 

earned a bachelor’s degree in mathematics education from the same university. Enzo 

completed Enzo completed two courses for preservice secondary mathematics teachers 

that used the Pathways pre-calculus curriculum to support preservice teachers in 

advancing their mathematical meanings for key ideas of secondary mathematics and to 

explore lesson design and methods for teaching secondary mathematics. Enzo also taught 

high school mathematics for four years after completing his undergraduate degree. In the 

last three of these four years, Enzo taught both pre-calculus and algebra II using the 

Pathways Curricular Materials. In addition, while teaching with the Pathways curriculum 

materials in the high school, Enzo participated in approximately ten (three to four each 

school year) 3-hour professional development seminars led by a Pathways Project 

research team member. Since teaching precalculus at the University level, Enzo had also 

attended a semester and a half worth of professional development seminars led by a 

Pathways Project research team member, for a total of 50 hours. 

In contrast, at the time of the study, Shira had (1) only one semester of teaching 

experience before this study, (2) one semester of experience teaching with the Pathways 

Curricular Materials, and (3) only one semester of professional development experiences 

led by a Pathways Project research team member (approximately 15 hours). 
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Pathways Precalculus Curriculum and Professional Development 

The Pathways Precalculus curriculum is a research-based curriculum that was 

designed as a result of many years of research on students’ learning and instructors’ 

teaching of precalculus ideas (Carlson, 1995; 1997; 1999; Carlson, Jacobs, Larsen, Coe, 

& Hsu, 2002; Carlson, Madison, & West, 2015; Carlson, Oehertman, & Engelke, 2010; 

Engelke, Carlson, & Oehertman, 2005; Kuper, 2018; Marfi, 2017; Moore, 2010; 

O’Bryan, 2019; Tallman, 2015). The Pathways curriculum was designed to (1) increase 

the retention and success of students in STEM and (2) shift instructors’ practice to have a 

greater focus on student understanding (Carlson, 2019).  

Concurrent with the study, Enzo and Shira were enrolled for a second semester in 

a required professional development seminar that met weekly for ninety minutes. The 

professional development seminar was led by a designer of the Pathways Curricular 

Materials and focused on (1) supporting GSIs in developing coherent meanings and ways 

of thinking about the ideas to be taught and (2) supporting the GSIs in clearly explaining 

their meanings for these ideas to others. During the seminar, GSIs and the seminar leader 

regularly discussed and engaged in the Pathways Conventions for supporting quantitative 

reasoning. These conventions included reinforcing patterns for speaking about quantities 

and relationships among quantities (speaking with meaning), conceptualizing a graph as a 

record of how two quantities’ values vary together (quantity tracking tool), representing 

the quantitative structure of a problem context (quantitative drawing), and consistent 

expectations and methods for defining variables, constructing algebraic expressions and 

defining formulas (emergent symbolization) (Carlson, O’Bryan, & Rocha, 2023). 
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Experimental Methods 

My experimental methods can be broken down into two phases. In the first phase, 

I engaged Shira and Enzo in a task-based clinical interview (Goldin, 1997) to construct a 

model of each instructor’s (1) meanings for and ways of thinking about the sine function, 

(2) commitment to quantitative reasoning, and (3) image of how to support students in 

developing coherent meanings for the sine function. The second phase of my data 

collection involved semi-structured clinical interviews that occurred before, directly 

following, and two days after each instructor’s lessons on the sine function. I also 

collected video data on each instructor’s teaching during this phase. Tables 1 and 2 

outline the timeline of the research activity conducted with each instructor during each 

phase of the study. 

Date Research Activity Duration 

Phase 1 

3/31 Sine Function TBCI 64 min 

Phase 2 

4/1 Pre-Teaching Clinical Interview 5 65 min 

4/1 Classroom Observation 5 50 min 

4/1 Post-Teaching Clinical Interview 5 32 min 

4/4 Pre-Teaching Clinical Interview 6 66 min 

4/4 Classroom Observation 6 50 min 

4/6 Post-Teaching Clinical Interview 6 21 min 

 Video Analysis 6 & Final Clinical Interview  65 min 
Table 7. Sine Function Data Collection Schedule with Enzo 

Date Research Activity Duration 

Phase 1 

3/31 Sine Function TBCI 45 min 

Phase 2 

4/1 Pre-Teaching Clinical Interview 3 64 min 

4/1 Classroom Observation 3 50 min 

4/1 Post-Teaching Clinical Interview 3 18 min 

4/4 Pre-Teaching Clinical Interview 4 57 min 

4/4 Classroom Observation 4 50 min 

4/4 Post-Teaching Clinical Interview 4 11 min 
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4/7 Video Analysis 4 & Final Clinical Interview  50 min 
Table 8. Sine Function Data Collection Schedule with Shira 

I engaged both instructors in pre-teaching clinical interviews to gain insight into 

the nature of the teacher’s lesson-planning process. In particular, during the pre-teaching 

clinical interviews, I posed questions to each instructor to probe their meanings for the 

sine function, their image of the understandings they wanted students to construct, and 

their approach to planning lessons. During these interviews, I also asked the instructors to 

share their plans for the class, including any activities and/or tasks they planned to use. I 

then inquired about the activities and their rationale for the selection and/or design of the 

activities and conversations about the activities they anticipated having with students.  

I observed and video-recorded each instructor’s teaching after the pre-teaching 

interview. Immediately following their teaching, I conducted short semi-structured post-

teaching clinical interviews. During the post-teaching clinical interviews, I probed the 

instructors’ rationale for specific instructional actions I observed during their teaching. 

Two days after each instructor’s lesson on the sine function, I conducted “video-analysis” 

clinical interviews with each instructor. These video-analysis clinical interviews were 

conducted immediately before the subsequent pre-teaching interview with each 

instructor. I showed each instructor short video segments from their previous lesson 

during the video-analysis clinical interview. While watching the video segments, I 

prompted the instructors to discuss their motives for specific comments, actions, and 

questions. I also posed questions to understand and characterize each instructor’s mental 

actions when interacting with students. I selected each clip used in the video-analysis 

clinical interview according to the following, (1) the instructor interacted with a student 

or multiple students, (2) the instructor leveraged students’ thinking in their teaching, (3) 
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the instructor used an applet, table, or diagram to support their discussion of a 

mathematical idea, and (4) the instructor deviated from their original lesson plan. 

While watching the video segments with each instructor, I prompted them to explain their 

motive for specific comments, actions, and questions. During this time, I also posed 

questions to understand and characterize the mental actions the teacher engaged in when 

interacting with students. 

Analytical Methods 

Preliminary Analysis 

The sine function TBCI constituted the only data for my preliminary analysis. 

During the TBCI, I took notes on the meanings each instructor expressed. At this analysis 

stage, I was alert to moments when the instructors (1) engaged in quantitative reasoning 

or (2) expressed a desire to support students’ engagement in quantitative reasoning. After 

the interview, I took notes to record my initial thoughts and impressions of the 

instructors’ meanings for the sine function. Within 24 hours of the TBCI, I rewatched the 

video recording of the interview and wrote detailed memos that described each 

instructor’s responses to each task included in the TBCI. These memos constituted my 

initial model of each instructor’s MMT for the sine function. 

Ongoing Analysis 

 A large portion of my analysis occurred as I collected data. Throughout the pre-

teaching, post-teaching, and video analysis clinical interviews, I wrote detailed notes on 

each instructor’s meanings, engagement in quantitative reasoning, and interactions with 

students while teaching. I also wrote detailed notes on instances where the instructor 
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discussed the meanings they wanted students to have for the sine function. During the 

post-teaching and video analysis interviews, I noted any instances in which the instructor 

expressed interest in student thinking or discussed their image of how students were 

thinking during their lessons on the sine function. Following each clinical interview, I 

wrote detailed memos on (1) how I hypothesized each instructor to be reasoning about 

the sine function, (2) their commitment to quantitative reasoning, and (3) their attention 

to and image of students’ thinking. 

My ongoing analysis of each instructor’s teaching involved taking detailed notes 

as I observed their instruction. In particular, I noted moments in which the instructor (1) 

expressed a meaning for the sine function, (2) interacted with students in their groups, 

and (3) attended to or leveraged student thinking while teaching. Within twenty-four 

hours of each instructor’s teaching, I watched the video recording of their instruction. 

During this time, I selected segments of their instruction according to the three criteria 

above. These selected video segments were later used during the video-analysis clinical 

interviews. 

Retrospective Analysis 

I primarily based my conclusions on the retrospective analysis of the data. My 

retrospective analysis can be broken down into three phases. The first phase involved my 

retrospective analysis of the TBCI, the pre-teaching, and the post-teaching clinical 

interviews. The procedures I used to analyze the TBCIs, and clinical interviews with the 

instructors are consistent with Simon’s (2019) approach to analyzing qualitative data. The 

second phase of my retrospective analysis involved analyzing each instructor’s teaching. 

Finally, the third phase of my analysis involved reviewing the clinical interviews in 



   120 

which the instructors watched short video segments of their teaching. Each phase 

described above was consistent with the methods described in the previous two papers.  

Drawing Comparisons Between Enzo and Shira’s Meanings and Instruction 

 I leveraged my models of Enzo and Shira’s MMT sine function when comparing 

the instructor’s meanings for this idea. Similarly, I leveraged my model of the instructors’ 

practice  and the nature of their interactions with students when comparing their teaching. 

To display the differences in each instructor’s MMT sine function, I chose to present 

their responses to the same tasks included in the sine function TBCI. More specifically, I 

determined which tasks to include in the next section based on the degree to which they 

supported my conveying a model of each instructor’s MMT for the sine function. 

Similarly, in the next section I present examples of their instruction that best model the 

nature of their instruction and illustrate the differences in each instructor’s practice and 

interactions with students.  

RESULTS 

Shira and Enzo participated in a task-based clinical interview that I designed to 

elicit (1) their meanings for and ways of thinking about sine function, (2) their image of 

the meanings they want students to have for the sine function, and (3) how they planned 

to support students in constructing what they consider to be coherent understandings of 

this idea. The tasks included in the TBCI elicited these aspects of each teacher’s thinking 

by prompting them to respond to open-ended tasks and describe what they might do in 

their teaching to support students in understanding the mathematical ideas needed to 



   121 

respond to the task. This section presents my models of Shira and Enzo’s MMT for the 

sine function. 

Shira’s and Enzo’s Response to Task 1 

 The first task included in the sine function TBCI is in Figure 35. I designed this 

task to uncover the degree to which the instructors (1) conceived of the sine function as a 

function that relates two quantities’ whose values covary and (2) conceived of the output 

of the sine function as a relative size measurement. Shira’s response to this task is in 

Excerpt 20. In particular, Shira expressed that she wanted students to recognize that each 

side of the table represents input and output values. She further said that she wanted 

students to realize that “sine of theta equals y or that it’s the ratio of y with respect to the 

radius” (Excerpt 20, lines 4-5). Shira concluded her response to this task by stating that 

she wanted students to be able to use the table of values to plot points (Excerpt 20, lines 

11-13 and Figure 36).  

 
Figure 35. The First Task Included in the Sine Function TBCI 

Although Shira identified the angle measures on the left side of the table as input 

values and the values of sine on the right side of the table as output values, it is 

noteworthy that she did not describe sine as a function that relates two quantities’ values. 

Furthermore, Shira’s activity of plotting the points represented in the table on a 
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coordinate plane supports that she may have been thinking about the value of the sine 

function as a y-value on a graph.  

Excerpt 20 

1 Shira: So, I would hope I guess initially, I would hope that they can see that we  

2  have input and output values. So, the input is the angle measure in degrees  

3  and then the output is what happens after we evaluate sine at those angle  

4  measures. I would also hope that they know that sine theta equals y or that  

5  it’s the ratio of y with respect to the radius. I would hope that my students  

6  are able to create a plot using this table of values. 

7 Int: So, can you show me kind of what you’re thinking of? Like what you’d  

8  want them to be able to do? 

9 Shira: Yeah. So, um, I would hope that they would be able to kind of create  

10  something that looks like this [draws two axes and labels them]. This is  

11  not in any way, shape or form drawn to scale, but yeah. So, I hope that  

12  they could see that this is theta in degrees and that then the output is sine  

13  of theta and then they would be able to, I don't know, do like [plots points-  

14  see figure 36]. 

 
Figure 36. Shira’s Work from the Task Shown in Figure 35 

 

Enzo’s response to this task is in Excerpts 21, 22, and 23. Enzo first responded to 

this task by stating, “I want them to see at the outset is that this is a functional 

relationship” and that S-I-N is a “three-letter word for a function” (Excerpt 21, lines 1-3). 

He then expressed that he wanted students to recognize that every input value (angle 

measure) has one output value (of the sine function) (Excerpt 21, lines 4-7). He also 

expressed that the values of sin (𝜃) represent “the height above the horizontal diameter 

of the point, which is at the intersection of the terminal ray of the circle centered at the 

vertex of the angle” (Excerpt 21, lines 8-10). It is also noteworthy that Enzo described the 
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values in the table as snapshots of an animation (Excerpt 21, line 12). In particular, Enzo 

said he was thinking about the table of values as representing “instances in angle 

measure” and “the corresponding height above the horizontal diameter” (Excerpt 21, 

lines 14-15). Enzo’s description of the values in the table as “snapshots” of an animation 

implies that he might have been thinking about the values of angle measure and their 

corresponding values of sine function as covarying.  

Excerpt 21 

1 Enzo: Well, one level of thinking would be thinking about input and output that  

2  we have with this thing right here [underlines sin], which is a three-letter  

3  word for a function. So, what I want them to see at the outset is that this is  

4  a functional relationship. Clearly here, every input that’s listed has only  

5  one output. But thinking about variation of this guy [circles 𝜃] across its  

6  domain, every angle measure is going to have an output…a sine value, and  

7  there’s only going to be one of them. I want them to think about this this  

8  quantity over here [underlines sin (𝜃)] as the height above the horizontal  

9  diameter of the point, which is at the intersection of the terminal ray of the  

10  circle centered at the vertex of the angle. So, we can sort of imagine this  

11  angle measure increasing and that corresponds with like imagining this  

12  terminal ray sweeping out and like this table of values is sort of like a  

13  snapshot like we reported the animation at these instances, not necessarily  

14  time, but like these instances in angle measure. And then this would be the  

15  corresponding height above the horizontal diameter 
 

 As Enzo responded to the task in Figure 35, he also explained what the values of 

sin (𝜃) represented. For example, Enzo said that the value of -0.391 in the right side of 

the table represented the number of radius lengths the terminal point was above (below) 

the horizontal diameter (Excerpt 22, lines 4-7 and Figure 37). He further expressed that 

the vertical distance was “some 39%, some 40% of a radius length” (Excerpt 22, lines 8-

10). 

Excerpt 22 

1 Int: So, you said something earlier about 0.39 above and .39 below. Can you  

2  dig into that a little bit more? Like, what do you mean by .39 above? Like  

3  what is that .39? 
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4 Enzo: So, this negative 0.391. So, I guess I can draw it, but something like this  

5  point right here, right, that distance is going to be 0.391. But in  

6  particular, it’s below this horizontal  diameter. Well, that’s 0.391 what?  

7  It is measured in radius lengths. These guys are in radius lengths [writes  

8  “Radius l” under the right column of the table]. So yeah, I mean the  

9  diagram is not like super precise, but like this chunk right here [points to  

10  the vertical distance of the terminal point] is some, I don’t know, like  

11  some 39%, some 40% of a radius length. 

