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ABSTRACT

Walking and mobility are essential aspects of our daily lives, enabling us to engage

in various activities. Gait disorders and impaired mobility are widespread challenges

faced by older adults and people with neurological injuries, as these conditions can

significantly impact their quality of life, leading to a loss of independence and an

increased risk of mortality. In response to these challenges, rehabilitation, and

assistive robotics have emerged as promising alternatives to conventional gait therapy,

offering potential solutions that are less labor-intensive and costly. Despite numerous

advances in wearable lower-limb robotics, their current applicability remains confined

to laboratory settings. To expand their utility to broader gait impairments and daily

living conditions, there is a pressing need for more intelligent robot controllers.

In this dissertation, these challenges are tackled from two perspectives: First,

to improve the robot’s understanding of human motion and intentions which is

crucial for assistive robot control, a robust human locomotion estimation technique

is presented, focusing on measuring trunk motion. Employing an invariant extended

Kalman filtering method that takes sensor misplacement into account, improved

convergence properties over the existing methods for different locomotion modes

are shown. Secondly, to enhance safe and effective robot-aided gait training, this

dissertation proposes to directly learn from physical therapists’ demonstrations of

manual gait assistance in post-stroke rehabilitation. Lower-limb kinematics of patients

and assistive force applied by therapists to the patient’s leg are measured using a

wearable sensing system which includes a custom-made force sensing array. The

collected data is then used to characterize a therapist’s strategies. Preliminary

analysis indicates that knee extension and weight-shifting play pivotal roles in shaping

a therapist’s assistance strategies, which are then incorporated into a virtual impedance
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model that effectively captures high-level therapist behaviors throughout a complete

training session. Furthermore, to introduce safety constraints in the design of such

controllers, a safety-critical learning framework is explored through theoretical analysis

and simulations. A safety filter incorporating an online iterative learning component

is introduced to bring robust safety guarantees for gait robotic assistance and training,

addressing challenges such as stochasticity and the absence of a known prior dynamic

model.
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Chapter 1

INTRODUCTION

The recent surge in robotic research and applications has undoubtedly opened

doors to a world characterized by enhanced convenience and comfort, thanks to

cutting-edge advancements in transportation, medicine, goods, and food industries,

and sustainability efforts. Notably, rehabilitation and assistive robotics have garnered

significant attention due to their ability to offer invaluable assistance with everyday

human tasks, facilitating the recovery and improvement of physical abilities and motor

functions (Laparidou et al. 2021; Zanatta et al. 2022; Maciejasz et al. 2014). This

importance becomes even more apparent when we observe the prevailing global trend

of an aging population.

According to the report from the U.S. Department of Commerce, the proportion

of people over 65 has increased to 7% by 2000, and will keep rising to 16% by the end

of 2050 Perry 2015. Aging can lead to reduced physical performance due to muscle

deterioration, and a variety of neurological diseases such as stroke and Parkinson

which cause impaired mobility (Duncan et al. 2005). As a result, many people face

reduced physical capabilities and have difficulties performing their daily tasks.

Walking difficulties and impaired mobility are common among older adults and

can result in loss of independence and increased mortality (Brach and VanSwearingen

2013). Thus, gait training and rehabilitation are required to help individuals with

gait deficits improve their physical strength and restore their lost or impaired motion

control. While manual rehabilitation and gait therapy have been effective, it is costly,

physically demanding, and time-consuming. Therefore it is not accessible to everyone
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or at every time. This motivates the the researchers in robotic community to be

actively seeking the development of wearable sensors and robots that can provide a

personalized remote system for gait training and augmentation.

One way to quantify human gait is to measure lower-limb joint mobility and muscle

activity during different walking activities. The overall goals for joint movements

and muscle activity are to achieve weight acceptance, single-limb support, and limb

advancement. During the stance phase where the foot is in touch with the ground, the

weight acceptance and single limb support are the priority tasks. On the other hand,

the limb advancement shifts to the top requirement during the swing phase when

the foot is off the ground (Perry, Davids, et al. 1992). The wearable gait assistive

robots are to augment these motion and activities, during normal walking, or to apply

walking rehabilitation treatment to patients. Although their application can extend

to other daily activities like ascending/descending stairs, sit-to-stand transfer, and

carrying heavy loads. Exoskeletons and orthoses are defined as mechanical devices

that “are worn by an operator and fit closely to the body, and work in concert with the

operator’s movements” (Herr 2009). In general, exoskeletons are devices that augment

the performance of the able-bodied user, while orthosis is typically used to describe a

device that assists a person with a limb pathology (Herr 2009).

1.1 Control of Wearable Lower-limb Robotic Devices

Figure 1.1 shows the overall control framework of wearable lower-limb robotic

devices (Tucker et al. 2015).

This dissertation centers on the high-level controller and sensing aspects of wearable

lower-limb robotics. The high-level controller serves as the primary decision-making
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Figure 1.1. Overview of the control structure of wearable lower-limb robotic devices (Tucker
et al. 2015). pHRI refers to physical human-robot interaction.

unit, receiving information from both the user and the robot through sensors that

capture kinetic and kinematic states, as well as their interaction during locomotion.

In the realm of wearable lower-limb robotics, certain sensing methods are confined

to controlled laboratory environments, while others, particularly wearable sensors,

offer portability and adaptability for outdoor use. Various tools, including encoders,

inertial sensors, and motion capture systems (Liu et al. 2011; Bamberg et al. 2008),

are employed to analyze human motion. Additionally, force (Eilenberg, Geyer, and

Herr 2010) and electromyography (EMG) (Rouse, Mooney, and Herr 2014) sensors

are widely utilized to investigate ground reaction forces (GRFs) and muscle activities

during walking.

The decision-making process generally includes two main sub-processes: 1) Inten-

t/State Estimation, and 2) Torque/Motion planning, which will be detailed below.
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1.1.1 Intent/State Estimation

It is necessary for the high-level controller to perceive the locomotion intent of

the user to be able to provide proper assistance. The locomotion intents include

the types of activity that the user is performing (e.g., walking, running, and stair

climbing), as well as their environmental state (e.g., types of the train), which also

can be categorized into the types of activity. The Locomotion intent can be estimated

by knowing the user’s state, which in this context refers to the pose (i.e. position

and orientation) and velocity of desired limbs and body parts, as well as the status

of user interaction with the robot and the environment. This information sometimes

is directly provided by sensing mechanisms. However, in some cases (such as body

center of mass) the critical information cannot be directly measured by sensors since

it is impractical to implant sensors inside the human body. In this case, it is critical

to define and estimate human states in various human-robot interactive tasks.

Activity mode recognition is generally approached via classification algorithms

(Tucker et al. 2015). The periodic nature and long-term repeatability of human

locomotion generate specific patterns that can be categorized into different modes.

Continuous human states are often estimated by sensor fusion and regression models

for improved accuracy. Such states that are of interest include the stance-foot position

in the world, which can be used to represent a locomotor’s global position in an envi-

ronment(Ojeda and Borenstein 2007). The pose and velocity of the body (e.g., pelvis

or chest) are also of particular interest in gait analysis and wearable robot controller

design because they can be used to study postural balance and gait stability(Deane

et al. 2021).
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1.1.2 Motion/Torque Planning

Besides the locomotion intent of the user, the motion or torque planning strategy of

robotic assistive exoskeletons and devices also depends on the specific and personalized

gait impairment that needs to be addressed. Different assistive and rehabilitative

strategies have been developed for different types of gait pathology and the level of

impairment (Rodrıguez-Fernández, Lobo-Prat, and Font-Llagunes 2021). Phased-

based and non-phased controllers (Tucker et al. 2015) have been proposed. In the

Phased-based approach, the assistance is defined based on the gait phase. In this

context, FSM-based controllers have been among the most popular ones (Rodrıguez-

Fernández, Lobo-Prat, and Font-Llagunes 2021; Tucker et al. 2015), in which the level

of assistance is defined based on discrete gait events. Motion planning controllers have

been developed to reinforce healthy gait patterns for the users. However, these methods

face several shortcomings such as sensitivity to disturbances, and not accommodating

the variability in human gait trajectories. Impedance control, on the other hand,

has received major attention in this field. Impedance controllers provide a level

of compliance by mapping the motion errors to the torque output through virtual

stiffness, damping, and inertia parameters. Therefore they can work with ill-defined

reference trajectories.

1.2 Research Objectives and Contributions

The primary objective of this dissertation is to employ innovative methodologies

encompassing state estimation, non-linear control methods, gait biomechanics, statis-

tical optimization, and machine learning, to make significant contributions towards
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the advancement of personalized and intelligent assistive and rehabilitation strategies.

These advancements are crucial in progressing toward the practical implementation

of wearable lower-limb assistive robots in clinical settings. The central focus lies in

the development of intelligent robot controllers that facilitate efficient interaction and

seamless coordination between the user and the robotic system. By integrating these

sophisticated techniques, the dissertation seeks to pave the way for more effective and

user-centric applications of assistive robotics in the field of lower-limb assistance and

rehabilitation.

To achieve the stated objectives, a dual-pronged approach has been pursued.

Firstly, the focus has been on comprehending essential pieces of information that are

critical for the health monitoring and control of assistive robots. In one study we

proposed a method for classifying human walking speed and slope using sEMG (surface

electromyography) sensors and K-means clustering. Remarkably, this classification

method achieved high accuracy in distinguishing different walking speeds and slopes,

contributing to more precise and efficient human-robot interaction. Another work

focused on estimating variables that cannot be directly or accurately measured using

wearable sensors. A robust human locomotion estimation technique was introduced,

which incorporates an invariant extended Kalman filtering method. This approach

enables accurate tracking of human pose and velocity while accommodating sensor

misplacement, resulting in improved convergence properties compared to existing

methods for different types of human locomotion.

In the other aspect of this dissertation, the focus is put on designing high-level

controllers for robotic exoskeletons, emphasizing their applications in assistance and

rehabilitation. We explored the possibilities of integrating knowledge from conventional

gait therapy into the development of robot controllers. To achieve this, a custom-made
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wearable system, capable of measuring the interaction dynamics between physical

therapists and patients during manual gait training sessions, is developed. Inspired

by conventional rehabilitation methods, we devised a virtual impedance learning

framework to model this therapist-patient interaction. The resulting model successfully

captured and replicated the high-level behaviors of physical therapists throughout an

entire training session. This contributes to a novel approach for controlling wearable

robotics, as it directly encodes the decision-making process of physical therapists into

a human-robot interaction framework.

The contribution of this thesis is summarized as follows:

• As a preliminary work, a robust classification approach with only two features

derived from EMG signals is developed to recognize locomotion activities and

detect changing speeds

• A new invariant extended Kalman filter design is developed that produces real-

time and rapid error convergence for the estimation of the human body movement

even in the presence of sensor misalignment and initial state estimation errors.

• A novel and custom-made wearable data collection system is developed to

collect physical interaction dynamics and leg kinematics between the physical

therapist and the post-stroke patient, during the gait training session. Patient

impairment and PT assistance are characterized and were employed to develop

a patient-specific LfD-based impedance model for gait robotic rehabilitation.

• A safety filter is designed for application in robotic gait assistance, to provide

safety for LfD-based controller. It offers robust safety guarantees, addressing

challenges such as stochasticity and the absence of a known prior dynamic

model. The online iterative learning component ensures finding less conser-
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vative controllers at each iteration and the performance is evaluated through

simulations.

1.3 Outline

In Chapter 2, we discussed the prior and related work on human locomotion

activity and motion estimation, as well as rehabilitation and assistive strategies for

robot-aided gait training and assistance. Chapter 3 introduces a novel approach to

using muscle activity for human locomotion activity and speed detection. In chapter

4 we present the InEKF design for estimating human motion during squat motion

incorporating sensor imperfect placement. Chapter 5 discusses the importance of

capturing human-human sensorimotor interaction during gait training, and presents

an analysis and modeling of patient-therapist interaction that was collected using a

custom-made wearable sensor system. Chapter 6 discusses a safety-critical framework

for regulating nominal controllers to provide safety for human-robot interaction in gait

applications. Chapter 7 concludes the thesis and points out possible future research

directions that can be explored.
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Chapter 2

RELATED WORK

2.1 Gait Intent and State Estimation

2.1.1 Activity Mode recognition

Activity mode recognition is generally approached via classification algorithms

(Tucker et al. 2015). The periodic nature and long-term repeatability of human

locomotion generate specific patterns that can be categorized into different modes.

Heuristic rule-based classifiers such as finite state machine (FSM) (Sup, Varol, and

Goldfarb 2010; Goršič et al. 2014; Kong and Tomizuka 2009) and decision trees (Jin et

al. 2006; Li and Hsiao-Wecksler 2013) are effective classifiers in which the classification

is based on rules that are defined manually or analytically based on sensed states.

Automated pattern recognition (Tucker et al. 2015) on the other hand, uses generated

decision-making boundaries by machine learning and statistical algorithms. These

boundaries are usually generated during the training by inputting high-dimensional

data from the user and its interaction with the robot and the environment. Such

classifiers include Gaussian mixture models (GMM) (Kilicarslan et al. 2013), support

vector machines (SVM) (Huang, Kuiken, Lipschutz, et al. 2009), and artificial neural

network (ANN) (Gancet et al. 2011).
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2.1.2 Activity Mode Recognition using Muscle Activity

EMG signals contain important information about muscle activities, and thereby,

will be helpful in estimating human intentions. Multiple methods have been proposed

to extract useful information from EMG signals to control assistive devices (Young and

Ferris 2017). In hybrid assistive limb (HAL), a voluntary control strategy is developed

to estimate the user’s intentions based on the detection of muscle activities through

EMG signals (Lee and Sankai 2002). In (Karavas et al. 2015), an intention estimation

algorithm based on EMG signals was integrated into the high-level controller strategy

of the knee exoskeleton. Although the aforementioned assistive devices exhibited fair

performance in terms of providing appropriate assistance using EMG signals, there

are certain limitations associated with a number of EMG sensors, types of locomotion

activities, and generalization of the approach. Many human activity recognition

(HAR) methods were proposed in the literature based on the features extracted

from EMG signals (Xi et al. 2017). Some employed eight EMG sensors around the

thigh and adopted a convolutional neural network (CNN) to perform walking activity

classification (Md Alias et al. 2018). The combination of linear discriminant analysis

(LDA) and a two-layered artificial neural network (ANN), was used to identify the

locomotion activities with twelve EMG sensors (Huang, Kuiken, Lipschutz, et al. 2009).

Finite state machines using EMG signals from six muscles were able to recognize

level-walking, ramp ascent, and ramp descent (Islam and Hsiao-Wecksler 2016). There

is a need to develop a human activity recognition algorithm with a minimal number

of EMG sensors and to extract a smaller number of features to make the algorithm

real-time and easily integrable to the assistive device.

The time domain and frequency domain features are the most commonly extracted
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features from the time windows of EMG signals (Xi et al. 2017). Using sliding time

window has been proven to be more robust compared to the fixed time window (Merlo,

Farina, and Merletti 2003). The time domain features such as mean absolute value

(MAV), root mean square (RMS), integrated EMG (iEMG), and zero crossing (ZC)

are used in supervised learning (Ziegier, Gattringer, and Mueller 2018). Although

time domain features are easy to compute, they yield less classification accuracy.

However, RMS and MAV are proven to be intuitive in the classification of locomotion

activities. Others used frequency domain features such as mean frequency (MF)

and median frequency (MDF) (Joshi, Nakamura, and Hahn 2015). Some performed

wavelet decomposition of the EMG signals to extract wavelet features to train the

algorithm (Ivanenko, Poppele, and Lacquaniti 2004). The frequency and wavelet

features generally require more computational effort than time domain features.

2.1.3 Human Motion Estimation

Continuous human states are often estimated by sensor fusion and regression

models for improved accuracy. For example, a Gaussian process regression model was

used to estimate human walking speeds based on wrist-worn IMUs (Zihajehzadeh and

Park 2016). Real-time estimation of continuous human movement states has been

extensively studied for common daily activities such as walking and squatting. One

variable of particular interest in continuous state estimation is a person’s stance-foot

position in the world, which can be used to represent a locomotor’s global position in

an environment (Ojeda and Borenstein 2007). With an IMU attached to each toe, the

dead reckoning method [12] obtains the toe velocity by integrating the accelerometer

reading and removes the accumulated velocity errors due to the integration by resetting
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the velocity to zero when the toe is static on the ground. The dead reckoning method

has been applied to achieve real-time human localization (Van Nguyen and La 2016),

and extended to further improve its accuracy through smoothing (Ruiz et al. 2011) or

filtering (Ruiz et al. 2011).

Besides the stance-foot location, the pose (position and orientation) and velocity

of the body (e.g., pelvis or chest) are also of particular interest in gait analysis and

wearable robot controller design, because they can be used to study postural balance

and gait stability (Deane et al. 2021). Body pose and velocity have been estimated

through the nonlinear forward kinematics between the stance foot, which is obtained

through accurate initialization and contact detection, and the body frame (Yuan and

Chen 2013). This method assumes the leg kinematics is precisely known, and thus

has been extended based on Kalman filtering (KF) to explicitly address uncertainties

such as sensor noises (Yuan and Chen 2014). Recently, extended Kalman filtering

(EKF) has been applied to further address the inaccuracy of the nonlinear kinematics

chain, in addition to sensor imperfections, for real-time movement estimation under

small initial estimation errors (Zhang, Chen, and Yi 2013; Y. Zhang et al. 2015). Yet,

conventional EKF suffers a major weakness in that its design relies on the linearization

of process and measurement models at the state estimates instead of the true states.

Due to this weakness, the EKF cannot guarantee error convergence in the presence of

large estimation errors.

Recently, invariant extended Kalman filtering (InEKF) has been introduced to

ensure real-time, provable error convergence even in the presence of large initial

estimation errors (Barrau and Bonnabel 2016). The InEKF exploits nonlinear state

estimation errors that are invariant on the matrix Lie group and ensures that the

dynamics of the logarithmic error are exactly linear and independent from the state
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estimate if the process model meets the group affine condition and if the measurement

model is in the invariant form. The filtering method has been applied to solve the

real-time state estimation problem for aircraft (Barrau and Bonnabel 2016), legged

robots (Hartley et al. 2019; Lin et al. 2021; Gao, Yuan, and Gu, 2021 (in press);

Teng, Mueller, and Sreenath 2021), and underwater vehicles (Potokar, Norman, and

Mangelson 2021).

