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ABSTRACT

This dissertation contributes to uncertainty-aware neural networks using multi-

modality data, with a focus on industrial and aviation applications. Drawing from

seminal works in recent years that have significantly advanced the field, this dissertation

develops techniques for incorporating uncertainty estimation and leveraging multi-

modality information into neural networks for tasks such as fault detection and

environmental perception. The escalating complexity of data in engineering contexts

demands models that predict accurately and quantify uncertainty in these predictions.

The methods proposed in this document utilize various techniques, including Bayesian

Deep Learning, multi-task regularization and feature fusion, and efficient use of

unlabeled data. Popular methods of uncertainty quantification are analyzed empirically

to derive important insights on their use in real world engineering problems. The

primary objective is to develop and refine Bayesian neural network models for enhanced

predictive accuracy and decision support in engineering. This involves exploring

novel architectures, regularization methods, and data fusion techniques. Significant

attention is given to data handling challenges in deep learning, particularly in the

context of quality inspection systems. The research integrates deep learning with vision

systems for engineering risk assessment and decision support tasks, and introduces

two novel benchmark datasets designed for semantic segmentation and classification

tasks. Additionally, the dissertation delves into RGB-Depth data fusion for pipeline

defect detection and the use of semi-supervised learning algorithms for manufacturing

inspection tasks with imaging data. The dissertation contributes to bridging the gap

between advanced statistical methods and practical engineering applications.
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Chapter 1

INTRODUCTION

1.1 Overview

Engineering has witnessed a paradigm shift propelled by advancements in machine

learning and data analytics. Among these, neural networks are beginning to emerge

as powerful tools, offering significant potential for enhancing predictive accuracy and

decision support (Pin et al., 2020; Krizhevsky et al., 2017). Recent advancements

in convolutional neural networks have led to state-of-the-art results in various tasks

such as visual recognition, driven by the growth in annotated data and hardware

(Gu et al., 2018). However, despite these advancements, several gaps remain in the

realms of uncertainty quantification and the tailoring of these methods to real-world

engineering problems. The escalating complexity and scale of data in engineering

contexts underscore the need for models that not only predict with high accuracy but

also quantify the uncertainty in these predictions (Abdar et al., 2021). Uncertainty

quantification is crucial in high-stakes scenarios such as structural health monitoring

and decision support systems (Sankararaman and Mahadevan, 2009; Nasr et al., 2018).

In these contexts, the accuracy of predictions is not the only concern. Understanding

the confidence and limitations of these predictions is equally important, as the

consequences of errors can be significant. By quantifying uncertainty, engineers and

decision-makers can better assess the risks associated with different actions or inaction,

leading to more informed and safer choices. It allows for a more nuanced approach

than simply relying on the most likely prediction by also considering the range of
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possible outcomes and their associated probabilities. This is especially important in

fields like structural health monitoring, where the integrity and safety of infrastructure

are at stake, and in decision support systems that require downstream processing steps

after the prediction before taking action. Machine learning works on the interplay

between the data, the model, the optimization objective functions, and the evaluation

metrics. The focus of this document is novel architectures, regularization methods,

and data fusion techniques, which encompass the first three elements that will cause

improvements in the fourth.

1.1.1 Data Handling

Deep learning in quality inspection systems often require a significant amount

of annotated images, which can be costly and time-consuming to collect. This is

particularly challenging for rare defects due to the scarcity of samples. One way to

handle this is using simulated environments to generate training data (Gutierrez et al.,

2021). This helps reduce costs and puts forth directions for model prototyping and

evaluations, provided the simulated data is close enough to what one might encounter

in the real world.

Utilizing deep learning algorithms with vision systems has shown feasibility in

automated industrial quality inspection (Rathod and Salehi, 2020; Cheng and Zhou,

2021; Yang et al., 2020a; Liu and He, 2022). For instance, the integration of deep

learning with vision systems for industrial quality inspection allows for efficient

detection of product surface defects. The challenge for deep learning lies not merely

in accessing voluminous data but in acquiring data of a sufficient quality and in

understanding how to leverage this data effectively to enhance specific metrics critical
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to task performance. The choice of data and how it is processed can profoundly

influence the outcomes of machine learning models. In traditional machine learning

approaches, feature engineering played a pivotal role. It involves extracting meaningful

information from raw data to improve model performance, particularly in specialized

tasks where domain knowledge can guide the selection of relevant features. However,

this approach has limitations, especially in handling intra-class variability, where

the characteristics within a single class vary significantly. This variability can cause

models reliant on manual feature engineering to underperform or require constant

adjustment to maintain performance. Deep learning, in contrast, simplifies this process

by employing layers of parameters that automatically learn to transform data into

relevant features. This marks a departure from the manual, often labor-intensive

process of feature engineering, enabling models to scale and adapt to a broader range

of tasks with diverse data sets.

Benchmark datasets have been created to aid in training machine learning models

for various industrial tasks. These benchmarks are diverse in size, ranging from small

(Shi et al., 2016) to massive. These large datasets are often found in applications such

as autonomous driving and generic object segmentation (Silberman and Fergus, 2011;

Cordts et al., 2016). In line with these efforts, the work done in this dissertation has

resulted in the creation of two benchmark datasets specifically designed for semantic

segmentation and classification tasks.

1.1.2 Data Fusion

The combination of multiple data modalities has seen the development of a lot

of foundational ideas in the controls and statistics literature. Methods like Kalman
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filtering and fuzzy logic have been used in many applications to combine information

from multiple sensors. (Alofi et al., 2017) provides a comprehensive comparison of

various data fusion techniques, including the Kalman filter and Bayesian Methods.

Alongside the adaptation of deep learning, a lot of these ideas are seen to transition

into the deep learning research literature (Stahlschmidt et al., 2022; Gao et al., 2020).

Industrial informatics applications can take advantage of a variety of sensor

technologies to enhance their capabilities. For instance, stereovision for part quality

inspection was studied in (Malassiotis and Strintzis, 2003). Another example is from

(Zhao et al., 2021), where they present a method for general object recognition using

multi-source data fusion. It integrates RGB, and Depth image features through

a feature fusion module, employing residual learning to reduce model parameter

complexity. A common thread to this literature is the variety of schemes employed

to induce improved empirical performance on benchmark datasets. With this in

mind, this dissertation focuses on RGB-Depth data fusion for the detection of defects

in gas pipelines. Specifically, the focus is on the detection and quantification of

both cracking and pitting corrosion defects that occur in pipelines. What makes

this problem important is the interacting nature of these threats in the gas pipeline.

The existence of multiple defects near one another causes the failure probability to

increase significantly more than if only one defect was present individually. This is

exacerbated by the presence of pitting defects that can occur in various configurations

and densities. Current pipe inspection techniques rely on ultrasonic sensors (Iyer

et al., 2012; Sun et al., 2023) and magnetic flux leakage detectors (Shi et al., 2015),

which require human analysis and face limitations like sensitivity to specific defect

types and operational constraints. Industry trends are moving towards vision-based

methods, which can detect textural and geometric changes more intuitively, potentially
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leading to more cost-effective and versatile robotic solutions that can enhance existing

inspection protocols.

1.1.3 Semi-supervised Learning in Industrial Informatics

Many industrial applications have the potential to utilize massive training datasets

for machine learning models. While this data has definitely been utilized well, it has

often been done at the cost of data labeling and feature engineering. This increases

both the cost and time to productionize machine learning workflows. Models that

require the use of fully labeled (x,y) pairs of training samples are called supervised

learners. The other end of this spectrum, unsupervised learning, does not require

any labels at all to learn a function to map x to y. To take advantage of supervisory

signals, while not having to label the entire dataset manually before training is the

motivation behind semi-supervised learning algorithms. Semi-supervised learning

algorithms rely on the ability to extract patterns and insights from the unlabeled data

conditioned on the strong signal from the labeled data, using them to enhance the

learning process. By capitalizing on the inherent structure of this unlabeled data,

these models can improve their accuracy and robustness, surpassing the performance

of models trained solely on limited labeled datasets. Semi-supervised models can

even adapt to an influx of data that is not static, but evolves, continuously refining

their predictions and providing up-to-date predictions (Din et al., 2020). There are a

multitude of semi-supervised learning methods specific to various application areas,

but the scope of this dissertation is with respect to the utilization of semi-supervised

models for manufacturing inspection tasks with imaging data.
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1.1.4 Uncertainty Quantification

Traditional neural network models, while effective in various applications, often

fall short in providing a comprehensive framework for uncertainty quantification. This

limitation becomes more pronounced in industrial informatics, where the data is

not only vast but also often imbalanced, noisy, and incomplete. In such scenarios,

uncertainty quantification for the predictions become crucial. Addressing this gap, this

dissertation utilizes Bayesian inference techniques that imbue neural networks with the

capacity to quantify and manage uncertainty in a principled manner. The integration

of Bayesian principles with neural network architectures enables the development

of models that are not only predictive but also provide a measure of confidence in

their predictions, a feature critical for decision-making in engineering applications.

Moreover, this work proposes novel neural network architectures and regularization

techniques specifically designed for the challenges encountered in industrial informatics

problems such as defect detection. These methods are empirically tested and validated

using benchmark datasets and custom-built, in-house datasets, ranging from the

detection of structural defects to the provision of decision support for general aviation

pilots.

1.2 Outline of the Dissertation

The motivation behind this dissertation stems from the need to develop, analyze

and refine Bayesian neural network models that are not only theoretically sound but

also practically applicable in addressing pressing challenges in engineering today. By

focusing on uncertainty quantification and data fusion, this research seeks to bridge
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the gap between advanced statistical methods and real-world engineering applications,

ensuring that decisions made on the basis of these models are both reliable and robust.

This dissertation aims to develop uncertainty-aware neural network frameworks

that enhance the capabilities of engineers in detecting, analyzing, and making informed

decisions under conditions of uncertainty. The following chapters delve into various

aspects of this overarching goal, each addressing specific challenges and proposing

solutions that advance the understanding and application of neural networks in

engineering problems.

Chapter 2 provides background on some of the foundational concepts used through-

out this dissertation.

Chapter 3 proposes a framework that can integrate different types of constraints

on neural network predictions in a principled, Bayesian manner. The need for deep

learning models to incorporate programmable constraints in their outputs is motivated

by their use in surrogate models, learning with limited data and partial information,

and in similar situations where the model behavior needs to be flexible. This framework

is based on Maximum Entropy (MaxEnt) for constraining Bayesian Neural Network

predictions, demonstrating an ability to constrain values, derivatives, and variance of

predictions.

In Chapter 4, an analysis of popular Bayesian Deep Learning techniques in the

context of crack image segmentation is presented. Specifically, the detection and

monitoring of structural defects using uncertainty-aware neural networks, such as those

occurring in buildings and roads, is presented. Traditional methods often struggle with

the challenges associated with accurately detecting defect morphology and dealing with

intra-class variability. This gap in capability underscores the necessity for innovative
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approaches that not only embrace the complexity of these tasks but also provide

robust, uncertainty-aware solutions.

Furthermore, the integration of such advanced techniques in practical scenarios,

like in-line inspection of gas pipelines, presents its own set of unique challenges. These

include the need for models that can effectively fuse diverse data types, handle limited

labeled data, and provide interpretable, actionable insights in dynamic, often critical

environments. To this end, the following chapters focus on these specific areas.

Chapter 5 proposes an end-to-end semantic segmentation model for gas pipeline

defect detection that both leverages the geometric considerations of the scene and

also uses learned features vis-a-vis deep learning, with a combination of optimization

objectives.

Chapter 6 proposes a new semi-supervised method to deal with limited labeled

data in the context of manufacturing defect detection. The method that can take a

small labeled set of data, and a larger set of unlabeled data, to produce fine-grained

defect segmentation that comes close to the performance of fully supervised methods.

Finally, this dissertation also focused on building a framework for improving

situational awareness in aviation in Chapter 7. While seemingly distinct in its aviation

focus, this work applies the principles seen in the preceding chapters. It extends the

concepts of Bayesian uncertainty quantification and neural network modeling into the

realm of aviation, specifically tailored for General Aviation (GA) pilots. This chapter

showcases the practical applicability and versatility of the neural models in a high-

stakes environment, along with highlighting the potential of commercially available

image sensors to reduce the cost of acquiring data compared to more expensive

alternatives. The decision support system designed for GA pilots leverages data

fusion and handling variable data quality and quantity. The application provides
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further evidence of the flexibility and broad applicability of uncertainty-aware deep

learning frameworks and uncertainty quantification methods developed throughout

this dissertation.
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Chapter 2

BACKGROUND

This chapter outlines some technical concepts foundational to this dissertation.

Initially, it provides an overview of neural networks and explores the rationale for using

Bayesian Neural Networks. Subsequently, it discusses several methods for performing

Bayesian inference in neural network models.

2.1 Neural Network Models

Regression models assume a linear relationship between input variables (features)

and a target variables, formulated as:

y = β0 + β1x1 + β2x2 + ...+ βnxn + ϵ(x1, ..., xn)

where y is the target, x1, x2, ..., xn are inputs, β0, β1, ..., βn are coefficients, and ϵ

represents a noise function that can either be independent or have input dependencies

as shown in the equation.

Neural networks can be thought of as layers of regression models that build upon

each other, introducing the ability to approximate more complex functions:

z[1] = W [1]x+ b[1], a[1] = σ(z[1]) (2.1a)

z[2] = W [2]a[1] + b[2], a[2] = σ(z[2]) (2.1b)

...

z[L] = W [L]a[L−1] + b[L], ŷ = σ(z[L]) (2.1c)
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where W [l] and b[l] are the weights and biases of layer l, σ is a non-linear mapping

from the output of the hidden layers, and ŷ represents the output prediction. These

mappings are called activation functions.

2.1.1 Inductive Biases in Neural Networks

Going back to the regression example, it is easy to see that the model induces

strong assumptions on the set of functions that can be admitted as solutions to the

fitting problem given some data. Linear regression forces the output to be linearly

related to the inputs, with an additive noise component that may vary with each input.

Neural network models can incorporate many interesting inductive biases, a few of

which that are most relevant to this dissertation will be discussed in this section.

The literature sees commonly used functions such as sigmoid, σ(x) = 1
1+e−x or

ReLU(x) = max(0, x) as non-linear activation functions. These activation functions

can serve to modulate the functional behavior of the neural network, introducing what

are known as inductive biases into the model. For instance, the sigmoid squashes the

values of the outputs between 0 and 1, which makes it a useful probabilistic tool. The

ReLU is a non-linearity that is commonly used in the latent (hidden) layers of the

neural networks.

Another source of incorporating inductive biases into the model can come from

the organization of the parameters. While the basic neural network in Equation 2.1

has each element of the output multiplied by different weights, specific elements in

the output can also have a common weight associated with it. This type of inductive

bias motivates the use of the popular convolutional neural network (CNN) (LeCun

et al., 1995) architecture . CNNs exhibit a significant inductive bias specifically crafted
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to handle grid-like data, such as images, through several key architectural features

including local receptive fields (Luo et al., 2016) and spatial hierarchies (Kavukcuoglu

et al., 2010; Zhou et al., 2016). Local receptive fields refer to the small, localized

areas of the input data, such as a patch of pixels in an image, that each neuron in a

convolutional layer observes. This structure enables the neuron to detect patterns such

as edges or textures within this confined space, contributing to the network’s ability

to recognize local features without the influence of the entire image. Such localized

processing simulates how human vision works, focusing on specific segments before

integrating the information for broader understanding. Spatial hierarchies organize

these local features into increasingly complex representations at each subsequent layer

of the network. The first layer may identify simple patterns like edges, the next layer

assembles these into contours, and higher layers may interpret these contours as parts

of objects. This hierarchical processing facilitates the abstraction of high-level features

from raw pixel data, allowing CNNs to build an intricate understanding from simple to

complex elements within an image. The shared weights across these hierarchical layers

promote translational invariance, meaning once a feature is learned at one position, it

can be recognized anywhere in the image.

Neural network training involves optimizing weights and biases using backpropa-

gation Rumelhart et al. (1986) and algorithms like stochastic gradient descent Bottou

et al. (1991) to minimize the loss between predicted and actual outputs.

Standard neural networks, however, do not account for uncertainty in their predic-

tions, providing so-called point estimates obtained through the maximum likelihood

estimation process. This limitation is addressed by Bayesian Neural Networks, which

incorporate Bayesian probability principles to manage uncertainty and provide more

reliable predictions, discussed in Section 2.3.
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2.2 Uncertainty Quantification

Prior to discussing the specifics of Bayesian Inference in Neural Networks, a

discussion that motivates why you need Bayesian reasoning in the context of industrial

risk assessment and decision support is important.

For instance, decision support systems play a crucial role in identifying and

mitigating risks associated with defects. These systems rely heavily on accurate defect

detection mechanisms to prevent potential failures and ensure product quality. Risk

assessment in this scenario involves evaluating the likelihood and potential impact of

defects, which can vary greatly depending on the industry sector, from minor cosmetic

issues in consumer products to critical structural failures in aerospace components.

The effectiveness of these assessments is directly tied to the quality of the data and the

precision of the prediction models used. By incorporating uncertainty quantification

into neural networks, decision support systems can better assess risks by not only

predicting the presence of defects but also providing a measure of confidence in these

predictions. This dual capability is essential for making informed decisions about

whether to reject a product, rework it, or accept it as is, thereby optimizing resource

allocation and minimizing potential losses.

To effectively implement uncertainty quantification in neural networks, it is crucial

to distinguish between the different types of uncertainty. Broadly, uncertainties can

be categorized into two types: aleatoric and epistemic.

Aleatoric uncertainty arises from inherent randomness in the system or environment.

This type of uncertainty is irreducible and can be attributed to factors like sensor

noise or inherent variability in material properties. In the context of decision support
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systems, accounting for aleatoric uncertainty ensures robustness against natural

variations in the input data.

Epistemic uncertainty originates from inadequate knowledge or insufficient data.

This type of uncertainty can be mitigated by acquiring more data or refining the

model architecture. In industrial contexts, the significance of epistemic uncertainty is

profound as it mirrors the confidence in the model’s predictions, which in turn affects

risk management and decision-making.

Within epistemic uncertainty, it is valuable to distinguish between parameter un-

certainty and model uncertainty, as each influences the reliability of model predictions

differently:

Parameter uncertainty pertains to the uncertainty associated with the parameters

of a specific model. Variations in training data or conditions can lead to different

parameter estimations, thereby influencing the predictions made by the model. Such

uncertainty can typically be quantified through Bayesian inference, where model

parameters are considered as random variables defined by probability distributions.

Model uncertainty emerges from the selection of the model structure and its associ-

ated inductive biases. Various model architectures fit the data differently, potentially

overlooking or misrepresenting certain correlations. The bias-variance tradeoff offers

insights into this: For instance, a neural network that is under-parameterized might

not capture all necessary features, while an overly complex model might model noise as

if it were signal. Tackling model selection bias generally involves using cross-validation,

applying model comparison criteria, or deploying ensemble techniques that combine

the outputs of several models to improve generalization and reduce the likelihood

of an inappropriate model choice. In this dissertation, particular focus is given to

Bayesian Neural Network models for parameter and aleatoric uncertainties.
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2.3 Bayesian Neural Networks

2.3.1 Bayesian Parameterization of Neural Networks

Bayesian Neural Networks arose out of a need to have a principled alternative to

point-estimates of parameters in standard neural networks. Given a neural network

f(θ), and dataset D = (xi, yi)
n
i=1, one can formulate the process as updating a prior

belief p(θ) using a likelihood p(D|θ), to obtain a posterior p(θ|D). Note that the

prior distribution of the parameters are only part of the overall prior hypothesis. The

inductive biases of the model, as discussed in the previous section are an implicit prior

imposed on the model itself. The prior updating scheme is given by Bayes rule:

p(θ|D) =
p(D|θ) · p(θ)

p(D)
(2.2)

In the above equation, the denominator p(D) is the marginal likelihood of the data,

that is obtained after marginalization of the parameter θ. While the Bayes rule is

valid for any family of models, implementing updating schemes for neural networks

presents a challenge. The dimension of the parameter set θ can be large, leading to

computational difficulties in calculating the marginal likelihood. Moreover, the goal

of inferring parameters is to predict on test samples x∗. However, one again confronts

a need to marginalize the parameters using p(y∗|x∗, D) =
∫
p(y∗|x∗, θ)p(θ|D)dθ to

get an averaged prediction. Sampling approaches such as Markov Chain Monte

Carlo (MCMC) are often used in smaller models to get accurate estimates of the

true posterior distributions. However, for neural networks, this sampling approach is

disfavored due to excessive computational requirements. Instead, variational inference

techniques are used.

VI approximates the posterior by finding a proposal distribution qϕ(θ) that min-
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imizes the KL-divergence between the two. The KL divergence equation is given

by:

KL(qϕ(θ)||p(θ|D)) = Eq[log(qϕ(θ))]− Eq[log(p(θ|D))] (2.3)

From Bayes rule, it is seen that the second term is still dependent on the marginal

likelihood, which is intractable. However, p(D) is independent of the proposal distribu-

tion qϕ(θ). Taking advantage of this fact, variational methods maximize an equation

that is proportional to the KL-divergence, the Evidence Lower Bound (ELBO):

ELBO(q) = Eq[log(p(D|θ))] + Eq[log(p(θ))]− E[log(qϕ(θ))]

= Eq[log(p(D|θ))]− KL(qϕ(θ)||p(θ))
(2.4)

The two components present in the final form consist of an expected log likelihood

term that is data-dependent, and a term that encourages the proposal distribution to

not deviate from the prior.

The ELBO equation has gradients that can be estimated using Monte Carlo

sampling of the parameter θi from the approximated posterior after each iteration of

the training loop.

LV I =
n∑

i=1

log(qϕ(θ
i))− P (θi)− P (D|θi) (2.5)

It is important to recall here that the parameter θ is a random variable. Directly

performing backpropagation using realizations of θ implies that one needs to take the

gradient of the expectation of the realizations. In many cases, the gradient of the

expectation is the expectation of the gradient. But when the sampling distribution

itself is parameterized by another random variable, the gradients are estimated using

a reparameterization trick (Blundell et al., 2015):

θ = µ+ log(1 + exp(ρ))ϵ, ϵ ∼ N(0, I) (2.6)
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The above reparameterization allows for computing the overall loss function given in

Equation 2.5 by calculating the gradient with respect to the mean and the variance

using backpropagation, and update these parameters with commonly used optimization

methods such as Stochastic Gradient Descent (SGD).

2.3.2 Dropout Variational Inference

Another commonly used VI approach is the MC-Dropout (MCD). MC-Dropout

performs VI with a specific choice of the approximating distribution qθ(w|D). In this

case, qθ is a distribution over the weight matrices whose columns are randomly set to

zero. This is commonly referred to as dropout in the deep learning literature:

Θi =Mi.diag([zi,j]
Ki
j=1) (2.7)

zi,j ∼ Bernoulli(pi), i = 1, ..., Lj = 1, ..., Ki−1

In the above equation, Mi is the deterministic weight matrix for a layer Li, and Θi

is the stochastic parameter set induced by the sampling of an iid Bernoulli random

vector zi. The MC-Dropout inference procedure minimizes the KL-Divergence between

qϕ(θ|D) and a . Details on this derivation are given in the Appendix of Gal and

Ghahramani (2016). After inference, the uncertainty is evaluated by averaging N

forward passes during prediction. This is equivalent to drawing N samples from the

set of parameters defined in the model posterior and evaluating a function using each

of those samples. The sample mean of the predictive distribution approaches the

population means at large sample sizes, with a spread that is dictated by the form of

the function resulting from each dropout sampling iteration.

The dropout probability pi in MC-Dropout is a hyperparameter that requires

expensive grid search to obtain a good epistemic uncertainty. The objective function
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proposed by (Gal et al., 2017) optimizes the dropout probability p using an entropy

term that penalizes high dropout probabilities. This objective is derived analytically

using a discrete quantised gaussian prior, which results in the following KL divergence

objective:

KL(qϕ(θ)||p(θ))α
l2(1− p)

2
||M ||2 −KH(p) (2.8a)

H(p) = −plogp− (1− p)log(1− p) (2.8b)

The inclusion of the entropy term H(p) reflects the information-theoretic nature of

uncertainty. By discouraging extreme values of p, the model is less likely to become

either too confident (overfitting) or too uncertain (underfitting) about its predictions.

The coefficient α acts as a scaling factor that adjusts the strength of the regularization,

effectively controlling the trade-off between the model complexity and the entropy term.

