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ABSTRACT 

Hepatocellular carcinoma (HCC) is the third leading cause of cancer death 

worldwide and exhibits a male-bias in occurrence and mortality. Previous studies have 

provided insight into the role of inherited genetic regulation of transcription in 

modulating sex-differences in HCC etiology and mortality. This study uses pathway 

analysis to add insight into the biological processes that drive sex-differences in HCC 

etiology as well as a provide additional framework for future studies on sex-biased 

cancers. Gene expression data from normal, tumor adjacent, and HCC liver tissue were 

used to calculate pathway scores using a tool called PathOlogist that not only takes into 

consideration the molecules in a biological pathway, but also the interaction type and 

directionality of the signaling pathways. Analysis of the pathway scores uncovered 

etiologically relevant pathways differentiating male and female HCC. In normal and 

tumor adjacent liver tissue, males showed higher activity of pathways related to 

translation factors and signaling. Females did not show higher activity of any pathways 

compared to males in normal and tumor adjacent liver tissue. Work suggest biologic 

processes that underlie sex-biases in HCC occurrence and mortality. Both males and 

females differed in the activation of pathways related apoptosis, cell cycle, signaling, and 

metabolism in HCC. These results identify clinically relevant pathways for future 

research and therapeutic targeting.  
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INTRODUCTION 

1. Biological differences between sexes in cancer 

 Sex-biases in cancer occurrence and mortality are evident across multiple 

histological subtypes. For example, the mortality of cancer has been shown to be greater 

in males than in females, with the leading causes of cancer deaths: lung, colorectal and 

stomach cancers showing higher mortality in men (Siegel et al. 2020; Fitzmaurice et al. 

2017). Additionally, males show poorer response to treatments, including some forms of 

chemotherapy and immunotherapy (Clocchiatti et al. 2016). Differences in risk factors 

and life-styles account for a portion of the sex bias, but adjustment of these factors shows 

that there are other biological differences (Ouyang et al 2015; Wisnivesky and Halm 

2007). The circulation of sex hormones has been shown to contribute to the genesis and 

progression of some cancers. Breast and prostate cancer respond strongly to circulating 

sex hormones. Additionally, estrogen has been shown to be anti-tumorigenic for liver and 

colon cancers. However, the molecular differences for the sex disparity in most cancer is 

still undefined. To identify the sex-specific molecular differences, one group examined 

the mutational profiles of tumors from both males and females across The Cancer 

Genome Atlas (TCGA) (Li et al. 2018). They found that different genes were associated 

with tumor aggression in each sex. This called for increased study and consideration of 

the molecular role of sex in cancer etiology, progression, treatment, and personalized 

therapy. Still, despite the clear molecular differences underlying these characteristics in 

females and males, sex is rarely considered as a variable in clinical research.  
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2. Sex-biased occurrence in hepatocellular carcinoma 

Of the tumor types analyzed by Li et al. 2018, the largest sex differences in 

autosomal mutational profiles were identified in hepatocellular carcinoma (HCC). HCC 

exhibits a male-bias in occurrence, with a male-to-female incidence ratio between 1.3:1 

and 5.5:1 across populations (Wands 2007; Petrick et al 2016). Furthermore, males 

exhibit a different manifestation of HCC with earlier onset and more/larger nodules in 

clinical studies. Across the United States, HCC is the fifth leading cause of cancer deaths 

and is one of the few cancers that is increasing in both incidence and death (Siegal et al. 

2020). Factors such as metabolic conditions, fat-related liver disease and cirrhosis have 

become increasingly prominent in recent decades. These factors have been shown to have 

influence on the sex-biases observed in HCC. Men are two times more likely to die from 

chronic liver disease and cirrhosis (Guy and Peters 2013). However, very little research 

has been performed that examines the etiological origins of the liver diseases and how 

they all relate to sex-biases within HCC. With HCC becoming a leading cause of cancer 

incidence and death, it is clear that more research into the development of therapeutic 

treatments is needed.  

3. Previous research on sex differences in hepatocellular carcinoma 

 Sex-specific regulation of genes may partially drive sex differences in risk and 

severity. A previous study observed extensive sex-biased signatures in gene expression in 

HCC and other cancers that show sex-biased occurrence and mortality (Yuan et al. 2016). 

However, this study focused on female and male tumor profiles without consideration of 

normal or tumor adjacent tissue. It is necessary to contrast the sex differences in the gene 
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expression of tumor tissue with those in normal or tumor adjacent tissue to fully 

understand cancer-specific processes. Targeted treatment uses this combined 

understanding to distinguish whether sex differences are a factor of inherent differences 

in healthy individuals or cancer-specific processes. Furthermore, the study of normal and 

tumor adjacent tissue is very important in the understanding of disease etiology and 

occurrence.  

