
Heuristics for Arc Routing Problems and Their Applications

by

Muhilan Ramamoorthy

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved November 2022 by the
Graduate Supervisory Committee:

Violet R. Syrotiuk, Chair
Stephanie Forrest
Pitu Mirchandani

Arunabha Sen

ARIZONA STATE UNIVERSITY

December 2022

ABSTRACT

Arc Routing Problems (ARPs) are a type of routing problem that finds routes of

minimum total cost covering the edges or arcs in a graph representing street or road

networks. They find application in many essential services such as residential waste

collection, winter gritting, and others. Being NP-hard, solutions are usually found

using heuristic methods. This dissertation contributes to heuristics for ARP, with a

focus on the Capacitated Arc Routing Problem (CARP) with additional constraints.

In operations such as residential waste collection, vehicle breakdown disruptions

occur frequently. A new variant Capacitated Arc Re-routing Problem for Vehicle

Break-down (CARP-VB) is introduced to address the need to re-route using only

remaining vehicles to avoid missing services. A new heuristic Probe is developed to

solve CARP-VB. Experiments on benchmark instances show that Probe is better in

reducing the makespan and hence effective in reducing delays and avoiding missing

services.

In addition to total cost, operators are also interested in solutions that are attrac-

tive, that is, routes that are contiguous, compact, and non-overlapping to manage

the work. Operators may not adopt a solution that is not attractive even if it is op-

timum. They are also interested in solutions that are balanced in workload to meet

equity requirements. A new multi-objective memetic algorithm, MA-ABC is devel-

oped, that optimizes three objectives: Attractiveness, makespan, and total cost. On

testing with benchmark instances, MA-ABC was found to be effective in providing

attractive and balanced route solutions without affecting the total cost.

Changes in the problem specification such as demand and topology occurs fre-

quently in business operations. Machine learning be applied to learn the distribution

behind these changes and generate solutions quickly at time of inference. Splice is

a machine learning framework for CARP that generates closer to optimum solutions

i

quickly using a graph neural network and deep Q-learning. Splice can solve sev-

eral variants of node and arc routing problems using the same architecture without

any modification. Splice was trained and tested using randomly generated instances.

Splice generated solutions faster that are also better in comparison to popular meta-

heuristics.

ii

ACKNOWLEDGMENTS

I like to thank my advisor, for her excellent support and guidance throughout this

PhD journey. She demonstrated what a true mentor-ship is and played a key role in

making this into a success.

I thank the committee members for their guidance, valuable suggestions and sup-

port. I am grateful for giving their precious time and made themselves available to

me in spite of their demanding work and busy schedules.

I thank the staff at ASU for their great support and help throughout this journey.

I am very grateful to ASU for giving me an opportunity to do PhD, as it is very

unlikely for some one with a similar background to enter academia to pursue a PhD.

I like to thank my parents for their immense and continued support throughout

this long journey. I thank all my friends and family friends in supporting me all along.

The number of people who made this journey possible, either directly or indirectly,

are many. When I think about them, the part that I played for this completion is

truly insignificant. I am deeply thankful and I enter natural silence on recognising

that.

iii

CHAPTER PageTABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . ix

1 INTRODUCTION . 1

1.1 Routing Problems . 2

1.2 Motivation . 5

1.3 Contributions . 6

2 PRELIMINARIES AND LITERATURE REVIEW . 8

2.1 Complexity of the Arc Routing Problems . 8

2.2 Basic Variants of ARPs and Its Extensions . 8

2.2.1 Chinese Postman Problem (CPP) . 9

2.2.2 Rural Postman Problem (RPP) . 10

2.2.3 Capacitated Arc Routing Problem (CARP) 11

2.3 Definition of CARP . 12

2.4 Objectives Used in Arc Routing Problems . 13

2.5 Approaches for Solving Arc Routing Problems . 14

2.5.1 Exact Methods . 14

2.5.2 Approximation Algorithms . 15

2.5.3 Heuristic Methods . 15

2.5.4 Local Search and Metaheuristic Methods 17

2.6 Related Work . 21

2.6.1 Vehicle Breakdowns and Disruptions Management in Rout-

ing Problems . 21

2.6.2 Visual Attractiveness in Route Solutions 21

2.6.3 Route Balance . 22

iv

CHAPTER Page

2.6.4 Multi-Objective Evolutionary Algorithms (MOEA) 23

2.6.5 Machine Learning Approaches for Combinatorial Optimiza-

tion and Routing Problems . 23

3 ONLINE RE-ROUTING FOR VEHICLE BREAKDOWNS 27

3.1 Vehicle Breakdowns in Residential Waste Collection 27

3.2 Related Work . 29

3.3 The CARP Re-Routing Problem . 30

3.4 Probe: A Proposed Re-Routing Algorithm . 31

3.5 Evaluation of Probe . 32

3.5.1 Benchmark Instances and Metrics Measured 32

3.5.2 Simulating Breakdown Events . 35

3.5.3 Results for the CARP Benchmark Instances 37

3.5.4 Discussion . 52

3.6 Conclusion . 56

4 MA-ABC FOR ATTRACTIVENESS, BALANCE AND COST 59

4.1 Route Attractiveness, Balance and MA-ABC- An Introduction 59

4.2 Related Work . 61

4.3 Multi-Objective Memetic Algorithm . 63

4.3.1 Selection Using NSGA-II . 64

4.3.2 Crossover. 66

4.3.3 Splitting Procedure . 66

4.3.4 Local Search . 66

4.3.5 Fitness Functions . 67

4.3.6 Elitism . 69

v

CHAPTER Page

4.4 Evaluation of MA-ABC . 69

4.4.1 Results . 70

4.4.2 Pareto Efficiency, Spread, and Convergence 76

4.4.3 Statistical Analysis . 79

4.4.4 Run Time Performance . 82

4.5 Discussion . 82

4.6 Conclusion . 84

5 LEARNING HEURISTICS FOR ARC ROUTING PROBLEMS 85

5.1 AI Driven Approach for Solving ARPs . 85

5.2 Related Work . 87

5.3 The Splice Framework for Learning Heuristics 89

5.3.1 Input Feature and State Representation 91

5.3.2 Message Passing GNN for Learning the Graph Embedding . . 92

5.3.3 Deep Q-learning for Learning the Heuristics 94

5.3.4 The Splice Q-learning Algorithm. 97

5.4 Experimentation and Results . 99

5.4.1 Sample Instances for Training and Testing 101

5.4.2 Hyper-Parameter Tuning and Selection . 102

5.4.3 Experiment Set-Up . 103

5.4.4 Results and Analysis . 104

5.5 Discussion . 110

5.6 Conclusion . 111

6 CONCLUSION AND FUTURE WORKS . 113

6.1 Probe for Vehicle Breakdown Disruptions . 113

vi

CHAPTER Page

6.2 MA-ABC for Attractiveness, Route Balance and Cost 115

6.3 Splice for Learning Heuristics . 116

6.4 Future Directions . 117

REFERENCES . 119

vii

LIST OF TABLES

Table Page

3.1 Makespan for GDB Instances: Probe vs. Conventional Method 39

3.2 Makespan for val Instances: Probe vs. Conventional Method 40

3.3 Makespan for egl Instances: Probe vs. Conventional Method 41

3.4 Makespan for egl-large Instances: Probe vs. Conventional Method . 42

3.5 Range for GDB Instances: Probe vs. Conventional Method. 43

3.6 Range for val Instances: Probe vs. Conventional Method. 44

3.7 Range for egl Instances: Probe vs. Conventional Method. 45

3.8 Range for egl-large Instances: Probe vs. Conventional Method 47

3.9 Discrepancy for GDB Instances: Probe vs. Conventional Method 48

3.10 Discrepancy for val Instances: Probe vs. Conventional Method 49

3.11 Discrepancy for egl Instances: Probe vs. Conventional Method 50

3.12 Discrepancy for egl-large Instances: Probe vs. Conventional Method 52

3.13 Total Cost for GDB Instances: Probe vs. Conventional Method 53

3.14 Total Cost for val Instances: Probe vs. Conventional Method 54

3.15 Total Cost for egl Instances: Probe vs. Conventional Method 55

3.16 Total Cost for egl-large Instances: Probe vs. Conventional Method . 57

4.1 MA-ABC Parameter Settings . 70

4.2 EGL: Attractiveness Metrics for PSRT vs. MA-ABC 73

4.3 VAL: Attractiveness Metrics for PSRT vs. MA-ABC 74

4.4 Mean, Variance, and CV for egl Instances . 81

5.1 Hyper-parameter Settings Used in Splice . 103

5.2 Average CPU Time . 109

viii

LIST OF FIGURES

Figure Page

1.1 Routing Problems -Types and Variants . 4

3.1 Initial Routes for GDB1, and after Probe Re-routing. 36

3.2 Makespan: Probe vs. Conventional Method. 38

3.3 Range: Probe vs. Conventional Method. 46

3.4 Discrepancy: Probe vs. Conventional Method. 51

3.5 Run Time vs. Number of Required Edges (Tasks). 56

3.6 Total Cost: Probe vs. Conventional Method. 58

4.1 Example of the Single Insertion Move Operator . 67

4.2 Solution Produced by PSRT and MA-ABC . 72

4.3 Comparison of Total Cost (Top) and Makespan (Bottom) 75

4.4 Approximate Pareto Front . 77

4.5 Box-and-Whiskers Plots Illustrating Spread . 78

4.6 Total Cost vs. Generations for egl-s4-C. 79

4.7 Run Time vs. Instance Size for egl Instances. 82

4.8 Run Time vs. Instance Size for val Instances. 83

5.1 Block Diagram of the Splice Framework . 90

5.2 Line Graph Transformation . 92

5.3 An Illustration of the Splitting Procedure for CARP. 98

5.4 Sample Training Instance Generated for CARP. 102

5.5 Total Cost for CCPP on Instances with 29 Edges and C = 16 105

5.6 Total Cost for CARP on Instances with 29 Edges and C = 16 106

5.7 Generalization Results . 108

5.8 Box Plot for the Percentage of Reduction in Total Cost 109

5.9 Route Attractiveness in the Generated Solution . 111

ix

Chapter 1

INTRODUCTION

Transportation and logistics are fundamental to the smooth operation of the world

economy [1]. It occupies a major proportion in the GDP (Gross Domestic Product)

of every nation. In 2020, transportation services in the US contributed $1.2 trillion,

which is around 15.45% of the US GDP [2]. The logistics costs are $1.56 trillion

dollars in 2020, which is equal to around 8% of the US GDP [3] with similar figures

in 2021 [4]. The share of the transportation services to the GDP is even higher

in developing countries. For example, in China it is around 15% of GDP in 2020,

nearly twice as high as in the US [3]. In addition to serving and strengthening the

economy, transportation and logistics also have their influence on the development

of human resources. Access to transportation and availability of the infrastructure

helps support the livelihood of communities in rural areas.

The impact of transportation and logistics on environmental resources, conserva-

tion and sustainability is also significant [1]. According to the inventory of US Green-

house Gas (GHG) Emissions and Sinks, transportation accounted for the largest

portion (27%) of total US GHG emissions in 2020 [5]. Merely reducing the trans-

portation cost in terms of miles travelled even by a small percentage can contribute a

large to the bottom line of the businesses and to the world economy. Routing prob-

lems serve a important role in addressing this objective. They not only reduce costs

but also help in satisfying customers (through timely and damage-free delivery) and

hence increase revenue. They play a significant role in promoting sustainability and

in climate change mitigation. Routing problems also play a important role in disaster

relief efforts in emergency routing and in resource dispatch and distribution.

1

1.1 Routing Problems

A routing problem is defined as a problem of finding either a single or a set of routes

to cover or service a given set of destinations, with a single or multiple objectives

and with some constraints. Some of the typical objectives include minimizing the

total cost and reducing the delay in services (or makespan). Examples of constraints

include routes starting and ending at a fixed location and performing the service with

only a limited number of homogeneous vehicles of fixed capacity. Routing problems,

which are often represented as problems on graphs, are broadly classified into three

categories: Node routing problems, arc routing problems (ARPs) and general routing

problems.

Node routing problems have their destinations represented as nodes in the graph.

The edges connecting the nodes represent the abstract cost such as distance between

the locations. The well known Travelling Salesman Problem (TSP), Vehicle Routing

Problem (VRP), and the Capacitated Vehicle Routing Problem (CVRP) belong to

this category. In contrast, arc routing problems find routes covering the arcs or edges

in a graph. Though both type of problems are combinatorial in nature the solution

methods and approaches to solve them are often different.

ARPs are used in many essential real world applications. Some of them include

postal delivery, winter gritting, solid waste collection, meter-reading, road inspection,

mapping, snow removal, and many others [6]. They are also used in less well known

applications such as in bridge structure inspection, and by printers, plotters and land

cutting machines to determine least cutting paths [7], and others [6].