 
Figure 37. Enzo’s Work from the Task Shown in Figure 35 

 

Enzo’s meanings for the value of the sine function are further evidenced by his 

description of what the output value of -0.5 represented. Enzo stated that he could “go 

back and forth between thinking of [the terminal point’s vertical distance above the 

horizontal diameter] as like 50% of a radius length” and “a length that is 0.5 times as 

large as a radius” (see Excerpt 23 and Figure 38). Enzo also said that he imagines “the 

vertical distance above the horizontal diameter varying from like 0% extension to like 

100% extension or from like -100% to 100% if [he] think[s] about the directionality” 

(Excerpt 23, lines 6-8). Enzo’s description of the value of sine as (1) a number of radius 
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lengths and (2) a percentage of a radius length support that he conceived of the value of 

the sine function as a relative size comparison between a terminal point’s vertical 

distance above the horizontal diameter of a circle and the circle’s radius. Enzo’s 

description of the vertical distance above the horizontal diameter varying from 0% 

extension to 100% extension also supports his thinking about the values of the sine 

function varying. 

Excerpt 23 

1 Enzo: And so, if this [points to sin (𝜃)] outputs 0.5 and thinking about it as a  

2  length that is 0.5 times as large as a radius. I can go back and forth  

3  between thinking of it as like 50% of a radius length. But yeah, and the  

4  reason, the reason why I like the percent is because it just helps me  

5  imagine some of that variation. Like I can imagine the vertical distance  

6  above the horizontal diameter varying from like 0% extension to like  

7  100% extension or from like -100% to 100% if we think about the  

8  directionality. 

 
Figure 38. Enzo Show’s That an Output of Sine Equal To .5 Means That the “length” Is .5 times as Large 

as the Radius or 50% of a Radius 

 

Shira and Enzo’s Responses to Task 2 

In the next section, I present Shira and Enzo’s response to a second question in 

the sine function TBCI. This task included three parts, shown in Figures 39, 40, and 41. I 

designed part (a) of this task (in Figure 39) to elicit the degree to which each instructor 

thought about sine as a function that relates an angle measured from the 3 o’clock 

position to a terminal point’s vertical distance above the horizontal diameter measured in 

radius lengths. I also designed part (a) to elicit the degree to which the instructors 

engaged in quantitative reasoning when reasoning about the sine function. 
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I designed parts (b) (Figure 40) and (c) (Figure 41) of the task to elicit the degree 

to which the teacher conceives of the value of the sine function as a relative size 

measurement. Although part (b) of this task does not directly require the teacher to relate 

their answer to the value of sine, I was interested in discerning if the instructor made any 

connections between the thinking they engaged in when responding to part (b) and the 

meanings they want to support students in developing for the sine function. 

 
Figure 39. Part (a) of the Second Task Included in the Sine Function TBCI 
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Figure 40. Part (b) of the Second Task Included in the Sine Function TBCI 

 

  

Part (c) of the Second Task Included in the Sine Function TBCI 

Shira and Enzo’s Responses to Task 2 Part A 

Enzo’s response to part (a) of task 2 (Figure 39) is in Figure 42. After Enzo 

responded to the task, I prompted him to describe what each part of the function he wrote 
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represented. Enzo responded that 
𝑚

1.5
 represented the measure of the angle swept out from 

the 3 o’clock position. Enzo then said that he subtracted 
𝜋

2
 to account for starting at the 

entrance of the corn maze. As such, Enzo expressed that 
𝑚

1.5
−

𝜋

2
 represented the measure 

of the angle swept out from the entrance of the corn maze to where he was at on the 

circle. Enzo then said that sin (
𝑚

1.5
−

𝜋

2
) represented his distance north of the haunted 

house measured in radius lengths. Following this, he concluded that 1.5sin (
𝑚

1.5
−

𝜋

2
) 

represented his distance north of the haunted house in kilometers. Enzo’s activity while 

responding to this task, and his ability to describe the  

 
Figure 42. Enzo’s Response to the Task Shown in Figure 39 

 

quantity represented by each expression included in his answer support that he was 

reasoning quantitatively while responding to this task. In particular, he consistently 

identified an attribute of an object he was measuring, a measurement process, and a unit 

of measure. Enzo also consistently described the starting points of each of the quantity’s 

measures.  

Shira’s response to part (a) of the second task (Figure 39) is in Figure 43. Unlike 

Enzo, Shira struggled quite a bit while responding to this task. After reading the task a 

few times, Shira said she needed to use the sine function because the “y-value is what 

will give the distance north of the x-axis.” Shira further explained that she was unsure 

about her decision to input m into the sine function, but she did this because the problem 
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said, “in terms of the distance, m,” which “[means] m has to be the input.” Shira 

expressed discomfort inputting m because “m is measured in kilometers, but angles can’t 

be measured in linear units.” When I asked Shira how she might reconcile what she wrote 

in green, Shira said that instead, she could put “sine of 1.5 m”. When I asked her why she 

changed her answer to sin(1.5𝑚), Shira said she did this because “if you want to find the 

arc length, you multiply the angle by the radius”. However, after writing sin(1.5𝑚), 

Shira said she wasn’t sure because “m is not the angle.”  

It is noteworthy that Shira recognized (1) she needed to use the sine function to 

answer this question and (2) that the value she input into the sine function needed to be 

an angle measure. However, Shira struggled to answer this question because she had not 

conceptualized the angle measure as a relative size comparison between the distance she 

traveled from the entrance of the corn maze and the circle’s radius. Moreover, Shira’s 

decision to use the sine function because the “y-value is what will give the distance north 

of the x-axis” further supports that she was thinking about the value of the sine function 

as a y-value on a coordinate plane.  

 
Figure 43. Shira’s Response to the Task Shown in Figure 39 

 

Shira and Enzo’s Responses to Task 2 Part B 

Recall that I designed part (b) of the second task included in the TBCI (Figure 40) 

to discern if the instructor made any connections between the thinking they engaged in 
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when responding to part (b) and the meanings they wanted to support students in 

developing for the sine function. I also designed part (b) of this task to elicit whether the 

teachers recognized that measuring the vertical distance using a circle’s radius makes the 

sine function’s value independent of the circle’s size for which the subtended arc is a 

part. 

Enzo responded to part (b) of the task by estimating a point’s (where the circle 

intersected a ray that started at the center and went through the red X) vertical distance 

above the haunted house and horizontal distance to the right of the haunted house (see 

Figure 44). In particular, he estimated the vertical distance of the point above the 

horizontal diameter by multiplicatively comparing its length to the length of the circle’s 

radius. He then estimated the horizontal distance of the point to the right of the vertical 

diameter using the same thinking. Following this, Enzo concluded that the vertical and 

horizontal distances to the red X were the same as the vertical and horizontal distances to 

the point where the terminal ray intersected the circle because “the percentage of radius 

length, or like the sine and cosine values, like, they’re the same” (Excerpt 24, lines 14-

15). Enzo’s response to this task supports that he (1) conceived of the vertical distance as 

a quantity that he could measure, (2) conceived of the radius of a circle as a unit for 

measuring the vertical (horizontal) distance, (3) conceived of a process to measure the 

vertical distance (multiplicative comparison), and (4) recognized that measuring the 

vertical distance using the radius makes the value of the sine function independent of the 

size of the circle for which the subtended arc is a part.  

Excerpt 24 

1 Enzo: Okay, so to the right, it’s more than half, umm two-thirds, whatever. Let’s  

2  say two-thirds [writes (0. 6̅ ].  
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3 Int:  How did you get two-thirds? 

4 Enzo:  I just did that [draws two red segments on the horizontal diameter]. Umm  

5  cutting this guy[the circle’s radius] into three pieces. 

6 Int: Okay. 

7 Enzo:  So, it looks like two-thirds of a radius length. And then the height…  

8  uhh… the number I want to say is 80%. I don’t know, looks like, let’s  

9  say… looks like more than three-quarters [draws red segments on the  

10  vertical diameter and writes(0. 6̅, 0.8)]. It is no different than doing the  

11  exact same thing with a smaller radius [draws a smaller circle with the  

12  origin as its center]. Yeah so they’re the same.  

13 Int: What do you mean? What is the same? 

14 Enzo:  So, the percentage of radius length, or like the sine and cosine values, like,  

15  they’re the same. So, I can make this little change [labels the larger  

16  circle’s radius 𝑟1 and changes (0. 6̅, 0.8) to (0. 6 ̅𝑟1, 0.8𝑟1) then labels the  

17  smaller circle’s radius 𝑟2]. So then, I could say, my friend is at  

18  (0. 6 ̅𝑟2, 0.8𝑟2) where 𝑟2 is less than 1.5, which if I just estimate it from the  

19  picture, we could say that 𝑟2 is approximately six-sevenths of 𝑟1. 

 

 
Figure 44. Enzo’s Response to Part (B) of the Corn Maze Task Shown in Figure 40 

 

Shira responded to part (b) of the task (Figure 40) by using Pythagorean Theorem. 

Like Enzo, Shira initially determined the vertical distance of a point where the circle 

intersected a ray that started at the center and went through the red X (Figure 45). Shira 

then estimated the horizontal leg of the triangle in Figure 45 to be one. Following this, 
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she used Pythagorean’s Theorem to determine the y-value or the length of the vertical leg 

of the triangle in Figure 45. 

 

Excerpt 25:  

1 Shira: So initially I’m thinking Pythagorean theorem. So, I know that this  

2  distance right here is 1.5 kilometers [draws horizontal radius and labels it].  

3  You can imagine the thing going through here [draws a line from the  

4   center through the red X] or through her location. And then we can find  

5  that vertical distance [draws red line from red X to the horizontal radius]. I  

6  would say that this, if I was approximating I would say that this distance is  

7   one. And then we also know that this distance is also 1.5. So, then we  

8  would only be left with to find that [works through calculation and solves  

9  for y]. So, her vertical distance from the house would be this many  

10  
kilometers [writes 𝑦 ≈ √

5

4
 km] and I am approximating that she is about 1  

11  kilometer east of the house. 
12 Int:  So, would that give the friend’s vertical distance? 

13 Shira: Oh yeah, that would give this point [marks on circle where the terminal  

14  ray intersects the circle]. 

 

Figure 45. Shira’s Response to Part (B) of the Corn Maze Task Shown in Figure 40 

 

Once Shira realized that she had approximated the wrong vertical distance, she 

changed her answer by re-estimating the distance from the haunted house to the red X. 

She then used Pythagorean’s theorem again to determine the red X’s vertical distance 

above the horizontal diameter in kilometers. Although Shira correctly estimated the red 

X’s vertical distance above the horizontal diameter, it is noteworthy that she did not 
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attempt to measure the vertical distance using the circle’s radius. Nor did she relate her 

activity while responding to this task to the meanings she wanted students to develop for 

the sine function. I hypothesize that Shira did not relate her activity while responding to 

this task to the meanings she wanted students to develop for the sine function because, as 

is argued later, she conceived of the value of the sine function as the ratio of y to r, as 

opposed to a measure of how many times as large a vertical distance is compared to the 

radius of a circle.  

Shira and Enzo’s Response to Task 2 Part C 
 

I designed the last part of the second task included in the sine function TBCI to 

elicit the degree to which the teachers conceived of the output of the sine function as a 

relative size measurement. After reading the task, Enzo immediately identified that he 

needed to determine the star’s distance above the horizontal diameter and the distance 

east of the vertical diameter. As such, Enzo drew a melon-colored vertical segment from 

the horizontal diameter to the star and a purple horizontal segment from the vertical 

diameter to the star (Figure 46). Enzo then determined the measure of these segments by 

multiplicatively comparing them to the circle’s radius (Excerpt 26 and Figure 46). In 

particular, Enzo estimated that the horizontal purple segment was 0.8 times as large as the 

circle’s radius or “80% of the way there”.  

Similarly, Enzo estimated that the vertical melon segment was 0.45 times as large 

as the circle’s radius. Therefore, Enzo concluded that cos (𝜃) was -0.8 since the star was 

west of the vertical diameter. Consequently, he also concluded that the value of sin (𝜃) 

was 0.45. Enzo’s activity while responding to this task further supports that he had a 

meaning for sine function grounded in quantitative reasoning as he consistently identified 
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an attribute to measure, a unit of measure, and a measurement process (multiplicatively 

comparing the vertical distance to the radius).  

Excerpt 26:  

1 Enzo: Okay, cosine is really big. Hmm… I don’t know [writes (-0.8, ]. That’s  

2  looking to be really close to half, but smaller [writes (-0.8, 0.45) ]. Okay,  

3  so what I am thinking here is, so, I’ve got these two segments and this  

4   melon colored one there and I am trying to see how long it is compared to  

5  the radius length [labels the radius r]. I am trying to think about relative  

6  size. What I am doing is measuring this melon segment using this guy  

7  [points to vertical radius length] as my measuring stick. Yeah, a little less  

8  than half up and almost all the way left. 
9 Int: So, you mentioned relative size, so in what way do you see relative size  

10  reasoning involved or as a way of thinking that you can use to answer this  

11  task? 
12 Enzo: Well, so we’re measuring this guy [draws melon and black vertical  

13  segments to the right-labels them 𝑑𝑛 and r] and we’re also measuring this  

14  [draws purple vertical segment and labels it 𝑑𝑡𝑜 𝐸]. So, this is the distance  

15  to the west [labels purple segment] and this is the distance north [labels  

16  melon segment] both measured in radius lengths. So, if I am saying  

17  distance to the west, maybe that is a little imprecise since it’s negative so  

18  maybe I want to call it distance to the east, so, I have a frame of reference. 

 
Figure 46. Enzo’s Response to Part (C) of the Corn Maze Task Shown in Figure 41 

 

 Shira initially responded to this task by estimating how many radians the angle 

measured. In particular, she determined that the angle measured 2.25 radians by laying 2-
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and-a-quarter radius lengths along the arc subtended by the angle’s rays. Following this, 

she paused for a long time and then wrote sin(𝜃) =
𝑦

𝑟
 . She then approximated x and y to 

be 1.3 and 0.7 kilometers, respectively. When I prompted Shira to explain how she 

determined that y was 0.7 kilometers, Shira said, “I know that halfway [up the radius] 

would be 0.75 [kilometers], so I am just approximating it’s just about 0.7 [kilometers]” 

(Excerpt 21, lines 20-21). Shira further explained that she knew “halfway” up the radius 

was 0.75 kilometers. As such, she concluded that the star was approximately 0.7 

kilometers above the horizontal diameter because “it just seem[ed] like slightly below the 

halfway point.” Shira then determined the values of sin (𝜃) and cos (𝜃) by dividing 0.7 

and 1.3 by the radius length of the circle centered at the angle’s vertex.  

Excerpt 27  

1 Shira: I am thinking about using Pythagoreans theorem again to find x and y. 

2 Int: Okay 

3 Shira:  So, that distance in total is 1.5 [draws horizontal line to the left of the  

4   haunted house]. So, this distance is like 1.3 [labels this on the diagram].  

5  Umm that distance [draws vertical line from the star to the horizontal  

6  diameter] is like… [pauses and draws a vertical radius length from the  

7  center] 
8 Int:  Talk to me about what you’re thinking. 