The complexity of HCC makes studying its etiology with single genes or 

mutations difficult. Therefore, many researchers have turned to pathway analysis to better 

understand this disease. Pathways are sets of molecular interactions that underlie a given 

function. Analysis at the pathway level allows one to capture the complexity of real 

biological processes. Central to pathway analysis is the idea that disruption of a pathway, 

not just a single gene component, could be the basis for diseases such as HCC. Recently, 

a study applied sex-stratified gene expression analysis to identify sex-specific molecular 

etiologies of HCC in normal, tumor adjacent, and tumor liver tissue (Natri et al. 2019). 

They used differential expression and eQTL analysis to identify etiologically relevant 

genes differentiating females and males. Then, to identify sex-shared and sex-specific 

pathways driving HCC etiology, they calculated the overrepresentation of genes in regard 

to a set of pathways. While this approach to pathway analysis is important to place a set 

of genes in its function, it does not consider a pathway’s interactive components. Here, 

we used PathOlogist (https://github.com/Buetow-Lab/PathOlogist) to identify 

etiologically relevant pathways differentiating females and males.  
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4. Pathway analysis: PathOlogist and its benefits over traditional gene and gene-set 

analysis 

 PathOlogist uses RNA expression data to calculate two quantitative 

measurements: ‘activity’ and ‘consistency’ for each sample in a set of pathways. These 

metrics make use of the structure of gene interactions within the pathway, instead of 

treating the genes as a simple list of entities (Efroni et al. 2007). A pathway is defined as 

a network of molecular interactions. Each interaction consists of one or more input genes, 

promoters, and inhibitors, and one or more output genes. Activity and consistency scores 

are calculated for each interaction based on the expression of all input and output genes. 

Activity scores are a measurement of how likely the interactions are “on” (or active) 

while the consistency scores determine whether these interactions follow the logic of the 

defined pathway structure or has been “rewired.” These scores can reveal a variety of 

different information depending on the experiment. One may compare activity scores to 

determine if a functional process is differentially activated or inactivated between certain 

groups or in response to a treatment. Comparing consistency scores can reveal if a 

pathway’s structure has been altered by a disease, such as HCC. A study used activity as 

a metric to identify biomarkers that predict a cancer’s response to a drug (Ben-Hamo et 

al. 2020). They found that these metrics were more efficient than gene expression alone 

and helped reduce experimental platform effects. 

 Here we use PathOlogist to calculate activity and consistency scores from TCGA 

and The Genotype-Tissue Expression Project (GTEx). Then we use statistical analysis to 

identify sex-specific alterations in biological processes in within tissue and between 
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tissue analysis. We provide potential molecular mechanisms for the sex-biased 

occurrence and mortality in HCC. The results here have implications for the development 

of targeted treatments for female and male HCC.  

METHODS 

1. Data Acquisition 

 GTEx (release V6p) whole transcriptome (RNAseq) data (dbGaP accession: 

phs000424.v6.p1) was downloaded from dbGaP. TCGA LIHC RNAseq data was 

downloaded from NCI Genomic Data Commons (dbGaP accession: phs000178.v8.p7). In 

total, RNAseq data from 91 male and 44 female GTEx donors, and 253 male and 121 

female TCGA LIHC donors, as well as paired tumor and tumor-adjacent samples from 28 

male and 22 female TCGA LIHC donors were used in this study.  

Raw fastq files were trimmed using TRIMMOMATIC (v0.33) (Bolger et al. 2014) 

with default parameters. Raw counts were generated by Salmon (v1.1.0) (Patro et al. 

2017) against human genome version 2.9 from https://www.gencodegenes.org/ using 

default setting. Gene-level counts were quantified using the tximport package in R then 

transformed using the limma/edgeR package to perform voom transformation (Law et al. 

2014). The transformed data is exported into a tab-delimited text file.  

1290 biological networks were obtained from the Pathway Interaction Database 

(PID), BioCarta, KEGG, and Reactome pathway databases (Schaefer et al 2009; 

Nishimura 2001; Kanehisa et al 2017; Fabregat et al 2017). Pathways were subjectively 

filtered for biological relevance and large categorical networks were omitted.  

https://www.gencodegenes.org/
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2. Calculation of pathway metrics 

To calculate pathway activity metrics, we used the PathOlogist tool (Greenblum 

et al. 2011), which translates gene expression levels (in the manner detailed below) to a 

metric that provides information about the interactions within a pathway. This pathway 

activity is provided per sample, for each of the included pathways. 