While the InEKF method (Hartley et al. 2019) has achieved impressive estimation

performance for robot locomotion, it has not been applied to solve some of the key

challenges in the state estimation of continuous human movement state, such as the

inaccurate kinematic parameters and imperfect sensor placement. One common solu-

tion to imperfect sensor placement is manual sensor calibration (Yuan and Chen 2013),

which is often time-consuming and thus may not be suitable for real-world applications

(e.g., daily movement monitoring) that could demand frequent re-calibration.

2.2 Gait Training Strategies for Wearable Lower-Limb Assistive Robots

Different assistive and rehabilitative strategies have been developed for different

types of gait pathology and the level of impairment (Rodrıguez-Fernández, Lobo-

Prat, and Font-Llagunes 2021). Phased-based and non-phased controllers (Tucker

et al. 2015) have been proposed. In the Phased-based approach, the assistance is

defined based on the gait phase. In this context, FSM-based controllers have been

among the most popular ones (Rodrıguez-Fernández, Lobo-Prat, and Font-Llagunes

2021; Tucker et al. 2015), in which the level of assistance is defined based on discrete

gait events. The impedance control framework has been proposed as a good solution

due to the robust, low-gain, and compliant behavior (Buchli et al. 2011) that is
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necessary for tightly coupled Human-Robot Interaction (HRI) scenarios. In contrast

to traditional approaches that reject disturbances, impedance control accommodates

them by defining the robot’s force behavior as a spring-damper system (Khan et

al. 2019). The stiffness and dampening are dynamically changed according to varying

time-dependent stiffness and damping gains. One way of defining these gains is to learn

them from human observations using a learning-from-demonstration (LfD) approach.

Impedance control has generally been shown to be more effective than traditional

control approaches like motion control, force control and hybrid position-force control

(Marchal-Crespo and Reinkensmeyer 2009).

2.2.1 Robot-Aided Therapy using Human-Human Haptic Interaction

Despite considerable progress in sensor and robot-aided gait rehabilitation, the lack

of intelligent control approaches prevents assistive robots from clinical deployment.

Previous studies have suggested that modeling and identifying human-human senso-

rimotor interactions have led to the development of robots that physically interact

and move with humans in an intuitive and efficient manner (Sawers and Ting 2014).

Physical rehabilitation is a form of Human-Human haptic interaction in which the

goal of PT is to train the patient to improve their motor performance. However, in

the context of rehabilitation robotics, there is no widely accepted framework to define

Human-Human interaction (HHI) (Sawers and Ting 2014). This is mainly because of

the lack of enough studies that have collected and modeled the haptic interactions

between PTs and patients to reveal how those forces should be applied to encourage

motor skill learning.

There are limited studies in which the haptic interaction between the PT and
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patients has been collected and used for learning HRI strategies, especially for gait

training. Gal et. al (Galvez et al. 2005) collected the interaction force and leg

kinematics during body-weight supported treadmill training for people with spinal

cord injury, and showed that different PTs applied significantly different forces,

resulting in different leg kinematics. However, no specific strategy on how the forces

contributed to the task performance or modeling of the assistance, was proposed.

Fong et. al. (Fong, Rouhani, and Tavakoli 2019) targeted foot-dropping assistance

during treadmill-based gait therapy and proposed an impedance-based LfD framework

to implement that on a robotic arm. Despite the successful modeling and implemen-

tation, the experimental scenario did not include actual patients and PTs, and the

haptic interaction did not resemble actual PT-patient interaction, therefore no insights

for HRI could be extracted.
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Chapter 3

PRELIMINARY WORK

This chapter presents a preliminary study by the author on using wearable sensors

for locomotion activity mode detection and studying contextual and personalized

factors on elderly gait patterns.

3.1 Human Locomotion Activity and Speed Recognition Using Electromyography

Based Features

Human locomotion recognition methods based on electromyography (EMG) signals

have not shown robust and accurate classification performance. This is due to the

limitations of EMG signals such as their stochastic nature and sensitivity to placement

of the sensors, as well as the number of sensors, feature extraction, and classification

algorithms. In this work, a robust classification approach with only two features

derived from EMG signals is developed to recognize locomotion activities and detect

changing speeds. The root means square (RMS) and energy of the EMG signals are

the features adopted in this method. The energy of the EMG signal is extracted using

the energy kernel method. The proposed approach uses a low number of sensors and

features, online unsupervised classification, and is generalizable to different lower-limb

muscle groups.
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3.1.1 Approach

The RMS and energy of the EMG signal are the two features proposed to perform

the classification of locomotion speed and activities. The RMS of the EMG signal

is attributed to the muscle force (Christie et al. 2009). The energy of the EMG

signal is derived using the energy kernel method given in (Chen, Zeng, and Yin

2017). The energy kernel method is based on the assumption that the EMG signal

governs a harmonic oscillator model. There is a physical intuition between energy

and force/power of muscle explained in (Chen, Zeng, and Yin 2017). In this work, we

hypothesize that the change in energy of the EMG signal per gait cycle with locomotion

speed or activity follows the damped harmonic oscillator model. Therefore we should

be able to classify different activities based on their energy level. In (Chen, Yin, and

Fan 2014) it is suggested that the energy kernel method combines the advantages of

both RMS and mean power frequency methods and provides better Physical intuition

of EMG However, regarding the uncertainties associated with EMG signal, we believe

that using the RMS and energy of EMG signal as two features for identifying the

gait speed or activity change would lead to more accurate and robust prediction than

using individually, and can be expanded to broader applications.

3.1.1.1 Damped Harmonic Oscillator Model of EMG

This model is inspired by the simple harmonic oscillator model of the EMG given

in (Chen, Zeng, and Yin 2017). The behavior of the EMG signal can be recognized as

an oscillator whose amplitude is featured by the reciprocating motions accompanied by
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Figure 3.1. The energy kernel of the EMG signal of vastus laterialis

a noise, as it is a zero-averaged stochastic wave signal. The energy of simple harmonic

oscillator with mass m, stiffness k is given as:

E0 =
1

2
kx2 + 1

2
my2 (3.1)

or in an elliptic form as:
x2

2E0/k
+ y2

2E0/m
= 1 (3.2)

The phase portrait of EMG signal of Vastus Laterialis (amplitude signal on x and

derivative of the amplitude on y) for a segment is shown in Fig. 3.1. The length of

the time window chosen for this portrait is equal to one gait cycle. Gait cycle events

are obtained from force plate data.

This elliptic shape of the phase portrait given by (3.2), can be seen in Fig. 3.1 for

the EMG signal per gait cycle. It is not possible to compute E0 directly as k and m

are unknown. However, the area of the ellipse will be useful in calculating the energy
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of the harmonic oscillator. The area of the ellipse can be expressed as

S = 2π√
km

E (3.3)

Equation (3.3) shows that the area of the ellipse is proportional to the energy of

the harmonic oscillator. The ellipse of the phase portrait is referred to as the energy

kernel (Chen, Zeng, and Yin 2017).

It is expected that during gait or any periodic locomotion activity, the energy of

EMG per cycle, which is a representation of muscle activity, will stay at the same

level, and will change when the activity changes. This change can be modeled by

the harmonic damped oscillator. The energy of a damped harmonic oscillator with

damping b is given as:

E = E0e
− bt

m (3.4)

Here t is time, and E and E0 are the energy of the damped harmonic oscillator and

simple harmonic oscillator, respectively. The smaller value of b in (3.4) makes E to

be approximated as E0, the energy of the simple harmonic oscillator. We hypothesize

that at a constant speed of a locomotion activity, the damping of the muscles exhibits

a small value. Therefore, it can be approximated as a simple harmonic oscillator.

However, the change in locomotion speed and activity will change the damping value

to a higher positive or negative value causing decay or an increase in the muscular

energy governed by the damped harmonic oscillator model. We want to validate this

model in the experiments with locomotion speed or activity change and use the result

to detect those changes.
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3.1.2 Methods

To initially evaluate the generalization and performance of this method, it has

been tested on a public dataset on which EMG data of participants are collected as

they were walking on the treadmill in different slopes and speeds. Furthermore, an

additional set of experiments and data collection are done, to evaluate the performance

of this method on: 1) clustering if the walking speed changes online and 2) different

muscle groups around the knee joint. The latter will examine the generalization of

the proposed method to other muscle groups.

Public Data Set: The chosen dataset contains leg joint kinematics, kinetics,

and EMG activity of able-bodied subjects walking on an instrumented treadmill in

different combinations of slopes (-10 degrees to +10 degrees) and speeds (0.8 m/s

to 1.2 m/s) in each trial. The study was done at the University of Texas at Dallas

(Embry et al. 2018).

Among all the trials, four trials of five subjects have been considered for speed and

activity change detection: level and uphill walking at speeds 0.8 and 1.2 m/s. Each

trial contains EMG data of four muscle groups: rectus femoris (RF), biceps femoris

(BF), tibialis anterior (TA), and gastrocnemius (GC). The EMG signals were collected

with a sampling rate of 2000 Hz, and rectified and low-pass filtered (fc=40 Hz) with a

zero-phase digital filter. The EMG data are broken down into individual gait cycles

which begin and end at heel strikes. Each gait cycle contains 150 EMG data points

which are used to extract the proposed features for each stride. As some issues with

right-leg EMG sensors have been reported in this study, left-leg EMG sensors are

chosen for all subjects.

Data Collection and Pre-processing: Two level walking experiments were
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Table 3.1. Details of the healthy participants who joined the study.

ID Gender Age Height (cm) Weight (kg)
1 Male 21 175 94
2 Male 20 176 78

performed on two participants, as the treadmill speed changed online, and their EMG

data were collected. For the vastus lateralis (VL) and vastus medialis (VM), one

surface EMG (sEMG) wireless sensor (Delsys Trigno Avanti) were placed on each

muscle group based on Seniam placement protocol (Hermens and Freriks 1997). The

vastus lateralis sEMG was placed two-thirds along the line between the anterior spina

iliaca superior to the lateral side of the patella, in the direction of the muscle fibers.

The vastus medialis electrode was placed 80% along the line from the anterior spina

iliaca superior to the joint space in front of the anterior border of the medial ligament,

oriented perpendicularly to the line.

The sampling rate for both sEMG was 2000 Hz. The sensor’s placement is shown

in Fig. 3.2. This study has been done at Arizona State University (ASU) and has

been approved by its Institutional Review Board (IRB).

Each participant walked on an instrumented dual belt treadmill with integrated

force plates. Along with the EMG data, force plates data were collected to detect

heel strike events. The collected raw EMG data were rectified and processed using a

4th-order Butterworth filter with a cut-off frequency of 40 Hz. The data were broken

down into individual cycles based on heel strike events detected by the force plates.
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Figure 3.2. The sensor placement for EMG signal acquisition of VL and VM muscle groups during
the speed change trials

3.1.3 Feature Extraction

The RMS and energy feature of EMG were calculated per gait cycle, from the

collected and processed EMG for all trials. For a given number of data points, the

RMS of the signal will be:

RMS =
√

1

n
Σn

i=1x
2
i (3.5)

where x represents the signal over the cycle and n is the number of data points within

the cycle. The energy of the EMG signal at each gait cycle would be the area of the

ellipsoid which was represented in section II. To calculate the area, the phase portrait

of each cycle was extracted by taking the x as the amplitude of the signal and y as its

derivative. A discrete box-counting method proposed in (Chen, Zeng, and Yin 2017)

has been used to calculate the ellipsoid of the phase portrait. This method divides

the rectangle enclosing all the data points of phase portrait in n1 × n2 grids or boxes.

The number of points inside each box (pij) will be counted, and if pij > thr, where
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Figure 3.3. The discrete box-counting method to calculate the ellipsoid area of the EMG signal of
the VM muscle groups for one gait cycle.

thr is a predefined threshold, the box will be included as the area of the ellipsoid.

In order to make sure that boxes will cover a continuous area, a 2D moving average

with one sliding window is performed on pij for smoothing the counted values of each

box before comparing them to the threshold. It must be noted that the number of

boxes (n1 × n2) and the threshold thr depend on the total number of data points in

the segment. By many trials and errors, we chose n1 = n2 = 10 and thr = 0.5 for the

public data set which contains 150 points per cycle, and n1 = n2 = 20 and thr = 2 for

the collected data as 2000 data points were considered for each cycle. Fig. 3.3 shows

the area to calculate the energy kernel of one of the collected gait cycle data.

3.1.4 K-means Clustering Approach

K-means is a well-known unsupervised approach that can cluster n objects into

k classes. K-means clustering minimizes the distortion measure, taking the total

intra-cluster variance as a cost function. This method iteratively finds the cluster
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centroids and then assigns the data according to the Euclidean distance to the cluster

centroids until convergence. In our case, we hypothesize that the energy-RMS cluster

of the EMG signal will be distinguishable for various locomotion speeds and activities.

3.1.5 Speed and Activity Change Identification in Separate Trials

The energy and RMS value of EMG signals during each gait cycle are calculated

for five subjects in four different trials with different activities and speeds. The subject

ID numbers are as given in the public dataset. Fig. 3.4 shows the RMS and energy

of EMG signal of the four muscle groups, for two of the subjects. It can be seen

that the RMS and energy values of some muscle groups show more clear distinction

in the activities than the other ones. Based on our observation from these figures

for all subjects, the muscle groups BF and GC are chosen to extract the features.

Fig. 3.5 shows the 2D feature space (Energy-RMS) of these two EMG signals for

gait speed change and activity change. By considering these 2D features for all

four EMG sensors, it seems impossible to use only one EMG sensor to differentiate

between speed and activity changes for all subjects. Using two EMG sensors makes

the classification among the subjects more robust. The energy feature of EMG signal

helps with increasing the distance between the clusters and making the classification

more accurate, rather than using only the RMS feature.

As an unsupervised classification approach, K-means clustering has been used to

classify the data based on the gait activity or speed change. This approach does not

need any training and can group unlabeled data into certain clusters. The only input

to this algorithm besides the features, is the number of clusters. Our assumption is
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(a) Subject 03

(b) Subject 06

Figure 3.4. The RMS and energy value of 4 muscle groups EMG signal for two subjects in 4 different
walking trials: level walking at 0.8 m/s and 1.2 m/s, and uphill walking (10 deg inclined) at 0.8 m/s
and 1.2 m/s.
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Figure 3.5. The Energy-RMS plots of RF and GC EMG signals of one of the subjects for gait speed
change (a) and activity change (b).

that the extracted features of the two EMG signals will remain at almost the same

level, as far as the gait speed or activity has not changed, independent of subjects or

other conditions. The K-means clustering would be ideal to test this assumption.

The RMS and energy of EMG signal of RF and GC muscle groups were considered

as the four features of the K-means clustering. The classification is performed on

30 gait cycles of each trial. The level walking trials at speeds 0.8 and 1.2 m/s are

considered together to classify the speed change, and level and uphill walking trials

at 0.8 m/s are considered as activity change classifications. The accuracy of the two

classifications for all subjects is represented in Fig. 3.6. For all cases, the accuracy of

classification is greater than 90%. Depending on the subject, the accuracy of detecting
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Figure 3.6. The accuracy of K-means classification algorithm to predict gait speed or activity change
based on a 4 features space consisting of RMS and energy values of two EMG sensors (BF and GC)
in the public dataset

activity or speed change is different, which is expected as different subjects’ muscle

groups might behave differently in those conditions.

3.1.6 Online Gait Speed Change Detection using Different Muscle Groups

In order to validate the performance of this method in the case that walking

speed changes online in one trial, rather than in separate trials, the same analysis is

performed on 2 subjects walking on a treadmill while the speed changes twice in the

middle of the trial, from slow speed (0.5m/s) to normal speed (0.8 m/s), and then

to fast speed (1.2 m/s). Here, EMG signals of VM and VL muscle groups are used

to further examine the generalization of this approach. The 2D feature (RMS and

energy) of each EMG signal are plotted in Fig. 3.7 for each subject. 15 gait cycles are

considered for each speed (total 45 for each trial), and the transition points are not

considered here. The reason is that transition points will make the classification and
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Figure 3.7. The energy-RMS of EMG signal plots for two subjects walking on the treadmill as the
speed changes twice: From 0.5 m/s to 0.8 m/s and then to 1.2 m/s. The EMG signal are acquired
from two muscle groups, VL and VM. The gait cycles in speed transitions are not considered.

distinction between clusters much more complicated and difficult, and for now, we

only focus on speed change from slow walking to normal and fast walking.

From Fig. 3.7 it is observed that using these muscle groups and the proposed

features, it is still possible to have separate clusters as the speed changes during

walking. The K-means clustering method is performed on the extracted features of

these two EMG signal, to classify three clusters for each experiment and the results

are shown in table 3.2. As expected, the classification accuracy for all 4 trials is high

(more than 97%).
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Table 3.2. The speed Change Detection Accuracy for Subjects Walking on the Treadmill as its
Speed Changes Two Times

Subject Trial number Accuracy

1 1 97.8%
2 100%

2 1 97.8%
2 97.8%

3.1.7 Discussion

Essentially RMS and energy of EMG signal are not completely independent features

as they are both attributed to the muscle activation level. However, regarding the

noisy and stochastic nature of EMG signal, each of them might behave differently,

and our result showed that having them as two different features would lead to better

classification accuracy.

Based on the results showed in Fig. 3.6, the energy kernel of EMG per gait cycle

for lower-limb muscles will remain in certain level or cluster during constant gait

activity or speed, and will go to different clusters if the speed or activity changes.

Therefore the energy kernel of each gait cycle, during the gait activity or speed change,

can be described by damped harmonic oscillators rather than mass-spring model.

The robustness of the proposed method to detect gait speed or activity changes

is tested in three ways: across different subjects, across different experimental and

data acquisition conditions (two different data set and separate trials), and across

two groups of different muscle groups (VM-VL, and BF-GC). We obtained high

classification accuracies for all those conditions, suggesting a robust performance of

the purposed method. It must be noted that EMG based classification methods are

not usually robust, regarding the stochastic and noisy nature of EMG signal, and its

sensitivity to the experiment and data acquisition condition. Further experiments can
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be performed to address the effects of human physiological change such as muscle

fatigue, to examine the robustness of this EMG classification method, in more details.

This method has the potential to be implemented in real time. Both features can

be extracted in real time and an online unsupervised classification algorithm can use

the proposed 2D feature space to identify changes in the gait. Although the update

rate might not be very fast (at least one gait cycle), this method can possibly be used

for gait assistive robot applications. Given its accuracy, robustness, few sensors, and

applicability to different muscle groups, it can be used to detect any changes in the

muscle activation level, and the robotic exoskeleton would alter its policy or level of

assistance accordingly.
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Chapter 4

HUMAN MOTION ESTIMATION USING INVARIANT EXTENDED KALMAN

FILTERING

For human locomotion, both continuous and discrete states have been introduced

to quantity and differentiate various motion patterns and intents. Continuous human

states are often estimated by sensor fusion and regression models for improved accuracy.

