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ABSTRACT

Operational efficiency of solar energy farms requires detailed analytics and informa-

tion on each panel regarding voltage, current, temperature, and irradiance. Monitor-

ing utility-scale solar arrays was shown to minimize the cost of maintenance and help

optimize the performance of photovoltaic (PV) arrays under various conditions. This

dissertation describes a project that focuses on the development of machine learning

and neural network algorithms. It also describes an 18kW solar array testbed for

the purpose of PV monitoring and control. The use of the 18kW Sensor Signal and

Information Processing (SenSIP) PV testbed which consists of 104 modules fitted

with smart monitoring devices (SMDs) is described in detail. Each of the SMDs has

embedded, a wireless transceiver, and relays that enable continuous monitoring, fault

detection, and real-time connection topology changes. Data is obtained in real time

using the SenSIP PV testbed. Machine learning and neural network algorithms for

PV fault classification is are studied in depth. More specifically, the development

of a series of customized neural networks for detection and classification of solar ar-

ray faults that include soiling, shading, degradation, short circuits and standard test

conditions is considered. The evaluation of fault detection and classification methods

using metrics such as accuracy, confusion matrices, and the Risk Priority Number

(RPN) is performed. The examination and assessment the classification performance

of customized neural networks with dropout regularizers is presented in detail. The

development and evaluation of neural network pruning strategies and illustration of

the trade-off between fault classification model accuracy and algorithm complexity is

studied. This study includes data from the National Renewable Energy Laboratory

(NREL) database and also real-time data collected from the SenSIP testbed at MTW

under various loading and shading conditions. The overall approach for detection and

classification promises to elevate the performance and robustness of PV arrays.
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DEDICATION

To my family.

You have the right to perform your duties,

but you’re not entitled to the fruits of the duties.

Do not let the fruit be the purpose of your duties,

and therefore you won’t be attached to not doing your duties.

Srimad Bhagavad Gita Chapter 2 Verse 47.
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Chapter 1

INTRODUCTION

The increasing demand for green energy requires expansion and efficiency improve-

ments in renewable sources. Solar arrays on residential roof tops, parking sites, and

large commercial structures are being deployed in several countries. In addition, large

utility-scale arrays with generation capacity of several megawatts are now connected

to the grid. A large number of modules in remote areas makes faults more likely and

more challenging to detect and localize. The occurrence of photovoltaic (PV) faults

is often unpredictable and requires constant remote monitoring. Even when over-

current protection devices (OCPD) and ground fault detection interrupters (GFDI)

with data transmission capabilities are integrated within the PV array system, re-

cent studies (Alam et al. (2015); Zhao et al. (2012a); Flicker and Johnson (2013))

have shown that these devices offer diagnosis for a limited set of commonly occurring

faults. On-site inspections are also expensive and time consuming. For this reason,

there is a need for an automated remote fault detection along with diagnostics and

mobile analytics. This requires communications and sensor hardware operating along

with online algorithms and software at the panel level.

Our vision for research monitoring and optimizing a large-scale PV array is sum-

marized in Figure 1.1. The various faults occurring with solar arrays can cause issues

of power loss or localized panel damage, while others can create safety hazards. Soiling

over time and shading (clouds) over an array can cause a significant decrease in power

production (Hammond et al. (1997)). This can cause an effect known as ”hotspot-

ting” (Braun et al. (2012a)). When a limited area of an array is under-producing, this

section will absorb some of the PV energy from the fully functioning areas and dissi-
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Figure 1.1: Overview of Our Research Vision in Solar Panel Monitoring (Muniraju

et al. (2017)). Our System Integrates Fault Classification and Diagnosis Modules.

pate it as heat. Due to the parallel and series nature of array segmentation, a small

amount of localized degradation in a single panel can have a ripple effect limiting the

voltage of all other parallel strings. Besides this, serious safety faults including arc

and ground faults are of concern given the high voltages associated with large-scale

PV facilities (Alam et al. (2015); Wiles (2008)). Given that a suspected problem is

recognized, it must then be diagnosed by a technician. This is further complicated by

the distinction between a faulty vs. an under-producing system due to environmental

conditions or panel age. Trained professional service can be expensive in terms of

labor, equipment, compounded with system down-time, and safety. This is not opti-

mal for large-scale arrays where the volume of panel-by-panel metering by technicians

increases even further and ultimately is subject to human error.

To support experimental aspects of this research we designed a testing facility

(Rao et al. (2017)) at the Arizona State University (ASU) research park in Tempe,
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Figure 1.2: The SenSIP Solar Monitoring Facility at the ASU Research Park.

Arizona which is shown in Figure 1.2. This research facility consists of 104 modules

in a default 8× 13 configuration that amounts to approximately 18 kW. Every panel

in this solar array is equipped with a smart monitoring device (SMD).

These devices are networked and can provide data to servers, control centers,

and ultimately to mobile devices. Each SMD not only provides analytics for each

panel but contains relays that can be remotely controlled via wireless access. Re-

lays can bypass or change connectivity configuration, e.g., series to parallel. SMDs,

connected to each PV panel, act as intelligent networked sensors providing data that

can be used to detect faults, shading, and other problems that cause inefficiencies.

Each panel can be monitored individually for voltage, current, and temperature, and

all data is transmitted via a wireless channel to a central hub. Additionally, each

SMD can reconfigure connections with its nearest neighbors. In fact, the SMDs can

accommodate various connection topologies. Data collected from the SMDs and re-

configuration testing will be used to design and evaluate automated fault detection,

diagnosis, and mitigation algorithms.

This dissertation describes machine learning (ML) and signal processing tech-
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surement Data and Shading Predictions in Order to Switch the Connection Topology.

The Information Regarding the New Topology Is Then Passed on to the Fault De-

tection/Classification Stage. While This System Describes a Holistic Approach for

Solar Arrays, the Focus of This Thesis Is Centred Around ML for Fault Detection

and Classification in the Solar Array. Rao et al. (2020a)

niques that have been shown to improve power generation and robustness in large

utility-scale facilities. These methods make possible automated system monitoring,

fault detection, and predictive modeling. PV power generation is largely dependent

on the irradiance over the modules and cloud cover serves as the major hindrance to

the constant power output. A faulty panel could simply be bypassed from the system

automatically, improving PV electrical production and eliminating system downtime.

Figure 1.3 shows the design of a system by combining these individual components.
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We first build an ML algorithm operating on I-V measurements to detect PV panel

faults and then an ML classifier is integrated to classify the type of faults detected.

The potential to detect and localize PV faults remotely provides opportunities for

bypassing faulty modules and retaining power, without disrupting the inverters.

Thus, with the help of ML algorithms (Shanthamallu et al. (2017); Rao et al.

(2019)) for fault detection and classification, our system can simultaneously reconfig-

ure the topology and bypass faulty modules in order to achieve the maximum power

generation output, even under non-ideal conditions.

In our previous work (Braun et al. (2012a)), we discussed smart PV array moni-

toring techniques by developing signal processing methods for fault detection, array

reconfiguration, and monitoring. In contrast, this dissertation presents advanced

intelligent techniques that combine PV module data and shading predictions, for

optimal topology reconfiguration and ML-based fault classification/diagnosis. The

ML methods presented later in this dissertation are shown to significantly improve

performance of the traditional techniques previously described by some of our co-

authors in 2012 (Braun et al. (2012a)). Moreover, the introduction of ML and deep

learning techniques shows potential for additional gains. In addition, our literature

review that covers several cyber-physical systems (CPS) (Rao et al. (2019); Braun

et al. (2012b,a, 2016); Katoch et al. (2018a,b); Rao et al. (2016)), provides a com-

prehensive bibliography of recent advances in fault detection and diagnosis in PV

arrays.

1.1 Motivation

Reliability is a critical factor for a PV system. Issues such as ground faults, arc

faults, open circuits, short circuits, soiling, and partial shading can all reduce effi-

ciency and need to be addressed. Some of these faults are undetected for a prolonged
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length of time in real-world situations. This leads to reduced and inefficient func-

tioning of the PV array and a significantly lower power output. Unnoticed faults in

PV can be dangerous and potentially life threatening. A real-world example would

be the Bakersfield fire which was caused due to an undetected ground fault (Mellit

et al. (2018)). Although ground faults can now be detected with the use of inverters,

faults such as soiling and short circuits between modules often go undetected (Braun

et al. (2012a)). Human operators are currently required to manually perform fault

detection and identification. Studies have (Braun et al. (2012b); Maish et al. (1997);

King (1997)) showed that the current method for mean time to repair (MTTR) is at

approximately 19 days. There is a significant need to reduce MTTR to reduce power

losses from the PV array. We first develop a system to collect data in real-time.

We then use machine learning methods to address the MTTR for PV arrays. Fault

identification and localization problems pose several challenges and research oppor-

tunities. A system must first accurately classify the PV array condition and then

react to unseen data to correctly classify the condition of operation of the PV array.

Considering these challenges, we explore the use of machine learning techniques (Rao

et al. (2016)). Semi-supervised learning can be used to label many realistic faults

from few measured examples.

1.2 Problem Statement

The I-V data in a PV array can be measured at the panel-level inexpensively.

I-V measurements have high correlation. This data can be used to build correlation

models. Such models are useful in predicting possible ground faults, arc faults, soiling,

shading, etc. (Rao et al. (2019)). The I-V curve is modeled using the single diode

model as a function of temperature, irradiance, open circuit voltage (VOC) and short

circuit current (ISC). Each panel has a peak operating point known as the maximum
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power point (MPP). Fault detection using I-V data can be accomplished by measuring

MPPs and observing the variation of the measured MPP from the actual MPP.

We review the standard test conditions and some of the faults in PV arrays namely,

shading, degraded modules, soiling, and short circuits. We consider the approach of

fault detection and classification by monitoring signals such as maximum power point

tracking (MPPT) parameters. Standard Test Condition (STC) values correspond to

the measurements yielding maximum power under the irradiance values of a particular

instance.

1.2.1 Shading

A module is shaded if the irradiance measured is considerably lower than STC,

usually caused by overcast conditions, cloud cover, a tree or building obstruction. As

a result, the power produced by the PV array is significantly reduced. The irradiance

levels measured also are significantly lower compared to STC values.

1.2.2 Degradation

Degraded modules are a result of modules aging or regular wear and tear of the

PV modules. Consequently, the degraded modules affect the entire string of the array

as it includes both good and degraded modules owing to the lower values of either

open-circuit voltage VOC and short circuit current ISC .

1.2.3 Soiling

Since PV modules are exposed to the environment, modules get soiled due to dust,

snow, bird droppings and other particulate matter accumulating on the PV module.

While the irradiance measured remains the same as STC, the power produced drops

significantly.
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1.2.4 Short Circuit

The final fault type considered in this dissertation is the short circuit. This not

only causes significant power loss but can also create potential fire hazards and cause

severe damage to the modules.

To improve the efficiency of PV arrays and prevent safety hazards, we need to

identify and localize these faults automatically.

1.3 Statement of Contributions

We consider the problem of detection and classification of faults occurring in

utility-scale PV array systems. To address this, we first develop a solar array as

described below in Section 1.3.1. We then address fault detection and classification

using Machine Learning techniques as described in Section 1.3.2.