9 Shira:  Umm I am just trying to see how many times the smaller line goes into  

10  this bigger line [moves vertical radius length next to the vertical line she  

11  drew from the horizontal diameter to the star]. Umm I’d say it is a little  

12  less than halfway. 
13 Int: Yeah, and why do you want to know how many times the smaller line  

14  goes into the bigger line? 

15 Shira:  Umm… because then I would be able to find the length of the smaller line. 

16 Int: Okay. 

17 Shira: Yeah. So, then it’s about 0.7. So, then I would say… 

18 Int:  How did you get 0.7? Sorry could you just say it one more time? 

19 Shira:  Yeah so, if I put this like back here [moves the vertical radius back to the  

20  center] this is like the halfway point [marks this with a red dash] and when  

21  I bring it back over here [moves it back close to the vertical line to the  

22  star], it [the vertical distance of the star] just seems like slightly below the  

23  halfway point. So, I know that halfway would be 0.75 so I am just  

24  approximating it’s just about 0.7. 
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25 Int: So, 0.7 what? 

26 Shira: Kilometers. So, then sine of theta would be 0.7 divided by 1.5 and then  

27  cosine of theta would be negative 1.3 divided by 1.5. 

 
Figure 47. Shira’s Response to the Task Shown in Figure 41 

 Although Shira correctly determined the values of sine and cosine functions, it is 

noteworthy that she did not recognize that she could multiplicatively compare the length 

of the star’s vertical distance above the horizontal diameter and horizontal distance to the 

right of the vertical diameter to the radius of the circle to determine the values of the sine 

and cosine functions respectively. As such, Shira’s response to this task supports that she 

also conceived of the value of the sine function as the result of a numerical operation. 

This is evidenced by her need to approximate the vertical distance of the star above the 

horizontal diameter in kilometers before dividing it by the radius length in kilometers. In 

particular, when Shira determined that the star was 0.7 kilometers above the horizontal 

diameter, she did not recognize that her activity of determining that the star was “like 

slightly below the halfway point” of the radius was a method for determining the star’s 

vertical distance above the horizontal diameter in radius lengths or the value of the sine 

function. As such, it appears Shira was thinking about the value of the sine function as 

the result of comparing two numerical values rather than the relative size of the star’s 

vertical distance above the horizontal diameter and the circle’s radius. 
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Shira and Enzo’s Learning Goals for their Lesson on Sine Function 

I also interviewed Shira and Enzo before their lessons on Sine and Cosine 

functions. During these pre-teaching clinical interviews, I posed questions to gain insight 

into Shira and Enzo’s meanings for the sine function, their lesson planning 

process/practices, their image of the understandings they want students to have, and the 

teacher’s image of activities and conversations when using those activities, they 

anticipate having when teaching angle measure and the sine function.  

Before teaching two lessons on sine and cosine functions, Enzo repeatedly 

expressed that he wanted to support students in recognizing that sine and cosine are 

functions that relate two quantities’ values (see Excerpt 28). In particular, Enzo said he 

wanted to support students reasoning about how angle measure and the values of sine and 

cosine functions vary together. Enzo also said that he wanted to support students in 

recognizing that “S-I-N and C-O-S are just names for two really important functions.”  

Excerpt 28: Enzo’s Goals 

1 Enzo: We are we are looking at circular motion. And I’m going to try to be really 

2  disciplined about having the quantities we care about emerge from the  

3  class. And I’ve developed an applet to try to facilitate that. And the goal  

4   for today or Friday is to be able to write down definitions for sine and  

5  cosine. That’s the mile marker. But it’s going to take a while to get there. I  

6  know it. So, I have one crazy idea. The crazy idea is to symbolically like  

7  name sine and cosine with like more involved weird names so that once  

8  we realize, oh, this is the sine function, it [the name of the function]  

9  collapses into something smaller. So, what I’m playing with is like “d sub  

10  right of theta” and “d sub up” because I can do a lot of work there to be  

11  like, okay, this is the name of our function. 
12 Int:  Yeah, what are you hoping to draw students’ attention to by doing that? 

13 Enzo:  I’m trying to draw students’ attention to the fact that, you know, this  

14  relationship between these distances and the input of the angle measure is  

15  a functional relationship and that what do we do when we have functions?  

16  Well, we give them names, usually f, g and h. Sometimes there’s weird  

17  names like “L-O-G” [spells it out] or like “S-I-N” [spells it out]. But  

18  underneath it all, I really need them to understand this functional  
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19  relationship. That for every angle measure there exists one of these  

20  distances and in particular there exists only one…because otherwise the  

21  discussion about inverse trigonometry, is going to be like silly or like  

22  limited if they don’t have that, they don’t have the functional relationship  

23  or an understanding of the functional relationship. So, I am really still  

24  undecided how to like, open up class today. I might have some bellringer I 
25  might not. But at some point we’re gonna get to this [applet]. And, okay,  

26  the reason why I don’t have like a plan written out is because a lot of the  

27  scaffolding is implicit in these views [of the applet]. And I really want to  

28  be disciplined about having discussions where the quantities emerge and  

29  really responding to student thinking. 

 

 When discussing his plan for class, Enzo said he designed an applet to support the 

emergence of the definitions of sine and cosine functions during class (Excerpt 28 lines 

24-27). In particular, Enzo expressed that he planned to use an applet to support students 

in reasoning about how the values of angle measure vary with either the terminal point’s 

vertical distance above the horizontal diameter or the terminal point’s horizontal distance 

to the right of the vertical diameter. This supports that Enzo conceived of sine as a 

function that relates two covarying quantities’ values and that he wanted to support 

students in developing this understanding as well.  

 Enzo also expressed that he programmed specific points on the applet so that 

students could estimate a point’s vertical and horizontal distance on the terminal ray of an 

angle using the circle’s radius. Although Enzo planned to ask students to estimate various 

point’s vertical and horizontal distances, he said he did not have a rigid plan for the class 

because he “really want[ed] to be disciplined about having discussions where the 

quantities emerge and really responding to student thinking” (Excerpt 28, lines 24-27). 

Enzo’s programming of specific points on the applet and plan to prompt students to 

estimate the point’s vertical distance above the horizontal diameter using the circle’s 

radius supports that he (1) conceived of the value of the sine function as the result of a 
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multiplicative comparison and (2) aimed to support students’ development of this 

understanding. Similarly, Enzo’s contention that he did not have a rigid plan for class 

because he “really want[ed] to be disciplined about having discussions where the 

quantities emerge and really responding to student thinking” supports that he was 

interested in students’ thinking and anticipated using his observations of students’ 

thinking while teaching.  

It is also noteworthy that Enzo mentioned that he wanted students to understand 

that for any angle measure, “there exists one of these distances, and in particular, there 

exists only one” because otherwise his “discussion about inverse trigonometry, [would] 

be like silly or like limited if they don’t have that, they don’t have the functional 

relationship or an understanding of the functional relationship” (Excerpt 28, lines 17-21). 

This supports that Enzo’s teaching preparation was informed by his understanding of the 

material he would cover later in the chapter. In particular, Enzo expressed a desire to 

support students’ understanding of sine as the name of a function that relates two 

quantities’ values so that his later teaching of inverse trigonometric functions would not 

be “limited.” 

Shira’s goals for student learning are in Excerpt 29. When discussing her goals for 

students’ learning, Shira said that she wanted students to “see that sine of theta is the ratio 

of the y-value to the radius. But then also like if the radius is one, then the y-value is 

equal to the sine value” (Excerpt 29, lines 1-3). This further supports that Shira conceived 

of the value of the sine function as (1) a y-value on a coordinate plane and (2) the result 

of a numerical operation.  
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Excerpt 29 

1 Shira:  I would hope that they can see that sine of theta is the ratio of the y-value  

2  to the radius. But then also like if the radius is one, then the y-value is  

3  equal to the sine value. Aside from that, I would hope they could see the  

4   same with the x-value for cosine. 

 

Furthermore, when Shira discussed her plan for teaching two lessons on sine and cosine, 

she said she planned to select problems from the workbook investigations covering these 

ideas. When I prompted Shira to explain how she chose the problems to discuss in class, 

she stated that she typically looks at the instructor’s solutions provided by the curriculum 

and decides on problems based on “the answers that make sense” to her. When discussing 

her plan for the two lessons on sine and cosine functions, Shira also said she was 

extremely comfortable with the material covered in the first lesson (module 7 

investigation 3) because it “just covered the definitions.” However, Shira conveyed that 

she was less comfortable with the second investigation that included material on these 

ideas (Excerpt 30, lines 1-2). In particular, Shira said that she wasn’t “exactly sure if [she 

was] understanding the point of module 7.4 or what it’s trying to get at” (Excerpt 30, line 

1-2). As such, Shira said she planned to “[choose] the problems that kind of embed a lot 

of information” with the hope that students would “captivate what module 7.4 is trying to 

captivate.” This supports that Shira’s conception of sine function may have constrained 

her understanding of the curriculum’s goals and intentions. It is also noteworthy that 

Shira did not attempt to use her reasoning to complete the problems. Instead, it appears 

that she relied on her prior approach to justify the answer provided in the instructor notes 

of the student workbook.  

Excerpt 30 

1 Shira:  If I’m being completely honest, I’m not exactly sure if I’m understanding  

2  the point of module 7.4 or what it’s trying to get at. From what I can tell it  



   141 

3  is trying to get students more comfortable with using sine and cosine and I  

4   guess kind of relating that to the graphs of sine and cosine. But again, I’m  

5  not completely sure… I don’t feel like I could just tell you 7.4 is trying to  

6  teach students this. I don’t know what that would be. So in, in choosing  

7  problems for this, I’m just kind of choosing the problems that kind of  

8  embed a lot of information and then hopefully students just… I don’t  

9  know… captivate what module 7.4 is trying to captivate. 

At this point, providing the reader with some background on the material and 

ideas included in investigation 7.4 in the Pathways Precalculus curriculum seems 

imperative. Module 7 Investigation 4 is titled Using Sine and Cosine Functions to Track 

Circular Motion. The instructor manual for this investigation includes the following 

introduction:  

 This investigation continues our exploration of the sine and cosine 

 functions grounded in circular motion. The students are asked to 

 evaluate the sine and cosine functions for various input values, while 

 maintaining a focus on the quantities related by these functions and the 

 units of measure that are used for their input and output values. At all 

 times students should explain their solutions in terms of the quantities 

 and the units used to measure the quantities. Also, as students mention 

 using sine and cosine functions, prompt them to explain the output 

 quantities and unit before they determine the output value by 

 evaluating the function (Carlson, Ohertman, Moore, & O’Bryan, 

 2020). 

Figures 48 and 49 show two tasks from investigation 7.4 of the Pathways Pre-Calculus 

curriculum. In the first task shown in Figure 48, students are prompted to explain what 

the values of a coordinate point on a circular ski trail represent. This task also prompts 

students to illustrate both measures on a diagram. In the second task shown in Figure 49, 

students are prompted to determine the location of a skier when they have skied a certain 

distance around a circular ski trail. Both of these tasks included in the curriculum prompt 

students to reason about the measures of quantities’ values. As such, it is not surprising 

that Shira was confused about the goals and purpose of investigation 7.4, given that (1) 

she did not conceive of the values of these functions as the result of a relative size 
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comparison of two quantities’ values and (2) the investigation aimed to support students 

in making relative size comparisons between two quantities’ values.  

Figure 48. A Task Included in Investigation 7.4 from the Pathways Pre-calculus Curriculum 

 

 
Figure 49. A Second Task Included in Investigation 7.4 from the Pathways Pre-calculus Curriculum 
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It is noteworthy that Shira and Enzo’s goals for student learning were highly 

aligned with their meanings for these ideas. In the TBCI, Enzo expressed a meaning for 

sine and cosine functions grounded in quantitative and covariational reasoning. When 

discussing his goals for student learning, Enzo said that he had designed an applet to 

support students’ engagement in both ways of thinking. Similarly, during the TBCI, Shira 

expressed a meaning for the value of the sine function as (1) a y-value and (2) the result 

of a numerical operation. When discussing her goals for student learning, Shira said she 

wanted students to understand that sin(𝜃) =
𝑦

𝑟
 and cos(𝜃) =

𝑥

𝑟
 when the radius isn’t one. 

Shira further said that she wants students to understanding that sin(𝜃) = 𝑦 and cos(𝜃) =

𝑥 when the radius is one. As such, it appears that Enzo and Shira’s mathematical 

meanings these ideas greatly informed the meanings they wanted students to construct. 

It is also noteworthy that Enzo designed an applet to support students in 

conceiving of sine as a function that relates two covarying quantities values. Enzo’s 

development of an applet to support students’ learning of the sine function suggests that 

he not only had an image of the understandings he wanted students to construct for this 

idea, but he also had an image of an activity and conversations about that activity that 

would support students in constructing a coherent meaning for sine function. This 

suggests that he conceived of the applet as a didactic object and had constructed a model 

for engaging students in reflective discourse while using the applet (didactic model) 

(Thompson, 2002).  

 In contrast, Shira’s conception of the value of the sine function as both a y-value 

and the result of a numerical comparison constrained her ability to understand the goals 

of the curriculum she was using and her selection of tasks to use in her teaching. In 
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particular, Shira’s plan to “[choose] the problems that kind of embed a lot of 

information” with the hope that students would “captivate what module 7.4 is trying to 

captivate” together with her contention that she selects tasks to use in class based on “the 

answers that make sense” suggests that she planned her lessons with little regard for the 

reasoning that was explained in the curriculum materials that could be used to justify the 

answer.  

Enzo’s Teaching of Sine Function 

 

This section presents data from Enzo’s first lesson on sine and cosine functions. 

During this lesson, Enzo used an applet that he designed to support students in 

understanding the sine and cosine functions as covarying relationships of an angle 

measure and length. Figure 50 shows the different viewing windows of the applet Enzo 

designed for this lesson. The applet could be played like an animation or manipulated 

using the various toggles manually. Enzo began his lesson on sine and cosine functions 

by projecting the applet, as shown in the top left view of Figure 50. He then animated the 

applet so that the bug rotated around the circle. As the bug rotated, the applet highlighted 

the arc subtended by the angle’s rays in green. While showing this applet view (see top 

left Figure 50), Enzo prompted students to use the applet to identify as many fixed and 

varying quantities as possible. Following this, Enzo clicked the “ShowHD” button on the 

applet to show the horizontal diameter of the circle (see the top right view of Figure 50). 

He then asked students, “How can we use this line to figure out where the bug is?” After 

a few minutes, Enzo stopped animating the bug’s position and rotated it above the 

horizontal diameter. Next, he asked students, “Is the bug above or below the horizontal 

diameter?” Enzo repeated this question after he rotated the bug below the horizontal 
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diameter. Following this, he turned on the “Show1” button which placed a blue segment 

from the bug to the horizontal diameter (see the left middle view of Figure 50). After 

doing this, Enzo animated the applet so that the bug rotated around the circle. As the bug 

rotated, the length of the blue line from the horizontal diameter to the bug varied 

accordingly. During this time, Enzo asked students, “Is this distance [points to the blue 

segment] enough to figure out where the bug is?” He followed this by asking students to 

“come up with another quantity that we can track to determine the position of the bug.” 
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Figure 50. The Applet Enzo Designed for His First Lesson on Sine and Cosine Functions 

Enzo repeated a similar process that introduced students to tracking the bug’s 

horizontal distance to the right of the vertical diameter and vertical distance above the 

horizontal diameter, as a means for tracking the bug’s location. Once students agreed that 

they could track the bug’s position by determining these distances, Enzo moved the bug 
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to point P shown in the bottom two views of the applet in Figure 50 and in Figure 51. 

