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ABSTRACT

Walking and mobility are essential aspects of our daily lives, enabling us to engage
in various activities. Gait disorders and impaired mobility are widespread challenges
faced by older adults and people with neurological injuries, as these conditions can
significantly impact their quality of life, leading to a loss of independence and an
increased risk of mortality. In response to these challenges, rehabilitation, and
assistive robotics have emerged as promising alternatives to conventional gait therapy,
offering potential solutions that are less labor-intensive and costly. Despite numerous
advances in wearable lower-limb robotics, their current applicability remains confined
to laboratory settings. To expand their utility to broader gait impairments and daily
living conditions, there is a pressing need for more intelligent robot controllers.

In this dissertation, these challenges are tackled from two perspectives: First,
to improve the robot’s understanding of human motion and intentions which is
crucial for assistive robot control, a robust human locomotion estimation technique
is presented, focusing on measuring trunk motion. Employing an invariant extended
Kalman filtering method that takes sensor misplacement into account, improved
convergence properties over the existing methods for different locomotion modes
are shown. Secondly, to enhance safe and effective robot-aided gait training, this
dissertation proposes to directly learn from physical therapists’ demonstrations of
manual gait assistance in post-stroke rehabilitation. Lower-limb kinematics of patients
and assistive force applied by therapists to the patient’s leg are measured using a
wearable sensing system which includes a custom-made force sensing array. The
collected data is then used to characterize a therapist’s strategies. Preliminary
analysis indicates that knee extension and weight-shifting play pivotal roles in shaping

a therapist’s assistance strategies, which are then incorporated into a virtual impedance



model that effectively captures high-level therapist behaviors throughout a complete
training session. Furthermore, to introduce safety constraints in the design of such
controllers, a safety-critical learning framework is explored through theoretical analysis
and simulations. A safety filter incorporating an online iterative learning component
is introduced to bring robust safety guarantees for gait robotic assistance and training,
addressing challenges such as stochasticity and the absence of a known prior dynamic

model.
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Chapter 1

INTRODUCTION

The recent surge in robotic research and applications has undoubtedly opened
doors to a world characterized by enhanced convenience and comfort, thanks to
cutting-edge advancements in transportation, medicine, goods, and food industries,
and sustainability efforts. Notably, rehabilitation and assistive robotics have garnered
significant attention due to their ability to offer invaluable assistance with everyday
human tasks, facilitating the recovery and improvement of physical abilities and motor
functions (Laparidou et al. 2021; Zanatta et al. 2022; Maciejasz et al. 2014). This
importance becomes even more apparent when we observe the prevailing global trend
of an aging population.

According to the report from the U.S. Department of Commerce, the proportion
of people over 65 has increased to 7% by 2000, and will keep rising to 16% by the end
of 2050 Perry 2015. Aging can lead to reduced physical performance due to muscle
deterioration, and a variety of neurological diseases such as stroke and Parkinson
which cause impaired mobility (Duncan et al. 2005). As a result, many people face
reduced physical capabilities and have difficulties performing their daily tasks.

Walking difficulties and impaired mobility are common among older adults and
can result in loss of independence and increased mortality (Brach and VanSwearingen
2013). Thus, gait training and rehabilitation are required to help individuals with
gait deficits improve their physical strength and restore their lost or impaired motion
control. While manual rehabilitation and gait therapy have been effective, it is costly,

physically demanding, and time-consuming. Therefore it is not accessible to everyone



or at every time. This motivates the the researchers in robotic community to be
actively seeking the development of wearable sensors and robots that can provide a
personalized remote system for gait training and augmentation.

One way to quantify human gait is to measure lower-limb joint mobility and muscle
activity during different walking activities. The overall goals for joint movements
and muscle activity are to achieve weight acceptance, single-limb support, and limb
advancement. During the stance phase where the foot is in touch with the ground, the
weight acceptance and single limb support are the priority tasks. On the other hand,
the limb advancement shifts to the top requirement during the swing phase when
the foot is off the ground (Perry, Davids, et al. 1992). The wearable gait assistive
robots are to augment these motion and activities, during normal walking, or to apply
walking rehabilitation treatment to patients. Although their application can extend
to other daily activities like ascending/descending stairs, sit-to-stand transfer, and
carrying heavy loads. Exoskeletons and orthoses are defined as mechanical devices
that “are worn by an operator and fit closely to the body, and work in concert with the
operator’s movements” (Herr 2009). In general, exoskeletons are devices that augment
the performance of the able-bodied user, while orthosis is typically used to describe a

device that assists a person with a limb pathology (Herr 2009).