To use gene expression, PathOlogist first calculates, for each gene in each sample, 

the probability that the gene is in an alternative expression state in that specific sample. 

The higher expressed state of the gene is called an “up” gene (or “on”), and a lower 

expressed gene is called “down” (or “off”). A probability for a specific gene to be in the 

“up” state is calculated using the distribution of the expression level of the gene across all 

samples. 

Across samples, we assume that the collection of unexpressed and expressed 

instances are a mixture of two gamma distributions. For each gene, we use an 

expectation-maximization (EM) algorithm to iterate over the data. The EM algorithm 

finally provides us with the most likely parameters of the modeled distributions and with 

the mixture weights of the two distributions. Once the distributions are in place, we can 

calculate the probability of each gene in a sample to belong to one of the two 

distributions. That is, we obtain the probability of the gene to be in the up state. This 

probability is the (Up Down Probability) UDP measure that is used in the pathway score. 

Since a gene, in principle, could be in an “up” state or in a “down” state across all 

samples, we need to determine if the best fit is a single gamma distribution or a mixture 
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of two gamma distributions. To compare these two models, we use the Bayesian 

information criterion (BIC). 

Once we have the set of gene probabilities for each gene in each sample, we 

continue to calculate the pathway activity metric, which is calculated for all 1290 

pathways. PathOlogist treats the pathway as a network of interactions and assigns the 

network a score based on the expression levels of the interacting genes and on the quality 

of the interaction. The analysis also takes into consideration the specific type of 

interaction (inhibition or promotion). The activity of each interaction is calculated by 

multiplying the probability of the genes to be “active” (based on the UDP matrix). Then, 

the final pathway activity score is calculated by averaging all the interaction activity 

scores in the pathway. Consistency scores compare this activity potential with the 

presence of output molecules in an interaction, providing an account of deviations from 

the pathway logic. Like activity scores, the final pathway consistency score is calculated 

by averaging all the interaction consistency scores in the pathway. 

The final outputs are two tab-delimited text files containing the activity and 

consistency scores for each sample and for all 1290 pathways.  

 

 

 

 



8 

2. Statistical Analysis 

a. Within tissue analysis 

i. Wilcoxon rank sum test 

A nonparametric Wilcoxon rank sum test was performed to find pathways whose 

scores can be used to differentiate two classes of samples (eg. female v. male). For sex-

based comparisons, tissues were analyzed separately in three groups: GTEx female vs 

GTEx male, TCGA tumor adjacent female v. TCGA tumor adjacent male, and TCGA 

tumor female v. TCGA tumor male.  

For each pathway a two-sample ranksum test is performed to evaluate the null 

hypothesis that independent pathway scores from class A and class B are pulled from the 

same mean and distribution. Significant pathways are those for which the null hypothesis 

is highly unlikely, indicating that the pathway’s activity or consistency is different in 

these two groups of samples. The result of the ranksum test is a p-value which is then 

Bonferroni-corrected by multiplying it by the number of pathways being analyzed (1290).  

ii. Binary classification algorithm 

To further investigate the differences in male and female HCC, the samples were 

then classified based on their placement within a mixed gaussian distribution. This 

analysis takes advantage of the pathway metrics given by PathOlogist to calculate the 

probability that a sample is either ‘active’ or ‘inactive’ and ‘consistent’ or ‘inconsistent.’ 

By applying two gaussian distributions over the pathway metrics, we can use an EM 
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algorithm to calculate the probability that the sample was in the ‘active’ or ‘consistent’ 

distribution (Figure 4). If the probability was >= 0.5, then the sample was ‘active’ or 

‘consistent,’ otherwise it was ‘inactive’ or ‘inconsistent.’  

iii. Chi-squared analysis 

Labels obtained from binary classification were analyzed using a chi-squared test 

and a contingency table to evaluate pathways where the proportion of active or consistent 

samples were significantly different between males and females using Bonferroni 

corrected p-values <= 0.05. The chi-squared test comparing females and males was 

repeated for each tissue type: GTEx normal, TCGA tumor adjacent, and TCGA tumor. 