General routing problems have destinations that include both the nodes and

edges. To accommodate mixed graphs and single directional arcs representing one-

way streets and roads, Prins and Bouchenoua formulated Node Edge Arc Routing

2

Problems (NEARP) [8, 9], where the destinations include nodes, directed arcs and

undirected edges with turn penalties defined over a mixed graph. Figure 1.1 gives a

high level view of the structure of routing problems. This dissertation has a focus

on heuristic solutions for arc routing problems and their applications. Hence a brief

introduction of arc routing problems, their basic variants and solution approaches is

given in Chapter 2.

3

Routing Problems

Finding closed/open path

covering DESTINATIONS

with a given objective

Arc Routing

Problems(ARP)

Destinations are

Edges or/and Arcs

Capacitated Arc

Routing Problem

(CARP)

Capacity constraints;

Edges have demands

other Rich

CARP variants

CARPP

CARP with

Profits

MD-CARP

Multi-Depot

CARP

OCARP

Open

CARP

Postman Problems

No capacity limit;

No Demand at Edges

Rural Postman

Problem(RPP)

Not all the edges are

required

K-RPP

RPP for

K routes

MRPP

Mixed

RPP

DRPP

Directed

RPP

URPP

Undirected

RPP

Chinese Postman

Problem(CPP)

All the edges are

required

K-CPP

CPP for

K routes

MCPP

Mixed

CPP

DCPP

Directed

CPP

UCPP

Undirected

CPP

General Routing

Problem(GRP)

Destinations include both Nodes

and Edges

Node Edge Arc

Routing Problem

(NEARP)

mixed graph with turn

penalties;

Capacity constraint;

Destinations have

demand

Node Routing

Problems

Destinations are Nodes

Vehicle Routing

Problem(VRP)

Capacity constraints;

Nodes have Demand

other Rich

VRP variants

VRPSD

VRP with

Split Delivery

MDVRP

Multi-Depot

VRP

OVRP

Open

VRP

Salesman

Problems

No capacity limit

No Demand at Nodes

other Rich

TSP variants

Generalised TSP

Cover atleast

one destination

in a group

mTSP

multiple

routes

TSP

Single

tour

4

Figure 1.1: Routing Problems -Types and Variants

1.2 Motivation

ARPs are not as well studied as node routing problems, either in academia or in

industry. As a result the number of commercial solvers in the market, choices for

methods and solution approaches in literature are far fewer when compared to node

routing problems. Hence the operators of businesses that are modelled on ARPs find

limited options to meet their custom needs and specific requirements.

One example for a custom requirements is the handling of vehicle breakdowns.

These happen frequently in residential solid waste collection operations in cities [10].

Often the local government of the city itself manages the operation and they operate

with only limited number of vehicles as these vehicles incur high capital cost. When

breakdowns happen, the city usually does not have any stand-by vehicles to take-over

the operation immediately. They have to complete the assigned work of the broken-

down vehicle using the other already assigned vehicles. They encounter the risk of not

completing the scheduled operation and may need to ask workers to work overtime

to avoid missing services. Problems related to vehicle breakdown in residential waste

collection are prevalent across all regions. This motivated the first contribution in

this dissertation: A new variant CARP-VB representing this problem and a heuristic

algorithm, Probe to solve it.

The minimum total cost is not the only criterion that operators are interested

in. They also look for attractiveness in the route solution, in the sense that the

routes in the solution should be compact, non-overlapping with a clear demarcation.

It helps operators in work assignment and managing workers. They also give high

importance to balanced routes as it is important for worker equity. While there are

works exploring attractiveness in node routing problems, they are not explored well in

arc routing problems except for a very few [11]. Also there is no work that optimizes

5

all three important objectives: Attractiveness, route balance and total cost. This

motivated the second contribution in this dissertation: development of MA-ABC, a

memetic multi-objective algorithm to solve this multi-objective problem.

The motivation behind the third contribution also stems from the same problem,

the lack of adequate methods and approaches available for ARPs. The frequency of

changes in the problem specifications in arc routing applications such as residential

waste collection or postal delivery are high. The same solution is not optimum for the

changed specifications. Learning heuristics using machine learning methods enables

quick inference by learning the distribution of the solution space with the objective

closer to optimum. While there are several works published for node routing problems,

there are very few for arc routing problems.

All the methods developed in this dissertation do not require extensive computing

infrastructure. They can easily be run on local machines with limited resources or

run remotely using cloud facilities.

1.3 Contributions

In summary, the main contributions of this dissertation are :

1. The formulation of a new variant of CARP, ‘Capacitated Arc Re-routing Prob-

lem for Vehicle Breakdowns’ (CARP-VB) to handle vehicle breakdown that

occurs in services such as residential waste collection operations. Probe, an on-

line heuristic algorithm, was developed to solve CARP-VB. Chapter 3 presents

the details of Probe.

2. The development of a new memetic multi-objective optimization algorithm MA-

ABC that seeks to optimize three objectives: Attractiveness, route balance, and

total cost. Chapter 4 presents the details of MA-ABC.

6

3. The development of Splice, a framework for learning the heuristics for CARP

based on deep reinforcement learning and graph neural networks. Splice can

be applied to different variants of arc routing problems and node routing prob-

lems with the same architecture. Chapter 5 presents the details of Splice.

This dissertation is organized as follows. Chapter 2 introduces preliminaries such

as basic variants of ARPs, methods and approaches for solving arc routing problems.

It then gives literature review related to our work. Chapter 3 presents Probe, a

heuristic algorithm for disruption management for services modelled on ARPs such

as managing vehicle breakdown in residential waste collection operations. Chapter

4 reports MA-ABC, a memetic and multi objective optimization algorithm, that

optimizes three objectives: Attractiveness, route-balance and total cost. Chapter 5

presents Splice, a machine learning framework for learning the heuristics for CARP

and other routing problems using deep reinforcement learning and graph neural net-

works. Chapter 6 summarizes our work and describes future research directions.

7

Chapter 2

PRELIMINARIES AND LITERATURE REVIEW

In this chapter, we discuss the complexity of the arc routing problems in §2.1.

We introduce the basic variants of arc routing problems and few of its extensions in

§2.2. We give the definition of CARP in §2.3. We use CARP in all the works in this

dissertation as it is a generic and widely applied variant. We discuss some alternative

objectives used in the arc routing literature in §2.4. We use two alternative objectives

in addition to ‘total cost ’ in our work on multi-objective optimization presented in

chapter 4. We discuss the approaches and methods used for solving the arc routing

problems in §2.5. Finally, we give the literature review related to our work in this

dissertation in §2.6.

2.1 Complexity of the Arc Routing Problems

Except for the two variants that are polynomial and few other variants that are

NP-complete (see §2.2.1), all other variants of arc routing problems are NP-hard.

ARPs are known to be harder than the node-routing problems as many of these

ARPs generalize other NP-hard problems [12]. We mention and discuss the complex-

ities of the variants as we introduce them in section §2.2 and when we discuss the

different approaches for solving the ARPs in §2.5.

2.2 Basic Variants of ARPs and Its Extensions

Arc routing problem can be traced back to the story of the origin of graph theory

itself: Solving the Königsberg bridge puzzle by Euler [13, 14]. We introduce the basic

8

variants of the arc routing problem and few of its extensions in this chapter. With

the recent advancement in computing power, new complex and rich variants have

been continuously proposed in the arc routing literature based on the requirements

of the applications in the real world; See [6] for more recent and complete updates

on the variants of ARPs. In most cases, the many different rich variants of the arc

routing problem can be found to have been extended from these basic variants by

either adding or modifying the objectives and/or constraints. Figure 1.1 shows the

organization of the basic variants of ARP.

2.2.1 Chinese Postman Problem (CPP)

Similar to the salesman problems for uncapacitated variants in node routing prob-

lems, the un-capacitated variants in arc routing problems are called postman problems,

named after the application for which they were used. The Chinese Postman Prob-

lem (CPP) (thought to be named after Kwan Mei-Ko [15] who originally studied the

problem), or the route inspection problem, is defined as the problem of finding a

closed path with minimum total cost covering all the edges in the graph. CPP is the

TSP counterpart for the arc routing problem. In relation to the Königsberg bridge

problem, it can be interpreted as a problem of finding a subset of edges of minimum

cost to be added to the original graph, in the case of graph with nodes of odd degree,

to make it an Eulerian graph [14]

Variants of CPP exist based on the type of graph (undirected, directed and mixed

graphs) and other factors. CPP is generally defined over undirected graphs and

sometimes mentioned specifically as Undirected Chinese Postman Problem (UCPP) in

the literature. When defined over directed graphs, it is called Directed CPP (DCPP);

when defined over mixed graphs that have both edges and directed arcs representing

the one-way streets, it is called Mixed CPP. If the edges of the graph are asymmetric

9

with different costs on either direction, it is called Windy CPP.

If the problem allows more than one route or is formulated to find a fixed number

of routes, then it is called K-CPP. With additional constraints on the order for the

edges to be visited, used for modelling applications such as snow plowing, the problem

is called Hierarchical CPP. Variants of CPP have been proposed based on alternative

objectives such as MinMax, that are discussed in section 2.4.

Undirected and directed CPP can be solved for optimum in polynomial time [15,

16]. If all the nodes in the graph are of even degree, then the solution is obtained by

generating an Eulerian circuit using methods such as Hierholzer’s algorithm [17]. If

there are nodes in the graph with odd degrees, then some edges need to be duplicated

or traversed more than once (called dead heading). Duplicating the edges for the least

cost augmentation can be determined using minimum cost matching of the odd degree

nodes, using methods such as Edmonds and Johnson’s Blossom algorithm [16], which

is polynomial in time complexity. Hierholzer’s algorithm [17] can then be applied to

the modified graph with duplicated edges to generate an Eulerian circuit.

Only Undirected CPP and directed CPP are polynomial [15, 16]. Mixed CPP,

Windy CPP and K-CPP are NP-complete [18, 19]. All other variants of CPP are

NP-hard.

2.2.2 Rural Postman Problem (RPP)

If not all the edges in the graph are required to be serviced, with some of the edges

as non-required that can be used for deadheading to reach the nearest task, then the

problem is called Rural Postman Problem (RPP). Lenstra and Kan [20] proved RPP

to be NP-hard.

Similar to CPP, variants of RPP exist based on graphs such as Directed RPP(DRPP),

Mixed RPP(MRPP), Windy RPP (WRPP); based on formulations such as, number

10

of routes as in K-RPP or on order of visit as in Hierarchical RPP, and others. Vari-

ants of Rural Postman Problem (RPP) based on alternative objectives are discussed

in §2.4.

2.2.3 Capacitated Arc Routing Problem (CARP)

The Capacitated Arc Routing Problem (CARP), introduced by Golden and Wong

in 1981 [21] is the arc routing counterpart of the vehicle routing problem in node

routing problems. It is generally defined over an undirected graph. It is a problem

of finding a set of routes with minimum total cost covering a subset of edges called

required edges that have demands, constrained by vehicle capacity limit. A formal

definition of CARP is given in §2.3. Golden and Wong [21] proved that CARP is NP-

hard. It is harder than VRP, as it generalizes other NP-hard problems such as RPP.

Golden and Wong [21] proved that it is also NP-hard to even find a 3/2 approximation.

CARP can have all the edges as required, similar to CPP (called Capacitated Chinese

Postman Problem (CCPP)), or to have only a subset of the edges as required, similar

to RPP. The demand values for the non-required edges are zero. In fact, Christofides

introduced a case where all edges are required, the CCPP in 1973 [22]. Like the VRP

in node routing problems, CARP is a widely adopted model used in many real world

applications such as postal delivery, winter gritting or salt spreading, residential waste

collection and others.

Like the other two basic variants, CPP and RPP, CARP also has many exten-

sions. For example, variants based on the type of graph such as Undirected CARP

(UCARP), Directed CARP (DCARP), Mixed CARP (MCARP); variants based on

the objective functions such as Min-Max CARP (MMCARP), Multi-objective CARP,

Prize collecting CARP, CARP with Profits (CARPP); based on demands and method

of handling the problem specifications such as Stochastic CARP, Dynamic CARP;

11

based on tours and facilities such as Open CARP (OCARP), Multi-Depot CARP

(CARP-MD), CARP with Intermediate Facilities (CARP-IF); based on other criteria

such as Periodic CARP, CARP with Split-Delivery (CARP-SD) and many others.

Adding complex constraints and objectives to meet the real world business require-

ments leads to many rich variants of CARP. A comprehensive list of CARP variants

can be found in [23] and specific chapters in [7] for other variants.

All the work in this dissertation use CARP or its extensions.