1.1 Control of Wearable Lower-limb Robotic Devices

Figure 1.1 shows the overall control framework of wearable lower-limb robotic
devices (Tucker et al. 2015).
This dissertation centers on the high-level controller and sensing aspects of wearable

lower-limb robotics. The high-level controller serves as the primary decision-making
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Figure 1.1. Overview of the control structure of wearable lower-limb robotic devices (Tucker
et al. 2015). pHRI refers to physical human-robot interaction.
unit, receiving information from both the user and the robot through sensors that
capture kinetic and kinematic states, as well as their interaction during locomotion.

In the realm of wearable lower-limb robotics, certain sensing methods are confined
to controlled laboratory environments, while others, particularly wearable sensors,
offer portability and adaptability for outdoor use. Various tools, including encoders,
inertial sensors, and motion capture systems (Liu et al. 2011; Bamberg et al. 2008),
are employed to analyze human motion. Additionally, force (Eilenberg, Geyer, and
Herr 2010) and electromyography (EMG) (Rouse, Mooney, and Herr 2014) sensors
are widely utilized to investigate ground reaction forces (GRFs) and muscle activities
during walking.

The decision-making process generally includes two main sub-processes: 1) Inten-

t/State Estimation, and 2) Torque/Motion planning, which will be detailed below.



1.1.1 Intent/State Estimation

It is necessary for the high-level controller to perceive the locomotion intent of
the user to be able to provide proper assistance. The locomotion intents include
the types of activity that the user is performing (e.g., walking, running, and stair
climbing), as well as their environmental state (e.g., types of the train), which also
can be categorized into the types of activity. The Locomotion intent can be estimated
by knowing the user’s state, which in this context refers to the pose (i.e. position
and orientation) and velocity of desired limbs and body parts, as well as the status
of user interaction with the robot and the environment. This information sometimes
is directly provided by sensing mechanisms. However, in some cases (such as body
center of mass) the critical information cannot be directly measured by sensors since
it is impractical to implant sensors inside the human body. In this case, it is critical
to define and estimate human states in various human-robot interactive tasks.

Activity mode recognition is generally approached via classification algorithms
(Tucker et al. 2015). The periodic nature and long-term repeatability of human
locomotion generate specific patterns that can be categorized into different modes.
Continuous human states are often estimated by sensor fusion and regression models
for improved accuracy. Such states that are of interest include the stance-foot position
in the world, which can be used to represent a locomotor’s global position in an envi-
ronment(Ojeda and Borenstein 2007). The pose and velocity of the body (e.g., pelvis
or chest) are also of particular interest in gait analysis and wearable robot controller
design because they can be used to study postural balance and gait stability(Deane

et al. 2021).



1.1.2  Motion/Torque Planning

Besides the locomotion intent of the user, the motion or torque planning strategy of
robotic assistive exoskeletons and devices also depends on the specific and personalized
gait impairment that needs to be addressed. Different assistive and rehabilitative
strategies have been developed for different types of gait pathology and the level of
impairment (Rodriguez-Fernandez, Lobo-Prat, and Font-Llagunes 2021). Phased-
based and non-phased controllers (Tucker et al. 2015) have been proposed. In the
Phased-based approach, the assistance is defined based on the gait phase. In this
context, FSM-based controllers have been among the most popular ones (Rodriguez-
Fernéndez, Lobo-Prat, and Font-Llagunes 2021; Tucker et al. 2015), in which the level
of assistance is defined based on discrete gait events. Motion planning controllers have
been developed to reinforce healthy gait patterns for the users. However, these methods
face several shortcomings such as sensitivity to disturbances, and not accommodating
the variability in human gait trajectories. Impedance control, on the other hand,
has received major attention in this field. Impedance controllers provide a level
of compliance by mapping the motion errors to the torque output through virtual
stiffness, damping, and inertia parameters. Therefore they can work with ill-defined

reference trajectories.