We identified pathways that had differences in the proportional frequencies of active or 

consistent male and female samples.  

b. Between tissue analysis 

i. Chi-squared analysis 

 Binary classification data for each tissue type, normal tumor adjacent, and tumor 

was then used for a second set of between tissue analyses. Chi-squared analysis was 

performed for 9 comparisons in total, 3 sex-combined and 6 sex-specific between each 

tissue type. We identified pathways that had differences in the proportional frequencies 

of ‘active’ or ‘consistent’ samples between normal, tumor adjacent, and tumor tissues 

based on a Bonferroni adjusted p-value < 0.05.  
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ii. Log-linear modeling 

 Log-linear modeling was performed using the vcd package v1.4-8. Binary 

classification data from between tissue analysis was used along a list of labels 

designating the sample’s sex and tissue type (eg. normal or tumor). A log-linear model 

utilizing a joint independence hypothesis was used to evaluate the association between a 

sample’s state (eg. active or inactive) and sex while adjusting for its tissue type. It was 

repeated for 3 comparisons: GTEx all v. TCGA tumor adjacent all, GTEx all v. TCGA 

tumor all, and TCGA tumor adjacent all v. TCGA tumor all. We identified pathways 

where sex and state were associated while adjusting for tissue based on a Bonferroni 

adjusted Pearson’s p-value <= 0.05.  
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TABLES/FIGURES 

Table 1. Significant pathways from Wilcoxon rank sum test in GTEx female v. GTEx 

male comparison. Activity and consistency values were calculated using PathOlogist, 

then a Wilcoxon rank sum test was performed comparing male and female samples in 

GTEx normal liver tissue. A p-value threshold of <=0.05 was used to determine 

significance. 

 

score type pathway p-value male mean female mean 

activity long-term potentiation(kegg) 7.23E-07 0.640156044 0.5706045455 

activity olfactory transduction(kegg) 3.71E-06 0.3173164835 0.2357295455 

activity vibrio cholerae infection(kegg) 4.74E-08 0.4199648352 0.2772136364 

activity wnt signaling pathway(kegg) 4.28E-10 0.3973131868 0.3468840909 

activity eukaryotic translation elongation(reactome) 0.00711 0.5598351648 0.5556 

consistency gap junction(kegg) 2.45E-06 0.6516318681 0.6993272727 

consistency long-term potentiation(kegg) 5.33E-16 0.7224296703 0.6290613636 

consistency wnt signaling pathway(kegg) 1.96E-08 0.5692395604 0.534825 

consistency selenoamino acid metabolism(reactome) 0.04952 0.8885659341 0.8940045455 

consistency eukaryotic translation elongation(reactome) 9.93E-08 0.8188340659 0.8426 

consistency translation(reactome) 0.02957 0.6819494505 0.6936545455 

consistency 

protein-protein interactions at 

synapses(reactome) 3.25E-07 0.7446483516 0.7915704545 

 

Table 2. Significant pathways from Wilcoxon rank sum test in TCGA tumor adjacent 

female v. TCGA tumor adjacent male comparison. Activity and consistency values were 

calculated using PathOlogist, then a Wilcoxon rank sum test was performed comparing 

male and female samples in TCGA tumor adjacent liver tissue. A p-value threshold of 

<=0.05 was used to determine significance. 

 

 

 

 

 

 

 

score type pathway p-value male mean female mean 

activity calcium signaling pathway(kegg) 0.00982 0.27982 0.21036 

activity long-term potentiation(kegg) 8.32E-06 0.60251 0.4886 

activity vibrio cholerae infection(kegg) 2.26E-06 0.91391 0.67845 

consistency gap junction(kegg) 0.04807 0.67818 0.71273 

consistency long-term potentiation(kegg) 1.32E-05 0.61054 0.50813 

consistency olfactory transduction(kegg) 0.00031 0.6714 0.53803 

consistency vibrio cholerae infection(kegg) 5.20E-06 0.93300 0.84252 
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Table 3. A sample of the significant pathways from Wilcoxon rank sum test in TCGA 

tumor female v. TCGA tumor male comparison. Activity and consistency values were 

calculated using PathOlogist, then a Wilcoxon rank sum test was performed comparing 

male and female samples in TCGA HCC tissue. A p-value threshold of <=0.05 was used 

to determine significance.  

 