Following this, he told students, “I am convinced that something interesting happens here 

at point P. What is interesting about point P?” Excerpt 31 shows the class discussion that 

ensued after Enzo allowed students to discuss this question for a few minutes.  

 
Figure 51. Enzo Moves the Bug to Point P 

Excerpt 31 

1 Enzo: Okay, folks, let’s do this real quick. Let’s compare how many times as  

2  large this blue length is to the radius length. Anybody have a result?  

3  How many times as large? 

4 Students: Half 

5 Enzo: Half? I heard half from some people, yeah? Okay, so what would we  

6  say the bug’s distance above is? We would say one half, right. But one  

7  half what? That’s what I want to clarify before we leave. What is the  

8  unit? And I want to remind you of what we just did. We took this length  

9  [points to the bug’s vertical distance above the horizontal diameter  

10  (blue segment)] and compared it to this length [points to the vertical  

11  radius length]. This one is the radius length. So, we used the radius  

12  length as a measuring stick, as a unit of measure, to measure this guy  

13  [points to the bug’s vertical distance above the horizontal diameter  

14  (blue segment)], this distance above. Okay, so we’re gonna write down  

  “the distance above equals 0.5”. You answer 0.5 what. 
  

After allowing students to discuss his question for a few minutes, Enzo told 

students to determine how many times as large the length of the blue segment in Figure 

51 was to the length of the circle’s radius (see Excerpt 31, lines 1-3). Multiple students in 
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the class agreed that the blue vertical segment was one-half times as large as the circle’s 

radius (see Excerpt 31, line 4). Following this, Enzo prompted students to think about a 

unit for their measure of 0.5. At this time, Enzo reminded students that they determined 

the measure of 0.5 by comparing the length of the blue segment to the circle’s radius 

length. Enzo also expressed that they could think about the radius length as their 

“measuring stick” (see Excerpt 31, line 11-12).  

Enzo’s discussion in Excerpt 31 exemplifies a teacher supporting students’ 

quantitative reasoning. In particular, Enzo supported students in conceiving (1) an 

attribute of an object to measure (the length of the blue segment), (2) a unit of measure 

(the circle’s radius), and (3) a measurement process (multiplicatively comparing the 

length of the blue segment to the radius length). Enzo also supported students in 

conceiving of division as a measurement in this example when he expressed that he was 

using the radius length as a “measuring stick.” Enzo then allowed students to discuss the 

unit for 0.5 in their groups for approximately three minutes. After this, he brought the 

class back together and prompted students to explain what they discussed in their groups. 

Excerpt 32 includes the class discussion that ensued.  

Excerpt 32: 

1 Enzo: Okay, so, let’s talk about this. Thoughts? 0.5 what? 

2 Students:  *class response inaudible* 

3 Enzo:  Okay, so I heard three things, all from the same group. I heard 0.5 r,  

4  0.5 radius, and I heard 0.5 feet. All of those are reasonable. Let’s  

5  consider the feet. Well, we’re measuring something linear, so why not?  

6  But… what we actually did, is we compared this length [points to the  

7  bug’s vertical distance above the horizontal diameter (blue segment)],  

8  the distance above, to the radius length [points to vertical radius  

9  length]. And we said that the distance above was how many times as  

10  large as the radius length? We said 0.5. Okay, so, we can kinda  

11  consolidate these two [circles 0.5r and 0.5 radius on the board] and say  

12  that the unit of measure is radius lengths. Okay, so folks, [moves the  
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13  bug to the 12 o’clock position of the circle (so that 𝜃 =
𝜋

2
)] how many  

14  radius lengths above the horizontal diameter is the bug here? 
15 Class: One radius length 

16 Enzo: One, okay, because the bug’s distance above is one times as large as  

17  the radius length. Okay, so that’s what we mean by radius length.  

18  Now, let’s talk about feet. What if I told you that this radius length was  

19  2.6 feet. Can we report this distance above [moves the bug back to  

20  point P] in a new unit now? Can we report it in feet? What would it  

21  be? 

22 Student 2: 1.3 feet. 

23 Enzo:  Okay I don’t know how you got that number. Walk me through it. 

24 Student 2: It’s gonna be half the size of a radius so half of 2.6.  

25 Enzo:  Okay, so I know this distance above is 0.5 radius lengths so I am going  

26  to use your way of thinking right here. You said it’s going to be half  

27  the size of a radius length. So, I want a distance, I want a length that is  

28  one half times as large as 2.6 because each radius length is 2.6 feet  

29  [writes 0.5(2.6 ft) on the board] (see Figure 52). Oh, that’s how you  

30  got 1.3! Oh okay, gotcha. 
 

 
Figure 52. Enzo’s Board Work During Discussion in Excerpt 32 

  

After Enzo prompted students to explain what they discussed in their groups, he 

told them that he heard three responses: 0.5r, 0.5 radius, and 0.5 feet (see Excerpt 32, 

lines 3-4). Enzo then told students that their answer of 0.5 feet was reasonable since they 

were measuring something linear. He then followed this by reminding students for a 

second time that they determined the measure of 0.5 by comparing the bug’s vertical 

distance above the horizontal diameter to the circle’s radius (see Excerpt 32, lines 7-8). 

To support students in recognizing that the unit was radius lengths or radii, Enzo moved 
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the bug to the top of the circle (12 o’clock position) and asked students how many radius 

lengths above the horizontal diameter the bug was at this position. Students responded 

that the bug was one radius length above the horizontal diameter. Enzo then concluded 

that the bug was one radius length above the horizontal diameter at the 12 o’clock 

position because “the bug’s distance above is one times as large as the radius length” (see 

Excerpt 32, lines 16-17).  

Following this, Enzo prompted students also to give the measure of the bug’s 

vertical distance above the horizontal diameter in feet. A student in the front of the class 

immediately responded, “1.3,” to which Enzo responded, “I don’t know how you got that 

number. Walk me through it” (Excerpt 32, line 23). The student replied, “It’s gonna be 

half the size of a radius, so half of 2.6.” Following this, Enzo repeated what the student 

said and added that he “wanted a length that is one-half times as large as 2.6 because each 

radius length is 2.6 feet” (Excerpt 32, lines 27-28).  

Enzo’s explanations in Excerpt 32 provided students with the opportunity to 

construct a meaning for the output of sine function as a relative size comparison. Namely 

that the value of sin (𝜃) gives a measure that describes how many times as large the 

vertical distance of the angle’s terminal point is above the horizontal diameter, as 

compared to the circle’s radius. Enzo’s explanations in Excerpt 32 also provided students 

with an opportunity to construct the understanding that they could determine the measure 

of the bug’s vertical distance above the horizontal diameter in feet by multiplying the 

measure of the bug’s vertical distance in radius lengths by the measure of the circle’s 

radius in feet. His question scaffolding also provided insights about Enzo’s MMT for the 

sine function. In particular, Enzo appeared to value having his students (1) identify 
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quantities to measure, (2) describe a measurement process, and (3) make explicit a unit of 

measure. His interactions with students using the applet further reveals that he valued 

having his students conceptualize the quantitative relationships representing the output of 

the sine function.  

 Directly following Enzo’s lesson, I interviewed him and asked him about his 

decision to ask students to determine the bug’s height above the horizontal diameter 

when the bug was at point P. Enzo said that he chose to move the bug to point P because 

“[he thinks] this one was really easy to confidently estimate.” Enzo further stated that he 

prompted students to determine the bug’s height above the horizontal diameter at point P 

because “it forces us to be direct and explicit about as long as what, half as long as what.” 

Enzo further said he chose this task because “you can’t make estimates if you don’t know 

what the quantity is… and at this point, we haven’t really written [the definition of sine 

function] down, but I want them to be able to think about and make those estimates. So 

[this task is] just reinforcing the definition [of sine function], even as it emerges in the 

class.”  

 In this example, Enzo prompted students to estimate the vertical distance of a 

point above the horizontal diameter as a relative size measurement. He described his 

reason for posing this question by saying, “you can’t make estimates if you don’t know 

what the quantity is.” As such, it appears that Enzo was aware of the difficulty students 

might confront in conceptualizing the quantities to represent the output of the sine 

function, providing further insight into his MMT for the sine function. Moreover, Enzo’s 

decision to prompt students to estimate the point’s vertical distance using the circle’s 

radius supports that he valued having his students conceptualize the output of the sine 
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function as the ratio of the terminal point’s vertical distance above the horizontal 

diameter of a circle and the circle’s radius, and recognized that conceptualizing this 

quantity might be fostered by engaging them in visualizing these quantitative 

relationships and how they vary together using an applet he designed support students in 

thinking about measuring a vertical distance using the radius of a circle as a unit of 

measure.    

Shira’s Teaching of Sine Function 

  

In this section, I present data from the start of Shira’s second lesson on sine and 

cosine functions. Shira began this class by reviewing a problem she did not have time to 

finish during the previous class session (see Figure 53). While discussing this task, Shira 

called on students to provide answers to each part of the question in Figure 53.  

Shira began her discussion of the task by telling students that the angle measure, 

𝜃, was 2 radians because it subtended an arc that was “2 radius lengths.” Following this, 

Shira asked students how they could approximate the value of 3sin (𝜃). After a student 

said they didn’t know, Shira asked, “So, on Monday, sin(𝜃) was kinda attributed to what 

variable?” to which a student responded, “the y-value”.  Shira then responded, “the y-

value of what?” Once Shira and the student agreed that they were talking about the y-

value of a point on the terminal ray of the angle whose vertex was at the center of the 

circle, Shira prompted students for a second time to give a solution to part (b). At this 

time a student raised their hand and said, “wouldn’t you just set it equal to 2.7?” To 

which Shira agreed. This student then said that they could determine the value of sin(θ) 

by dividing 2.7 by 3. Following this, Shira concluded her discussion of this task by 
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stating, “what I want you to know is that sin(𝜃) is the ratio of the y-value versus the 

radius” (Excerpt 33, lines 25-27). 

In this example, it is noteworthy that Shira asked students, “on Monday, sin(𝜃) 

was kinda attributed to what variable?” This further supports that she conceived of the 

value of the sine function as a y-value on a coordinate plane. It is also noteworthy that 

Shira did not prompt students to explain what sin(𝜃) = 0.9 represents. This further 

supports that she also conceived of the value of sin (𝜃) as the results of a numerical 

operation.  

 

Figure 53. A Task Shira Used During Her Lesson on Sine Function 

 

Excerpt 33 

1 Shira: Student 1, would you be able to tell me without a graphing calculator,  

2  how it is that we could approximate the value of 3sin (𝜃)? 

3 Student 1:  Umm… I do not know. 

4 Shira:  Okay, that’s totally okay. So, on Monday, sin (𝜃) was kinda attributed  

5  to what variable?  

6 Student 2: The y-value. 

7 Shira:  The y-value. Okay, the y-value of what? 

8 Student 2:  The coordinate of like the point that the terminal ray intersects the unit  

9  circle at. 

10 Shira:  Okay, perfect, I love that. So, the point at which the terminal ray  

11  intersects the… you said the unit circle. What is a unit circle? 

12 Student 2:  Umm… Well, that’s just kinda the one we were doing with the one  

  radius. 
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13 Shira:  Okay, so I think what you mean is using a circle with a radius of one.  

14  Okay, so, in this case right, I have something other than one, right. So,  

15  Student 3 tell me what do we think the value of 3 sin (𝜃) would be? 

16 Student 3: I’m not sure. 

17 Shira:  You’re not sure, okay, is there anyone who could figure out the value  

18  of 3 sin (𝜃) from this graph? 

19 Student 4: I have a question, wouldn’t you just set it equal to 2.7? 

20 Shira Uhh huh… 

21 Student 4: Like 3 sin(𝜃) = 2.7 then divide by 3 to get sin (𝜃). 

22 Shira:  Yes exactly. So, 2.71 is just an estimate of where this y-value hit,  

23  right. So, the value of 3 sin (𝜃) is about 2.71. So then, if we just  

24  wanted to find sin (𝜃) then going back to what Student 4 said, we  

25  could take 3 sin (𝜃) and just divide by 3. So sin (𝜃) is about 0.9. So  

26  that being said, what I want you to know is that sin (𝜃) is the ratio of  

27  the y-value versus the radius. So the reason why the 3 sin (𝜃) was  

28  equal to the point is because if we look at this [points to sin(𝜃) =
𝑦

𝑟
] if  

29  I multiply both sides by r, this would then provide me that y is r times  

  sine of theta [writes sin(𝜃) =
𝑦

𝑟
 ⇒ 𝑦 = 𝑟𝑠𝑖𝑛(𝜃)]. 

 

The segment of Shira’s teaching shown in Excerpt 33 also provides an example of 

the ways in which a teacher’s explanations may be constrained by their meanings for an 

idea. In Excerpt 33, Shira’s explanations were constrained by her meanings for the value 

of the sine function as a y-value or the ratio of “y divided by r”. Shira’s teaching in 

Excerpt 33 also provides an example of a teacher expressing conflicting meanings to 

students. In this example, Shira told students that sin (𝜃) is attributed to a y-value. Shira 

also conveyed that the value of the sine function can be determined by dividing a y-value 

by the length of the radius. As such, it seems reasonable that a student from this class 

would construct two different meanings for the sine function. Namely, sin (𝜃) is a y-

value and sin (𝜃) is the result of dividing the y-value by the radius.   

Following Shira’s class discussion of the task in Figure 53, a student asked, “so 

when is the coordinate (cos(𝜃) , sin(𝜃)) instead of (𝑟 cos(𝜃) , 𝑟 𝑠𝑖𝑛(𝜃))?” (see Excerpt 

34, lines 2 and 3). Shira responded, “you would use the coordinate (cos(𝜃) , sin(𝜃)) 
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when the radius is equal to one (see Excerpt 34, lines 4 and 5). Shira further explained 

that the coordinates would be (cos(𝜃) , sin(𝜃)) when 𝑟 = 1 because “sin(𝜃) =
𝑦

𝑟
 and 

cos(𝜃) =
𝑥

𝑟
, and so y divided by one and x divided by 1 are just y and x” (Excerpt 34 lines 

11-13). 

 

Excerpt 34 

1 Shira: Any questions before we move on? 

2 Student 2: I just have a question, so when is the coordinate (cos(𝜃) , sin(𝜃))  

3  instead of (𝑟 cos(𝜃) , 𝑟 𝑠𝑖𝑛(𝜃))? 

4 Shira:  So, umm… you would use the coordinate (cos(𝜃) , sin(𝜃)) when the  

5  radius is equal to one. And then, or like if… it would have to be like  

6  one unit of radius length. And that kinda draws back to the definition  

7  of sine of theta and cosine of theta. So, I said that sine of theta, right,  

8  was 𝑦 over 𝑟 [writes sin(𝜃) =
𝑦

𝑟
] and cosine of theta is x over r  

9  [writes cos(𝜃) =
𝑥

𝑟
]. So, the coordinate points would be sine of theta  

10  cosine of theta if r is one, because then at that point, y is equal to sine  

11  of theta [writes 𝑦 = sin (𝜃)] and x is equal to cosine of theta [writes  

12  𝑥 = cos (𝜃)]. Right, because this was equal to one [writes 𝑟 = 1 in  

13  sin(𝜃) =
𝑦

𝑟
 and cos(𝜃) =

𝑥

𝑟
], and so y divided by one and x divided  

14  by 1 are just y and x. 
 