1.2 Research Objectives and Contributions

The primary objective of this dissertation is to employ innovative methodologies

encompassing state estimation, non-linear control methods, gait biomechanics, statis-

tical optimization, and machine learning, to make significant contributions towards



the advancement of personalized and intelligent assistive and rehabilitation strategies.
These advancements are crucial in progressing toward the practical implementation
of wearable lower-limb assistive robots in clinical settings. The central focus lies in
the development of intelligent robot controllers that facilitate efficient interaction and
seamless coordination between the user and the robotic system. By integrating these
sophisticated techniques, the dissertation seeks to pave the way for more effective and
user-centric applications of assistive robotics in the field of lower-limb assistance and
rehabilitation.

To achieve the stated objectives, a dual-pronged approach has been pursued.
Firstly, the focus has been on comprehending essential pieces of information that are
critical for the health monitoring and control of assistive robots. In one study we
proposed a method for classifying human walking speed and slope using sSEMG (surface
electromyography) sensors and K-means clustering. Remarkably, this classification
method achieved high accuracy in distinguishing different walking speeds and slopes,
contributing to more precise and efficient human-robot interaction. Another work
focused on estimating variables that cannot be directly or accurately measured using
wearable sensors. A robust human locomotion estimation technique was introduced,
which incorporates an invariant extended Kalman filtering method. This approach
enables accurate tracking of human pose and velocity while accommodating sensor
misplacement, resulting in improved convergence properties compared to existing
methods for different types of human locomotion.

In the other aspect of this dissertation, the focus is put on designing high-level
controllers for robotic exoskeletons, emphasizing their applications in assistance and
rehabilitation. We explored the possibilities of integrating knowledge from conventional

gait therapy into the development of robot controllers. To achieve this, a custom-made



wearable system, capable of measuring the interaction dynamics between physical
therapists and patients during manual gait training sessions, is developed. Inspired
by conventional rehabilitation methods, we devised a virtual impedance learning
framework to model this therapist-patient interaction. The resulting model successfully
captured and replicated the high-level behaviors of physical therapists throughout an
entire training session. This contributes to a novel approach for controlling wearable
robotics, as it directly encodes the decision-making process of physical therapists into
a human-robot interaction framework.

The contribution of this thesis is summarized as follows:

e As a preliminary work, a robust classification approach with only two features
derived from EMG signals is developed to recognize locomotion activities and
detect changing speeds

e A new invariant extended Kalman filter design is developed that produces real-
time and rapid error convergence for the estimation of the human body movement
even in the presence of sensor misalignment and initial state estimation errors.

e A novel and custom-made wearable data collection system is developed to
collect physical interaction dynamics and leg kinematics between the physical
therapist and the post-stroke patient, during the gait training session. Patient
impairment and PT assistance are characterized and were employed to develop
a patient-specific LfD-based impedance model for gait robotic rehabilitation.

e A safety filter is designed for application in robotic gait assistance, to provide
safety for LfD-based controller. It offers robust safety guarantees, addressing
challenges such as stochasticity and the absence of a known prior dynamic

model. The online iterative learning component ensures finding less conser-



vative controllers at each iteration and the performance is evaluated through

simulations.

1.3 Outline

In Chapter 2, we discussed the prior and related work on human locomotion
activity and motion estimation, as well as rehabilitation and assistive strategies for
robot-aided gait training and assistance. Chapter 3 introduces a novel approach to
using muscle activity for human locomotion activity and speed detection. In chapter
4 we present the InNEKF design for estimating human motion during squat motion
incorporating sensor imperfect placement. Chapter 5 discusses the importance of
capturing human-human sensorimotor interaction during gait training, and presents
an analysis and modeling of patient-therapist interaction that was collected using a
custom-made wearable sensor system. Chapter 6 discusses a safety-critical framework
for regulating nominal controllers to provide safety for human-robot interaction in gait
applications. Chapter 7 concludes the thesis and points out possible future research

directions that can be explored.