The pose (position and orientation) and velocity of the body (e.g., pelvis or chest) are

of particular interest in gait analysis and wearable robot controller design because

they can be used to study postural balance and gait stability, as well as gait mode

analysis.

This chapter proposes an augmented InEKF design that considers the misalignment

of the inertial sensor at the trunk as part of the states and preserves the group affine

property for the process model. Personalized lower-extremity forward kinematic

models are built and employed as the measurement model for the augmented InEKF.

Observability analysis for the new InEKF design is presented. The filter is evaluated

with three subjects in squatting, rolling-foot walking, and ladder-climbing motions.

Experimental results validate the superior performance of the proposed InEKF over

the state-of-the-art InEKF. Improved accuracy and faster convergence in estimating

the velocity and orientation of humans, in all three motions, are achieved despite the

significant initial estimation errors and the uncertainties associated with the forward

kinematic measurement model. Although the measurement model is imperfect (i.e.,

it does not possess an invariant form) and thus its linearization relies on the state

estimate, experimental results demonstrate fast convergence of the proposed filter.
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4.1 Problem Formulation

In this section, we will introduce an InEKF to estimate the states of the body

(e.g., pelvis or chest) and the IMU placement offset, by using an IMU placed on the

body to form the process model and by exploiting the stance leg’s forward kinematic

velocity to build a measurement model. The human forward kinematic model provides

the contact point position in the measurement frame (as shown in Fig. 4.1). Thus

there are some orientation and positional offsets between the measurement frame,

which is considered in human forward kinematic model, and where IMU is placed.

The “perfect“ placement of the IMU would allow the exact alignment between the

IMU and the measurement frame. Yet, such a placement is difficult to achieve in

real-world applications without resorting to careful and often time-consuming manual

calibration. Here, to address the “imperfect” alignment between frames, we include

the (orientation and positional) placement offset as part of the state estimation to

make the connection between the process model (IMU) and the measurement more

accurate. This will lead to more accurate estimation of the body pose, and eliminate

the need for accurate calibration between the IMU and the measurement frames.

4.1.1 Process Model

Since the filtering objective is to estimate the body movement, we choose the state

variables of the filter system to be the position p ∈ R3, velocity v ∈ R3, and orientation

R ∈ SO(3) of the IMU, which is placed on the body, expressed in the world frame. In

addition, to explicitly treat the IMU placement offsets, the state variables also include
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Figure 4.1. Measured and estimated variables in the proposed human body movement estimation.
{World} represents the world frame and {Measurement} is the frame at which the measurements
are provided. For the leg forward kinematic measurements, the measurement frame is defined at the
center of pelvis. {IMU} is the frame attached to the IMU. This figure illustrates the rotational and
positional offset between the measurement and IMU frames, as well as the forward kinematics chain.

the positional offset ∆p ∈ R3 and orientation offset ∆R ∈ SO(3) of the IMU frame,

represented in the measurement frame.

The process model is based on the IMU characteristics. The IMU measures the

linear acceleration a ∈ R3 and angular velocity ω ∈ R3 in the IMU frame. These sensor

readings are corrupted by white Gaussian noise:

ã = a +wa, ω̃ = ω +wω. (4.1)

Considering these measurements as the input of the IMU motion dynamics, the

33



process model becomes:

d

dt
R =R(ω̃ −wω)×,

d

dt
p = v, d

dt
v =R(ã −wa) + g, (4.2)

where (.)× denotes a skew-symmetric matrix and g is the gravitational acceleration

vector.

As the IMU placement offsets are typically constant, we model their dynamics as

zero plus small white Gaussian noise w∆p and w∆R:

d

dt
∆p =w∆p,

d

dt
∆R =∆R(w∆R)×. (4.3)

4.1.2 Measurement model

4.1.2.1 Forward kinematics based measurement

During mobility tasks (e.g., squatting, walking, and stair climbing), when the

stance foot has static, secured contact with the ground, the pose of the measurement

frame can be obtained through the leg kinematic chain that connects the foot and

measurement frames. Note that the joint angles along the kinematic chain are

measured by the motion capture system. The kinematic chain is built based on the

Vicon lower-body Plug-in-Gait model , in which 3D joint angles (hip, knee, and ankle),

along with subject lower-body segment length measurements, were used to obtain the

desired 3D vector.

Let αt ∈ Rk be the joint angles of the stance leg with k the number of joint angles.

Then the measured joint angle α̃t can be expressed as α̃t = αt +wαt with wαt ∈ Rk

the zero-mean white Gaussian noise.
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Let MdMF
t denote the 3-D position vector pointing from the measurement to the

foot frame expressed in the measurement frame. For brevity, we denote it as dM
t . Let

the function hF be the forward kinematics representing dM
t ; that is, dM

t = hF (αt).

Given that dM
t = (∆Rt)RT

t (dt−pt)−∆pt, we have dt−pt =Rt∆RT
t (∆pt+hF (αt)).

Taking the first derivative with respect to time t on both sides of this equation, we

obtain:
d

dt
(dt − pt) =Rt∆RT

t (w∆pt + J(αt)(α̇t +wα̇t))

+ (Rt(ωt +wωt)×∆RT
t +Rt(∆Rt(w∆Rt)×)

T ) (hF (αt) +∆pt),

(4.4)

where J(α) ≜ ∂hF (α)
∂α is the forward kinematic Jacobian and wα̇t is the joint velocity

measurement noise.

Note that ḋt = 0 due to the stationary contact point. Also, ṗt = vt holds. Thus,

the measurement model in (4.4) can be compactly rewritten as:

y = h(Xt) + nt, (4.5)

where y = −J(α̃t) ˙̃αt, h(Xt) = (∆Rt)RT
t vt − (∆pt)×∆Rtω̃t − (hF (α̃t))×∆Rtω̃t, and

nt = (∆pt +hF (α̃t)×∆Rt(w∆Rt +wωt)+w∆pt −J(α̃t)wα̇t . For simplicity, nt is treated

as white, Gaussian, zero-mean noise in this study.

4.1.2.2 3-D vector-based measurement model

To compare the filtering performance under different kinematics measurements

formed based on data returned by motion capture systems, we introduce a simplified

measurement obtained based on the 3-D position vector between the measurement

and foot frame. Both forward kinematics-based and 3-D position vector-based mea-

surements return the relative position and velocity between the measurement and

35



foot frames. Note that the 3-D position vector-based measurement will have higher

accuracy than the forward kinematics measurements.

Let vM
t denote the 3-D velocity vector pointing from the measurement to the foot

frame expressed in the measurement frame, which is the time derivative of dM
t . Then

the measured 3-D velocity vector ṽM
t is expressed as ṽM

t = vM +wvMt
, with wvMt

the

noise associated with the 3-D velocity vector measurement.

Given that dM
t = (∆Rt)RT

t (dt − pt) −∆pt, we have dt − pt =Rt∆RT
t (∆pt + dM

t )).

Taking the time derivative on both sides of this equation, we obtain:

d

dt
(dt − pt) =Rt∆RT

t (w∆pt + (vM +wvM ))

+ (Rt(ω)×∆RT
t +Rt(∆Rt(w∆Rt)×)T ) (dM

t +∆pt).
(4.6)

Assume the contact foot velocity is zero due to the stationary contact point. Then

the measurement model (4.6) becomes:

y = h(Xt) + nt (4.7)

where y = −ṽM , h(Xt) = ∆RtRT
t vt−(∆pt)×∆Rtωt−(dM

t )×∆Rtωt+nt, and the vector

nt is the lumped measurement noise term.

Remark 1: The two measurement models in (4.5) and (4.7) do not satisfy the right-

invariant observation form (i.e., y =X−1b for some known vector b) as defined in the

theory of InEKF( Barrau and Bonnabel 2016). This is because with the state defined

in (4.8) and our measurements in (4.5) and (4.7), a vector b that is known and satisfies

y =X−1b does not exist. Then, by the theory of invariant filtering (Proposition 2 in

Barrau and Bonnabel 2016), the error dynamics during the measurement update is

not independent of state trajectories.
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4.1.3 State Representation and Propagation (Predication)

The first step to designing an InEKF is to define the states on a matrix Lie group

G (Howe 1983; Sola, Deray, and Atchuthan 2018), with its associated Lie algebra g.

Here the variables we wish to estimate (introduced in Sec. 4.1.1) are represented on a

matrix Lie group:

X =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

R v p 03,3 03,1

01,3 1 0 01,3 03,1

01,3 0 1 01,3 03,1

03,1 03,1 03,1 ∆R ∆p

01,3 0 0 01,3 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ G, (4.8)

where the matrix Lie group G is an extension of the special Euclidean group SE(3),

and 0n,m represents an n ×m matrix with all elements being zero. The proof that G

is a matrix Lie group is given in the appendix.

The core idea of the InEKF is the invariant error definition. The right-invariant

error between the true and estimation value is denoted as:

η = X̄X−1 ∈ G, (4.9)

where (.) denotes the estimated value of the variable (.).

The tangent space g (defined at the identity element E ∈ G) is a vector space that

can also be represented by vectors in the Cartesian space Rdimg. This transformation

is a linear map that we define as (.)∧ ∶ Rdimg → g. Therefore for the vector ζ =

vec(ζR,ζv,ζp,ζ∆R,ζ∆p) ∈ Rdimg, this linear map has the form (Sola, Deray, and
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Atchuthan 2018,Hartley et al. 2019):

ζ∧ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(ζR)× ζv ζp 03,3 03,1

01,3 0 0 01,3 03,1

01,3 0 0 01,3 03,1

03,3 03,1 03,1 (ζ∆R)× ζ∆p

01,3 0 0 01,3 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ g. (4.10)

Now we can define the exponential map of our Lie group, ηt = exp(ζ). The exponential

map takes ∀ζ ∈ Rn to the corresponding matrix representation in G as:

exp(.) ∶ Rdimg → G, exp(ζ) = expm(ζ∧), (4.11)

where expm(.) is the matrix exponential.

The dynamics of the system can be written using (4.1)-(4.3):

d

dt
Xt =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Rt(ω̃t)× Rtãt + g vt 03,3 03,1

01,3 0 0 01,3 03,1

01,3 0 0 01,3 03,1

03,3 03,1 03,1 03,3 03,1

01,3 0 0 01,3 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−Xt

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(wωt)× wat 03,1 03,3 03,1

01,3 0 0 01,3 03,1

01,3 0 0 01,3 03,1

03,3 03,3 03,3 (w∆Rt)× w∆pt

01,3 0 0 01,3 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≜fut(Xt) −Xtw
∧
t ,

(4.12)

where (⋅)t denotes the values of the variable (⋅) at time instant t. Here the noise

vector wt is defined as wt ≜ vec(wωt ,wat ,03,1,w∆Rt ,w∆pt).
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It can be shown that the deterministic dynamics fut(.) meets the following group

affine condition (Barrau and Bonnabel 2016) (see Appendix for proof):

fut(X1X2) = fut(X1)X2 +X1fut(X2) −X1fut(E)X2. (4.13)

Therefore, according to (Barrau and Bonnabel 2016), the right-invariant error has

deterministic autonomous dynamics (that are independent of state) as below:

d

dt
ηt = gut(ηt), gut(ηt) = fut(ηt) − ηtfut(E), (4.14)

and if we consider the noise in the system we will have:

d

dt
ηt = fut(ηt) − ηtfut(E) +AdX̄t

w∧t ≜ gut(ηt) + w̄∧t , (4.15)

Here, for any Xt ∈ G, the adjoint map AdXt ∶ g → g is the linear mapping from the

local tangent space (defined at Xt) to the global tangent space (defined at the identity

element E) in the Lie algebra: AdXt(.)∧ ≜Xt(.)∧X−1t . Therefore, the adjoint matrix

representation for Xt can be obtained as:

AdXt =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Rt 03,3 03,3 03,3 03,3

(vt)×Rt Rt 03,3 03,3 03,3

(pt)×Rt 03,3 Rt 03,3 03,3

03,3 03,3 03,3 ∆Rt 03,3

03,3 03,3 03,3 (∆pt)×∆Rt ∆Rt

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4.16)

Moreover, we can obtain a log-linear error equation using the first-order approximation

of the exponential map and (4.15). Specifically, by the definition of exp, we have

ηt = exp(ζt) ≈ E + ζ∧t . Also, by the theory of invariant filtering (Barrau and Bonnabel
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2016), we can obtain the Jacobian At of deterministic part of (4.15):

gut(exp(ζt)) = (Atζt)∧ + h.o.t.(∣∣ζt∣∣) ≈ (Atζt)∧, (4.17)

where h.o.t. represents the higher-order terms. Then, from (4.14), we obtain the

log-linear error equation:
d

dt
ζt =Atζt. (4.18)

Therefore, for given initial right-invariant error η0 = exp(ζ0), ηt can be recovered

using (4.18). This results in linear right-invariant error propagation (predication) in

the filter, which is exact for the deterministic case. With the process noise considered,

the linear error equation in ζt becomes d
dtζt =Atζt + w̄t.

We are now ready to derive the expression of At defined in (4.17), by substituting

the first-order approximation of the right-invariant error into the definition of gut in
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(4.15):

gut(exp(ηt)) ≈ gut(E + ζ
∧
t )

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(I3 + (ζRt)×)(ω̃t)× (I3 + (ζRt)×)ãt + g ζvt 03,4

01,3 0 0 01,4

01,3 0 0 01,4

03,3 03,1 03,1 03,4

01,3 0 0 01,4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I3 + (ζRt)× ζvt ζpt 03,3 0

01,3 0 0 01,3 0

01,3 0 0 01,3 0

03,3 03,1 03,1 (ζ∆Rt)× ζ∆pt

01,3 0 0 01,3 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(ω̃t)× ãt + g 03,5

01,3 0 01,5

01,3 0 01,5

03,3 03,1 03,5

01,3 0 01,5

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

03,3 (g)×ζRt ζvt 03,4

01,3 0 0 01,4

01,3 0 0 01,4

03,3 03,1 03,1 03,4

01,3 0 0 01,4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

03,1

(g)×

ζvt

03,1

03,1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∧

,

(4.19)

which yields

At =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

03,3 03,3 03,3 03,3 03,3

(g)× 03,3 03,3 03,3 03,3

03,3 I3 03,3 03,3 03,3

03,3 03,3 03,3 03,3 03,3

03,3 03,3 03,3 03,3 03,3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (4.20)

where I3 is the 3 × 3 identity matrix.

Now we can write down the predication step of our InEKF, which consists of

the propagation of the state estimate X̄t through the process model as well as the
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propagation of the covariance matrix Pt through the Riccati equation (Maybeck 1982):

d

dt
X̄t = fut(X̄t),

d

dt
Pt =AtPt +PtA

T
t + Q̄t, (4.21)

where Q̄t is the process noise covariance defined as Q̄t ≜ Cov(w̄t) = AdX̄t
Cov(wt)AdX̄t

.

In order to implement the filter in discrete time, Euler integration has been

performed. The discrete filter propagation equations are given in the appendix.

4.1.4 Measurement update

The nonlinear measurement model (4.5) does not follow the right-invariant form,

so we use a first-order approximation to find the innovation as:

Htζt + h.o.t(ζt) ≜ h(X̄t) − h(Xt). (4.22)

Since ηt ≈ X̄tX−1t ≈ I + ζ∧t , we can derive the following relationships between the true

and estimated states with ζt:

⇒ RT
t ≈ R̄

T
t (I + (ζRt)×), ∆RT

t ≈ ∆̄R
T
t (I + (ζ∆Rt)×)

vt ≈ (I − (ζRt)×)(v̄t − ζvt), ∆pt ≈ (I − (ζ∆Rt)×)(∆pt − ζ∆pt).

Now Ht can be computed by differentiating (4.22) after dropping the nonlinear terms:

Ht =[03,3, ∆̄RtR̄t
T
, 03,3, h4, (∆̄Rtωt)×],

h4 = − (∆̄RtR̄
T
t v̄t)× − (∆̄Rtωt)×(∆pt)×

+ (∆pt)×(∆̄Rtωt)× + (hF (αt))×(∆̄Rtωt)×.

(4.23)
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For 3-D position based measurement model, the element h4 of the matrix Ht is

slightly different from (4.23). The hF (αt)) needs to be replaced as dM
t :

Ht =[03,3, ∆̄RtR̄t
T
, 03,3, h4, (∆̄Rtωt)×],

h4 = − (∆̄RtR̄
T
t v̄t)× − (∆̄Rtωt)×(∆pt)×

+ (∆pt)×(∆̄Rtωt)× + (dM
t )×(∆̄Rtωt)×.

(4.24)

Now we can express the update equation for our InEKF based on the InEKF

methodology (Barrau and Bonnabel 2016):

X̄+t = exp(Kt(yt − h(X̄t)))X̄t,

P+t = (I −KtHt)P−t (I −KtHt)T +KtNtK
T
t ,

(4.25)

where X̄+t and P+t are the updated values. Here, the Kalman gain Kt and measurement

noise covariance Nt are defined as: Kt = PtHT
t S
−1
t , St = HtP−tH

T
t +Nt, and Nt =

R̄t∆̄R
T
t Cov(nt)∆̄RtR̄T

t .