The l2 regularization term ||M ||2 penalizes large weights, promoting generalization by

preventing over-reliance on any single feature.
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Chapter 3

BAYESIAN ENTROPY NEURAL NETWORKS FOR PHYSICS-AWARE

PREDICTION

3.1 Introduction

Neural networks have achieved remarkable success in various domains, ranging

from image recognition to natural language processing (Goldberg, 2016; Khan et al.,

2020). Despite these advancements, traditional deep learning approaches often fall

short in scenarios that demand adherence to specific constraints (Zhu et al., 2019;

Hosseini-Asl et al., 2015) or a deeper understanding of model uncertainty (Wilson

and Izmailov, 2020). This limitation becomes particularly pronounced in fields such

as surrogate modeling, learning with limited or partial data, and applications where

flexible adaptation to non-sample based information is crucial. For surrogate models,

the neural network model is expected to conform to behavior governed by the system

model, and without enough data across the domain of interest, neural network

performance falls short.

Raissi et al. (2019) presents physics-informed neural networks (PINNs) that directly

incorporates physical laws in the form of differential equations, directly into the loss

function of the neural network. This is achieved by constructing a composite loss

function that not only measures the difference between predictions and data but

also quantifies the deviation from the specified physical laws. PINNs are specialized

models that have been shown to model differential equation constraints accurately

using regularization.
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Wang et al. (2020b) presents a method for information fusion combining the

maximum entropy (ME) method with the classical Bayesian network, termed as the

Bayesian-Entropy Network (BEN). This method is particularly adept at handling

various types of information for classification and updating, such as point data,

statistical information, and range data. The BEN method extends the Bayesian

approach by integrating additional information in the form of constraints into the

entropy part, while the Bayesian part handles classical point observation data. This

integration allows for a more comprehensive approach to modeling and decision-making.

The BEN method demonstrates a flexible adaptation to non-sample based information,

making it particularly relevant in fields like surrogate modeling and learning with

limited or partial data. For example, Wang et al. (2021d) applies this method to

the Gaussian Process model by adding information as constraints. In this chapter,

this is extended to apply to neural network models, showcasing its potential in tasks

such as information constraints for high dimensional problems such as microstructure

generation, but also in controlling the predicted uncertainty, which is an important

avenue of research. The reason for the latter is motivated by wanting to output

high uncertainty for predictions outside the training domain, or if the information

constraints are conflicting, as will be shown in the later stages of this chapter.

Huang et al. (2022) and Yang et al. (2020c) are two contemporary papers that are

closest to this work. Huang et al. (2022) focuses on embedding soft and hard knowledge

constraints into the posterior, offering enhanced model robustness and adaptability.

Yang et al. (2020a) modifies the prior, where the prior is optimized to comply with the

constraints. Where OC-BNNs (Yang et al., 2020c) primarily focus on defining equality

and inequality constraints by multiplying likelihoods and priors in the probability

space and PR-BNNs directly regularizes the posterior predictive distribution to comply
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with the constraint, in this chapter, a framework that generalizes these approaches

by integrating a broad range of constraints using the Maximum Entropy (MaxEnt)

principle is proposed.

The essence of Bayesian Entropy Neural Networks (BENN) lies in its ability to

integrate the Maximum Entropy (MaxEnt) principle with the Bayesian framework,

resulting in a model that not only provides constrained and uncertain predictions but

also remains computationally feasible. The methodological underpinnings of Bayesian

Neural Networks (BNNs), founded on principles of Bayesian inference, present an

elegant solution to the over-reliance on point estimates inherent in traditional neural

networks. By leveraging posterior distributions over parameters, BNNs offer a more

nuanced view of model uncertainty, essential in many real-world applications. However,

the practical implementation of Bayesian updating in neural networks is challenged

by computational limitations, particularly when dealing with large parameter spaces.

To address this, Variational Inference (VI), an approach that significantly reduces

computational overhead by approximating posterior distributions, is utilized. This

approximation is crucial for enabling the application of BNNs in more complex and

realistic scenarios. Works such as Wang et al. (2021a) use a sequential optimization

approach to iteratively find model parameters for the Gaussian Process and the

Lagrange multipliers. However, neural networks provide us with backpropagation

machinery to handle simultaenous optimization under constraints. Therefore, this

work utilizes the Modified Differential Method of Multipliers (MDMM) to efficiently

learn constraint weights.

The rest of the chapter is organized as follows:

1. Section 3.2 provides background information on the Maximum Entropy method,
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and ends with a description of the Bayesian Entropy Neural Network (BENN)

framework.

2. Section 3.3 covers three experiments:

a) 1D Regression: Implementing value, derivative and predictive variance

constraints.

b) Beam deflection: The 1D regression section is supplemented by demonstrat-

ing the performance of the BENN approach in a beam deflection problem,

where part of the domain is observed.

c) Microstructure generation: This experiment showcases the benefit of con-

strained learning to enhance the performance of microstructure generation

using suitable constraints on the microstructure properties.

3. Section 3.4 summarizes the work done in this chapter and the importance of the

main results obtained.

3.2 Method

3.2.1 Bayesian Entropy Method for Incorporating Constraint Information

The method of maximum entropy, seen in (Giffin et al., 2007) was proposed by

Jaynes to perform inference of model parameters subject to constraints. In other

words, MaxEnt picks parameters that maximize the entropy of its distribution insofar

as the constraints allow. As a corollary, it is also obtained that given no information

about the parameters, a flat distribution is the one that maximizes entropy. This

line of reasoning suggests that this method fits well within the Bayesian updating

paradigm, as constraints are indeed a form of information about the parameters.
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If we have a joint prior p(θ), x on a model given some information F about the

model parameters, we can maximize the entropy between the prior and the posterior

update considering the constraints as an optimization problem:

argminθ −
∫
P (θ, xc, x)log

P (θ, xc, x)

P (θ, x)
dxdθ

s.t.
∫
dxdθp(θ, xc, x) = 1∫

p(xc, x, θ)f(θ)dθdx = F

(3.1)

The above equation formalizes the entropy maximization problem subject to a con-

straint on the value of p and a normalization constraint on p. The solution is derived

using the method of Lagrangian multipliers. If one extends the above constrained

system to m constraints, the objective is to solve for m+ 1 multipliers:

L(p, λ, ν) =

∫
pilog(pi)dp−

m∑
k=1

(λk

∫
(pifk(xi)− Fk)dp− ν

∫
(pi − 1)dp (3.2)

The solution takes the form of an exponential function, normalized by a partition

function Z:

p(θ|x, xc) =
1

Z(λ1, ..., λm)
· exp(−

m∑
k=1

λkfk(x))

Z(λ1, ..., λm) =

∫
exp(−

m∑
k=1

λkfk(x))

(3.3)

From the above description, it is seen that the inference procedure requires a prior

that captures no new information apart from the constraints and the data. Therefore,

one choice to model this is to use a uniform prior. For a distribution qϕ(θ) and a

uniform prior distribution p(θ), the Kullback-Leibler (KL) divergence from qϕ(θ) to

p(θ) can be calculated as:

DKL(qϕ(θ)||p(θ)) =
∫
qϕ(θ) log

qϕ(θ)

p(θ)
dw (3.4)
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With p(θ) = 1
|Θ| for all θ ∈ θ, the KL divergence simplifies to:

DKL(qϕ(θ)||p(θ)) =
∫
qϕ(θ) log(qϕ(θ) · |Θ|) dθ (3.5)

This can be decomposed into:

DKL(qϕ(θ)||p(θ)) =
∫
qϕ(θ) log qϕ(θ) dθ + log |Θ|

∫
qϕ(θ) dθ (3.6)

Given that qϕ(θ) is a probability distribution, the second integral evaluates to 1,

yielding:

DKL(qϕ(θ)||p(θ)) =
∫
qϕ(θ) log qϕ(θ) dθ + log |Θ| (3.7)

The integral represents the negative of the entropy of qϕ, denoted as −H(qϕ). Therefore,

the KL divergence can be rewritten as:

DKL(qϕ(θ)||p(θ)) = −H(qϕ) + log |Θ| (3.8)

Since log |Θ| is constant, the negative KL divergence is effectively proportional to the

entropy of the variational distribution. Such a measure has indeed been concurrently

proposed by de Mathelin et al. (2023), where the model uses just the entropy of

the proposal distribution for KL-divergence minimization. This is motivated by the

above reasoning using the MaxEnt principle. Effectively, MaxEnt ensures that the

prior assumptions are minimal, as the uniform prior contributes only a constant term

to the KL divergence, making no further assumptions about the distribution of the

parameters.

3.2.2 Bayesian Entropy Neural Networks

Building on the MaxEnt principle and Bayesian Neural Networks (BNNs), this

section introduces Bayesian Entropy Neural Networks (BENN). The previous section
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modeled constraints on the posterior distribution. Now, constraint enforcement on

both the posterior predictive and the parameters is demonstrated using this framework.

Given a Bayesian Neural Network fBNN(θ), prediction ŷ and a constraint function g,

the learning objective can be formulated as:

LV I = argminθ(KL(qϕ(θ)||p(θ))− Eq(log p(D|θ)) + λ · g(x)) (3.9)

From Section 3.2.1, it is seen that the constrained optimization problem leads to an

updated posterior of the form given by Equation 3.3.

BENN gives us an easy way to sample from the posterior distribution, so one can

extract N samples from the posterior to evaluate the constraint. This is similar to

the sampling approach proposed by Wang et al. (2021a).

A loss that includes the constraint as a regularizer may not always result in a

local minimum, but can also be a stationary point. To improve this behavior, a more

efficient updating scheme is used for parameters and the Lagrangian multipliers. This

is done using a Modified Differential Method of Multipliers approach (MDMM) Platt

et al. (1987) approach, that is found to be effective for regression. MDMM adds an

extra damping term similar to penalty methods to the loss function, and has the

following form:

argminθL(p, λ, c) = argminθ(LV I + λg(x) +
c

2
g(x)2)

(3.10)

Compared to (Wang et al., 2021a) work on Bayesian Entropy Gaussian Process

(BEGP), the BENN leverages the high dimensional representation capacity of neural

networks, and uses the same underlying principle to enforce constraints. Moreover,

the optimization framework obtained as a result of the backpropagation algorithm

makes it possible to simultaneously optimize for both the model parameters and the
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Lagrangian multipliers. Gaussian Processes, however, have inherent advantages in

uncertainty quantification that Bayesian Neural Networks do not, and this chapter

attempts to incorporate the principles from MaxEnt to demonstrate constraining

predictive variance as well.

3.3 Experiments

3.3.1 1D-Regression

In this section, the data, architecture and loss used for the regression problem is

first described. Following this, a demonstration of value and derivative constraints is

shown. Finally, demonstrations to constrain the behavior of the predictive variance

for 1-D regression are shown.

The dataset for the 1D-regression problem models a polynomial function with

added noise and is defined over two distinct regions. In both regions, the function is

given by:

y = p0x
2 + p1x+ p2 + 0.15 sin(2πx) +N (0, σ) (3.11)

where the coefficients are p0 = 0.2, p1 = 0.05, and p2 = 0.01. The first region, from

x = −3 to x = −2, has a noise level with standard deviation σ = 0.01. The second

region, from x = 2.0 to x = 3.0, has a higher noise level with standard deviation

σ = 0.1. The training data Xtrain and corresponding labels Ytrain consist of samples

from both regions.

The architecture of the neural network used in these experiments is a Bayesian

Neural Network (BNN). The network comprises one hidden layer with 100 units and

employs the Rectified Linear Unit (ReLU) as the activation function. The output
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layer of the network is designed to produce two outputs: the mean prediction of

the target variable and a parameter termed as log(noise) or σ, which represents the

log-transformed noise level of the predictions. For the expected likelihood loss, it is

assumed that the data generated is from a Gaussian, and a negative log likelihood

loss is minimized:

L(y, ŷ, σ) = 1

N

N∑
i=1

(
(yi − ŷi)

2

2 exp(σ)
+
σ

2

)
(3.12)

Here, y represents the actual values, ŷ denotes the predicted mean values, N is the

number of data points, and σ is the log-noise parameter. This loss function not only

penalizes the deviation of predictions from the actual values but also incorporates the

uncertainty associated with the predictions as indicated by σ.

From the point of view of Maximum Entropy (MaxEnt), one seeks to make minimal

assumptions about the nature of the model before training. In the Bayesian framework,

this can be achieved by using a prior that is uniform over the space of parameters.

3.3.1.1 Incorporating Value and Derivative Constraints to the Prediction

In this section, the effects of incorporating additional constraints, specifically value

and derivative constraints, into the 1D regression model is demonstrated. These

constraints are particularly focused on areas outside the training data range. Several

experiments to understand how these constraints influence the model’s predictions

are conducted, especially in regions where training data is sparse or absent.
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3.3.1.1.1 Value Constraints Outside Training Range.

In the first demonstration, the two value constraints are placed at x = 5.0 and

x = 7.5, both outside the training data range. This setup allows us to observe the

model’s response to multiple external constraints and their impact on the overall

prediction accuracy. The results, shown in Figure 1a, shows that the proposed

approach is able to accurately capture the value constraint. The compliance of the

network to the constraints is strongly satisfied compared to the data, owing to the

representational capacity of the model.

3.3.1.1.2 Variance constraints

The BE technique can encode any type of information as a constraint. This

includes constraints on the predictive variance. While this is generally modulated

by the data using the Gaussian likelihood term, it is possible to enforce constraints

on its behavior given expert knowledge about it. Examples for such cases might be

to specify the level of decay in prediction confidence outside the training data range.

There are two options for implementing this using the BE method: The weights, and

the output. Figure 3 showcases three examples of arbitrary variance constraints on the

output variance neuron, applied in regions outside the training data, with increasing

uncertainty.
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3.3.1.1.3 Conflicting Constraint and Variance Constraint at Same Location.

Model behavior in the presence of conflicting constraints is shown in Figure 1b. Two

different value constraints are applied at the same location x = 7.5. This experiment is

designed to evaluate how the model handles conflicting information and to understand

the role of variance constraints in such situations. The variance at the constraint

location is meant to express the uncertainty in the data provided in the form of a

constraint. It is also reasonable to want to express arbitrary values of uncertainty at

such points. However, the model needs to account for the variance that is admissible

in these situations, so the predictive variance is constrained to be proportionate to

the uncertain value constraints.

3.3.1.1.4 Bound Constraints

Next, an evaluation of the model with bound constraints to ensure that the

predictions fall within a certain range is shown. For a given input x, the bound

constraints are defined by two functions, representing the upper bound ub(x) and

lower bound lb(x). These are given by:

ub(x) = 1.0, lb(x) = 0.5, ∀xϵ[−0.5, 0.5] (3.13)

where x is the input to the model. n bound constraints are enforced, each represented

as a hard constraint. For each test input xi ∈ Xtest, the constraints are formulated as:

lb(xi) ≤ predi ≤ ub(xi), ∀i ∈ {1, . . . , n}. (3.14)

Like the equality constraint, the infeasibility for the bounds is quantified by how far

a prediction is from satisfying the constraints. The bound constraints are assessed
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by computing the deviation of the bounds from the original prediction. The variance

constraints modify the predicted aleatoric variance to minimize the absolute difference

between the predicted and expected variance values.

Table 1 showcases a comparison of evaluation scores produced by PR-BNN (Huang

et al., 2022) and BENN on constrained regression experiments. The evaluation scores

are computed as the absolute value of the constraint violations, |ypred − ygt|, where

ypred is averaged from 250 evaluations of the model. In the table, Inf-1, Inf-2 indicate

the constraint violations of each constraint. For instance, the value constraints for

both the conflicting and non-conflicting case incorporate two separate constraints

that need to be satisfied. In the case of the derivative constraint, we only have one

constraint, whose violation is listed under Inf-1. Finally, for the bound constraint,

the violation is averaged through the constraint domain points and listed under Inf-1.

Figure 1 and Figure 2 show a visual comparison of these two approaches. BENN shows

significant differences with PR-BNN in the way conflicting constraints are handled.

As a result, PR-BNN biases its prediction towards one of the two value constraints,

whereas the BENN prediction occurs in between the two specified value constraints.

The addition of the variance constraints in this work also allows experts to express

uncertainties in the region of the specified constraints. The results of the derivative

and bound constraints, however, do not show significant differences. It is to be noted

however, that the PR-BNN method does have lower constraint violations compared

to the BENN.
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Table 1. Comparison of BENN and PR-BNN methods for value, bound and derivative
constraints

Experiment BENN PR-BNN
Inf-1 Inf-2 Inf-1 Inf-2

Value Constraints - No Conflict 0.023 0.041 0.001 0.038
Conflicting Value Constraint 1.017 0.982 0.001 2.001

Derivative Constraint 0.0016 - 4.216e-06 -
Bound Constraint 0.0 - 0.0 -

(a) Value constraints set with σale = 0.0
(b) Conflicting value constraints with σale =
2.0

(c) Bound constraint in x = [-0.5, 0.5] (d) Derivative constraint dy
dx = 0, x = 9.5, 10.5

Figure 1. 1-D constrained regression demonstrations with value, derivative and bound
constraints

3.3.2 Beam Deflection Problem

In this section, a classical problem in structural engineering is addressed: predicting

the deflection of a beam under a given load. The data for this experiment is obtained
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(a) Value constraints at x = 5, 7.5 (b) Conflicting value constraints at x = 7.5

(c) Bound constraint in x = [-0.5, 0.5] (d) Derivative constraint dy
dx = 0, x = 9.5

Figure 2. 1-D constrained regression demonstrations using PR-BNN with value,
derivative and bound constraints

(a) Low variance outside the
training data

(b) Moderate variance outside
the training data

(c) High variance outside the
training data

Figure 3. 1-D constrained regression demonstrations with variance constraints outside
the training data
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from the theoretical deflection of a beam subjected to a load. The deflection of a

beam, y, as a function of its position, x, is given by the function y(x), where the

deflection depends on the material’s Young’s modulus (E), the length of the beam

(L), the moment of inertia of the beam’s cross-section (I), and the applied load (P ).

Specifically, the deflection function is defined piecewise for a beam of length 2L as:

y(x) =


−P
8EI

x3 + PL
4EI

x2, if 0 ≤ x ≤ 2L

P
6EI

x3 − 3PL
2EI

x2 + 7PL2

2EI
x− 7PL3

3EI
, otherwise

(3.15)

In this experiment, the values for E, L, I, are set to typical values found in steel beams

and P is set to 2000 N. For training purposes, a small samples of 10 points is observed

by sampling points between 0.5L and 1.3L. To simulate real-world measurements, a

small Gaussian noise N(0, 0.001) is added to the deflection values, resulting in the

observed deflections, ytrain(x). The Bayesian Neural Network (BNN) used for regression

predicts both the mean and the variance of the target variable. This network has an

input layer with 1 neuron (representing the position x), and an output layer with 2

neurons, outputting both the predicted mean deflection and the log-transformed noise

level. Further, it has 1 hidden layer, consisting of 2048 units. The GELU activation

function x ∗ Φ(x) is used for this task, where Phi(x) is the Cumulative Distribution

Function (CDF) of the Gaussian. This activation helps improve performance in the

mean sense for the test set, evaluated from L = 0 to L = 3.

3.3.2.0.1 Constraint Implementation

To enhance the performance of the BNN model, specific constraints are applied.

These constraints are formulated to ensure that the model’s predictions adhere to
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known physical principles and boundary conditions associated with beam deflection.

Two types of constraints are implemented: value constraints and derivative constraints.

1. Value Constraint: The value constraint is applied to ensure that the predicted

deflection at specific points matches known values. This is particularly relevant

at the beam’s left end and the pin support at x = 2.0, where the deflection is

zero:

f(x = 0.0; θ) = 0, f(x = 2.0; θ) = 0. (3.16)

2. Derivative Constraint: The derivative constraint is applied to ensure that

the rate of change of the deflection at a certain point is known. In this case,

the derivative is enforced to be zero at the point x = 0.0, corresponding to the

beam’s left end. The derivative constraint function approximates the derivative

using the finite difference method between two closely spaced points, x = 0.0

and x = 0.05, and constrains this derivative to be zero. Mathematically, it is

formulated as:
df(x; θ)

dx

∣∣∣∣
x=0.0

= 0. (3.17)

Figure 4. Beam configuration. The ob-
servable regions are given in the dashed
boxes.

Figure 5. Predicted beam deflection with
BENN and BNN.
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Figure 5 shows that the proposed BENN model prediction significantly outperforms

the BNN model.

3.3.3 Microstructure Generation

In materials science, predicting the properties of heterogeneous materials such as

alloys, composites, polymers, and porous media are critical. These materials exhibit

complex microstructures that influence their mechanical, thermal, electromagnetic, and

chemical properties. Traditional experimental approaches to study these properties

are often time-consuming and computationally intensive. Autoencoders, leveraging

advancements in machine learning, provide a modern computational tool that offers

significant benefits in the simulation and analysis of microstructures.

Autoencoders facilitate the fast and efficient simulation of microstructures, reducing

reliance on extensive experimental datasets and accelerating the material design process.

This capability is crucial for designing materials with optimized properties tailored for

specific applications, essential in sectors like aerospace, automotive, and biomedical

engineering. Furthermore, the computational generation of microstructures allows for

the quantification and management of the inherent uncertainties in materials, which

is vital for developing reliable materials and implementing robust design principles.

Moreover, generating microstructures using autoencoders fits seamlessly into

broader computational frameworks such as Integrated Computational Materials En-

gineering (ICME), as discussed in (Gao et al., 2021). (Gao et al., 2021) proposes a

method using a mixture random field model to generate a non-gaussian field. This

statistical method can generate binary phase microstructures, that can either be

anisotropic or isotropic, and requires the specification of two point correlation func-
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tions. The proposed autoencoder-based approach is aimed at further increasing the

computational speed of generating these microstructures.

3.3.3.1 Bayesian Entropy Convolutional Variational Auto-Encoder (BE-CVAE)

The proposed architecture integrates a Convolutional Variational Autoencoder

(CVAE) focusing on the image generation while accommodating specific constraints

using the BE framework. The encoder is a sequence of convolutional layers, each

followed by a Rectified Linear Unit (ReLU) activation function, MaxPooling for spatial

downsampling, and Batch Normalization. The convolutional layers extract hierarchical

features to finally obtain the latent space Z.

The latent space is characterized by two fully connected layers, one for the mean µ

and the other for the log-variance log(σ2), of a Gaussian distribution. The model uses

the reparameterization trick, generating a sample z from the latent space by where ϵ

is a random noise sampled from a standard normal distribution.

The decoder reconstructs the input image using transposed convolutional layers

with ReLU activations and Batch Normalization. A Sigmoid function in the final layer

outputs pixel values in the [0,1] range. Post-decoding, the output is resized to the

original input dimensions using interpolation.

3.3.3.2 Dataset

The dataset is generated using a second-order non Gaussian random field, without

using techniques such as simulated annealing, which are computationally intensive. The

use of this technique allows for the simultaneous generation of both the microstructure
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and the latent material property field. Using this approach, upto 150 training samples

are generated for the microstructure generative model experiments.

3.3.3.3 Constraint - Two Point Correlation Function

The Two Point Correlation Function (TPCF) serves as a fundamental constraint

in the analysis and synthesis of binary microstructure images. This statistical tool

quantifies the spatial correlation between pairs of points within a given distance in

a microstructure, providing insight into its heterogeneity and spatial distribution

features.

In the proposed model, the TPCF is calculated for each generated microstructure

image. The function evaluates the probability of finding two points, separated by

a certain distance, that are both in the same state (either material or void). The

TPCF constraint ensures that the generated microstructures possess similar spatial

characteristics to the training set. This includes features like the distribution of phases,

the degree of homogeneity or clustering, and the overall geometric properties of the

material. By applying this constraint, it is aimed to produce microstructures that

are not only statistically representative of the real material system but also maintain

critical physical and mechanical properties.

Ensuring fidelity to the TPCF is particularly significant in materials science and

engineering, where the microstructural arrangement greatly influences the macro-

scopic properties of materials. The accurate reproduction of TPCF in synthetic

microstructures is thus essential for reliable material property predictions and subse-

quent applications.

The Two Point Correlation Function (TPCF) in this study is computed using a
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Fourier Transform Autocorrelation approach, which is an efficient method for analyzing

spatial patterns in microstructures. The steps of the computation, described in detail

in (Suankulova, 2020), are summarized as follows:

1. Fourier Transform: The Fourier Transform of the binary microstructure is

computed. This step is facilitated by the use of the Fast Fourier Transform

(FFT), which is computationally efficient for digital images.