Chapter 2

RELATED WORK

2.1 Gait Intent and State Estimation

2.1.1  Activity Mode recognition

Activity mode recognition is generally approached via classification algorithms
(Tucker et al. 2015). The periodic nature and long-term repeatability of human
locomotion generate specific patterns that can be categorized into different modes.
Heuristic rule-based classifiers such as finite state machine (FSM) (Sup, Varol, and
Goldfarb 2010; Gorsic¢ et al. 2014; Kong and Tomizuka 2009) and decision trees (Jin et
al. 2006; Li and Hsiao-Wecksler 2013) are effective classifiers in which the classification
is based on rules that are defined manually or analytically based on sensed states.
Automated pattern recognition (Tucker et al. 2015) on the other hand, uses generated
decision-making boundaries by machine learning and statistical algorithms. These
boundaries are usually generated during the training by inputting high-dimensional
data from the user and its interaction with the robot and the environment. Such
classifiers include Gaussian mixture models (GMM) (Kilicarslan et al. 2013), support
vector machines (SVM) (Huang, Kuiken, Lipschutz, et al. 2009), and artificial neural
network (ANN) (Gancet et al. 2011).



2.1.2  Activity Mode Recognition using Muscle Activity

EMG signals contain important information about muscle activities, and thereby,
will be helpful in estimating human intentions. Multiple methods have been proposed
to extract useful information from EMG signals to control assistive devices (Young and
Ferris 2017). In hybrid assistive limb (HAL), a voluntary control strategy is developed
to estimate the user’s intentions based on the detection of muscle activities through
EMG signals (Lee and Sankai 2002). In (Karavas et al. 2015), an intention estimation
algorithm based on EMG signals was integrated into the high-level controller strategy
of the knee exoskeleton. Although the aforementioned assistive devices exhibited fair
performance in terms of providing appropriate assistance using EMG signals, there
are certain limitations associated with a number of EMG sensors, types of locomotion
activities, and generalization of the approach. Many human activity recognition
(HAR) methods were proposed in the literature based on the features extracted
from EMG signals (Xi et al. 2017). Some employed eight EMG sensors around the
thigh and adopted a convolutional neural network (CNN) to perform walking activity
classification (Md Alias et al. 2018). The combination of linear discriminant analysis
(LDA) and a two-layered artificial neural network (ANN), was used to identify the
locomotion activities with twelve EMG sensors (Huang, Kuiken, Lipschutz, et al. 2009).
Finite state machines using EMG signals from six muscles were able to recognize
level-walking, ramp ascent, and ramp descent (Islam and Hsiao-Wecksler 2016). There
is a need to develop a human activity recognition algorithm with a minimal number
of EMG sensors and to extract a smaller number of features to make the algorithm
real-time and easily integrable to the assistive device.

The time domain and frequency domain features are the most commonly extracted

10



features from the time windows of EMG signals (Xi et al. 2017). Using sliding time
window has been proven to be more robust compared to the fixed time window (Merlo,
Farina, and Merletti 2003). The time domain features such as mean absolute value
(MAV), root mean square (RMS), integrated EMG (iI(EMG), and zero crossing (ZC)
are used in supervised learning (Ziegier, Gattringer, and Mueller 2018). Although
time domain features are easy to compute, they yield less classification accuracy.
However, RMS and MAV are proven to be intuitive in the classification of locomotion
activities. Others used frequency domain features such as mean frequency (MF)
and median frequency (MDF) (Joshi, Nakamura, and Hahn 2015). Some performed
wavelet decomposition of the EMG signals to extract wavelet features to train the
algorithm (Ivanenko, Poppele, and Lacquaniti 2004). The frequency and wavelet

features generally require more computational effort than time domain features.

2.1.3 Human Motion Estimation

Continuous human states are often estimated by sensor fusion and regression
models for improved accuracy. For example, a Gaussian process regression model was
used to estimate human walking speeds based on wrist-worn IMUs (Zihajehzadeh and
Park 2016). Real-time estimation of continuous human movement states has been
extensively studied for common daily activities such as walking and squatting. One
variable of particular interest in continuous state estimation is a person’s stance-foot
position in the world, which can be used to represent a locomotor’s global position in
an environment (Ojeda and Borenstein 2007). With an IMU attached to each toe, the
dead reckoning method [12] obtains the toe velocity by integrating the accelerometer

reading and removes the accumulated velocity errors due to the integration by resetting

11



the velocity to zero when the toe is static on the ground. The dead reckoning method
has been applied to achieve real-time human localization (Van Nguyen and La 2016),
and extended to further improve its accuracy through smoothing (Ruiz et al. 2011) or
filtering (Ruiz et al. 2011).