4.2 OBSERVABILITY ANALYSIS

By introducing the new states and measurement model, we need to analyze the

observability of the whole system. Here we only include the linear observability

analysis, and leave the nonlinear observability analysis for future work. Similar to

Huang, Mourikis, and Roumeliotis 2010, we analyze the observability around the

operating point, which is the latest estimated value that the system is linearized

about.
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Algorithm 1 Proposed InEKF design
Initialize X̄ ∈ G and P = PT > 0
for iteration=1,2, . . . do

if foot contact is detected then
Propagation step:
d
dtX̄t = fut(X̄t) , d

dtPt =AtPt +PtAT
t + Q̄t

Measurement update step:
Kt = PtHT

t S
−1
t , St =HtP−tH

T
t +Nt,

Nt = R̄t∆̄R
T
t Cov(nt)∆̄RtR̄T

t

if using forward kinematics-based measurement then
y = −J(α̃t) ˙̃αt

else if using 3-D vector-based measurement then
y = −ṽM

t

end if
X̄+t = exp(Kt(yt − h(X̄−t )))X̄−t
P+t = (I −KtHt)P−t (I −KtHt)T +KtNtKT

t

end if
end for

The discrete filter is described as:

Xk+1 =ΦkXk, yk =HkXk, Φk = expm(Ak∆t), (4.26)

where ∆t = tk+1 − tk, and Φk is the discrete-time state transition matrix, which can be

computed as:

Φk = expm(Ak∆t) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I3 03,3 03,3 03,3 03,3

(g)×∆t I3 03,3 03,3 03,3

1
2(g)×∆t2 I3∆t I3 03,3 03,3

03,3 03,3 03,3 I3 03,3

03,3 03,3 03,3 03,3 I3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4.27)

44



Then the observability matrix O can be computed as:

O =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

H−k

H−k+1Φ
+
k

H−k+2Φ
+
k+1Φ

+
k

⋮

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

03,3∆R−kR
−T

k 03,3 o0,4 (∆R−kωk)×

o1,1 o1,2 03,3 o1,4 o1,5

⋮ ⋮ ⋮ ⋮ ⋮

o4,1 o4,2 03,3 o4,4 o4,5

⋮ ⋮ ⋮ ⋮ ⋮

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.28)

where (.)+k denotes the updated estimated state at time tk, (.)−k is the estimated state

at time tk after the propagation step. Here the terms oi,1, oi,2, oi,4, and oi,5 (i ∈ N+)

are defined as:

oi,1 =i(∆R−k+iR
−T

k+1(g)×∆t); oi,2 =∆R−k+iR
−T

k+1;

oi,4 = − (∆R−k+iR
−T

k+1v
−
k+i)× − (∆R−k+iωk+i)×(∆p−k+i)×

+ (∆p−k+i)×(∆R−k+iωk+i)× + (FK(αk+i))×(∆R−k+iωk+i)×;

oi,5 =(∆R−k+iωk+1)×.

To analyze the observability for each variable of interest, we need to see if the

corresponding column vectors in O are linearly independent. From the observability

matrix O, it can be seen that the position of the IMU in the world frame is completely

non-observable. The yaw angle of the IMU is also non-observable as the third column

of the matrix g× is always zero. These results are similar to what was reported in

Hartley et al. 2019. The observability of ∆p and ∆R depends on the rotational

movement. For example, if the human is completely stationary (ω,v = 0), both ∆p

and ∆R are completely unobservable, as all corresponding columns in O are zero. If

ω = 0,v ≠ 0, then ∆p is completely non-observable, while it can be shown at least one

of the components of ∆R is observable. In general, if the direction of ω is constant,

then ∆p will be non-observable in at least one direction (see Appendix).
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Figure 4.2. The left figure shows the experimental setup used to collect the ground truth of the
estimated state variables and the sensor data needed by the proposed filter. The right figure shows
time-lapse figures of the three motion types. The arrows in the subplots indicate the direction of the
pelvis movement (in subplot (a)) and swing foot movement (subplots (b) and (c)).

4.3 Experimental Results

4.3.1 Experimental setup and protocol

Experiments were performed in a motion capture laboratory at Arizona State

University (ASU) with 3 participants (two males and one female, 27 ± 3 years old,

174 ± 17cm, 77 ± 17kg). The study was approved by the institutional review board at

ASU (STUDY00011266) and the University of Massachusetts Lowell (20-057-YAN-

XPD).

Sensor setup. Twelve IR motion capture cameras (Vicon, Oxford, UK) and sixteen

reflective markers were used to build a lower-limb model for each subject via Vicon

Nexus 2.8. Using this model, 3-D joint angles (hip, knee, and ankle) and pelvic

position and orientation were estimated. Four extra markers were attached to a plate

that rigidly houses the IMU, which is used to build a rigid body model in Nexus to
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Table 4.1. Noise characteristics

Measurement type Noise SD Noise SD
(proposed InEKF) (existing InEKF)

Linear acceleration 0.2 m/s2 0.2 m/s2

Angular velocity 0.05 rad/s 0.05 rad/s
Kinematics measurement 0.5 m/s 0.1 m

Placement offset (∆p, ∆R) (0.05 m, 0.05 rad) NA
Contact velocity NA 0.05 m/s

acquire the ground-truth pose of the IMU/body frame. The IMU (BNO085, New

York, NY) was placed on the back of the subject close to the pelvis. The accelerometer

and gyroscope data were recorded using a data acquisition board (Arduino UNO,

Boston, MA). The data were later synchronized with the motion-captured data using a

trigger signal from the Vicon system. The experiments were done on an instrumented

dual-belt treadmill equipped with force plates (Bertec Corp., Columbus, OH) that

record ground contact forces.

Movement types. Each participant was asked to perform three types of motion:

squatting, ladder climbing, and rolling-foot walking (see the right figure of Fig. 4.2).

Two trials were performed for each motion type, each for 1.5 minutes.

4.3.2 Data Processing

Filters compared. The proposed filter is compared with a state-of-the-art In-

EKF (Hartley et al. 2020). The existing InEKF was originally designed for a Cassie

series bipedal robot. In the existing filter, the IMU and measurement frames are well

aligned. The state variables of the existing filter are the IMU orientation, velocity,

position, and the contact foot position, all expressed in the world frame. The kinematic

measurements of the existing filter are the contact foot positions with respect to the
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measurement frame expressed in the measurement frame. Unlike the proposed filter,

the measurement model of the existing filter has an invariant observation form, which,

in combination with the exponential form of the measurement update, renders the

deterministic error update equation to be independent of state trajectories (Barrau

and Bonnabel 2016). Also, the kinematic measurements of the existing filter have

smaller noises since the Cassie series bipedal robot uses highly accurate leg encoders

to formulate the forward kinematics chain. With a human subject, however, the IMU

and measurement frames are not aligned, and the kinematics measurements have

relatively large noises.

Covariance settings. The noise characteristics for both filters are shown in Table

4.1. The noise standard deviations of the linear acceleration and angular velocity are

obtained from the IMU specifications provided by the manufacturer. To reach the

better performance of both filters, these two noise standard deviations are slightly

tuned around the nominal values. Note that covariance tuning is also reported in

other InEKF designs (Brossard, Barrau, and Bonnabel 2020). It should also be

noted that since the two filters use different measurement models (dM is used as the

measurement in Hartley et al. 2020), different noise covariance values are used for

the two filters. Moreover, the proposed filter considers the noise of the IMU angular

velocity in the kinematics measurement noise term, while the same covariances are

used for the common parameters of the two filters (linear acceleration and angular

velocity). During the tuning process, it was observed that the performance of the

proposed filter does not vary significantly within a relatively wide range of parameters

(e.g., the covariances matrices). Yet, the estimation performance degrades when the

covariances are far from the optimal values. The placement offset noises are only used

in the proposed filter. Given that the placement offsets are relatively constant, the

48



noise standard deviations of the placement offsets are set as small values. The contact

velocity noise is only accounted for in the existing filter, which is induced by contact

foot slippage.

Initial estimation errors. To demonstrate the accuracy and convergence rate of

both filters under large estimation errors, a relatively wide range of initial estimation

errors of the IMU/body velocity and orientation are used. They are respectively

chosen to be uniformly within [−1,1] m/s and [−20,20] degrees across 50 trials.

Filter performance indicators. To evaluate the filter performance, we choose to

use three common indicators (Barrau and Bonnabel 2016; Hartley et al. 2020; Teng,

Mueller, and Sreenath 2021): (a) computation time (for assessing the filter’s capability

in real-time implementation); (b) convergence rate (for evaluating how rapidly the

estimation error reaches the steady state); and (c) estimation accuracy (for testing

the accuracy during transient and steady-state periods).

4.3.3 Results

To illustrate the accuracy of the forward kinematics-based measurement (4.5),

Fig. 4.3 compares it with its reference obtained from the motion capture system. As

noted in Sec. 1, the measurement associated with a given leg is fed into the update

step of the filter only when the leg is in contact with the ground (highlighted by yellow

shaded areas in Fig. 4.3) .

Table 4.2 displays the average root mean square error (RMSE) values of different

motions and different kinematics measurements for all three subjects. During the

initial period, subjects are standing still, and the estimation algorithms just start.
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Figure 4.3. Relative position (left) and velocity (right) of the right toe in the measurement/pelvis
frame during one of the rolling-foot walking trials, obtained by using joint angle readings and forward
kinematics (blue, solid line) and by using the marker positions of the toe and measurement plate
returned by motion capture system (red, dashed line). The yellow shaded areas indicate the periods
during which the right foot contacts the ground.

During the steady-state motion period, subjects are doing continuous movements with

different motion types. The average RMSE values of the variable “V” are obtained

from the estimated IMU velocity of all three axes for all subjects with the same

motion type, while the average RMSE values of the variable “O” are obtained from

the estimated IMU orientation of roll and pitch angles for all subjects with the same

motion type. The “FK” portion shows the RMSE values of the estimation results with

the forward kinematics measurements in (4.5), and the “3-D vector” part indicates the

RMSE values of the estimation results under the 3-D vector kinematics measurements

in (4.7).

Figure 4.4 shows the comparison of the IMU velocity and orientation estimation

results of one subject with forward kinematics measurement under different motions

and filters but the same sensor data set. The grey-shaded and white backgrounds

indicate the initial period and steady-state motion period, respectively.
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Figure 4.4. Estimation results of the velocity and orientation of subject 2’s body/IMU frame during
(a) squatting motion, (b) ladder climbing, and (c) rolling-foot walking under the proposed and
existing filters. The same sensor data set is used, including the raw data returned by the IMU at
the trunk and the leg joint angle data provided by the motion caption system. The solid lines are
the state estimates corresponding to different initial errors. The red, dashed lines are the ground
truth. The gray and white backgrounds indicate the periods of initial and steady-state movement,
respectively. The x-, y-, and z-directions are the lateral, forward and vertical directions, respectively.

Computational time. MATLAB R2020b was used to process the experimental

data sets with both filters. The average computational time for one filter loop of the

proposed filter is about 0.6 ms, and the average computational time for one filter

loop of the existing filter is about 3 ms. Both are sufficiently fast for typical human

movement monitoring.

Convergence rate. By investigating the initial period of the estimation results

figure (Fig. 4.4) and the RMSEs table (Table 4.2), it is obvious that the proposed

filter converges faster than the existing filter, driving the estimation error close to the

ground truth within 0.6 s.

Estimation accuracy. The results during the steady-state periods in both Fig. 4.4

and Table 4.2 indicate that under both filters the estimated roll and pitch angles of

the IMU converge to a small neighborhood around their ground truth. Yet, the yaw

angle of the IMU is not observable under both filters. Also, the overall accuracy of the

IMU velocity estimation under the proposed filter is better than the existing filter.
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Table 4.2. Average RMSE values for the three participants and motions. V and O refer to the
body/IMU velocity and orientation.

Time
period

Motion
type Variable

FK 3-D vector
Proposed
InEKF

Existing
InEKF

Proposed
InEKF

Existing
InEKF

Initial Stand
V

(m/s) 0.062 0.226 0.063 0.210

O (deg) 4.484 6.616 4.737 6.643

Steady
state

Squat
V

(m/s) 0.067 0.147 0.041 0.152

O (deg) 4.745 4.909 4.832 4.727

Roll.-
foot

V
(m/s) 0.237 0.467 0.103 0.442

O (deg) 2.909 2.984 2.685 2.838

Ladder
climb.

V
(m/s) 0.072 0.135 0.047 0.14

O (deg) 3.13 3.11 3.12 3.199

4.3.4 Discussion

This subsection discusses the performance of the proposed InEKF with respect to

the existing InEKF.

Forward kinematics vs. 3-D vector measurement. Incorporating forward kine-

matics measurement (i.e., (4.5)) introduces considerable uncertainties to the filtering

system for human motion estimation (as depicted in Fig. 4.3). The uncertainties in

the forward kinematics measurement could be induced by various sources, such as im-

perfect marker placement, shift of markers on skin or garment, inaccurate parameters

(e.g., body segment lengths) and structure of human kinematics chain. These factors

lead to the less accurate estimation of both body velocity and orientation compared

to directly using the 3-D vector measurement, for the proposed InEKF, as shown in

Table 4.2. Yet, the proposed filter with forward kinematics measurement has a better

overall performance compared with the existing filter. This highlights the importance
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of modeling the sensor placement offset in ensuring effective filtering under relatively

less accurate forward kinematics measurement.

Convergence rate. As discussed in Sec. 4.3.2, the process and measurement covari-

ance matrices were well-tuned for both filters. While the higher convergence rate can

be a result of the explicit treatment of sensor placement offset in the proposed filter,

additional human studies are needed to confirm that covariance matrices used in the

two filters match the actual sensor characteristics and ensure a fair comparison.

Steady-state estimation. From the average RMSE results in Table 4.2, we can

see that the proposed filter reaches a higher steady-state accuracy in the velocity

estimation compared with the existing filter while they achieve similar accuracy

in orientation estimation, given properly tuned noise covariance (and kinematics

parameters for the forward kinematics based measurement model). During the tuning

process, it was observed that both filters had better performance with relatively small

angular velocity noise covariance. This indicates that orientation estimation relied

more on the process model for the steady-state period during which the large initial

errors have already been corrected using the measurement model. Therefore, both

the proposed and existing InEKFs show almost similar performance in orientation

estimation during the steady-state period. Nonetheless, velocity estimation is relatively

more dependent on the measurements. Therefore, the proposed filter has a superior

performance in steady-state velocity estimation as it benefits from more accurate

measurement updates thanks to its offset treatment.

Different motion estimation. From Table. 4.2, it is evident that RMSE of the

velocity estimations in rolling-foot walking is higher compared to the other two

motion types. Walking is a more dynamic task compared to the other two, making

the estimation more challenging. The static-foot assumption is more likely to be
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violated (gronqvist1995mechanisms) during foot-rolling. Specifically, in rolling-

foot walking, we observed relatively high errors in the y-direction of forward kinematic

measurement. When large errors are introduced in the measurement, it can also

impact the offset estimation, weakening the advantage of the proposed InEKF with

respect to the existing one. Since the existing filter does not consider the placement

offsets, its velocity estimates have large final errors as shown in Fig. 4.4.

Limitations. One notable limitation of this work is the modeling of the IMU offset

dynamics. It is assumed that the IMU offset has a slowly time-varying dynamics,

which can be valid under some activities such as slow walking and stair climbing.

However, under more aggressive movements such as running, the IMU might have

large and sudden shifts relative to the body, which will violate this assumption. Other

limitations include the practical difficulty in obtaining accurate joint angles for the

forward kinematic model and the validity of the assumption of the static foot-ground

contact point (which was discussed through our results).

4.4 Conclusion

This paper introduced a right-invariant extended Kalman filter that explicitly

considered the offsets between the IMU frame and the measurement frame. The

proposed filter design is an “imperfect” invariant extended Kalman filter since the

process model satisfied the group affine property but the measurement model does

not have the right-invariant observation form. As demonstrated by experimental

results among different subjects and motion types, the proposed filter has a low

computational cost, and with properly tuned parameters (e.g., noise covariance and

leg kinematics), it improves the convergence rate and estimation accuracy of the
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IMU velocity estimation compared with the existing filter. This is largely because

the IMU offset is treated as a noise source in the original filter while the proposed

filter explicitly models and estimates it. The observability analysis shows that the

IMU positions and the rotation about the gravity vector were not observable whereas

the IMU velocities and the rotations about the other two axes were observable. The

observability analysis matched with the experimental results.

In future work, a more accurate forward kinematics model (e.g., obtained based

on online estimation of limb lengths and other kinematics parameters) and explicitly

treating IMU biases are needed to improve the filter performance. Also, it is time-

consuming to tune the process and measurement covariances for different subjects and

motion types. A data-driven learning algorithm may be useful for solving this issue.

Finally, the forward kinematics measurement in this study assumes a fixed contact

point on the foot, which may not be valid for movements involving a nonstationary

contact point (e.g., during rolling-foot walking) and thus needs to be relaxed for a

more realistic forward kinematics model.
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Chapter 5

LEARNING POST-STROKE GAIT TRAINING STRATEGIES BY MODELING

PATIENT-THERAPIST INTERACTION

Each year, among stroke survivors in the US, about 200,000 people are affected by

lower-extremity hemiparesis, which results in impaired walking (Benjamin et al. 2018;

Kelly-Hayes et al. 2003). Walking deficits are common in more than 80% of stroke

survivors (Duncan et al. 2005).

Studies have shown that knee muscle strength is a moderate to strong predictor

of the quality of walking in individuals with chronic mild to moderate post-stroke

hemiparesis (Flansbjer, Downham, and Lexell 2006). Knee instability (buckling) and

hyper-extension are among the common gait disorders in stroke patients (O’Connor et

al. 2016; Jaffer et al. 2011). It is correlated with the weakness of the quadriceps which

leads to the loss of control of the knee extensors during the stance phase and puts the

knee at risk of collapsing under weight (Gillen 2015). To help post-stroke individuals

regain their normal walking ability, gait rehabilitative therapy is currently provided

by physical therapists. Successful rehabilitation of patients with a neurological injury

includes recovery of normal movement using the concepts of motor learning (Lazaro,

Reina-Guerra, and Quiben 2019). The overall goal of therapeutic intervention during

gait is to facilitate normal kinematics and muscle activation throughout each phase of

the cycle. This one-to-one physical therapy is effective but is time-consuming, costly,

and physically demanding. In order to make gait therapy easily accessible and more

affordable to patients for longer periods of time, worldwide effort has been put into

developing robot-aided therapy.
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Despite considerable progress in sensor and robot-aided gait rehabilitation, the lack

of intelligent control approaches prevents assistive robots from clinical deployment.

Previous studies have suggested that modeling and identifying human-human senso-

rimotor interactions have led to the development of robots that physically interact

and move with humans in an intuitive and efficient manner (Sawers and Ting 2014).

Physical rehabilitation is a form of Human-Human haptic interaction in which the

goal of PT is to train the patient to improve their motor performance. However,

in the context of rehabilitation robotics, there is no widely accepted framework to

define Human-Human interaction (HHI) (Sawers and Ting 2014). This is mainly

because of the lack of enough studies that have collected and modeled the haptic

interactions between PTs and patients to reveal how those forces should be applied

to encourage motor skill learning. By capturing and analyzing the assistance from

physical therapists, which is based on their clinical experience and patient’s gait

observation, we can improve robot-aided gait training and rehabilitation.