2. Power Spectrum: Next, the power spectrum of the Fourier Transformed image

is obtained by calculating its squared magnitude. This power spectrum reflects

the frequency components of the spatial pattern of the microstructure.

3. Inverse Fourier Transform: The inverse Fourier Transform is applied to the

power spectrum. This operation converts the frequency-domain representation

back into the spatial domain, resulting in an autocorrelation function.

4. Radial Averaging: Finally, for the TPCF, radial averaging is performed on

the autocorrelation function. This process involves averaging the values over

circles (in 2D) of radius r, which provides the final TPCF.

This Fourier Transform approach to computing the TPCF is advantageous due to

its computational efficiency, particularly for large and complex microstructures. It

also inherently accommodates periodic boundary conditions, which is beneficial in

materials with repeating structures.

The resultant TPCF from this method provides insights into the heterogeneity and

spatial distribution of features within the microstructure, crucial for understanding

how these features influence the material’s macroscopic properties.

To facilitate gradient-based optimization in the process of image binarization, a

differentiable binarization function is employed, defined as follows:

b(x) = σ(s · (x− θ)), (3.18)
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where σ denotes the sigmoid function, s is the steepness parameter, θ is the threshold,

and x is the input value. The sigmoid function σ(x) = 1
1+e−x is used to provide a

smooth transition between 0 and 1. The steepness parameter s, set to a high value

(e.g., 100), ensures a sharp transition around the threshold θ. This approach allows

for an approximate binary representation while retaining differentiability, which is

essential for gradient-based optimization methods.

The TPCF is now ready to be used as a functional constraint. This amounts to

either solving multiple value constraints for the TPCF sequentially, or to compute

the overall absolute deviation from the expected curve at once. The latter option is

computationally cheaper than evaluating multiple value constraints per iteration.

3.3.3.4 Constraint - Porosity

The porosity of a microstructure is a critical characteristic, quantifying the fraction

of void space within the material. The function is defined as follows:

e =
Vp

Vp + Vs
, (3.19)

where Vp is the total number of voxels in the void phase and Vs is the total number of

voxels in the solid phase.

3.3.3.5 Results

The proposed model was first tested to compare how fast convergence to generating

quality samples occured. The baseline case with no constraints took far longer to

converge compared to the ones using constraints. Furthermore, the model that used

both porosity and the TPCF constraint converged significantly faster than both the
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baseline and the model that only incorporated porosity constraints. Next, the effect

of training data on performance is studied. The performance of the generative model

is measured by how well the generated structures conform to the expected TPCF

function. Table 2 shows strong evidence of improvement in the compliance with the

TPCF requirements as more constraints are added and with more training data, and

Figure 6 shows the L1 error of the TPCF with various types of constraints. It is to be

noted however, that the evolution of constraint compliance during training paints a

more nuanced picture in high dimensional problems. The resulting absolute errors

from the TPCF and porosity constraints are lower those seen in the baseline model, it

is still non-zero. This is because the TPCF and porosity constaints end up guiding

the model to produce faster convergence with better reconstruction adherence with

these two constraints.

(a) 25 training samples (b) 150 training samples

Figure 6. Comparing the L1 error on TPCF across three microstructure generation
scenarios: Unconstrained, TPCF constraint only, and TPCF + Porosity constraint

40



Figure 7. Microstructure generation using the proposed model after training the model
with 260 epochs with (Top Row) No constraints (the baseline CVAE model) (Middle
Row) TPCF Constraint (Bottom Row) TPCF + Porosity Constraints. Note that the
model converges faster with two constraints compared to the baseline or just using
the TPCF constraint

Training samples No constraint TPCF TPCF + Porosity
25 0.85 0.67 0.60
50 0.59 0.46 0.38
100 0.59 0.41 0.39
150 0.47 0.29 0.34

Table 2. Constraint compliance as TPCF-L1 error on generated samples: Analysis
along training data and number of constraints

3.4 Conclusion

In this chapter, the Bayesian Entropy Neural Networks (BENN) framework was

introduced and its application in various settings, including 1D regression, beam
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deflection modeling, and microstructure generation, was demonstrated. The integration

of the Maximum Entropy (MaxEnt) principle with the Bayesian framework allowed

for the imposition of constraints on predictions, thereby offering a novel approach to

constrained deep learning. Note that this method is a general framework that explains

the approaches used in similar works such as (Huang et al., 2022) and (Yang et al.,

2020c).

The experiments with 1D regression emphasized the BENN framework’s versatility

in handling value, derivative and variance constraints. It was observed that the model

could effectively accommodate external constraints, even in areas with sparse or ab-

sent training data. This was particularly evident in experiments involving conflicting

constraints and variance control, illustrating BENN’s ability to manage complex and

uncertain information. The model can therefore be used for problems that require

adherence to boundary conditions through constraints. An interesting demonstration

of BENN in this work was in the domain of microstructure generation. The integration

of constraints like the Two-Point Correlation Function (TPCF) and porosity into a

Convolutional Variational Autoencoder showed substantial improvements in gener-

ating microstructures that are not only statistically representative but also improve

adherence critical physical properties. This highlights the framework’s potential in

materials science, where accurate microstructure characterization is crucial.

This chapter provides some areas for improvement and further investigation. The

computational complexity associated with performing simultaneous optimization of

model parameters and Lagrangian multipliers is a challenge, particularly for large-

scale problems. Another avenue for advancement lies in the integration of epistemic

uncertainty constraints within the BENN framework. Epistemic, or model, uncertainty

arises from a lack of knowledge about the best model to represent a process. In
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many real-world applications, especially in fields like climate modeling and epidemic

modeling, understanding and quantifying epistemic uncertainty is crucial for making

reliable predictions and decisions. Incorporating these constraints could enhance

the model’s ability to express uncertainty in predictions, especially in scenarios with

limited data or where the data do not capture the entire spectrum of the underlying

distribution. This could involve developing new methodologies for characterizing and

quantifying epistemic uncertainty and devising novel ways to embed this information

into the learning process. Finally, applying the BENN framework to a wider array

of practical applications would not only demonstrate its versatility but also uncover

specific challenges with this framework.
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Chapter 4

EPISTEMIC AND ALEATORIC UNCERTAINTY QUANTIFICATION FOR

CRACK DETECTION USING A BAYESIAN BOUNDARY AWARE

CONVOLUTIONAL NETWORK

4.1 Introduction

Cracks are a major source of failures in structural and industrial components.

There are several reasons why cracks might form in these structures. For instance,

roads and building cracks occur over time due to exposure to environmental factors

such as humidity and rapid temperature changes. They also occur due to overload,

such as heavy traffic in the case of roads. Phenomena such as corrosion can also lead

to crack initiation and growth. These cracks, if undetected, can lead to catastrophic

failure. Detecting cracks early is crucial to prevent such failures, improve maintenance

protocols, reduce costs, and extend the lifespan of infrastructure.

Vision-based inspection offers a safe, efficient and rapidly scalable solution for crack

detection. Other signal-processing modalities that are popular for crack detection

include millimeter-wave imaging (Bivalkar et al., 2022) and ultrasonic inspection (Sun

et al., 2023; Lee et al., 2022). The primary benefit of vision-based inspection for

crack detection is its versatility in various applications. It can detect various types

of cracks depending on the sensor parameters, from hairline to large size, on a wide

range of materials including composite, metal, ceramic, and plastic. Moreover, it

is not affected by factors such as temperature and vibration. The primary drivers

of improvements to industrial inspection technology using vision-based approaches
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are higher computational power, miniaturized, commercially available sensors, and

rapid advancements in machine learning techniques. These factors have opened up

new possibilities for continuous condition monitoring of civil infrastructure at scale.

In addition, autonomous inspection techniques provide an opportunity to remove

subjectivity that can result from manual inspectors. While deep learning-based

techniques are getting widely adopted for various types of industrial and infrastructure

inspection tasks, for this study, the focus is narrowed down to working on crack

detection in structural and infrastructural systems, such as crack detection in concrete

surfaces and road pavements.

Accurately detecting cracks within an image is a complex and challenging problem.

Convolutional neural networks (CNNs) have been used to recognize and classify cracks,

but early deep learning-based models focused solely on the classification problem and

ignore underlying feature information such as crack boundaries. Detecting accurate

crack boundaries is important for downstream condition monitoring and maintenance

scheduling. Traditional vision-based fault detection methods use hand-crafted features

that limit generalization capacity. To address this, deep learning has been used to

develop more flexible and accurate models for fault detections. Given that fine-grained

crack detection provides us with highly resolved morphology in an end-to-end fashion,

the question of whether the detection is to be trusted is important.This is an interesting

problem because the adoption of deep learning approaches can be accelerated if one

can quantify the confidence of the prediction produced by a neural network and

address the problem of detecting distributional shifts that occur in practice after

deployment. The consequences of poor detection results in a situation where the

final risk assessment may be inaccurate, resulting in either a higher frequency of

catastrophic events or maintenance cost overruns. Therefore, the first goal of this work
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is to produce uncertainty estimates along with predictions for detection. To do this, a

sampling-based Bayesian Deep Learning approach is used to decompose the sources of

uncertainty in prediction, using the loss function proposed by (Kendall and Gal, 2017).

Experiments to benchmark the validity of the proposed uncertainty quantification

approach are done to ensure that the characteristics needed for detection are met.

The next goal is to formulate the detection problem using a multi-task loss that

learns a distributional loss using the log-likelihood term, refines the boundaries of the

crack, and align it to the ground truth using a boundary loss term. This formulation

borrows from Wang et al. (2021b) to compute a boundary loss that learns to better

align predicted and ground truth boundaries. To demonstrate the effectiveness of

the method, experiments are conducted on two commonly used crack segmentation

datasets and report results on model performance, calibration, and uncertainty for

both within and out of distribution samples.

The contributions of this work are as follows:

• A Bayesian Boundary Aware Convolutional Network (B-BACN) is proposed for

crack segmentation that can predict aleatoric uncertainty, provide a sampling-

based epistemic uncertainty, and refined boundary using the active boundary

loss.

• Detailed empirical evaluations are conducted for within and out-of-distribution

cases in order to analyze the effect that additional training samples have on

uncertainty, predictive performance and model calibration.

• Analysis of the improvements that boundary losses can bring to improve the

accuracy of the crack morphology detection is performed.

• Uncertainty and model calibration are used as an important performance index

when assessing and comparing computer vision models in industrial settings,
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where small dataset sizes and gradual distributional shift after deployment are

commonly encountered.

The rest of the chapter is organized as follows: In Section 4.2, the literature on

crack detection using image data is discussed. Following this, the development of

uncertainty quantification techniques for condition monitoring models is discussed.

After that, earlier work that used Bayesian approaches for uncertainty-aware defect

detection is summarized. Section 4.3 introduces the problem setup and techniques

used in this chapter for Bayesian inference when employing deep learning models and

describes the proposed Bayesian Boundary-Aware Convolutional Network architecture.

Section 4.4 outlines the implementation details for training the network, followed

by a brief description of the evaluation metrics that are adopted. In Section 4.5,

the proposed approach is evaluated, and it is seen that the boundary-aware defect

detection provides significant performance improvements, while reducing uncertainty

and improving calibration error. Detailed empirical evaluations using different loss

weighting strategies, uncertainty quantification methods, and network architecture

ablation studies are also provided. Finally, in Section 4.6, the key findings are

summarized and a discussion on potential future work is included.

4.2 Related Work

4.2.1 Crack Detection Techniques

A lot of early studies that focus on the crack detection problem used methods that

led to a series of improvements in detection capabilities which saw extensive feature

engineering and signal processing efforts (Woods and Allen, 1989; Kirschke et al.,
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1992; Mao-de et al., 2007; Ayenu-Prah et al., 2008). The availability of more imaging

data and the explosion of deep learning led to bounding box approaches for detecting

cracks, which were mostly inspired by the YOLO (Redmon et al., 2016) and R-CNN

(Girshick, 2015; Ren et al., 2015). These works exploited pre-trained backbones from

these networks and fine-tuned it on crack datasets (Deng et al., 2021; Mao et al.,

2020; Haciefendioglu and Basaga, 2021; Kato et al., 2022). While these approaches

effectively exploited the availability of higher compute power and pre-trained weights

for effective fine-tuning, they did not provide end-to-end pixel-wise prediction for

cracks. Fine-grained crack detection results are crucial for any detailed morphological

analysis of the structures of interest, so a bounding-box approach to this problem

is not sufficient. To address this, semantic segmentation approaches were proposed

and evaluated on benchmark datasets, alleviating the need for hand-crafted feature

engineering and classical signal processing. The Fully Convolutional Network has been

an established technique for object detection and segmentation in medical imaging,

introduced by Long et al. (2017). This approach saw rapid and extensive adoption

in the industrial inspection field, with improvements to the segmentation accuracy

by introducing widely used concepts such as feature pyramid hierarchies (Yang et al.,

2020a) and hierarchical feature learning (Zou et al., 2018; Cheng and Zhou, 2021),

loosely tied to the seminal works by He et al. (2016a); Ronneberger et al. (2015).

4.2.2 Defect Boundary Reproduction and Detection

Improving the reproduction and detection of boundaries of objects is challenging

and relevant to the crack segmentation problem, as outlined in Section 4.1. Over the

years, multiple different approaches have been proposed, including early traditional

48



methods such as active contours (Chan et al., 2001). Early work in boundary refinement

also included applying post-processing methods such as the Conditional Random

Field (CRF) based method proposed by (Krähenbühl and Koltun, 2011) and image

filtering to refine crudely localized crack boundaries and then classify them using

classical ML models, as seen in Shi et al. (2016). Since crack pixels are similar to

edges, early works that used filters were inspired by edge detectors. However, these

methods did not have semantic knowledge of the crack pixels and their relation to

the background. This meant that a lot of post-processing and advanced filter design

is required to remove false positives. Later works began to utilize approaches that

defined boundary refinement blocks Chen et al. (2020). (Guo et al., 2021a) adapts the

original image gradient with the coarse crack detection result and refines it to precise

crack boundaries.

4.2.3 Uncertainty Quantification for Reliable Condition Monitoring

Estimating model uncertainty remains a significant topic of interest in a wide array

of applications such as condition monitoring (Moradi et al., 2022; Seites-Rundlett

et al., 2021), fault diagnostics (Zhou et al., 2022), and remaining useful life estimates

(Zhu et al., 2022). A lot of the works in reliability engineering focuses on utilizing

predictive models to perform system-wide reliability assessments. (Moradi et al., 2022)

uses a Bayesian Network to model a system-wide network and analyze its component

risks using a data-driven framework. After the deployment of a predictive model, it is

vulnerable to distribution shifts over time. (Zhou et al., 2022) proposed a Bayesian

Deep Learning technique to structural component health using 1-D signals, considering

potential OOD samples. Uncertainty Quantification (UQ) is used as a way to classify
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these samples. Uncertainties have also been to query for informative samples for active

learning techniques (Yang and Loog, 2016; Wang et al., 2018). (Zhu et al., 2022)

uses this technique to predict battery degradation. Uncertainty quantification under

distributional shifts for fault diagnostics has previously been studied by (Te Han, 2022)

using an ensemble of neural networks, where the authors use a thresholding approach

to determine whether the uncertainty associated with a prediction makes it more

likely for the sample to have originated from outside the training distribution. Sajedi

and Liang (2020) incorporated uncertainty into their structural health monitoring

model by using Monte-Carlo Dropout sampling and prediction quality classification

and showed that variance of softmax and entropy correlate with misclassification

rate. Well calibrated uncertainties are key for condition monitoring, especially when

using neural networks, which are notorious for providing overconfident estimates.

Improving calibration has been studied by (Guo et al., 2017), where the authors

propose temperature scaling (TS) to tune the outputs of a neural network. Obtaining

calibrated predictions for regression tasks using neural networks has been studied by

Tohme et al. (2022), where the authors propose a novel loss function formulation.

4.2.4 Bayesian Approaches for Defect Detection

While novel neural network architectures have improved model performance for

crack detection, uncertainty estimates for crack detection has not been studied to the

same extent. Deep learning techniques do not lend themselves to analytical Bayesian

inference and require approximate inference techniques, which have seen a lot of

development in computational statistics literature (Blei et al., 2017; Zhang et al., 2018).

Among Bayesian Deep Learning methods, there have been a multitude of approximate
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evaluation methods proposed, including Variational Bayes-By-Backprop (Blundell

et al., 2015), Monte Carlo Dropout (Gal and Ghahramani, 2016), Spectral-Normalized

Gaussian Process (SNGP)(Liu et al., 2020a). These approaches have been adopted in

a variety of applications (Pang et al., 2022, 2021; Lee et al., 2017; Fan et al., 2023)

to estimate epistemic uncertainty. However, the quantification and decomposition of

both epistemic and aleatoric uncertainty in the defect characterization context has

been missing, with more attention being paid in the field to collecting domain-specific

datasets and improving predictive performance. Therefore, this work analyzes the

decomposition of epistemic and aleatoric uncertainties for crack characterization, and

uses the uncertainty to assess model performance and calibration.

The study of uncertainty decomposition has recently been discussed by McFarland

and DeCarlo (2020) in the context of risk assessment. McFarland and DeCarlo (2020)

have focused on decomposing the epistemic and aleatoric components for problems

such as cracking defect failure probability using classical Bayesian techniques. In

order to extend the literature on uncertainty for defect characterization, this work

aims to use the dropout approximation to Bayesian inference in neural networks to

extract epistemic uncertainty (Srivastava et al., 2014; Gal and Ghahramani, 2016)

and a negative log likelihood formulation to predict aleatoric uncertainty. A recent

work similar to ours on the uncertainty quantification front is (Pyle et al., 2022),

where they provide uncertainty analyses for crack characterization using ultrasonic

sensors for in-line inspection. (Pyle et al., 2022) studies uncertainty on a specialized

ultrasonic crack characterization dataset, and comments on uncertainty analyses using

various quantification methods for out-of-distribution (OOD) cases. However, this

study focuses on using uncertainty to analyze improvements to model performance
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and calibration on OOD and within-distribution data using a boundary-refinement

objective while training the model.

In summary, the crack detection model combines uncertainty decomposition and

boundary refinement techniques to produce detection results that result in two main

benefits: the ability to accurately segment crack morphology, and the ability to

separately compute epistemic and aleatoric variances. The uncertainty is used to

analyze prediction confidence and whether the model is well-trained for the test

set being considered. This work also analyzes the effect that additional training

samples have on uncertainty, and provides detailed empirical evaluations of within

and out-of-distribution cases.

4.3 Methodology

The overall architecture is based on the fully-convolutional encoder-decoder net-

work (Long et al., 2017), with a Resnet-50 backbone, as shown in Figure 8. The

encoder network consists of 5 blocks, with pre-trained weights from the ImageNet

dataset that are retrained for each training run. The encoder blocks provide a hierarchy

of features at multiple scales, with earlier layers extracting fine-grained morpholog-

ical information, and later layers extracting coarse-grained category and location

information. The resulting layers are then passed into the decoder, which consists

of transposed convolutions such that the feature outputs mirror the corresponding

size of the next encoder layer. In addition to having information flow sequentially

through each layer in the network,the skip-connections across the encoder-decoder

structure combines the representations obtained across multiple scales. This approach
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has been successfully used in the past to help with boosting gradient flow, improving

the vanishing gradient problem.

Structural prognostics benefit immensely from being able to model predictive

uncertainty at multiple stages of analysis. Point estimates provided by deep neural

networks may lead to overconfident predictions that can often be wrong. Expressive

models provide for downstream analysis and have a way to explain its predictions to

the end user are highly sought after.

Bayesian methods are considered in this study, with a major focus on MC Dropout

(MCD) with a predictive aleatoric variance output learned during training. Concrete

Dropout (CD) (Gal et al., 2017) and Bayes By Backprop (BBB) (Blundell et al., 2015)

are compared against this method. Note that the MCD approximation is shown to be

a special case of the generic VI approximation in Gal and Ghahramani (2016). The

question here is whether the uncertainty is purely derived from the uncertainty about

the weights. The analysis of the variance by Brach et al. (2020) provides some insight

into this problem:

ED
i = Ei(1− p∗)

V D
i = Vip

∗(1− p∗) + Vi(1− p∗)2 + E2
i p

∗(1− p∗)

(4.1)

Equation 4.1 shows that the expectation and variance of the output ED
i and V D

i only

depend on the expectation Ei and variance Vi from the previous layer and the applied

dropout ratio p. This shows that the only contribution to the variance in MC Dropout

is from the dropout layer. Therefore, this component of uncertainty is driven by the

uncertainty in the weights.

It is also important to look at the effect of the dropout objective when applied

to learning problems. For example, in the case of regression, dropout regularization

is equivalent in expectation to the ridge regression model. The input feature X
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ϵRN x D is to be transformed to a target Y ϵRN x 1, using weights w ϵRD x 1. Applying

dropout implies multiplying the feature element-wise with a dropout mask matrix Z

∼ Bernoulli(p). Casting this with dropout applied to the feature in the mean-squared

error loss gives:

L(w) = argminwE(Z∼Bern(p))||y − (Z ⊙X)w||2 (4.2)

Computing the expectation of the squared error loss gives us the following:

L(w) = ||y −Xw̃||2 + 1− p

p
||Γw̃||2, w̃ = p.w (4.3)

Directly comparing the loss for the dropout with the L2 regularized loss shows that

it has stronger restrictions on its Lagrange multiplier term. Concretely, λ = 1−p
p

for

dropout, where p is the dropout probability hyperparameter, compared to the looser

restriction on the multiplier for the ridge loss, λ >= 0.

Classical Bayesian linear regression formulations as seen in Bishop and Nasrabadi

(2006) assume a constant, known value for the aleatoric uncertainty term. However,

this assumption does not hold for real-world data, as some training samples can

have higher variance than others. To remedy this, the proposed model learns a

component of the variance as a function of the data, referred to as the heteroscedastic

aleatoric uncertainty - the component of uncertainty that cannot be explained away

with more data. The epistemic component of the uncertainty is calculated using

Monte Carlo (MC) dropout during inference. In the context of applying uncertainty

quantification to detection, epistemic uncertainty plays a more important role than

aleatoric uncertainty, unlike in natural image situations with a lot of data, where

the aleatoric uncertainty matters more. Sources of variability such as occlusion can

be considered “input-dependent” and are captured by the heteroscedastic aleatoric

uncertainty term. On the other hand, the industrial imaging domain does not always
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have a lot of samples to train a model on, which requires epistemic uncertainty to

reflect this. The approach used by (Kendall and Gal, 2017) distinguishes the epistemic

and aleatoric uncertainty by deriving the loss function from the likelihood formulation.

This is first demonstrated on a toy classification problem.

Epistemic and aleatoric uncertainty are related to the decision boundary in classi-

fication. This is visualized in Figure 9, a low dimensional example. The two moons

dataset is a non-linearly separable dataset with 2 inputs. This low dimensional toy

problem can be demonstrated with a large set of training samples to clarify the role

of epistemic and aleatoric uncertainty. Since the model has 2 categories, the network

outputs 4 values, 2 for the prediction logits and 2 for each of the variances. The

variance terms are the input-dependent uncertainties. For a classifier:

yi|xi ∼ Bern(ψ(wTxi)) (4.4)

Assuming softmax activation ψ, the optimal weights can be derived using Maximum

Likelihood Estimation (MLE):

w = argmaxwp(yi, xi|w) (4.5a)

w = argmaxwp(yi|xi, w)p(xi|w) (4.5b)

w = argmaxwp(yi|xi, w) (4.5c)

Equations (4.5a)-(4.5c) lead to a stochastic negative log-likelihood loss by first setting

up a Gaussian distribution to sample from. The mean of this distribution is taken as

the prediction f(xi)w. The variance term comes from the learned aleatoric variance

output from the network. One can then sample t times from this distribution and

then average its log-softmax over the sampling dimension. To avoid underflow and

overflow issues, this is implemented by first transforming the yi,t using the log sum

exp trick and then averaging over the sampling dimension. The final form of the loss
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is implemented directly using the Negative Log-Likelihood (NLL) loss, after obtaining

the samples as described, and comparing the prediction against the ground truth. The

loss is stochastic because it depends on Monte Carlo draws from the variance term.

yi|w ∼ N(f(xi)
w, σw2

i )

yi,t = f(xi)
w + ϵt, ϵt ∼ N(0, σw2

i )

LMLE = NLL(yi, ygt)

(4.6)

During the model evaluation, the procedure to compute uncertainty is by doing
Monte Carlo sampling using dropout to obtain predictions. The epistemic uncertainty
is computed as the variance of these predictions. The aleatoric uncertainty is the
learned component of the prediction and is directly obtained from the formulation.
Figure 10 shows that the epistemic uncertainty reduces with more training data while
the aleatoric uncertainty remains oscillatory and independent of this trend. Figure 9
shows a demonstrative example of what the decision boundary looks like when using
MC-Dropout. The areas with more data have a lower uncertainty in the decision
boundary, indicated by the lower amount of variance in classification. At the extreme
ends of the decision boundary, a widening of the noise profile is seen, indicating a
higher uncertainty for the discriminative model to assign a fixed label to a sample
near the boundary.