1.3.1 Development of Solar Array

As part of detection and identification of faults in PV arrays, we needed to design

and develop a load which will collect data in real time. These load banks are used

to verify fault detection algorithms developed using simulation models. The load

has multiple resistors and can switch between different resistor values according to

varying maximum power points (MPP) through the day. We have two load banks

which can switch between two different array configurations (12 series 1 parallel and

4 series 3 parallel array configurations). Each load bank has a total of seven resistors

which can obtain data in real time. Resistors are programmed such that they adapt

to changing MPP values through the day. The load is also programmable such that

it can switch between array configurations. We also collect irradiance data in real

time at a sampling interval of 1s. We use the obtained real-time data to train our
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Machine Learning algorithms. We describe the data collection process in more detail

in Appendix A.

1.3.2 Machine Learning

We develop and train customized Machine Learning models for fault detection

and classification in solar arrays. First, we develop and train an autoencoder for fault

detection. More specifically, we use our custom features to train a 3-layer autoencoder

to detect faults. We use the reconstruction error from the autoencoder to create

an error histogram, which is used to identify faults. Next, we train a NN for PV

fault classification using dropout and concrete dropout regularizers. We compare

NNs against the standard machine learning (ML) classification algorithms described

in reference ( Goodfellow et al. (2016)), such as SVM, K-nearest neighbor (KNN),

and random forest classifier (RFC). Additionally, we associate the performance of the

classification algorithms to the hardness of data separation in PV arrays. We perform

dimensionality reduction using the state-of-the-art Distributed Stochastic Neighbor

Embedding (t-SNE) algorithm ( Maaten and Hinton (2008)) and visualize clusters of

faults which are inseparable. Our results show that the 2× pruned networks perform

better than standard ML classifiers and concrete dropout has the best performance

among all methods examined.

1.3.3 Pruned NN and Lottery Ticket Hypothesis

Pruned NN on embedded hardware greatly improve computational performance

and reduce memory requirements with a slight reduction in the model’s accuracy( Fran-

kle and Carbin (2019). We integrate the lottery hypothesis optimisation methods to

develop a NN architecture such that a dense neural network contains a subnetwork

that is initialized such that when trained in isolation it can match the test accuracy of
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the original network after training for at most the same number of iterations. Using

Monte Carlo simulations, we demonstrate that the test accuracy of a network pruned

by 62% (a significant reduction of weights) reduces only by 4% as compared to a fully

connected neural network.

1.3.4 Operation and Management of PV Arrays

To provide a practical perspective, we studied the nature of these faults from an

operations and management perspective. Faults in PV arrays can be classified into a

list of three safety categories. In addition to safety, we also assigned a Risk Priority

Number (RPN) to each type of solar fault.

This RPN is calculated as: RPN = S × O × D, where S denotes the severity

(or a numerical subjective estimate of the effect of a failure), O denotes a numerical

subjective estimate of likelihood of failure and D the numerical subjective estimate

of detection. Failure modes with high RPN are more critical compared to the ones

with lower RPN. Each S, O and D estimate is assigned a value between 1 and 10

Dhillon (1999).

1.3.5 Real time assessments and comparisons

We collect and obtain data in real-time. We obtain about 2000 data points for

the four classes mentioned above in Section 1.2. Data was collected at a sampling

interval of 10s for each of the four classes. We develop and train our custom neural

network algorithms for fault detection and classification using these data points. Our

results compare favorably against existing methods as well as results obtained using

PVWatts’ time-series dataset. We describe the results in detail in Section 4.6.
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1.4 Organization of the Thesis

The organization of the rest of the thesis is given below.

In Chapter 2, we discuss the background work. We provide a literature survey of

the area. In addition, to provide a practical perspective, we studied the nature of the

faults described Section 1.2 from an operations and management perspective. Faults

in PV arrays can be classified into a list of three safety categories. In addition to

safety, we also assigned a Risk Priority Number (RPN) to each type of solar fault.

Furthermore, the description of synthetic dataset generated by MATLAB Simulink

model and the time series data from NREL’s PVWatts dataset is provided, which

are used to develop ML classification and topology reconfiguration algorithms in the

subsequent Chapters. In order to study faults from an operations and management

perspective, we classify faults using their Risk Priority Number (RPN).

In Chapter 3, we discuss the construction and development of the solar array

test bed at the ASU Research Park. We describe the array which is fitted with

Smart Monitoring Devices and collect data in real-time. These measurements include

voltage, current, temperature and irradiance. We also describe the construction of a

real-time load which can vary the maximum power point through the day. This load

is programmed to switch among various configurations depending on the time of the

day to allow for maximum power output. We detail the steps needed to obtain data

in real-time from the solar array.

Chapter 4 provides a comprehensive study of various ML and signal processing

techniques for fault detection and classification in solar arrays. The background on

different classes of faults and their diagnostics is discussed. These faults are stud-

ied with the help of current-voltage and power-voltage curve characteristics. Next,

we discuss and evaluate various ML techniques including k-means, k-nearest neigh-
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bors, support vector machines, artificial neural networks, in terms of classification

performance, as well as computational complexity.

Appendix A provides a detailed description on the safety parameters and best

practices considered for the development and construction of the solar array. We

also provide detailed instructions on the connections required to obtain real-time

measurements.
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Chapter 2

BACKGROUND AND LITERATURE SURVEY

The efficiency of solar energy farms requires detailed analytics and information

on each panel regarding voltage, current, temperature, and irradiance. Monitoring

utility-scale solar arrays was shown to minimize cost of maintenance and help optimize

the performance of the array under various conditions. Faults in utility-scale solar

arrays (Köntges et al. (2014, 2017); Kuitche et al. (2011); Mellit et al. (2018)) often

lead to increased maintenance costs and reduced efficiency. Since photovoltaic (PV)

arrays are generally installed in remote locations, maintenance and annual repairs due

to faults incur large costs and delays. To automatically detect faults, PV arrays can be

equipped with smart electronics that provide data for analytics. Smart Monitoring

Devices (SMDs) (Takehara and Takada (2013)) that have remote monitoring and

control capability have been proposed (Braun et al. (2012a)) to provide data from

each panel and enable detection and localization of faults and shading. The presence

of such SMDs renders the solar array system as a cyber-physical IoT networked system

(Spanias (2017)) that can be monitored and controlled in real-time with algorithms

and software.

2.1 Literature Survey

Traditional methods such as the Support Vector Machines (SVM) (Mellit et al.

(2018)), decision tree based approach (Zhao et al. (2012b)), and the Minimum Co-

variance Determinant (MCD) distance metric (Braun et al. (2012b)) were proposed

to identify fault conditions in PV arrays. Real-time fault detection in PV systems

was studied in (Ali et al. (2017)), wherein a threshold based approach was developed

13



to identify faulty modules. Another statistical method in (Platon et al. (2015)) pro-

posed a 3-sigma statistical rule for detecting faults in PV modules. Methods to detect

partial shading in PV systems have been addressed in (Hariharan et al. (2016)). An

unsupervised monitoring procedure for detecting anomalies in photovoltaic systems

using a one-class SVM was shown in (Harrou et al. (2019)) and a semi-supervised

graph approach for fault detection and classification was proposed in (Zhao et al.

(2014)). Although the above methods provide encouraging results, they are based

on aggregated data and generally cannot localize and distinguish between electrical

faults and shading in PV systems. The ability to classify faults accurately and auto-

matically with various PV array connection topologies is still a challenging problem

(Braun et al. (2016)).

While neural networks (NNs) have been used in the past for fault detection and

classification tasks (Rao et al. (2019); Mellit et al. (2018); An and Cho (2015); Zhao

et al. (2014, 2012b)), the set of hyper-parameters to be chosen and the type of archi-

tecture is a challenge. As shown in Figure 2.1, the array can be used to collect data in

real time. Data collected from the array is used for fault detection and classification

studies. Switches with remote access also allow for dynamic topology reconfiguration.

In this study, we use an autoencoder machine learning framework (Goodfellow et al.

(2016)) to perform fault detection. An autoencoder is used to learn efficient repre-

sentations (also called encodings) of the data through unsupervised dimensionality

reduction. A decoder can then reconstruct the original input from the learned en-

coding. This unsupervised machine learning approach can be used to identify faults.

We then implement fully connected NNs and dropout NNs (Srivastava et al. (2014))

trained specifically for fault classification in PV arrays. In our results section, we

discuss performance based on accuracy and computational complexity in terms of

weighted accuracy for various architectures. To reduce computation and redundancy
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Figure 2.1: Smart Solar Array Monitoring System with Fault Detection and Classi-

fication Systems. The Autoencoder Is Used for Fault Detection While the Pruned

Neural Network Is Used for Fault Classification.

and to customize the NN, we also perform network pruning using the lottery ticket

hypothesis optimization process (Frankle and Carbin (2019)) to design sparse NN

architectures. We achieve a 2× reduction in the size of the NN. Along with custom

hardware, which enables monitoring voltage, current, temperature, and irradiance at

the module level (Muniraju et al. (2017)), a custom NN with reduced parameters

and high accuracy will be beneficial for the development of compact and specialized

hardware for fault classification in PV arrays.
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Such Modules.

2.2 The Simulink Model for PV Fault Simulations

Simulated data to generate Maximum Power Points (MPPs) was obtained using

MATLAB’s Simulink model. The model is shown in Figure 2.2. The Simulink model

will be used for data generation for various fault( King et al. (2004)) and shading

conditions in the subsequent sections. The Simulink model uses the Sandia Flicker

and Johnson (2013) PV module performance model. Through MATLAB, the user

enters parameters for the Sandia model such as open circuit voltage (VOC), short-

circuit current (ISC), temperature, and irradiance. The output of the module includes

maximum voltage (VMP ) and maximum current (IMP ). The Simulink model can be

used to generate synthetic data from a single PV module.

2.3 The PVWatts Dataset

In this section, we briefly discuss the data used in our experiments. We use the Na-

tional Renewable Energy Laboratory’s (NREL) PVWatts Calculator (Dobos (2014))
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Visualize the Data Clusters.

which estimates the cost and amount of energy produced by grid-connected photo-

voltaic energy systems worldwide. The dataset available from PVWatts includes 4

faults used in this study, as well as the standard test conditions of PV arrays. We

study these faults as these can not only be replicated using our solar array test bed

described later in Section 3.2 but are also associated with high RPNs mentioned in

Table 2.2. Faults are classified in terms of the following categories: shaded modules,

soiled modules, short-circuited modules, and degraded modules. The data was ob-

tained for a period of one year (January to December 2006) at a sampling duration of

one hour. Data points include irradiance, temperature, and maximum power (Pmp)

measurements along with a time stamp, amounting to 4000 hours of data.

Each data point was hand-labeled to one of the 4 PV array faults or as STC
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(normal operation). Data points were labeled as STC if the measured irradiance was

1000W/m2 or has an ambient temperature of approximately 25◦C. A data point

was considered shaded if the irradiance was lower than STC by 25% or more. If

the measured irradiance was as per STC but the power measured was low, then the

module was classified as soiled. Alternatively, if the irradiance and temperature were

as per STC but the measured maximum current (Imp) was low, then that data point

was labeled as a short circuit or a line to line fault. Finally, if the measured open

circuit voltage (Voc) and or, short circuit current (Isc) were lower than the rating of

the PV module by 25% or more, the data point was classified as a degraded module

(Platon et al. (2015)).