In this work, a custom-made wearable sensor system is developed to measure the

interaction forces and leg kinematics during post-stroke gait training of hemiparetic

patients with moderate weakness in their quadriceps muscles. The collected data is

then used to characterize the patient’s gait patterns and the corresponding assistive

torques applied by the PTs. The results offer important insights into how gait

rehabilitation principles when used in tandem with clinical experience and patient gait

observations, can lead to better timing and magnitude of assistance. To achieve this,

an learning from demonstration (LfD)-based approach to virtual impedance control

is selected as the mechanism for reproducing PT assistance and incorporating these

clinical insights.
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5.1 Background: Hemi-paretic Post-stroke Rehabilitation: Knee Stability and

Weight-Shifting Facilitation

Patients with hemiparesis often present with a slow, asymmetrical gait pattern

which may be due to knee instability and inadequate weight shifting. During the

assessment, knee instability is often suspected when weakness in the hamstring or

quadricep muscles and/or proprioceptive deficits are identified (Gillen 2015). Knee

instability is confirmed when the therapist evaluates the patient in standing and

performs a comprehensive gait assessment. This assessment commonly includes

manual muscle testing (MMT) and the Modified Ashworth scale (MAS) of the lower

extremity. Hemi-paretic gait deviations are typically observed in patients who present

with decreased lower extremity strength and possible proprioceptive deficits. Knee

hyperextension may be observed during initial loading due to the lack of control of the

quadriceps muscles. At mid-stance, overall muscle weakness can cause increased hip

and knee flexion which may be observed as knee buckling or hyper-extension. During

terminal stance, knee hyperextension may occur if the hamstrings are too weak to

counteract the quadriceps to slow down knee extension and the knee may quickly

hyper-extend.

Patients with hemiparesis may compensate for weakness at different joints during

the gait cycle to increase stability. During the stance phase, two common compensa-

tions to prevent knee hyperextension or buckling are limiting stance time by decreasing

the weight shifting on the involved extremity or maintaining excessive knee flexion.

These gait compensations often result in an asymmetrical gait pattern with decreased

step length on the contralateral side and altered joint kinematics throughout the lower

extremity (Gillen 2015; Li, Francisco, and Zhou 2018). Over time, compensatory
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movement patterns may reinforce abnormal tone and movement of the involved side

(Lennon 2001).

When gait training a hemiparetic patient, the stance phase is key to facilitating a

symmetrical gait pattern since increased stance time on the involved side allows the

patient time to take a normal step with the non-involved lower extremity. Functional

stance is achieved when appropriate weight is shifted onto the involved lower extremity

while stabilizing the knee which may require manual support and facilitation of

quadriceps or hamstrings. Timing is critical and facilitation at the pelvis, hip, and

knee is performed as needed to achieve proper joint kinematics during each phase of

the stance. Repetition of proper gait mechanics is needed for motor learning to occur

which is important as learning is required for neural adaptation (Lazaro, Reina-Guerra,

and Quiben 2019).

5.2 Methods

5.2.1 Data Collection System

To capture the interaction dynamics between the physical therapist (PT) and the

patient, we designed a wearable sensor system to record the following data: Exerted

force by the PT (haptic interaction), knee joint kinematics, and ground reaction forces

at the affected side.

During our gait therapy sessions, the PT touches and exerts a force on different

areas of the body. However to stabilize the knee motion during weight-shifting and

prevent knee buckling, the assistive forces are mostly focused on two areas: anterior

upper and lower knee (where the force sensors are placed in Fig. 5.1). Therefore we
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Figure 5.1. The custom-designed wearable sensor system during a gait therapy session. (a)
Components of the soft force sensor (upper and lower) braces, consisting of an array of pressure
sensing elements held by the flexible 3D printed TPU part (top), connected to the soft curved outer
shell (bottom), making it easy to fit a patient leg with different sizes (the two sensor braces weigh
about 900 g in total). (b) Components of the pressure sensing unit, air-filled silicon pad (left),
enclosing the absolute pressure sensor (right). (C) IMU sensors are placed at the shank and thigh.
(d) Smart Shoes consist of coiled silicon tubes placed at four points of contact in the insole (top) and
the electronic box containing the pressure sensors, microcontroller, and WiFi module (bottom).

designed two separate soft force sensor braces for each part, intending to capture both

the magnitude and distribution of the force with acceptable resolution and accuracy in

a non-intrusive way to both the patient’s and PT’s movements. Each brace embodies

a flexible pressure sensor matrix consisting of arrays (3× 6 and 2× 5 for the upper and

lower knee, respectively) of air pressure sensors enclosed by air-filled silicon pads with

an elastomeric pillar array (Fig.5.1-b), inspired by (Kim, Shin, and Kong 2018). The

force is measured by the increase in the air pressure caused by pillar compression. This

design allows for a compact structure by introducing a high measured force-to-volume

ratio and is shown to have a linear and repeatable pressure-force behavior (Kim, Shin,

and Kong 2018). Each sensor is calibrated separately using an Instron machine, and a

linear model is considered between measured force (N) and sensor output, mV .
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Figure 5.2. Calibration results for one of the cells of the force sensor array. This linear fit model has
been obtained and validated with the training and validation sets separately during two full cycles of
loading and unloading at the rate of 1.5 N/s.

Figure 5.2 Shows the force sensor calibration process for one cell of the sensor

array using a universal testing machine (Instron 5944, Instron Corp., UK). A linear

fit model has been obtained for each sensor separately, similar to Figure 5.2. The

average RMSE of validation sets for all the sensors was 0.92 N. The maximum error

among all sensor cells was 1.91 N.

In Fig. 5.3 we are showing a sample of the raw data for all the cells of the soft

force sensor array (upper brace) during one of the patient’s gait training sessions

(PT1-P6). The raw measurements are voltage changes caused by the change of the

pressure inside each chamber due to the applied force by the PT. These measurements

were filtered using a second-order Butterworth low-pass filter with a 10 Hz cut-off

frequency. It can be observed that the PT’s force was mostly applied on the middle

part (sensors 3, 9, and 16 in Fig. 5.3). The negative values show the decrease of air

pressure in the chamber, which corresponds to the sensors getting pulled as the other

sensors are pressed. These negative values are neglected and considered to be zero.

This data was then converted to force values using the linear model obtained in the

calibration process for each cell of the sensor array (as discussed in Fig. 5.2).

The knee joint kinematics were captured using the BNO085 IMU sensor (SparkFun
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Figure 5.3. A sample data of the raw measurements of the 18 cells of the soft force sensor array
(upper brace) in the PT1-P6 session. Each plot is corresponding to one of the rows, and each line
represents one of the cells, as labeled. The projection (location) of the sensors on the patient’s leg is
depicted.

Electronics, CO). The Smart-shoe (Zhang, Tomizuka, and Byl 2016) was used to

capture the ground reaction forces (GRFs) of the affected side, in real-time (Fig.5.1).

All the data were collected by a host microcontroller (Intel Edison UP Board, CA),

which along with a 12V battery and PCB boards were embodied on a backpack worn

by the patient. The backpack weighed less than 500g.

The real-time feedback (rating) of PTs on each gait cycle was also collected. While

one of the PTs is facilitating the patient, she would give the vocal rating in terms of

”Good“, ”ok“ and ”bad“ for each gait cycle, and the other PT would push the button

associated with that rating, which is being collected by the host micro-controller.

Based on the time index that the data was collected, we could attribute each rating

to the corresponding gait cycle.
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5.2.2 Experimental Procedure

5.2.2.1 Patient Recruitment

Post-stroke patients with hemiparetic gait, specifically with weakness in the

quadriceps leading to knee instability, were recruited at Barrow Neurological Institute

(BNI) in Phoenix, Arizona. Participants had to be able to ambulate with minimal

assistance or less for up to 5 minutes with or without the use of a single-point

cane and/or ankle foot orthosis (AFO). Participants with manual muscle testing

(MMT) scores of knee flexion/extension less than 2+ were excluded from the study.

Participants with modified Ashworth of hemiparetic lower extremity less than or

equal to 1+, and with flexion contracture that cannot extend the knee beyond 10○

were also excluded from the study. These criteria was set to allow for recruiting

patients with less impairment, so the PTs’ assistance would focus on correcting certain

gait abnormalities related to knee instability. Before enrollment, a series of physical

assessments were performed by the PTs to ensure that all the criteria were met. The

protocol of the study was reviewed and approved by the institutional review board at

BNI (protocol number 19-500-271-70-19).

Initially, seven patients were recruited, out of which four patients’ data are used

in this study. Data from two patients were discarded as the PT assistance was

not significant due to their relatively functional and independent gait. Thus the

inclusion/exclusion criteria was adjusted accordingly to recruit patients with higher

impairment levels. Another patient’s data collection was unsuccessful because of

technical difficulties with the wearable sensor system during the gait training session.
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Anthropomorphic information and the knee and hip flexion/extension MMT scores of

the four final patients are given in Table 5.1.

5.2.2.2 Experimental Procedure

The BNI team conducted participant enrollment after which a two-hour data

collection session was scheduled with participants that consented. Each data collection

session consisted of three sub-sessions: 1) no training (NT), 2) training by the first

PT (PT1), and 3) training by the second PT (PT2). We collected two PTs’ data in

each session to study the similarities and differences in their gait training strategies.

At the beginning of each session, patients first put on the wearable sensors with

the help of the PTs. If the patient wore an AFO, it was removed and replaced by an

ace wrap to prevent foot drop. In the first NT sub-session, the patients walked by

themselves for three minutes, with minimal assistance from the PT only when needed

for safety. Minimal assistance in this context is defined as assisting with less than

25% of the weight support and balancing, through pelvis and upper-body assistance.

After the first sub-session was completed, the patient rested for at least five minutes

depending on patient readiness. Next, the training with the PT1 began, in which the

PT, sitting on a wheeled stool, facilitated the upper knee motion of the paretic side

to support weight-shifting and knee stability. These two sub-sessions also lasted for

three minutes each and consisted of multiple 10-15 meter laps, at the end of which

each patient would turn, and stay steady and straight for 10 seconds (to help with

initializing IMUs and the force sensor). Real-time feedback for the quality of each gait

cycle from PTs was collected. After resting for at least five minutes, the other training

sub-session was performed by PT2, similar to the previous sub-session. To assess if
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Table 5.1. Patient Anthropometric and MMT Data

Patient ID (P#)
Patient Information 3 5 6 7
MW Group HMW LMW HMW LMW
Anthropometry
Gender F F F F
Age 27 44 68 28
Weight (kg) 64 76 83 53
Height (cm) 160 170 150 160
Paretic Side R L L R

MMT
Knee Flexion 2+ 4- 3+ 4+
Knee Extension 4 4- 4- 4
Hip Flexion 4 4- 3 4
Hip Extension 2+ 4 3+ 4

the data collection system interfered with patient kinematics or PT assistance, which

would invalidate the data, both the patient and PT filled out a survey expressing

their opinion on the training session and data collection system. None of the trials

indicated significant interference from the system.

5.2.3 Initial Data Processing

All sensor data were captured on the host PC. Initially, data were collected with

different frequencies. In the post-processing, all data were synchronized and re-sampled

to 75 Hz. Next, each sub-session data was segmented into laps. For each lap, the

following variables were extracted:
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5.2.3.1 Gait sub-phases and percentage

using the four readings from Smart-shoe, it is possible to segment the gait into

six sub-phases: heel-strike (HS), loading-response (LR), mid-stance (MS), terminal

stance (TS) or heel-rise, pre-swing (PS) or toe-off, and swing. The first five sub-phases

are the stance phase. This segmenting is based on which insole sensors are activated,

based on a Fuzzy rule base for gait analysis developed in (Kong and Tomizuka 2009).

By employing these sub-phases we can segment the data into individual gait cycles,

and also time-normalize each cycle into separate gait (or stance phase) percentages.

Therefore stance time and stance phase % of each cycle can be extracted.

5.2.3.2 Vertical GRFs (Weight-shift)

Combining the four sensor readings of the Smart-shoes, we can get the total vertical

GRFs. Normalizing this value by the weight of each patient, the % of weight shifted

on the paretic side can be calculated at each time step. Although the values are not

directly weight shift, they are representative

5.2.3.3 Joint Kinematics

The thigh and limb kinematics were calculated using the quaternion values q

retrieved from the BNO080 IMUs that were attached to their respective limbs. Before

each lap, the therapist was instructed to place the knee on the paretic side at full

extension for a reference frame q0 that compensated for IMU sensor drift, initial

attachment, and shifting throughout the session. The rotation of the thigh and shank
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were calculated as a rotational displacement ∆q from these initial reference frames by

applying the inverse quaternion of the reference frame to the raw quaternion values

retrieved ∆q = qq−10 . The joint angles were then calculated by applying the rotation

∆q to the unit vector v0 = [1,0,0] and projecting the rotated vector onto the sagittal

plane.

The resulting angular displacement in the sagittal plane mitigates any prolonged

sensor drift or shifting and is invariant of initial attachment orientation. The main

limitation of this approach is establishing the reference frame. When instructed to

place the patient’s knee in full extension, it was assumed that the patient’s knee was

at 0○ flexion. However, the therapist could have placed the knee in hyperextension or

been unable to induce full extension for whatever reason. Therefore, the limb and

joint rotations may have an error of ϵ = ±5○.

Figure 5.4. The kinematics diagram shows the relevant kinematic variables for knee xK , shank xSh,
and thigh xTh angle displacements. It also shows the sagittal force applied by the therapist Fpt.
The ground reaction force Fg is applied at the foot (paretic side) and is used to calculate percent
weight-shift xWS by scaling Fg by the patient’s weight Fw.
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Figure 5.5. The biped model used for modeling human gait dynamics. mf , ms, mt, and mh represent
foot, shank, thigh, and torso lumped masses. θ0 is the foot angle with the ground, (px, py) are the
coordinate of the toe in the IRF, and θa and θk are the ankle angle and knee angle, respectively.
In this model, the torso and hip are lumped together as a single mass (i.e., only one hip joint) for
simplicity, which will not affect the torque calculation.

5.2.3.4 Assistive Knee Torque

Here, we aim to calculate the external actuation torque components that can

be applied at the joints so we will have an equivalent human dynamic system with

the one where the only external actuation is the therapists force Fpt (Fig. 5.5). We

show that we only need external knee and ankle joint torque components, where the

external knee torque component can be calculated as τ = ℓ∣Fpt∣, and the ankle torque

component τa is coupled with the knee torque through kinematic parameters and can

be calculated given τ , ankle and knee angles, and the shank length.

We follow the similar comprehensive biped model in (Lv 2018), which originated

at (Gregg et al. 2014). We model the patient paretic side in the stance phase as a

kinematic chain with respect to an inertial reference frame (IRF) defined at the stance

heel or stance toe, depending on the phase of the stance. The dynamics of the system
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with therapist actuation can be written as:

M(q)q̈ +C(q, q̇)q̇ +N(q) +A(q)Tλ =

B(q)v + Jl(q)TFpt + Jh(q)TFh

(5.1)

where q = (px, py, θ0, θa, θk) are the variables defining the full configuration the leg.

It must be noted that the hip is considered as a 1-DoF joint, and the other leg

is replaced by the interaction force (and torque) Fh. The actuation of the hip is

included within this interaction force. M(q), C(q, q̇), N(q) are the inertial/mass,

Coriolis/centrifugal, and gravitational force matrices, respectively. Jl(q)T and Jh(q)T

are the body Jacobian matrices mapping the Fh and Fpt to the body dynamics. Note

since Fpt is a 2D force (no torque component), Jl is the translational Jacobian (2 × 5

matrix). v is the human joint input (torque) vector (ankle and knee), and B(q) is

[02×3 I2×2]T is the matrix mapping the human joint torques to the body dynamics.

A(q) is the matrix modeling the contact constraints (three different contact conditions:

heel contact, foot-flat, and toe contact). λ is the Lagrange multiplier used to calculate

the contact forces. For more details see (Lv 2018).

Now consider the same body, with therapist force being replaced by mass-less

actuators at the knee and ankle joints (represented by the vector ue = [τa τ]
T

):

M(q)q̈ +C(q, q̇)q̇ +N(q) +A(q)Tλe =

B(q)v +B(q)ue + Jh(q)TFh

(5.2)

It must be noted that we want the same kinematics and dynamics for the human under

both actuation in (5.1) and (5.2), therefore we consider the same joint kinematics,

human joint inputs, and the same interaction forces/torques from the other leg
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(composed of 2D forces Fx and Fy, and the normal toque component My). λe is the

corresponding ground reaction force vector to the new actuation. For our matching

condition to be met, the following must hold true:

B(q)ue −A(q)Tλe = Jl(q)TFpt −A(q)Tλ. (5.3)

According to (Lv 2018), the ground reaction vector can be written as:

λ = λ̂ + λ̃τ,

λ̂ =WȦq̇ −AM−1(Cq̇ +N),

λ̃ =WAM−1B, where W = (AM−1AT )−1.

Here, τ is the vector of total inputs to the system. It can be seen that λ̂ and λ̃ is

similar for both systems (Lv 2018). Having the same human inputs, (5.3) can be

simplified to:

(−λ̃ + I5×5)Bue = (−λ̃ + I)Jl(q)TFpt (5.4)

It must be noted that in the heel contact and toe contact phase, the human biped

model in (5.2) is underactuated (Lv 2018), therefore it is not possible to make (5.4)

hold true. However, it was observed that the majority of therapist force is applied

during the foot-flat (loading response + mid-stance) phase. Therefore, we only consider

the foot-flat phase, where regarding the one additional holonomic constraint of the

foot is flat, the system in (5.2) can be considered as fully actuated and (5.4) will be
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true. It can be shown that −λ̃ + I will have the form:

Afoot−flat = [I3×3, 03×2] Ô⇒λ̃ =
⎡⎢⎢⎢⎢⎢⎢⎣

03×3 −λ̃k

02×3 I2×2,

⎤⎥⎥⎥⎥⎥⎥⎦
(5.5)

where λ̃k is the 3 × 2 sub-matrix that depends on the inertia/mass matrix M and its

inverse. Plugging (5.5) into (5.4) will yield:

⎡⎢⎢⎢⎢⎢⎢⎣

−λ̃kue

ue

⎤⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎣

−λ̃k[JT
l Fpt]4∶5

[JT
l Fpt]4∶5

⎤⎥⎥⎥⎥⎥⎥⎦
(5.6)

where [⋅]4∶5 refers to the 4th and 5th elements of the column vector [⋅]. Therefore, we

need ue = [JT
l Fpt]4∶5 to hold. As we know, Fpt is always perpendicular to the thigh

so it has the form Fpt = ∣Fpt∣ [−cos(θpt) −sin(θpt)]
T

, where θpt = θk + θa + θ0 − π/2.

Computing this Jacobian using the standard methods, we can compute the actuator’s

input ue that will replicate the PT input to the system. Considering that at flat-foot

θ0 = 0, we have:

ue =
⎡⎢⎢⎢⎢⎢⎢⎣

τ

τa

⎤⎥⎥⎥⎥⎥⎥⎦
= [JT

l Fpt]4∶5 Ô⇒

ue =

⎡⎢⎢⎢⎢⎢⎢⎣

∣Fpt∣l

∣Fpt∣l + ∣Fpt∣ls(sin(θa)sin(θak) + cos(θa)cos(θak))

⎤⎥⎥⎥⎥⎥⎥⎦

(5.7)

where θak = θa + θk. It is clear that by learning and modeling τ , we can also reproduce

τa given θa, θk, ls and l.