Figure 9. Classification with uncer-
tainty in the two moons dataset - Vari-
ation of uncertainty and entropy with
sample size

Figure 10. Classification with uncer-
tainty in the two moons dataset - Vari-
ation of uncertainty with sample size.

The next component is the active boundary loss (ABL) that further refines
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predictions, proposed by (Wang et al., 2021b). This loss improves the alignment

between predicted boundaries (PDBs) and ground-truth boundaries (GTBs) during

training by moving PDBs toward the closest GTBs. The ABL loss is differentiable

and dynamic and it focuses on the relationship between PDB and GTB pixels. It

can be used in combination with other loss terms such as cross-entropy loss and

Lovasz-softmax loss (Berman et al., 2017) to improve the boundary details in image

segmentation. The method can be useful in preserving the boundaries of thin objects

in an image. The ABL continuously monitors changes in the PDBs to determine

the plausible moving directions. The method is divided into two phases: First, for

each pixel i on the PDBs, the next candidate boundary pixel j closest to the GTBs

is determined. Second, the KL divergence is used to encourage the increase in KL

divergence between the class probability distribution of i and j. Meanwhile, this

process reduces the KL divergence between i and the rest of its neighboring pixels.

In this way, the PDBs can be gradually pushed toward the GTBs. The ABL is

determined as a weighted cross-entropy loss over the boundary pixels numbering Nb

between the PDB direction Dp
i and the GTB direction Dg

i , with the weight wi being

the closest distance of the current PDB pixel to the GTB.

LABL =
1

Nb

Nb∑
i=1

wi · CE(Dp
i , D

g
i ) (4.7)

Unfortunately, there are sources of performance degradation such as conflicts in

candidate boundary pixels, so the authors use gradient flow control to reduce the

effect of this. Further details of this process are elaborated in (Wang et al., 2021b).

Additionally, a continuous, differentiable surrogate for the Jaccard index is used,

given by the Lovasz-softmax function (Berman et al., 2017), to refine the regional

shape of the detected crack by directly optimizing for higher Intersection-over-Union

(IoU) score. This loss provides for a way to learn by computing a differentiable version
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of the IoU score. The original IoU score is a mapping from a binary N-Dimensional

matrix to a value in the real number space, f : {0, 1}N → R. The modification of the

domain to [0, 1]N is given by the Lovasz extension (Berman et al., 2018), given by:

∆̄ : m =

p∑
i=1

migi(m) (4.8)

In the multiclass setting, the outputs are first transformed into probabilities using the

softmax, and then the vector of probabilities per class are used to compute an error

vector. This error vector is used as a surrogate to compute the Lovasz extension of

the IoU.

fi(c) =
exp(li)∑
K exp(lk)

(4.9)

mi(c) = |Yi − fi(c)| (4.10)

LIU = ∆̄Jc(m(c)) (4.11)

To backpropagate, the errors computed in Equation 4.10 are sorted in decreasing

order and the gradients are computed using the sorted m(c). To compute the gradient,

the intersection and union parts of the IoU are computed as described in Algorithm 1

of (Berman et al., 2018).

Effectively, the IoU loss ensures that small defects are captured, and the predicted

boundaries of these defects are optimized by the ABL loss. The total loss is computed

as the combination of the supervised and consistency losses, with a sigmoid ramp-up

weight function for the consistency loss such that it becomes more dominant in later

epochs.

An important component of model calibration is to ensure that the model is not

overconfident in its predictions. To attempt to improve this, temperature scaling

is performed on the logits to calibrate the predicted probability distributions of
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the network, following Guo et al. (2017), where the temperature is a learnable

hyperparameter (T ). Temperature scaling is commonly used to calibrate the confidence

of the model, by scaling the logits of the mean prediction head. The temperature

scaling procedure is summarized as follows:

1. Obtain the pre-softmax outputs logits of the trained neural network for the

validation set.

2. Iterate over a range of temperature scalar values and select the one that minimizes

the NLL loss over the validation set using the L-BFGS optimizer.

3. Divide the logits by the optimal temperature scalar.

In summary, the overall proposed loss is the combination of the derived heteroscedastic

classification loss, the IoU loss and the ABL loss:

L = LMLE + LABL + LIOU (4.12)

4.4 Experimental Setup

4.4.1 Implementation Details

The experiments are performed on the CrackForest dataset by Shi et al. (2016)

and DeepCrack dataset (Liu et al., 2019c). The CrackForest dataset is representative

of a variety of cracks encountered in urban roads, and has been used as a benchmark

for multiple studies such as Shi et al. (2016), Fan et al. (2018), Yang et al. (2019),

Zou et al. (2018). It consists of 100 images, with 18 left out for the test set. The

DeepCrack dataset is a larger dataset consisting of crack images at multiple scales

and background textures. It consists of 443 training set images and 78 test set images.
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The network architecture used for the main experiments is the Resnet50 backbone

encoder with a transposed convolutional decoder, as explained in Section 4.3, and the

models are trained using PyTorch. The training code has the ability to run in both

single and multi GPU configurations. The encoder uses a set of pre-trained weights

from the ImageNet dataset, which is then fully retrained using the specific dataset for

the experiment. Optimization is performed using the SGD with momentum optimizer,

with a momentum value of 0.9 and weight decay of 10−5, along with a step-decay

learning rate scheduler across all experiments. The learning rate is initialized at 0.01,

which decays every 50 epochs by a factor of 0.8. During training, early stopping

based on the validation loss history over the past 50 epochs is utilized. The early stop

condition used for the experiments is an average validation loss reduction of less than

0.001. For the experiments across training samples, a dropout probability of 0.5 was

used. The epistemic uncertainty during model evaluation is calculated using 25 MC

runs through the network.

As part of these experiments, a study on how the weighting of the three losses

influences performance is also included. Specifically, three strategies are considered:

1. Simple linear superposition (Baseline): Here, all three losses are directly added

up, as seen in Equation 4.12

2. Ramp-up boundary loss weighting (Ramp): In this case, the boundary loss terms

are weighted using a sigmoid ramp-up function. The ramp-up ends after 100

epochs, determined empirically based on the loss convergence of the cross-entropy

loss:

L = LMLE + ϕ(t)(LABL + LIOU), (4.13)

where ϕ is the sigmoid function, and t is the epoch number.
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3. Coefficient of Variations Weighting (CoV) (Groenendijk et al., 2020): The

method is founded on the Coefficient of Variation, which is the ratio of the

standard deviation to the mean and shows the extent of variability of the

observed losses in relation to their mean:

L = α1tLMLE + α2tLABL + α3tLIOU (4.14a)

αit =
clit
zt

=
1

zt

σlit
µlit

(4.14b)

lit =
Lt

µLt−1

(4.14c)

Equation 4.14a represents the weighted total loss function, composed of three

terms weighted by α1t, α2t, α3t. Equation 4.14b defines the weighting term αit for

each component, defined as the coefficient of variation of the loss ratio lit. The

loss ratio lit, found to be a robust training strategy by Groenendijk et al. (2020),

measures the ratio of the current loss value to the mean of the loss history µLt−1 ,

as seen in Equation 4.14c.

Table 3. Architecture details of the segmentation network

Layer Filters Filter size Stride Padding Activation

ResNet-50 - - - - -
Conv2d 1024 3 1 1 ReLU
BatchNorm2d 1024 - - - -
ConvTranspose2d 512 3 2 1 ReLU
BatchNorm2d 512 - - - -
ConvTranspose2d 256 3 2 1 ReLU
BatchNorm2d 256 - - - -
ConvTranspose2d 128 3 2 1 ReLU
BatchNorm2d 128 - - - -
Dropout - - - - -
Conv2d - 1 - - -
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Table 4. Training details and hyperparameters

Hyperparameter Value
Optimizer SGD with momentum
Momentum 0.9
Initial learning rate 0.01
Learning rate scheduler Step Decay Learning Rate
Learning rate epoch decay
interval

50

Decay factor 0.8
Early stop criterion validation loss
Early stop - Loss history 50 epochs
Early stop - Average loss re-
duction

0.001

4.4.2 Evaluation Metrics

To quantify model performance, the macro F-1 score is used to report the mean

F-1 score, which is an unweighted average of the class-wise F-1 scores. The F-1 score

is defined as the harmonic mean of precision and recall and typically used to measure

how well the segmentation captures crack morphology.

The equation for the F-1 score is:

Precision =
True Positive

True Positive+ False Positive
(4.15)

Recall =
True Positive

True Positive+ False Negative
(4.16)

F1 = 2 · Precision ·Recall
Precision+Recall

(4.17)

The entropy and variance of the predictions over the MC runs are also computed

to assess the level of uncertainty in the model out of those samples. The entropy is

computed per-class by averaging the Monte Carlo mean prediction over each pixel as:

H(y) = −
C∑
c=1

yc · log yc (4.18)
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where C is the number of classes and yi is the logit output of class i. The epistemic

variance is computed across the set of MC predictions:

V ar(y) =
1

M

M∑
i=1

(yi − ȳ)2 (4.19)

wher M is the number of MC samples, yi is the sampled output from the network,

and ȳ is the mean prediction.

Model calibration can be assessed using the Expected Calibration Error (ECE)

(Guo et al., 2017) (Naeini et al., 2015) score. The ECE is computed using Equation 4.20,

with the calibration bin accuracy Acc(Bm) and the overall accuracy of the class m.

ECE =
M∑

m=1

|Bm|
n

|acc(Bm)− conf(Bm)| (4.20)

4.5 Results and Discussion

In the following experiments compare the baseline FCN model (Long et al., 2017),

the B-BACN model and the Temperature-Scaled B-BACN model on the DeepCrack

dataset and the CrackForest datasets, establishing that the proposed B-BACN model

significantly improves the detection performance, while reducing uncertainty and

improving the expected calibration error. The technique used for modeling uncertainty,

as demonstrated in Section 4.3, aims to capture specific behaviors of uncertainty,

such as detecting higher uncertainty when the test samples are farther from the

training samples and having an invariant aleatoric component with respect to the

training samples. Therefore, the model performance across training samples and

dropout is analyzed, revealing the utility of uncertainty metrics for determining

whether the model is well-trained and to what extent these trends seen on the simpler

two-moons dataset hold for the segmentation dataset. Next, a demonstration of how
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the uncertainty model generalizes to unseen and out-of-distribution data samples

from the CrackForest dataset is shown. Since the DeepCrack dataset is out of the

distribution of the CrackForest dataset, it is expected that the epistemic entropy

increases for these samples. Additionally, the aleatoric component of uncertainty is

shown to not decrease despite training on the CrackForest dataset. Model performance

is also demonstrated on smaller CrackForest dataset trained with noisy data, with

and without the introduction of the boundary loss.

Figure 11. Demonstrative examples of detections in the CrackForest (Top-2 rows)
and the DeepCrack Dataset (Bottom-2 rows). Images from Left to Right: Input,
Prediction, Ground Truth, Epistemic Uncertainty, Aleatoric Uncertainty

The first set of results, shown in Table 5, compares model performance on the

DeepCrack test set using the boundary loss against the MC Dropout baseline. Not
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Table 5. Performance comparison for models trained on DeepCrack and CrackForest
dataset

Dataset Model F1-score Epistemic Entropy Aleatoric ECE

DeepCrack FCN 0.70890 0.00032 0.10525 1.02133 0.14657
DeepCrack B-BACN 0.80060 0.00019 0.08406 1.03108 0.10371
DeepCrack TS B-BACN 0.79581 0.00020 0.13612 1.03223 0.09010
CFD FCN 0.63862 0.00054 0.13309 1.03619 0.09943
CFD B-BACN 0.69882 0.00022 0.08280 1.01341 0.07617
CFD TS B-BACN 0.69690 0.00025 0.14228 1.01340 0.05900

only does the boundary loss exceed F1 score compared to the baseline, but also

shows a drop in the variance of the prediction. The models used were trained on the

DeepCrack dataset using all the available training data. These results indicate that

using the boundary loss terms helps to directly operate on and refine the pixel-level

predictions. Temperature scaling enhances the Expected Calibration Error (ECE)

without altering the predictions themselves. It achieves this by scaling each logit

individually, while preserving the maximum logit as the maximum value. This is why

there is no significant change in the F-1 score or the epistemic uncertainty. Similar

trends are observed for the CrackForest dataset.

Figure 11 provides some demonstrative detection examples that compare these

results. The predicted boundary changes were also compared between the boundary

loss model and the cross entropy model, with the boundary loss model providing more

accurate boundaries and lower uncertainty compared to the baseline.

Evaluating the model across various training samples shows a trend similar to the

one seen in the toy problem in Section 4.3. These results are plotted in in Figure

12 and Figure 13. The epistemic uncertainty showed a rather jagged trend for the

baseline cross-entropy trained model, but showed a stronger decreasing trend for
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Figure 12. Evaluation of models trained on the CFD dataset across training samples
on both the CFD test set and the DeepCrack test set.

Figure 13. Evaluation of models trained on the CFD dataset across training samples
on the DeepCrack test set on the Cross-Entropy trained Bayesian FCN baseline and
the proposed B-BACN model.

the B-BACN. This result was somewhat surprising as one expects there to be an

approximately inverse relationship between the amount of training data and the

uncertainty. Given enough training samples, more information does not meaningfully

change the uncertainty. (Chen et al., 2010) shows that the result holds true only for

normally distributed variables, and that the relationship between the uncertainty and

information is not straightforward in other cases. The level of uncertainty is higher on

the out-of-distribution DeepCrack dataset while the aleatoric uncertainty, as expected,

does not change much. The calibration error is also higher in the out-of-distribution

dataset, and adding more training samples from the CrackForest dataset does not

improve this.

Analyzing the models with various dropout ratios reveals the effect of modifying
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(a) DeepCrack Dataset

(b) CrackForest Dataset

Figure 14. Uncertainty, F1 score and calibration error on the DeepCrack and CFD
test sets for models trained on the two respective datasets across dropout ratios

this important hyperparameter. Increasing dropout was expected to make the model

less prone to overfit but also increase the prediction variance - This expectation bore

out across both the baseline MC Dropout model, and the B-BACN. A consistent

pattern of lower uncertainty, better calibration, and higher predictive performance

across dropout ratios is seen for the B-BACN model, as shown in Figure 14.

Next, the effect of loss weighting strategies on model performance is analyzed.

Figure 16 demonstrates that using a simple linear superposition of losses results in

a higher epistemic entropy in most cases. The differences in aleatoric uncertainty

and F-1 score are not significant. However, the sigmoid ramp-up technique produces
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Figure 15. Effect of varying the number of dropout layers in the network on model
performance and uncertainty.

marginally better predictive performance compared to all other techniques. The higher

F-1 score when trained with 75 samples compared to 100 samples using the ramp-up

technique is likely an artefact. Surprisingly, the model with the least F-1 score and

the highest ECE was the CoV technique across all training samples.

The effect that the number of dropout layers has on model performance and

uncertainty is analyzed next. Dropout is applied either on just the last layer, the last

two layers, or all the layers of the network decoder. Generally, it is observed that

the F-1 score of the predicted observations is highest when the number of dropout

layers is limited to either just the final layer, or the last two layers. Due to the strong

regularization effect offered by a dropout probability of 0.5 across all decoder layers,

the F-1 score falls significantly. The aleatoric uncertainty is also higher for a network

that is strongly regularized by dropout. It is found that the predictive entropy is

significantly higher on the strongly regularized model, and the model is also less

calibrated than the weakly regularized models in the other two cases.

One of the main objectives of predictive models is to ensure that a higher level

of uncertainty is assigned to labels that deviate from the ground truth assignment,

which can be verified in the validation set as the ground truth is available during the

evaluation process. A demonstration of model calibration using the model trained
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Figure 16. Model Performance Comparison on CFD Dataset with Varying Training
Samples: Epistemic and Aleatoric Uncertainty, F1-Score, and ECE.

on the DeepCrack dataset is provided. Model calibration was first assessed on the

DeepCrack test set and then the same model was evaluated on the CrackForest test

set. which contains out-of-distribution examples. Model robustness was tested by

introducing Gaussian noise with variance uniformly sampled between 0 and 1 to both

test sets to simulate a challenging scenario. Figure 17 illustrates how the class-wise

model uncertainty score aligns with the prediction quality, which is quantified by the

class-wise F1 score. The points should be close to the line of equality (LOE) as shown

in green, or demonstrate a negative correlation to uncertainty, which indicates that

there is increasing uncertainty for samples that have a poor detection score in the test

set. The first row of Figure 17 demonstrates that the DeepCrack background data

is very well calibrated, but the crack class is less calibrated, with far more scatter

across the predictive uncertainty. However, the calibration performance worsens with

the out-of-distribution data in row 2. In row 3, however, noise with a mean of 0 and

a variance between 10 and 50 is added. Introducing such high levels of noise shows

the strong effect that it has on the model calibration. Model calibration methods

such as the one shown in this study can therefore be used along with the expected

calibration error to obtain more detailed evaluations of the image quality. Note that

the linear fit in this figure is highly sensitive, especially in the noise injected case for

the DeepCrack dataset, and the cross-dataset examples. The goal behind using this
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Table 6. Performance comparison across uncertainty quantification (UQ) methods for
models trained on CrackForest and DeepCrack datasets

UQ Method Dataset F1 Epistemic ECE

MCD (Kendall and Gal, 2017) CFD 0.710104 0.000529 0.068983
CD (Gal et al., 2017) CFD 0.700254 0.000090 0.075523
BBB (Blundell et al., 2015) CFD 0.700200 0.005829 0.059555
MCD (Kendall and Gal, 2017) DeepCrack 0.761592 0.001005 0.122964
CD (Gal et al., 2017) DeepCrack 0.811375 0.000041 0.099586
BBB (Blundell et al., 2015) DeepCrack 0.781900 0.005478 0.070398

figure was to illustrate the relationship between the model uncertainty and the F1

score as an indicator of calibration.

The results end with a comparison of the MC-Dropout (MCD) method against the

Concrete Dropout (CD) and the Bayes By Backprop (BBB) methods, and also mention

some limitations of the MCD method that was the focus of this study. Table 6 shows

model performance, model uncertainty and calibration error for models trained and

tested on the CFD and DeepCrack datasets. Model performance does not significantly

change for the CFD dataset. However, in the DeepCrack dataset, concrete dropout

shows significantly higher F-1 score and significantly lower epistemic uncertainty.

While the BBB method showed the best ECE metric, it slightly underperformed on

both tasks in terms of F-1 score while producing a wider variance compared to the

dropout-based models (underlined in Table 6).

While the dropout-based methods outperformed the BBB method, it should be

noted that MC-dropout does not provide a posterior that directly depends on the

number of samples n (Verdoja and Kyrki, 2021), such that the posterior narrows

to zero at the limit of large data. MC-Dropout does provide larger variances and

Concrete Dropout somewhat fixes this by driving dropout ratio p to zero in the limit
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of large data. In the experiments, dropout ratio was initialized at 0.5, which then

converged at 0.1 for both the CFD and DeepCrack datasets at the largest training

data size. An important observation is that the epistemic variance obtained does not

strictly reduce towards zero with more data. This behavior is better replicated in

toy datasets but does not scale well to high dimensional datasets like those used in

image segmentation. This study adds to the evidence that MC Dropout is a method

that can be implemented with ease and can be modified to provide tighter uncertainty

estimates. MC Dropout can also be a useful technique to provide indications of dataset

shift. However, it comes with its share of downsides, and future work should focus

on UQ methods that can more faithfully replicate a stronger increase in uncertainty

with lower training data and in regions far away from the training data regime in high

dimensions.
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Figure 17. Epistemic Uncertainty and F1 score for a model trained on the DeepCrack
dataset: (Row-1) Evaluation on the DeepCrack test set with No Noise, (Row-2)
Evaluation on the DeepCrack Test Set with input gaussian noise ∼ U(0.0,1.0). (Row-
3) Evaluation on the CrackForest test set with No Noise. (Row-4) Evaluation on the
CrackForest test set with input noise ∼ U(0.0,1.0).
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4.6 Conclusion

In this chapter, Bayesian-Boundary Aware Convolutional Network (B-BACN)

are introduced, which incorporates uncertainty decomposition into an epistemic and

aleatoric component. The approach shows significant performance improvements, while

reducing uncertainty and improving the expected calibration error. The utilization of

boundary loss functions in the B-BACN model not only refines pixel-level predictions

but also contributes to reducing model size.

The analysis highlights important implications for reliability engineering, as it

offers insights into the performance and calibration of crack detection models. By

accurately quantifying uncertainty, the model aids in making more informed decisions

regarding system reliability and maintenance.

Different Bayesian Deep Learning methods are compared, including MC-Dropout

and Bayes By Backprop, and it is found that Concrete Dropout exhibited the lowest

variance predictions and achieved superior performance on the DeepCrack dataset.

These findings suggest that leveraging advanced Bayesian Deep Learning techniques

can enhance the reliability of crack detection models. Furthermore, the investigation

into distribution shift revealed that as test data deviated from the training distribution,

model uncertainty increased and calibration decreased, highlighting the importance of

accounting for distribution shifts in monitoring systems.

MC-Dropout provides lower variance predictions compared to Bayes By Backprop,

but the lowest variance prediction was obtained by Concrete Dropout, which also

achieved higher performance when evaluated on the DeepCrack dataset. Loss weighting

strategies have also been shown to be key for optimizing learning, with the sigmoid

ramp-up strategy for boundary losses providing much lower prediction uncertainties
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and marginally better F-1 scores than a simple linear superposition of losses. More

involved loss weighting schemes such as Coefficient of Variance weighting did not show

significant improvements to detection performance or model calibration.
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Chapter 5

GEOMETRY-AWARE BAYESIAN NEURAL NETWORK FOR VISION-BASED

IN-LINE INSPECTION OF GAS PIPELINES

5.1 Introduction

The efficient operation of pipeline infrastructure is often hindered by risk fac-

tors such as cracks, corrosion pits, and welding defects. Various in-line inspection

techniques, including Magnetic Flux Leakage (MFL), Ultrasonic Testing (UT), Electro-

Magnetic Acoustic Transducer (EMAT), and Eddy-current Testing (ET) (Helifa et al.,

2006; Iyer et al., 2012; Nakamura et al., 2016; Sohn et al., 2014), are commonly used for

pipeline anomaly detection. However, these techniques are often expensive and bulky

and may require pipeline operations to be interrupted. As an alternative, visual in-

spection offers a cost-effective and miniaturized solution to detect damage in pipelines.

Vision-based inspection tools can be performed online without shutting down the

system, depending on the robot hardware and pipeline internal operating pressure.

Nevertheless, vision-based systems have their limitations, such as the inability to

detect subsurface defects and lower reliability in assessing severity and measuring

hairline-width defects. Therefore, it is beneficial to combine vision-based systems with

other complementary sensing tools.

Recent trends in industrial inspection emphasize the use of multiple modalities

of data to enhance the information provided by a single sensor (Liu et al., 2015;

Kong et al., 2020). While multiple modalities of data have been used for pipeline

inspection in the past, this study analyzes the use of commercially available depth
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sensors to augment the RGB data provided by an optical camera. A lot of work has

been done in the development of vision-based detection algorithms over the years for

Structural Health Monitoring (SHM) (Hawari et al., 2018; Xu et al., 2021; He et al.,

2019; Shafeek et al., 2004), but comparatively fewer studies have been conducted on

stereo-vision-based inspection (Frank et al., 2017; Huynh et al., 2016, 2015; Alzuhiri

et al., 2021). Stereo-vision-based detection under uncertainty has not seen much

attention either. The lack of depth information in evaluations with no stereo cameras

produces several limitations, as there are no straightforward methods for producing

any quantitative evaluations of surface defects, such as measurements of the defect

area and depth. The setup designed by Alzuhiri et al. (2021) uses an assembly of

a camera and a light pattern projector source for active stereo vision, known as

structured light. The design of the inspection system used by Alzuhiri et al. (2021)

also uses a camera system that sequentially captures images along the length of the

pipe. This work, in contrast, seeks to study the extent to which a self-contained,

commercially available active stereo-sensor can be used to detect and quantify defects

and highlight its limitations and potential for use in the industry. This work also

differs from Alzuhiri et al. (2021) in that images are captured by rotating the camera

about the axis of the pipe, with it being pointed normal to its surface. This provides

significant advantages in obtaining depth profiles of the defects.