2.3 Definition of CARP

The capacitated arc routing problem (CARP) [21] is defined on a weighted undi-

rected graph G = (V,E). The streets in a city correspond to the edges E in G, and

the vertices V to their intersections. There is a depot D ∈ V used to store a fleet of k

homogeneous vehicles, each with capacity C. Tasks correspond to a service required

on a subset T ⊆ E of the streets. Each task has a traversal cost c(t) and a demand

d(t). Streets not requiring service have zero demand. All edges can be traversed any

number of times. The goal of CARP is to find a set of closed routes, one for each

vehicle, starting and ending at the depot, of minimum total cost such that: All tasks

are serviced, the sum of the demands of serviced edges of each route does not exceed

the vehicle capacity, and every serviced edge is in exactly one route. The cost of a

route corresponds to the cost of its serviced edges and the cost of deadheading, i.e.,

the traversal cost of any intermediate connecting paths. CARP is NP-hard [21]. As

a result, finding an optimum solution for most practical instance sizes is intractable.

Therefore a number of heuristics and metaheuristics have been proposed [24].

12

2.4 Objectives Used in Arc Routing Problems

Minimizing the total cost is the most common objective used in many routing

problems and in ARPs. There are also variants in ARPs that are formulated with

objectives other than cost. Some of them include maximising profits, min-max route

length and problems with multiple objectives (or multi-objectives).

In arc routing problems with profits, there is not a fixed set of customers to

be served. Instead the objective is related to maximizing the profits associated

with the edges or arcs in ARPs. Variants under this category include Arc Orien-

teering Problem (AOP), Maximum Benefit Chinese Postman Problem (MBCPP),

Prize-Collecting Rural Postman Problem (PCRPP), Team Orienteering Arc Routing

Problem (TOARP), Capacitated Arc Routing Problem with Profits (CARPP). Ori-

enteering problems maximise profits with some constraints on the time duration or

cost. Prize-Collecting routing problems minimize the route cost of routes that collect

profits above a threshold.

The min-max objective minimizes the longest route length or cost in the route

solution. It helps to achieve balanced routes. It also helps in achieving customer

satisfaction as the route length is proportional to travel time. Some of variants

related to min-max objectives include Min-Max K CPP (MMKCPP), Min-max K

RPP (MMKRPP) and CARP with min-max objective (MM-CARP).

Visual attractiveness of the route [11] is also an important factor that the operators

in real world businesses are concerned about. Route attractiveness in the solution

refers to routes being compact, without sharp turns and without crossing each other

or overlapping each other. It has been observed that operators even abandon or do not

follow the solution of optimum cost if they look unattractive [11]. Different metrics

have been suggested in the literature to measure the attractiveness. A comprehensive

13

review on the metrics used for visual attractiveness can be found in [11]. These

metrics can be also used in the objective functions as an item to be optimized. We

explore the metrics and objectives of route attractiveness in Chapter 4.

The objectives of attractiveness and total cost are usually conflicting, i.e., an in-

crease or decrease of value in one objective affects the other in the opposite direction.

The same relationship holds between min-max and total cost objectives [25]. Hence

they are generally formulated and solved as a multi-objective optimization problem.

Multi-objective optimization methods attempt to find Pareto-optimal solutions: A

set of solutions in which none of its objective values can be improved further without

affecting the other. In Chapter 4, we develop a multi-objective optimization algorithm

that optimizes three objectives: Minimum cost, minimum makespan and maximizing

route attractiveness.

2.5 Approaches for Solving Arc Routing Problems

In this section we briefly introduce different approaches and methods to solve

ARPs, with a special focus on the CARP variant.

2.5.1 Exact Methods

Exact methods are algorithms that are guaranteed or proven to provide optimum

solutions. Mathematical programming and enumeration methods are some common

methods used to find the optimum solutions. In the arc routing problems three

approaches are generally used: i) Branch-and-Bound based on combinatorial lower

bounds; ii) Cutting-plane and Branch-and-Cut methods, iii) Column-Generation and

Branch-and-Price methods. More details about the work on exact methods can be

found in [26] for CARP and related chapters in the book [7] for other variants.

14

As mentioned in sections §2.1 and §2.2.1, except for the undirected and directed

CPP that are polynomial and some CPP variants such as mixed CPP, windy CPP

and MinmaxKCPP (MMKCPP) that are NP-complete, all other variants of ARPs

are NP-hard [7], which means that finding an optimum solution for instances of

size representing the problems of the real world are intractable to the best of our

knowledge. Hence for practical purposes we need to depend on methods other than

exact methods.

2.5.2 Approximation Algorithms

Approximation algorithms provide a proven worst case gap from the global opti-

mum, by a factor or an approximation ratio, ϵ. Frederickson’s heuristic for undirected

RPP [27] is based on the Christofides’s approximation algorithm for TSP [28] and

has the same worst case ratio of 3/2 for problems that satisfy the triangle inequal-

ity. However there is no known 3/2 approximation algorithm for CARP. Golden and

Wong [21] proved that it is NP-hard to even find a 3/2 approximation for CARP [29].

Wøhlk proposed A-ALG algorithm for CARP [30] based on the Jansen’s Shortest

Optimal Tour Partitioning (SOTP) algorithm for the General Capacitated Routing

Problem (GCRP) [31] with the same approximation ratio of (7/2− 3/W), where W

is the vehicle’s capacity.

2.5.3 Heuristic Methods

Heuristic methods are constructive methods that find reasonably good solutions

in a reasonable amount of time [32] but cannot guarantee the quality. They are

generally faster than other methods. Heuristic methods are also used for generating

initial solutions used in population based metaheuristic methods, that are discussed

in §2.5.4. A comprehensive review of heuristics for CARP is found in [24] and for

15

other variants in the related chapters in [7].

Since CARP is comparatively harder to solve, with many of its benchmark in-

stances not solved optimally yet, many heuristics and metaheuristic methods have

been proposed to obtain new best known results. Construct strike [33], Path Scan-

ning (PS) [29], Augment-Merge [29], and Ulusoy’s Route first-Cluster second heuris-

tics [34] are some of the classical heuristics that are still widely used. They were

basically developed from the corresponding heuristics in the node routing problems.

Path Scanning (PS), Augment-Merge and Ulusoys’s Route first-Cluster second algo-

rithm are still used to design new or improved versions of heuristics and as components

in metaheuristics [24]. Many of the recent heuristics of CARP are an improvement

of these classical heuristics. Wøhlk [35] in her PhD thesis proposed four construc-

tive heuristics, Modified Path Scanning (MPS), Double Outer Scan, Node Duplication

Heuristic, and A-ALG. We use a variant of Path Scanning to compare our results and

a memetic algorithm, which is an extension of Route first-Cluster Second heuristic in

our work MA-ABC and Splice in Chapters 4 and 5. Hence we give more details

about the two heuristic algorithms here.

The Path Scanning (PS) heuristic [29], originally proposed in 1983, is a widely used

algorithm. It has the worst case time complexity of O(t2), where t is the number of

tasks or required edges. It is one of the fastest algorithms that also gives consistently

good results over wide range of instances. It builds routes sequentially, starting from

the depot, by selecting the nearest task up to the vehicle’s capacity limit and returns

to depot when the vehicle is full. If there is more than one task at equal distance,

it follows five rules to break the tie. The algorithm is run five times based on each

rule and the best among the five is selected. Improved versions of Path Scanning

include random methods for selecting the next task such as PS with Random Criterion

(PSRC) [33, 36] and PS with Random Task (PSRT) [36]. PSRC breaks the tie by

16

choosing a random rule among the five rules. PSRT does not follow any rule but

selects any of the tasks at random. Path Scanning with ellipse Rule [37] follows an

additional rule that if the vehicle is near its capacity limit then it allows for selecting

the next service edges only that are closer to the shortest path to the depot by a fixed

factor. Random versions of the Path Scanning algorithms help to obtain different

solutions that can be used as initial solutions for the population based metaheuristic

methods discussed in next sub-section §2.5.4.

Ulusoy’s Route first-Cluster second algorithm [34] has been widely used to design

improved algorithms and as a component in metaheuristic algorithms. As the words

Route-first in its name indicates, it first builds a single tour (called a giant tour)

without any capacity constraints. It then generates the individual route solution by

splitting the tour (Cluster second) by constructing an auxiliary graph. Optimum and

fast tour splitting procedures with the worst case time complexity of O(t) are available

[38], where t is the number of tasks. These fast splitting procedures have enabled this

heuristic method to be used as components in many advanced algorithms. Improved

algorithms by Prins et al. [39] based on the Ulusoy’s heuristic use three different

methods of random path scanning for constructing the giant tour and four different

methods of splitting, giving rise to twelve randomized heuristics. We use PSRT to

compare our work in Chapters 4 and 5.

2.5.4 Local Search and Metaheuristic Methods

Local search methods are improvement procedures that find a solution by improv-

ing the solutions originally obtained from heuristics, by searching for a better solution

in the solution space, among solutions that are closer to the current solution, called

a neighbourhood.

Neighbourhood solutions are obtained using move operators that make a small

17

change to the current solution. Even though local search methods give better solutions

than heuristic methods, they often get stuck at a local optimum. They too cannot

guarantee a global optimum.

Metaheuristics are problem independent methods that help to a escape local min-

imum and hence able to provide better solutions. They are usually designed to

continue their search until a stopping condition defined by the user is met. Many of

the metaheuristics are stochastic in nature. One disadvantage with metaheuristics is

that they may have parameters that need to be tuned to achieve good results.

Metaheuristics can be either single solution or population based. Single solution

based metaheuristics work by improving upon a single solution until the stopping cri-

teria are reached. Population based algorithms such as evolutionary and bio-inspired

algorithms work on a set of solutions. The literature of CARP has implementations

of most of the popular metaheuristics. On analysing the works of metaheuristics in

the arc routing literature, Prins [24] observes a trend of moving from single solu-

tion based metaheuristics such as simulated annealing and tabu search to population

based methods. He also observes a increase in number of lighter algorithms that give

a good trade-off between quality and running time. Many metaheuristics have re-

ported a good amount of success in finding best known solutions at the time of their

publications.

Single Solution Based Metaheuristics

Some of the popular single solution based metaheuristic algorithms that had reported

good performance in the literature are Tabu Search (TS), Guided Local Search (GLS),

Greedy Randomized Adaptive Search Procedures (GRASP) and Variable Neighbor-

hood Descent (VND).

Tabu search is a popular single solution based metaheuristic that has reported

18

good results in the arc routing literature too. The CARPET [40] and TSA [41]

algorithms are both based on tabu search and have reported good results on CARP

benchmark instances. TSA is fully deterministic and hence can be easily reproduced

and verified.

Guided local search (GLS) by Beullens et al. [42] is a local search based meta-

heuristic that modifies the cost value of the objective function using penalties to es-

cape from the local minima. GLS is one of the fastest metaheuristics along with TSA

for the Undirected Capacitated Arc Routing Problem (UCARP). GRASP with Evo-

lutionary Path Relinking for CARP [43] is a metaheuristic algorithm based on Greedy

Randomized Adaptive Search Procedures (GRASP). Even though it takes longer than

other metaheuristics, it gives better solutions. For example, it retrieves all the opti-

mal solutions for the gdb benchmark instances [29]. Variable Neighborhood Descent

(VND) by Hertz and Mittaz [44] is a type of Variable Neighborhood Search (VNS)

metaheuristic that explores multiple neighborhoods until it finds no better solution

in all the neighborhoods.

Population Based Metaheuristics

Evolutionary algorithms such as genetic algorithms and ant colony based algorithms

[45], and scatter search [46] algorithms are all population based metaheuristics that

use a pool of solutions, the population, in searching for better solutions.

Memetic algorithms are population based algorithms that combine the genetic

algorithm and local search. Lacomme et al.’s Memetic Algorithm (MA) for CARP

[47] [48] is one of the popular population based algorithms and is also widely adopted

in other work. MA [48] at the time of its publication improved 26 of the best known

solutions for the CARP benchmark instances. One innovative aspect of MA is that it

uses giant tours as chromosomes. Hence it need not concern with the inconsistencies

19

over the capacity limits resulting from the cross-over and mutation operations when

actual routes are used as chromosomes. It uses total cost as the fitting function,

obtained after splitting the giant tour into route solutions. It uses order crossover

(OX) for the cross-over operation [49]. It uses local search in the place of the mutation

operation.

More recently, an improved Ant Colony Optimization (ACO) based metaheuristic

by Santos et al. [45] has found 6 new best solutions in the larger egl benchmark

instances [50].

Our work on memetic multi-objective algorithms, MA-ABC presented in Chapter

4, is based on Lacomme et al.’s Memetic Algorithm (MA) for CARP, Splice presented

in Chapter 5 uses the splitting procedure used by Lacomme et al.

Hybrid Algorithms

Hybrid algorithms are methods that combine different heuristic or metaheuristic algo-

rithms within their implementation. A specific heuristic algorithm may not work well

in every type of instance or problem distribution. Since hybrid algorithms combine

the beneficial approaches of more than one algorithm, they can perform better in dif-

ferent distribution. The memetic algorithm discussed in §2.5.4 can also be considered

a hybrid algorithm since it combines local search with an evolutionary algorithm. Re-

cently Chen et al. [51] published Hybrid Metaheuristic Approach (HMA) for CARP.