Besides the stance-foot location, the pose (position and orientation) and velocity
of the body (e.g., pelvis or chest) are also of particular interest in gait analysis and
wearable robot controller design, because they can be used to study postural balance
and gait stability (Deane et al. 2021). Body pose and velocity have been estimated
through the nonlinear forward kinematics between the stance foot, which is obtained
through accurate initialization and contact detection, and the body frame (Yuan and
Chen 2013). This method assumes the leg kinematics is precisely known, and thus
has been extended based on Kalman filtering (KF) to explicitly address uncertainties
such as sensor noises (Yuan and Chen 2014). Recently, extended Kalman filtering
(EKF) has been applied to further address the inaccuracy of the nonlinear kinematics
chain, in addition to sensor imperfections, for real-time movement estimation under
small initial estimation errors (Zhang, Chen, and Yi 2013; Y. Zhang et al. 2015). Yet,
conventional EKF suffers a major weakness in that its design relies on the linearization
of process and measurement models at the state estimates instead of the true states.
Due to this weakness, the EKF cannot guarantee error convergence in the presence of
large estimation errors.

Recently, invariant extended Kalman filtering (InEKF) has been introduced to
ensure real-time, provable error convergence even in the presence of large initial
estimation errors (Barrau and Bonnabel 2016). The InNEKF exploits nonlinear state
estimation errors that are invariant on the matrix Lie group and ensures that the

dynamics of the logarithmic error are exactly linear and independent from the state
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estimate if the process model meets the group affine condition and if the measurement
model is in the invariant form. The filtering method has been applied to solve the
real-time state estimation problem for aircraft (Barrau and Bonnabel 2016), legged
robots (Hartley et al. 2019; Lin et al. 2021; Gao, Yuan, and Gu, 2021 (in press);
Teng, Mueller, and Sreenath 2021), and underwater vehicles (Potokar, Norman, and
Mangelson 2021).

While the InEKF method (Hartley et al. 2019) has achieved impressive estimation
performance for robot locomotion, it has not been applied to solve some of the key
challenges in the state estimation of continuous human movement state, such as the
inaccurate kinematic parameters and imperfect sensor placement. One common solu-
tion to imperfect sensor placement is manual sensor calibration (Yuan and Chen 2013),
which is often time-consuming and thus may not be suitable for real-world applications

(e.g., daily movement monitoring) that could demand frequent re-calibration.

2.2 Gait Training Strategies for Wearable Lower-Limb Assistive Robots

Different assistive and rehabilitative strategies have been developed for different
types of gait pathology and the level of impairment (Rodriguez-Fernédndez, Lobo-
Prat, and Font-Llagunes 2021). Phased-based and non-phased controllers (Tucker
et al. 2015) have been proposed. In the Phased-based approach, the assistance is
defined based on the gait phase. In this context, FSM-based controllers have been
among the most popular ones (Rodriguez-Fernandez, Lobo-Prat, and Font-Llagunes
2021; Tucker et al. 2015), in which the level of assistance is defined based on discrete
gait events. The impedance control framework has been proposed as a good solution

due to the robust, low-gain, and compliant behavior (Buchli et al. 2011) that is

13



necessary for tightly coupled Human-Robot Interaction (HRI) scenarios. In contrast
to traditional approaches that reject disturbances, impedance control accommodates
them by defining the robot’s force behavior as a spring-damper system (Khan et
al. 2019). The stiffness and dampening are dynamically changed according to varying
time-dependent stiffness and damping gains. One way of defining these gains is to learn
them from human observations using a learning-from-demonstration (LfD) approach.
Impedance control has generally been shown to be more effective than traditional
control approaches like motion control, force control and hybrid position-force control

(Marchal-Crespo and Reinkensmeyer 2009).