In this chapter, a commercial stereo-sensor is evaluated for its suitability as a

vision-based in-line inspection device, with a discussion on its viability for rapid

inspection of gas pipelines. In addition, a feature fusion module that combines depth

and RGB features and leverages the geometric features of the pipeline to extract more

powerful representations is proposed. Additionally, this work applies the MC-Dropout

technique used in Chapter 4 to decompose uncertainty for defect detection. The
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results show that the proposed uncertainty-aware fusion network is able to provide

better performance compared to using only RGB data in the pipeline dataset.

5.2 Background

5.2.1 Working Principle of Stereovision

Stereo vision relies on matching corresponding points in one camera to another

camera. This requires camera calibration, followed by triangulation. This section

contains a brief description of this process, but existing literature in photogrammetry

provides more details Hartley and Zisserman (2003).

It can be inferred from Figure 18 that a point in an image can be projected along a

ray to a point in the 3D space, and vice versa. The point determines the ray equation

on the image plane and the camera’s optical center. The projection of a pixel on the

image plane onto the 3D space is only determined by the equation of the ray projected

from the camera. In other words, the position of the 3D point subject to a scaling

parameter for the depth is the only inference that can be made. On the other hand,

it is possible to uniquely determine the position of a projected pixel from the 3D

space, provided the location and orientation of the camera’s image plane is known.

In Figure 18, there are two calibrated cameras. In this context, calibration is the

process of determining the camera’s internal parameters and the camera’s position and

orientation. The calibration is represented with calibration matrices. If this matrix

is known, it is possible to project a 3D point in the scene to a pixel on the camera,
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provided the camera’s field of view is high enough.

x = PX (5.1a)

P =


f 0 px

0 f py

0 0 1



r1 r2 r3 t1

r4 r5 r6 t2

r7 r8 r9 t3

 (5.1b)

In Equation 5.1a and 5.1b, the pixel coordinate x is obtained by linearly trans-

forming the world coordinates X using the calibration matrix P . The calibration

matrix consists of the intrinsic parameters represented by f, px and py, and the relative

rotation matrix and translation vector from a common coordinate system given by the

ri and ti respectively. The inverse problem involves computing a point in the world

corresponding to a point in the image. Given two cameras with known calibration

matrices, an estimate without scale ambiguity can be made using triangulation. A

point in the image plane of one camera can lie anywhere on a ray projected from the

image plane. The intersection of the ray from the second camera with the ray from

the first camera provides the corresponding match. The 3D point and the rays to the

3D point from each camera plane constitute the epipolar plane. The epipolar plane is

constrained to be hinged to the line joining the optical centers of the two cameras,

known as the baseline. In general, the correspondences of a point in the first image

plane lie on a line called the epipolar line on the second image plane. This epipolar

line is used for the matching point search. Determining the equation of this epipolar

line requires a transformation from a point in the first image plane as:

E = t×R

l′ = Ex, such that x′T l′ = 0

(5.2)

In Equation 5.2, t and R are relative translation vector and rotation matrix

respectively for each image plane to obtain the essential matrix E. The epipolar line
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l′ on the second image plane is then computed from the essential matrix and a point

on the first image plane denoted by x.

The search space for the matching process is made smaller by rectification -

projecting the images from both cameras onto a common image plane. This puts the

epipoles of both image planes at infinity. All epipolar lines are, therefore, parallel.

The consequence of this projection is that the second image is essentially shifted along

a line relative to the first image, removing the 3 relative rotational degrees of freedom

and 2 translational degrees of freedom. Figure 18 (Right) shows the top-down view of

the rectified configuration of the two-camera system. Using similar triangles, one can

calculate the depth of a point, as shown below in Equation 5.3:

(a) (b)

Figure 18. (a) Projection from the image plane to 3D world coordinates is only known
upto scale (b) Triangulation approach to find the corresponding point on the second
camera for a point on the first camera.

b+ xl − xr
z − f

=
b

z

z =
fb

xl − xr
=
fb

d

(5.3)
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where b is the baseline, f is the focal length z is the depth of the point in the

world frame, xl and xr are the horizontal coordinates in the image plane, and d is the

disparity.

5.3 Methodology

5.3.1 Depth Sensor Model

For industrial inspection, the ideal outcome is to be able to detect defects, measure

them, and quantify their respective uncertainties. This is a multi-step process,

with uncertainties propagating from the sensor, into the detection model and finally

manifesting themselves in the measurement. Any sensor output can be expressed in

the form of a mean signal and a set of variances:

z = z̄ + ϵs + ϵt (5.4)

where z is the signal, decomposed into its mean z̄ and variance ϵ. The variance

consists of a spatial component ϵs and a temporal component ϵt. The overall uncertainty

of the depth map is dependent on both the spatial and temporal noise of the sensor.

The scope of this study is limited to characterizing the noise sources at the level

of the signal output. Explicit analytical modeling of the causes of this noise is not

performed. The noise can result from factors such as lens distortion and the resulting

uncertainties in the intrinsic parameters. In addition, the pixel resolution limitation

causes the quantization of disparity. The other source of noise is due to the matching

process and the image quality. Generally, this is dependent on the application in

consideration. The matching cost function for finding corresponding points can suffer

81



from ambiguities that lead to multiple matches with similar matching scores for in-line

inspection. Filtering out the best match from a set of similar candidate matches has

been done internally using the D435i stereo-matching algorithm.

To evaluate sensor performance, a normalized metric called the subpixel RMS error is

utilized, which is obtained from fitting a plane onto a depth map of a flat wall. The

plane-fit has an associated RMS error that provides an estimate of the spatial noise

in the image, and the calibrated camera was found to have a temporally stabilized

RMS error of 0.12%. The subpixel RMS error is given by RMSE =
√
z2i − z2p where

zp and zi are the plane-fit projected depth and the actual depth, respectively. Due

to the small error in the plane fit, there was no significant subpixel error. Knowing

the RMS error of a plane fit only provides a metric for the inherent noise level in the

sensor. However, this does not answer the crucial question of the minimum change in

depth that the sensor can reliably detect, which is an important parameter that needs

to be measured for optical metrology. For this examine the sensitivity of the depth

function needs to be evaluated:

dz =
−z2

fb
dd+

z

b
db+

z

f
df (5.5)

Equation 5.5 is used to demonstrate the sensitivity of the depth to the parameters

it depends on, which are the disparity d, baseline b and the focal length f . The

focal length and baseline is fixed for the D435i, so the sensitivity of the depth to

small changes in disparity is proportional to the square of the depth. This means

that an infinitesimal change in disparity for an object that is close to the camera

would cause a smaller change in depth compared to an object that is farther away.

The consequence of this relationship is that finer depth sensitivities are possible for
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(a) (b)

Figure 19. (a) Sensitivity of the depth map to regions at various distances in (mm) to
perturbations in disparity, focal length, and baseline. (b) Sensitivity of the depth to
disparity perturbations for objects at various distances

Figure 20. The relationship between the length of an object in image coordinates and
the world coordinates can be determined using similar triangles

the same perturbation in disparity for objects that are closer to the camera. This is

demonstrated in Figure 19.
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lI
fx

=
lW
z

(5.6a)

fx =
1
2
Xres

tan( θH
2
)

(5.6b)

lI =
1
2
Xres

tan( θH
2
)

lW
z

(5.6c)

In Equation 5.6, consider an object that is z mm away from the sensor. Assuming

a pinhole camera model, the length in pixels lI for an object of length lW in the world

coordinates can be derived using similar triangles as shown in Figure 20. To get the

image length in pixels, the focal length also needs to be expressed in pixels, given by

fx. The camera field of view can be expressed as θH for horizontal, and θV for vertical.

A similar relation can be derived for the height of the object and the height in pixels.

The D435i has a pixel size of 3µm x 3µm. From Equation 5.6, the smallest object

that the stereo-camera can detect can be found by computing 2zlI
f

with a length in

image space of 1 pixel. For a defect that is 200mm away, which would be the case for

the experimental setup that is used in this study for a 400 mm diameter pipe, the

length captured by 1 pixel is 0.621mm.

5.3.2 Data Fusion for Defect Detection

In this section, the rationale behind using point-cloud derived features for defect

detection and the processing of the point cloud is described. The purpose of using

multiple modalities in prediction is to provide complementary information to aid

model prediction. For industrial inspection, the RGB data stream provides texture

and plane-projected morphological information without depth perception. The depth
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stream provides a more fine-grained morphological representation of the scene. This

study proposes a method to integrate data streams derived from the depth stream that

would be relevant to the pipeline defect detection problem. Data fusion rules have been

extensively studied in the field of image processing. Reviewing the literature reveals

that the complexity of the fusion methods has increased to produce incremental

improvements in quantitative performance metrics when tested on large datasets

of natural images. However, concrete explanations as to why these modifications

work and whether the improvements are predictably higher across different kinds of

datasets are missing. The empiricism of deep learning architecture modifications led

us to approach this part of the network with the aim of using a more transparent,

explainable fusion rule architecture derived from classical decision-theoretic and data

fusion principles. There are two principled ways of approaching data fusion in the

context of deep learning: (i) Neural Architecture Search (Liu et al., 2019a) (ii)

Rules-based fusion (Gupta et al., 2014). The first approach seeks to find a network

architecture that can robustly fuse features from different data sources to satisfy

a meta-objective of predicting well across multiple datasets. The second approach,

while not directly geared towards improving detection performance metrics, would

instead target providing interpretability for how the individual modality information

is being utilized for the final prediction, and provide a way for the end-user to make

operational choices for sensor integration. Industrial inspection in its current state

could benefit from a hybrid approach of data-driven feature extraction, engineered

data pre-processing and feature fusion rules, especially given that the number of

samples available for training is not very high.

Fusion can be accomplished in multiple ways:

• Data Fusion: In this case, the fusion occurs at the level of the raw data.
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• Feature Fusion: Features extracted from the data are fused together in intelligent

ways to produce a new, combined feature representation.

• Decision Fusion: Several classifiers, each operating on one type of data are used

to fuse the decisions made by each classifier to produce a combined evaluation

using all the sources available.

In this work, new features are derived from the point cloud that were hypothesized

to be relevant for pipeline data. The fusion rules for combining the RGB and point

cloud-based information are then derived.

5.3.2.1 Feature Descriptor for Defect Detection: Depth Normal Curvature Repre-

sentation

The problem of transforming the depth map of a cylinder to an equivalent flat

plate with highlighted defect areas was studied by Alzuhiri et al. (2021). Alzuhiri

et al. (2021) used a least-squares fit of an ellipsoidal surface to accomplish this task.

But this approach is computationally intensive as it requires parametric modeling of

pipeline geometry, and is sensitive to the location of the camera. Moreover, it was

primarily used for the reconstruction of gas pipeline geometry. The objective here is

to design feature descriptors from the point cloud that can potentially be extended

for use in other domains such as road crack detection.

The novel DNC (Depth-Normal-Curvature) representation is now described. This

is a 6-channel representation compressed into 3 channels using 1x1 convolutions, as

shown below in Figure 21. This compression module is the first step in learning

to weigh the engineered features to appropriately include the right proportions of

the feature set from the point cloud data. The 1x1 is used for reducing the channel
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dimension, and can take an input of dimension N ×FI ×H ×W . If the kernel has FO

filters, then the output dimension is expected to be N × FO ×H ×W . The surface

normal is a 3-channel image, one for each component of the normal vector. The

curvature consists of the mean and Gaussian curvatures, which can be computed from

the principal curvatures of a point on a surface. The depth information obtained from

the stereo camera only showed weak signals of the defect. In contrast, the curvature

and normal maps can highlight these features with strong signals, as shown in the

demonstrative example in Figure 23. The point cloud has all of this information, and

the goal is to find out whether transforming this point cloud data into the depth map,

normal map and curvature maps would improve defect localization performance.

Another justification for using this approach is that the majority of the ILI

procedure occurs in cylindrical sections.Note that the camera is placed such that it

rotates about the axis of the pipe. This makes it possible to take advantage of the

symmetry in the geometry of the view being captured. The setup also helps take

advantage of the fact that the curvature of the cylinder is constant, except when

there are imperfections on the surface, be they dents or pits. Another source that can

cause a deviation from this ideal situation would be the noise inherent in the depth

signal and the errors induced by the algorithm used to compute curvature. Similarly,

for general detection and scene understanding problems, the surface normal provides

additional geometric cues similar to the curvature. The normal serves to provide

a "bump map", similar in vein to the ones used in computer graphics, to simulate

wrinkles and bumps in textures. The differential geometry of a surface provides a

discretizable formulation of normals from first derivative information and curvatures

from second derivative information, assuming that these derivatives exist throughout

the domain.
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Figure 21. RGB-DNC Data Pre-processing Module: This module compresses the
channel-wise dimension of the DNC input from 6 to 3 channels.

The surface normals and curvatures are derived from the depth map Z = h(X, Y ),

which is essentially a Monge patch ζ : U− > R3 with the form:

ζ(X, Y ) = (X, Y, h(X, Y )), (X, Y ) ⊂ U (5.7)

The normals η can be calculated using the first derivative information and the

curvature can be calculated using the second derivative information. The Gaussian

and mean curvatures K and H of the surface are then computed using the standard

equations describing the fundamental coefficients of a surface (Chase, 2015). The

derivatives are computed along the x and y directions as follows:

Diζ = [
∂Xj

∂xi

∂Yj
∂xi

∂Zj

∂xi
] (5.8a)

Diiζ = [
∂2Xj

∂x2i

∂2Yj
∂x2i

∂2Zj

∂x2i
] (5.8b)

Dijζ = [
∂2Xj

∂xixj

∂2Yj
∂xixj

∂2Zj

∂xixj
] (5.8c)

η(X, Y ) =
Dxζ x Dyζ

|Dxζ x Dyζ|
(5.8d)
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The derivatives computed above in Equations (5.8a) - (5.8c) are used to compute

the normal η in Equation (5.8d). The curvature information is derived from the

fundamental coefficients of the surface by first computing the inner product between

the first derivatives for the first 3 components E, F, and G. The inner product between

the second derivative components and the normal map can be used for computing L,

M and N:

E = Dxζ.Dxζ;F = Dxζ.Dyζ;G = Dyζ.Dyζ; (5.9a)

L = Dxxζ.η(X, Y );M = Dxyζ.η(X, Y );N = Dyyζ.η(X, Y ); (5.9b)

K =
LN −M2

EG− F 2
(5.9c)

H =
LG+NE − 2FM

2(EG− F 2)
(5.9d)

Equation (5.8d) and Equations (5.9a) - (5.9d) is used to obtain representations of

simple geometric shapes.

Using the above formulation, a set of simulated surfaces are now used for analyzing

the features. Consider a discrete smooth flat plate that was created with a (1000x1000)

grid with z = 1 as shown in Figure 22. The normals were calculated to be (0,0,1)

across the entire grid, which is accurate. Both mean and Gaussian curvatures are

zero, which tells us that the computation is correct for the flat plate. Next, a cylinder

section was created using a (1000x1000) grid, with a 180-degree field of view as shown

in Figure 22. The mean curvature was calculated to be -1, and the Gaussian curvature

was calculated to be 0. The cylinder that has been created now can be thought of

as bending the flat plate about the longitudinal axis. While the surface shape has

changed, the length of the arc connecting two points in that surface has not. The

Gaussian curvature formulation outlined above is invariant to such transformations
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and remains unchanged, but the mean curvature is not invariant to the change in the

embedding of the surface within the 3D space. The next case that is considered is

the rotated cylinder. This case demonstrates a scenario that can occur during data

collection from the pipe sample. Due to the misalignment of the camera, it is possible

that the depth map can deviate from being approximately normal to the surface. The

curvatures demonstrate that they are approximately invariant to such rotations (Besl

and Jain, 1986).

5.3.3 Fully Convolutional Neural Networks for RGB-D Segmentation

The baseline architecture is based on the fully-convolutional encoder-decoder

network (Long et al., 2017) as shown in Figure 24. The encoder has two parallel

streams, one for 3D data and the other for RGB data, and the output of each of the

convolutional sub-blocks in the encoder is extracted for feature fusion. This provides

a hierarchy of features at multiple scales, with earlier layers extracting fine-grained

morphological information, and later layers extracting coarse-grained category and

location information. The resulting layers are then passed into the decoder, which

consists of transposed convolutions, to upsample the compressed representation into

the label space. The feature fusion modules are derived to prioritize the resulting

feature maps from the encoder convolutional blocks so as to lower the training loss.

The feature fusion schemes are visualized below the main architecture diagram in

Figure 24. The base case for the fusion block is the element-wise sum, abbreviated

in the results as (SF). The details pertaining to the more sophisticated fusion blocks

derived are described below:
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Figure 23. Comparing the RGB-D and RGB-DNC data input formats: RGB-DNC
provides a more refined representation of defects at the input level.

5.3.3.1 Weighted Non-Linear Fusion (WNLF)

The first approach implements a method to fuse data at the feature level. A non-

linear weighted combination of the max pooling layer outputs from each convolutional

block is performed as follows:

F = f(MRGB,MD) (5.10a)

f(MRGB,MD) = ReLU([MRGB,MD] ∗K) (5.10b)

In Equation 5.10a, MRGB and MD are the max-pooling output after each convolutional

block of the encoder. The max-pooled outputs are first concatenated, then convolved

with a 1x1 convolution kernel K and finally passed through a ReLU non-linearity, as

seen in Equation 5.10b. Concatenation of the RGB and depth channels doubles the

channel dimension length. The convolution acts on the two sections of the concatenated

representation to reduce the channel dimension back to its original length. For example,

the first block of the encoder leaves us with a max-pooled output representation that

has 8 channel dimensions each for the RGB and depth data. Concatenating these

features along the channel dimension gives us a total of CI = 16 channels. The fused

representation obtained from Equation 5.10b returns back the original 9 dimensions.

Let the input features have a dimension of CIxMxN . The 1x1 convolution layer has a
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shape COxCIx1x1. Each kernel Ki produces a distribution of weights, when convolved

with the input features produces a weighted sum
∑CI

j=1Kij.Ij = Fi. Each convolved

output Fi is one component out of the total CO components at the output of the

fusion layer. From the point of view of interpretability, this is not the same as a

simple weighted additive combination. Instead, an output map that consists of a set

of weighted combinations is obtained, densely weighted by each convolution kernel,

shown in row representation as:

K1 = [K11, K12, ..., K1CI
],

K2 = [K21, K22, ..., K2CI
],

... (5.11)

KCO
= [KCO1, KCO2, ..., KCOCI

]

5.3.3.2 Attention Fusion Block (AF)

The second approach, the Attention Fusion Block, is designed to combine RGB

and 3D data streams by performing more sophisticated operations on the intermediate

features to weight them by important channels and spatial regions. To do this, it

employs two attention mechanisms, channel and spatial attention. This structure

was proposed in (Woo et al., 2018) for RGB object detection, and has been used for

various image classification and detection tasks. It is natural to extend its use for

semantic segmentation with multiple data sources.

Fattention = g(MRGB,MD) (5.12a)

g(MRGB,MD) = S(C(MRGB,MD)) (5.12b)
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In Equation 5.12a, MRGB and MD represent the input feature maps from the RGB

and depth data streams, respectively. Equation 5.12b elaborates the process, where

C(·) represents channel attention and S(·) represents spatial attention.

• Channel Attention (C): The channel attention mechanism focuses on the

channel-wise feature weighting task. It takes the feature maps MRGB and MD

and applies an adaptive average pooling and an adaptive max pooling so as

to reduce the spatial dimension to (1,1), followed by two convolution layers -

One that reduces the channel dimension, and followed by the second that brings

it back to the original dimension. Both the maxpooled and average pooled

representations are then combined via addition to return a set of channel-wise

attention weights. These weights are applied to the original feature maps to

emphasize more relevant channels.

XFused = Cat(MRGB,M3D) (5.13a)

C(MRGB,M3D) = XFused ⊙W c
Fused (5.13b)

where ⊙ denotes element-wise multiplication, and WFused is the learned attention

weights for RGB and 3D channels.

• Spatial Attention (S): After the channel attention step, spatial attention is

applied, focusing on "where" to emphasize in the spatial domain. In contrast

with the channel attention module, the spatial attention module utilizes both

average and max pooling operations across the channel axis to generate spatial

attention maps. These maps are then convolved to assign spatially varying

importance to different regions of the feature map.

S(x) = σ(Conv(cat([AvgPool(x),MaxPool(x)]))) (5.14)
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where cat denotes concatenation, Conv a convolution operation, and σ the

sigmoid function for normalization.

The resulting output Fattention from the Attention Fusion Block is a set of feature

maps where both channel and spatial aspects have been weighted, emphasizing the

most informative features for subsequent decoding in the segmentation task.

5.3.4 Post-processing and Defect Measurement

Once the segmentation is complete, the one-hot encoded prediction and the point

cloud maps are used to evaluate the sizes of the defects. The overall process is shown

in Figure 25. While the prediction can be used directly, the point cloud maps need

some post-processing before its usage for measurement. It is possible that the depth

map contains holes due to the block-matching algorithm. These holes are known

as invalid depth pixels. To remove these invalid pixels, interpolation is performed

between values of depths. If the invalid regions are small compared to the area of the

entire depth map, then the interpolation does not severely corrupt the geometry of

the point-cloud, but assumes a smooth, continuous transition.

One-hot encoding used to separately evaluate the corrosion and crack defect. The

detected contours are then sorted for both defects. The list of extracted contours are

then used to compute defect characteristics such as area, depth, width and length.

For cracks, all four characteristics are reported, and for corrosion, it is sufficient to

report only are width and length.

Contour area is computed by calculating the convex hull of the contour. Contours

are filtered by checking if a defect occupies less than 4 pixels in the image. Depth

computation is done using a bounding polygon of the defect. For this study, a
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Figure 25. Post-Processing of the segmentation and point-cloud maps to extract crack
and corrosion defect measurements using contour analysis.

rectangular approximation is used for the polygon. If the defect is small, the effects of

curvature on the depth is minimal. The maximum depth of the defect is computed

as the difference between the bounding rectangle regions’ maximum and minimum

depth. Contour length and width are computed by using the minimum area rectangle

surrounding the contour. The width is computed by calculating the euclidean distance

between the left and right side of the bounding rectangle, and the length is computed

as the diagonal length of the rectangle. These metrics for defect quantification are

calculated using image processing functions from OpenCV (Bradski, 2000).
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5.4 Experimental Setup

5.4.1 Dataset

Table 7. D435i settings for image acquisition.

Parameters Baseline values
RGB Resolution and Rate 1280x720 @ 30 Hz
RGB Field of View 69◦x42◦
Depth Resolution and Rate 1280x720 @ 30 Hz
Depth Field of View 87◦x58◦
Focal Length 1.93 mm
Baseline 50 mm

The platform used for collecting data uses off-the-shelf hardware. These include

the sensors, the computing system, and the robot platform. The primary purpose of

this experimental setup was to acquire data for the main dataset that this chapter

discusses, the RGB-D pipeline defect dataset. The platform consists of an active stereo

camera, the Intel RealSense D435i. The baseline parameters for the Intel RealSense

D435i depth camera are shown in Table 7.

The ASU pipeline RGB-D data consists of 77 images. To my knowledge, there has

been no RGB-D dataset for pipeline inspection published for benchmarking till date,

so this dataset provides corrosion pitting and crack defects for segmentation tasks. To

increase sample diversity, the data is augmented using random flips during training.