We consider a set of 9 custom input features, which includes maximum voltage

(Vmp), maximum current (Imp), measured irradiance, temperature, fill factor (FF),

Voc, Isc, Pmp and Gamma (γ) - the ratio of power over irradiance. These features

are derived from the IV-curves of the NREL’s PVWatts Calculator (Dobos (2014))

dataset. In order to understand the data, we perform t-SNE to visually show that

the data has overlapping faults as shown in Figure 2.3. This method projects the

input 9-dimensional feature matrix into two dimensions by minimizing the Kullback-

Leibler divergence of the data distributions between the higher and the mapped lower

dimensional data (Maaten and Hinton (2008)).

In order to understand the data, we perform t-SNE to visually show that the data

has overlapping faults, as shown in Figure 2.3. This method projects the input nine-

dimensional feature matrix onto lower dimensions (2D) by minimizing the Kullback–

Leibler divergence of the data distributions between the higher and the mapped lower

dimensional data( Maaten and Hinton (2008)).
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2.4 Operation and Management of PV Arrays

To provide a practical perspective, we studied the nature of these faults from an

operations and management perspective. Faults in PV arrays can be classified into

a list of three safety categories, as shown in Table 2.1 (Köntges et al. (2014)). In

addition to safety, we also assigned a Risk Priority Number (RPN) to each type of

solar fault.

This RPN is calculated as: RPN = S × O × D, where S denotes the severity

(or a numerical subjective estimate of the effect of a failure), O denotes a numerical

subjective estimate of likelihood of failure and D the numerical subjective estimate

of detection. Failure modes with high RPN are more critical compared to the ones

with lower RPN. Each S, O and D estimate is assigned a value between 1 and 10

(Dhillon (1999)).

Safety Category Description

A Failure has no effect on safety.

B (f,e,m) Failure may cause fire (f), electrical

shock (e) or physical danger (m) if

failure repeats and/or second fail-

ure occurs.

C (f,e,m) Failure causes direct safety prob-

lem.

Table 2.1: Broad Safety Categories in PV Arrays. Faults in Category C Have a Higher

RPN as Shown in Table 2.2

.

Faults in this dissertation including shading, degradation and soiling can be con-
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Fault Type S O D RPN

Standard Test Conditions (STC) 1 1 1 1

Soiling (Sepanski and et.al (2018)) 8 3 6 144

Shading (Sepanski and et.al (2018)) 1 6 5 30

Degradation (Chattopadhyay et al.

(2014); Sepanski and et.al (2018))

2 10 8 160

Short Circuit (Shrestha et al.

(2014); Rajput et al. (2019))

8 5 6 240

Table 2.2: RPN of All Faults Considered in This Dissertation. Higher RPN Could

Indicate a Safety Category of Type B or Type C as Shown in Table 2.1

.

sidered as type A faults while short circuits are considered a type C (f,e,m) fault.

The corresponding risk priority numbers are shown in Table 2.2.

We study faults with RPN as mentioned in Table 2.2. Since faults with high RPN

possess a greater safety threat as shown in Table 2.1, detection and classification of

these faults is critical.
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Chapter 3

SOLAR ARRAY RESEARCH TESTBED

The efficiency of solar energy farms requires detailed analytics and information

on each panel regarding voltage, current, temperature, and irradiance. Monitoring

utility-scale solar arrays was shown to minimize cost of maintenance and help opti-

mize the performance of the array under various conditions. We describe the design of

an 18 kW experimental facility that consists of 104 modules fitted with smart moni-

toring devices. Each of these devices embeds sensors, wireless transceivers, and relays

that enable continuous monitoring, fault detection, and real-time connection topology

changes. The facility enables networked data exchanges via the use of wireless data

sharing with servers, fusion and control centers, and mobile devices.

3.1 The SenSIP 18 kW Solar Array Testbed

Our vision for research monitoring and optimizing a large-scale PV array is sum-

marized in Figure 3.1. To support experimental aspects of this research we designed

a solar monitoring testbed ( Rao et al. (2016)) at the ASU research park in Tempe,

Arizona which is shown in Figure 1.2. This research facility consists of 104 modules

in an 8× 13 configuration that amounts to approximately 18 kW. Every panel in this

solar array is equipped with an SMD. These devices are networked and can provide

data to servers, control centers, and ultimately to mobile devices. Each SMD not

only provides analytics for each panel but contains relays (actuators) that can be

remotely controlled and via wireless access. Relays can bypass or change connec-

tivity configuration, e.g., series to parallel. SMDs connected to each PV panel act

as intelligent networked sensors ( Spanias (2017)) providing data that can be used
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Figure 3.1: Smart Solar Array Monitoring System with Topology Reconfiguration,

and Fault Detection and Diagnosis Systems.

to detect faults, shading, and other problems that cause inefficiencies. Each panel

can be monitored individually to acquire voltage, current, and temperature, and all

data is wirelessly transmitted to a central hub with minimal power loss. Additionally,

each smart hardware device can reconfigure connections with its nearest neighbors.

Data collected from the SMDs and reconfiguration testing will be used to design and

evaluate automated fault detection, diagnosis, and mitigation algorithms.

22



Figure 3.2: Smart Monitoring Device (SMD) Attached to a Solar Panel( Takehara

and Takada (2013)).

3.2 Design of the Solar Array Testbed

The research testbed is shown in Figure 1.2. This facility is built outdoors on the

ground level of the ASU MTW building for ease of access by researchers. Each SMD

and panel can be accessed from under the raised frame. The structure stands over 4

m tall at the tallest point, but is otherwise freely accessible. A weather monitoring

station nearby records environmental conditions for fusion with collected PV data.

This structure consists of 104 PV modules, each with an SMD, installed atop an

elevated steel frame. Each SMD (Figures 3.2 and 3.3) can measure current, voltage,

irradiance, and temperature of the associated panel. This data communicates to a

server through a wireless network.

The facility is intended to enable experimental research with results obtained for

various loading and shading conditions that will validate and extend various theoret-

ical results reported in( Braun et al. (2012a); Peshin et al. (2015); Braun et al. (2016,

2012b)). Other studies that are based on a similar framework is reported in( Ham-

mond et al. (1997); Kolodenny et al. (2008); Dirks et al. (2006)). The SMD as shown
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Figure 3.3: A Block Diagram of the Internal Connections of an SMD( Takehara and

Takada (2012)).

in Figure 3.2, has six connectors. Two of the connectors are for the positive and

negative leads for the associated panel and two leads each are assigned to the two

neighboring SMDs. These interconnections allow for dynamic reconfiguration of the

series and parallel strings.

Each SMD includes sensors and actuators (relays). Relays are used to change the

topology configuration of the modules within the array. Three modes are available in

the SMDs, i.e., series, parallel, and bypass. A faulty panel can easily be removed from

the system to prevent mismatch losses by using the bypass mode. In some cases, the

default topology may be suboptimal( Braun et al. (2016)). In these cases, the series

and parallel modes are used to define an alternate topology. Neighboring modules

are connected first in parallel and then in series, a configuration known as the total

cross tied (TCT) topology.

Figure 3.4 shows a schematic of the communication between the SMDs and the

server. Each SMD communicates wirelessly to an access point located at one of the

PV modules. This access point in turn communicates with a central gateway which

is connected to a server through USB.
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Each of the SMDs within the array is equipped with ZigBee wireless communica-

tion hardware. To minimize power consumption by the SMDs, the ZigBee transceivers

do not transmit continuously. Instead, they periodically transmit voltage, current,

and temperature measurements. A ZigBee hub device connected to the server receives

all the reported data and transmits control signals to the networked SMDs. The newly

built PV array facility is used to gather data for testing, training, optimization, and

evaluation of algorithms. Common shading and fault conditions is safely generated

in order to build a comprehensive dataset for designing and evaluating monitoring

techniques.

The algorithmic and image/data analysis unit are equipped with various state of

the art algorithms for imaging, data mining, and prediction that identify and track

various important time-varying events and patterns. The algorithms operate on PV

array measurements and on parametric models to detect and remedy faults using
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SMD panel switching (Figure 3.1) or bypassing if necessary( Rao et al. (2016)).

Continuing work on machine learning for fault detection and classification, we

investigate real world settings for detection and identification of faults in solar arrays.

First, we built a load for a real-time scenario. The load is capable of MPP tracking

and collect data through the day to validate the results discussed. We study the

convergence of pruned neural networks and address the issues of overfitting in machine

learning models.

3.3 Design and implementation of a Load for data collection

Data obtained include current and voltage readings from the PV array in real

time. In addition, we also obtain irradaince values in real time at a sampling interval

of 1s. From the obtained current and voltage readings, we characterise the IV curve

of the array and obtain the MPP. These obtained data points are used as inputs

in various Machine Learning algorithms to detect and identify faults in PV Arrays.

Data obtained helped in identify various loading and shading conditions along with

faults as they lie along distinct regions in the two-dimensional space of the IV curve.

Figure 3.5 and 3.6 show the switching and control box developed to perform MPP

tracking. Figure 3.7 shows the load bank which is controlled through the switches

and the control box.

Data obtained includes current and voltage readings from the PV array in real

time. From the obtained current and voltage readings, we can characterise the IV

curve of the array and obtain the MPP. These obtained data points are used as

inputs in various Machine Learning algorithms to detect and identify faults in PV

Arrays. Data obtained will thus help identify various loading and shading conditions

along with faults as they lie along distinct regions in the two-dimensional space of

the IV curve. We discuss these results in Chapter 4. Figure 1.2 shows the PV array
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Figure 3.5: The Load Is Controlled Through High Powered DC Switches. These

Switches Have a Rating of 600w Each. They Are Dynamically Controlled Through

the Control Box Using the PLC.

currently set up at ASU Research Park. The load is placed under the array and can

perform real time switching between array configurations to optimize power output.
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Figure 3.6: The MPP Tracking Is Controlled Automatically Through the Control Box

Shown Here. The PLC Controls the Switches and Will Either Turn the Resistors on

or off Depending on the Time of the Day.

These loads are programmable which can switch between different resistor values to

suit the MPP for an array configuration and can also switch between load banks to
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Figure 3.7: A Design of a 7 Resistor Load Bank. Four of the Resistors Are Always on

and the Remaining Set of Resistors Turn on or off to Implement Various Conditions

for Testing.

suit another array configuration.
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Chapter 4

FAULT DETECTION AND CLASSIFICATION USING MACHINE LEARNING

Detecting faults in PV is important for the overall efficiency and reliability of

a solar power plant. Ground faults, series and parallel arc faults, high resistance

connections, soiling, and partial shadowing need to be detected. The I-V data in a PV

array can be measured at the panel-level. This data is useful in predicting possible

ground faults or arc faults. The I-V characteristic is a function of temperature,

incoming solar irradiance (direct and diffused), angle of incidence, and the spectrum

of sunlight. The panel has an optimal operating point for maximum power. Fault

detection using I-V data can be accomplished by identifying outliers in the I-V feature

space. I-V measurements are typically highly correlated. Moreover, the dynamics of

the I-V measurements lend themselves to predictive models. Current practice is to

identify faults via a human operator examining data collected at the inverter. One

study identified a Mean Time to Repair (MTTR) of 19 days( Braun et al. (2012a))

for a centrally monitored system of residential installations. With the addition of

more and higher quality data from SMDs, MTTR could be significantly reduced.