2.2.1 Robot-Aided Therapy using Human-Human Haptic Interaction

Despite considerable progress in sensor and robot-aided gait rehabilitation, the lack
of intelligent control approaches prevents assistive robots from clinical deployment.
Previous studies have suggested that modeling and identifying human-human senso-
rimotor interactions have led to the development of robots that physically interact
and move with humans in an intuitive and efficient manner (Sawers and Ting 2014).
Physical rehabilitation is a form of Human-Human haptic interaction in which the
goal of PT is to train the patient to improve their motor performance. However, in
the context of rehabilitation robotics, there is no widely accepted framework to define
Human-Human interaction (HHI) (Sawers and Ting 2014). This is mainly because of
the lack of enough studies that have collected and modeled the haptic interactions
between PTs and patients to reveal how those forces should be applied to encourage
motor skill learning.

There are limited studies in which the haptic interaction between the PT and
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patients has been collected and used for learning HRI strategies, especially for gait
training. Gal et. al (Galvez et al. 2005) collected the interaction force and leg
kinematics during body-weight supported treadmill training for people with spinal
cord injury, and showed that different PTs applied significantly different forces,
resulting in different leg kinematics. However, no specific strategy on how the forces
contributed to the task performance or modeling of the assistance, was proposed.
Fong et. al. (Fong, Rouhani, and Tavakoli 2019) targeted foot-dropping assistance
during treadmill-based gait therapy and proposed an impedance-based LfD framework
to implement that on a robotic arm. Despite the successful modeling and implemen-
tation, the experimental scenario did not include actual patients and PTs, and the
haptic interaction did not resemble actual PT-patient interaction, therefore no insights

for HRI could be extracted.
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Chapter 3

PRELIMINARY WORK

This chapter presents a preliminary study by the author on using wearable sensors
for locomotion activity mode detection and studying contextual and personalized

factors on elderly gait patterns.

3.1 Human Locomotion Activity and Speed Recognition Using Electromyography

Based Features

Human locomotion recognition methods based on electromyography (EMG) signals
have not shown robust and accurate classification performance. This is due to the
limitations of EMG signals such as their stochastic nature and sensitivity to placement
of the sensors, as well as the number of sensors, feature extraction, and classification
algorithms. In this work, a robust classification approach with only two features
derived from EMG signals is developed to recognize locomotion activities and detect
changing speeds. The root means square (RMS) and energy of the EMG signals are
the features adopted in this method. The energy of the EMG signal is extracted using
the energy kernel method. The proposed approach uses a low number of sensors and
features, online unsupervised classification, and is generalizable to different lower-limb

muscle groups.
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3.1.1 Approach

The RMS and energy of the EMG signal are the two features proposed to perform
the classification of locomotion speed and activities. The RMS of the EMG signal
is attributed to the muscle force (Christie et al. 2009). The energy of the EMG
signal is derived using the energy kernel method given in (Chen, Zeng, and Yin
2017). The energy kernel method is based on the assumption that the EMG signal
governs a harmonic oscillator model. There is a physical intuition between energy
and force/power of muscle explained in (Chen, Zeng, and Yin 2017). In this work, we
hypothesize that the change in energy of the EMG signal per gait cycle with locomotion
speed or activity follows the damped harmonic oscillator model. Therefore we should
be able to classify different activities based on their energy level. In (Chen, Yin, and
Fan 2014) it is suggested that the energy kernel method combines the advantages of
both RMS and mean power frequency methods and provides better Physical intuition
of EMG However, regarding the uncertainties associated with EMG signal, we believe
that using the RMS and energy of EMG signal as two features for identifying the
gait speed or activity change would lead to more accurate and robust prediction than

using individually, and can be expanded to broader applications.

3.1.1.1 Damped Harmonic Oscillator Model of EMG

This model is inspired by the simple harmonic oscillator model of the EMG given
in (Chen, Zeng, and Yin 2017). The behavior of the EMG signal can be recognized as

an oscillator whose amplitude is featured by the reciprocating motions accompanied by
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Figure 3.1. The energy kernel of the EMG signal of vastus laterialis

a noise, as it is a zero-averaged stochastic wave signal. The energy of simple harmonic

oscillator with mass m, stiffness k is given as:

1 1
Eo = 5]633’2 + §my2 (31)

or in an elliptic form as:

2 2

z y
-1
2Eojk | 2Ee/m

(3.2)

The phase portrait of EMG signal of Vastus Laterialis (amplitude signal on x and
derivative of the amplitude on y) for a segment is shown in Fig. 3.1. The length of
the time window chosen for this portrait is equal to one gait cycle. Gait cycle events
are obtained from force plate data.