Operations such as rotation and shear unrealistically distorts the depth, normal and

curvature information, so these transformations were not used. The dataset has 2

defect categories: pitting defects and cracking defects. The ASU pipeline dataset

was primarily used to evaluate the comparative performance of feature fusion with

various types of input data with the RGB image, across dropout ratios and across
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training samples, for model performance and uncertainty. Due to the small size of the

dataset, 5-fold cross validation is used to average the results. In order to minimize the

influence of class imbalance in the detection performance, the weighted cross-entropy

loss term using the median of the class frequencies in each image is employed

5.4.2 Implementation Details

The network architecture used is an Encoder-Decoder model similar to those

seen in previous chapters, with a transposed convolutional decoder, as explained in

Section 5.3.3, and the experiments are conducted using PyTorch. Since the dataset

is small, this study uses 2 encoder blocks, and 1 decoder block. Each block consists

of convolution followed by ReLU and max pooling. A small network is sufficient to

capture the features for corrosion and cracks without overfitting on the training subsets

during cross validation. Similar to the previous chapter, the SGD with momentum is

again used for optimization, with a momentum value of 0.9 and weight decay of 10−5,

along with a step-decay learning rate scheduler. Details on the metrics are given in

Section 4.4 of Chapter 4. Similarly, the ABL and IOU loss functions are also used to

enhance defect boundary reproduction, as explained in Chapter 4.

5.5 Results and Discussion

Quantitative out-of-sample performance metrics for the ASU Dataset is shown in

Tables 8 and 9. Table 8 shows a substantial improvement seen by adding depth and

curvature data all cases, with the normal maps providing an additional boost. Using
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depth alone does not provide the strong signal for classification that the additional

modalities do. The sampling variance is comparable and small across the board.

Model mF1 F1 (Pit) F1 (Crack) Variance x10−3

FCN (RGB) 63.16 60.13 30.06 0.3
AF (RGB-DNC) 68.97 65.39 42.18 0.5
AF (RGB-DC) 67.17 63.65 38.55 0.5
AF (RGB-D) 60.11 58.82 22.24 0.5
WNLF (RGB-DNC) 70.34 65.03 45.62 0.8
WNLF (RGB-DC) 68.46 64.48 41.61 0.4
WNLF (RGB-D) 59.48 62.92 16.24 0.4
SF (RGB-DNC) 67.93 62.48 42.04 0.8
SF (RGB-DC) 67.79 63.16 40.88 0.4
SF (RGB-D) 61.15 61.50 22.72 0.6

Table 8. Model performance comparison for segmentation tasks

Dropout p mF1 F1 (Pit) F1 (Crack) Variance x10−3

0.1 68.97 65.39 42.18 0.5
0.2 70.53 64.23 48.03 1.4
0.3 69.78 65.97 43.97 1.5
0.4 67.90 60.39 44.06 2.1
0.5 64.84 59.98 35.32 5.8

Table 9. Performance of RGB-DNC using the AF Fusion Model with Different Dropout
Probabilities

From the results, it is clear that the additional data provides a substantial improve-

ment to performance but no real improvements to model uncertainties. The defect

measurement results is shown in Table 10. The epistemic uncertainty in prediction is

transferred to the defect measurement and is evaluated by computing the variance

of the MC-sampled predictions. The table demonstrates two examples of defect

measurements - The first is a combined pitting and cracking defect. The model does

not detect the crack, but manages to detect the pitting defect. Even though there are
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Figure 26. Demonstrative examples of detections in the ASU Pipe Dataset. Images
from Left to Right: Input, Prediction, Ground Truth, Total Uncertainty

two separate pits, the combined area of both the pits were used to compare the mean

prediction area with the area computed from the ground truth. The depth and length

are also compared with the ground truth segmentation. The second image is a crack

defect, which was detected and the estimated area, depth, length and width of the

crack are compared. The depth sensor was found to be unreliable below the millimeter

scale, with improved detections of defect depths in the millimeter scale. Signals of

interest captured at sub-millimeter scales can be used for anomaly detection, but the

corresponding depth measurements will not be reliable for measurement purposes. In

the context of pipe damage modeling, this situation corresponds to early detection

for corrosion and oxidization of metallic surfaces (Zhang and Ma, 2019). At the

early stages of surface degradation, the dominant anomaly signal is increased metallic

surface roughness, which can be detected but not precisely profiled along the depth

direction by the stereo setup. Further improvements to the depth resolution for optical

metrology at sub-millimeter scale using depth sensors is an important future research

direction.
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The detections for the ASU pipe dataset is shown in Figure 26. The uncertainty

maps show that the source of uncertainty is largely at the boundaries of the detected

defect. The variance in defect area profiles is useful for downstream prognostics, and

the ability to obtain uncertainty estimates along with defect morphology is essential

for detailed risk evaluations. This method when applied to other sensor types such

as higher resolution depth cameras, Time of Flight and Structured Light sensors can

yield both depth and area profile variances with no changes to the neural network

architecture, giving practitioners and operators the ability to use transfer learning to

adapt their model to new types of sensors.

5.6 Conclusions

In this chapter, RGB and point-cloud features are fused for uncertainty-aware crack

and corrosion detection in gas pipeline images. The utility of point-cloud derived 2D

representations such as the Depth, Normal and Curvature representation are evaluated

for uncertainty reduction and detection performance. The motivation behind using

this representation was to leverage the geometry of the pipe effectively. To utilize

the information from these modalities effectively, a weighted combination approach

is proposed within the network encoder to fuse the data along multiple layers of

the network. The findings show significant improvements to mean F1 (mF1) and

class-wise F1 score when using curvature and normal maps. This is because the

features take advantage of the geometry of the pipe. The depth resolution is found

to be an important limitation of existing depth sensors, as it cannot produce precise

depth evaluations beyond the millimeter scale owing to resolution limitations and noise.

Active stereo is generally suited for rapid visual inspection of pipe infrastructure, and
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incorporating detailed uncertainty maps along with detections and segmentations is

recommended as a useful addition to existing damage evaluation methods.
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Chapter 6

DEFECT SEGMENTATION WITH LIMITED LABELED DATA USING

CONSISTENCY REGULARIZATION AND ACTIVATION MAP

INTERPOLATION

6.1 Introduction

Automated defect segmentation plays a crucial role in quality assessment for

manufacturing processes. However, the acquisition of labeled data for defect segmen-

tation is a formidable challenge. Labeling datasets is costly and often requires expert

annotators (Rasmussen et al., 2022). Moreover, defects in industrial settings pose

unique difficulties, including intricate morphological characteristics, high intra-class

variability, inter-class similarities (Chang et al., 2012; Gyimah et al., 2021), and the

presence of minuscule defects (Ling et al., 2022; Liu and He, 2022), which can be

particularly elusive.

In this chapter, a semi-supervised method that leverages a small set of labeled

examples and a larger set of unlabeled samples is used for defect detection. This

approach is motivated by the need to alleviate the burden of data labeling, especially

when dealing with fine-grained defect detection at the pixel level.

The novelty of this method is obtained based on three fundamental cornerstones:

the smoothness assumption, the cluster assumption, and consistency regularization.

The smoothness assumption posits that the decision boundaries between classes should

be well-separated, while the cluster assumption suggests that classes should not overlap
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but remain distinct. To enforce these assumptions, consistency regularization is used,

which encourages the model to produce consistent outputs for perturbed inputs.

However, applying consistency regularization to image segmentation is not straight-

forward. Unlike image classification, segmentation requires pixel-wise predictions and

is sensitive to input augmentations like rotation or translation. Note that the clustter

assumption may not hold uniformly across image data (French et al., 2019). To address

these challenges, this method employs input interpolations in the low-dimensional

embedding space to ensure consistency while utilizing common image augmentation

techniques to enhance sampling diversity.

This chapter is organized as follows: Section 6.2 outlines key advances in image

segmentation for defect detection and semi-supervised learning. Section 6.3 details the

proposed semi-supervised method. Section 6.4 presents the training procedures and

datasets. Following that, Section 6.5 presents evaluations of the proposed approach

across the datasets considered, across multiple training settings. Finally, Section

6.6 concludes by summarizing the main results and outlines the implications and

limitations of this study.

6.2 Related Work

6.2.1 Image Segmentation for Defect Detection

Early methods for defect detection focused on hand-engineered feature classification

and defect classification using classical machine learning and statistical techniques (Liu

et al., 2019b; Suvdaa et al., 2012; Liu et al., 2016; Shi et al., 2016). (Liu et al., 2019b)

used a multi-block local binary pattern (LBP) to filter features across multiple scales.
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(Suvdaa et al., 2012) uses SIFT features followed by an SVM for defect classification.

(Liu et al., 2016) uses image binarization optimization using genetic algorithms to

segment defects in an unsupervised fashion, by using a thresholding approach based on

inter and intra-class variance statistics. In most of the classical image processing-based

approaches, the process of detection is multi-stage, requires lower amounts of training

data and has simpler mathematical models, and complicated algorithmic models.

Classification based on deep learning has been explored by several works (Liu et al.,

2020b; Saiz et al., 2018; Chen et al., 2018). (Liu et al., 2020b) uses a CNN architecture

with fixed scales at two image resolutions, which compute features at the corresponding

scales and are then concatenated for defect classification. (Chen et al., 2018) uses an

ensemble of three networks to classify defect images, and (Saiz et al., 2018) combines

pre-processing steps with a CNN in an attempt to increase the robustness of the CNN

to inter-class defects. Semi-supervised classification algorithms such as (Di et al.,

2019; Wang et al., 2021c) use varied methods to distinguish between textural samples

with limited labeled data. (Di et al., 2019) uses a large unlabeled corpus to train

a convolutional auto-encoder and a GAN is then used to increase the sample size.

Finally, the encoder of the trained auto-encoder model is used to extract features from

the data, and is fed into a softmax layer for classification. (Wang et al., 2021c) uses

a graph-based deep network to perform classification. However, classification does

not give us any indication of object location, without further post-processing. This

gap was filled by various object detection (Li et al., 2018, 2019; Zhang et al., 2020)

and semantic segmentation methods. The latter produces pixel-wise predictions, with

various architectural modifications proposed recently to boost the performance in the

validation and test sets, as in (Tabernik et al., 2020; Dong et al., 2020; Cheng and Yu,

2021; Yang et al., 2020b; He and Liu, 2020).
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Recent advancements in defect segmentation have focused on improvements and

modifications to the deep feature extractors. For instance, the "MemSeg" model

presented a memory-based segmentation network for real-time, high-accuracy semi-

supervised surface defect detection (Yang et al., 2022). MemSeg leverages a combi-

nation of artificially simulated abnormal samples and a set of normal samples to aid

anomaly detection. This work sees the application of the oft used multi-scale feature

fusion technique and a spatial attention module. Lightweight models are sought after

in industry due to their prediction speed. In order to address this, a lightweight

model for online surface defect segmentation on aluminum strip production lines was

introduced, balancing segmentation speed and precision (Lv et al., 2023). This work

also utilizes modifications in the network architecture, such as spatial attention and

feature pyramid networks (Lin et al., 2017). Another approach is the MLR-Net, a

multi-layer residual convolutional neural network designed for leather defect segmen-

tation, which integrates spatial and channel attention mechanisms (Iqbal et al., 2023).

A sub-region U-Net model was proposed for segmenting defects, especially effective

in scenarios with low contrast and high background noise (Zhu et al., 2023). It is

observed that the application of spatial and channel attention mechanisms across these

models emphasizes the trend toward more precise and targeted feature extraction,

which is crucial for accurate defect segmentation.

6.2.2 Semi-Supervised Segmentation

Labeled data acquisition has been a significant challenge for the defect segmentation

task. While supervised methods offer the promise of precise pixel-wise predictions

that can inform downstream decision-making, the task of labeling each pixel in an
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image is a monumental effort that takes manpower and domain knowledge. This

has led to efforts in multiple directions that aim to drive down the need for large

amounts of labeled data. (Fernández-Moreno et al., 2023) explored the trade-off

between performance and annotation complexity in semantic segmentation, assessing

various methods across different levels of supervision. The task of semi-supervised

learning has been explored using the following approaches that regularize unlabeled

outputs during training: Pseudo-Labeling (Lee, 2013; Chen et al., 2021; Sime et al.,

2022; Xu et al., 2023), consistency enforcement (French et al., 2019; Yun et al., 2019;

Zhang et al., 2017a; Verma et al., 2019; Shi et al., 2023; Hu et al., 2022), adversarial

training (Miyato et al., 2019; Zhang et al., 2017b) and co-training (Qiao et al., 2018;

Fan et al., 2022).

The pseudo-labeling approach takes in a corpus of labeled and unlabeled samples,

and generates fake targets for the unlabeled samples (Lee, 2013). More recently, a

Cross-Pseudo Supervision (CPS) method has been proposed that takes the labels

generated from the main network is used as supervision for unlabeled samples (Chen

et al., 2021). However, the problem with pseudo-labels is that the errors made in the

target generation have no mechanism of correction. As a result, using incorrect pseudo-

labels will tend to propagate these errors through the model during backpropagation,

and cause a positive feedback loop of erroneous predictions leading to incorrect weight

updates.

Methods to boost pseudo-labeling and correct for these accumulating errors have

been proposed. Self-training improves upon the pseudo-labeling approach by succes-

sively adding new samples into the corpus and by selecting the samples that it is most

confident about. (Sime et al., 2022) proposed Semi-Supervised Pairwise Similarity

Map Consistency and Ensemble-Based Cross-Pseudo Labels (SimCEPS) that uses an
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ensemble of outputs from multiple predictor decoders. Regional Contrastive learning

(ReCo) (Liu et al., 2021) is a technique that applies a contrastive loss on the latent

embedding space before the decoder, encouraging similar classes to cluster closer

together, providing significant performance gains when the amount of labeled data is

sparse.

Consistency regularization constrains the predictions in the neighborhood of a

sample to produce the same prediction as the unperturbed sample, and is based

on the validity of the cluster assumption. The simplest way to enforce consistency

regularization is to perform random perturbations to the input. However, the space of

possible perturbations in high-dimensional data is very large and randomly choosing

perturbations can be ineffective. The ICT approach uses an interpolation between

a pair of unlabeled samples such that the new sample lies in between the two, and

consistency is enforced by constraining the transition curve between the two points is

linear.

CutMix (Yun et al., 2019) trains classifiers by introducing a random rectangular

mask in the image to inpaint another image, and effectively combine the two images

to produce a perturbation. Geoff et. al (French et al., 2019) combines CutMix with

the Mean Teacher (MT) model (Tarvainen and Valpola, 2017), and predict pixel-wise

semantic segmentation in a semi-supervised fashion.

Adversarial training is another method used to enforce consistency. In this family,

the objective is to train a discriminative model alongside a generative model. (Zhang

et al., 2017b) uses a Deep Adversarial Network (DAN) to train an evaluator network to

discriminate between the segmentation produced from labeled and unlabeled images.

The main segmentation network generates outputs that decrease the ability of the

discriminator to distinguish between labeled and unlabeled samples. Another work on
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adversarial training is the Virtual Adversarial Training algorithm (VAT) proposed

in (Miyato et al., 2019), which enforces consistency in the output with respect to

adversarial input perturbations. The method replicates the effect of consistency

regularization, while also being robust to adversarial attacks.

Deep Co-Training (DCT) (Qiao et al., 2018) is another method to regularize

outputs to stay consistent despite augmentations of the input, by minimizing Shanon

divergence between the representations of the two views. Uncertainty-guided Cross-

head Co-Training (UCC) (Fan et al., 2022) uses a multi-head decoder that processes

both strongly and weakly augmented data following the concepts outlined in (French

et al., 2019), but also uses uncertainty to filter out low-confidence pseudo-labels.

This work takes a similar approach to (Fan et al., 2022; Sime et al., 2022), where

the decoder uses a multi-branch architecture and use the mean-teacher model to

distill knowledge between the central student decoder branch and the auxiliary teacher

decoder branches. This work differs from these approaches in that it performs an

interpolation between the representations at the final layer of the encoder for the

unlabeled samples to perform consistency regularization.

6.3 Methodology

This section provides a detailed breakdown of the method’s components and the

rationale behind the components of the model used in this method.
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Figure 27. Overall methodology for semi-supervised segmentation using interpolation
consistency in the probability space: Blocks with the same colors denote related
elements. Note that the blue box denotes the common decoder weights for both the
labeled data and the interpolated representation from the unlabeled pair. The training
is to be done concurrently for both labeled and unlabeled batches.

6.3.1 Overview of the Proposed Framework

The proposed method takes in a corpus of a small set of labeled images and a

larger set of unlabeled images. The samples are passed into a multi-branch network,

where a multi-component loss is learned jointly. Labeled samples are learned using a

supervised loss, and unlabeled samples are learned using a consistency loss.

Let DL be the set of labeled training samples, and DU be the set of unlabeled

training samples. Let (xL, yL) be a pair of labeled samples from DL, and let (xi, xj)

be a pair of unlabeled samples extracted from DU . Detailed batching schemes for the

unlabeled samples is given in Section 6.3.3. The training process then transforms these

labeled and unlabeled samples using horizontal and vertical flipping, affine rotation

and scaling, and color jitters. These transforms increase the diversity of the samples

by perturbing it around the neighborhood.
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Figure 28. Cluster assumption demonstration by computing the patchwise Euclidean
distance between a patch and its neighbors. Higher values are indicated with yellow:
Left-most image is the input, followed by the distance maps of the following: the
input image, the activation map from layer 4, and the activation map from the final
layer of the encoder.

The labeled sample is drawn from the joint distribution P (X, Y ), and is treated

exactly the same as it is in fully supervised segmentation with encoder-decoder type

architectures. The unlabeled sample is also passed through the common encoder

branch. The unlabeled samples are not augmented versions of the same sample, but

two different samples that are drawn from the same distribution of the data generating

process P (X) = P (X,Y )
P (Y |X)

. The consistency task in this approach is not to enforce the

same prediction for two augmented samples as is seen in the image classification case.

Rather, the aim is to enforce consistency on interpolated versions of the unlabeled

samples in the latent space. The justification for this approach lies in the cluster

assumption. Images at the input level are high dimensional representations that do

not strictly obey the cluster assumption, as argued in (French et al., 2019). The

hidden representations, however, are at a lower dimension, and were expected to have
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better clustering properties. This is identified by plotting the hidden representations’

patch-wise Euclidean distances, by first obtaining a class activation map and then

interpolating it to the original image size, as shown in Figure 28. The patch-wise

distances better conform to object boundaries at the hidden representation level, as

compared to the input level.

Let (xCAM
i , xCAM

j ) be the probability maps of the representation in the latent

space. The class activation maps are obtained using a global average pooling (GAP)

layer (Zhou et al., 2016). The GAP performs a channel-wise spatial averaging of data,

and this is multiplied by the weights wc
k to yield the activation map Mc. This is then

converted into a channel-wise probability by using the softmax:

mCAM(i, j) =
∑
k

wc
k.fk(i, j) (6.1)

xCAM(i, j) = Softmax(mCAM(i, j)) (6.2)

The difference between this approach and the one described in ICT (Verma et al., 2019)

is that the interpolation happens at the latent space, enforcing consistent predictions

during interpolations between representations of the unlabeled data. To interpolate,

a convex combination of the two unlabeled samples is first obtained, represented as

xmix = λ · xCAM
i + (1− λ) · xCAM

j , where λ is a mixing coefficient sampled from the

beta distribution, Beta(α, α), to generate interpolated data points. Consistency is

then enforced between the decoded representation from this interpolated map, and

the decoded representation from the teacher decoders:

fθ(Mixλ(x
CAM
i , xCAM

j )) ≈ Mixλ(fθ′(x
CAM
i ), fθ′(x

CAM
j )) (6.3)

Here, fθ represents the model being trained. while θ′ is an exponential moving average
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(EMA) of θ, given by:

g(θt) = γg(θt−1) + (1− γ)f(θt) (6.4)

γ = min(1− 1

n+ 1
, γ) (6.5)

Here, n is the number of iterations completed and γ is a weighting factor. This

dynamic weighting process ensures that the EMA starts by being dominated by the

second term, eventually converging to a stable computation using γ as the weighting

factor.

6.3.2 Loss Functions

The consistency between the interpolated outputs is enforced using the KL di-

vergence between the prediction given by the latent-space intepolation ỹinterp and

the prediction from the interpolation that takes place after each unlabeled sample is

decoded, interp(fθ(xi), fθ(xj)).

Lcons =
∑
i

ỹinterp log

(
ỹinterp

interp(fθ(xi), fθ(xj))

)
(6.6)

The supervised loss function is a combination of a distributional loss and two shape-

aware losses. The distributional loss used for this work is the focal loss (Lin et al.,

2018), that takes into account the class imbalances present in the training data. This

loss function weights misclassified training samples by introducing a focusing factor

γ >= 0. This study uses γ = 2. Additionally, the parameter α is used to weight the

classwise loss using median-frequency balancing:

Lfocal(pt) = −α(1− pt)
γlog(pt) (6.7)

αc =
fm
c

fc
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fm
c is the median frequency of the class across the sample set and fc is the class

frequency. The next two components of the loss are optimized to improve the prediction

boundary directly, consisting of the IoU loss (Berman et al., 2018), LIU and an active

boundary loss (ABL), LABL, whose details of computation are described in Chapter 4.

The total loss is then:

L = Lfocal + LIU + LABL + w(t)Lcons (6.8)

6.3.3 Dataset Batching

In this section, the implementation of the mini-batch sampler is detailed. It is

designed to manage sampling for both labeled and unlabeled data. It is initialized

with parameters such as the percentage of labeled data and batch sizes for labeled

and unlabeled data. The mini-batch sampling process involves several stages:

1. Shuffling: The labeled and unlabeled image lists are shuffled to ensure random

sampling.

2. Sub-batch Creation for Unlabeled Data: The unlabeled data is divided

into sub-batches of a pre-defined size. Each sub-batch is further segmented to

obtain pairs of unlabeled data for each instance of a labeled sample.

3. Random Sampling of Labeled Data: Labeled data is randomly sampled to

create chunks corresponding to the number of unlabeled sub-batches.

4. Combination of Labeled and Unlabeled Chunks: The sampler then

combines labeled and unlabeled chunks into composite batches, ensuring a mix

of both data types. This step adapts to scenarios with imbalanced counts of

labeled and unlabeled samples, with the caveat being that the unlabeled batch

size needs to be even for the sub-batch creation.

116



5. Index Conversion: Finally, the batches are converted into indices based on

their positions in the dataset, preparing them for extraction by the Dataset

class.

6.4 Experiments

Experiments were conducted on defect datasets from three different domains and

two different imaging modalities. The first dataset is the Northeastern University

(NEU) metallic surface defect dataset (Dong et al., 2019) which has the largest number

of samples and has 3 defect categories that form in strip steel plates: patches, scratches

and inclusion. Patch defects have a darker color than the background steel material and

scratch defects have lighter colored segments compared to the background. Inclusion

defects present lower contrast compared to the patch defect, and are caused due to

oxidation. The second dataset is the Magnetic Tiles (MagTile) Dataset (Huang et al.,

2018), which is a smaller dataset with 5 defect categories: Blowholes, crack, break,

fray and uneven. Among these defects, the uneven and crack defect categories blend

well with the background, making segmentation challenging. The MagTile dataset also

presents with some inter-class similarities, such as between the break and the blowholy

class. The intra-class variance in the crack and fray defects also makes this dataset

challenging. Figure 29 and Figure 30 show some samples from the MagTile and NEU

datasets respectively.The training and test configurations are given in Table 11.
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Figure 29. Demonstrative images from the Magnetic Tiles defect dataset

Figure 30. Demonstrative images from the NEU steel surface defects dataset

Dataset Training Test
NEU-Seg 3088 840
MagTile 312 80

Table 11. Dataset sizes

6.4.1 Network Setup and Training

The overall network architecture consists of an encoder, and two decoders, the

teacher decoder and the student decoder. The encoder is a VGG-16 network pretrained

on the ImageNet dataset. The final fully connected layer and average pooling layer

118



are removed and replaced with an adaptive average pooling layer. The fully connected

layer is replaced with a 1x1 convolutional layer at the output of each of the 5 sub-blocks

of the network, used to compute class activation maps at each stage. The decoder

consists of a series of transposed convolutional layers, to upsample the image back

to the original size. The dataset is loaded into the network using a batching method

that provides 3 sub-batches for every iteration: 1 sub-batch for labeled images, and

the other two consist of unlabeled images. The labeled images are iteratively sampled

with replacement until all the unlabeled images are accounted for. The labeled image

passes through the common encoder and the student decoder. The unlabeled image

first passes through the common encoder, and the corresponding class activation

maps are extracted and normalized to sum to 1 in the class dimension. Each of the 5

activation maps from the unlabeled data pair is interpolated, and the interpolated

activation maps are passed into the student decoder, and resized back into the right

channel dimensions using a 1x1 convolution. Refer to the below provided layer details

tables (Table 12 - 14) for information about the layers in the model.