Several challenges and research opportunities are evident in the fault diagnosis and

localization problems. First, of course, a system must accurately classify the PV

array’s condition. It should be able to react to the “unknowns”—faults the system

designers did not anticipate. Considering these challenges, several ML approaches

can be examined. Simulated fault datawere obtained using the Sandia PV module

performance model and a MATLAB circuit simulation package( Fan et al. (2020a,b)).
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4.1 PV Fault Detection using Autoencoders

We propose the use of an autoencoder for fault detection. An autoencoder is an

unsupervised learning algorithm designed to identify faults based on reconstruction

errors. An autoencoder consists of an encoder and a decoder. A simple schematic

of an encoder can be seen in Figure 4.1. The encoder maps the input to a lower

dimensional embedded space also called latent space and the decoder maps the latent

space to the original input space. The difference between the original input and the

reconstructed output can be used to identify anomalies in the data (An and Cho

(2015)) and hence detect the presence of faults.

Figure 4.1: A Figure Illustrating an Autoencoder Used for Fault Detection. The

Original Input Is Mapped to a Lower Dimension (Also Called Latent Space). The

Reconstructed Output Maps the Latent Space Back to the Original Input Space. We

Detect Faults Based on Reconstruction Errors. Higher Reconstruction Error Indicates

the Presence of a Fault.

We train a three layered autoencoder for fault detection. The nine dimensional

input feature matrix is given as an input to the autoencoder. The autoencoder is

trained on STC irradiance data while the fault data is treated as anomalous and is
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used to test the algorithm. The latent space consists of two neurons and the decoder

maps the latent space to the original input dimensions. As seen in the error histogram

in Figure 4.2 and Figure 4.3, we detect faults based on reconstruction errors. We

observe that while STC irradiance data have low reconstruction errors, fault data

have higher reconstruction errors. Using this method, we can identify anomalous

data from observed measurements and hence detect the presence of faults.

Figure 4.2: PV Fault Detection Using an Autoencoder on NREL Data. An Au-

toencoder Is Used for Fault Detection. Samples from the Same Class Have Lower

Reconstruction Error While Samples from Fault Classes Have Higher Reconstruction

Error.

4.2 Faults in PV Arrays

In this section, we review the standard test conditions and the commonly occurring

faults namely, shading, degraded modules, soiling, and short circuits. STC values
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Figure 4.3: PV Fault Detection Using an Autoencoder on Real Data. An Autoencoder

Is Used for Fault Detection. Samples from the Same Class Have Lower Reconstruction

Error While Samples from Fault Classes Have Higher Reconstruction Error.

correspond to the measurements yielding maximum power under the temperature

and irradiance values of a particular day.

4.2.1 Standard Test Conditions

Standard Test Conditions (STCs) are the industry standard for the conditions un-

der which a solar panel are tested. By using a fixed set of conditions, all solar modules

can be more accurately compared and rated against each other. The temperature of

the cell is taken to be 25◦C and the irradiance is 1000 W/m2. STC values correspond

to the measurements yielding maximum power under the temperature and irradiance

values of a particular day. Data points are labeled as STC if the irradiance, temper-

ature, and power were the highest possible values for that particular day. Figure 1.2
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Figure 4.4: Example of a Soiled Solar Panel.

shows a solar array under the STC.

4.2.2 Soiling

Since PV modules are exposed to the environment, modules get soiled due to dust,

snow, and bird droppings accumulating on the PV module as shown in Figure 4.4.

While the irradiance measured remains the same as STC, the power produced drops

significantly. The solution to this problem involves manually cleaning the modules

regularly. If the measured irradiance was as per STC but the power measured was

low, then the module was soiled. Soiling is caused by dry deposition affects the power

output of PV modules, especially under dry and arid conditions that favor natural

atmospheric aerosols (wind-blown dust)(Cordero et al. (2018)).

4.2.3 Degraded Modules

Degraded modules are a result of modules aging or regular wear and tear of the

PV modules, as shown in Figure 4.5. Consequently, such modules produce lower

power values owing to the lower values of open-circuit voltage VOC and short-circuit

current ISC . If the measured open circuit voltage (VOC) and or short-circuit current
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Figure 4.5: Example of a Degraded Solar Panel.

(ISC) were lower than the rating of the PV module by 25% or more, the data point

was classified as a degraded module. Solar modules degrade by approximately 1% per

year; however, if the measured current is less than 20% of the expected value after

adjusting for sunlight conditions then the module maybe failing( Mellit et al. (2018)).

4.2.4 Arc Fault

An Arc-circuit fault is mainly due to bad wiring in a PV string or between PV

strings. This not only causes significant power loss but also creates potential fire

hazards and severe damage to the modules, as shown in Figure 4.6. To improve power

production, the efficiency of the solar array, and prevent safety hazards, identifying

and localizing these faults automatically is critical. If the irradiance and temperature

were as per STC but the measured maximum current (IMP ) was low, then that data

point was labeled as a short circuit or a line to line fault. Short circuit in the wiring

is a bad or loose connection, incorrect wiring, or an internal problem with the solar

module. It is possible that the connection point is sufficient enough for full voltage

reading, but limited current( Mellit et al. (2018)).

35



Figure 4.6: Example of Damage from an Arc Fault.

4.2.5 Shading

Shading is a serious concern in PV arrays. A module is shaded if the irradiance

measured is considerably lower than STC, usually caused by overcast conditions,

cloud cover, and building obstruction. As a result, the power produced by the PV

array is significantly reduced. A data point was considered as shaded if the irradiance

measured was lower than STC by 25% or more. Figure 4.8 shows a module under

various shading conditions. Because the PV module output current is completely

dependent on the amount of sunlight and varies linearly with the sunlight conditions

available, shading considerations are extremely important when designing and siting

the location of an array installation. The cells of a solar module are wired in series

and the maximum output current is dependent on the weakest cell, as the current is

the same through each cell. The module maximum output current is dependent on

the maximum current available from the weakest cell. Therefore, if a single cell in

a PV module is shaded, the output current from the entire module goes to zero. If

any part of cell is shaded, the output current from the PV module is reduced by the

proportional amount that the cell is shaded( Patel and Agarwal (2008); Nguyen and

Lehman (2006); Quaschning and Hanitsch (1996)).
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Figure 4.7: Example of a Partially Shaded Solar Panel Array.
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Figure 4.8: I-V Curves of the PV Module under Shading Conditions.

4.3 Key Contributions in Machine Learning for PV Applications

The use of ML in fault diagnosis can be formulated as a multiple hypothesis testing

problem. ML is useful for the detection and the identification of the type of the fault.

For example, if one of the arrays receives less sunlight due to shading, ML could

help identify the error in the shading conditions. It was previously shown that fault

detection can be performed using statistical outlier detection techniques( Braun et al.
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(2012b)). However, performing diagnosis and localization of a fault is a much deeper

problem. It requires data on array behavior under each fault condition. Moreover,

PV arrays come in all shapes and sizes and may behave very differently from one

another under similar fault conditions. A comprehensive PV fault dataset does not

currently exist. Since array operators are rarely involved in academic research and

may wish to keep the performance of their systems proprietary. Gathering data from

fault conditions is difficult to obtain unless continuous monitoring is enabled. Finally,

the overwhelming majority of arrays are fitted with I-V sensors only at the inverter,

allowing minor faults which do not cause a large drop in output to persist undetected.

Studies that attempt to quantify the likelihood and severity of different conditions

were reported in( Maish et al. (1997)). On the other hand, extensive work has been

done to characterize the behavior of normally operating modules and arrays( King

(1997)).
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Figure 4.9: Algorithms Considered in This Dissertation for Fault Classification Are

Artificial Neural Networks (ANN), K-nearest Neighbor Algorithm (KNA), Support

Vector Machine (SVM), Random Forest Classifier (RFC), Radial Basis Network

(RBN), Gaussian Mixture Model—expectation Maximization Algorithm (GMM-EM),

And the k-means Algorithm( Bishop (2006)). These Algorithms Are Used to Identify

Shading and Fault Conditions in PV Arrays.
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Figure 4.10: I-V Curves of the PV Module under Various Fault and Shading Condi-

tions.

A classification algorithm for fault detection must have the following properties.

First it must accurately classify the PV array’s condition. It must be adaptable to

different array configurations without extensive data collection for each individual

array. It must be able to recognize each fault class from a very small number of
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training examples. It should take advantage of our prior knowledge of the electrical

behavior of PV arrays (e.g., equal current within a string), rather than having to

learn these relationships through the training data. It should be capable of reacting

to the “unknown unknowns,” i.e., faults the system designers did not anticipate.

In light of these requirements, several ML approaches are worth examining. Semi-

supervised learning could allow the generation of many realistic faults from a few

measured examples( Zhao et al. (2014)). This would mitigate the problem of lopsided

data, where very few examples of faults are available. We study a number of such

algorithms in this dissertation, as shown in Figure 4.9. These algorithms can help

identify multiple PV conditions using their I-V curves. Figure 4.10 shows the I-V

curve of the PV module under various loading, fault and shading conditions.

ML algorithms are widely classified as supervised, semi-supervised, and unsu-

pervised algorithms. In supervised learning, “true” or “correct” labels of the input

dataset are available. The algorithm is “trained” using the labeled input dataset

(training data) which means ground truth samples are available for training. In the

training process, the algorithm makes appropriate predictions on the input data and

improves its estimates using the ground truth and reiterating until the algorithm

reaches a desired level of accuracy. In almost all the ML algorithms, we optimize a

cost function or an objective function. The cost function is typically a measure of

the error between the actual output and the algorithm estimates. By minimizing the

cost function, we train our model to produce estimates that are close to the correct

values (ground truth).

In the case of unsupervised algorithms, there are no explicit labels associated

with the training dataset. The objective is to draw inferences from the input data

and then model the hidden or the underlying structure and the distribution in the

data in order to learn more about the data. Clustering is the most common example
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of an unsupervised algorithm. Semi-supervised learning is an approach to ML that

combines a small amount of labeled data with a large amount of unlabeled data

during training. Semi-supervised learning falls between unsupervised learning (with

no labeled training data) and supervised learning (with only labeled training data).

4.3.1 The k-Means Algorithm

The k-means clustering aims to partition n observations into k clusters in which

each observation belongs to the cluster with the nearest mean, serving as a prototype

of the cluster. The k-means algorithm is used to partition a given set of observa-

tions into a predefined amount of k clusters. The algorithm as described by( James

(1967)) starts with a random set of k center-points (µ). During each update step, all

observations x are assigned to their nearest center-point (see Equation 4.1). In the

standard algorithm, only one assignment to one center is possible. If multiple centers

have the same distance to the observation, a random one would be chosen:

S
(t)
i =

{
xp :

∥∥xp − µ(t)
i

∥∥2 ≤ ∥∥xp − µ(t)
j

∥∥2 ∀j, 1 ≤ j ≤ k
}
. (4.1)

Afterward, the center-points are repositioned by calculating the mean of the as-

signed observations to the respective center-points:

µ
(t+1)
i =

1

|S(t)
i |

∑
xj∈S

(t)
i

xj. (4.2)

The update process reoccurs until all observations remain at the assigned center-

points and therefore the center-points would not be updated anymore. Figure 4.11

shows the use of the k-means algorithm to identify ground faults and arc faults from

MPPT datapoints. The k-means algorithm can accurately detect and identify faults

by forming clusters on the I-V curve.

While generating MPPs, we consider a variance of ±5 V for VMP and a variance

of ±1 A for IMP to account for variability in real-time scenarios( Mekki et al. (2016)).
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Figure 4.11: Fault Classification Using the k-means Algorithm. Using the k-means

Algorithm, We Identify Three Clusters In the I-V Curve.

To simulate a varying temperature panel, the simulated panel was assigned a higher

temperature value. The data was obtained and trained with the k-means algorithm.