They have combined effective local refinement and randomized tabu thresholding

procedure with an infeasible descent in a memetic framework. They obtained all the

best known results of the CARP benchmark instances and have improved results of

15 benchmark instances.

20

2.6 Related Work

This section provides a literature review related to the works, Probe, MA-ABC,

and Splice presented in the forthcoming chapters.

2.6.1 Vehicle Breakdowns and Disruptions Management in Routing Problems

There are few works related to managing the disruptions in routing and scheduling

problems in the VRP literature. Mu et al. [52] developed two tabu search algorithms

to solve VRP under vehicle breakdown. Mu and Eglese study the disruption due to

order release delay for VRP in [53]. Li et al. worked on vehicle re-scheduling problems

due to vehicle breakdowns in [54, 55], where new routing plans were developed to

reduce the impact of delay in supply reaching the depot. Li et al. study a real time

vehicle re-routing with time windows and develop a Lagrangian relaxation based

heuristic in [56].

Work on on re-routing and re-scheduling for arc routing problems are very few.

Monroy-Licht et al. consider re-scheduling due to vehicle failures in an uncapacitated

setting in [57]. To the best of our knowledge Probe is the first to work on disruption

management due to vehicle breakdown in a capacitated arc routing setting.

2.6.2 Visual Attractiveness in Route Solutions

Visual attractiveness in routing problems first came to light when Poot et al. [58]

reported that some operators considered the solution generated by the ORTEC 1

vehicle routing software to be poor, even though they were good on the traditional

metrics such as total cost, number of vehicles used, and others. They later found the

reason to be that the routes were considered visually unattractive. Visually attractive

1http://www.ortec.com/

21

route plans seem to be closer to the traditional way of working, thus generating trust

in the plan among the drivers and planners [11, 58].

The objective of minimizing total cost and improving the visual attractiveness are

often conflicting [11]. However, it is worth improving the visual attractiveness even

when this comes at the expense of other objectives [59] as it enables the ultimate

adoption of the route plans by the operators. Visual attractiveness is subjective

conveying how well the routes exhibit a set of features such as i) Compactness ii)

non-overlapping or non-crossing and iii) non- complexity i.e., routes without sharp

edges and jagged transitions. Many metrics have been proposed to measure these

features. Rossit et al. [11] proposes six measures for compactness, three measures

for proximity (closely related to compactness), two measures for non-overlapping and

non-crossing and three measures for route complexity.

Most of the methods for enhancing the visual attractiveness are based on heuristic

approaches. A comprehensive list of methods and for the list publications on visual

attractiveness in routing is found in [11].

2.6.3 Route Balance

Route balance is one of the alternative objectives discussed in §2.4. Its is also the

second most important objective after the total cost that has been studied extensively

[60] and used widely in the real world. Route balance addresses the equity concerns

that are different from monetary benefits such as fair workload allocation and resource

utilization, customer satisfaction, among others [61, 62]. There are many variants

and methods in the node routing literature that use route balance either as a single

objective or in combination with total cost, such as Vehicle routing problem with Route

Balance (VRPRB) [63, 64]. Many metrics, such as makespan and range, are used

either to measure the route balance or use them in an objective function. Lozano et

22

al. does a statistical analysis of seven objective functions for route balance in VRPRB

in [65]. The objectives of route balance and the total cost conflict [25] in nature. Hence

a bi-objective formulation such as VRPRB and multi-objective optimization methods

[66] are used.

2.6.4 Multi-Objective Evolutionary Algorithms (MOEA)

Multi-objective Evolutionary Algorithms (MOEA) are one of the most widely

used and popular approaches for multi-objective optimization. The reason for its

wide adoption and comparatively better performance than others can be attributed

to its inherent parallel computing nature since it is based on a population based ap-

proach. Coello gives more details with a historical view of MOEA in [67]. Among the

different methods in MOEA, Non-dominated Sorting Genetic Algorithm-II (NSGA-

II) [68] is an efficient and widely studied method. It uses non-dominated sorting in its

selection operations and in obtaining the Pareto front. NSGA-II differs from the first

generation NSGA by incorporating elitism and in using crowding distance to improve

diversity in the ranking. We use NSGA-II method in our MA-ABC algorithm pre-

sented in Chapter 4, where we discuss the evolutionary algorithms in the arc routing

literature.

2.6.5 Machine Learning Approaches for Combinatorial Optimization and Routing

Problems

As early as 1985, Hopfield networks [69], elastic nets [70], and self organizing maps

[71], were applied to problems in combinatorial optimization; see Smith [72] for an

overview of these early AI-driven approaches. At the time, the solutions produced

were not close enough to the optimum nor practical enough to be applied to real ap-

23

plications. The approaches were not data driven, and instead attempted to construct

the solution for each instance.

More recently there has been renewed interest in exploring AI-driven approaches

for combinatorial optimization problems that underlie many real world applications

[73]. In 2014, recurrent neural network (RNN) based sequence-to-sequence networks

[74], and the attention mechanism [75], were successful in machine translation and

other applications. In 2015, Vinyals et al. [76] then tried a variation of long short-term

memory (LSTM) sequence-to-sequence networks, called pointer networks, for discrete

combinatorial optimization problems. Since then, pointer networks have become the

basis of much follow-on work in the field.

Vinyals et al. [76] viewed a combinatorial optimization problem as a permutation

problem on sequence data. In their approach, the output points to the position of

an element in the input sequence. Along with the two-dimensional euclidean travel-

ling salesman problem (2D-TSP), they also applied the approach to solve two other

discrete optimization problems: Convex Hull and Delaunay Triangulation. For each

they used the same supervised learning architecture and hyper-parameter settings.

One million data sets were used for training generated randomly based on a uniform

distribution. Solutions were obtained for these data sets using commercial or open

source solvers, which may not be optimal. Training was conducted on data sets con-

taining up to 20 nodes and then tested with instances having more than 20 nodes to

measure the generalization capability. The model generalized well for problems up to

40 nodes but not beyond.

Bello et al. [77] applied the pointer networks of Vinyals et al. [76] but used

reinforcement learning for training. More specifically, the actor-critic policy gradient

method [78] was used to train the network. With this method, closer to optimum

results for up to 100 nodes for 2D-TSP were obtained. The model was also used to

24

solve the knapsack problem obtaining optimal results for up to 200 nodes.

Based on their previous work structure2vec [79], Dai et al. [80] used a graph

embedding neural network for solving combinatorial optimization problems. They

used Q-learning [81] for training because it is more sample efficient than the policy

gradient methods [78]. They tested their model for the problems of maximum vertex

cover (MVC), maximum cut (MAXCUT), and 2D-TSP. Their data sets included up

to 300 nodes for training and, on testing, achieved cost within 0.07% of the optimum.

To check the generalization and scalability of the model, they trained their model for

up to 400 nodes and found it generalized for up to 1200 nodes.

Nazari et al. [82] extended the pointer networks of Vinyals et al. [76] to the vehicle

routing problem (VRP). They handled the demand of nodes as dynamic data, that is,

data that is updated as the network generates a solution. Their model can be used

for solving several variants of VRP as well as TSP. In contrast to pointer networks,

Nazari et al. [82] used an embedding layer instead of a recurrent neural network

(RNN) for the encoder but used the same LSTM based network with the attention

mechanism for the decoder. They trained their network using the actor-critic policy

gradient method [78] and the asynchronous advantage actor-critic (A3C) method [83]

for stochastic VRP. A smaller optimality gap was achieved compared to the Clarke-

Wright (CW) savings heuristics [84], sweep heuristics [85], and Google’s optimization

tools (OR-Tools) [86]. Even though VRP can be considered an extension of TSP and

multiple TSP (mTSP), it is generally more difficult to solve than TSP. Obtaining

good results within limited time is challenging even for instances with node sizes of

100.

In 2018, Kool et al. [87] used multi-head attention networks [88] to solve TSP,

CVRP, orienteering, and prize-collecting TSP problems. For TSP, they achieved

results with the lowest percentage of gap from the optimum. Concurrently, Deudon

25

et al. [89] used the same multi-head approach for solving TSP, but applied local

search to improve the results.

In 2019, Joshi et.al. [90] used a spectral based graph convolution network (GCN)

[91] for solving TSP. They used supervised methods for learning and additionally used

beam search during testing. While their results show a smaller optimality gap com-

pared to the results from auto-regressive models (those based on RNN, LSTM, and

transformer networks), their model does not generalize as well as the auto-regressive

models.

All of the methods reviewed generate only a single solution to a problem as con-

structive type of heuristics. Other works approaches modeling improvement heuris-

tics; see [92, 93, 94, 95, 96] for details.

All this work involves only node routing problems, such as VRP or TSP, which are

generally represented by a euclidean graph. However ARPs are non-euclidean with

their problems parameters defined on edges of the graph rather than on its vertices.

We discuss these challenges in Chapter 5

We present our work from the next chapter, starting from Probe, a heuristic

algorithm for vehicle breakdown management in operations such as residential waste

collection.

26

Chapter 3

ONLINE RE-ROUTING FOR VEHICLE BREAKDOWNS

This chapter presents our work on disruption due to vehicle breakdowns encoun-

tered frequently in operations such as residential waste collection operation. We

propose a new CARP variant, Capacitated Arc Re-routing Problem for Vehicle Break-

down (CARP-VB) and develop a heuristic algorithm Probe for solving the CARP-

VB.

This chapter is organized as follows. §3.1 gives a brief introduction to residential

waste collection operation, vehicle breakdown disruptions prevalent in such opera-

tions and our contributions for this problem. §3.2 presents a literature review and

related works. We introduce and formalize the CARP re-routing problem in §3.3,

and our Probe algorithm to solve it in §3.4. Experimental set-up and results are

discussed in §3.5. §3.6 summarizes the work.

3.1 Vehicle Breakdowns in Residential Waste Collection

Residential waste collection is often managed by a city’s public works department.

Typically, the city is partitioned into areas and each area is serviced on a week day.

Pick-ups are done on a weekly basis using special collection vehicles that offload the

waste at transfer stations.

The residential collection operation for large metropolitan areas can use as many

as a thousand collection vehicles. The cost of collection, transportation, and disposal

constitutes 50-70% of the total cost of solid waste management [97, 98, 99]. Reducing

the collection route distance can save cost for a city, and also reduce its carbon

27

footprint. Routes for collection vehicles are often computed offline using optimization

software or by commercial applications such as RouteSmart [100].

We model the problem of finding the routes for residential waste collection as a

Capacitated Arc Routing Problem (CARP). However, the formulation of CARP does

not consider the unexpected breakdown of vehicles. These occur with surprisingly

high frequency, as often as every day [10]. Due to their cost, the public works de-

partments in cities generally operate with every collection vehicle assigned to a route,

performing maintenance and repairs on the vehicles overnight [10]. A common ap-

proach to handle a vehicle breakdown is to assign the unserved streets of broken down

vehicle to one other vehicle after it has completed its own assigned route. This may

extend the collection operation late into the day.

As we will see, our re-routing solution takes into account the unserved streets

of all routes and equally shares the demands of the costs among all the operational

vehicles. The idea is to balance the remaining demand among the operational vehicles

in order to minimize the makespan, the maximum route length. Re-routing may also

be applied to situations such as when a driver is not able to report for work on a

given day, or when there is a large difference in the demand across routes causing one

collection vehicle to finish much earlier than usual. Our approach provides a chance

to complete the residential collection within the shift, reducing the over-time costs

for a city.

The contributions of this work are:

1. We formulate the CARP re-routing problem and propose an online algorithm

to solve it. Our Probe algorithm computes new routes for the operational

vehicles on the unserved demand when a breakdown occurs. Probe seeks to

minimize the makespan in order to produce more balanced routes.

28

2. We evaluate Probe under different breakdown scenarios on the classical CARP

benchmark instances. Probe produces solutions with reduced makespan, range,

and deviation, which indicate that the balance of the routes is improved.

3.2 Related Work

The Capacitated Arc Routing Problem (CARP) [21] is the arc routing counterpart

of the Vehicle Routing Problem (VRP), servicing demand associated with edges in-

stead of with nodes. This allows road applications such as winter gritting, salt spread-

ing, and waste collection to be accurately modelled. WE already defined CARP in

chapter 2 section2.3.