The remaining unlabeled samples are passed through the teacher decoder and

interpolated after the outputs are obtained. The consistency loss is computed between

the output obtained from the interpolated inputs through the student decoder and

the output interpolated after they pass through the teacher decoder.
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Table 12. Encoder Layer Architectural Details with Channels Subdivision and Opera-
tion Parameters

Layer Channels Parameters Output

Input Output Kernel Stride Padding

Conv2d 3 64 (3, 3) (1, 1) (1, 1) 224× 224
Conv2d 64 64 (3, 3) (1, 1) (1, 1) 224× 224

MaxPool2d - - (2, 2) - 0 112× 112

Conv2d 64 128 (3, 3) (1, 1) (1, 1) 112× 112
Conv2d 128 128 (3, 3) (1, 1) (1, 1) 112× 112

MaxPool2d - - (2, 2) - 0 56× 56

Conv2d 128 256 (3, 3) (1, 1) (1, 1) 56× 56
Conv2d 256 256 (3, 3) (1, 1) (1, 1) 56× 56
Conv2d 256 256 (3, 3) (1, 1) (1, 1) 56× 56

MaxPool2d - - (2, 2) - 0 28× 28

Conv2d 256 512 (3, 3) (1, 1) (1, 1) 28× 28
Conv2d 512 512 (3, 3) (1, 1) (1, 1) 28× 28
Conv2d 512 512 (3, 3) (1, 1) (1, 1) 28× 28

MaxPool2d - - (2, 2) - 0 14× 14

Conv2d 512 512 (3, 3) (1, 1) (1, 1) 14× 14
Conv2d 512 512 (3, 3) (1, 1) (1, 1) 14× 14
Conv2d 512 512 (3, 3) (1, 1) (1, 1) 14× 14

MaxPool2d - - (2, 2) - 0 7× 7

6.4.2 Prediction

The trained model is evaluated using the intersection over union (IoU) metric,

commonly used in segmentation tasks. IoU measures the degree of overlap between

the ground truth and the predicted image mask - a score of 1 indicates a perfect

match.

IoU =
Area of Overlap

Area of Union
=

TP

TP + FP + FN
(6.9)

where TP is the number of true positive pixels (pixels classified as positive by both

the model and the ground truth), FP is the number of false positive pixels (pixels
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Table 13. CAM Block Details

Layer Input Channels Output Channels Kernel

AdaptiveAvgPool2d - - (1, 1)
Conv2d-BLOCK 5 512 Nclass (1, 1)
Conv2d-BLOCK 4 512 Nclass (1, 1)
Conv2d-BLOCK 3 256 Nclass (1, 1)
Conv2d-BLOCK 2 128 Nclass (1, 1 )
Conv2d-BLOCK 1 64 Nclass (1, 1)

Table 14. Decoder Architecture

Layer Channels Parameters Output

Input Output Kernel Stride Padding

ConvTranspose2d 512 512 (3, 3) (2, 2) (1, 1) 14× 14
ConvTranspose2d 512 256 (3, 3) (2, 2) (1, 1) 28× 28
ConvTranspose2d 256 128 (3, 3) (2, 2) (1, 1) 56× 56
ConvTranspose2d 128 64 (3, 3) (2, 2) (1, 1) 112× 112
ConvTranspose2d 64 32 (3, 3) (2, 2) (1, 1) 224× 224
ConvTranspose2d 32 4 (1, 1) (1, 1) (0, 0) 224× 224

classified as positive by the model but negative by the ground truth), and FN is

the number of false negative pixels (pixels classified as negative by the model but

positive by the ground truth). Model uncertainty is obtained using Monte-Carlo

(MC) Dropout. MC Dropout is a Bayesian deep learning method used for estimating

uncertainty in neural networks by activating weights using the Bernoulli distribution

with probability p. During prediction, dropout is activated and the network is run

multiple times with different dropout masks to produce a distribution of predictions.

This distribution can then be used to estimate the model’s uncertainty and confidence

in its predictions.
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6.5 Results and Discussion

This section presents the results obtained on the NEU surface defect dataset and

the Magnetic Tile (MagTile) dataset. The larger NEU dataset is used for the bulk of

the evaluations due to the larger sample size. First, the effect of adding unlabeled

data on model predictive performance is shown as compared to just using labeled

data. Loss function weighting between the consistency and supervised losses is also

studied, by using a sigmoid ramp-up function for the consistency loss. The results

show that the mIU obtained in the validation set using the semi-supervised approach

exceeds the fully supervised baseline, as shown in Table 15. The level of performance

improvement obtained by the inclusion of the unlabeled data is the most dramatic

when the amount of labeled data is scarce. This gap reduces as more labeled data is

available, with the performance converging toward the fully-supervised baseline. To

test how much better the addition of 30 labeled samples is to the model, the model

was trained with only unlabeled samples. This meant that the network did not have

any supervised loss component, but only an unsupervised loss. This resulted in a

poor mIU of 8% which was improved more than 7x when a limited supervised set

of 30 samples was added. This result shows that the proposed method can reduce

image-labeling efforts.

Figure 33 shows some sample detections while using only 30 labeled images. The

demonstrations indicate that the semi-supervised learning model manages to obtain

correct detections in places where there are none in the supervised case, and also

manages to eliminate some spurious noise produced in the detections of the supervised

model. Figure 32 summarizes a compilation of detections in the validation set with

various amounts of labeled data.
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Labeled samples Supervision mIU
0% Consistency Loss Only 0.08
1% Supervised 26.87

Semi-Supervised 59.17
10% Supervised 59.75

Semi-Supervised 78.22
30% Supervised 74.21

Semi-Supervised 80.58
50% Supervised 79.97

Semi-Supervised 82.53

Table 15. Effect of incorporating unlabeled samples at different ratios to labeled
samples in the NEU test set

Figure 31. NEU test-set output uncertainty as a function of input Gaussian noise level

A comparison was made between equally weighted losses and a ramp-up function

applied to the consistency loss over a number of epochs. In this case, the number

of epochs was chosen to be 80 empirically, using the evolution of the supervised loss

function in the unweighted case. This made the supervised loss component dominant

in the initial stages of the training. However, the performance produced by this

approach was consistently lower on the NEU dataset than that produced when both

the losses were weighted equally, as shown in Figure 34.

123



Figure 32. Demonstrative detections on the NEU validation set: (Left to Right) Image,
Ground Truth, 5% Labeled, 10% Labeled, 20% Labeled, 50% Labeled, Fully Labeled.

Figure 33. Demonstrative detections illustrating the effect of adding additional
unlabeled data to the set and using the consistency loss. In this case,the comparison
is made between the fully-supervised case with 30 labeled samples, and the semi-
supervised case with 30 labeled samples and 570 unlabeled samples.

The results obtained from the proposed method were then compared against bench-

mark results from recent works in Table 16, and is shown to outperform contemporary

methods for most cases. In the NEU dataset, the model under-performs state of the

art at the 1% labeled level. An ablation study on the supervised losses is performed

by removing the boundary loss during training. This shows that the model gets
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significant benefits from the boundary loss, with the results degrading up to 12.5% on

the NEU dataset.

Figure 34. Test-set performance on the NEU test set with and without consistency
loss ramp-up

NEU MT
Method 1% 10% 30% 50% 40%

DAN (Zhang et al., 2017b) 65.74 73.79 75.76 76.63 55.72
DCT (Qiao et al., 2018) 66.71 74.05 76.97 78.49 64.46

MT (Tarvainen and Valpola, 2017) 67.62 73.49 76.80 78.16 63.78
CCT (Ouali et al., 2020) 67.78 74.56 77.38 77.77 59.45
ICT (Verma et al., 2019) 68.29 74.94 76.24 77.74 60.60
CPS (Chen et al., 2021) 68.19 74.98 77.94 78.98 60.77
UCC (Fan et al., 2022) 69.06 74.30 76.67 77.63 62.18
ReCo (Liu et al., 2021) 68.83 75.11 77.01 78.10 64.10

SimCEPS (Sime et al., 2022) 70.36 75.94 78.94 79.95 65.28
CRAMI (Focal + ABL-IU) 59.17 78.22 80.58 82.53 71.22

CRAMI (Focal + IU) 52.98 70.14 73.04 70.01 71.31

Table 16. Results for the NEU and MagTile datasets compared against similar models

Finally, the effect that the labeled samples have on the model uncertainty is shown.

Robustness of the model predictions to corruptions in the input is also shown as a

function of the labeled information available during training. Figure 35b shows that
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for the NEU dataset, there is a consistent reduction in uncertainty with the addition

of more labeled samples. For the MagTile dataset in Figure 35b, while there is a

general trend of uncertainty reduction, there is an outlier at the 40% uncertainty level,

where the uncertainty increased.

(a) NEU Dataset - Model Uncertainty (b) MagTile Dataset - Model Uncertainty

Figure 35. Model uncertainty as a function of percentage of labeled data
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6.6 Conclusion

This chapter presents a method to perform semi-supervised training for semantic

segmentation using activation map interpolation. The method takes in a set of labeled

and unlabeled batches, interpolates the unlabeled batches’ activation maps, and then

uses interpolation consistency regularization to minimize the difference between the

output of the prediction from the interpolated input. The network has an encoder-

decoder style architecture and a student-teacher style decoder. The prediction from the

unlabeled inputs interpolated after obtaining their respective predictions. The model

also uses an Exponential Moving Average (EMA) scheme to update the parameters of

the teacher decoder, while performing backpropagation on the student decoder. The

study shows improvements to model performance against existing benchmarks on the

NEU metal surface defect and MagTile datasets. The results indicate a consistent

improvement in performance compared to purely supervised learning at low sample

regimes, and this difference in performance narrows down as more data is added.
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Chapter 7

UNCERTAINTY-AWARE DECISION SUPPORT USING ON-BOARD VISION

DATA FOR PILOT SITUATIONAL AWARENESS

7.1 Introduction

Over the past two decades, the aviation industry has made remarkable strides in

safety and automation. Air transport is broadly divided into two categories: General

Aviation (GA) and Commercial Aviation (CA). GA is typically utilized for private flying

and recreational travel, whereas CA encompasses scheduled passenger and cargo flights

run by airlines. Despite the overall advancements in aviation safety, GA operations still

fall behind in terms of safety standards compared to their commercial counterparts

(Wilson and Sloan, 2003). This is because GA operations are subject to looser

regulations, greater variation in on-board equipment, and more frequent operations in

hazardous conditions with terrain and weather risks. Commercial operations usually

have highly regulated, consistent operational and safety standards, with compliance

being given great emphasis. These factors ensure that commercial operations have

a more cohesive and strongly enforced operational procedure set. On the other

hand, GA pilots often fail to adhere to such strict procedures, leading to cascading

outcomes from poor decisions (Guo et al., 2021b). Additionally, sensing equipment on-

board commercial aircraft is often standardized, with modern commercial jets having

advanced sensing equipment like weather and terrain radar. Smaller GA aircraft,

particularly older piston engine types, lack advanced sensors to detect weather and

terrain threats. These are not required and are usually costly to obtain. Nevertheless,

128



GA pilots frequently use software to obtain real-time weather data from sources like

the Next Generation Weather Radar (NEXRAD) data. Weather radar is expensive

and requires specialized tuning to detect different types of precipitation and clouds.

Moisture levels within the clouds also significantly affect signal reflection.

Among the various threats that a GA pilot might encounter is the inadvertent

loss of situational awareness. Situational Awareness (SA) is paramount for flight

safety - Loss of SA has been documented to be a significant contributor to incidents.

Accumulated fatigue and multi-tasking during critical phases of flight often exacerbate

this risk. A key aspect of SA that this chapter will focus on is the loss of SA

due to inadvertent entry into instrument conditions. This remains a challenge that

private pilots encounter in both VFR and IFR operations, leading to threats such

as encountering icing conditions(Cao et al., 2018), violation of Visual Flight Rules

(VFR) limits, and an increased risk of Controlled Flight Into Terrain (CFIT) (Kelly

and Efthymiou, 2019; Majumdar et al., 2021). Fatal accidents due to entry into

Instrument Meteorological Conditions (IMC) have a risk tolerance and incorrect risk

perception component, as indicated in (Madhavan and Lacson, 2006). These accidents

are also caused by a lack of prior knowledge about developing weather conditions and

insufficient pre-flight planning. Continuous autonomous monitoring of sky conditions

and a proper synthesis of the monitored data in a decision-support framework can

therefore serve to augment the capacities of the pilot. Addressing the limitations in

weather-related decision-making training, Johnson and Wiegmann (2015) underscored

the value of simulation in improving pilots’ skills. While simulations cannot replicate

all factors, they provide a controlled environment to practice critical decisions safely.

To improve GA operational safety, computer vision based approaches are used to

complement existing methods and data sources and propose an uncertainty-aware
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decision support system that uses image data from on-board cameras. The proposed

system provides many benefits, such as cheap installation costs, operating costs and

the ease of integration into existing decision support systems.

As part of the efforts to achieve data-driven, vision-based decision support, a

novel system that utilizes camera data to understand the scene is proposed. Image

features, weather features and sentence-based weather descriptors are combined to

produce label-dependency aware predictions. Another key aspect of this chapter is

the discussion on the choice of variables that are used for prediction - the focus is on

real-time prediction of threats that can result in entry into Instrument Meteorological

Conditions (IMC). Since pilots are trained to read Meteorological Aerodrome Report

(METAR) reports, this approach seeks to build a model that can predict threats that

are mentioned in METAR reports to provide a unified threat representation.

The contributions of this chapter are:

1. A multi-label, multi-class learning approach for decision support in general

aviation with the ultimate goal of reducing inadvertent entry into IMC by

employing the use of image data and weather data from METAR tables.

2. A benchmark dataset of images for training this threat prediction model that is

acquired from state-of-the-art flight simulation software.

The rest of this chapter is organized as follows: Section 7.2 discusses the state of the

art in decision support and threat prediction systems for GA applications. Section

7.3 expands upon the problem setup and model architecture proposed in this work.

Section 7.4 provides details on the dataset and how it was collected, the training

and evaluation setup. Section 7.5 provides detailed results of the model performance,

followed by a discussion on the limitations of this work. Section 7.6 summarizes the

contribution of this work and some future directions.
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7.2 Related Work

7.2.1 Decision Support Systems in Aviation

Decision support systems have seen significant upgrades in Air Traffic Management.

Data-driven predictive systems have recently been used for applications such as aircraft

re-routing (Zhang and Mahadevan, 2017) and trajectory prediction (Pang et al., 2022;

Zhang and Mahadevan, 2020; Pang et al., 2021; Ciccio et al., 2016). However,

Predictive systems are not as prevalent in GA operations. Painter et al. (1997) used

the concept of an "anticipatory" Flight Management System (FMS) for GA pilots.

This early work emphasized the integration of personal computing software into flight

management architecture, thereby enhancing pilot situational awareness. By detecting

flight phases and displaying pertinent information, the system alleviated information

overload. Although rooted in the commercial aviation domain, the integration of

advanced FMS principles into GA operations laid the foundation for more adaptive

decision support systems for more sophisticated GA aircraft. In a more recent study

(Whitehurst et al., 2019), the challenges associated with interpreting aviation weather

products were highlighted. Pilots often struggle to decipher weather-related cues from

available products, even those with intermediate training and experience. The chapter

recommended the development of a decision support tool to dynamically guide pilots in

weather-related decision-making. This recommendation resonates with the proposal of

this study, which aims to address the difficulties in weather interpretation by offering

real-time decision guidance. Johnson et al. (2017) investigated the latency of weather

data from portable electronic devices. This study emphasized the need for real-time

monitoring solutions, which aligns with the proposed approach of a decision support
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system capable of providing timely predictions. The fusion of synthetic and enhanced

vision systems to improve visibility during flight operations was examined by Kramer

et al. (2009). While primarily focused on commercial aviation, the study sheds light

on challenges related to scalability and cost, factors relevant to implementing such

systems in GA operations. Tippey et al. (2017) conducted research on the effects of

weather technology interface characteristics on decision-making quality and timeliness.

The study found that vibrotactile cues improved reception of notifications and reduced

cognitive demands during flight, reinforcing the significance of incorporating effective

visual and tactile display characteristics into decision support tools for GA pilots.

7.2.2 Threat Prediction Models in General Aviation

Monitoring systems have played an important role in autonomous navigation in

unmanned aerial vehicles (UAVs), traffic collision avoidance systems (TCAS), and more

recently, implementations of synthetic vision and vision-based navigation tools in some

modern aircraft. In the realm of threat monitoring and avoidance systems, several

recent papers contribute valuable insights. (Opromolla and Fasano, 2021) introduces a

vision-based approach for obstacle detection and tracking in small Unmanned Aircraft

Systems (UAS), employing deep-learning neural networks to assess collision threats.

(Ramasamy et al., 2016) presents a LIDAR-based threat avoidance and trajectory

proposal system for UAS in urban areas. Vivo et al. (2021) addresses the challenge of

wildfire monitoring using UAVs and proposes a data-driven edge detection algorithm

for fire front detection, even in low visibility conditions. Jeong et al. (2021) presents a

deep neural network-based hazardous flight region prediction system for small UAVs

in urban areas, considering wind environments and local topography to assess flight
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hazards. Pang et al. (2022) proposes an uncertainty-aware multi-aircraft trajectory

prediction model for the near terminal airspace for commercial aviation using a deep

neural network approach. In the domain of aviation trajectory prediction with a focus

on weather uncertainties, an additional noteworthy contribution is made by Pang

et al. (2021) that presents a Bayesian deep learning approach for trajectory prediction

considering weather data and uncertainties. These papers collectively emphasize

the potential of deep learning and data-driven algorithms in enhancing situational

awareness and safety. Nearly all of the work on such monitoring systems is either for

highly regulated commercial aviation operations or for UAS. Arguably, GA operations

are closer to UAS when it comes to ubiquity and scale, with the potential for faster

adoption of new techniques. To my knowledge, this is the first study to introduce a

framework for real-time assessment of weather situations for general aviation pilots

that considers weather information and camera image data using a multi-task learning

approach. This work would serve as an important starting point for future works that

build on this single-agent formulation.

7.3 Methodology

7.3.1 Overview

The proposed framework uses a multi-label, multi-class learning approach inspired

from the work by Chen et al. (2019), as the goal is to learn a model that can not only

learn image features, but also learn co-occurrences of these features in a multi-label

setting. The image encoder used in deep learning methods has been a consistent

component of multi-label classifiers. However, the usage of a graph neural network
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module to learn label co-occurences has been proposed by Chen et al. (2019), where

they used the label co-occurences in the ground truth of the image dataset to model

label co-occurences. This idea is expanded upon to hypothesize that there may be a

benefit to using other data sources to model these co-occurrences, and learn to balance

the information from the image representation and the other sources. Given the

benefits that augmentation produces, an ensemble of these representations is proposed

to improve prediction performance. This ensemble approach aims to integrate diverse

data sources effectively, thereby enhancing the model’s ability to make accurate

predictions in complex, real-world scenarios such as those encountered by GA pilots

entering IMC conditions.

7.3.2 Problem Setup

The proposed approach casts weather threat detection as a multi-label, multi-class

classification problem. The model takes an input image XϵR(WxH) and returns a

14-dimensional prediction vector Y ϵR(1x14). The prediction is divided into 3 separate

heads - The weather threat prediction head (WT), the cloud cover classifier head

(CC), and the meteorological condition classifier head (MC). Next, each of these target

variables are described in detail with an explanation of their significance to improving

SA for GA pilots.

7.3.2.1 Weather Threats Prediction

The WT head predicts the presence of Fog (FG), Mist (BR), Precipitation (SN/RA),

and the threat of entry into the cloud if the pilot continues to fly at the present altitude
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(TEC-PA). TEC-PA is the only variable that is not present in METAR reports. The

proposed model aims to predict this, as the goal is to capture the localized weather

representation with the model. Given that the current implementation of this work

only uses RGB data, the lack of direct depth information may besomewhat alleviated

if one can predict this variable in a supervised manner. Similarly, the FG and BR

conditions are also defined in the ground truth dataset to be consistent with the

meteorological definitions specified by the International Civil Aviation Organization

(ICAO). Fog and mist are similar weather phenomena that ultimately reduce ambient

visibility due to suspended water droplets in the atmosphere. Fog is a more extreme

visibility restriction, with visibility less than half a mile. Mist is defined as reduced

visibility due to suspended water droplets, with visibility ranging between half a mile

to 5 miles. Precipitation prediction is also important for aviation safety, as these

can be major sources of icing and indicate a high risk of entry into IMC conditions.

Precipitation shafts, in particular, are special phenomena that can serve as indicators

of convective phenomena that present risks for aircraft upsets.

7.3.2.2 Cloud Cover Classification

A novel aspect of the proposed model is the utilization of detailed visual data

from the camera to predict cloud cover as seen from the aircraft’s perspective. This

approach is justified based on the following rationale: METAR data, while offering

cloud cover information in oktas, cloud base altitudes, and updates every few minutes,

is limited to airfield locations. NEXRAD provides comprehensive top-down satellite

views, including data on convective layers, precipitation, and cloud tops. However,

the proposed system aims to bridge the gap by enabling continuous and potentially
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multi-view monitoring of cloud cover directly from the aircraft. This offers a unique

vantage point for obtaining descriptors of cloud morphology.

While the scope of this study is limited to predicting a consolidated representation

of cloud cover, future work could extend to segmenting the sky for more detailed

predictions, thereby enhancing the precision of cloud cover assessments. It is crucial

to clarify that the METAR data referenced here does not influence how label co-

occurences are computed. Instead, it pertains to the type of information available to

pilots in-flight.

7.3.2.3 Instrument Meteorological Condition Prediction

Finally, the MC head in this model is a classifier that divides the prediction into

either Instrument Meterological Conditions (IMC), Marginal Visual Meteorological

Conditions (M-VMC), or Visual Meteorological Conditions (VMC). These meteoro-

logical categories are classified based on ceiling and visibility. The International Civil

Aviation Organization (ICAO) defines the ceiling as "the altitude above ground level

(AGL) of the lowest cloud base that is below 20,000 ft covering more than half the sky."

The FAA defines visibility to be "the furthest distance at which prominent objects

can be viewed with the naked eye." The lack of direct-depth information challenges

the accurate labeling of the ground truth. This can be accounted for during data

collection, as described in Section 7.4. The definitions adopted for these categories

are as follows:

1. IMC: Cloud ceilings within 1000 feet, and visibility below 3 NM.

2. M-VMC: Cloud ceilings between 1000 and 3000 feet, and visibility between 3-5

NM.
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Figure 36. Overall network architecture for weather threats prediction

3. VMC: Cloud ceilings above 3000 feet, and visibility above 5 NM.

7.3.3 Multilabel, Multiclass Classification Model for Threat Prediction

The goal of the model is to ultimately incorporate image, language, and METAR
data to form a useful representation for predicting the target variables described in
Section 7.3.2. The raw data inputs are transformed into a compressed representation
using various encoding modules described below. An overall architecture diagram is
shown in Figure 36

7.3.3.1 Image Encoder Module

The image data is compressed into a smaller dimensional representation using a

series of convolutional layers. A convolution is a spatial operation on an image or
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feature X tensor with dimensions C × H ×W , where C represents the number of

input channels, H is the height of the feature map, and W is the width of the feature

map. The convolutional layer consists of learnable weights, called kernels W with

shape C ′ × C ×K ×K, where C ′ is the number of output channels, K represents

the spatial size of the filter, and C is the number of input channels. The appropriate

kernel weights are learned through backpropagation using gradient descent during

training. The kernels perform a weighted sum over each block of the input feature,

transforming it into an output with shape C ′ × H ′ ×W ′, where C ′ represents the

number of output channels, H ′ is the height of the output feature map, and W ′ is the

width of the output feature map.

Image encoders that utilize a series of convolutional layers are widely used for

compressing this information into a learned feature descriptor. The baseline case used

the ResNet-18 architecture for the image encoder (He et al., 2016b), which consists of

a sequence of convolutional layers and non-linear activation layers. Average pooling is

done at the end of the resnet block to reduce the size of the learned representation.

The ResNet backbone is commonly used for its advantages in avoiding vanishing

gradients in very deep networks. The image is finally compressed to a 512-dimensional

vector.

7.3.3.2 Graph Representation Learning Module

In this section, the overall Graph Convolutional Network (GCN) processing module

for label co-occurence modeling is described. The differences of this study from the

work by (Chen et al., 2019) is also highlighted. While both approaches use the

GCN to model label co-occurences, this study differs in a few important ways: First,
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while (Chen et al., 2019) uses the image database to mine co-occurences, this study

computes co-occurences of weather threat features from historical METAR data. The

rationale for doing this becomes apparent if one considers that mining correlations

from the image training set is only valid when one has thousands of images, and that

METAR co-occurences captured from a large enough database provides physically-

based information to model threat correlations. Second, features from sentence

embeddings are used to model the targets instead of averaging word embeddings.