The results obtained are shown in Figure 4.12. Each set of data points represent

one condition associated with the PV array. Using k-means with voltage, current,

and temperature as our three axes, we successfully identify ground faults (Gnd), arc

faults (Arc), standard test conditions with irradiance at 1000 W/m2, and a module

temperature of 25◦C (STC), shaded conditions (shading), and varying temperature

conditions.

However, certain other conditions such as soiling and short circuits are not identi-

fied using this method due to the lack of labels in the dataset. Soiling and short-circuit

condition have MPPs which lie in similar areas in the 2D I-V curve space. The k-

means algorithm in this setting also does not identify partial shading vs. complete

shading of modules. Therefore, there is a need for the use of neural network algorithms

to detect and identify faults in PV arrays.
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Figure 4.12: Clustering Using the k-means Algorithm. The Synthetic Data Was

Obtained Using the Simulink Model Described in Section 2.2.

4.3.2 The Kernel SVM

Kernel SVM is a soft margin classifier robust to outliers. Computing the soft

margin classifier is equivalent to minimizing the loss function,

Lsvm =
1

n

[ N∑
i=1

max
(
0, 1− yi(w · φ(xi)− b)

)]
+ λ||w||2, (4.3)

where λ is a hyper-parameter which regularizes the weights and φ(·) is the kernel

function. Loss function in Equation (4.3) can be reduced to a quadratic programming

problem and solved by a convex solver. Common choices of kernel functions φ(·)

are polynomial kernel, Gaussian radial basis kernel, and hyperbolic tangent kernel.

Success of SVM depends on the right choice of kernel, which is hard to select for a

given data set( Cortes and Vapnik (1995)).

4.3.3 The k-Nearest Neighbor Algorithm

The k-nearest neighbor algorithm (kNA) is a simple nonparametric classifier,

where classification is based on local membership scores. In training phase, simi-
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larity measure for each data point with its closest k neighboring data points is stored.

To classify a test sample, similarity measure between the test sample and all the data

points are calculated, and the class label assigned is the label corresponding to the

majority of k-closest samples based on the similarity score. Similarity score is gener-

ally computed using Euclidean, Manhattan, Minkowski, and Hamming distance. The

main drawback of k-nearest neighbor (KNN) method is the large computation time

during test phase( Altman (1992)).

Class A: 

Class B: 

x2

x1

Figure 4.13: A Simple kNA Model for Different Values of k. For k = 3, the Test Point

(Star) Is Classified as Belonging to Class B and for k = 6; The Point Is Classified as

Belonging to Class A.

4.3.4 Random Forest Classifiers

The Random forest classifier (RFC) is a classification algorithm based on an en-

semble of decision trees. A decision tree is constructed by set of input features

randomly sampled batch of data from the dataset. To classify a test sample, each

decision tree provides a vote for a particular class, and the label assigned is the class

which has the majority of the votes. RFC involves two hyper-parameters: number

of decision tress and the depth of the decision tree. RFCs are capable of modeling
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complex data sets and are robust to outliers( Ho (1995)).

4.3.5 Radial Basis Function Networks

The Radial Basis Networks (RBNs) are nonlinear classifiers that use radial basis

functions as the activation functions of the hidden layers. The RBN is a supervised

learning algorithm, where each point in the dataset is passed through the network and

labeled with its true classification. This network classifies by measuring the similarity

of the input vectors to the labeled examples gathered from the training set Pedersen

et al. (2019). A simplified representation is shown in 4.14.

Figure 4.14: Simplified Representation of the RBFN Architecture. In Our Case, the

Radial Basis Function Is Used as the Activation Function..

4.4 Key Contributions in Neural Networks

Various signal processing and statistical methods have been developed for detec-

tion and identification of faults in utility scale PV arrays. However, there is a need

for a comprehensive algorithm which captures a wide variety of faults. While several

methods have been proposed in the past for fault detection, neural networks aim to

detect and identify the type of fault occurring in PV arrays. Figure 4.10 shows the

I-V curve for the multi-class classification problem. While traditional signal process-
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Figure 4.15: An Example of a Neural Network. This Neural Network Has One Input

Layer, Two Hidden Layers, and One Output Layer.

ing algorithms use the statistical properties of a single I-V curve of a given module,

most methods do not cover multiple cases. Using neural networks allows not only

detection but identification of the fault type with a high accuracy( Rao et al. (2019,

2020b)). Previous studies that used neural nets have been used to make binary de-

cisions on fault detection, i.e., detect faults but not classify the type of fault( Mekki

et al. (2016); Chine et al. (2016); Chen et al. (2017); Hariharan et al. (2016)).

4.4.1 The Feature Matrix

Studies show that nine inputs namely VOC , VMP , ISC , IMP , temperature of module

(Temp), irradiance of module (Irr), Fill Factor (FF) (a ratio of the product of the short

circuit current (ISC), and open circuit voltage (VOC) over product of VMP and IMP ),

gamma (γ)—the ratio of power over irradiance, and power, to classify eight different

faults. The eight faults classified are ground fault (Gnd), arc fault (Arc), complete

module shading (Fully Shaded), partial module shading (Partial Shading), varying
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temperatures of module (Varying Temp), soiling (Degraded), short circuits (SC), and

standard test conditions with irradiance at 1000 W/m2 and a module temperature of

25◦C (STC). An example of a row vector and their corresponding class is shown in

Table 4.1.

Data Labeling:

The data points were labelled as belonging to one of the five classes (i.e., standard

test conditions (STC), shaded, soiled, short circuit and degraded) based on the input

feature vector. The data points were labeled as:

1. STC : If the measured irradiance was 1000 W/m2 or has an ambient temperature

of approximately 25◦C.

2. Shaded : If the irradiance was lower than STC by 25% (i.e., lower than 750W/m2)

or more.

3. Soiled : If the measured irradiance was as per STC (i.e., 1000 W/m2 or 25◦C)

but the power output was less than 25% of power output under STC conditions.

4. Short circuit fault : If the irradiance and the temperature were as per STC, but

the measured maximum current Imp was less than 25% of measured maximum

current Imp at STC.

5. Degraded module: If the measured open circuit voltage Voc or, short circuit

current Isc were lower than the rating of the PV module by 25% or more.
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Table 4.1: An Example of the Row Vector and Their Corresponding Class. Each

Such Row Vector Is Classified into One of the Five Classes.

VMP IMP Temp Irr FF γ PMP VOC ISC Class

36.33 1.36 25°C 281.11 4.66 0.17 49.77 44.33 5.242 STC

36.33 1.02 25°C 281.11 6.62 0.13 37.33 44.48 5.56 Soiled

36.33 1.23 25°C 281.11 5.05 0.15 44.79 44.26 5.11 SC

36.33 1.02 25°C 210.83 6.62 0.17 37.33 44.48 5.56 Shaded

36.33 1.09 25°C 281.11 2.59 0.14 39.81 28.80 3.58 Degraded

4.5 Real Time Experiments

For normal operations:

Standard Test Conditions (STCs) are the industry standard for the conditions under

which a solar panel are tested. By using a fixed set of conditions, all solar modules can

be more accurately compared and rated against each other. STC values correspond

to the measurements yielding maximum power under the temperature and irradiance

values of a particular day. Data points are labeled as STC if the irradiance, temper-

ature, and power were the highest possible values for that particular day. For normal

operations, we propose to:

1. Keep the array on, vary the resistors depending on time of the day.

2. Record measurements- VMP , IMP , temperature. These measurements are recorded

by the Smart Monitoring Device (SMD) in the array developed at ASU Research

Park.

3. Record irradiance measurements using the TES132 meter. The meter gives

values at a sampling rate of 1 second. These readings are beneficial in identifying

soiling versus shading modules.
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Shading:

Shading is a serious concern in PV arrays. A module is shaded if the irradiance

measured is considerably lower than STC, usually caused by overcast conditions,

cloud cover, and building obstruction. As a result, the power produced by the PV

array is significantly reduced. To run shading experiments, we propose to:

1. Run a piece of obstruction over a few modules. Scenarios include partial shading

and complete shading. 25% of the modules are covered during this process. An

irradiance value drop of 25% or more shows significant power loss under shading

conditions.

2. Measurements will include VMP , IMP and temperature. Our experiments on the

PVWatts dataset have shown that neural networks are effective in classifying

shaded modules with high accuracy. Figure 4.16 shows a PV panel shaded at

the ASU Research Park.
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Figure 4.16: An Example of a Simulated Shaded Module at ASU Research Park. This

Corresponds to 25% Shading.

However, significantly covering the module could turn off the array and not record

any values. Therefore, we propose to cover not more than 50% of the module at a

time.

Soiling:

While the irradiance measured remains the same as STC, the power produced drops

significantly. The solution to this problem involves manually cleaning the modules

regularly. If the measured irradiance was as per STC but the power measured was

low, then the module was soiled. Soiling is caused by dry deposition affects the power

output of PV modules, especially under dry and arid conditions that favor natural

atmospheric aerosols (wind-blown dust). For soiling experiments, we propose to:
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1. We use the uncleaned modules for these experiments. These modules have dust

particles on them which are a result of frequent dust storms.

2. Record the same measurements as provided by the SMD which include VMP ,

IMP and irradiance. An illustration of soiling versus STC modules is shown in

Figure 4.17.

Figure 4.17: An Example of a Soiled Module at ASU Research Park Versus a STC

Module.

Degraded Modules:

Degraded modules are a result of modules aging or regular wear and tear of the

PV modules. Consequently, such modules produce lower power values owing to the

lower values of open-circuit voltage VOC and short-circuit current ISC . For degraded

modules, we propose to:
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1. We use the clean modules. However, we measure the open circuit voltage VOC .

Some of the modules were measured with low VOC . These modules are typically

old and are inefficient. However, identifying such modules is critical as they

reduce the power output significantly.

2. Continue to record the same measurements such as VMP , IMP and irradiance.

All of these experiments need to have high safety protocols installed. We describe

in the Appendix the best practices prescribed by NREL.

4.5.1 The Confusion Matrix

A confusion matrix is a table that is often used to describe the performance of a

classification model (or ”classifier”) on a set of test data for which the true values are

known. It allows the visualization of the performance of an algorithm. It allows easy

identification of confusion between classes, e.g., one class is commonly mislabeled as

the other. Most performance measures are computed from the confusion matrix. A

confusion matrix is a summary of prediction results on a classification problem. The

number of correct and incorrect predictions are summarized with count values and

broken down by each class. This is the key to the confusion matrix. The confusion

matrix shows the ways in which your classification model is confused when it makes

predictions. It gives us insight not only into the errors being made by a classifier

but more importantly the types of errors that are being made. An example figure is

shown in Figure 4.18.
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Figure 4.18: An Example of a Confusion Matrix. This Shows a Simple Binary Clas-

sification Problem of The Predicted Class Vs. The Actual Class.

4.5.2 Feedforward Neural Networks

Using the features mentioned, we apply them as inputs to a multilayer feedforward

neural network, popularly called as the multilayer perceptron (MLP). We use a five

layered neural network (NN) with backpropagation to optimize the weights used

in each layer. Each layer uses six neurons. Information flows through the neural

networks in two ways: (i) in forward propagation the MLP model predicts the output

for the given data; and (ii) in backpropagation the model adjusts its parameters

considering the error in the prediction. The activation function used in each neuron

allows the MLP to learn a complex function mapping. The MLP architecture used

for Fault Classification is shown in Figure 4.19.
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Figure 4.19: Neural Network Architecture Used for Fault Detection and Classification.