Path scanning [29] is a classical heuristic algorithm for CARP. We already dis-

cussed the Path scanning algorithm when introducing the heuristic methods in chap-

ter1, section 2.5.3. It is constructive, building routes one by one [7]. Starting from

the depot, it adds the next nearest task to the route, until it can no longer add any

more tasks because it has reached the vehicle capacity limit. When this occurs, the

route is closed by returning to the depot. Subsequent routes are built in the same way

until there are no tasks remaining. Because there may be more than one choice of the

next task to select, tie breaking rules were proposed [29]. There are many variants

of path scanning [35, 101], some of which use randomization instead of one of the tie

breaking heuristics to choose the best among several solutions [33, 36]. Path Scanning

with Random Task (PSRT) algorithm [36] picks a task at random instead of following

the tie breaking rules when constructing the solution.We have already discussed the

Path scanning in details in §2.5.3. We have also discussed other heuristic methods,

local search and metaheuristic methods for CARP in §2.5.

The problem of finding the routes for residential waste collection is usually mod-

elled as a CARP. Incorporating additional constraints to address specific requirements

29

leads to different variants of the problem, such as allowing multiple offloading sites

within the vehicle route [102], and incorporating cost restrictions [103].

We have already discussed vehicle breakdowns and disruptions management in

routing problems in §2.6.1. There are very few works, if any, on re-routing and re-

scheduling in arc routing literature. Monroy-Licht et al. consider re-scheduling due

to vehicle failures in an uncapacitated setting such as those used for snow plowing

operations [57]. To the best of our knowledge our work is the first that explores

vehicle breakdown management in a capacitated arc routing setting.

3.3 The CARP Re-Routing Problem

We model residential waste collection in a city as a CARP. The streets in the city

correspond to edges E in the graph G, and the vertices V to their intersections. The

depot D ∈ V. Tasks correspond to collecting residential waste on a subset of the city

streets T ⊆ E, with their demand corresponding to the volume of waste. Streets not

requiring service have zero demand. The cost of each edge corresponds to the time

to service the street. The city has a fleet of k collection vehicles, each able to collect

up to its capacity C in waste.

Suppose that the city has a solution to CARP, providing a set of routes R =

{r1, r2, . . . , rk} for each of its collection vehicles for a given day. Each route ri is a

sequence of streets ei1 = (vi1, vi2), ei2 = (vi2, vi3), . . . , eij−1 = (vij−1, vij), that make

a closed walk starting and ending at the depot, i.e., vi1 = vij = D. A route may

include traversing streets that need not be serviced in order to reach those that must

be serviced. Such dead-heading incurs cost, but services no demand. Deadheading

is always assumed to follow the shortest path by distance. The route satisfies the

capacity constraints of the collection vehicles, i.e.,
∑

e∈ri c(e) ≤ C for 1 ≤ i ≤ k.

Consider a vehicle breaking down during a shift in waste collection. This requires

30

us to solve a CARP with k−1 collection vehicles on the unserved city streets, starting

from their locations at the time of the breakdown, ending at the depot. Using the

position of each collection vehicle, readily available from a telematics system, we can

compute the streets still requiring service. That is, we partition each route ri into

two concatenated subsequences of edges, ri = eiseiu, where the edges eis = ei1, . . . , eiℓ

have all been serviced hence their demands can be set to zero, and the edges eiu =

eiℓ+1, . . . , eij−1 consisting of streets that remain to be serviced. Either eis or eiu may

be empty. The remaining streets to be serviced are therefore T \ eis for 1 ≤ i ≤ k.

The starting vertex for each vehicle i is the intersection associated with the last street

it served, i.e., viℓ because eiℓ = (viℓ−1, viℓ).

The capacity of each vehicle must take into account that some waste may have

been collected. Hence each vehicle i has a capacity Ci = C−
∑

e∈eis d(e), 1 ≤ i ≤ k−1.

Capacitated Arc Re-routing Problem for Vehicle Breakdown (CARP-

VB): Find a set R = {r1, . . . , rk−1} of closed routes for each operational vehicle, each

starting at vertex viℓ, 1 ≤ i ≤ k − 1, and ending at the depot D, of minimum total

cost such that: All remaining tasks are serviced, the sum of the demands of serviced

edges of each route must not exceed the remaining vehicle capacity Ci, 1 ≤ i ≤ k− 1,

and every serviced edge must be serviced by exactly one route.

3.4 Probe: A Proposed Re-Routing Algorithm

One disadvantage of the conventional approach for managing vehicle breakdown

is that the cost to complete the re-routing is bounded above by the sum of the cost

of the two longest routes. Our interest is in an algorithm to reduce makespan. We

propose a new algorithm, Probe for Path scanning Re-rOuting under BrEakdown,

31

based on the Path Scanning with Random Task (PSRT) algorithm [36].

Given an instance of CARP-VB, Probe starts building routes corresponding for

each of the k−1 available vehicles from their current locations. If there are collection

vehicles that have already completed their routes, they may be redeployed from the

depot with their full capacity. In each iteration, Probe adds the nearest task from

the remaining tasks to each route. Thus rather than completing one route at a time

as in path scanning, Probe instead extends each route by one task at a time while

at the same time attempting to reduce unbalance in the length of the routes; the goal

is to produce routes with shorter makespans. If while adding a task to a route the

vehicle is found to have insufficient remaining capacity, it deadheads to the depot,

empties its load, and continues building its route from the depot with full capacity;

see algorithm 1 for details.

3.5 Evaluation of Probe

3.5.1 Benchmark Instances and Metrics Measured

We evaluate Probe on classic CARP benchmark instances: (1) GDB is a set of

23 artificial instances, varying between 7–27 vertices and 11–55 edges, all of which

are required [104, 29]. (2) VAL is a collection of 34 instances based on 10 randomly

generated graphs with 25–50 nodes and 34–97 required edges [105]. Each graph has

a set of 3 or 4 instances that differ in number of vehicles and their capacities. (3) EGL

is a collection of 24 instances for winter gritting applications in Lancashire county in

the UK [106]. It is based on two graphs, one with 77 vertices and 98 edges and the

other with 140 vertices and 190 edges. The number of required edges varies between

51 and 190. (4) EGL-Large is a collection similar to EGL but on a larger graph with

255 vertices and 375 edges [41]. It has 2 sets of 5 instances, one with 347 edges and

32

Algorithm 1: Probe Algorithm

Input: Pending tasks ; Available Vehicles; last Completed Tasks,

TL | |TL| = |VR|; cur Vehicle Capacities, QC | |QC | < |Q|,

Output: route, route cost

1 current MS ← 0 /* current Makespan */

2 set current loc from last Completed Tasks

3 repeat

4 foreach V in Available Vehicles do

5 if route cost(V) < 0.5 ∗ current MS then /* Add only if more than

half of the Makespan */

6

7 next task ← Get Nearst task ()

8 if next task= ∅ then // Visit Depot to empty & retain Full

capacity

9

10 Add Depot(D,D) to route(V)

11 QC ← full Capacity, Q

12 update route cost(V)

13 current loc← Depot

14 else

15 Add next task to route(V)

16 update route cost(V) and QC(V)

17 update current loc(V)

18 update current MS

19 until Pending Tasks = ∅

33

Algorithm 2: Get Nearst task Algorithm

Input: current loc(V), QC(V), Pending tasks

Output: Nearest task

1 current distance←∞

2 foreach task in Pending tasks do

3 distance = Shortest path from current loc to the task

4 if distance < current distance then

5 Nearest task ← task

6 current distance = distance

7 else if distance == current distance then /* If more than one task at

equal distance, pick randomly */

8

9 Assign task to Nearest task with prob 0.5

10 end

11 end

12 if current distance =∞ then

/* No tasks available with Demand ¡ QC */

13 Nearest task ← ∅

14 end

34

the other with 375 edges, with all edges required. The individual instances within

each set are created with different vehicle capacities.

We evaluate the quality of the CARP-VB solutions using three metrics: (1) The

maximum length route or makespan; (2) The difference between the maximum and

minimum route length or range; and, (3) The sum of absolute differences of each

route length from the mean route length or discrepancy.

3.5.2 Simulating Breakdown Events

Figure 3.1a shows the first instance of GDB. It has 12 vertices and 22 edges, each

with demand 1. The depot is at vertex 1. There are 5 collection vehicles, each with

capacity 5.

The initial solution to CARP is found by the PSRT heuristic [36] run with 1000

random seeds, choosing the routes with shortest length. For GDB1 PSRT computes

5 routes each shown in a different colour. The length of route |ri|, 1 ≤ i ≤ 5, is

(63, 76, 105, 39, 33); the makespan is 105, the range is 72, and the discrepancy from

the mean of 52.58 is 109.80. Probe is used after a breakdown event.

We assume that the time to service the longest route in the CARP solution is

the shift length, usually 7 hours excluding breaks. Secondly, we assume that the

speed of servicing a route is the same for each vehicle throughout its shift. Because

the GDB1 instance has a makespan of 105 units, we compute the vehicle speed as

105
7×60

= 0.25 units/minute. Suppose that vehicle 2 breaks down 1.5 hours into its

shift. Then the distance covered by each vehicle is 0.25 units/minute× 90 minutes ≈

22 units. This means that vehicle 2 has only completed one task in its route, r2 =

((1, 7), (7, 8), (8, 10), (10, 11), (11, 5)), namely (1, 7) with cost 19 depicted by the red

edge in Fig. 3.1. The breakdown location is therefore vertex 7, indicated by the red

node in Fig. 3.1b. The four unserved edges (tasks) in r2 must be completed by the

35

(a) Initial CARP routes for GDB1 by PSRT

(b) CARP-VB routes for GDB1 by Probe

Figure 3.1: Initial Routes for GDB1, and after Probe Re-routing.

36

remaining operational vehicles.

Similarly, vehicle 1 has also only completed one task (1, 10) in its route r1. After

the break down, vehicle 1 starts its new route at vertex 10, with left-over capacity of 4.

The routes computed for each the remaining vehicles by Probe is depicted by a dif-

ferent colour in Fig. 3.1b, with route lengths of (71, 59, 70, 60). Hence, the makespan

of the CARP-VB solution is 71 from the breakdown event. Dividing by the speed,

we obtain the route completion times in hours as (4.73, 3.93, 4.67, 4.00). Accounting

for the vehicles operating for 1.5 hours before the breakdown, the completion time in

hours for the remaining vehicles is (6.23, 5.43, 6.17, 5.50).

3.5.3 Results for the CARP Benchmark Instances

The initial solutions for the benchmark instances in GDB and VAL are generated

using the PSRT heuristic [36]. A custom heuristic is used for EGL and EGL-Large

that generates solutions with reduced makespan and balanced routes; see [107]. Then

a breakdown event is generated and Probe is run for CARP-VB. We compare our

results with those generated using conventional solution. We present here the re-

sults of vehicle 2 breaking down after 1 hour of service, however these results are

representative of other breakdown scenarios; see [107].

Makespan

Figures 3.2a-3.2d show the makespan for the two CARP-VB solutions on GDB, VAL,

EGL, and EGL-Large, respectively. The average reduction in makespan for GDB is

33.49%. Only for GDB8 is the makespan larger than the conventional method. The

average reduction in makespan for VAL is 21.29%. Even though there are increases in

makespan for eight instances, only for three instances is the increase more than 10%.

The average reduction in makespan for EGL and EGL-Large is 15.02% and 16.48%,

37

respectively. Only for EGL-S4-B in EGL does Probe result in a higher makespan.

In general, higher makespans in Probe result from unbalance in the initial CARP

solutions.

(a) GDB (b) VAL

(c) EGL (d) EGL-Large

Figure 3.2: Makespan: Probe vs. Conventional Method.