 
Figure 54. Shira’s Board Work as She Responded to the Student’s Question Shown in Excerpt 34 

 

It is noteworthy that Shira did not mention units when responding to the student in 

Excerpt 34. Shira’s calculational orientation and inattention to units further support her 

thinking about the values of sine and cosine functions as the result of performing 

numerical operations instead of the relative size of two quantities’ values as they vary 
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together. Shira’s interaction with the student in Excerpt 34 also provides an example of 

how her explanations were constrained by her conception of the value of the sine function 

as a y-value or “y divided by r.” 

Following Shira’s lesson on sine and cosine functions, I interviewed her about her 

teaching. During this interview, I asked Shira about her interactions with students (see 

Excerpt 35). In particular, I noticed Shira was inconsistent in the degree to which she 

probed student thinking while teaching. For example, when prompted to explain how she 

decided whether or not to prompt student thinking further, Shira said that she asks 

students more questions when “looking for a specific answer.” In particular, she said, “if 

there’s something that they haven’t quite said, then that’s when I will ask them more 

questions to help and kind of direct them into…whatever I’m thinking.” Shira also 

expressed that she struggles to ask students questions when teaching and doesn’t typically 

ask more questions if a student “said exactly what [she] was thinking.”  

Excerpt 35: Shira talks about her interactions with students. 

1 Int: So, I’ve noticed that when you teach, after asking students a question,  

2  sometimes you will follow up with more questions and other times you  

3  will just say “okay” and walk to the next group. So how do you decided  

4  when to ask more questions and when to just say okay and move to  

5  another group? 
6 Shira: So, I will tend to ask more questions if I’m looking. I guess you could  

7  say if I’m looking for a specific answer. And so, if they [the students]  

8  haven’t, there’s something that they haven’t quite said, then that’s when I  

9  will ask them more questions to help and kind of direct them into that,  

10  that I guess that whatever I’m thinking. But then if they say like exactly  

11  what I was thinking or something along the lines of what I was thinking,  

12  I don’t usually pose more questions. But then because they said exactly  

13  what I was thinking, I just can’t think of something else to ask them.  

14  There might be times when I can think of something that would actually  

15  like extend their understanding, and then I would try to be able to ask a  

16  question. But if it’s just like spot on and like I can’t, like in the moment, I  

17  just can’t ask another question. 
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Shira’s description of how she decides whether to probe student thinking provides 

an empirical example of a teacher interacting with students unreflectively. A teacher 

interacts with a student unreflectively if they are constrained to using their meanings of 

an idea (first-order model) when interacting with students (Teuscher et al., 2016; Bas 

Ader & Carlson, 2021). In this example, Shira’s meanings not only created the space for 

the meanings her students could construct, but they also constrained the nature of her 

interactions with students.  

CONCLUSION AND DISCUSSION 

 This paper presents two precalculus instructors’ MMT for the sine function, their 

goals for students learning of the sine function, a description of their teaching, and their 

rationale for their instructional choices. The findings support that an instructor’s 

mathematical meanings for teaching an idea influence the nature of the instructor’s goals 

for students’ learning, their explanations while teaching, their image of ways to support 

students’ learning of an idea, and ultimately the meanings that students have the 

opportunity to construct. Although both instructors taught using the same research-based 

precalculus curriculum, they expressed different meanings for the sine function. In 

particular, Enzo repeatedly expressed meanings for the sine function that were grounded 

in quantitative and covariational reasoning. Namely, Enzo described sine as the name of a 

function that relates the measure of an angle (measured from the 3 o’clock position of a 

circle) and a terminal point’s vertical distance above the horizontal diameter of the circle 

in radius lengths. In contrast, Shira was inconsistent in describing the value of the sine 

function as either a “y-value” or as the ratio of “y over r.”  
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 The meanings Shira and Enzo expressed for the sine function largely influenced 

the meanings they expressed while teaching and, as a result, the meanings that students 

had the opportunity to construct. Table 9 provides examples of each instructor’s 

meanings for the sine function, their expressed meanings while teaching, and a 

description of the meanings students likely constructed as a result of the meanings that 

each instructor conveyed to students. It is noteworthy that Enzo consistently supported 

students in conceptualizing and relating quantities and, as a result, conveyed meanings 

that supported students in reasoning about quantities, how they covary, and measuring 

their values. As such, a student in Enzo’s class likely conceived of sine as a function that 

relates two covarying quantities’ values. In addition, students in Enzo’s class likely 

conceived of the output of the sine function as the result of a multiplicative comparison 

between the vertical distance a point was above the horizontal diameter of a circle and the 

circle’s radius. In contrast, Shira expressed meanings for the sine function that were 

inconsistent from a student’s perspective. For example, Shira was inconsistent in 

describing the value of sine as a y-value or the ratio of a y-value and the radius of a 

circle. As such, students in Shira’s class likely constructed meanings for sine that were 

grounded in a list of rules. Namely, when the radius is one, sine is a y-value; otherwise, 

sine is the ratio of “y over r”. 

It is also noteworthy that each instructor’s meanings likely supported very 

different types of thinking in students. For example, Enzo’s instruction supported 

students in reasoning about quantities and their measures. In contrast, Shira’s instruction 

focused students’ attention on applying rules and performing numerical operations. Thus, 

it is likely that students in Shira’s class conceived of the three letters S-I-N as a directive 
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to perform an operation. In contrast, students in Enzo’s class likely conceived of the three 

letters S-I-N as the name of a function that relates two covarying quantities’ values.    

The results presented in this paper reveal that both instructors’ meanings for sine 

function were germane to (1) their goals for student learning, (2) their selection/creation 

of tasks to use while teaching, (3) and their explanations and interactions with students 

when teaching. For example, Enzo expressed a meaning for sine as a function that relates 

two quantities’ values that covary. Enzo also conceived of the output of the sine function 

as a relative size comparison of a terminal point’s vertical distance above the horizontal 

diameter of a circle and the circle’s radius. In alignment with his meanings, Enzo said 

that he wanted to support students in recognizing that sine was the name of a function 

that related two quantities’ values (Excerpt 28). Enzo also expressed that he wanted to 

support students in conceiving of the output of the sine function as a relative size 

measurement (Excerpt 28). As such, he designed an applet to support students in 

reasoning about how a terminal point’s vertical distance above the horizontal diameter 

covaries with the measure of an angle swept out from the 3 o’clock position of a circle. 

Enzo’s design of the applet and his scaffolding of questions to advance students’ 

understanding support that he (1) understood the goals of the curriculum and (2) had an 

image of how to support students’ learning of these ideas.  
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Subject 
Meanings Expressed During 

TBCI 

Meanings Expressed to 

Students 

Meanings 

Students May 

Have 

Constructed 

Enzo 

“I want them to think about 

this quantity over here 

[underlines sin (𝜃)] as the 

height above the horizontal 

diameter of the point, which 
is at the intersection of the 

terminal ray of the circle 

centered at the vertex of the 

angle.” [Excerpt 2] 

“Is this distance [points to 

the bug’s vertical distance 

above the horizontal 

diameter] enough to figure 

out where the bug is? Come 

up with another quantity 

that we can track to 

determine the position of 

the bug.” [page 153] 

We can 

determine the 

location of 

points on a circle 

by tracking 

quantities’ 

values.  

“Okay, so what I am thinking 

here is, so, I’ve got these two 

segments… and I am trying to 
see how long it is compared 

to the radius length. I am 

trying to think about relative 

size.” [Excerpt 7] 

“Let’s compare how many 

times as large this blue 

length [points to bug’s 

vertical distance above the 

horizontal diameter]is to the 

radius length.” [Excerpt 12] 

We can 

multiplicatively 

compare the 

vertical distance 
a point is above 

the horizontal 

diameter of a 

circle and the 

circle’s radius. 

“And so, if this [points to 

sin (𝜃)] outputs 0.5 and 

thinking about it as a length 

that is 0.5 times as large as a 

radius. I can go back and 

forth between thinking of it as 

like 50% of a radius length.” 

[Excerpt 4] 

“So, we used the radius 

length as a measuring stick, 
as a unit of measure, to 

measure this guy, this 

distance above.” [Excerpt 

12, lines 11-12] 

The radius of a 

circle can be 

used as a unit of 

measure for 

measuring the 

vertical distance 

of a point above 

the horizontal 
diameter.  

Shira 

“Sine of theta equals y or that 
it’s the ratio of y with respect 

to the radius.” [Excerpt 1] 

“So, on Monday, sin (𝜃) 

was kinda attributed to what 

variable?” [Excerpt 14] 

sin (𝜃) means 

the same thing 

as y 

“What I want you to know 

is that sin (𝜃) is the ratio of 

the y-value versus the 

radius.” [Excerpt 14] 

sin(𝜃) =
𝑦

𝑟
 

“You would use the 

coordinate (cos(𝜃) , sin(𝜃)) 

when the radius is one.” 

[Excerpt 15] 

The coordinate 

point changes 

depending on 

the length of the 
radius. 

Table 9. A Comparison of Enzo and Shira’s Meanings, Explanations, and the Meanings Students Might 

Have Constructed as a Result of Their Instruction 
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Shira’s meanings for sine function also greatly informed her instructional 

decisions, explanations, and interactions with students. Prior to her teaching Shira 

expressed goals for student learning that aligned with her meanings for sine function. In 

particular, Shira said she wanted students to understand that  sin(𝜃) =
𝑦

𝑟
 and cos(𝜃) =

𝑥

𝑟
  (Excerpt 29). Before teaching, Shira also selected a task that aligned with this goal. 

Unlike Enzo, Shira struggled to understand the goals of the curriculum. I hypothesize that 

Shira’s conception of the values of sine and cosine functions as the result of a division of 

two values as opposed to the relative size of two quantities’ values impacted her ability to 

understand the intention of an investigation included in the curriculum. As one example, 

Shira did not recognize the affordances of an investigation focused on circular motion 

because she did not conceive of sine and cosine functions as a relationship between two 

covarying quantities’ values (see pages 150-151).  

As such, this paper provides empirical support for Thompson’s (2013) claim that 

a teacher’s mathematical meanings for an idea constitute their image of the mathematics 

they teach, their pedagogical decisions, and the language they use to cultivate similar 

images in students’ thinking. This paper also corroborates Tallman’s (2015) claim that a 

teacher’s teaching actions are strongly related to their mathematical meanings. 

Additionally, this paper provides empirical evidence of the affordances of a teacher’s 

engagement in quantitative reasoning. Enzo regularly expressed meanings for the sine 

function grounded in quantitative reasoning during the TBCIs and in his teaching. Enzo’s 

commitment to quantitative reasoning as a critical way of thinking supported him in (1) 

stating goals for student learning in terms of the thinking he wanted students to engage in, 

(2) designing an applet to support students’ quantitative reasoning and learning of sine 
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and cosine functions, and (3) posing questions to students that support their quantitative 

reasoning.  

 Lastly, this paper provides empirical evidence of the impact sustained 

professional development focused on providing teachers with repeated opportunities to 

construct coherent meanings for the ideas they are teaching can have on an instructor’s 

thinking and practice. Although Enzo and Shira were both in their first year of teaching 

this course at the University level, Enzo had been teaching with the Pathways Precalculus 

and Algebra II Curriculum for approximately three years prior to this study. Enzo had 

also participated in approximately fifty hours of professional development led by the 

Project Pathways Professional Development team prior to this study. In contrast, at the 

time of the study, Shira had been teaching with the Pathways curriculum for a little over 

eight months. At this time, Shira had only participated in approximately fifteen hours of 

weekly professional development led by the Project Pathways Professional Development 

team that focused on preparing GSIs to teach the ideas in the investigations for the 

upcoming week. It is also noteworthy that Shira did not attend a 2-3 day pre-course 

workshop that engaged future Pathways instructors in completing and explaining the 

thinking they used to complete select tasks in the Pathways workbook investigations.  

LIMITATIONS 

 The reader must bear in mind the unique experiences of both Enzo and Shira. 

These instructors were teaching using a research-based precalculus curriculum. 

Concurrent with this study, both instructors were also enrolled in a professional 

development seminar that focused on supporting instructors’ (1) development of coherent 

meanings and ways of thinking about the ideas to be taught and (2) in explaining their 
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meanings for these ideas to others. Because of the unique experiences of these 

instructors, the reader should not generalize these findings to a general population of 

secondary or post-secondary instructors. Instead, the purpose of this paper is to theorize 

about the ways in which an instructor’s mathematical meanings for teaching an idea 

inform their practice.   
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CHAPTER 6 

CONCLUSIONS 

Research on teachers’ knowledge base has primarily focused on identifying what 

teachers need to “know” to teach mathematics and the relationships between what 

teachers “know” and student performance (Thompson, 2013; 2016; Tallman, 2015, 

2021). Too often, this research examines teachers’ ability to answer questions correctly 

instead of clarifying the meanings teachers have that enable them to perform as effective 

teachers (Thompson, 2013). This dissertation contributes to research focused on teachers’ 

mathematical meanings by providing nuanced characterizations of two instructors’ 

mathematical meanings for teaching angle measure and the sine function and illustrating 

the impact of the instructors’ meanings on their instructional practices and interactions 

with students. My epistemological stance that an individual’s meanings are constructed 

and idiosyncratic and my focus on mathematical meaning and coherence enabled me to 

provide detailed characterizations of teachers’ mathematical meanings for teaching angle 

measure and the sine function. 

In this study, I have chosen to use the construct mathematical meanings for 

teaching (MMT) as opposed to mathematical knowledge for teaching (MKT) 

purposefully to convey that I am using the construct MMT to describe a teacher’s 

cognitive mechanisms relative to teaching. As such, the reader needs to recognize that my 

use of the construct MMT instead of MKT is not an issue of semantics. Instead, it 

demonstrates a commitment to modeling the nature of teachers’ mathematical schemes, 

mental operations, and ways of thinking that enable teachers’ behaviors while teaching. 
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This document is organized into three papers detailing a multiple case study that 

constitutes my dissertation. The first paper presents a model of the first subject’s MMT 

for angle measure and illustrates the impact of a teacher’s meanings on her interactions 

with students. This paper also identifies the implications of a teacher’s meanings on 

students’ learning opportunities. The second paper presents a model of the second 

subject’s MMT for angle measure and provides an empirical example of the symbiotic 

relationship between a teacher’s MMT for an idea and their decentering actions. This 

study’s third and final paper builds on the first two papers in content and data. In 

particular, paper 3 presents a cross-case analysis of the two instructors’ MMT for sine 

function and their enacted teaching practices. The data included in this paper illustrates 

the impact an instructor’s MMT for an idea can have on an instructor’s (1) task choice, 

(2) interactions with students, (3) explanations, and (4), ultimately, the meanings students 

have the opportunity to construct. Together these three papers illuminate how a teacher’s 

mathematical meanings for teaching an idea impact their pedagogical decisions. 

           In this next section, I present my research questions and describe how each 

question is addressed within my dissertation study. The three research questions 

motivating this study were: 

1. What mathematical meanings for teaching angle measure and the sine function do 

teachers construct when using a research-based curriculum? 