score type pathway p-value male mean female mean 

activity d4gdi signaling pathway(biocarta) 0.0248641 0.86252252 0.8394305785 

activity 

androgen and estrogen 

metabolism(kegg) 0.0449593 0.51102450 0.4634157025 

activity bile acid biosynthesis(kegg) 0.0001439 0.78777470 0.7613785124 

activity bile secretion(kegg) 0.0416733 0.78290553 0.792838843 

activity caffeine metabolism(kegg) 6.71E-06 0.72725652 0.6600272727 

activity chemical carcinogenesis(kegg) 0.0080530 0.54383201 0.4852785124 

activity histidine metabolism(kegg) 5.28E-05 0.73204940 0.7071347107 

activity pyruvate metabolism(kegg) 0.0081311 0.79177035 0.7750752066 

activity tgf-beta signaling pathway(kegg) 0.0071353 0.63219565 0.6162942149 

activity pentose phosphate pathway(reactome) 2.96E-05 0.67816917 0.6074123967 

activity 

abacavir transport and 

metabolism(reactome) 0.0001372 0.76148774 0.7235884298 

activity 

signaling by tgf-beta family 

members(reactome) 0.0109980 0.08419604 

0.0948429752

1 

consistency 

mechanism of acetaminophen activity 

and toxicity(biocarta) 5.55E-06 0.58742687 0.5228876033 

consistency 

androgen and estrogen 

metabolism(kegg) 0.0449593 0.51102450 0.4634157025 

consistency 

ascorbate and aldarate 

metabolism(kegg) 9.54E-07 0.50617312 0.4240173554 

consistency bile acid biosynthesis(kegg) 0.0001439 0.78777470 0.7613785124 

consistency pyruvate metabolism(kegg) 0.0081311 0.79177035 0.7750752066 

consistency histidine metabolism(kegg) 5.28E-05 0.73204940 0.7071347107 

consistency pentose phosphate pathway(reactome) 2.96E-05 0.67816917 0.6074123967 

consistency 

abacavir transport and 

metabolism(reactome) 

0.00013723

15179 0.76148774 0.7235884298 
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Figure 1. Mean activity values for males and females are highly correlated with each 

other in HCC. Activity values from TCGA samples in HCC were averaged across each 

sex then plotted for each of the 1290 pathways. A linear regression model was overlaid to 

show the degree of correlation. 

 

 

Figure 2. Venn-diagram of the overlap of significantly different pathway activity scores 

between within tissue analyses. The activity scores were analyzed using the Wilcoxon 

rank sum test comparing male and female samples. Each tissue type was calculated 

separately, and p-values were Bonferroni adjusted with a threshold of <=0.05. 
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Figure 3. Scatter plot of activity values for wnt signaling pathway (kegg) in GTEx 

normal liver tissue. Activity scores were calculated using PathOlogist, comparing 

females and males in GTEx normal liver tissue. Females and males are colored separately 

with mean lines to show their central tendency.  

 

 

 

Figure 4. Histogram of activity scores with overlaid mixed gaussian distribution for long 

term potentiation (kegg) for the GTEx female v. male comparison. Activity scores were 

calculated using PathOlogist. A mixed gaussian distribution was calculated and overlaid 

along with each component to show active and inactive distributions.  
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Figure 5. Bar graph of the proportion of female and male active samples for the wnt 

signaling pathway (kegg). Classification data from GTEx female v male was calculated 

then plotted for proportion of active samples in females and males.  

 

 

Figure 6. Mosaic plot of the log-linear model for chromatin modifying enzymes 

(reactome). Pathway consistency classification data comparing females and males while 

adjusting for normal liver tissue and HCC was analyzed in a joint-independence model. 

Females are overrepresented in the active distribution (‘1’) for normal liver tissue.  
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RESULTS 

We identified sex differences in pathway activity and consistency in normal, 

tumor-adjacent, and HCC liver tissue to uniquely characterize the biological processes 

that drive the sex-biases observed in HCC occurrence and etiology.  

1. Males show higher activity than females for multiple pathways in normal and 

tumor adjacent liver tissue 

 In normal liver tissue, we identified 5 pathways whose activity scores were 

different between males and females using the Wilcoxon rank sum test. These pathways 

were found to regulate the cell cycle, proliferation, and differentiation, notably the wnt 

signaling pathway (kegg) and eukaryotic translation elongation (kegg). For tumor 

adjacent tissue we identified 3 pathways, 2 of which were also identified in normal liver 

tissue, long-term potentiation (kegg) and vibrio cholerae infection (kegg). For all 6 

unique pathways identified from both tissue types, males had a higher mean activity score 

than females (Table 1; Table 2). 

To further analyze the distribution of the pathways, each sample was classified as 

‘active’ or ‘inactive’ based on our classification algorithm. It was revealed that males had 

a higher proportion of active samples for all pathways identified from both tissue types.  

2. Sex-biased patterns of pathway activity in HCC 

 The analysis of HCC revealed the most substantial quantity of pathways with sex 

differences in activity scores. We identified 34 pathways with sex-biased activity in HCC 

using the Wilcoxon rank sum test, notably tgf-beta signaling pathway (kegg) and 
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androgen and estrogen metabolism (kegg) (Table 3). Unlike normal and tumor adjacent 

tissue, there was no observed trend of male activity in relation to females in HCC. 

Furthermore, classification analysis of HCC samples revealed that higher mean activity 

scores correlated with a larger proportion of active samples for all significant pathways.  