Range

Figures 3.3a-3.3d show the results for range for the two re-routing solutions on GDB,

VAL, EGL, and EGL-Large, respectively. The range for GDB and VAL are lower on aver-

age by 88.48% and 74.75%, which is significant. The number of instances for which

38

Table 3.1: Makespan for GDB Instances: Probe vs. Conventional Method

Instance Makespan Makespan Percentage

Conventional Probe Reduction

GDB1 135 84 37.78

GDB2 73 73 0.00

GDB3 88 67 23.86

GDB4 146 108 26.03

GDB5 108 82 24.07

GDB6 99 87 12.12

GDB7 152 89 41.45

GDB8 53 66 -24.53

GDB9 88 54 38.64

GDB10 151 89 41.06

GDB11 175 105 40.00

GDB12 140 82 41.43

GDB13 163 108 33.74

GDB14 54 26 51.85

GDB15 21 18 14.29

GDB16 51 34 33.33

GDB17 24 20 16.67

GDB18 55 38 30.91

GDB19 51 36 29.41

GDB20 71 41 42.25

GDB21 68 30 55.88

GDB22 38 28 26.32

GDB23 45 26 42.22

Avg 33.49

39

Table 3.2: Makespan for val Instances: Probe vs. Conventional Method

Instance Makespan Makespan Percentage
Conventional Probe Reduction

val1A 167 147 11.98
val1B 106 96 9.43
val1C 49 50 -2.04
val2A 215 211 1.86
val2B 203 143 29.56
val2C 88 92 -4.55
val3A 79 73 7.59
val3B 70 46 34.29
val3C 28 38 -35.71
val4A 254 203 20.08
val4B 200 152 24.00
val4C 143 126 11.89
val4D 97 106 -9.28
val5A 137 218 -59.12
val5B 218 166 23.85
val5C 200 145 27.50
val5D 105 98 6.67
val6A 192 109 43.23
val6B 102 82 19.61
val6C 51 58 -13.73
val7A 201 133 33.83
val7B 142 112 21.13
val7C 73 49 32.88
val8A 246 201 18.29
val8B 192 144 25.00
val8C 86 92 -6.98
val9A 223 156 30.04
val9B 159 113 28.93
val9C 113 98 13.27
val9D 59 64 -8.47
val10A 277 204 26.35
val10B 201 147 26.87
val10C 165 127 23.03
val10D 80 78 2.50

Avg 21.29

40

Table 3.3: Makespan for egl Instances: Probe vs. Conventional Method

Instance Makespan Makespan Percentage

Conventional Probe Reduction

egl-e1-A 1651 1362 17.50

egl-e1-B 1327 1197 9.80

egl-e1-C 1351 1051 22.21

egl-e2-A 1417 1281 9.60

egl-e2-B 1336 1156 13.47

egl-e2-C 1180 1103 6.53

egl-e3-A 1460 1318 9.73

egl-e3-B 1270 1244 2.05

egl-e3-C 1475 1155 21.69

egl-e4-A 1864 1234 33.80

egl-e4-B 1 1253 953 23.94

egl-e4-C 1 1287 973 24.40

egl-s1-A 1778 1721 3.21

egl-s1-B 1719 1401 18.50

egl-s1-C 1235 1060 14.17

egl-s2-A 1744 1524 12.61

egl-s2-B 1411 1288 8.72

egl-s2-C 1623 1165 28.22

egl-s3-A 1355 1281 5.46

egl-s3-B 1768 1503 14.99

egl-s3-C 1405 1283 8.68

egl-s4-A 1656 1442 12.92

egl-s4-B 1357 1418 -4.50

egl-s4-C 1407 1081 23.17

Avg 15.02

41

Table 3.4: Makespan for egl-large Instances: Probe vs. Conventional Method

Instance Makespan Makespan Percentage

Conventional Probe Reduction

egl-g1-A 141630 107462 24.12

egl-g1-B 117511 107731 8.32

egl-g1-C 100959 95557 5.35

egl-g1-D 108233 90362 16.51

egl-g1-E 102829 89736 12.73

egl-g2-A 152746 109720 28.17

egl-g2-B 145684 99688 31.57

egl-g2-C 121944 103713 14.95

egl-g2-D 106245 103629 2.46

egl-g2-E 113303 90002 20.57

Avg 16.48

the range was higher is two in GDB and one in VAL. This indicates that Probe achieves

more balanced routes compared to the conventional method. The average reduction

in range for the EGL and EGL-Large instances is 32.86% and 46.06%, respectively,

with Probe always lower in both these sets of instances.

Discrepancy

Figures 3.4a-3.4d show the discrepancy for the two re-routing solutions on GDB, VAL,

EGL, and EGL-Large, respectively. The average reduction in discrepancy is 83.28%

for GDB and 74.13% for VAL, with higher discrepancy for two instances in GDB and

one instance in VAL. The average reduction in discrepancy for EGL and EGL-Large

is 25.38% and 39.77%. In EGL-Large, all instances have lower discrepancy using

42

Table 3.5: Range for GDB Instances: Probe vs. Conventional Method

Instance Range Range Percentage

Conventional Probe Reduction

GDB1 102 13 87.25

GDB2 16 18 -12.50

GDB3 31 1 96.77

GDB4 89 9 89.89

GDB5 63 14 77.78

GDB6 42 2 95.24

GDB7 95 4 95.79

GDB8 24 26 -8.33

GDB9 65 17 73.85

GDB10 99 5 94.95

GDB11 116 6 94.83

GDB12 92 34 63.04

GDB13 163 41 74.85

GDB14 38 7 81.58

GDB15 6 1 83.33

GDB16 35 2 94.29

GDB17 8 1 87.50

GDB18 30 5 83.33

GDB19 27 12 55.56

GDB20 48 2 95.83

GDB21 56 5 91.07

GDB22 20 4 80.00

GDB23 31 7 77.42

Avg 84.48

43

Table 3.6: Range for val Instances: Probe vs. Conventional Method

Instance Range Range Percentage
Conventional Probe Reduction

val1A 0 0 NA
val1B 33 2 93.94
val1C 26 16 38.46
val2A 0 0 NA
val2B 114 8 92.98
val2C 40 23 42.50
val3A 0 0 NA
val3B 41 1 97.56
val3C 17 19 -11.76
val4A 118 11 90.68
val4B 109 16 85.32
val4C 70 8 88.57
val4D 51 22 56.86
val5A 8 8 0.00
val5B 118 38 67.80
val5C 115 13 88.70
val5D 56 31 44.64
val6A 125 1 99.20
val6B 40 3 92.50
val6C 31 21 32.26
val7A 116 4 96.55
val7B 73 17 76.71
val7C 50 21 58.00
val8A 136 11 91.91
val8B 98 11 88.78
val8C 44 27 38.64
val9A 135 4 97.04
val9B 89 10 88.76
val9C 62 15 75.81
val9D 26 19 26.92
val10A 149 9 93.96
val10B 109 7 93.58
val10C 83 15 81.93
val10D 51 27 47.06

Avg 74.75

44

Table 3.7: Range for egl Instances: Probe vs. Conventional Method

Instance Range Range Percentage

Conventional Probe Reduction

egl-e1-A 815 166 79.63

egl-e1-B 822 416 49.39

egl-e1-C 771 534 30.74

egl-e2-A 735 372 49.39

egl-e2-B 655 424 35.27

egl-e2-C 644 570 11.49

egl-e3-A 641 476 25.74

egl-e3-B 657 537 18.26

egl-e3-C 961 510 46.93

egl-e4-A 1150 535 53.48

egl-e4-B 638 314 50.78

egl-e4-C 727 405 44.29

egl-s1-A 962 816 15.18

egl-s1-B 939 661 29.61

egl-s1-C 713 618 13.32

egl-s2-A 975 962 1.33

egl-s2-B 796 584 26.63

egl-s2-C 1071 610 43.04

egl-s3-A 750 444 40.80

egl-s3-B 1034 726 29.79

egl-s3-C 866 718 17.09

egl-s4-A 965 579 40.00

egl-s4-B 888 726 18.24

egl-s4-C 732 631 13.80

Avg 32.86

45

(a) GDB (b) VAL

(c) EGL (d) EGL-Large

Figure 3.3: Range: Probe vs. Conventional Method.

Probe. In EGL there are 11 instances for which the discrepancy is higher than in

the conventional method. The high reduction in range also supports that Probe

achieves more balanced routes.

Run Time

Run time is critical for re-routing in breakdown management, so that the waste col-

lection is not delayed. Figures 3.5a-3.5d plot run time as a function of the number

of required edges, collected on a Dell desktop with an Intel i5 processor and 16 GB

46

Table 3.8: Range for egl-large Instances: Probe vs. Conventional Method

Instance Range Range Percentage

Conventional Probe Reduction

egl-g1-A 96639 36118 62.63

egl-g1-B 77552 43801 43.52

egl-g1-C 66665 45367 31.95

egl-g1-D 86319 51052 40.86

egl-g1-E 68448 50413 26.35

egl-g2-A 102310 34997 65.79

egl-g2-B 107886 51043 52.69

egl-g2-C 84297 47618 43.51

egl-g2-D 78788 41111 47.82

egl-g2-E 91292 49742 45.51

Avg 46.06

main memory, running Linux. The run time grows linearly with number of required

edges, indicating that Probe is scalable for real-world instances of CARP-VB.

Impact of Probe’s Re-routing on Total Cost

Probe is designed to get good min-max objective value required in disruptions con-

text by adding the tasks to each of the vehicles in parallel. However, the Minmax and

Minsum or total cost objectives are conflicting and hence optimizing for one would

result in poor value for the other [25]. We compared the total cost of Probe with

that of conventional method.The results are given in the table 3.13, 3.14, 3.15, 3.16.

The results indicates that the Probe does not necessarily degrades the total cost

47

Table 3.9: Discrepancy for GDB Instances: Probe vs. Conventional Method

Instance Discrepancy Discrepancy Percentage

Conventional Probe Reduction

GDB1 131 18 86.26

GDB2 26 30 -15.38

GDB3 37 1 97.30

GDB4 90 11 87.78

GDB5 110 22 80.00

GDB6 58 3 94.83

GDB7 132 6 95.45

GDB8 61 69 -13.11

GDB9 106 44 58.49

GDB10 120 6 95.00

GDB11 160 8 95.00

GDB12 139 50 64.03

GDB13 381 74 80.58

GDB14 49 10 79.59

GDB15 6 1 83.33

GDB16 47 3 93.62

GDB17 11 3 72.73

GDB18 36 6 83.33

GDB19 27 12 55.56

GDB20 63 3 95.24

GDB21 76 8 89.47

GDB22 44 8 81.82

GDB23 83 17 79.52

Avg 83.28

48

Table 3.10: Discrepancy for val Instances: Probe vs. Conventional Method

Instance Discrepancy Discrepancy Percentage
Conventional Probe Reduction

val1A 0 0 NA
val1B 33 2 93.94
val1C 59 39 33.90
val2A 0 0 NA
val2B 114 8 92.98
val2C 67 53 20.90
val3A 0 0 NA
val3B 41 1 97.56
val3C 29 31 -6.90
val4A 118 11 90.68
val4B 122 21 82.79
val4C 81 13 83.95
val4D 139 62 55.40
val5A 8 8 0.00
val5B 142 50 64.79
val5C 155 19 87.74
val5D 116 72 37.93
val6A 125 1 99.20
val6B 51 3 94.12
val6C 87 51 41.38
val7A 116 4 96.55
val7B 86 22 74.42
val7C 114 38 66.67
val8A 136 11 91.91
val8B 109 13 88.07
val8C 96 48 50.00
val9A 135 4 97.04
val9B 107 12 88.79
val9C 91 22 75.82
val9D 59 44 25.42
val10A 149 9 93.96
val10B 130 7 94.62
val10C 113 19 83.19
val10D 137 74 45.99

Avg 74.13

49

Table 3.11: Discrepancy for egl Instances: Probe vs. Conventional Method

Instance Discrepancy Discrepancy Percentage

Conventional Probe Reduction

egl-e1-A 1193 272 77.20

egl-e1-B 1309 588 55.08

egl-e1-C 1271 1193 6.14

egl-e2-A 1138 515 54.75

egl-e2-B 1072 922 13.99

egl-e2-C 1820 1910 -4.95

egl-e3-A 994 953 4.12

egl-e3-B 1763 2100 -19.12

egl-e3-C 2285 1833 19.78

egl-e4-A 1787 1282 28.26

egl-e4-B 1453 934 35.72

egl-e4-C 2618 2495 4.70

egl-s1-A 1510 1734 -14.83

egl-s1-B 1489 1398 6.11

egl-s1-C 1321 1368 -3.56

egl-s2-A 1884 2067 -9.71

egl-s2-B 2487 3229 -29.84

egl-s2-C 4303 4638 -7.79

egl-s3-A 1501 1668 -11.13

egl-s3-B 3103 3856 -24.27

egl-s3-C 4426 4123 6.85

egl-s4-A 2563 2569 -0.23

egl-s4-B 4778 3951 17.31

egl-s4-C 4001 5245 -31.09

Avg 25.38

50

(a) GDB (b) VAL

(c) EGL (d) EGL-Large

Figure 3.4: Discrepancy: Probe vs. Conventional Method.

objective.

Figures 3.6a-3.6d show the results for total cost for the two re-routing solutions on

GDB, VAL, EGL, and EGL-Large, respectively. The average rise in the total cost value

is 6.9% in GDB, 16.26% in val, 10.47% in egl and 11.29% in egl-large. Probe has

only a low level of impact on the total cost. This can be considered as one of the

important advantage to adopt Probe over conventional method.

51

Table 3.12: Discrepancy for egl-large Instances: Probe vs. Conventional Method

Instance Discrepancy Discrepancy Percentage

Conventional Probe Reduction

egl-g1-A 395674 181545 54.12

egl-g1-B 353878 319802 9.63

egl-g1-C 583581 295136 49.43

egl-g1-D 687584 394192 42.67

egl-g1-E 648192 431094 33.49

egl-g2-A 312851 191976 38.64

egl-g2-B 455689 263328 42.21

egl-g2-C 482347 363194 24.70

egl-g2-D 780432 363976 53.36

egl-g2-E 870201 440138 49.42

Avg 39.77

3.5.4 Discussion

With Probe, our objective was a heuristic to minimize the makespan after a

breakdown using only the available vehicles. Our strategy added one task at a time

to each route in each iteration if it is balanced (less than 0.5×makespan) or only to

those routes whose length is less than 0.5 ×makespan. As a result, Probe obtains

more balanced routes and a higher percentage reduction in range and disparity for

CARP-VB.