This NN with Six Neurons in Every Hidden Layer Was Used for Fault Classification

on Synthetic Data.

Let X = {xi}Ni=1 represent the d-dimensional PVWatts data and Y = {yi}Ni=1

represents one-hot encoded labels for c classes. We consider a NN with L layers. We

denote the lth layers weight matrix as Wl and bias vector as bl. We use hyperbolic

tangent function as the activation function a(·) for the hidden layers and SoftMax

function σ(·) for the output layer. The output of the lth layer for input xi is denoted

by z
(l)
i . Our goal is to learn a classifier F , such that F(xi, {Wk}Lk=1, {bk}Lk=1) = yi.

The update equations of the feedforward NN is given by

z
(1)
i = a(W1xi + b1) (4.4)

z
(l)
i = a(Wlz

(l−1)
i + bl) (4.5)

ŷi = σ(z
(L)
i ). (4.6)

Weights of each neuron are trained using a scaled gradient back propagation algo-

rithm. Each layer is assigned a tanh (hyperbolic tangent) activation function. From

our experiments, we see that the tanh decision boundary gives the best accuracy. The

output layer uses the SoftMax activation function to categorize the type of fault in

the PV array.
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We simulate each fault type vs. shading vs. standard conditions so as to have

the same number of data points and avoid bias in the training of the NN. For the

training of the NN, we use 70% of labeled data for training, 15% of data for validation,

and the remaining 15% data as a test dataset, allowing the algorithm to classify the

“unknown” testing data points. The results of the algorithm are shown in the form

of a confusion matrix in Figure 4.20.
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Figure 4.20: Confusion Matrix for Fault Identification. The Results Shown Are on

Simulated Data Using the Simulink Model Shown In Figure 2.2. The Simulated Data

Is Produced in a Noiseless And Ideal Environment.

However, these results were obtained by Simulink under an ideal noiseless envi-

ronment and there is a need for a more noisy and realistic scenario. Therefore, in the

subsequent sections, we use various NN architectures using the dataset described in

Section 2.3.
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4.5.3 Pruned Neural Networks

Pruned NN on embedded hardware greatly improve computational performance

and reduce memory requirements with a slight reduction in the model’s accuracy( Fran-

kle and Carbin (2019). Also called The Lottery Ticket Hypothesis, it is a randomly-

initialized, dense neural network contains a subnetwork that is initialized such that

when trained in isolation it can match the test accuracy of the original network af-

ter training for at most the same number of iterations. Consider a fully connected

NN with N neurons in each layer initialized by weight matrices W0 = {W0
i }Li=1.

After training this network for t epochs, the resulting weights of the network are

W t. Next, compute a maskM( Frankle and Carbin (2019)) by pruning p% of the of

weights closer to zero by taking the absolute value. Reinitialize the network withW0

masked by M. The network training and network pruning process is iterated until

2.5× compression is achieved, after which the networks performance degrades due to

underfitting of the data( Frankle and Carbin (2019)).

We employ iterative pruning with resetting. The steps are described below:

1. Randomly initialize a neural network f(x;m� θ ) where θ = θ0 and m = 1|θ| is

a mask.

2. Train the network for j iterations, reaching parameters m� θj.

3. Prune s% of the parameters, creating an updated mask m′ where Pm′ = (Pm −

s)%.

4. Reset the weights of the remaining portion of the network to their values in θ0.

5. Let m = m′ and repeat steps 2 through 4 until a sufficiently pruned network

has been obtained.
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Figure 4.21: A Figure Illustrating the Use of Neural Networks Pruned By 50% for

Solar Array Fault Classification.

4.5.4 Dropout Neural Network

In dropout NN, for the lth layer, we select a dropout ratio p ∈ (0, 1) and sam-

ple a vector of Bernoulli random variables β(l) with a probability p of being 1 and

1 − p of being 0. In both forward pass and back-propagation update, we mask the

weights of neurons by computing element-wise product of z(l) and β(l). Masking these

weights during the update regularizes the network and avoids over-fitting. Dropout

is implemented as, let β
(l)
i ∼ (p) then Equations (4.4), (4.5), and (4.6) are updated

as follows:

ẑ
(l)
i = β

(l)
i ∗ z

(l)
i (4.7)

z
(l+1)
i = a(Wlẑ

(l)
i + bl) (4.8)

ŷi = σ(z
(L)
i ), (4.9)

where ∗ denotes element-wise product( Srivastava et al. (2014).

4.5.5 Concrete Dropout Neural Networks

Since p is a hyper-parameter, the problem of selecting p for a given dataset is

crucial and performing a brute force search on a continuous variable p is computa-

tionally expensive. To address this issue, concrete dropout was introduced in( Gal
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et al. (2017)), in which the dropout ratio p is optimally selected for each layer by

auto-tuning p, i.e., by updating p by gradients with respect to dropout probabilities.

Since gradients cannot be computed for the Bernoulli distribution, concrete dropout

replaces the Bernoulli distribution during training by a Gumbel–Softmax distribu-

tion, so that reparameterization trick can be used to compute gradients with respect

to dropout probabilities( Gal et al. (2017)).

4.6 Fault Detection and Computational Complexity

We developed a set of nine-dimensional unique custom input feature matrix for

the NN. These nine input features are known to provide high accuracy for fault

classification on simulated data( Rao et al. (2019)). The dataset contains a total of

22,000 samples. We feed the 22,000 × 9 feature matrix to the NN. We considered

a 3-layer neural network with 50 neurons in each layer, as in( Mellit et al. (2018)),

with tanh as our activation function for each layer. This architecture was fixed for all

the NN simulations to avoid any bias which may occur during training and testing.

We consider multiple uniform dropout architectures with dropout probabilities p ∈

(0.1, 0.2, 0.3, 0.4, 0.5), where p is the probability of neurons dropping out in each layer,

i.e, in each layer, neurons are dropped randomly based on p.

Along with dropout neural networks, we performed fault classification using the

traditional ML classifiers, as reported in Table 4.2 and Table 4.3, and compared the

results against those previously reported with fully connected NN (baseline)( Mellit

et al. (2018); Rao et al. (2019)). We run a Monte Carlo simulation on all the archi-

tectures mentioned to obtain estimates for training and testing. The training (70%)

and testing (30%) dataset were sampled randomly in each run of the Monte Carlo

simulation. Among all the dropout architectures we see an improvement of 0.5%

when using a concrete dropout architecture in comparison to the fully connected NN.
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Figure 4.22: Confusion Matrix Obtained with Concrete Dropout. The Dataset Used

to Obtain These Results Is Described In 2.3.

We also obtained data in real time from the PV array described in 3. We developed

a set of eight-dimensional unique custom input feature matrix for the NN. These eight

input features are known to provide high accuracy for fault classification on simulated

data( Rao et al. (2019)). The dataset contains a total of approximately 8000 samples.

We feed the 8,000×8 feature matrix to the NN. The results are shown in Figure 4.23.

We also compared NNs performance with standard machine learning algorithms

such as RFC, SVM and KNNs, and the results are reported in Table 4.2 and Table 4.3.

For the ML algorithms, we empirically searched over a range of parameters and chose

the best configuration. The RFC classifier was trained with 300 estimators with a

depth of 50, SVM was trained with radial basis kernel and KNN with 30 nearest

neighbors. We observe that techniques such as the RFC overfits the training data,
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Figure 4.23: Confusion Matrix Obtained with Concrete Dropout. The Dataset Used

to Obtain These Results Is Described In Appendix A.

while other classifiers such as SVM and KNN perform poorly compared to NNs. In

order to evaluate the model’s ability to classify the data points belonging to the group

with higher risk factors, we compared performance of different models based on RPN

weighted accuracy. The RPN weighted accuracy (RWA) is calculated by summing

the products of normalized RPN scores with its class-wise accuracy, written as,

RWA =
1

575
(A1 + 144A2 + 30A3 + 160A4 + 240A5)

where, A1, A2, A3, A4, A5 are class-wise accuracy’s of standard test conditions, soiling,

shading, degraded and short circuit faults, respectively. The coefficients are obtained

using Table 2. We observed that the random forest classifier and concrete dropout

has better RWA performance over the other models. Note that, even though RFC

has higher RWA score than concrete dropout, the overall test accuracy is much lower
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than concrete dropout, which suggests that RFC is accurate only in classifying the

faults of higher RPN, whereas, concrete dropout is consistent in correctly classifying

all faults classes considered in PV array monitoring systems.

For the ML algorithms, we empirically searched over a range of parameters and

chose the best configuration. RFC classifier was trained with 300 estimators with

a depth of 50, SVM was trained with radial basis kernel, and kNA with 30 nearest

neighbors.

We provide a detailed analysis of the hyperparameter design below: Our hyper-

parameters were designed from the grid search shown below. In order to choose the

hyperparameters we used a grid search. Grid-search is used to determine the optimal

hyperparameters of a model which results in the most ’accurate’ predictions. For

RFC, we search for max depth and estimators, KNN search over neighbors, SVM

search over soft margin and kernels. The process is listed below:

• Random Forest Classifier:

– Max depth: {10,25,50,100}

– Number of Estimators: {5,10,25,50}

• K- Nearest Neighbor Classifier:

– Number of Neighbors: {5,10,25,50,100,200}

• Support Vector Machine:

– C (Soft Margin Parameter): {1,10,100,1000}

– Kernel: {’linear’, ’radial basis function’}
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Choice of hyperparameter values: (based on the grid search above) we determine

the appropriate of the Hyperparameters obtained by 100 Monte Carlo simulations)

These are shown below.

• Random Forest Classifier: By grid search, hyper-parameters associated with the

best accuracy of 87.35 are obtained with Max depth of 25 with 50 estimators.

• K- Nearest Neighbor Classifier: By grid search, hyper-parameters associated

with the best accuracy of 86.18 are obtained with the number of neighbors

being 25.

• Support Vector Machine: By grid search, hyper-parameters associated with the

best accuracy of 84.23 are obtained with C=1000 with a ’linear’ kernel.