3. Sex differences observed in pathway consistency across all tissue types 

Sex differences were observed in pathway consistency for normal tissue, tumor 

adjacent tissue, and HCC using the Wilcoxon rank sum test. HCC had the highest 

quantity of significant pathways with 46 identified (Table 3). 7 pathways were identified 

in normal liver tissue and 4 pathways were identified in tumor adjacent tissue (Figure 2).  

Chi-squared analysis in HCC tumor tissue comparing classification data for 

females and males identified two more pathways with sex differences in consistency 

scores, toll-like receptor pathway (biocarta) and dicer pathway (biocarta).  

4. Cross-tissue analysis reveals sex differences in liver tissue 

 To further examine the sex differences driving HCC etiology, we tested for 

significant differences between normal, tumor adjacent, and tumor liver tissue using chi-

squared analysis performed in sex-combined and sex specific comparisons (see Appendix 

II). In the normal v. tumor adjacent combined analysis of female and male samples, we 

detected 647 and 609 pathways in activity and consistency, respectively. In female and 

male specific analyses for activity, we detected 403 and 502 pathways, respectively. For 

consistency, we detected 343 and 439 significant pathways, respectively. In sex-specific 

analyses for activity and consistency, we detected 367 and 313 pathways that were shared 
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between sexes. Of the identified pathways, 7 were male-specific in activity. In 

consistency, 2 pathways were female-specific and 5 were male-specific.  

 In normal v. tumor combined analysis of female and male samples, we detected 

699 and 755 pathways in activity and consistency, respectively. For activity in female 

and male specific analyses, we detected 489 and 663 pathways, respectively. For 

consistency in female and male specific analyses, we detected 462 and 675 pathways, 

respectively. Of the identified pathways in activity, 3 were female-specific and 20 were 

male-specific. In consistency, 4 pathways were male-specific.  

 In tumor adjacent v. tumor combined analysis of female and male samples, we 

detected 687 and 640 pathways in activity and consistency, respectively. For activity in 

female and male specific analyses, we detected 374 and 490 pathways, respectively. For 

consistency in female and male specific analyses, we detected 345 and 440, respectively. 

Of the identified pathways in activity, 10 were female-specific and 5 were male-specific. 

In consistency, 8 were female-specific and 7 were male-specific. 

5. Cross-tissue log-linear models reveal sex differences in pathway consistency 

 Pathways that were significant between sex (eg. female and male) while adjusting 

for tissue type (eg. normal and tumor) were identified using log-linear modeling of the 

sex-combined classification data. 2  pathways were identified using this method 

comparing females and males in normal liver tissue and HCC for pathway consistency, 

chromatin modifying enzymes (reactome) and eukaryotic translation initiation 

(reactome). In chromatin modifying enzymes (reactome), females were overrepresented 
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in the active distribution for normal liver tissue with Pearson residuals > 2.0 (Figure 6). 

Females in eukaryotic translation initiation (reactome) were underrepresented in the 

active distribution for normal liver tissue (Pearson residuals < 2.0) and overrepresented in 

the inactive distribution for HCC (Pearson residuals > 2.0). 

DISCUSSION 

We identified pathways that were different in normal, tumor adjacent, and tumor 

tissue types, indicating that male and female HCC are partially driven by different 

mechanisms and processes. While sex-biased differences in pathway activity or 

consistency may contribute to the sex-differences in cancer-occurrence, they are 

suggestive of distinct changes in biological mechanisms and processes between female 

and male HCC. Furthermore, a pathway that is significantly different between sexes in 

every tissue type may not be as biologically significant in the context of HCC etiology as 

a pathway that is significant in a single tissue type due to inherent biological differences 

between females and males. 

Pathways that are identified exclusively in normal liver tissue have a variety of 

implications for sex differences in liver tissue. Factors such as sex chromosomes or 

hormonal regulation can affect the biological mechanisms between sexes, so it is 

important to reveal the origin of any differences in pathway activity or consistency. 

Tumor adjacent tissue is representative of normal liver tissue; however, it is taken 

from an individual with HCC and is proximal to the tumor. As such, its expression may 

reflect constitutional genetic and environmental factors that are critical to the 
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development of cancer. Moreover, factors produced by the tumor itself (angiogenesis 

factors, immune modifying factors, etc) may alter the expression in this tissue.  

Pathways that are uniquely different in HCC should provide insight into the 

differences between male and female tumor biology. A pathway’s exclusivity to HCC 

makes it difficult to determine its role in HCC etiology; however, it can give researchers 

a framework for the development of personalized treatments. Additionally, sex-based 

analysis between normal and tumor tissue can provide insights into the mutational 

differences driving tumorigenesis.  

From the results presented, we can identify pathways that reflect sex differences 

in healthy liver tissue, tumor-adjacent tissue, and HCC. The differences found in HCC 

were the largest compared to the other tissue types in both activity and consistency. 