When Probe obtains worse metrics compared to the conventional method, it is

due to the unbalance of the initial CARP solution. This is why EGL and EGL-Large

show less improvement because the custom heuristic produces more balanced initial

solutions. In general, initial solutions that produce more balanced solutions to CARP

52

Table 3.13: Total Cost for GDB Instances: Probe vs. Conventional Method

Instance Total Cost Total cost Percentage

Conventional Probe Increase

GDB1 318 323 -1.55

GDB2 344 335 2.69

GDB3 265 281 -5.69

GDB4 307 303 1.32

GDB5 387 390 -0.77

GDB6 345 322 7.14

GDB7 348 344 1.16

GDB8 520 358 45.25

GDB9 413 364 13.46

GDB10 258 273 -5.49

GDB11 404 402 0.50

GDB12 434 447 -2.91

GDB13 508 499 1.80

GDB14 94 117 -19.66

GDB15 52 54 -3.70

GDB16 131 127 3.15

GDB17 79 81 -2.47

GDB18 140 158 -11.39

GDB19 60 75 -20.00

GDB20 121 118 2.54

GDB21 139 147 -5.44

GDB22 184 179 2.79

GDB23 212 210 0.95

Average 6.9

Better than Conventional 11

53

Table 3.14: Total Cost for val Instances: Probe vs. Conventional Method

Instance Total Cost Total cost Percentage
Conventional Probe Increase

val1A 147 167 -11.98
val1B 190 179 6.15
val1C 302 243 24.28
val2A 211 215 -1.86
val2B 278 292 -4.79
val2C 570 474 20.25
val3A 73 79 -7.59
val3B 91 99 -8.08
val3C 183 139 31.65
val4A 395 390 1.28
val4B 439 416 5.53
val4C 495 407 21.62
val4D 752 579 29.88
val5A 428 266 60.90
val5B 459 441 4.08
val5C 555 489 13.50
val5D 684 622 9.97
val6A 217 259 -16.22
val6B 241 229 5.24
val6C 460 325 41.54
val7A 262 286 -8.39
val7B 317 297 6.73
val7C 330 332 -0.60
val8A 391 356 9.83
val8B 418 412 1.46
val8C 642 570 12.63
val9A 308 311 -0.96
val9B 327 316 3.48
val9C 364 313 16.29
val9D 508 392 29.59
val10A 399 405 -1.48
val10B 430 408 5.39
val10C 479 433 10.62
val10D 602 509 18.27

Average 16.26
Better than Conventional 10

54

Table 3.15: Total Cost for egl Instances: Probe vs. Conventional Method

Instance Total Cost Total cost Percentage

Conventional Probe Increase

egl-e1-A 5158 4215 22.37

egl-e1-B 6330 4859 30.27

egl-e1-C 7295 7090 2.89

egl-e2-A 6595 5340 23.50

egl-e2-B 8329 7985 4.31

egl-e2-C 11034 10532 4.77

egl-e3-A 7631 6736 13.29

egl-e3-B 10436 9280 12.46

egl-e3-C 13527 12761 6.00

egl-e4-A 8342 7749 7.65

egl-e4-B 11850 12418 -4.57

egl-e4-C 18569 18148 2.32

egl-s1-A 7602 6134 23.93

egl-s1-B 9139 8753 4.41

egl-s1-C 11612 12291 -5.52

egl-s2-A 13757 13823 -0.48

egl-s2-B 20604 19451 5.93

egl-s2-C 27174 26399 2.94

egl-s3-A 14672 13509 8.61

egl-s3-B 22499 20236 11.18

egl-s3-C 28738 27860 3.15

egl-s4-A 19309 18069 6.86

egl-s4-B 26545 23576 12.59

egl-s4-C 33889 35443 -4.38

Average 10.47

Better than Conventional 4

55

(a) GDB (b) VAL

(c) EGL (d) EGL-Large

Figure 3.5: Run Time vs. Number of Required Edges (Tasks).

will also improve solutions for CARP-VB.

3.6 Conclusion

In this chapter we introduced a daily problem faced in residential waste collection

[10], that of completing the collection service after a vehicle breakdown. We used

CARP to model for the residential waste collection because it can easily be extended

to rich variants addressing the specific needs of cities and businesses.

We formulated CARP-VB, a re-routing problem for vehicle breakdown. We pro-

posed a new heuristic algorithm Probe to compute routes for the remaining oper-

56

Table 3.16: Total Cost for egl-large Instances: Probe vs. Conventional Method

Instance Total Cost Total cost Percentage

Conventional Probe Increase

egl-g1-A 1744350 1567795 11.26

egl-g1-B 2194562 1850526 18.59

egl-g1-C 2333422 1973564 18.23

egl-g1-D 2491802 2405582 3.58

egl-g1-E 2883788 2677949 7.69

egl-g2-A 1992362 1880467 5.95

egl-g2-B 2275106 2075431 9.62

egl-g2-C 2684622 2343911 14.54

egl-g2-D 3001260 2651076 13.21

egl-g2-E 2920056 2649921 10.19

Average 11.29

Better than Conventional NIL

ational vehicles starting from their locations at the time of breakdown, for all the

unserviced streets in all routes, with the objective to minimize the makespan. We

evaluated Probe on the classical CARP benchmark instances GDB, VAL, EGL, and

EGL-Large, comparing the results on makespan, range, and discrepancy with that

of conventional re-routing method. Probe results in a good average reduction in

makespan, high reduction in range and discrepancies, and has run time linear in the

number of required edges.

In the next chapter we present MA-ABC, a memetic multi-objective algorithm

that optimizes three objectives: attractiveness, route balance and total cost.

57

(a) GDB (b) VAL

(c) EGL (d) EGL-Large

Figure 3.6: Total Cost: Probe vs. Conventional Method.

58

Chapter 4

MA-ABC - A MEMETIC MULTIOBJECTIVE ALGORITHM OPTIMISING

FOR ATTRACTIVENESS, BALANCE AND COST

Routing problems are generally defined with the objective of minimizing total

cost. Operators in the real world are interested in aspects other than cost and expect

those aspects in the routing solutions that they want to use. Visual attractiveness is

one aspect that operators look for in a routing solution. Balanced routes is another

aspect that the operators are equally interested in. This chapter presents MA-ABC,

a multi-objective memetic algorithm for CARP that optimizes three objectives: at-

tractiveness, route balance and total cost.

We give a brief introduction to alternative objectives and multi-objective optimiza-

tion in §4.1. We review related work in §4.2. The design of MA-ABC is provided in

§4.3. A description of the benchmark instances, experimental set-up, and an analysis

of the results are provided in §4.4, followed by discussion in §4.5. Finally, we sum-

marize our work in §4.6.

4.1 Route Attractiveness, Balance and MA-ABC- An Introduction

Routing problems are among the most widely researched topics in operations

research. In arc routing the goal is to cover, i.e., visit, each edge of the graph rep-

resenting the problem. Applications of arc routing include services such as street

sweeping, snow plowing, mail delivery, garbage collection, gritting roads with sand

or salt, and the inspection of power lines. Expenditures on such services by public

and private entities exceed billions of dollars annually in the U.S., emphasizing their

59

economic importance [108, 109, 7, 110].

CARP is the widely used arc routing problem to model the real world problems

because of its generality. CARP is NP-hard [21]. As a result, an optimum solution

for most practical instance sizes is intractable. Therefore a number of heuristics and

metaheuristics have been proposed [24]. Many focus on finding a least cost solution

for a service. Recently, operators of such services require routes that are balanced and

visually attractive in addition to low cost. Routes that are balanced are about equal

in length and contribute to workload equity and employee satisfaction [61, 62]. The

visual attractiveness of routes is subjective, but non-crossing routes that provide well-

defined service areas are clearly preferred. These additional objectives are important

because they help address operational complexities associated with using the routes

in practice.

Because it is often impossible to optimize all objectives simultaneously, a solution

is called Pareto optimal if no objective can be improved without deteriorating another.

Multi-objective evolutionary algorithms (MOEAs) use evolutionary computation (EC)

methods to search for solutions at the Pareto front. These offer service operators a

diverse set of solutions that represent different trade-offs among design objectives.

This chapter presents MA-ABC, a memetic algorithm to provide a heuristic so-

lution for CARP to maximize route attractiveness and balance, and to minimize

total cost. A memetic algorithm is a hybrid MOEA that incorporates local search.

In MA-ABC local search controls the scope of the diversification emphasizing total

cost. Non-dominated sorting is used to sort solutions into different ranked fronts.

Within the same front, solutions are ranked by crowding distance. We use fitness

functions for total cost and for balance, and introduce route continuity and route

overlap to assess route attractiveness. To the best of our knowledge, MA-ABC is

the first multi-objective optimization approach for CARP that includes attractive-

60

ness as one of the objectives. We conduct a thorough experimental evaluation of

MA-ABC on CARP benchmark instances, comparing to the path scanning with ran-

dom task (PSRT) heuristic [36]. MA-ABC provides heuristic solutions at the Pareto

front that have a wide diversity in attractiveness and balance without deviating in

the objective space of total cost.

4.2 Related Work

Since the introduction of CARP by Golden and Wong [21], many variants have

emerged; see [7] for a comprehensive presentation of applications, resulting CARP

variants, and solution methods.

Poot et al. [58] first reported that operators of services considered the heuristic

solutions generated by the ORTEC vehicle routing software [111] to be poor, despite

ranking highly on the traditional metric of total cost. The reason given was that the

routes were not visually attractive. Operators desired routes with more subjective

features such as compactness, no crossings, and fewer turns, even at the expense of

cost [59]. Operationally, this assigns a route in which each driver has one geographi-

cally distinct area of responsibility. Visual preferences may serve as a source for new

metrics that can help quantify the visual appeal of a route; Rossit et al. [11] review

proposed metrics. Such new metrics may be used as alternatives to, or penalties in,

the overall objective function.

A few publications consider visual attractiveness in variants of arc routing prob-

lems. Constantino et al. [59] propose a method to bound the number of nodes in

more than one route. In partitioning street networks, Lum et al. [112] define a sim-

ilar route overlapping index (ROI) and develop a heuristic for an uncapacitated arc

routing problem with compact, balanced, and visually appealing routes. Corberan et

al. [113] provide a heuristic solution to the same problem also using a multi-objective

61

approach.

Route balance is another important objective [60] because it contributes to work-

load equity [61, 62]. Measures of balance have included range, the difference between

the maximum and minimum route length, and makespan, the maximum length route.

Several works consider the dual objectives of route balance and total cost in variants

of routing problems [66, 114, 64].

Multi-objective evolutionary algorithms (MOEAs) are one of the most popular

approaches for solving multi-objective optimization problems to obtain near Pareto

optimal solutions [67]. Deb et al. [68] propose NSGA-II, a widely used method of

MOEA due to its efficiency. It uses non-dominated sorting to obtain the Pareto

fronts and for selection operations. NSGA-II’s sorting method is more efficient than

other popular MOEA methods such as SPEA [115].

Lacomme et al. [48, 116, 117] propose a memetic algorithm based on the route first,

split second method to solve CARP. A single giant tour covering all required tasks

without capacity limits is used to represent individuals. This helps avoid the need

to repair routes after crossover, due to capacity overruns. Their method is effective

because it replaces the mutation operation with a local search, and this approach has

since been adopted for many variants of arc and node routing problems [39, 118]. An

efficient splitting algorithm that splits the giant tour is used to evaluate and update

the fitness values and to retrieve the final routing solution from the chromosomes.

Other multi-objective optimization methods have been applied to CARP. Mei et

al. [119] use a decomposition-based framework for CARP with the dual objectives

of minimizing total cost and makespan. Grandinetti et al. [120] use an ϵ-constraint

method for CARP with the same objectives.

Tang et al. [121] use a giant tour and introduce a new merge-split operator, in

addition to other move operators in the local search. This operator merges multiple

62

routes back into a single tour and then splits it again.

Usberti et al. [122] use a memetic algorithm for a CARP variant. Three types of

local search are combined with a stochastic filter to filter out solutions before applying

the local search. Chen et al. [51] adopt a hybrid approach for CARP, performing

only a single solution update per generation with local refinement. Martinez et al.

[123] propose a genetic algorithm for CARP which incorporates local search. To

solve larger-scale (> 300 tasks) CARP, Mei et al. use decomposition methods and

co-operative co-evolution methods [124]. Stochastic variants of CARP have used

memetic algorithms [125, 126, 127]. Wang et al. use an estimation of distribution

algorithm and a stochastic local search for a stochastic variant of CARP [128]. Handa

et al. use an EC method for dynamic route optimization in CARP [129, 130]. Liu

et al. [131] use a memetic algorithm with a new splitting scheme to solve dynamic

CARP that was improved in [132]. Shang et al. consider a dual objective CARP

through a co-operative co-evolutionary method [133].