Third, a cost matrix is utilized alongside a focal loss to learn to classify in a label-

imbalanced scenario that requires the penalization of non-conservative predictions.

The details of the METAR data and sentence embedding representations are discussed

in Section 7.4.1.1, and further elaboartions on the cost matrix and focal loss is done

in Section 7.3.3.4.

The GCN module is used for operations on graph-structured data. Unlike images

that are grid-like, a graph G can directly model relationships between different

variables V using edges E to indicate the strength of the relationship between them.

A graph convolution is a generalization of the convolution operation described in the

previous section to nodes. Similar to how convolutional layers operate on features

using kernel matrices, one can obtain the following for a GCN layer: Let h(0)v be the

input embedding of node v to the graph.

h(0)v = xv,where xv is the node feature for node v (7.1)

Each GCN layer performs the following operation (Chen et al., 2019):

h(k)v = f (k)

[
W (k).

∑
uϵN(v) h

(k−1)
u

|N(v)|
+B(k).h(k−1)

v

]
(7.2)

In the above equation, the layer takes in the (k−1)th input and performs a normalized
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weighted mean of the previous layers’ node neighbor embeddings, and then adds a

bias term that just includes the node representation.

The proposed GC-module compresses feature embeddings obtained from a sentence

transformer, and the adjacency matrix is obtained using METAR data to compute

label co-occurrences independent of the co-occurrences in the imaging training set.To

further enhance the predictive capabilities,an ensemble of GCN modules is used, with

each being constructed using a different sentence embedding representation. The

processed embeddings from the GCN are then fused using a weighted fusion module.

The module consists of two main components:

1. Gating Network:

Gi = σ(Wi ·Ri) (7.3)

2. Fusion Operation:

Wi =
exp(Gi)∑N
j=1 exp(Gj)

(7.4)

F =
N∑
i=1

Wi ⊙Ri (7.5)

In these equations, Ri represents the input representation obtained from the i-th

model, Wi represents the gating weights for the i-th representation, Gi represents the

gated output for the i-th representation, and F represents the fused representation.

Equation (7.3) calculates the gated output Gi by applying a set of transformations Wi

to the input representation Ri using the sigmoid activation function σ. Equation (7.4)

normalizes the gating weights Gi using the softmax function, ensuring they sum up to

1. Equation (7.5) fuses the representations by calculating the weighted sum, where Wi

represents the normalized gating weights and Ri represents the input representations.
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7.3.3.3 Sentence Transformer Module

The input embeddings to the graph representation learning module is obtained

from the Sentence-BERT (S-BERT) model proposed in Reimers and Gurevych (2019)

to get contextualized embeddings. The target variables of interest are represented

as nodes in the above graph model. Phrases are created for the computation of the

embeddings using a pre-trained model. The S-BERT model consists of stacked BERT

encoding layers that consist of two repeating sub-layers: a multi-head self-attention

mechanism followed by a fully-connected layer.

7.3.3.4 Multitask Supervised Learning

The representations obtained from the image encoding and ensemble-GCN module

are then fused using a dot product to get the final logits. These logits are divided

into the aforementioned 3 categories with 5 multilabel weather threats, 6 cloud covers,

and 3 meteorological condition classes, respectively. The weather threats are learned

using the multilabel version of the asymmetric loss Ben-Baruch et al. (2020). This

loss function introduces different penalties for misclassifying positive and negative

examples for each label. Given that some classes are rarer than others in the dataset,

misclassifying a rare label should be penalized more heavily than misclassifying a

more common label. That more common labels are to be given priority to be classified

correctly is a legitimate viewpoint. Indeed, one might expect that the classifier is

expected to classify commonly occuring labels more accurately. However, from the

standpoint of empirical risk minimization of the model parameters, not weighting class

occurrences either while sampling or in the loss function would result in over-fitting
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the model to learning features of classes that occur more often. The binarized version

of the loss is given by:

AL(p, y)+ = (1− p)γ+log(p) (7.6)

AL(p, y)− = pγ−log(1− p) (7.7)

In the above equations, γ+ and γ− are the weighting parameters for the penalty on

rare positives and common negative labels. For the multilabel predictions, one can

use the same loss by first using the sigmoid on the logits, and then aggregating the

binary losses from each of the K labels.

To further regularize the model, an additional cost-matrix (Galdran et al., 2020)

for the cloud classification task is proposed. The motivation behind using the cost

matrix is to provide more conservative cloud cover predictions. This would mean

assigning an increasing cost to under-predicting the cloud cover level.

Model uncertainties are then obtained using methods similar to those used in the

previous chapters. This study MC-Dropout (MCD), and the Concrete Dropout (CD).

The former approach uses the dropout hyperparameter after each layer to randomly

drop some activation to provide a model-averaging effect. The latter approximates a

drop probability using a regularized loss formulation, leading to tighter uncertainty

estimates.

7.4 Experimental Setup

7.4.1 GA-SA Dataset

The dataset comprises 178 labeled images, which is divided into 121 samples for
training and 57 for the test set.

142



Figure 37. Distribution of weather parameters used in the generated dataset

Data is acquired from the state-of-the-art Microsoft Flight Simulator (MSFS).

Compared to older simulators, this platform offers significant benefits in the areas of

weather data and depiction, such as volumetric atmosphere representation including

clouds, aerosol effects, and rain. The platform also provides real-world weather

conditions using mesoscale weather models and METAR data, that would be useful for

future works. The weather engine also accounts for atmospheric conditions like wind,

terrain, and cloud formations, evolving them dynamically, making MSFS an attractive

digital twin option for data acquisition. Images were captured from the Aspen

Pitkin County airfield (KASE), utilizing a Cessna 152 airplane at fixed coordinates

(39.253, 106.884) and an altitude of approximately 1500 ft AGL. This setup, by fixing

the position, offers advantages for model training and data labeling. To introduce

variability in weather data, scene parameters such as cloud top and bottom altitudes,
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cloud density, cloud cover, cloud scatter, and precipitation level were randomized in

the simulator. The images were then manually labeled. Figure 37 shows histograms

of the various weather situation variables:

• Cloud Density: Varied between 0.0 and 1.0, with a relatively uniform distribution.

The cloud density specifies the volumetric density of clouds, providing us with a

variation in atmospheric lighting and cloud textures.

• Cloud Cover Perentage: Normalized values between 0 and 1, also uniformly

distributed.

• Cloud Bottom Altitude: Ranging from 2250 m to 2600 m, with variable frequen-

cies.

• Cloud Top Altitude: Ranging from 3000 m to 6000 m, showing a more varied

distribution.

• Cloud Scatter: Percentage values from 0 to over 100%, with an uneven distribu-

tion.

• Precipitation Intensity: Measured in mm/h, most values are near 0, indicating

low intensity, with few instances of higher intensities. This was done to ensure

there is a good diversity in precipitation, and enough images without precipitation

variables.

Images are collected out of the Aspen Pitkin County airfield (KASE), due to the
complex terrain features surrounding it. The position and altitude of the aircraft are
fixed throughout the time of recording, with position coordinates (39.253, 106.884)
and an altitude of approximately 1500 ft AGL. This experimental setup of fixing the
position of the aircraft provides two advantages. First, fixing the terrain features
enables the model to learn the weather features on each image. Secondly, the fixed
terrain features imply that the distances to points of interest in the scene are known
and can be used as indicators for labeling the data in a more faithful manner to what
the FAA standards require. The randomized weather parameters, shown in Figure 37
were then injected into the simulator for recording the images. The acquired images
were then manually labeled. A few representative examples of the scene used for data
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Figure 38. Representative images from the GA-Situational Awareness Dataset

collection are shown in Figure 38. There are several points of interest with known
distances that can be acquired from map data which can be used to estimate ambient
visibility for assigning MC head labels.

7.4.1.1 Weather Description using METAR and Phrase Embeddings

METAR data is collected from Boulder airport (KBDU) weather station, which is

also present in the Rockies and presents similar terrain and weather features. 5 years

of METAR data are collected and used to perform a series of data processing steps to

obtain an adjacency matrix, as specified in Section 7.3. The METAR data is used to

collect the frequencies of each label in the prediction, with the exception of TEC-PA,

as that is a parameter that is only valid from the camera point-of-view. While the

FG, BR, MIFG, and RA/SN categories can be directly extracted from the data, only

the first layer of cloud data is considered for the cloud cover frequency computations.

This is because the METAR data arranges cloud layers in ascending order of altitude.

Typically, the first layer holds the utmost importance for VFR operations and aligns

more closely with the collected image data. For instance, scattered clouds at the
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same altitude as the aircraft have a greater impact on the probability of inadvertent

IMC (Instrument Meteorological Conditions) entry compared to having broken clouds

at higher altitudes. IMC, M-VMC, and VMC frequencies are computed using the

METAR visibility data.

The next input to the Graph Convolutional module is the phrase embedding.

Phrase embeddings are obtained from 3 pre-trained S-BERT models, with the non-

ensembled version using a 768-dimensional MPNet Model Song et al. (2020). The

ensemble model uses the MPNet and two MiniLM models with dimensions 768, 384,

and 384, respectively Wang et al. (2020a).

7.4.2 Training and Evaluation Setup

The base setting for the ML-GCN model uses an embedding dimension of 384, and

the total number of categories the model predicts is 14. A dropout probability of 0.2 is

employed for the MC-Dropout experiments. For the ensemble model, a combination of

sentence transformer embeddings from the MiniLM-L6, MiniLM-L12 and the MPNet

models is used. The embedding dimensions are 384, 384, and 768, respectively.

During the training process, the Adam optimizer is used with a base learning rate

(lr) set to 1e-5 and a maximum learning rate set to 5e-4. To efficiently schedule the

learning rate, the OneCycleLR scheduler (Smith and Topin, 2018) is employed. This

enables better convergence and improved generalization during the 300 epochs of

training, with a batch size of 32.

The models that are used to compare against the proposed architecture are a

baseline CNN model with a ResNet-18 encoder followed by a dense classifier layer,

the Multilabel Supervised Contrastive Network (MulCon) (Dao et al., 2021), and the

146



Multi-label Graph Convolutional Network (ML-GCN) (Chen et al., 2019). All models

use the ResNet-18 encoder as a common backbone, and pre-trained models are not

used for the experiments.

7.4.3 Evaluation Metrics

For evaluating the model, the mean Average Precision score (mAP) and the F1

score for each head is computed. The F-1 score can be obtained as the harmonic mean

of the precision and recall of the prediction:

Precision =
True Positive

True Positive+ False Positive
(7.8)

Recall =
True Positive

True Positive+ False Negative
(7.9)

F1 = 2 · Precision ·Recall
Precision+Recall

(7.10)

Average Precision (AP) metric is computed by taking the weighted mean of precisions

obtained at different confidence thresholds. The increase in recall from the previous

threshold acts as the weight in this calculation. In essence, AP provides a single value

that represents the overall performance of the model in terms of precision and recall.

AP =
∑
n

(Rn −Rn−1)Pn (7.11)

In the above equation, Rn is the recall and Pn is the precision at the nth confidence

threshold. Micro-averaging is used to report both the F-1 score and the mAP score.

147



7.5 Results and Discussion

7.5.1 Model Evaluation

Table 17. Performance comparison across baseline model architectures

Method Micro F1 mAP
WT CC MC AVG WT CC MC AVG

Baseline 84.57 64.91 84.21 77.89 74.61 63.62 89.14 75.79

MulCon 74.95 37.5 82.4 64.95 40.66 46.91 72.9 53.5

ML-GCN 83.14 57.89 87.71 76.24 72.37 67.43 92.31 77.37

Ours 88.13 70.12 82.45 80.23 79.50 66.73 87.69 77.97

Ours-Ensemble 74.99 68.22 90.62 77.94 65.88 68.79 93.75 76.14

Table 17 shows the comparative benchmark result, which compares the performance

of the proposed model against a baseline and two other recent approaches. The

best-performing results are highlighted in bold, and the second-best are indicated

with an underline. As discussed in Section 7.4, the baseline model comprises an

encoder followed by a linear classifier. The other models that are benchmarked

against are the MulCon Dao et al. (2021) and ML-GCN Chen et al. (2019) models.

The raw performance of our model, the CS-sBERT-GCN, demonstrates significant

improvements in mean F1 (mF1) and mAP scores compared to other baselines.

Particularly, the cloud cover prediction excels in the CS-GCN model. The ML-GCN

model, without any cost-sensitive learning, outperforms the proposed model in the

MC head. The ensemble model consistently shows competitive performance with the

other models. Notably, the proposed models outperform all other models. Another

interesting result is that the baseline CNN model performs well in the weather threat
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multilabel prediction head and is not the worst of the models. Surprisingly, the

MulCon model performs significantly worse than the proposed models and the other

baselines. It was expected that contrastive learning method proposed in MulCon

would improve performance, but this was not observed in the results. For a deeper

understanding of these results, future work will need to involve analyzing the features

learned by these models.

To further investigate the effect of regularization, the base ML-GCN model is

regularized with contrastive and cost-sensitive learning losses on the classification head.

Table 18 shows the category-wise raw performance of the models. It is found that

cost-sensitive learning with a conservative cost matrix most improves the performance

over the ML-GCN baseline. As mentioned earlier, incorporation of a contrastive loss

for cloud classification does not help with improving performance. This is unexpected

because, on its own, contrastive loss with label information tends to pull dissimilar

representations away from each other and pulls similar classes closer together in the

latent space of the model. Contrastive learning is a promising direction of research,

however, design of the architecture and training process to effectively take advantage

of this regularizer needs to be explored in the future. Next, results for two dropout-

based UQ approaches introduced in Section 7.3, MC-Dropout and ConcreteDropout

are presented. The results in Table 19 show a drop in the variance when using

ConcreteDropout. Future work should expand these results to incorporate a thorough

benchmarking of UQ methods on the multi-label, multi-class classification problem.

Table 18. Impact of regularization on F-1 score

Method WT CC MC Avg
ML-GCN 83.14 57.89 87.71 76.24

Contrastive 75.49 55.2 86.63 72.44
Cost Sensitive 88.13 70.12 82.45 80.23
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Table 19. F1 scores and variances for two dropout-based UQ methods

Method WT F1 WT Var CC F1 CC VAR MET F1 MET VAR
MC-Dropout 85.71 1.87 61.64 0.957 82.19 1.44

ConcreteDropout 82.87 0.09 64.38 0.08 84.21 0.16

Finally, the sensitivity of the model to changes in the sentence embedding input

phrase and the embedding model is shown in Table 20. It becomes evident that

employing larger sentence embedding models to train the GC module yields significant

benefits. Moreover, it is observed that the ensemble of all sBERT embedding models

achieves higher mAP scores for cloud cover prediction and meteorological condition

prediction. The ensemble also performs well in terms of F-1 scores for all heads, except

the weather threat prediction head. However, the notably lower performance in the

WT head for the embedding ensemble leads to an overall score lower than that of the

MPNet model.

Table 20. Performance across sentence embedding models

Model Micro F1 mAP
WT CC MC AVG WT CC MC AVG

MiniLM-L6 86.03 61.40 89.47 78.96 76.29 62.71 92.58 77.19

MiniLM-L12 84.57 63.15 89.47 79.06 74.61 68.18 92.05 78.28

MPNet 88.13 70.12 82.45 80.23 79.50 66.73 87.69 77.97

Ensemble 74.99 68.22 90.62 77.94 65.88 68.79 93.75 76.14

7.5.2 Discussion and Limitations

The primary goal of this work is to showcase the potential of machine vision

techniques to support pilot decision making. Adding other useful sources of data
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such as a large database of METAR reports and sentence descriptors of weather

phenomena can aid in improving predictive performance. A limitation is that data

from flight simulators was used instead of real world images for training. While the

simulator environment offers us high fidelity visuals, and an ability to exercise a

great degree of control over the synthesis of the data, it does not exactly match real

world images, and does not have the imaging imperfections seen in the real world.

Another reason for this was due to the prohibitive cost and time of acquiring these

images. Despite this limitation, this study highlights how such models can be used by

pilots. Trained with real-world training data, the proposed model can output various

threat categories at close to real-time. The only input that the model needs would

be the image feed from the camera. The outputs from the model will be a vector of

threats, as described earlier. The proposed detection model leaves a lot of potential for

applications that improve pilot situational awareness. Since a description of threats

is provided by the model and information about the aircraft state vector is already

available, future work can focus on using these pieces of data to passively recommend

trajectories to pilots, helping them comply with VFR regulations. For instance, this

could be used to recommend evasive trajectories and alternate flight paths in case

the pilot encounters rising terrain combined with clouds. Moreover, the incorporation

of additional data sources to extend the proposed framework holds the potential

to significantly improve pilot decision making. Examples of such sources include

satellite imagery and terrain Digital Elevation Model (DEM) data. The inclusion of

these sources can improve the accuracy of threat distance representation, enabling

compliance with ceiling and horizontal distance limits for VFR flight. Additionally,

conducting a feasibility study on incorporating depth information, with a focus on cloud

detection using long-range depth estimation techniques from the existing literature,
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would be beneficial. It is expected that challenges may arise in terms of experiment

setup and data acquisition. The current dataset features a fixed terrain representation

and varying weather conditions. Instead of modeling real-time weather within the

simulator and synchronizing it with real-time satellite imagery, which would require

substantial time for data collection and labeling, alternative and efficient methods for

fusing satellite data can be explored.
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7.6 Conclusion

In this chapter, a multi-label, multi-class threat detection model is proposed to

improve GA pilot situational awareness. The contribution of this study is focused on

preventing inadvertent IMC entry for GA pilots, and the proposed system provides

a continuous monitoring tool that can serve as a part of a larger decision support

system. This work is aimed to serve as a starting point for greater efforts in utilizing

multiple modalities of data and cheap, commercially available sensing tools to provide

a rich scene understanding model for GA pilots. This would eventually serve to

augment NEXRAD data and METAR reports from airports, and not require GA

pilots to mount expensive, bulky on-board weather radars. The contributions in this

work include a deep learning model that combines METAR data, imaging data, and

sentence embedding data to predict significant weather threats, cloud cover levels and

visibility levels. Results indicate that the proposed model outperforms 3 state of the

art models. While the proposed model showed significant improvements over this

CNN baseline, the CNN model consistently placed second in the comparisons. It was

also found that larger sentence embedding models showed better raw performance,

with the ensemble of all sentence embedding models showing good performance on

all categories but the weather threat prediction task. This study also observes of

incorporating a conservative cost-sensitive loss to the training technique, which resulted

in more conservative predictions for cloud classification, and overall improvements

to performance. Future work in this area can focus on two main aspects. Firstly,

uncertainty estimation can focus on robustness and enabling applications like data

quality assessment and out-of-distribution detection. Secondly, the integration of

additional data sources such as satellite imagery and terrain DEM data holds promise
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for further enhancing system accuracy and compliance with VFR flight limits. These

advancements will contribute to the ongoing development of an efficient and reliable

GA decision support system.
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Chapter 8

CONCLUSION

This dissertation presents an exploration of Bayesian Neural Network models

in engineering applications, with a focus on the uncertainties produced by these

models, predicting under constraints, the usage of multiple data modalities, and

the performance of these neural network models when only limited labeled data is

available. These issues remain important in the application of machine learning

in today’s industry. Therefore, each chapter in this document has contributed to

advancing the understanding and capabilities of neural networks in addressing these

problems. Chapter 3 introduced the concept of Bayesian Entropy Neural Networks

(BENN), a framework that integrates known physics and knowledge as constraints

into neural network outputs. This development, particularly relevant in scenarios

with limited data, demonstrated the potential of BENN in applications such as

structural analysis and microstructure generation. Chapter 4 presented the Bayesian

Boundary-Aware Convolutional Network (B-BACN), a model that quantifies both

epistemic and aleatoric uncertainties in crack detection. B-BACN’s multi-task learning

approach and the use of methods like MC-Dropout and Concrete Dropout have shown

improvements in the precision and calibration of crack detection models. Chapter

5 explored the fusion of RGB and features from point-cloud data, leading to the

development of a geometry-aware neural network for improved defect detection in

gas pipelines. This approach demonstrated improvements in detection performance,

illustrating the effectiveness of data fusion in pipeline monitoring. In Chapter 6, a

novel semi-supervised learning approach for semantic segmentation in defect inspection
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was introduced. This approach leveraged activation map interpolation and consistency

regularization to achieve accurate defect segmentation with limited labeled data,

addressing a significant challenge in industrial contexts. Chapter 7 proposed a decision

support system for General Aviation (GA) pilots. This system combined imaging

data, METAR reports, and sentence embeddings for a weather threat detection model,

ultimately showcasing the potential of using imaging systems in conjuction with other

relevant data sources to improve situational awareness for pilots.

This dissertation has demonstrated the challenges associated with accurately

modeling prediction confidence. From the Bayesian point of view, the word "accurate"

for prediction confidence becomes rather nebulous. Subjectivity enters the picture

quite early in the modeling phase, given that priors are set on parameters and model

choice implicitly restricts the class of functions that can be learned. Approximate

inference techniques also have various hyperparameters that need to be tuned based

on the application in consideration. Proponents of alternative statistical inference

methods, such as those based on Conformal Prediction, have argued that Bayesian

methods are prone to misspecification. The risk with Bayesian models is that if these

priors are misspecified – either due to incorrect assumptions, lack of prior knowledge,

biases or the difficulty in directly specifying weight parameter priors for expressing

beliefs about the posterior predictive – the resulting inference can be misleading.

This risk is compounded in complex models where the true data-generating process

is unknown or difficult to approximate accurately. An avenue of research is the

integration of principles from conformal prediction with Bayesian models. This hybrid

approach could potentially combine the strengths of both methodologies in different

steps of the machine learning and decision support pipeline.

The results in Chapter 4 also show that the relationship between the amount
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of training data and model uncertainty for image segmentation problems is not

monotonic – Developing a novel uncertainty quantification technique that better aligns

the uncertainty to be more sensitive to the distance from training image samples is an

important problem for building models to detect distribution shifts better. While work

has begun in this direction, and the Bayesian Entropy Method offers an attractive

option to directly express beliefs about the decay in confidence of the model predictions,

principled alternatives can be developed. Key to this might be working on making

the reparameterization step more expressive to bring in more nuanced formulations of

the variance. Further, it is worth noting that methods such as Bayes By Backprop

and Deep Ensembles have higher training time requirements due to the increased

number of parameters or models. Conversely, MC Dropout has higher prediction

time requirements for computing sampled uncertainty estimates. Therefore, future

work should focus on achieving uncertainty estimates efficiently. To accomplish this,

foundational ideas from (Liu et al., 2020a) and (Anirudh and Thiagarajan, 2021) can

be borrowed, along with recent work on noise propagation for uncertainty estimates,

as presented in (Postels et al., 2019).

Uncertainty estimation for multi-label classification is a crucial challenge that

has seen specialized methods developed in the literature. Current work only ap-

plies dropout-based Bayesian Deep Learning techniques to multi-label prediction

uncertainty. To address this, future work should include thorough benchmarking

of uncertainty quantification (UQ) approaches, encompassing both Bayesian and

non-Bayesian methods within this problem domain. This research will contribute

to developing a robust UQ method for multi-label, multi-class settings, enabling

various applications such as assessing input data quality, robustness to attacks, and

out-of-distribution (OOD) detection.
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From the point of view of applications, Chapter 7 presents a research study that

offers several potential directions for further investigation aimed at developing scalable

solutions for GA decision support systems. The focus of the study in this dissertation

was limited to utilizing camera sensors to gather comprehensive scene information,

along with METAR data. To enhance the developed system, future work can con-

centrate on the utilization of data fusion techniques to provide more comprehensive

decision support. The incorporation of additional data sources into the currently

proposed framework holds the potential to enhance system performance significantly.

Examples of such sources include satellite imagery and terrain Digital Elevation Model

(DEM) data. The inclusion of these sources can improve the accuracy of threat

distance representation, enabling compliance with ceiling and horizontal distance

limits for VFR flight. Additionally, conducting a feasibility study on incorporating

depth information, focusing on cloud detection using long-range depth estimation

techniques from the existing literature, would be beneficial. It is important to note

that challenges may arise in terms of experiment setup and data acquisition.
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