2.  What is the relationship between a teacher’s mathematical meanings for teaching 

angle measure and the sine function, and the teacher’s instructional practices, 

including their instructional decisions, explanations, and interactions with 

students when teaching? 
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3. What is the relationship between a teacher’s mathematical meanings for teaching 

an idea and their decentering actions? 

Paper 1 describes Shira’s meanings for angle measure and discusses how her 

MMT for angle measure contributed to student confusion and ultimately limited the 

meanings students could reasonably construct. As one example, when describing what it 

means for an angle to measure ten degrees, Shira expressed that an angle measures ten 

degrees if it subtends ten little arcs that each measured one three-hundred sixtieth of the 

circumference of a circle centered at the angle’s vertex. However, in another instance, 

Shira described ten degrees as “ten slivers or slices.” As such, paper 1 presents data that 

illustrates how Shira’s inattention to the attribute she measured when quantifying an 

angle’s openness led to her giving confusing and inconsistent explanations to students.   

Paper 2 describes Enzo’s meanings for angle measure and discusses how his 

MMT for angle measure influenced his decentering actions and how the results of his 

decentering actions influenced his MMT for angle measure. The results support my claim 

of a symbiotic relationship between an instructor’s MMT and their decentering actions. 

As one example, Enzo’s robust mathematical meanings for angle measure, together with 

his commitment to quantitative reasoning, provided a lens for evaluating and responding 

productively to his students’ thinking. Moreover, this paper presents data that illustrates 

how Enzo’s MMT supported him in selecting and posing tasks that were responsive to 

some of his students’ thinking and effective in advancing some of his students’ thinking. 

The second paper also presents data that provides a compelling example of how Enzo’s 

decentering actions engendered accommodations to his image of ways to support students 

learning of angle measure. In particular, Enzo’s decentering actions appeared to advance 
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his MMT for angle measure to include more refined images of how students might think 

about angle measure and more insights into instructional moves that may advance 

students’ thinking in a productive direction. 

Lastly, Paper 3 addresses research questions 1 and 2. This paper addresses 

research question 1 by providing models of Enzo and Shira’s MMT for the sine function. 

The data included in paper 3 also addresses research question 2 by presenting data that 

illustrates the ways in which the teachers’ MMT for sine function influence the nature of 

their (1) goals for students’ learning, (2) explanations while teaching, (3) image of ways 

to support students learning of an idea, (4) choice of tasks, and (5) their understanding of 

the goals of a curriculum they are using. This paper also presents data that illustrates and 

compares how Shira and Enzo’s MMT for sine function impacted the meanings that 

students in their classes had the opportunity to construct. 

Overall, this dissertation contributes to the field of mathematics education in four 

key ways. First, this study describes and compares the two primary 

frameworks/perspectives of teacher knowledge. Second, this study provides detailed 

models of two instructors’ mathematics and illustrates the implications of these teachers’ 

meanings for their students’ learning opportunities. Third, each paper included in this 

study illuminates the affordances of a teacher’s engagement in quantitative reasoning. As 

one example, Enzo’s consistent engagement in quantitative reasoning supported him in 

engaging in pedagogical actions that provided students with opportunities to (1) reason 

quantitatively themselves and (2) construct robust mathematical meanings for a 

foundational trigonometry concept. The data presented in paper 2 also demonstrate that a 

teacher’s commitment to quantitative reasoning as a coherent way of thinking 
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consistently supported them in noticing, reflecting on, and effectively leveraging student 

thinking while teaching. Lastly, this study illustrates the usefulness of the construct of 

decentering for characterizing the nature of a teacher’s interactions with students while 

teaching.  

Finally, this study has implications for mathematics educators. Most importantly, 

the results of this study illuminate the need for instructors and pre-service teachers to be 

engaged in professional development that provides them with repeated opportunities to 

construct coherent meanings for the ideas they are teaching. The two subjects included in 

this study had varying levels of experience attending professional development seminars 

led by the designers of the research-based curriculum they were teaching with. Although 

the relationship between time spent in professional development and the instructors’ 

meanings for and teaching of angle measure and sine function was not directly 

investigated in this study, it seems reasonable that Enzo’s extensive and sustained 

professional development experience may have supported him in developing coherent 

mathematical meanings and ultimately conveying these meanings to students.  

This study also raises questions about the affordances of a teacher’s use of a 

research-based, cognitively scaffolded curriculum and its impact on their mathematical 

meanings for teaching. Recall that Shira and Enzo taught using the Pathways precalculus 

research-based curriculum (Carlson, Oehrtman, Moore, & O’Bryan, 2020). Although not 

an explicit focus of this study, the curriculum, including its carefully scaffolded tasks, 

instructor solution guides, and the general ways of thinking it promoted, might have 

played a central role in the instructor’s instructional decisions. As one example, Enzo 

regularly enacted the Pathways Conventions described by Carlson, O’Bryan, and Rocha 
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(2023) that were an explicit focus for the Pathways professional development. These 

conventions include expectations and actions for supporting students in (1) 

conceptualizing and speaking about quantities and how their values vary together, (2) 

representing how two quantities change together using a graph, and (3) representing 

quantitative relationships with expressions and formulas (Carlson, O’Bryan, & Rocha, 

2023). Although not a focus of this study, it is possible that Enzo’s use of the Pathways 

Curriculum and his enactment of the Pathways Conventions for quantitative reasoning 

influenced his choice of tasks, the nature of his questions, and his approach to engaging 

his students in quantitative reasoning. As such, it would be useful for future research to 

investigate how an instructor’s use of a research-based, cognitively scaffolded curriculum 

influences instructors’ MMT for teaching specific ideas.  
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Title of research study: Characterizing Teacher’s Mathematical Meanings for Teaching, 

Commitment to Quantitative Reasoning, and Decentering Actions in the Context of 

Research-based Curriculum 

Principle Investigator: Marilyn P. Carlson   Co-Investigator: Abby Rocha  

Why am I being invited to take part in a research study? 

We invite you to take part in a research study because you are a student enrolled in 

precalculus or calculus. Participants of this study must be 18 or older and the choice to 

participate or not participate will not impact your grades or standing with the university 

in any way. 

Why is this research being done? 

A research team at Arizona State University developed a research-based curriculum 

and instructional materials for learning key ideas of precalculus that are foundational 

for calculus. We aim to document the instructors’ teaching actions during the 

implementation of these materials, particularly focusing on his or her explanations, 

questions, and interactions with students.  

How long will the research last? 

Data collection will involve video-and audiotaping at most 10 classes during the 

semester. 

How many people will be studied? 

About 5 instructors and 200 students will be involved in this research. 

What happens if I say yes, I want to be in this research? 

By participating in this study, you agree to video-and audiotape each class during the 

semester.  

What happens if I say yes, but I change my mind later? 

You can withdraw consent to be videotaped at any time without penalty.  

What happens if I say no, I do not want to be in this research? 

Any students who do not consent to being videotaped will not be videotaped or audio 

taped. These students will sit in an area of the classroom that will never be in the 

viewing/audio window of the camera. 

Will being in this study help me in any way? 

We cannot promise any benefits to you or others from your taking part in this research. 

However, possible benefits include improved mathematical learning and shifts in your 

understandings. 

Is there any way being in this study could be bad for me? 

There is minimal risk associated with your involvement in this study. Participation in 

this study will not impact your grades or standing with the university in any way. 
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What happens to the information collected for the research? 

Efforts will be made to limit the use and disclosure of your personal information, 

including research study records, to people who have a need to review this information. 

We cannot promise complete secrecy.  

The data collected will be anonymized and stored separately from individual students’ 

names. All data collected will remain entirely confidential and will be stored so that it 

cannot be associated with individual names. Videotapes will be stored in a secure 

location at Arizona State University and digital copies will be stored on a secure server. 

We might show segments of videotapes during presentations of our research results at 

professional conferences, and we might use segments of video in professional 

development of instructors. Transcribed excerpts from class instruction or individual 

interviews might be included in published reports of the project. Students in them will be 

depicted anonymously. Similarly, while data about students’ class performance or 

academic background might be reported in research publications, all students will remain 

anonymous.  

Who can I talk to? 

If you have questions, concerns, or complaints, talk to the research team by emailing Dr. 

Marilyn P. Carlson at marilyn.carlson@asu.edu and Abby Rocha at aerocha@asu.edu, or 

contact the Social Behavioral IRB office at (480) 965-6788 or by email at 

research.integrity@asu.edu if: 

• The research team is not answering your questions, concerns, or complaints. 

• You cannot reach the research team. 

• You want to talk to someone besides the research team. 

• You have questions about your rights as a research participant. 

• You want to get information or provide input about this research. 

 

Please initial to indicate your preference for the following statements, then sign 

below.  

 

I am 18 years or older and give permission to be videotaped during classes about 

my mathematical ideas. 

Yes_________ No _________ 

 

I am 18 years or older and give permission to show excerpts of videotapes 

containing myself at scientific research meetings and in relevant university 

courses. I understand that I will not be identified by name whenever this occurs. 

Yes_________ No _________ 

 

I am 18 years or older and give permission to use anonymous excerpts of my 

words in papers published in reports and research journals. 

Yes_________ No _________ 

mailto:marilyn.carlson@asu.edu
mailto:aerocha@asu.edu
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Signature: _________________________________________  Date: ________________ 

 

 

Printed Name: _________________________________________   
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TEACHER CONSENT FORM TO PARTICIPATE IN CLASSROOM RECORDING 
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Title of research study: Characterizing Teacher’s Mathematical Meanings for Teaching, 

Commitment to Quantitative Reasoning, and Decentering Actions in the Context of 

Research-based Curriculum 

Principle Investigator: Marilyn P. Carlson   Co-Investigator: Abby Rocha  

Why am I being invited to take part in a research study? 

We invite you to take part in a research study because you are currently an instructor of 

record for a precalculus or calculus course. Participants of this study must be 18 or older 

and the choice to participate or not participate will not impact your grades or standing 

with the university in any way. 

Why is this research being done? 

A research team at Arizona State University developed a research-based curriculum and 

instructional materials for learning key ideas of precalculus that are foundational for 

calculus. We aim to document the instructors’ teaching actions during the implementation 

of these materials, particularly focusing on his or her explanations, questions, and 

interactions with students.  

How long will the research last? 

Data collection will involve video-and audiotaping at most 10 classes during the 

semester. 

How many people will be studied? 

About 5 instructors and 200 students will be involved in this research. 

What happens if I say yes, I want to be in this research? 

By participating in this study, you agree to video-and audiotape up to four classes during 

the semester.  

What happens if I say yes, but I change my mind later? 

You can withdraw consent to be videotaped at any time without penalty.  

What happens if I say no, I do not want to be in this research? 

Any individual who do not consent to being videotaped will not be videotaped or audio 

taped.  

Will being in this study help me in any way? 

We cannot promise any benefits to you or others from your taking part in this research. 

However, possible benefits include improved mathematical learning and shifts in your 

understandings. 

Is there any way being in this study could be bad for me? 

There is minimal risk associated with your involvement in this study. Participation in 

this study will not impact your standing with the university in any way. 
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What happens to the information collected for the research? 

Efforts will be made to limit the use and disclosure of your personal information, 

including research study records, to people who have a need to review this information. 

We cannot promise complete secrecy.  

The data collected will be anonymized and stored separately from individual students’ or 

teachers’ names. All data collected will remain entirely confidential and will be stored so 

that it cannot be associated with individual names. Videotapes will be stored in a secure 

location at Arizona State University and digital copies will be stored on a secure server. 

We might show segments of videotapes during presentations of our research results at 

professional conferences, and we might use segments of video in professional 

development of instructors. Transcribed excerpts from class instruction or individual 

interviews might be included in published reports of the project. Students in them will be 

depicted anonymously. Similarly, while data about students’ class performance or 

academic background might be reported in research publications, all students will remain 

anonymous.  

Who can I talk to? 

If you have questions, concerns, or complaints, talk to the research team by emailing Dr. 

Marilyn P. Carlson at marilyn.carlson@asu.edu and Abby Rocha at aerocha@asu.edu, or 

contact the Social Behavioral IRB office at (480) 965-6788 or by email at 

research.integrity@asu.edu if: 

• The research team is not answering your questions, concerns, or complaints. 

• You cannot reach the research team. 

• You want to talk to someone besides the research team. 

• You have questions about your rights as a research participant. 

• You want to get information or provide input about this research. 

 

Please initial to indicate your preference for the following statements, then sign 

below.  

 

I am 18 years or older and give permission to be videotaped during classes about 

my mathematical ideas. 

Yes_________ No _________ 

 

 

I am 18 years or older and give permission to show excerpts of videotapes 

containing myself at scientific research meetings and in relevant university 

courses. I understand that I will not be identified by name whenever this occurs. 

Yes_________ No _________ 

 

I am 18 years or older and give permission to use anonymous excerpts of my 

words in papers published in reports and research journals. 

Yes_________ No _________ 

mailto:marilyn.carlson@asu.edu
mailto:aerocha@asu.edu


   184 

 

 

Signature: _________________________________________  Date: ________________ 

 

 

Printed Name: _________________________________________   
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Characterizing Teacher’s Mathematical Meanings for Teaching, Commitment to 

Quantitative Reasoning, and Decentering Actions in the Context of Research-based 

Curriculum 

I am a professor in the School of Mathematical and Statistical Sciences at Arizona State 

University. I am conducting a research study to characterize the relationship between 

teachers’ mathematical meanings for teaching and decentering actions when teaching. 

I am inviting your participation, which will involve at most four, 1.5-hour interviews 

about your experience teaching the research-based Pathways Pre-calculus course. During 

this interview you will be asked about various mathematics topics in the curriculum and 

your experience teaching them. You will be encouraged to think aloud, draw pictures, 

and write down any calculations. You have the right not to answer any question, and to 

stop participation at any time. 

To participate in this study you must be 18 or older. Your participation in this study is 

voluntary.  If you choose not to participate or to withdraw from the study at any time, 

there will be no penalty. You will be compensated $30/hour for participating in the 

interviews.  

There is no direct benefit from participating in this research study, other than possibly 

gaining further insight into mathematical concepts covered in the Pathways curriculum. 

There are no foreseeable risks or discomforts to your participation. 

Your responses will be anonymous. The results of this study may be used in reports, 

presentations, or publications, but your name will not be used. If any transcriptions are 

used in presentations or writing, a pseudonym will be used. 

We are also asking your permission to video record the interview. Only the research team 

will have access to the recordings. The recordings will be deleted immediately after being 

transcribed and any published quotes will be anonymous. Your face and your hand 

gestures will be recorded. The interview will not be recorded without your permission.  

If you have any questions concerning the research study, please contact the research team 

at: (aerocha@asu.edu or by phone at (515) 664-6770). If you wish to contact the PI 

directly, please email Dr. Marilyn Carlson at MARILYN.CARLSON@asu.edu. If you 

have any questions about your rights as a subject/participant in this research, or if you 

feel you have been placed at risk, you can contact the Chair of the Human Subjects 

Institutional Review Board, through the ASU Office of Research Integrity and 

Assurance, at (480) 965-6788. Please sign below if you wish to be part of the study, and 

agree to the above terms.  

By signing below you are agreeing to be part of the study and that you are 18 years of age 

or older. 

 

Signature:  

 

Name:  

 

Date: 

 

mailto:aerocha@asu.edu
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Angle Measure Task-Based Clinical Interview Protocol 

 

Review consent forms with teacher and make sure they have a signed copy saved. 