These sex differences point to biological mechanisms within the liver which may 

translate to the sex-biases observed in HCC occurrence and mortality.  

1. Male activity of translation factors and signaling pathways may drive sex-biased 

carcinogenesis in normal and tumor adjacent liver tissue 

 In normal and tumor adjacent liver tissue, we observed higher activity in male 

translation factors. Translation factors have garnered a lot of attention for their role in the 

onset and progression of various cancers (Hao et al. 2020). Eukaryotic mRNA translation 

is a complex process that includes four phases (initiation, elongation, termination, and 

ribosome recycling). Dysregulated mRNA translation is a common feature of 

carcinogenesis. Various oncogenic and tumor suppressive genes interact with translation 
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machinery, making the components of the translation promising therapeutic targets. 

Males showed a higher activity than females in eukaryotic translation elongation 

(reactome). Additionally, our results show sex differences in consistency for eukaryotic 

translation initiation (reactome) in cross-tissue analysis between normal and tumor 

tissue. These sex differences observed in pathways related to translation factors could 

prove to be promising targets for therapeutic interventions.  

 We also observed high activity in male signaling pathways in normal liver tissue. 

The wnt signaling pathway (kegg) is implicated in many physiological processes, 

including development, immune response, tissue homeostasis, and tissue regeneration. 

This pathway is a key factor in the development of hepatocytes and the liver’s ability to 

regenerate. The wnt signaling pathway (kegg) outlines the process by which beta-catenin 

is translocated into the nucleus (Wang et al. 2019). This translocation promotes the 

proliferation of hepatocytes, which can be a contributing factor to HCC. Additionally, it 

promotes the binding of t-cell transcription factors which support sex differences in the 

immune system. Activation of Wnt signaling pathways have been observed in multiple 

cancer types, making it an ideal target for therapeutics (Jung and Park 2020). 

Interestingly, we observed that males have a higher activity and consistency than females, 

but only in normal liver tissue. In the context of HCC etiology, increased activity of the 

pathway may be a driving factor of male-biased incidence.  
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2. Sex differences in metabolic pathway behaviors may underlie sex-biased 

occurrence and etiology 

 We identified metabolic pathways in HCC with sex-biased activity. HCC onset 

and progression is frequently accompanied by alterations of metabolic pathways, leading 

to dysregulation of metabolism. This is because the liver is a major regulator in the 

clearance of toxins and balancing of glucose, lipid, and amino acid uptake. It also 

manages metabolism throughout the whole today to maintain homeostasis. Some of these 

metabolic pathways are of particular interest in HCC.  

Androgen and estrogen metabolism (kegg) is a key factor in regulating liver 

homeostasis and function (Shen and Haifei 2015). The liver expresses both androgen and 

estrogen receptors and experimentally both androgens and estrogens have been 

implicated in stimulating hepatocyte proliferation and may act as liver tumor inducers or 

promoters (GIANNITRAPANI et al. 2006). The male-biased activity of this pathway 

may be a factor in HCC etiology. As a therapeutic target, certain studies have shown that 

neither androgen nor estrogen inhibitors are associated with a recession of cancer 

development, indicating that steroid biosynthesis may be a better target for cancer 

treatment. Chemical carcinogenesis (kegg) is another pathway that we identified to have 

male-biased activation. This pathway contains many genes associated with steroid 

biosynthesis, possibly revealing candidates for a valid target in cancer treatment.  

The mechanism of acetaminophen activity and toxicity (biocarta) is commonly 

associated with liver failure (Ramachandran and Jaeschke 2017). The overdose of 

acetaminophen is the most common cause of liver failure due to its narrow therapeutic 
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window and prescription of high doses. Excess damage to the liver may eventually lead 

to cirrhosis which increases the risk of developing HCC. Differences in the activity of 

this pathway provide insight to biological susceptibility or resistance in the toxicity of 

acetaminophen. Relevant literature suggests that the female preponderance of drug-

induced liver injury may be related to sex-based differences in the expression of genes 

that affect liver metabolic function and pathophysiology (Waxman and Holloway 2009). 

While this pathway may not be indicative of the sex-biased occurrence of liver in males, 

further research may reveal important biological functions affected by this pathway. 