This elliptic shape of the phase portrait given by (3.2), can be seen in Fig. 3.1 for
the EMG signal per gait cycle. It is not possible to compute Ey directly as k& and m

are unknown. However, the area of the ellipse will be useful in calculating the energy

18



of the harmonic oscillator. The area of the ellipse can be expressed as

S = E (3.3)

Equation (3.3) shows that the area of the ellipse is proportional to the energy of
the harmonic oscillator. The ellipse of the phase portrait is referred to as the energy
kernel (Chen, Zeng, and Yin 2017).

It is expected that during gait or any periodic locomotion activity, the energy of
EMG per cycle, which is a representation of muscle activity, will stay at the same
level, and will change when the activity changes. This change can be modeled by
the harmonic damped oscillator. The energy of a damped harmonic oscillator with

damping b is given as:

E = FEye (3.4)

Here t is time, and F and Fy are the energy of the damped harmonic oscillator and
simple harmonic oscillator, respectively. The smaller value of b in (3.4) makes E to
be approximated as Fjy, the energy of the simple harmonic oscillator. We hypothesize
that at a constant speed of a locomotion activity, the damping of the muscles exhibits
a small value. Therefore, it can be approximated as a simple harmonic oscillator.
However, the change in locomotion speed and activity will change the damping value
to a higher positive or negative value causing decay or an increase in the muscular
energy governed by the damped harmonic oscillator model. We want to validate this
model in the experiments with locomotion speed or activity change and use the result

to detect those changes.
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3.1.2 Methods

To initially evaluate the generalization and performance of this method, it has
been tested on a public dataset on which EMG data of participants are collected as
they were walking on the treadmill in different slopes and speeds. Furthermore, an
additional set of experiments and data collection are done, to evaluate the performance
of this method on: 1) clustering if the walking speed changes online and 2) different
muscle groups around the knee joint. The latter will examine the generalization of
the proposed method to other muscle groups.

Public Data Set: The chosen dataset contains leg joint kinematics, kinetics,
and EMG activity of able-bodied subjects walking on an instrumented treadmill in
different combinations of slopes (-10 degrees to +10 degrees) and speeds (0.8 m/s
to 1.2 m/s) in each trial. The study was done at the University of Texas at Dallas
(Embry et al. 2018).

Among all the trials, four trials of five subjects have been considered for speed and
activity change detection: level and uphill walking at speeds 0.8 and 1.2 m/s. Each
trial contains EMG data of four muscle groups: rectus femoris (RF), biceps femoris
(BF), tibialis anterior (TA), and gastrocnemius (GC). The EMG signals were collected
with a sampling rate of 2000 Hz, and rectified and low-pass filtered (fc=40 Hz) with a
zero-phase digital filter. The EMG data are broken down into individual gait cycles
which begin and end at heel strikes. Each gait cycle contains 150 EMG data points
which are used to extract the proposed features for each stride. As some issues with
right-leg EMG sensors have been reported in this study, left-leg EMG sensors are
chosen for all subjects.

Data Collection and Pre-processing: Two level walking experiments were
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Table 3.1. Details of the healthy participants who joined the study.

ID Gender Age Height (cm) Weight (kg)
1 Male 21 175 94
2 Male 20 176 78

performed on two participants, as the treadmill speed changed online, and their EMG
data were collected. For the vastus lateralis (VL) and vastus medialis (VM), one
surface EMG (sEMG) wireless sensor (Delsys Trigno Avanti) were placed on each
muscle group based on Seniam placement protocol (Hermens and Freriks 1997). The
vastus lateralis SEMG was placed two-thirds along the line between the anterior spina
iliaca superior to the lateral side of the patella, in the direction of the muscle fibers.
The vastus medialis electrode was placed 80% along the line from the anterior spina
iliaca superior to the joint space in front of the anterior border of the medial ligament,

oriented perpendicularly to the line.

The sampling rate for both sSEMG was 2000 Hz. The sensor’s placement is shown
in Fig. 3.2. This study has been done at Arizona State University (ASU) and has

been approved by its Institutional Review Board (IRB).