Remarks: i) As shown, in order to actuate the leg similarly to the therapist,
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there is no need to directly actuate the hip when knee and ankle joint actuation can

suffice. ii) Even if we consider the hip and torso as separate joints (2D hip joint),

the structure of Jl will remain the same and the same conclusions can be drawn. iii)

When considering the ace wrap that connects the patients’ foot to the heel, the foot

rotation in heel contact and toe contact phases are restricted and we can assume the

model is not underactuated in these phases anymore, therefore the same result in (5.7)

can be applied to heel contact and toe contact in cases where we have considerable

force from the PT in these phases.

During the gait therapy sessions, there were very few instances that the PTs were

exerting force on the lower-knee force sensor. Therefore we only considered the forces

on the upper-knee force sensor. Using the sensor matrices, we are able to calculate

both the magnitude and CoP of the exerted force. Knowing approximately where

the sensor is located from the knee joint, we can calculate the Anterior-Posterior

component of the interaction torque applied to the knee joint. It is assumed the

measured force is always perpendicular to the thigh, and the curvature of the brace

equals to the curvature of the patient’s thigh and is constant throughout the brace.

5.2.4 Ratings

During the gait training sessions, most cycles were rated in real-time by the PTs

as ”good“, ”ok“ and ”bad“. After segmenting the time series into individual cycles,

we labeled each by their rating, based on the time index that rating was recorded.

”Good“ cycles were the ones that PTs believed were successful in terms of facilitation,

which generally consisted of more than 70% of the cycles. We only considered good

cycles for all the analysis and learning throughout the paper.
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5.3 Biomechanical characterization and Data Analysis

In this section, using the collected data, including the forms and recorded videos,

we are going to characterize patient impairments, along with PTs facilitation strategies

during the gait training sessions. As discussed in Sec.5.1, according to literature and

the PTs, we can summarize our patient’s impairments on the paretic side into three

main features: 1) Knee hyperextension during initial loading due to the lack of control

of the quadriceps muscles, 2) knee buckling/hyperextension in mid-stance, 3) knee

hyper-extension at terminal stance if the hamstrings are also too weak. It must be

noted that patients might not have all these three features together, depending on

their impairment level and biomechanical features.

Patients with these types of impairments usually try to compensate for them (to

prevent knee hyperextension and buckling) by limiting stance time and decreasing the

weight-shifting on the paretic side and maintaining excessive knee flexion during mid-

stance. These compensations often result in decreased step length on the non-paretic

side, and altered lower-limb joint kinematics.

Consequently, what PTs mainly try to achieve during gait training sessions are

increasing the stance time on the paretic side, to allow for enough time for the

non-paretic side to take a normal step while stabilizing the knee on the paretic side

during the weight-shifting. This is usually achieved by manual supporting of the

quadriceps/hamstrings muscles during the stance phase.

For the rest of this section, we are looking into characterizing the patient im-

pairments and gait training features described above through visualizations and

quantification of the collected data.
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5.3.1 Characterization of Patients’ Gait

We use the MMT test results (in Table 5.1) to characterize the impairment levels

of the four patients. MMT scores range from 0 to 5, with 0 being no contractions (on

the muscles), and 5 being full range of motion against significant resistance (Ciesla

et al. 2011). Therefore, we can conclude that P7 has the healthiest gait among other

patients. P3 has the lowest scores on knee flexion and hip extension. Based on MMT

results, we can group the patients into lower and higher muscular weakness (LMW

and HMW) groups. As shown in Table 5.1, P7 and P5 are in LMW, and P6 and P3

are in HMW. Figure 5.6 shows the knee angles and weight-shift of the patients, as well

as the assistive torque for analyzing the PT strategies corresponding to abnormal gait

patterns. This figure includes the data for P6 and P7, each representing one muscular

weakness group. To provide a reference for comparison, We also included a knee

angle pattern of over-ground walking of healthy individuals in their natural speed,

by averaging over 50 subjects data using the public dataset in (Lencioni et al. 2019).

Overall, we did not observe any case of severe knee buckling and hyperextensions in the

NT sessions, as our patients all had MMT scores > 2+ and were evaluated by the PTs

to be able to ambulate with minimal assistance or less. Nevertheless, for P7 we observe

excessive knee flexion angle in early mid-stance and at maximum weight-acceptance

(as labeled in the knee angle plot for P7 in Fig. 5.6), which can be associated with the

weakness of knee extensors (Li, Francisco, and Zhou 2018). On the other hand, we

observe small or no knee flexion when entering mid-stance for P6 (as labeled in the

knee angle plot for P6 in Fig. 5.6), which is another compensation strategy to stabilize

the knee with weakness of knee extensors at mid-stance (Li, Francisco, and Zhou
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Figure 5.6. Visualization of the collected data for two patients. The solid lines represent the mean
gait cycle of the particular data, while the shaded region shows the ± one standard deviation. NH
(dotted line) refers to the standard knee angle trajectory of healthy individuals in over-ground walking
at their natural speed. For generating this result and the rest of the paper, 55±8, 44±18, and 35±4
(averaged among the patients) cycles are used for NT, PT1, and PT2 sessions, respectively. Bar plots
show the gait phases for each session. GP stands for gait phase. Annotations indicate (I) excessive
knee flexion in early MST and maximum load, (II) small or no flexion entering MST, (III) knee
extension at HS, and (IV ) first peak (maximum load).

2018). Knee extension at heel-strike as a compensatory mechanism for the weakness

of planter-flexor muscles (Li, Francisco, and Zhou 2018) is also observed in P6.

All patients showed similar irregular GRF patterns. The first peak, which represents

the total weight acceptance, happens relatively late at the mid-stance, and the second

peak, which is expected to be observed at terminal-stance/pre-swing, is blended into

the first one and decreased in magnitude, shown in Fig. 5.6 (second row). Similar

patterns were also seen in previous studies of post-stroke patients (Lauziere et al. 2014).

This can be explained partly by the lack of proper heel-strike and push-off due to

ankle dorsiflexion and plantarflexion weakness.
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5.3.2 Gait Training (PT Strategy) Characterization

Here, we examine the outcome of each gait training session, highlighting the

similarities and differences between the strategies employed by the PTs. According

to the assistive torque plot in Fig. 5.6 (third row), generally lower magnitude torque

is exerted for LMW patients, as expected. Peak torque is mostly located at 25% to

50% gait cycle, near where the maximum weight-acceptance in mid-stance takes place.

This observation demonstrates an assistance strategy where the PT facilitates weight

shifting onto the paretic side while stabilizing the knee to prevent buckling.

One goal of the PT is to increase stance time on the paretic side. As seen in

Table 5.2, the stance time is increased in the training sessions. This increase is less

frequently observed for P7, which could be related to the low impairment level of this

patient compared to the others. More specific outcomes can also be observed for other

patients. For example, P7’s excessive knee flexion in mid-stance is corrected in the

training sessions. It should be noted that motor skill acquisition through manual gait

training is gradual and requires multiple sessions for the patient’s joint kinematics to

have a significant shift towards healthier gait patterns.

Table 5.2. Patient Stance Times

Session
Patient ID (P) NT PT1 PT2

3 1.17 ±0.13 1.29 ±0.22 1.50 ±0.46
5 1.51 ±0.34 2.33 ±0.68 2.13 ±0.78
6 2.08 ±0.46 2.48 ±0.57 2.94 ±0.45
7 1.28 ±0.16 1.32 ±0.21 1.38 ±0.13
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5.4 Learning Gait Training Strategy: Virtual Impedance Learning

In this section, we propose an LfD framework for learning the gait training strategies

from PTs, while considering the insights from rehabilitation and gait training literature,

and the outcomes from biomechanical characterization in the previous section.

Impedance control framework has been a popular approach for robot-aided gait

training due to the robust, low-gain, and compliant behavior (Buchli et al. 2011) that

is necessary for tightly coupled Human-Robot Interaction (HRI) scenarios. In contrast

to traditional approaches that reject disturbances, impedance control accommodates

them by defining the robot’s force behavior as a spring-damper system (Khan et

al. 2019). The stiffness and dampening are dynamically changed according to varying

time-dependent stiffness and damping gains. One way of defining these gains is to

learn them from human observations using a learning-from-demonstration approach.

Modeling the interaction force using the Virtual Impedance Modelapproach allows for

avoiding large impact force in an unstructured environment and for cases where the

demonstration and execution are different (Abu-Dakka and Saveriano 2020). Safe and

stable interaction force can be achieved by concepts such as passivity and constraining

variable impedance matrices (Abu-Dakka and Saveriano 2020). Therefore, providing

safe and compliant interaction through a variable impedance framework is in line with

the gait training policy.

5.4.1 Gait Training Insight Integration

The final goal of the impedance learning algorithm is to capture therapist strategies

while exploiting the compliant behavior of impedance control. To that end, the
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predictors for the impedance behavior (e.i. reproduced therapist assistance behavior)

used in the learning algorithm should directly address the goals and strategies of the

PT in a way that reflects the gait rehabilitation literature. For convenience, the key

strategies that were identified in the bio-mechanical characterization of collected data

are as follows:

• S.1 Facilitate proper timing of joint kinematics to compensate for altered lower

limb kinematics especially excessive knee flexion during mid-stance.

• S.2 Facilitate lateral weight shift onto paratic side to prevent decreased weight

shift to paratic side.

• S.3 Maintain knee stability during mid-stance to prevent the knee from buckling

under additional weight acceptance.

• S.4 Increase total stance time on paretic side to prevent asymmetric gait and

decreased step length on non-paratic side.

The most common feature describing gait was selected as the first predictor of

therapist assistance. Knee angle xK can be used to describe relevant joint kinematics

at proper gait cycle intervals (S.1 ). Strategy S.3 can also be addressed with xK

by capturing observations of knee buckling presented as hyper knee flexion during

mid-stance.

However, S.1 concerns more than just knee kinematics. First, unobserved joint

kinematics, such as ankle and hip flexion, are necessary for fulfilling the objective

of S.1. To address this, xK was divided into shank xSh and thigh xTh angles which

capture half of the unobserved kinematics without the loss of information due to the

xK being deterministic of two resulting features. An added benefit of this division is

that it addressed issues of characterizing impedance around intersections of state and

attractor trajectories under attractor definition. Second, all joint kinematics must be
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properly associated with the correct timing of any given state. Percent progression

through the stance phase SP was selected as the reference due to the time-invariant

needed due to differences in walking speed between patients. Therefore, features SP ,

xTh and xSh were selected as predictors to capture PT assistance strategies S.1 and

S.3, Facilitation of weight shift (S.3 ) could explicitly be observed in this case. It was

characterized by the percent of total force shifted to the paratic side xWS. This feature

was the strongest predictor for assistance. The strength of this predictor highlighted

the focus of the therapist to facilitate the acceptance of additional weight onto the

affected limb.

5.4.2 Formulation

5.4.2.1 Interaction Model

The interaction model for therapist assistance is defined as a virtual spring-damping

system:

τt =KPt (xt − yt) +KVt ẋt (5.8)

where KPt and KVt are the variable stiffness and damping values, τt observed assistance

torque applied by the therapist around the patient’s knee, xt is the state(s) of the

virtual impedance system, and yt is the virtual attractor state(s). The attractor,

under any definition, will drive the robot’s force behaviour according to the interaction

model Equation 5.8. The objective of the Virtual Impedance Modelis then to learn the

attractor along with the stiffness and damping gains which will shape the compliant

behaviour of the robot.
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5.4.2.2 Attractor Definition

Impedance learning methods that calculate an arbitrary attractor through inverse

dynamics require initial stiffness and damping values to be defined. These initial

parameters usually are manually tuned or optimized to produce the best performance

within the sample. A weakness of this approach is that when the attractor is defined

with the inverse dynamics model, only one state can be used within a single reference

frame as an attractor. This is due to the ambiguity introduced by the undetermined

solution for the sum of the attractors equaling the observed torque. Alternatively,

defining the attractor of the system to be a non-impaired gait trajectory makes strong

assumptions. Patients’ ”healthy“ gait trajectory is not consistent across individuals.

Integrating a more insightful approach to impedance learning may help resolve

these challenges. The core assumption here is that a therapist will apply assistance

in order to produce the patient’s a future state. Our approach exploits the fact that

we have access to the future trajectory of the states in our virtual impedance system

during training and that these states can be accurately predicted with a past states

due to the periodic nature of the gait cycle. Therefore, the attractor is both explicitly

observed from the data and described by representative of states used by therapists in

their decision-making model.

Two attractors were used to reproduce PT assistance during gait training, where

the first will be used as a baseline to represent the typical attractor in the impedance

learning literature:

A.1 Attractor 1 will be the attractor that is most common in the impedance learning

literature. This trajectory will be calculated from the inverse dynamics found

in Equation 5.9 using the most significant feature; xWS. This reproduction
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algorithm that uses the inverse dynamics of the virtual impedance system to

calculate the attractor will be referred to as A1.

yt = (KV0 ˙xWS − τt)(KP0 )−1 + xWS (5.9)

where KP0 and KV0 are initial stiffness and damping values that are experimentally

tuned to optimize performance.

A.2 Attractor 2 will be defined as the vector of the most relevant states that are

consistent predictors across all patients; xWS, xSh, and xTh. The reproduction

algorithm that uses this future-state attractor will be referred to as A2.

yt = [xWS
t+tf

, xSh
t+tf

, xTh
t+tf
]T

where tf is the future time-offset, in percent stance phase, of the current state

at time-step t.

5.4.2.3 Training

Given a set of demonstrations, the first step is to encode the relevant features into

a Gaussian Mixture Model (GMM). GMM is a model-free learning algorithm that

provides a probabilistic and robust framework that allows for the exploitation of the

posterior probabilities later in the algorithm.

Inspired from (Glackin et al. 2015), the GMM encodes the state at the current

time step xt along with states from two previous time steps spaced uniformly with

respective delays of tp. The attractor is then appended to this array to define the
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training data that will be encoded into the GMM.

ξ = [xSP ,xSP−tp ,xSP−2tp ,yt]

With the training data defined, we can learn the model parameters for the GMM

through maximizing the log-likelihood of the observed trajectories ξ by implementing

the expectation minimization (EM) algorithm initialized by a k-means clustering

procedure (Rozo et al. 2016). The number of Gaussian components k can be selected

by using a model selection criterion. Here, we apply the Bayesian information criterion

(BIC) (Akaike 1998) as the selection objective.

Impedance values for each GMM are learned by optimizing KPi and KVi to minimize

the residual rt between the reproduced torque τ̂t, calculated using the interaction

model and the observed torque τt.

The residual term for the modified interaction model then becomes rt,i =KPi (µ
y
i −

xt) −KVi (ẋt) − τt. This provides a level of abstraction that captures the underlying

impedance for each Gaussian component’s region within the state space. Consequently,

this leads to a model that can more easily generalize the learned skill to new contexts.

5.4.2.4 Reproduction

The end of the training step results in the parameterized GMM in the form of

N(µi,Σi), the mixing coefficients πi and vector of impedance values for each state

{KPi ,KVi } defined for every ith Gaussian component. Knowing this, we can then

predict the time series attractor ŷt using Gaussian Mixture Regression (GMR) (Rozo

et al. 2016). GMR is performed by creating a segmented GMM where the center

and covariance matrices are decomposed into input I and output O spaces. The
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dimensions of the input space correlate to the dimensions that represent the observable

data during reproduction ξIt while the output space correlates to the attractor we

wish to predict ξOt . The posterior probabilities ĥt,i for each Gaussian component can

then be calculated using the decomposed GMM along the input space.

ĥt,i(ξIt ) = P(i∣N (µi,Σi)I) (5.10)

5.4.3 Analysis

Reproduction behavior will be analyzed in three ways: magnitude, timing, and

adaptivity of assistance. Additionally, algorithm performance will be compared using

standard regression metrics for the coefficient of determination r2 and root mean

squared error RMSE. The metrics for behavioral analysis is as follows:

5.4.3.1 Magnitude

Here, the magnitude of assistance is captured by both the mean peak torque τp or

impulse J which equates to the total amount of torque applied over the duration of

the stride. These values are then calculated for each jth stride where the mean values

are as follows

τp =
1

Ns

j

∑
j∈Ns

max(τj,t) (5.11)

J = 1

Ns

j

∑
j∈Ns

∫ τj,td(t) (5.12)
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5.4.3.2 Timing

The timing of the reproduced assistance profiles was compared using a dynamic

time warping (DTW) algorithm (Paliwal, Agarwal, and Sinha 1982) that minimizes

the euclidean distance between the normalized observed and reproduced torques

by stretching the SP indexes of each signal. The difference between the stretched

time indexes was then calculated and rescaled to be ∆SP ∈ [0,100]. This provides

a continuous measurement of delay in reproduced torque that is invariant of the

magnitude of the assistance.

5.4.3.3 Adaptivity

Adaptivity can be approached from two perspectives. First, the PT may change

their assistance behavior as the session progresses to match the evolving needs of

the patient (fatigue, improvement, increased familiarity, ect...). To evaluate this

time-series adaptivity, ∆J , peak torque ∆τp and stance duration on paratic side

∆tstance will be calculated for each stride j and fitted to a 1-st order least-squares

regression in the form of y =mx + b. The slopes m will then be normalized using the

maximum value of each feature in their respective sessions. This will result in a slope

that describes the percent change mp for each feature. Normalizing the slope in this

way does introduce some limitations for the hMW groupthat will be discussed when

the results are presented.

The second perspective for adaptivity considered that the variation in assistance

between strides is stochastic but intentional. A therapist may apply pseudo-random

perturbations in order to gauge the current status of the unassisted gait. Additionally,
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random perturbations may be applied to keep the patient actively engaged in the

training to prevent overreliance on the PT or automation of the task which has been

shown to decrease rehabilitation outcomes (Cai et al. 2006). The algorithms will be

evaluated on how well their variance σ matches the PTs’ in three previously mentioned

features. Here, we are only concerned with the total variance throughout the course

of a full session and not how well the reproduced assistance matches the observed

assistance.

5.4.3.4 Training Results

Attractor prediction was better for A2 with a mean r2 = 0.83 and RMSE = 0.8

compared to with r2 = 0.50 and RMSE = −0.41. This shows that the GMR prediction

of the attractor state(s) is sufficiently accurate for predicting future states but struggles

in predicting an arbitrary attractor. The increased performance of A2 is thought to

be caused by the periodic nature of the data and the predictor space of the GMR

being the past state.