Interviewer: “Thank you for taking the time to meet with me today. Before we get 

started with the interview, I want to review the consent form and tell you a little about 

what to expect.” 

 

Review consent forms with Teacher and make sure they have copy. 

1. Do you consent that your 18 years or older and agree to participate in research 

project? 

2. Do you consent to being video recorded during this interview? 

3.Your responses are anonymous. If they are used in a research report they will be used 

under a pseudonym.  

4. Please remember that your participation is voluntary. If you choose to withdraw or 

not participate in the study, there will be no penalty.  

Answer questions, if any arise. 

 

Interviewer: “The purpose of this interview is to gain insight into your thinking about 

the trigonometry unit you will be teaching very soon. I may ask you to clarify your 

verbal and written responses, or request that you explain how you determined an 

answer. This does not mean that you are wrong. For example, if I asked you what 2 

times 3 was and you said 6, I may ask you how you got that answer or request that you 

describe how you would explain your approach to a student. Do you have any questions 

before we begin?” 
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Time of Interview: This interview will be conducted with teachers prior to their lessons 

(7.1 & 7.2) on angle and angle measure.  

 

Research Question 1 Being Addressed 

 

Goals of Interview:  

• Gain insight into the teacher’s mathematical meanings for angle and angle 

measure and their commitment to quantitative reasoning. 

• Investigate the teachers’ image of how to support students in developing 

meanings for angle and angle measure that they consider to be coherent.  

 

Tasks: 

 

Question 1: Suppose a student draws the image below and tells you that the shaded area 

between the two rays is an angle. How will you respond to this student? 

 
• If the teacher says the student is correct: ask the teacher how the student knew 

where to draw the arc to stop shading.  

o If the teacher says the student is incorrect, ask the teacher to explain their 

thinking.  

• Follow up: How would you respond to a student who said, “the angle is 40 

degrees.”? 

o  When the student says the angle is 40 degrees, what attribute do you think 

the student is imagine measuring? 

o What might the student think 40 degrees is a measure of? 

 

Rationale: The purpose of this question is to investigate a teacher’s meanings for angle 

and angle measure. In particular, a teacher’s response to this question may reveal whether 

the teacher distinguishes between an angle as an object and the measure of an angle as an 

amount of openness of an angle’s two rays. The teacher’s response to this question may 

also provide me with insight into the teacher’s meaning for angle measure, including 

what angle measure is a measure of, the teacher’s process for measuring angles, and what 

the teacher considers to be an appropriate unit for measuring an angle’s openness.  

 

Question 2: What does it mean for an angle to measure 3.5 radians?  
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• Follow up: Ask the teacher to draw an angle that measures 3.5 radians and 

explain how they made their drawing.  

 

Rationale: The purpose of this question is to investigate a teacher’s meaning for radian 

angle measure. In particular, the teacher’s response to this question may reveal the degree 

to which the instructor thinks about angle measure quantitatively. The teacher’s response 

to this question may reveal their meaning for radian including the attribute of the angle 

that the teacher measures  and the process by which they determine the measure of an 

angle. It might also provide insights into the teacher’s meaning for and use of relative 

size reasoning in comparing an arc length and the circle’s radius.   

 

Question 3: A student in your class says that if they see an angle measure with π in it, 

they know it’s measured in radians. Otherwise, it’s measured in degrees. Comment on 

this student’s understanding about angle measure. [Task borrowed from Alan O’Bryan]. 

• Follow up question: What might you do in your teaching to support this student in 

developing a coherent understanding of angle measure? 

 

Rationale: The purpose of this question is to investigate the teacher’s meaning for radian 

angle measure. In particular, the teacher’s response to this question may reveal the degree 

to which the instructor thinks about angle measure quantitatively. The teacher’s response 

to this question may also provide me with insight into the teacher’s image of the 

meanings they want students to develop, including the teacher’s image of how to support 

students in developing these images. 

 

Question 4a: Imagine that you were sent back in time before radians and degrees were 

invented. Create your own unit of measure and determine the measure of the angle below.  

 

 

 

 

 

 

 

 

• If the teacher draws a circle or mentions using a circle, ask the teacher, “Why do 

we use circles to measure angles?” 

• If the teacher proposes to measure the length of the radius on the angles’ two rays, 

then measure the straight distance across. Ask the instructor, “Would the measure 

of the angle change if the length of the radius changed?” 

• If the teacher struggles with this question and is unable to come up with their own 

unit of measure, skip to question 5.  

• Follow up: Ask the teacher to explain why their unit of measure works. 

o Ask the teacher if the measure of the angle would still be the same if they 

varied the length of the radius of the circle they drew to measure the angle.  

▪ If the teacher says yes, ask them to explain why.  
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▪ If the teacher says no, ask them if this is problematic, and to 

explain why or why not. 

 

Rationale: The purpose of this question is to investigate what the teacher believes to be 

an appropriate unit for angle measure. This task is designed to uncover whether the 

teacher recognizes that the unit they create to measure the angle must be proportional to 

the circumference of any circle centered at the angle’s vertex. This question is also 

designed to uncover whether the teacher understands why the unit of measure they create 

must be proportional to the circumference of any circle centered at the angle’s vertex.  

 

Question 4b: In Question 3a, you determine that the measure of the angle was {insert the 

measure that the teacher previously determined}. What is {measure that the teacher 

determined i.e. 120 degrees} a measure of? 

 

Rationale: The teacher’s response to this question may uncover the attribute that they are 

imagining measuring when measuring an angle.  

 

Question 4c: Suppose you asked students to respond to Question 4 and Marley, a student 

in your class chose to measure the angle in “pinky fingernail lengths”. Marley then 

proceeded to place the vertex of the angle at the center of a circle and measure the length 

of the subtended arc by marking off how many pinky fingernail lengths fit into the arc. 

How would you respond to Marley? 

• Follow up: Ask the teacher, “are pinky fingernail lengths an appropriate unit for 

measuring angles?” Ask the teacher to explain why or why not. 

o Ask the teacher if the measure of the angle would still be the same if they 

varied the length of the radius of the circle they draw to measure the angle.  

▪ If the teacher says yes, ask them to explain why.  

▪ If the teacher says no, ask them if this is problematic, and to 

explain why or why not. 

Rationale: The purpose of this question is to investigate what the teacher believes to be 

an appropriate unit for angle measure. This task is designed to uncover whether the 

teacher recognizes that the unit they create to measure the angle must be proportional to 

the circumference of any circle centered at the angle’s vertex. This question is also 

designed to uncover whether the teacher understands why the unit of measure they create 

must be proportional to the circumference of any circle centered at the angle’s vertex. 

The teacher’s response to this question may also provide me with insight into their image 

of the meanings they want to support students in developing and their image of how to 

support students in developing these images. 

 

Question 5: Suppose you give students the angle below. Lamonte, a student in your class 

claims that the measure of the angle is 3/8ths. Arlyse, another student in your class, claims 

that the measure of the angle shown below is 3. How is Lamonte thinking about 

measuring the angle? How is Arlyse thinking about measuring the angle? Are they both 

correct?  

Task adopted from Tallman (2015) 
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• Follow Up Question:  

o If the teacher says both students are correct, ask them “What might you do 

in your teaching to support students in recognizing that both Arlyse and 

Lamonte’s answers are correct?”. 

o If the teacher says that both students are not correct, ask them to explain if 

either student is correct and why or why not.  

▪ Ask the teacher, “what might you do in your teaching to support 

students in understanding why{Arlyse or Lamonte’s} answer is 

correct?”. 

 

Rationale: The purpose of this question is to see if the teacher recognizes that 1/8th of the 

circles circumference and the circle’s circumference are both valid units for measuring an 

angle. The teacher’s response to this question will also provide me with insight into how 

they might explain to students why both units of measure can be used to measure the 

angle. The teacher’s response to this question will also provide me with insight into the 

degree to which the teacher attends to the students thinking and leverages their thinking 

in their response. 

 

 

Question 6a: Imagine that you want to use a rotary phone to call a friend. Assume that 

the number 0 starts at the 3 o’clock position and that each number on the phone is equally 

spaced around the circle as shown below. To dial a number, you must rotate the number 

(in the counterclockwise direction) to the 3 o’clock position. Determine the measure of 

the angle (whose vertex lies at the center of the clock) needed to dial the number 4.  
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Rationale: The teacher’s response to this question will provide me with further insight 

into the teacher’s meanings for angle measure. In particular, does the teacher attempt to 

measure this angle using the magnitude of the radius of the circle. Does the teacher 

leverage their understanding of relative size and proportions? 

 

Question 6b: Continuing with the context from Question 6. If the center of the phone is 

2.5 inches from the number 0, how many inches did you rotate the number 4 to dial it?  

 

 

 

 
 

Rationale: The teacher’s response to this question may provide me with further insight 

into the degree to which the instructor “sees” the relationship between the subtended arc 

length, the measure of the angle swept out, and the radius of the circle. The teacher’s 

response to this question may also provide me with insight into the degree to which the 

instructor engages in relative size reasoning when thinking about angle measure.   

 

Question 7: Suppose a colleague suggests to you, “To convert an angle measure from 2.7 

radians to degrees, all you have to do is divide 2.7 by 2π and then multiply by 360 

degrees” but is unsure why this works. How would you explain to your colleague why 

her method gives the correct answer? 

• Follow up:  

o Ask the teacher, “What does 2.7/2𝜋 represent?”. 

o Ask the teacher, “What does (2.7/2𝜋)*360 represent?”. 

o Ask the teacher, “In many curricula they teach students to multiply by 
180

𝜋
 

to convert angles measured in radians to degrees. Why might using these 

numbers make it difficult to justify this process?” 

 

Rationale: The teacher’s response to this question will provide me with insight into the 

degree to which the instructor is committed to quantitative reasoning and leverages 

quantitative reasoning in their explanation. It will also provide me with insight into the 

degree to which the instructor’s explanations are conceptually focus or grounded in 

calculations.    
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Sine Function Task-Based Interview Protocol 

 

Review consent forms with teacher and make sure they have a signed copy saved. 

Interviewer: “Thank you for taking the time to meet with me today. Before we get 

started with the interview, I want to review the consent form and tell you a little about 

what to expect.” 

 

Review consent forms with Teacher and make sure they have copy. 

1. Do you consent that your 18 years or older and agree to participate in research 

project? 

2. Do you consent to being video recorded during this interview? 

3.Your responses are anonymous. If they are used in a research report they will be used 

under a pseudonym.  

4. Please remember that your participation is voluntary. If you choose to withdraw or 

not participate in the study, there will be no penalty.  

Answer questions, if any arise. 

 

Interviewer: “The purpose of this interview is to gain insight into your thinking about 

the trigonometry unit you will be teaching very soon. I may ask you to clarify your 

verbal and written responses, or request that you explain how you determined an 

answer. This does not mean that you are wrong. For example, if I asked you what 2 

times 3 was and you said 6, I may ask you how you got that answer or request that you 

describe how you would explain your approach to a student. Do you have any questions 

before we begin?” 
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Time of Interview: This interview will be conducted with teachers prior to their lessons 

(7.3 & 7.4) on sine function.  

 

Research Question 1 Being Addressed 

 

Goals of Interview:  

• Gain insight into the teacher’s mathematical meanings for sine function. 

• Gain insight into the degree to which the instructor engages in quantitative and 

covariational reasoning when thinking about sine function. 

• Investigate the teachers’ image of how to support students in developing 

meanings for sine function that they consider to be coherent.  

 

Tasks: 

 

Question 1: Imagine that you gave students the below table of values. How do you want 

students to reason about what the values in the table represent? 

 

Angle Measure, 𝜽 

(in degrees) 

𝒔𝒊𝒏(𝜽) 

42 0.669 

95 0.996 

163 0.292 

210 -0.5 

337 -0.391 

 

Rationale: This task was designed to elicit the instructor’s meaning for sine function. 

The instructor’s response to this task will provide insight into the degree to which the 

instructor conceives of sine as a function that relates two quantities whose values vary. 

The instructor’s response to this question will also provide insight into the degree to 

which they conceive of the value of sine as a relative size measurement between the 

terminal point’s vertical distance above the horizontal diameter and the length of the 

radius of any circle for which 𝜃 is centered.  
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Question 2: Halloween is coming up and you and your friend decide to go to a circular 

corn maze (shown below). In the center of the corn maze is a haunted house. The 

entrance of the corn maze is 1.5 km south of the haunted house.  

 

 
 

(a) While you are at the corn maze, you and your friend get separated. To find your 

friend, you begin walking around the circular edge of the corn maze. Write a function to 

determine your distance north of the haunted house (in kilometers) in terms of the 

distance you have walked (in kilometers), m, from the entrance.  

 

Follow Up:  

• Ask the instructor to explain the thinking they used when determining their 

answer. 

• Ask the instructor to explain what each part of their formula represents.  

o “What does 
𝑚

1.5
 represent?” 

o “What does 
𝑚

1.5
−

𝜋

2
 represent?” 

o  “Why did you subtract 
𝜋

2
 as opposed to adding, multiplying, or dividing?” 

o “What does sin (
𝑚

1.5
−

𝜋

2
) represent?” 

o What does 1.5sin (
𝑚

1.5
−

𝜋

2
) represent?” 

 

Rationale: This task was designed to elicit the instructor’s meaning for sine function. In 

particular, does the instructor think about sine as a function that relates an angle 

measured from the 3 o’clock position to the terminal point’s vertical distance above the 

horizontal diameter. The instructor’s response to this task may provide insight into the 

degree to which they engage in quantitative and covariational reasoning when thinking 

about sine function. Namely, does the teacher conceive of each part of the function that 

they write as representing the value of a quantity? Does the teacher think about how their 

distance north of the haunted house varies as their distance from the entrance varies? 
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(b) As you walk around the corn maze you realize you have your friend’s location on the 

“find my friends” app in your phone. The application marks your friend’s location with 

an X as shown below. Estimate your friend’s distance (in kilometers) north of the 

haunted house. Estimate your friend’s distance (in kilometers) east of the haunted house. 

Explain how you determined your estimates. 

 

 
 

Follow Up: how might you leverage the reasoning that you used  in your teaching? 

• If the instructor estimates their friend’s distance using relative size reasoning (i.e. 

my friend’s distance is about 0.7 or 70% of the radius), ask the instructor, “do you 

see your activity in this task related to your teaching of trigonometric functions?”. 

• If the instructor estimates their friend’s distance by writing a trig function (i.e. 

1.3 sin (
𝜋

4
)) ask the instructor to explain what each part of their formula 

represents. 

 

Rationale: The teacher’s response to this task may provide insight into their use of 

relative size reasoning and/or quantitative reasoning. The instructor’s response to this 

task may also provide insight into the degree to which the instructor relates their activity 

of determining a relative size measurement to the value of the sine function.  

 

 

 

 

 

 

 

 

 

Entrance 
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(c) Let 𝜃 represent the measure of an angle (whose vertex lies at the center of the circle) 

from the 3 o’clock position (in radians). If the exit of the corn maze is located where the 

star is on the map, estimate the value of sin (𝜃) and cos(𝜃).   