Each participant walked on an instrumented dual belt treadmill with integrated
force plates. Along with the EMG data, force plates data were collected to detect
heel strike events. The collected raw EMG data were rectified and processed using a
4th-order Butterworth filter with a cut-off frequency of 40 Hz. The data were broken

down into individual cycles based on heel strike events detected by the force plates.

21



Vastus
Lateralis

Figure 3.2. The sensor placement for EMG signal acquisition of VL. and VM muscle groups during
the speed change trials

3.1.3 Feature Extraction

The RMS and energy feature of EMG were calculated per gait cycle, from the

collected and processed EMG for all trials. For a given number of data points, the

/1
RMS =\ [ ~Sp,27 (3.5)

where x represents the signal over the cycle and n is the number of data points within

RMS of the signal will be:

the cycle. The energy of the EMG signal at each gait cycle would be the area of the
ellipsoid which was represented in section II. To calculate the area, the phase portrait
of each cycle was extracted by taking the x as the amplitude of the signal and y as its
derivative. A discrete box-counting method proposed in (Chen, Zeng, and Yin 2017)
has been used to calculate the ellipsoid of the phase portrait. This method divides
the rectangle enclosing all the data points of phase portrait in nq x ny grids or boxes.

The number of points inside each box (p;;) will be counted, and if p;; > thr, where
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Figure 3.3. The discrete box-counting method to calculate the ellipsoid area of the EMG signal of
the VM muscle groups for one gait cycle.

thr is a predefined threshold, the box will be included as the area of the ellipsoid.
In order to make sure that boxes will cover a continuous area, a 2D moving average
with one sliding window is performed on p;; for smoothing the counted values of each
box before comparing them to the threshold. It must be noted that the number of
boxes (ny x ny) and the threshold thr depend on the total number of data points in
the segment. By many trials and errors, we chose n; = ny, = 10 and thr = 0.5 for the
public data set which contains 150 points per cycle, and n; = ny = 20 and thr = 2 for
the collected data as 2000 data points were considered for each cycle. Fig. 3.3 shows

the area to calculate the energy kernel of one of the collected gait cycle data.

3.1.4 K-means Clustering Approach
K-means is a well-known unsupervised approach that can cluster n objects into

k classes. K-means clustering minimizes the distortion measure, taking the total

intra-cluster variance as a cost function. This method iteratively finds the cluster
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centroids and then assigns the data according to the Euclidean distance to the cluster
centroids until convergence. In our case, we hypothesize that the energy-RMS cluster

of the EMG signal will be distinguishable for various locomotion speeds and activities.

3.1.5 Speed and Activity Change Identification in Separate Trials

The energy and RMS value of EMG signals during each gait cycle are calculated
for five subjects in four different trials with different activities and speeds. The subject
ID numbers are as given in the public dataset. Fig. 3.4 shows the RMS and energy
of EMG signal of the four muscle groups, for two of the subjects. It can be seen
that the RMS and energy values of some muscle groups show more clear distinction
in the activities than the other ones. Based on our observation from these figures
for all subjects, the muscle groups BF and GC are chosen to extract the features.
Fig. 3.5 shows the 2D feature space (Energy-RMS) of these two EMG signals for
gait speed change and activity change. By considering these 2D features for all
four EMG sensors, it seems impossible to use only one EMG sensor to differentiate
between speed and activity changes for all subjects. Using two EMG sensors makes
the classification among the subjects more robust. The energy feature of EMG signal
helps with increasing the distance between the clusters and making the classification

more accurate, rather than using only the RMS feature.

As an unsupervised classification approach, K-means clustering has been used to
classify the data based on the gait activity or speed change. This approach does not
need any training and can group unlabeled data into certain clusters. The only input

to this algorithm besides the features, is the number of clusters. Our assumption is
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Figure 3.4. The RMS and energy value of 4 muscle groups EMG signal for two subjects in 4 different

walking trials: level walking at 0.8 m/s and 1.2 m/s, and uphill walking (10 deg inclined) at 0.8 m/s
and 1.2 m/s.
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Figure 3.5. The Energy-RMS plots of RF and GC EMG signals of one of the subjects for gait speed
change (a) and activity change (b).
that the extracted features of the two EMG signals will remain at almost the same
level, as far as the gait speed or activity has not changed, independent of subjects or
other conditions. The K-means clustering would be ideal to test this assumption.
The RMS and energy of EMG sig