The optimization step resulted in mean residuals of 9.70e−5 and 0.07 for A1 and

A2 respectively.The training was able to finish in a mean training time of 4.6 seconds

and a mean reproduction time of 0.0085 seconds. Therefore, the algorithm is efficient

to train and extremely efficient during online reproduction due to the light GMR

prediction and torque calculation. The reproduced assistance is shown in Figure 5.7.

The full reproduction summary can be found in Table 5.4 and Table 5.3.
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5.4.3.5 Magnitude Results

As expected from the separability analysis, the peak torques and stride impulses

tended to normalize for both algorithms. This caused them to not be able to consis-

tently capture the magnitude of assistance from stride-to-stride. The shaded region in

Figure 5.7 shows the low performance for both algorithms to capture the full variance

in the data. However, when considering the session as a whole, the reproduction

algorithms have similar performances of ∆τp = 0.06,0.3 and ∆J = 0,−0.50 for A1

and A2 respectively in the lMW group. For the hMW group, ∆τp = 0.09,0.73 and

∆J = 0, 09, 1.13. Differences in magnitude reproduction performance was more evident

in the hMW group but A1 performed consistently better. Both algorithms tended to

under-actuate but A1 is able to very accurately reproduce the impulse done by the

PT.

5.4.3.6 Timing Results

The full-time series delay can be found in Figure 5.8. There tends to be a higher

delay in loading and unloading response than during peak. The average time offset

of the course of the full stride showed a nominal difference with between the two

algorithms.

5.4.3.7 Residual Estimation

The model was able to explain the majority of the observed torque with the

modified interaction model during optimization. A mean residual of r̄i = 0.08N.m
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was found for all sessions with the exception of P6, an outlier, that had r̄i = 0.53N.m.

This is still believed to be sufficiently accurate with 11% of the observed peak torque

being unexplained. Fig. 5.7 shows the residual torque component rt (dashed, red

line) included in the final reproduction of τ̂t. Observations of rt in Fig. 5.7 support

the assumption that it is reproducing unmodeled assistance strategies like knee

bracing. When present, rt occurs most significantly during periods of maximum

weight acceptance which requires a higher magnitude of assistance from the PT. The

timing of increased rt aligns with what we would expect from these strategies since the

higher requirement for assistance also applies to these unmodeled strategies. Further

evidence supporting that rt represents these strategies is given by the absence of

significant rt in some patients, particularly those in the LMW group. This suggests

that rt is caused by a systemic perturbation from PT-P interaction and not by the

sensing system, otherwise, we would likely observe this increased rt throughout all

sessions.

5.4.3.8 Adaptivity Results

Significant adaptation trends were mainly observed in P3 for both PTs and P7 for

PT1. These sessions had an approximate 21% change in peak torque and impulse from

start to finish of the session. Also, P5 showed an approximate change of 11% for both

PTs. It should be noted that the adaptation for the hMW group was normalized with

a low magnitude of assistance and it is possible that the PT is not able to apply such a

fine time-series control over their assistance with a maximum of mJ = −0.25N.m.s
strode and

a maximum mτp = 0.4 N.m
stride . Nonetheless, an interesting observation is that all for all

sessions concerning impulse adaptation trends, the therapists showed approximately
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Table 5.3. Adaptation Trends

∆pJ ∆pτp ∆ptstance

P PT1 PT2 PT1 PT2 PT1 PT2
3 20.82 19.79 27.10 -20.62 11.05 -1.83
5 4.53 10.33 -9.6 12.97 -22.72 2.89
6 6.16 2.42 -7.98 6.51 -4.66 -0.53
7 25.77 1.01 21.57 -0.61 -8.35 -7.70

the same magnitude of percent adaptation but in opposite directions. The sign of

the adaptation slopes were evenly distributed between the PTs making it difficult to

extract individual PT preferences for adaptation beyond the opposing relationship.

Additionally, the low sample size as well as the no clear pattern was observed for

between-patient adaptation trend for each PT does not enable a relationship to patient

fatigue or improvement performance within a session to be made.

The second perspective considers adaptation as a stochastic and intentional per-

turbation to the assistance. As observed from the variation in the peak and impulse

of assistance in 5.4, all algorithms had some trouble consistently reproducing the

observed magnitude of assistance. There was a tendency to regularize the magnitude

of assistance is partly expected due to the results of discriminate analysis which yielded

low separability of the magnitude of assistance features. However, both algorithms

were able to reproduce the difference in variation between the lMW and hMW groups.
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Figure 5.7. Reproduction results showing the observed torque from the PT τt (black) and the
assistance reproduced by the impedance learning algorithm τ̂t (blue). The solid lines show the mean
assistance while the shaded region shows the ± one standard deviation of the data. The dashed red
line shows torque modeled by predicting the residual term rt added to the interaction model.

Table 5.4. Reproduction Summary

MMT Source r2 RMSE ρ ∆SP τp tτp στp J σJ

high PT - - - - 4.51 50 1.94 *3.24 *2.83
high A1 0.65 0.83 5e−129 0.90 4.42 47 1.15 *3.13 *2.62
high A2 0.67 0.82 4e−203 1.78 3.78 47 0.88 *2.84 *1.70
low PT - - - - 1.93 44 1.03 *1.22 *1.76
low A1 0.46 0.37 4e−57 -2.27 1.87 36 0.58 *1.22 *0.81
low A2 0.36 0.44 2e−38 0.23 1.63 41 0.63 *1.81 *1.43

5.5 Discussion

In this chapter, significant effort was invested into creating an insight-driven and

data-informed foundation for learning PT assistance behaviors. The analysis in Sec.

IV showed that a unique and diverse set of gait behaviors and assistive responses

emerged from patients that would generally be considered to have the same level of

impairment. Although the presentation of impairment was unique for each patient,

most observations aligned with insights from previous post-stroke rehabilitation studies,

such as excessive knee flexion during mid-stance or episodes of knee hyperextension.

This observation shows the importance of learning assistance strategies from physical

therapist-patient (PT-P) interactions.
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Figure 5.8. The last column in the figure shows how the observed and reproduced torque are
transformed using DTW (top) and a black dotted line that represents the calculated delay at as
an example (bottom). The rest of the figure describes the results of the continuous-time delay, in
the percent stance phase, calculated using a dynamic time-warping function. The solid colored line
represents the mean delay for each P-T pair while the shaded region encompasses one standard
deviation for the A1 (blue) and A2 (red) algorithms. The vertical black line represents the mean
timing of the peak torque.

The proposed approach includes the feature of weight-shift to emulate qualities of

the PT. While weight shift is generally an important and well-studied phenomenon in

gait training of post-stroke patients (Mauritz 2002; Andersson and Franzén 2015), it

has received far less attention when developing wearable robots. We use weight-shift in

conjunction with a future-state attractor and more common kinematic features (thigh

and shank), to generate positive results that match the magnitude and timing of PT

assistance. Timing of the assistance is especially critical for effective rehabilitation

and reduction of metabolic cost (Bryan et al. 2021). Success in these areas implies

that a lower-limb exoskeleton would be able to provide the appropriate assistance to

the patient.

However, the algorithm showed some challenges in reproducing the nuances in

stride-to-stride assistance variation. This observation is likely due to a combination

of three factors: 1) the PT may be unable to assist in a perfectly consistent way

due to stochasticity of human-human interaction and the associated challenges with
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manual gait training, 2) inherent limitations in the sensing system may cause variation

in observed data, and 3) the abstraction of high variance torques to a cumulative

model of behavior during Gaussian mixture model (GMM) encoding causes loss of

information describing variation between strides in an attempt to be robust against

over-fitting and noise.

Alternatively, the model may be missing the deterministic feature(s) that explain

stride-to-stride variations such as adaptive PT assistance as the patient fatigues or

improves. However, we must be cautious when adding additional features to balance the

trade-off between 1) a low-dimensional and generalizable model, 2) adding cumbersome

sensors that interfere with patient rehabilitation, and 3) possible introduction of noisy

inputs.

5.5.1 Implications

The proposed algorithm functions as a high-level decision framework that generates

a continuous control input (reproduced torque) in a way that emulates assistive PT

behaviors. Any arbitrary low-level controller (i.e. PID) can then use this control input

to actuate a 1-DoF lower-limb knee exoskeleton to provide assistive knee torques.

Specifically, this work shows how additional expert PT knowledge and clinical insights

can be identified and integrated into a high-level decision model. Done successfully,

this implies that a more robust, effective, and personalized robotic assistance can

be generated. Furthermore, the characterization of discrete impedance strategies in

response to classes of gait behaviors reduces the learning problem from encoding

the assistive response for every possible continuous-state combination to one that is

tractable, computationally efficient, and more robust against over-fitting. Opportunity
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for generalizing to new patients is also present given the fairly safe assumption that

assistance strategies do not significantly change between patients with similar gait

behaviors. Therefore, once a sufficient amount of data is collected to characterize

common gait patterns, the trained model will require little to no additional training

when being used to assist a new patient.

5.6 Limitations and Future Work

5.6.1 Data Collection/Biomechanical Characterization

Several limitations were present in this study; the most prominent of which concerns

data collection. Access to a sizable patient pool for rehabilitation is challenging.

Collecting data from more patients in the future will allow this study to strengthen the

proposed conclusions as well as resolve inconclusive results due to the sample size. In

addition to the number of data collection sessions we could obtain, the data collection

system provided several challenges in obtaining quality data. Although the effects

were mitigated during data processing, the wearable sensors used are subject to errors

caused by attachment inconsistencies and shifting during the session. Additionally,

the wearable data collection system must maintain a minimum level of intrusiveness

to not interfere with the patient’s rehabilitation. This prevents challenges in capturing

additional dynamics and force interactions on other body parts.
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5.6.2 Algorithm

The virtual impedance modeling algorithm also presents several opportunities to

be improved. Mainly, additional insights can be included by dynamically defining

the future time offset during attractor generation or by condition the prior of the

GMM such that the Gaussian means to target specific impairment characteristics

that change how a PT would assist. Both approaches to making this framework more

supervised will be explored in the future to further increase the practical consideration

of gait training principles for a generalizable algorithm. Demonstrating the ability to

generalize in this way will be done as an extension of this work along with stability

analysis to demonstrate the compliant capabilities of the algorithm.
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Chapter 6

SAFETY FILTERING FOR GAIT ASSISTANCE AND REHABILITATION

6.1 Introduction

In Chapter 5, we explored the learning of a virtual impedance controller, drawing

insights from therapist-patient interactions to encode high-level gait training strategies

derived from manual physical therapy. A crucial consideration that emerges is how

to effectively apply such controllers, learned from limited demonstrations to diverse

patients exhibiting similar gait disorders.

A primary challenge in this application lies in ensuring the safety of the controller

when deployed with patients whose gait and lower-limb dynamics deviate from those on

which the controller was initially trained. The safety and stability of robotic assistance

become paramount, particularly in autonomous operation, catering to patients and

individuals with gait disorders.

This challenge extends to a broader perspective: how to guarantee the safety of

lower-limb interaction assistance when controllers are learned from data gathered

in interactions with a limited number of individuals. The inherent variance and

stochastic nature in human dynamics and kinematics, including gait trajectories and

joint torques, are not fully addressed in such controllers. The intricate nature of

the human motor system and the diversity among individuals can result in unique

responses to the same robotic device (Berger et al. 2019).

Human-in-the-loop optimization frameworks have recently gained considerable

attention (Q. Zhang et al. 2022; J. Zhang et al. 2017; Slade et al. 2022), aiming
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to achieve personalized assistance and adaptation while optimizing an objective

function based on real-time interaction with individuals. However, the challenge of

imposing safety when interacting with the user to learn new controllers has not been

systematically addressed.

6.1.1 Litrature Review: Safety Filtering and its Application to Robotic Gait Assis-

tance

As stated above, the main challenges of applying safety filters in our application

are unknown and uncertain interaction dynamics with the human, as well as limited

robot inputs (compared to human inputs) and under-actuation. Thus here we look

into the state-of-the-art in active safety filtering with minimum assumptions on model

parameters and disturbances to the system, with a specific focus on safety guarantees

in lower-limb human-robot interaction.

One popular approach for enforcing safety with a nominal controller is reachability

analysis (Brunke et al. 2022). In (Akametalu et al. 2014) reachability analysis has

been used to guarantee dynamic safety constraints by using Gaussian Process and its

error confidence to extend the set of exploration for uncertainty in the system. Such

approaches are very useful when a good approximate dynamic model is available, with

a bounded disturbance assumption.

One of the most recent popular approaches in safety filtering is control barrier

functions (Ames et al. 2019) where active set invariance methods have been employed

to find the minimally invasive controller (in relation to a nominal controller).

In the realm of safety and gait robotic assistance, Tucker, Li, and Ames 2023

proposed a robust discrete control barrier function for trajectory generation for a
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full lower-body exoskeleton using Poincare maps. In another work a scalable control

barrier function (implicit control barrier function) was applied on a full-lower body

exoskeleton to provide variable assistance based on a virtual guide filter Gurriet

et al. 2019. In implicit safety filters, a baseline safe controller and a known safe set

are employed to enforce safety without considering full-model dynamics. In both of

these works, practical and rigorous methods have been proposed to treat uncertainty

and stochasticity in the human-robot interaction. However, they still rely on a known

dynamic model, and more importantly, the robot is fully actuated and can overpower

human input (joint torques). Therefore human input has only been considered as

a disturbance and is assumed to be treated through the robustness of the safety

controller.

6.2 Problem Formulation

In light of the current challenges of applying safety in gait assistive and rehabilita-

tion devices, our goal is to impose safety guarantees for given (nominal) controllers

that are learned based on interaction with the users, with the least possible knowledge

and assumptions on the human gait model parameters and inputs (i.e. joint torques).

Therefore this problem can be formulated as an active safety filtering of the nominal

controller, with probabilistic safety guarantees.

Here we propose to develop a framework based on implicit safety filtering using

control barrier functions (Gurriet et al. 2020). This method is based on realizing

control invariant sets by online prediction of the closed-loop system for a finite time

horizon under a safe backup control law. Implicit safety filtering is chosen for our

application, for the following reasons:
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• Less numerical complexity and requirement on the human model and input.

In this formulation, we need to work with the closed-loop dynamics under the

backup controller. That means we do not need to learn how to map the controller

to the states. More importantly, we do not need to explicitly consider human

inputs.

• Feasibility of finding a safe baseline controller. This baseline controller can be

any controller that we know is safe to use within our safety set. For example

in the case of assistance of healthy subjects, this controller can just be a zero-

assistance controller, which means letting the user take full control of the motion.

Any other controller that we have prior knowledge of its safety is also applicable.

6.2.1 Implicit Safety Filtering using a Backup Controller

The formulation of the implicit safety controller in this section is based on the

work of Gurriet et al. 2020. Safe-known controllers (backup controllers) are used

to design safety filters that can realize controllers around the neighborhood of the

nominal controller, for the continuous-time control affine dynamical system.

ẋ = f(x) + g(x)u (6.1)

f and g are defined on a compact set and are Lipschitz continuous and differentiable.

The control policies are Lipschitz continuous functions in x ∈X ⊂Rn and piece-wise

continuous in time.

A closed set S ⊂ X is control invariant for (6.1) if there exists a control policy

u such that if x(t0) ∈ S ⇒ x(t) ∈ S, for all t > t0 ∈ R+. This means the system

trajectories will never leave S under u.
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Now we can define the flow of the system under a controller u as the system

trajectories corresponding to (6.1), starting from x0 at t = 0 to t = T , by ϕτ
u(x0).

Given a practical safety set S̄, it can be characterized by ns differentiable functions

hi ∶Rn →R such that:

S̄ = {x ∈Rn∣∀i ∈ {1, ...ns}, hi(x) ≥ 0} (6.2)

∂S̄ = {x ∈Rn∣∃i ∈ {1, ...ns}, hi(x) = 0} (6.3)

where ∂S̄ is the boundary of S̄. Given a backup policy ub, we can define the

invariance of S̄ under ub can be guaranteed by hub

T (x) ≥ 0, where

hub

T (x) = min
τ∈[0,T ]

i∈{1,...ns}

hi(ϕτ
ub
(x)) (6.4)

The set characterized by hub

T (x) (which is S̄ub

T ) is itself a subset of S̄ (S̄ub

T ⊆ S̄) if S

is control invariant under ub. This set can be used to find a new safe controller uf ,

which is a continuous selection between a nominal controller un and a backup safe

controller ub:

uf(x) = α(t, uN(x), x, hub

T (x)) (6.5)

x ∈ Sub

T , α(t, uN(t), x,0) = ub(x) (6.6)

where α is a continuous function. If all the requirements are met, It is trivial to show

S̄ is the control invariant under uf(x).

These results (Gurriet et al. 2020) give us a powerful tool to form a safety filtering

law for our nominal controller. We need to be able to predict the system trajectories
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under the backup controller (ϕT
ub
(x)) to find hub

T (x). Also, we need to properly design

the switching function α.

In order to apply this safety filter for human-robot interaction applications, we

need to make three main assumptions:

Assumption 1: The deterministic human-robot interaction dynamics can be

modeled as a non-linear control-affine system.

Assumption 2: For the given safety set S, We know the control invariant set

S̄ ⊆ S, where ub is a safe controller for S̄.

Assumption 3: For a given control policy u(x), the steady-state closed-

loop dynamics of human-robot interaction can be modeled as a Gaussian process

p(xk+1∣xk) = N(xk+1∣µk+1, σ2
k+1) We used multivariate GP with multi-step predictions,

similar to the work of Deisenroth and Rasmussen 2011.

Therefore the flow of the system can also be described as a discrete random process:

ϕT
ub
(xk) = {Xj}j∈[1,...,nT ] (6.7)

Xj ∼ N(µj, σj) (6.8)

where nT is the number of time steps to get to the time T .

6.2.2 Implicit Safety Filter with Prediction Uncertainty

Now that the flow of the system is formulated as a stochastic process, we can only

ensure the safety of the system with a specific confidence level. For each prediction Xj ,

assuming it has a normal distribution, we can define a η-level confidence set (η ∈ (0, 1))
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which we call the uncertainty set:

Dη
j = {x ∈Rn∣∀i ∈ {1, ...ns} ∶ (x − µj)TΣ−1j (x − µj) − χ2

n,η ≤ 0} (6.9)

where χ2
n,η is the chi-squared distribution with n degree of freedom, evaluated at 1− η.

Dη
j is a convex ellipsoid-shape set.