Bile acid biosynthesis (kegg) and bile secretion (kegg) were found to have 

differences between sexes. Males had a higher activity in bile acid biosynthesis (kegg), 

but a lower activity in bile secretion (kegg) in relation to females. This may indicate that 

males have higher levels of bile acid in the liver due to both higher production and lower 

secretion, which is supported by animal models (Bennion et al. 1978). Bile acid is a 

water-soluble steroid synthesized in the hepatocytes of the liver. It is critical for digestion 

and absorption of fats and fat-soluble vitamins in the small intestine; however, in high 

levels it can be very dangerous (Wang et al. 2013). Bile acid has been found to be a 

potential carcinogen and deregulation of bile acid homeostasis has been linked to HCC 

formation (Cameron et al. 1982; Gupta et al. 2004; Jean-Louis et al. 2006) . The potential 

of increased levels of bile acid in male HCC has implications for its etiology.  

Many pathways associated with carbohydrate and amino-acid metabolism such as 

histidine metabolism (kegg), pyruvate metabolism (kegg), and pentose phosphate 

pathway (reactome) were found to be significantly different between sexes. Relevant 
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literature shows that energy metabolism has great potential as a target for anticancer 

drugs (Rodríguez-Enríquez et al. 2014; Tao et al. 2015). The metabolic profile in healthy 

tissue is vastly different than in cancerous tissue and there is further variation between 

organ systems (Howarth et al. 2008; Nilsson et al. 2020). The results presented here 

shows that sex may be another important source of variation in metabolic profiles in 

addition to tissue types.  

3. Differences in activation of signaling and cell-cycle pathways in HCC may drive 

sex-biased tumorigenesis 

D4-GDI signaling pathway (biocarta) has an important role in apoptotic cells. 

Changes in apoptosis is a notable factor in the development of many cancer types, 

including HCC as well as a regulator of many immune cell types. D4-GDI (a member of 

Rho family of GDP Dissociation Inhibitors, or RhoGDIs) is a negative regulator of the 

Ras related Rho Family of GTPases. Rho GTPases promote cytoskeletal and membrane 

changes associated with apoptotic cell death, so the removal of the D4-GDI block 

through its cleavage is important for inducing apoptosis (Essmann et al. 2000). RhoGDIs 

have also been a target of interest in certain cancer-type therapies including breast, 

bladder, and pancreatic cancer for their role in carcinogenesis and tumor progression 

(Harding and Theodorescu 2010). The pattern of signaling in a RhoGDI pathway is 

highly variable between tissues, so therapeutic intervention will be highly dependent on 

the cancer type or even sub-type. The results presented here have implications for 

targeted treatment of male and female HCC.  
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TGF-beta signaling pathway (kegg) is involved in every stage of liver disease 

progression, including HCC (Fabregat et al. 2016). During early stages of tumorigenesis, 

it acts as a tumor suppressor, while in later stages it acts with a pro-tumorigenic role, 

promoting invasiveness and metastasis once cells become resistant to its suppressor 

effects (Fabregat and Caballero-Díaz 2018). TGF-beta is one of the strongest inducers of 

epithelial-mesenchymal transition (EMT) which promotes tumor heterogeneity and 

apoptotic resistance. Pathway analysis of HCC samples show that males have a higher 

mean activity of TGF-beta signaling pathway than females. A higher activity within this 

pathway could have implications for different rates of tumor progression and 

invasiveness in males.  

4. Cross tissue analysis reveals sex-specific differences in immune pathways between 

normal and HCC liver tissue 

 Notable findings for cross-tissue analysis was the identification of immune 

pathways in sex-specific analysis. Immune pathways such as il-12 signaling mediated by 

stat4 (nci/nature), il-7 signal transduction (biocarta), and p75nrt signals via nf-kb 

(reactome) had different activity between tissues for males in cross tissue analysis 

between normal, tumor adjacent, and HCC liver tissue, but not females. Characterization 

of immune profiles is important to the development of targeted immunotherapies, so sex 

differences in pathway activity implies a need for sex-specific approaches in the 

development of immunotherapy in HCC. The results we present lay a foundation for 

future research into considering sex as a variable for clinical research in the context of 

targeted immunotherapy.  
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CONCLUSION 

Here we identified biological pathways with sex differences in HCC. Notably, we 

identified pathways related to metabolism, sex-hormones, bile acid, signaling, and 

translation factors. These pathways were shown in previous literature to be important to 

the risk and severity of HCC. Importantly, their detection shows the power that pathway 

analysis has in characterizing cancer subtypes. Our research provides a framework for 

future studies to create therapeutic interventions or screening tools for HCC or other sex-

biased cancers. Future research would be needed to better understand the effects of these 

functions and their importance as a biomarker or target for cancer treatment  
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APPENDIX I 

 

WNT SIGNALING PATHWAY (KEGG) INTERACTION DIAGRAM 
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APPENDIX II 

 

CROSS TISSUE CHI-SQUARED ANALYSIS: VENN DIAGRAMS AND SEX-

SPECIFIC TABLES 
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