 
 

Rationale: The teacher’s response to this task may provide insight into the degree to 

which they conceive of the value of the sine and cosine function as a relative size 

measurement. Namely, does the instructor conceive of 0.2 as a measure of vertical 

distance in units of the radius of the circle? Does the teacher conceive of 0.2 as being 

determined by multiplicatively comparing a vertical distance of a terminal point above 

the center of the circle to the radius of the circle? The teacher’s response to this task may 

also provide insight into the degree to which they leverage quantitative reasoning to 

explain why they multiply 0.2 by 1.5 to determine the exit’s distance north of the haunted 

house in kilometers.  

 

Question 3: Suppose you asked students to determine the value of 𝑠𝑖𝑛(𝜃) using the 

image below. Pranjal, a student in your class tells you that sine is opposite over 

hypotenuse and therefore determines that sine = 
1.78

3.96
. Comment on this student’s 

understanding of sine. 

 

 
1. What understanding would you want students to use when explaining why “sine = 

opposite over hypotenuse”? 

2.What would be a more productive meaning? 
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3. What would you do in class to support students in developing this meaning? 

 

Rationale: The instructor’s response to this question may provide insight into the degree 

to which the instruc of sine as a function. In particular, does the instructor recognize that 

this student’s expressed meaning for sine entails a ratio of sides of a triangle rather than a 

function that relates two quantities whose values vary? This instructor’s response to this 

task may also provide insight into the degree to which they attend to the thinking that 

may have led to this student’s answer as opposed to their solution.  

 

Question 4: Suppose a second student in your class makes the following claim, “when 

the radius of the circle is one, then sine is just the y-value. But when the radius of the 

circle is something other than one, then sine is the y-value divided by the length of the 

radius.” Comment on this student’s understanding of sine.  

 

Rationale: The instructor’s response to this question may provide insight into the degree 

to which the instructor conceptualizes the value of the sine function as a relative size 

measurement. The instructor’s response to this question may also provide insight into if 

and how the instructor leverages quantitative reasoning when reasoning about sine 

function and the degree to which the instructor attends to the thinking that may have led 

to this student’s answer as opposed to their solution.  

 

Question 5: Imagine that a student in your class draws the following to represent the 

graph of the sine function. How will you respond? 

 
Follow Up 

• If the instructor says the graph needs to be a smooth curve, ask why.  

• Ask the teacher, “what is concavity of the graph as theta increases from 0 to 𝜋?”. 

• Ask the teacher, “why is there a maximum at 1 and a minimum at -1?”.  

• Ask the teacher to “describe how you will support this student in constructing the 

correct graph for the sine function”. 

 

Rationale: The instructor’s response to this question may provide insight into the degree 

to which the instructor values covariational reasoning and quantitative reasoning as 

keyways of thinking necessary for developing a coherent understanding of the sine 

function in students’ thinking. The instructor’s response may also provide insight into 

their image of how to support students in constructing the graph of sine function. 
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Dissertation Pre-Lesson and Video Analysis Interview Protocol 

 

Review consent forms with teacher and make sure they have a signed copy saved. 

Interviewer: “Thank you for taking the time to meet with me today. Before we get 

started with the interview, I want to review the consent form and tell you a little about 

what to expect.” 

 

Review consent forms with Teacher and make sure they have copy. 

1. Do you consent that your 18 years or older and agree to participate in research 

project? 

2. Do you consent to being video recorded during this interview? 

3.Your responses are anonymous. If they are used in a research report they will be used 

under a pseudonym.  

4. Please remember that your participation is voluntary. If you choose to withdraw or 

not participate in the study, there will be no penalty.  

Answer questions, if any arise. 

 

 

Interviewer: “The purpose of this interview is to gain insight into your preparation for 

teaching. During this interview I will be asking you questions about how you prepare to 

teach and the thinking you engage in as you do so. During this interview, I may ask you 

to go into detail about some aspect of your preparation. This does not mean that you are 

doing anything wrong in your preparation. Do you have any questions before we begin?”. 
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Research Question Being Addressed:  

• RQ1, RQ2, RQ3 

 

Goals of Interview:  

• To gain insight into the meanings the teacher wants students to develop for angle 

measure and sine function.  

• To gain insight into the thinking the teacher engages in as they prepare to teach.  

• To gain insight into the degree to which the teacher thinks about student thinking, 

and leverages student thinking in their preparation to teach.  

 

Interview Duration: 20 minutes 

 

Interview Questions:  

 

Question 1: Ask the teacher, “Today, you will be teaching a lesson on {insert lesson 

topic}. What do you think about when preparing to teach? Describe the process you use 

as you plan to teach the course investigations.” 

• If teacher mentions how students may think about the idea before going to class, 

ask the teacher “what meanings do you think students will have for {insert lesson 

topic} prior to attending today’s lesson?” 

• If the teacher mentions having goals for students’ learning, ask the teacher, 

“What are your goals for students’ learning during your lesson today?”.  
 

Rationale: The purpose of this question is to gain insight into the nature of the teacher’s 

preparation activity. In particular, does the teacher leverage their image of epistemic 

students? Does the teacher engage in decentering actions during their preparation? The 

teacher’s answer to this question will provide me with insight into the degree to which 

the teacher’s preparation is informed by their image of student thinking. 

 

Question 2: Ask the teacher the following, “Today you will be teaching a lesson on 

{insert lesson topic e.g., angle and angle measure}.What meanings/understandings do 

you want your students to construct for {insert lesson topic}?” 

 

Rationale: The purpose of this question is to gain insight into the meanings the teacher 

wants to support students in developing. The teacher’s response to this question may also 

provide me with insight into the degree to which the teacher is committed to quantitative 

reasoning/covariational reasoning and “sees” these ways of thinking as important for 

students to engage in. 

 

Question 3: Ask the instructor, “What do you plan to do in your teaching to support 

students in developing the understandings you just described?”. 

 

Rationale: The teacher’s response to this question may provide me with insight into the 

teacher’s image of how to support students in constructing a meaning for angle measure 

or sine function that they consider to be coherent. The teacher’s response to this question 
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may also provide me with insight into the ways of thinking the teacher believes are 

important for students to engage in.  

 

Question 4: Ask the teacher the following, “Walk me through your plan for class today.” 

 

• If the teacher describes tasks from the curriculum, ask the teacher, “How did you 

choose the tasks you want to discuss during class?”. 

• If the teacher describes tasks that they designed, ask the teacher, “Why did you 

design your own task to use during class?”.  

o Ask the teacher, “What thinking led to the design of this task?”.  

o If the teacher mentions student thinking, ask “What thinking are you 

hoping to engage students in while using this task during class?” 

• Ask the teacher, “How do you plan to use each of these tasks during class? Do 

you plan to lecture, engage students in group work, etc.?” 

 

Rationale: The teacher’s response to this question may provide me with insight into the 

teacher’s image of how to support students in constructing a meaning for angle measure 

or sine function that they consider to be coherent. The teacher’s response to this question 

may also provide me with insight into the ways of thinking the teacher believes are 

important for students to engage in. The teacher’s response to this question may also 

provide insight into the degree to which the teacher is thinking about student thinking in 

their preparation, and/or leveraging this thinking in the design of their lesson.   

 

Question 5: Ask the teacher, “What are some key problems or activities you plan to have 

students work on today? Why did you select these problems? What solution and thinking 

do you hope your students produce when completing/responding to these problems and 

activities?” 

 

Rationale: The teacher’s response to this question may provide me with insight into the 

teacher’s image of how to support students in constructing a meaning for angle measure 

or sine function that they consider to be coherent. The teacher’s response to this question 

may also provide me with insight into the ways of thinking the teacher believes are 

important for students to engage in. The teacher’s response to this question may also 

provide insight into the degree to which the teacher is thinking about student thinking in 

their preparation, and/or leveraging this thinking in the design of their lesson.   

 

Question 6: Ask the teacher, “During class how do you plan to assess whether students 

are engaging in the thinking and developing the understandings you desire?” 

 

Rationale: The purpose of this question is to see how the teacher plans to assess student 

understanding. The teacher’s response to the question will provide me with insight into 

the degree to which the teacher is anticipating interactions with students. The teacher’s 

response to this question may also provide me with insight into the degree to which the 

teacher plans to attend to student thinking and what the teacher considers to be evidence 

of student understanding.  



   203 

 

Question 7: Ask the teacher, “Prior to teaching do you work through the problems you 

plan to use in class?”. 

• If the teacher says yes, ask the teacher, “What do you think about as your work 

through the problems?” 

• If the teacher says yes, ask the teacher, “How does your working through the 

problems inform your thinking about your teaching?”.   

 

Rationale: The purpose of this question is to gain insight into the nature of the teacher’s 

preparation and the degree to which the teacher is thinking about student thinking in their 

preparation.  

 

Question 8: Ask the teacher, “Is there anything else that you do during your preparation 

that you think I should know about?”. 

 

Rationale: The purpose of this question is to provide the instructor with an opportunity 

to express anything that they feel is important that I have not explicitly asked about.  

 

 

Question 9: Ask the teacher the following, “You taught this lesson last semester. Has 

your prior teaching of this topic informed your preparation for today’s lesson? If so, in 

what ways?” 

 

Rationale: The teacher’s response to this question may provide me with insight into the 

degree to which the teacher leverages their image of epistemic students in their 

preparation for teaching. The teacher’s response to this question may also provide me 

with insight into the ways of thinking the teacher believes are important for students to 

engage in. The teacher’s response to this question may also provide insight into the 

degree to which the teacher is thinking about student thinking in their preparation, and/or 

leveraging this thinking in the design of their lesson.   

 

 

***** Video Analysis Clinical Interview Questions ******* 

 

Show videos of the teacher’s instruction from the day before- *** Tell interviewee the 

following: I am going to show you a clip of your teaching during your last class. While 

you watch the clip, I want you to think about your teaching. After watching the clip, I will 

ask you a few questions.   

 

 

Select a clip that includes an interaction with students, or a student expressing his/her 

thinking.  

• Ask clip specific questions here (TBD after analyzing classroom teaching). 

• General questions to ask about the clip: 

o What do you notice about your teaching in this clip? 
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o During this clip you asked students {insert question here}. Why did you 

pose this question to students? 

o During this clip a student said {insert student statement}, how do you 

think this student was thinking? 

o During this clip a student said {insert student statement} and you 

responded with {insert teacher statement}. Why did you respond in this 

way? 

o If given a second chance to respond to this student, would you respond in 

the same way or differently? Why? How would your response change? 

 

Select a second clip from the teachers’ instruction. 

• Ask clip specific questions here (TBD after analyzing classroom teaching). 

• General questions to ask about the clip: 

o To what degree do you feel you were successful in conveying your 

meaning for [insert idea here] to students coherently?  

o Will you make any changes to your approach when using this task with 

students next semester? If yes, what changes will you make? If no, why 

not?  

o To what degree do you feel that you were attentive to and leveraged your 

knowledge of students’ ways of thinking when discussing the task shown 

in this clip? 

o Is your teaching of this task an example of what you would consider to be 

effective teaching? Why or why not? 

 

Rationale: The instructor’s response to these questions may provide insight into the 

degree to which the teacher reflects on his/her teaching. The teacher’s response to these 

questions may also provide insight into the teacher’s meanings for angle measure and trig 

functions, the degree to which the teacher’s instruction is student centered, and the degree 

to which the teacher values quantitative and covariational reasoning. The teacher’s 

response to these questions may also provide insight into the degree to which the teacher 

is attending to and leveraging student thinking in their teaching (i.e., forming a second 

order model of students’ thinking). 
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Post Lesson Interview 

 

Review consent forms with teacher and make sure they have a signed copy saved. 

Interviewer: “Thank you for taking the time to meet with me today. Before we get 

started with the interview, I want to review the consent form and tell you a little about 

what to expect.” 

 

Review consent forms with Teacher and make sure they have copy. 

1. Do you consent that your 18 years or older and agree to participate in research 

project? 

2. Do you consent to being video recorded during this interview? 

3.Your responses are anonymous. If they are used in a research report they will be used 

under a pseudonym.  

4. Please remember that your participation is voluntary. If you choose to withdraw or 

not participate in the study, there will be no penalty.  

Answer questions, if any arise. 

 

Interviewer: “The purpose of this interview is to discuss the lesson you just taught and 

your feelings about the lesson. During this interview, I may ask you to go into detail 

about some aspect of your lesson and/or teaching. This does not mean that you did 

anything wrong, rather I am interested in understanding your thinking/the reason for 

making the choices you made. Do you have any questions before we begin?”. 
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Goals of Interview:  

• To gain insight into the ways in which the instructor thinks about their teaching 

after their lesson.  

• To gain insight into the teacher’s image of students’ thinking about {insert lesson 

topic}.  

• To ask any clarifying questions about anything the teacher did during their lesson 

that I am interested in knowing more about.  

 

Interview Duration: 20 minutes 

 

Interview Questions: 

 

Question 1: Ask the teacher, “How do you feel about your lesson today? What is your 

assessment of how your lesson went?”. 

 

Rationale: The purpose of this question is to gain insight into how the teacher thinks 

about their teaching after their lesson. Does the teacher’s description focus on their 

actions or the thinking that they engaged in during their teaching? Does the teacher think 

about students’ thinking after class? 

 

Question 2: Ask the teacher, “Did anything stand out to you from your lesson today?” 

 

Rationale: The purpose of this question is to gain insight into if the teacher thinks about 

student thinking while teaching and/or after teaching. Has the teacher’s image of 

students’ thinking or image of how to support students’ development of a coherent 

understanding changed? If so, in what ways? 

 

Question 3: Ask the teacher, “Did you deviate at all from your lesson plan? If so, how 

and why?” 

 

Rationale: The purpose of this question is to identify any moments of instructional 

deviation. 

 

Question 4: Ask the teacher, “Did you accomplish what you wanted to while teaching 

today? If not, what kept you from doing so?” 

 

Question 5: Ask the teacher, “After teaching today, do you have any new insights about 

students’ thinking?” 

 

Rationale: The purpose of this question is to gain insight into the degree to which the 

teacher thinks about their teaching and student thinking following their lesson.   

 

Question 6: To what degree do you think your students understood the main ideas of the 

investigation? Explain. 
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Rationale: The purpose of this question is to gain insight into if the teacher thinks about 

student thinking while teaching and/or after teaching. Has the teacher’s image of 

students’ thinking or image of how to support students’ development of a coherent 

understanding changed? If so, in what ways? 

 

Question 7: Ask the teacher, “In future semesters when you teach this lesson will you do 

anything different? Why or why not?”. 

 

Rationale: The purpose of this question is to discern how or if the instructor refines their 

epistemic students. This question will also provide insight into the thinking the teacher 

engages in to make changes to their instruction. 

 

 

***End interview with any questions specific to what the teacher did in their lesson 

that I am curious to know more about. 

 

Ex: Ask the teacher, “During your lesson I noticed that you walked around the room 

while students were working. Why did you do this? What were you thinking about as you 

did this?”. 

 

Ex: Ask the teacher, “During your lesson you asked Matea to come to the board and 

explain her solution to problem 3. Why did you do this? What were you thinking about as 

you did this?”. 

 

Ex: Ask the teacher, “During your lesson you asked Student 1 the following, {insert 

question} and they responded by saying {insert student response}. Then you responded 

with {insert teacher response}. Why did you respond in this way? 

• If the teacher mentions something about Student 1’s thinking, ask the teacher, 

“How do you think Student 1 was thinking when they said {insert student 

explanation}?”. 
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APPENDIX E 

HUMAN SUBJECTS APPROVAL LETTER 
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