We observe that techniques such as the RFC overfits the training data, while other

classifiers such as SVM and KNA perform poorly compared to NNs.
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Figure 4.24: Test Accuracy (Mean and Standard Deviation) of Pruned NNs for Dif-

ferent Pruning Compression Percentage for NREL Data. All NNs Have Three Hidden

Layers, Each with N Neurons.
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Architecture Train Accu-

racy(%)

Test Accu-

racy(%)

Test Accu-

racy Change

RPN

weighted

Accuracy

Fully Con-

nected

91.62 89.34 Baseline 85.20

Concrete

Dropout

91.45 89.87 +0.5% 85.25

Dropout

p=0.1

89.71 89.34 0% 84.53

Dropout

p=0.2

89.29 89.13 -0.21% 84.53

Dropout

p=0.3

88.92 88.77 -0.57% 84.56

Dropout

p=0.4

87.38 88.77 -2.14% 82.39

Dropout

p=0.5

85.51 85.42 -3.92% 79.55

RFC 100 86.32 -3.02% 87.57

KNN 87.15 85.76 -3.58% 73.82

SVM 83.51 83.29 -6.05% 79.30

Table 4.2: Comparison of Various Classifiers Used for Fault Classification in PV

Arrays. We Note That the Concrete Dropout Architecture Performs Best in Terms

of Accuracy Due to an Optimized Hyperparameter Search Within the Architecture.
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Architecture Train Accu-

racy(%)

Test Accu-

racy(%)

Test Accu-

racy Change

RPN

weighted

Accuracy

Fully Con-

nected

93.4 93.04 Baseline 87.83

Concrete

Dropout

92.52 92.23 -0.8% 87.1

Dropout

p=0.1

85.1 85.06 -8.17% 85.25

Dropout

p=0.2

76.07 76.09 -16.95% 77.07

Dropout

p=0.3

71.27 71.24 -21.8% 73.04

Dropout

p=0.4

65.15 65.12 -27.92% 68.29

Dropout

p=0.5

59.17 59.36 -33.68% 61.32

RFC 73.03 72.51 -20.52% 74.58

KNN 86.77 86.25 -6.78% 87.19

SVM 85.54 85.26 -7.77% 86.77

Table 4.3: Comparison of Various Classifiers Used for Fault Classification in PV Ar-

rays. We Note That the Concrete Dropout Architecture Performs Best is Comparable

in Accuracy Due to an Optimized Hyperparameter Search Within the Architecture.
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Figure 4.25: Test Accuracy (Mean and Standard Deviation) of Pruned NNs for Dif-

ferent Pruning Compression Percentage for Real Data. All NNs Have Three Hidden

Layers, Each with N Neurons.
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For the network pruning experiments, we consider NNs with three hidden layers

each with N = {50, 100, 200, 500, 1000} neurons. All NNs were trained for 150 epochs

and at every pruning iteration 10% of the remaining weights were pruned. We find

that smaller networks achieve greater compression of about 62% for a drop in accuracy

by 4%, as shown in Figure 4.24 and Figure 4.25. The performance of larger networks

degrades by up to 40% after pruning the network.

We observe that our pruned neural network algorithms converge faster. This is be-

cause there are fewer parameters in our pruned network and hence less misadjustment

error. This can be useful for the development of custom hardware for fault classifica-

tion. We also observe that our pruned neural network algorithms have an accuracy

within 2% of the fully connected neural network algorithm for a 40% reduction of the

weights of the neural network.

Interestingly, we find that the overlapping points shown in Figure 2.3 correspond

the incorrectly classified points in the confusion matrix, shown in Figure 4.22, which

is approximately 10% of the data. Hence, accuracy beyond 90% is not achieved by

any of these methods Rao et al. (2021).
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Figure 4.26: The Convergence Plot of the Neural Network with Pruning. We Observe

That Pruned Neural Network Algorithms Converge Faster. This Can Be Useful for

the Development of Custom Hardware for Fault Classification.
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Figure 4.27: The Accuracy Plot of the Neural Network with Pruning. We Observe

That Pruned Neural Network Algorithms Have an Accuracy Within 2% of the Fully

Connected Neural Network Algorithm for a 40% Reduction of the Weights of the

Neural Network.
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Chapter 5

CONCLUSIONS

A comprehensive study of fault detection in PV systems including literature re-

view, and machine learning algorithm development was presented in this dissertation.

ML and signal processing techniques are utilized to monitor and control PV arrays

and develop algorithms to remotely detect and classify the type of fault, thereby en-

abling fault diagnosis with minimal human involvement. The PV arrays are equipped

with SMDs which are capable of switching and controlling panel connections, thereby

enabling Maximum Power Point Tracking to optimize and mitigate the effects of

module failures and ensure operation of the array at maximum efficiency. In this

dissertation, an overview of this system and its design was discussed, followed by ML

and signal processing techniques for fault detection and classification.

Chapter 2 described the 18 kW experimental testbed that consists of 104 modules

fitted with smart monitoring devices situated at the ASU Research Park. This facility

is equipped with SMDs that collect voltage, current, irradiance, and temperature

data from individual modules in the array. The data is transmitted wirelessly and

is received by a ZigBee hub device connected to a server. This test bed is used to

evaluate and validate our algorithms, with real-time data, including ML-based, and

graph based techniques for fault detection, and diagnosis.

Chapter 3 addresses the construction of the solar array test bed. We develop a real

time load for MPP tracking. We also use this load to collect data for the multiple

classes mentioned in this study. We validated the ML methods mentioned in this

work using the data obtained from the load using real time measurements.

Chapter 4 addressed the problem of PV array monitoring and control using ad-
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vanced NNs and ML algorithms. We describe the formulation of the nine input

features used to identify different faults in PV arrays. We collect data in real-time

from the ASU SenSIP Solar Array and also use NREL’s PVWatts time-series dataset.

Results using NNs demonstrated the detection and identification of commonly occur-

ring faults and shading conditions in utility-scale PV arrays. We showed a significant

improvement in accuracy of detection and identification of faults compared to tradi-

tional and existing methods.

5.1 Summary of Results

In this dissertation, we proposed and characterized efficient neural network ar-

chitectures for fault detection and classification in utility scale solar arrays using

PVWatts time-series dataset as well as real-time data from ASU MTW Research

Park. We study the faults and their diagnosis from an operations and management

perspective to offer an experimental perspective. We first use an autoencoder to detect

faults. We detect faults based on the histogram reconstruction error. We then cus-

tomize and optimize neural network architectures with concrete dropout mechanisms

for fault classification in PV arrays. We examine the fault classification accuracy

for each class. We characterize algorithms in terms of performance and complex-

ity and more specifically we compare the proposed concrete dropout method with

fixed dropout and fully connected NNs. We also compare our work against standard

machine learning algorithms. We observe that concrete dropout outperforms other

methods with a classification accuracy of 89.87% and 92.93% as shown in Table 4.2

and Table 4.3 respectively. It also has the fastest run time on the test dataset. In

order to reduce complexity, we also explore the use of pruned neural networks. Using

Monte Carlo simulations, we demonstrate that the test accuracy of a network pruned

by 62% (a significant reduction of weights) reduces only by 4%. The pruned network,
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represented by half the number of parameters, will be useful for the development of

customized and efficient fault detection hardware and software for PV arrays. In ad-

dition, we evaluated faults using their RPN and their corresponding safety category.

Some of the faults considered in this dissertation have a high RPN as shown in Table

2.2. We also perform a weighted class average and examine the class wise accuracy of

these faults. Since the RPN associated with these faults is high and poses a greater

safety threat, the detection and classification of such faults is critical.

5.2 Future Research

5.2.1 Smart Monitoring Device

Currently, we obtain data using Smart Monitoring Devices (SMDs). However,

the following concerns could be addressed with respect to SMDs. The SMDs are not

designed to be secure. Future research could involve development of custom SMDs

which have multiple security protocols. This would ensure that the array continues to

operate safely by preventing certain hazardous connections. SMDs should also have

the ability to communicate to the server in parallel. In addition, the sampling rate

of the SMD could be increased. Currently, the SMD has a sampling rate of 10s.

5.2.2 Quantized Neural Networks

To improve the throughput and energy efficiency of Deep Neural Networks (DNNs)

on customized hardware, lightweight neural networks constrain the weights of DNNs

to be a limited combination. In such networks, the multiply-accumulate operation

can be replaced with a single shift operation, or two shifts and an add operation

(Ding et al. (2019)). Future research could look to design a once-for-all network that

can be directly deployed under diverse architectural configurations, amortizing the
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training cost. The inference is performed by selecting only part of the once-for-all

network. It flexibly supports different depths, widths, kernel sizes, and resolutions

without retraining. In continuation, research could involve decoupling the model

training stage and the neural architecture search stage. In the model training stage,

focus should be on improving the accuracy of all sub-networks that are derived by

selecting different parts of the once-for-all network. In the model specialization stage,

a sample subset of sub-networks to train an accuracy predictor and latency predictors

could be used. This is estimated to reduce the total cost of design ( Cai et al. (2019)).

Taking these assumptions into consideration, a light neural network algorithm

could be developed, which in the future can be implemented on the solar module for

fast and efficient fault detection and classification.
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A.1 Solar Array Description

The increasing demand for green energy requires expansion of renewable sources.
Solar arrays on residential roof tops, parking sites, and large commercial structures
are being deployed in several countries. In addition, large utility-scale arrays with
generation capacity of several megawatts are now connected to the grid. The large
number of modules in remote areas makes faults more likely and more difficult and
expensive to detect and localize. For this reason, there is a need for automated remote
fault detection along diagnostics and mobile analytics. This requires localization tech-
niques, communications and sensor hardware operating along with online algorithms
and software at the panel level.

The solar array testbed can perform load switching and data collection in real
time. In order to establish safe and correct connections, we first propose to establish
the safety protocols recommended by NREL. To support experimental aspects of this
research we designed a testing facility at the ASU research park in Tempe, Arizona
which is shown in Figure 1.2. This solar array research facility consists of 104 modules
in an 6× 18 configuration that amounts to approximately 18 kW. Every panel in this
solar array is equipped with a smart monitoring device (SMD). These devices are
networked and can provide data to servers and control centers. Each SMD not only
provides analytics for each panel but contains relays that can be remotely controlled
and via wireless access. Relays can bypass or change connectivity configuration, e.g.,
series to parallel. SMDs, connected to each PV panel, act as intelligent networked
sensors providing data that can be used to detect faults, shading, and other prob-
lems that cause inefficiencies. Each panel can be monitored individually for voltage,
current, and temperature, and all data is wirelessly transmitted to a central hub
with minimal power loss. Additionally, each smart hardware device can reconfigure
connections with its nearest neighbors. Data collected from the SMDs and reconfig-
uration testing are used to design and evaluate automated fault detection, diagnosis,
and mitigation algorithms. We discuss this in detail below.

To automatically detect faults, this solar array is equipped with smart electron-
ics that provide data for analytics. Smart monitoring devices (SMDs) Takehara and
Takada (2013) (FigureA.1.(b)) that have remote monitoring and control capability
have been proposed Braun et al. (2012a) to provide data from each panel and enable
detection and localization of faults and shading. The presence of such SMDs renders
the solar array system as a cyber-physical system Spanias (2017) that can be moni-
tored and controlled in real-time with algorithms and software. Figure A.1 shows a
cyber-physical 18 kW PV testbed described in Rao et al. (2016).

Each SMD includes relays to alternate the topology configuration of the modules
within the array. Three modes are available: series, parallel, and bypass. A faulty
panel can easily be removed from the system to prevent mismatch losses by using
the bypass mode. Figure A.2 shows a schematic of the communication between the
SMDs and the server. Each SMD communicates wirelessly to an access point located
at one of the PV modules. This access point in turn communicates with a central
gateway which is connected to a server through USB.

Each of the SMDs within the array is equipped with ZigBee wireless communica-
tion hardware. To minimize power consumption by the SMDs, the ZigBee transceivers
do not transmit continuously. Instead they periodically report voltage, current, and
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Figure A.1: Smart solar array testbed monitoring system with SMDs at the ASU
Research Park. (a) Solar array at the ASU Research Park consisting of 104 modules.
(b) SMD which is fitted on to each individual panel. (c) SMD radio and relay switches
which allow for real time switching and remote monitoring and control.
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Figure A.2: Block diagram depicts communication between SMDs and server Rao
et al. (2016).

temperature measurements. A ZigBee hub device connected to the server receives all
the reported data and transmits control signals to the networked SMDs.

Figure A.3 shows the computer which was designed for communication with the
SMDs and receiving data using the SMDs. An 18kW experimental facility that con-
sists of 104 modules (6× 13) fitted with smart monitoring devices has been built at
ASU Research Park. The facility is equipped with SMDs that collect voltage, current,
irradiance, and temperature data from individual modules in the array. This data
is transmitted wirelessly and received by a ZigBee hub device connected to a server.
The facility is used to evaluate and validate several different algorithms including
novel machine learning based techniques for fault detection and diagnosis.