Thus we need to consider this uncertainty set in (6.4). we can do that in a 2-step

optimization problem. First step, we find the minimum value of each hi(x) for each

uncertainty set Dη
j :

hij =min
x

h(x)

s.t. x ∈Dη
j

(6.10)

Then we find the minimum value of hijs and set that as hub

T :

hub

T =min
i,j

hij

s.t. i ∈ {1, . . . , ns}, j ∈ {1, . . . , nT}
(6.11)

If hi(x) are convex (or concave) functions, then (6.10) is a convex optimization problem

that can be solved using any standard convex optimization method. Therefore at each

step, we need to solve ns × nT Convex optimization problem. Therefore we should try

to represent the safety set with a minimum number of barrier functions.

6.2.3 Controller Design

The next step is to design the α function in (6.5). This function needs to be a

continuous selection of uN(x) and ub(x), with the condition that at hub

T (x) = 0 →
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uf(x) = ub(x). We consider the following general form of switching function:

α(uN , ub, x, h
ub

T ) = ub + λ(hub

T )[uN − ub] (6.12)

where λ ∶R+ → [0, 1] and λ(0) = 0. We also require λ to be a monotonic non-decreasing

function. This will help us to regulate the filter behavior based on the magnitude of

hub

T : hub

T (x1) ≥ hub

T (x2) → λ(hub

T (x1)) ≥ λ(hub

T (x2)).

One choice for λ can be λ(hub

T ) = 1 − e−ah
ub
T . Here a is a design parameter that

defines how fast (aggressive) our controller goes from ub to uN , based on the values of

hub

T . Ideally, we want this switch to be as fast as possible, so we can apply the nominal

controller when we are far enough from the boundaries of S̄ub

T .

6.2.4 Online Iterative Learning

One issue with the given safety filter is its inherent conservative behavior. uf is

always between the nominal and backup controller, regulated by the prediction of

the flow of the system under the backup controller. However, ideally, we want to be

able to apply the nominal controller, unless the nominal controller is not safe. In the

given safety filter, the notation of safety is completely defined based on the backup

controller, and not the nominal controller. This is because the safety filter regulates

the nominal controller based on the closed-loop system with the backup controller.

Additionally, as our dynamic model is a GP model that estimates the future state

based on previously observed state, in scenarios where we meet unobserved states

within the safe set, the predictions come with high uncertainty. This high uncertainty

can reduce the estimated value of hub

T and lead to conservative behavior as depicted in

Fig. 6.1. We cannot update our GP with the new observations since we are applying
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Figure 6.1. Graphical representation of how higher uncertainty in prediction can lead to a more
conservative controller. In the case of a larger uncertainty set (D2), the boundaries of D2 are closer
to the boundary of the safety set S̄, so our safety filter will switch to a control input closer value to
ub.

uf instead of ub. Visiting unobserved states is also very likely to happen as we replace

ub with uf , which can push the system to new unobserved states within the safe set.

To address the above-mentioned issues, here we propose an online iterative learning

method in which, at each iteration, we can find a less conservative controller (if

possible).

The idea is that after running a couple of cycles with the controller uf , we use the

collected data to learn a new GP to model the closed-loop system with uf . Since by

definition uf is also a safe controller for our system, we can use that as the backup

controller. This has two beneficial features:

• The newly collected trajectories contain the previously unobserved states, there-

fore in the new GP, the uncertainty for those states will reduce, resulting in a

less conservative controller.

• We can show mathematically that at each step of the iteration, under some

conditions, the filter can find control inputs closer to the nominal controller, and

possibly converge to it.
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6.2.4.1 Convergence Analysis

Let’s denote uk to the safety filter controller applied at the kth state of the iteration.

At each iteration, the backup controller is uk−1, with u0 = ub (ub is the original backup

controller). Thus for k ≥ 1:

uk = uk−1 + λk−1[uN − uk−1] = uN + (1 − λk−1)[uk−1 − uN] (6.13)

where λk = λ(huk

T (x)). By induction, it is trivial to see that:

uk = uN + (1 − λk−1)(1 − λk−2) . . . (1 − λ0)[u0 − uN] (6.14)

Corollary 1: At each step of the iteration, the safety filter is a less (or equally)

conservative controller compared to the previous step: ∣uN − uk∣ ≤ ∣uN − uk−1∣

Proof: This results from (6.13) and the fact that 0 ≤ 1 − λk−1 ≤ 1:

uk − uN = (1 − λk−1)[uk−1 − uN] ⇒ ∣uN − uk∣ ≤ ∣uN − uk−1∣ (6.15)

Corollary 2: if x ∈ ∂S̄ub

T then for any k ∈ N , uk = ub.

Proof: We know that x ∈ ∂S̄ub

T ⇒ hub

T (x) = 0⇒ λ0 = 0⇒ u1 = ub. By induction:

λ1 = λ(hu1

T (x)) = 0⇒ u2 = u1 = ub

⋮

λk−1 = λ(huk−1

T (x)) = 0⇒ uk = uk−1 = ub

(6.16)

Corollary 2 basically implies that the iterative safety filter is also limited to S̄ub

T

(S̄uk

T = S̄
ub

T ) and the controller selection at the boundary of S̄ub

T is limited to ub.
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Theorem 1: if x ∈ S̄ub

T ∖ ∂S̄
ub

T (interior of S̄ub

T ), then for k →∞, uk will converge

to a known bounded value ukf

Proof : Let’s assume that: ∃δ > 0,∀k ∈ N ∣ δ = inf{λk}. Then it is trivial to

see that the sequence in (6.14) will converge to uN . The existence of such lower-

bound δ requires that all huk

T (x) > 0. That also includes huN

T (x) > 0. However,

huN

T (x) > 0 is a necessary but not sufficient condition for convergence to uN . That is

because if ∃kf ∣ h
ukf

T (x) = 0, then similar to proof in (6.16) we can show that for all

k > kf ∶ uk = ukf = uN + (1 − λkf )(1 − λkf−1) . . . (1 − λ0)[u0 − uN]. Therefore:

lim
k→∞

uk = ukf (6.17)

6.3 Simulation

In this section to show the effectiveness of our method in filtering a nominal

controller, and iteratively learning a less conservative controller, we implemented the

proposed safety filter on an inverted pendulum that resembles human gait.

6.3.1 Simulation Setup

Figure 6.2. Inverted Pendulum with separate human and robot (uh and ur) input.
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Inverted pendulums are commonly used as a reduced-order model of human gait

(Kuo 2007). As depicted in Fig. 6.2 the states of the system are the angle and angular

velocity of the pendulum. The input to the pendulum is a torque which is a sum of

human and robot torque. For human torque, we considered a stiffness-damper model,

where its parameters (k and b) have zero mean Gaussian noise component:

uh = k(θ − θ0) + bθ̇ (6.18)

k = kn +wk, wk ∼ N(0, σk), b = bn +wb, wb ∼ N(0, σb) (6.19)

Noise components were added to make the system resemble the stochastic behavior of

human gait.

6.3.2 Safety Filter Controller

At each iteration step, we applied the controller for a fixed period of time TL = 2 Sec,

for m = 5 cycles. Each cycle was started at x0 = [0,0]T + w0 where w0 is a white

Gaussian noise. Data was sampled at 50 Hz, and the prediction horizon for the safety

filter was T = 0.06Sec. The switching law is chosen as λ(hub

T ) = 1 − e−ah
ub
T .

In total, we ran three iterations. The pseudocode of the total process is given in

Alg. 2. The backup controller was set to ub = 0, meaning the pendulum was run by

the human controller uh. The safety set was chosen to be an ellipsoid, and its control

invariance under ub was confirmed through simulation. For the nominal controller, we

considered two cases of a safe and unsafe controller.
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Algorithm 2 Safety Filter with Online Iterative Learning

Apply ur = ub →Collect Data X0
n×m×l

for k = 1,2,3 do
Train GPk−1 with Xk−1

for i = 1,2, . . .m do
Initialize x0 = [θ0, θ̇0]T +w0

for j = 1,2, . . . l do
[ϕu0

T (xj) . . . ϕuk−1

T (xj)] = [GP0(xj) . . .GPk−1(xj)]
Calculate [hu0

T . . . huk−1

T ] using (6.9), (6.10) and (6.11)
Apply ur = uN + (1 − λk−1)(1 − λk−2) . . . (1 − λ0)[u0 − uN]
xj → xj+1

end for
Xi

K = [x0, x1 . . . xl]
end for
XK =X1∶m

K

end for

6.3.3 Results

Here we present the results of the simulation for the two cases.

6.3.3.1 Case Study 1: Safe Nominal Controller

The simulated flow of the system under the backup and nominal controller is
shown in Fig. 6.3. It must be noted that we took the average flow of the system, given
the stochasticity in trajectories. System trajectories for the three steps of iterations
are also shown, as well as the control inputs. We can observe clearly that through
iterations, the system trajectories get closer to the nominal controller, as well as the
control inputs.
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(a) Average System Trejectories

(b) Average Control Efforts

Figure 6.3. Simulation with a safe nominal controller. ϕuk
refers to the closed loop system trajectories

with the controller uk, at the kth iteration of the filter.

6.3.3.2 Case Study 2: Unsafe Nominal Controller

In this case, we observe that the trajectories of the system under the iterative

safety filter gradually converge to the boundary of the set, without existing the safety

set (Fig. 6.4). We also observe that for the first half of the cycle, at each step of the

iteration of the safety filter, we get a controller that is closer to the nominal controller.

However, towards the end of the cycle, since the safety filter is pushing the system
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towards the boundary of the safety set, u3 is switching back to u1 (as is shown in

Fig. 6.4-b), in order to keep the trajectories safe.

(a) Average System Trejectories

(b) Average Control Efforts

Figure 6.4. Simulation with an unsafe nominal controller. ϕuk
refers to the closed loop system

trajectories with the controller uk, at the kth iteration of the filter.
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6.4 Discussion

6.4.1 Applicability of the Proposed Safety Filter for Gait Robotic Application

Besides the three main assumptions that we made in Sec.6.2, we also need to

address the problem of under-actuation for many robotic gait applications. Considering

a biped model, all the joints are dynamically coupled and therefore will affect each

other. When we only need to assist one joint, technically we still need to consider all

the joint angles and velocities in the model (full-order model), which will significantly

increase the computational cost of the filter. However, if through experimental data

we can show that by just considering the states of the targeted joint (reduced order

model), our GP can still predict the closed-loop system trajectories (for the given

filter time horizon) within the desired confidence level, then the safety filter will be

robust to using the reduced-order model.

6.4.2 Limitations

One main limitation of the proposed safety filter is its reliance on the backup

controller. First of all, finding a proper safety filter in some scenarios can be challenging.

While for assistance applications with healthy individuals, the zero-assistance controller

can be a proper and intuitive choice, for gait training applications with patients with

gait disorder we might not be able to use such a controller as a safe controller. In

other words, using this safety filter requires a prior known backup controller instead

of a dynamic model, which is also not always easily available. Another issue is the

performance of the safety filter inherently relies on the backup controller. While the
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proposed iterative learning component can find more optimal controllers, we are still

limited to the backup controller at the boundary of the safe set.

6.5 Conclusion

In this study, we introduce a safety filter incorporating an online iterative learning

component designed for application in robotic gait assistance. This innovative approach

offers robust safety guarantees for system trajectories, addressing challenges such as

stochasticity and the absence of a known prior dynamic model. These challenges

represent the fundamental obstacles in human-robot interaction within gait assistance

and rehabilitation applications. The online iterative learning components ensure

finding less intrusive controllers (in relation to the nominal controller) at each step of

the iteration.
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Chapter 7

CONCLUSION

In this thesis, we employed different techniques in wearable sensor design, state

estimation, and control theories, as well as biomechanical characterization and statis-

tical learning, to provide novel and useful insight toward safer and more intelligent

robot-aided gait training and assistance strategies.

In Chapter 3, a damped harmonic oscillator model was proposed based on a

previously developed harmonic oscillator model for EMG signals, to account for the

change in energy level of EMG signals due to gait activity changes. The root means

square (RMS) and energy of the EMG signals are the features adopted in this method.

The energy of the EMG signal is extracted using the energy kernel method. The

proposed approach uses a low number of sensors and features, online unsupervised

classification, and is generalizable to different lower-limb muscle groups.

In another study, we introduced a new invariant extended Kalman filter design in

chapter 4, that produces real-time and rapid error convergence for the estimation of

the human body movement even in the presence of sensor misalignment and initial

state estimation errors. The filter fuses the data returned by an inertial measurement

unit (IMU) attached to the body (e.g., pelvis or chest) and a virtual measurement of

zero stance-foot velocity (i.e., leg odometry). The key novelty of the proposed filter

lies in that its process model meets the group affine property while the filter explicitly

addresses the IMU placement error by formulating its stochastic process model as

Brownian motions and incorporating the error in the leg odometry.

In Chapter 5, by employing a novel custom-made wearable sensor, we collected the
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haptic interaction in gait therapy sessions. The patient’s impairment and therapist

assistance were characterized. Preliminary analysis shows that knee extension and

weight-shifting are the most important features that shape a therapist’s assistance

strategies. These key features are then integrated into a virtual impedance model

to predict the therapist’s assistive torque. Our model was able to capture high-level

strategies of the therapist assistance, which in the future can be used to encode

therapist strategies into a robot controller.

And lastly, in Chapter 6, we introduced a safety filter to regulate any nominal

controller, to provide probable safety guarantees for gait robotic applications in the

absence of a human dynamic model and inputs. An online iterative learning component

was introduced to the safety filter to ensure the finding of less conservative controllers.

Simulations with an inverted pendulum that resembled human gait showed the efficacy

of the proposed method.

The research conducted in this dissertation lays the groundwork for more robust

and efficient lower-limb robotic assistance. Moving forward, the precise estimation of

human states and activities through wearable sensors holds the potential to extend

the applications of gait wearable robots beyond controlled laboratory conditions. This

advancement marks a pivotal step toward the clinical deployment of wearable robots.

Moreover, the incorporation of human motion states into the safety filter is a

promising avenue. For instance, constraining the motion of the Center of Mass (CoM)

can be a notion of safety for gait wearable robots. By utilizing reduced-order models,

such as an inverted pendulum to relate CoM states to joint states, it becomes possible

to construct a safety filter that can complement various controllers. This approach

broadens the spectrum of controllers applicable for training and assistance, ensuring

the safety of the controller through the integration of the safety filter.
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To translate the insights and intelligent decision-making behaviors acquired from

manual therapy into practical applications, a thorough evaluation of the controller

in diverse cases is essential. Additionally, further data collection efforts can help

determine if Gaussian Mixture Models (GMMs) can effectively capture a broader

range of gait behaviors and the corresponding gait training strategies. The integration

of the safety filter enhances the generalizability and autonomy of the controller which

are necessary steps towards clinical deployment and expansion of gait wearable robot

applications.
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The Lie group G introduced in chapter 4 is a combination of an extended SE(3)
(group of double direct spatial isometrie SE2(3) Barrau and Bonnabel 2016) and
another SE(3). It is clear that G is a set of m×m invertible square matrices. Yet, for
G to be a valid matrix Lie group, it should also possess the following three properties:
∀X ∈ G,X−1 ∈ G; ∀X1,X2 ∈ G,X1X2 ∈ G; and E ∈ G.

Given the definition of X in (4.8), we have:

X−1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

RT −RTv −RTp 03,3 03,1
01,3 1 0 01,3 03,1
01,3 0 1 01,3 03,1
03,3 03,3 03,3 ∆RT −∆RT∆p
01,3 0 0 01,3 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

;

X1X2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

R1R2R1v2 + v1R1p2 + p1 03,3 03,1
01,3 1 0 01,3 03,1
01,3 0 1 01,3 03,1
03,3 03,3 03,3 ∆R1∆R2∆R1∆p2 +∆p1

01,3 0 0 01,3 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Then, it is trivial to see that X−1 ∈ G and X1X2 ∈ G. It is also trivial to see that
E =XX−1 = I9 ∈ G.

Group Affine Property of fut: We need to show that fut(X) defined in (6.1)
has the group affine property in (4.13). Here we show the expressions of fut(X1),
fut(X1X2), and fut(E), which are used to define the property in (4.13) (X1,X2 ∈ G):

fut(X1) = [
R1(ω̃)× R1ã + g v1 03,4
06,3 06,1 06,1 06,4

] ;

fut(X1X2) = [
R1R2(ω̃)× R1R2ã + g R1v2 + v1 03,4

06,3 06,1 06,1 06,4
] ;

fut(E) = [
(ω̃)× ã + g 03,1 03,4
06,3 06,1 06,1 06,4

] .

Using these matrices and basic matrix operation, it is trivial to see the group affine
property holds for fut(.).

Discrete Filter Propagation Equations: As discussed in Sec.4.1.3, the propagation
equations in discrete time are obtained via Euler integration from tk to tk+1 (∆t =
tk+1 − tk):

R̄−k+1 = R̄
+
k exp(ω̃k∆t), v̄−k+1 = v̄

+
k + R̄

+
k exp(ãk∆t) + g∆t,

p̄−k+1 = p̄
+
k + v̄

+
k∆t +

1

2
R̄+k exp(ãk∆t2) +

1

2
g∆t2,

∆̄R
−

k+1 = ∆̄R
+

k , ∆p
−

k+1 =∆p
+

k .
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Given the system discrete state transition matrix Φk, we can write down the discrete
covariance propagation:

Pk+1 =ΦkPkΦ
T
k + Q̄k, Q̄k ≈ΦkQ̄kΦ

T
k∆t,

where Qk comes from Sec. (4.1.3). More details on the system discretization can be
found at Hartley et al. 2019.

Observability of ∆p and ∆R: Here we can show that if direction of ω remains
constant, then the block matrix in O corresponding to observability of ∆p (we denote
it as O∆p) will lose one column rank. Let us assume ωk =∥ ωk ∥ b, where b ∈ R3 is a
constant unit vector. Knowing that ∆R is constant, then according to (4.28) we have:

O∆p =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(∆̄Rkωk)×

(∆̄Rk+1ωk+1)×

⋮

(∆̄Rk+4ωk+4)×

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∥ ωk ∥ (∆̄Rk)×

∥ ωk+1 ∥ (∆̄Rk)×

⋮

∥ ωk+4 ∥ (∆̄Rk)×

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Knowing that ∥ (∆̄Rkb)× has column rank two (property of any 3× 3 skew-symmetric
matrix), it is trivial to see that the whole O∆p has column rank 2. If b is time-varying
however, O∆p will have full column rank.

For ∆R, the observability also depends on the measured contact point movement
(FK(α)) and the linear IMU velocity v, and therefore it could still be fully observable
if those parameters have time-varying directions.
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