The solar array testbed can perform load switching and data collection in real
time. In order to establish safe and correct connections, we first propose to establish
the safety protocols recommended by NREL. We discuss this in detail below.

A.2 Manual Electrical Testing

Manual electrical testing such as open-circuit voltage, operating current, or field
I-V curve tracing is used as a method to detect faults in the DC system that the
monitoring system is not able to detect. The accuracy of testing equipment is limited
by the combined accuracy of irradiance, temperature, and electrical sensors, and in
the case of I-V tracing, it is limited to around 5% for standard field units. This testing
reveals only defects that are currently causing significant module failure. However,
these signatures can be important for understanding underlying module-quality is-
sues, in addition to allowing early detection of possible fire risks. Manual testing
is performed over several days or weeks to test a large array. Because this testing
must be performed inside the isolated combiner while the system is operational with
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Figure A.3: The computer developed for controlling the 18kW solar array. This com-
puter is connected to the transceiver which communicates to the SMDs and receives
data.

suitable PPE required for testing. Manual inspection and testing requires that in-
verter wiring enclosures, re-combiner boxes, combiner boxes, and eventually module
junction boxes be opened to access the circuits. These safety recommendations are
advised by NREL (Walker (2018)).

A.2.1 Visual Inspection

1. All PV modules are permanently installed (confirm modules are in good condi-
tion).

2. All combiner boxes permanently installed.

3. All disconnects and switch gear permanently installed.

4. Wiring is completed (no loose connections or damaged wires).

5. No potential for wire damage (e.g., deburred metal and proper sheathing to
protect wires).

6. Utility power connected.
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7. Internet connection operational (if applicable).

8. Physical installation is per design drawing and manufacturer’s specification, and
it meets.

9. System is compliant with applicable building and electrical codes.

10. Protective fencing and enclosures are installed.

11. Verify grounding of metallic surfaces that might become energized.

12. Wire and conduit sizes installed per plan.

13. Fuses and breakers are sized and installed properly.

14. Document as-built conditions.

15. All equipment is labeled as required.

A.2.2 Performance Testing

1. Measure and record open-circuit voltage (VOC) and polarity of each string. (Ver-
ifies all strings have the same number of modules.)

2. Measure and record short-circuit current (ISC) of each string.

3. Measure and record maximum power point current (IMP ) for each string. (Cur-
rent measurements for each string should be within a 0.1A range of each other,
assuming consistent weather conditions and all string having same tilt and az-
imuth angle. If a string is outside the range, check for shading or a ground
fault.)

4. Confirm the system output under actual conditions meet minimum expected
output. Actual performance should be within about 5% of expected, calculated
performance. This procedure includes system nameplate rating (kW), solar
irradiance measurement (W/m2) and module cell temperature (C). Procedure
is best conducted during consistent weather conditions, where no array shading
is present, and solar irradiance is not less than 400 W/m2.

After having established the safety protocols mentioned, we can begin to obtain
data from the array.

A.3 Solar Array Operation Steps

We have established connections to three subarrays each consisting of 12 modules.
These subarrays can be connected to the load to establish connections. The layout
for each of the subarray is shown in Figure A.4. We describe the steps to connect the
array to the load below.

We built a load for a real-time scenario. This is shown in figure A.5. The load
is capable of MPP tracking and collect data through the day to validate the results
discussed. Data obtained include current and voltage readings from the PV array in
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Figure A.4: Three subarrays can be connected to the load. The configurations of the
three subarrays are shown here. Each subarray has 12 modules.

real time. In addition, we also obtain irradiance values in real time at a sampling
interval of 1s. From the obtained current and voltage readings, we characterise the IV
curve of the array and obtain the MPP. These obtained data points are used as inputs
in various Machine Learning algorithms to detect and identify faults in PV Arrays.
Data obtained helped in identify various loading and shading conditions along with
faults as they lie along distinct regions in the two-dimensional space of the IV curve.
The load is controlled using the switching box as shown in figure A.6.

1. The load is configured for two configurations, namely 3 series 4 parallel and 12
series and 1 parallel.

2. Put the SMDs in the corresponding mode of operation (series, parallel or by-
pass). To maintain safe connections, the final SMD should always be in series
mode. This will ensure that the PV+ terminal is always connected to IN+
terminal of the SMD and the PV- terminal is always connected to the OUT+
terminal of the SMD.

3. To operate the SMD in series, parallel, bypass series and bypass parallel modes,
we need to used the commands 0602, 0603, 0600 and 0601 respectively. This
can be performed through custom software or MATLAB.

4. The message ID should be set to 11 to allow for duplex communication. Using
the custom software or Matlab, we can issue these commands to each SMD
using its MAC address.

86



Figure A.5: A load bank consisting of multiple resistors to collect data in real time.
There are 7 resistors. 4 of these resistors are always on and the remaining 3 are turned
on depending on the time of the day.

5. We first need to verify the open circuit voltage depending on the configuration
chosen. For the 3S4P combination VOC should be close to 120V and for the
12S1P , VOC should be approximately 480V .

6. After having established VOC , the load can be turned on using the monitor
of the control box shown in Figure A.6. All the resistors must be turned on
initially. This corresponds to 4R on the monitor of the control box.

7. Verify the current flowing through the PV wire using a clamp ammeter. This
current should not exceed the value of the fuse inserted in the switching box
shown in Figure 3.5.

8. After having verified that the current is safe, we can turn off the resistors one
at a time, depending on the time of the day. To do this, we need to use the 3R,
2R, R buttons on the touch screen of the control box.

9. To obtain data in real time from the SMD, we need to use the command 03. This
will provide us with measurements for each individual panel. Measurements
include voltage and current.

10. Use the irradiance meter to record irradaince measurements. The meter has a
sampling rate of 1 second per reading. Figure A.7 shows the irradiance meter
used. Figure A.8 shows the software which helps obtain real-time irradiance
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Figure A.6: The control box connects to the load shown in A.5. The control box has
relay switches and a PLC to allow for varying loads during the day.

measurements. The values obtained from the meter can be saved locally into a
server.

11. Use the recorded measurements to build the feature matrix shown in Table 4.1.

12. The feature matrix is used to train ML algorithms.

Procedure to establish connections

1. Mount the resistors on the cage built.

2. Establish safe connections between terminal box and the resistors. Keep the
switches off and the SMDs in bypass mode to prevent arcing.

3. Establish safe connections between modules and the switching box. Turn off
the DC contactors and again keep the SMDs in bypass modes to prevent arcing
and short circuits.

4. Once connections are established, turn on all resistors for maximum safety to
prevent safety hazards while keeping the DC contactors off.
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Figure A.7: The irradiance meter used to obtain irradiance measurements in real
time. The irradiance meter has a sampling rate of 1s and it is placed on top of the
PV module.

Turning on the array

1. Keeping all resistors on, set the SMDs to parallel or series mode depending on
the configuration needed.

2. Verify the open circuit voltage of the array after connecting all the modules in
series or parallel. The open circuit voltage should be a sum of all voltages if
the modules are series and should be divided among all modules if they are in
parallel.

3. Turn on the DC contactors and establish a closed circuit. This can be estab-
lished using the monitor on the control box. A programmable PLC controls the
DC relays which enable for safe operations of the load.

4. Vary the resistors depending on the time of the day. This is to ensure that we
perform maximum power point tracking. By varying the load through the day,
we ensure the array is operating under design conditions.

A.4 Experiments

For normal operations

Standard Test Conditions (STCs) are the industry standard for the conditions under
which a solar panel are tested. By using a fixed set of conditions, all solar modules can
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Figure A.8: The irradiance meter can be connected to the computer using a USB
port. The meter readings can be saved locally into a server.

be more accurately compared and rated against each other. STC values correspond
to the measurements yielding maximum power under the temperature and irradiance
values of a particular day. Data points are labeled as STC if the irradiance, temper-
ature, and power were the highest possible values for that particular day. For normal
operations, we propose to:

1. Keep the array on, vary the resistors depending on time of the day.

2. Record measurements- VMP , IMP , temperature. These measurements are recorded
by the Smart Monitoring Device (SMD) in the array developed at ASU Research
Park.

3. Record irradiance measurements using the TES132 meter. The meter gives
values at a sampling rate of 1 second. These readings are beneficial in identifying
soiling versus shading modules.
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Shading

Shading is a serious concern in PV arrays. A module is shaded if the irradiance
measured is considerably lower than STC, usually caused by overcast conditions,
cloud cover, and building obstruction. As a result, the power produced by the PV
array is significantly reduced. To run shading experiments, we propose to:

1. Run a piece of obstruction over a few modules. Scenarios include partial shading
and complete shading. 25% of the modules are covered during this process. An
irradiance value drop of 25% or more shows significant power loss under shading
conditions.

2. Measurements will include VMP , IMP and temperature. Our experiments on the
PVWatts dataset have shown that neural networks are effective in classifying
shaded modules with high accuracy. Figure A.9 shows a PV panel shaded at
the ASU Research Park.

Figure A.9: An Example of a Simulated Shaded Module at ASU Research Park. This
Corresponds to 25% Shading.

However, significantly (100%) covering the module could turn off the array and
not record any values. Therefore, we propose to cover not more than 50% of the
module at a time.
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Soiling

While the irradiance measured remains the same as STC, the power produced drops
significantly. The solution to this problem involves manually cleaning the modules
regularly. If the measured irradiance was as per STC but the power measured was
low, then the module was soiled. Soiling is caused by dry deposition affects the power
output of PV modules, especially under dry and arid conditions that favor natural
atmospheric aerosols (wind-blown dust). For soiling experiments, we propose to:

1. We use the uncleaned modules for these experiments. These modules have dust
particles on them which are a result of frequent dust storms.

2. Record the same measurements as provided by the SMD which include VMP ,
IMP and irradiance. An illustration of soiling versus STC modules is shown in
Figure A.10.

Figure A.10: An Example of a Soiled Module at ASU Research Park Versus a STC
Module.

Degraded Modules

Degraded modules are a result of modules aging or regular wear and tear of the
PV modules. Consequently, such modules produce lower power values owing to the
lower values of open-circuit voltage VOC and short-circuit current ISC . For degraded
modules, we propose to:
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1. We use the clean modules. However, we measure the open circuit voltage VOC .
Some of the modules were measured with low VOC . These modules are typically
old and are inefficient. However, identifying such modules is critical as they
reduce the power output significantly.

2. Continue to record the same measurements such as VMP , IMP and irradiance.

All of these experiments need to have high safety protocols installed. We describe
in the Appendix the best practices prescribed by NREL.

A.4.1 Safety Considerations

We use PVWatts data to develop the design parameters of the load. However,
we face multiple fire and safety hazards. In order to avoid fire hazards, we have
considered a safety factor of 1.5×. The load has been designed to hold more current
than the solar array is equipped to supply. For shading and soiling experiments, the
power values measured are expected to be lower than STC. Because of the inherent
inaccuracies of data monitoring alone, it is necessary to implement a secondary check
of the DC array to detect string- and module-level faults through periodic inspection
and testing. The two main methodologies used for these inspections are manual
electrical testing and aerial thermal-imaging inspections. We will focus on manual
electrical testing. However, we describe all the safety considerations in detail in the
Appendix.
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