As we see next, our proposed memetic heuristic algorithm makes use of ideas

incorporated in NGSA-II [68] and in the route first, split second method [48, 116, 117],

but we believe it is the first to include attractiveness as an objective in CARP.

4.3 Multi-Objective Memetic Algorithm

We propose MA-ABC, a memetic heuristic algorithm for CARP, which maximizes

route attractiveness and balance, while minimizing total cost.

MA-ABC pseudocode is given in Algorithm 3. An initial population of µ indi-

viduals is generated. Each individual is a giant tour. Giant tours can be generated

using any heuristic for CARP [27, 24] by ignoring demands and capacity limits; we

use the path scanning heuristic [29].

In each of NGEN generations, λ offspring are generated. Parents are chosen

63

using tournament selection in NSGA-II with the ranking determined by dominance

and crowding distance. With probability CXPB, an order crossover operation is

performed. With probability MUTPB, a giant tour is split into routes for each of

the vehicles. A local search is then performed using a single insertion move operator

that emphasizes total cost. The routes are then joined to form a new individual.

After λ offspring have been generated, the fitness metrics of attractiveness, bal-

ance, and cost are updated for each. Elitism is incorporated through the (µ + λ)

strategy [68]. After NGEN generations, we obtain the Pareto front ranked by non-

dominated sorting. We now describe these steps in a more detail.

4.3.1 Selection Using NSGA-II

MA-ABC selects individuals for the crossover operation. It first selects µ of

µ + λ individuals from the current generation. It also selects individuals at the

Pareto front to return as routing solutions. MA-ABC uses NSGA-II specifically its

non-dominated sorting and crowding distance for ranking solutions.

NSGA-II sorts the solutions into different ranked fronts based on non-dominance

[114, 64]. NSGA-II first finds all non-dominated solutions among the population in

the current iteration. These solutions are then removed from the population and the

non-dominated individuals among the remaining population are found. The process

is repeated until all the solutions are ranked.

Within the same front, solutions are ranked based on crowding distance [68]. A

solution with higher crowding distance on the same front indicates higher population

diversity and is ranked more highly.

64

Algorithm 3: MA-ABC Algorithm

Input : Graph model G = (V,E) for CARP

Output: Heuristic routing solutions maximizing balance and attractiveness,

and minimizing total cost

1 set parameters NGEN, CXPB, MUTPB, µ, λ

2 create initial population of size µ

3 for i← 1 to NGEN do

4 for j ← 1 to λ do

5 P1, P2 = TournamentSelectionDCD ()

6 if prob < CXPB then

7 C1 = OrderCrossover (P1,P2)

8 else

9 C1 = P1

10 if prob < MUTPB then

11 split = SplitGiantTour (C1)

12 split = MutateByLocalSearch (split)

13 C1 = JoinRoutes (split)

14 update three fitness values for each of the λ offspring

15 population =selectNSGA (µ, µ + λ)

16 Pareto front = NonDominatedSort (population, µ)

17 return Pareto front

65

4.3.2 Crossover

Many crossover operators have been studied in EC, and among these, order

crossover (OX) is effective for routing problems [49]. In OX, two sites p and q

are randomly selected with 1 ≤ p ≤ q ≤ τ , where τ = |T |. For parents P1, P2,

child C1 is obtained by copying tasks P1(p) . . . P1(q) into C1(p) . . . C1(q). C1(q +

1) . . . C1(τ) and C1(1) . . . C1(p− 1) are filled by copying tasks from P2(q+ 1) . . . P2(τ)

and P2(1) . . . P2(q − 1), taking tasks from P2 not already in C1. Child C2 is created

by interchanging the roles of P1 and P2.

4.3.3 Splitting Procedure

The splitting procedure plays a central role when a giant tour is used as an in-

dividual chromosome. Splitting is based on the route first, split second algorithm

[34, 48]; see §4.2. The idea is to split the giant tour into routes based on the vehicle

capacity limit C. Each route starts at the depot D, and deadheads to D from the

vertex where the capacity is reached or prior to it being exceeded. We use this pro-

cedure to split the giant tour when reevaluating fitness values, before applying local

search, and in retrieving the routes.

4.3.4 Local Search

As in Lacomme et al. [48], MA-ABC uses local search in place of mutation to

improve exploitation of the search space and speed convergence. Once a giant tour

has been split into routes, a single insertion move operator is applied to each pair

(t, t′) of tasks in the routing solution. Each task t in a route is moved after task t′ in

every other route. The move that minimizes the total cost is chosen.

Figure 4.1 gives an example of a single insertion move. In this example, the red

66

Figure 4.1: Example of the Single Insertion Move Operator

square is the depot, solid edges are tasks, dashed edges are not required, vehicle

capacity C = 4, integers in square brackets are demands, and integers in parentheses

are costs.

The three routes before the move are ((a, b, c)(d, e)(f, g, h, i)) with costs (14, 12, 13)

that sum to a total of 39. After moving c after d the routes are ((a, b)(d, c, e)(f, g, h, i))

with costs of (10, 14, 13) that sum to 37, a cost savings of 2.

4.3.5 Fitness Functions

Let R = {r1, r2, . . . , rk} be a set of routes for the k vehicles found by splitting a

giant tour. Each route ri is a sequence of streets (tasks) serviced ti1 = (vi1, vi2), ti2 =

(vi2, vi3), . . . , tij−1 = (vij−1, vij), that make a closed walk starting and ending at the

67

depot.

The total cost is the sum of the route cost for all routes in R. The cost of a route

is the cost of its serviced tasks including any deadheading via shortest paths.

total cost =
∑
ri∈R

(∑
t∈ri

c(t) +

j−1∑
ℓ=1

DeadHeading(viℓ, viℓ+1)

)
(4.1)

We use makespan as a proxy for route balance. The makespan is the maximum

route cost among the routes ri ∈ R.

A novel contribution in this work is our definition of route attractiveness, a com-

bination of two metrics: The common node count (CNC), a measure of route overlap,

and the discontinuity count (DC), a measure of route contiguity. That is, the prefer-

ence is for routes of different vehicles to have no overlap, and for sequences of tasks

in a route not to be disconnected.

More formally, CNC is a count of vertices v ∈ |V \ D| that exist in each route

ri ∈ R with one endpoint of a task serviced by ri.

CNC =
∑

v∈|V \D|

(
k∑

i=1

exists(v, ri)− |V | − 1

)
(4.2)

This definition differs from the node count used in [59] because we count the nodes

that only belong to the tasks serviced by the route. Nodes that belong to the tasks

that are not serviced by the route or nodes that belong to non-required edges are not

counted. We also count each endpoint of a serviced task unlike [59].

Given two consecutive tasks tiℓ, tiℓ+1 serviced by route ri it is possible that the

tasks are not contiguous, i.e., the vehicle must deadhead from the end of tiℓ to the

start of tiℓ+1. If any edge along the deadheading path has at least one task that is

serviced by another route, we consider it a discontinuity in route ri and increment

DC.

68

DC =
∑
ri∈R

(
j−1∑
ℓ=1

discontinuity(tiℓ, tiℓ+1)

)
(4.3)

Both exists(·) and discontinuity(·) are simple indicator functions.

If the discontinuity count is less than k = |R| then we set the attractiveness equal

to the CNC, otherwise we set it to infinity:

attractiveness =

CNC, if DC < k

∞, if DC ≥ k

(4.4)

This definition of attractiveness forces MA-ABC to reject any solution that has

high discontinuity in the selection of parents for offspring of a generation, and the

selection of the next generation.

4.3.6 Elitism

Elitism is essential for the convergence of MOEAs [67]. We incorporated elitism

in MA-ABC as implemented in NGSA-II [68].

4.4 Evaluation of MA-ABC

MA-ABC was coded in python; source code is provided [134] for reproducibility.

We use the DEAP [135] EC framework, which includes an implementation of NSGA-II

ranking and selection operations.

We evaluate two classic benchmark CARP instances: val, and egl. val [105]

is a collection of 34 instances based on ten randomly generated graphs with 24-50

vertices and 34-97 edges, where all edges are required. Instances of the same graph

differ by vehicle capacity. egl [106] is a collection of 24 instances generated based on

a winter gritting application in Lancashire county in the U.K. It contains two graphs,

one with 77 vertices and 98 edges (egl-s) and the other with 140 vertices and 190

69

edges (egl-e). Each graph consists of four sets of three instances each with the sets

differing by number of required edges. The instances within a set (named with suffix

A, B, C) differ by capacity limit of the vehicles.

We report the results of MA-ABC, using the parameter settings in Table 4.1,

from a single run to show that our algorithm is efficient, i.e., that operators can use

MA-ABC in a real-world scenario where solutions need to be generated in real time

such as in a vehicle breakdown scenario [136]. For completeness, we also present a

statistical analysis of 30 runs of our algorithm in §4.4.3.

Table 4.1: MA-ABC Parameter Settings

Parameter Value

Number of generations (NGEN) 300

Population size (µ) 100

Offspring produced (λ) 100

Crossover rate (CXPB) 1

Mutation rate (MUTPB) 1

4.4.1 Results

We compare the results of MA-ABC with the solution generated by 1000 iter-

ations of the path scanning with random task (PSRT) heuristic. PSRT was chosen

because it seeks to optimize total cost. We present results for the objectives of at-

tractiveness, total cost, and balance, in turn. Due to space limitations, see [134] for

a presentation of all results, including the data used to generate figures.

70

Attractiveness

We first provide a qualitative evaluation of MA-ABC for a few CARP instances.

Figure 4.2 shows a visualization of the routes generated by PSRT on the left and

those produced by MA-ABC on the right, using a different colour for each route,

for the egl-e4-A and val10C instances, respectively. As the figure shows, the routes

generated by MA-ABC are compact, do not cross, and have better defined service

areas; therefore they considered more attractive than the routes generated by PSRT.

We also provide a quantitative comparison of the algorithms using three metrics:

The connectivity index (CI), the average task distance (ATD), and the route over-

lapping index (ROI) [59]. CI measures the average number of connected components

within a route. ATD is a measure of average deadheading cost between task pairs

within the same route. ROI measures the node overlap of the current solution with

the overlapping of an “ideal” solution. For each metric, smaller is considered more

attractive.

We compute these three metrics for the most attractive solution in the Pareto

front found by MA-ABC and compare with PSRT. Table 4.2 shows the results for

the egl instances and Table 4.3 shows the results for the val instances. For each

metric the smaller value is shown in bold. We see that CI and ROI for MA-ABC are

lower than those of PSRT for all instances. ATD is also lower for MA-ABC for all

but six instances. Hence our routing solutions are considered attractive by external

metrics not used in the algorithm.

Total Cost

The first row of Figure 4.3 plots the total cost of egl (a) and val (b) instances,

produced by MA-ABC and PSRT; the optimal or current best known total cost

71

(a) PSRT (b) MA-ABC

Figure 4.2: Heuristic Routing Solution Produced By PSRT (left) and MA-ABC

(right) on Two Instances: egl-e4-A (top row) and val10C (bottom row).

The rectangle represents the depot. Vehicles on some routes need to deadhead on the

shortest path from the depot to the first task on the route.

72

Table 4.2: EGL: Attractiveness Metrics for PSRT vs. MA-ABC

Instance
PSRT PSRT PSRT MA-ABC MA-ABC MA-ABC

CI ROI ATD CI ROI ATD

egl-e1-A 2.60 0.65 61.19 2.17 0.54 43.14

egl-e1-B 2.71 0.38 45.35 2.29 0.38 57.05

egl-e1-C 2.70 0.35 44.28 1.30 0.35 23.40

egl-e2-A 2.71 0.35 58.67 2.00 0.28 58.22

egl-e2-B 2.60 0.21 60.23 1.64 0.20 43.44

egl-e2-C 2.21 0.23 37.97 1.40 0.22 28.91

egl-e3-A 2.88 0.73 67.31 2.30 0.61 71.95

egl-e3-B 2.25 0.53 51.26 1.64 0.47 32.64

egl-e3-C 2.18 0.62 33.40 1.83 0.59 47.48

egl-e4-A 2.22 0.92 63.86 1.92 0.73 67.48

egl-e4-B 2.36 0.75 41.70 1.75 0.68 40.56

egl-e4-C 1.90 0.59 32.51 1.29 0.57 26.79

egl-s1-A 3.29 1.18 83.33 2.57 1.18 96.80

egl-s1-B 2.90 0.77 76.66 2.18 0.71 83.50

egl-s1-C 2.29 0.59 49.09 1.60 0.56 45.60

egl-s2-A 2.79 0.41 60.95 2.18 0.36 44.17

egl-s2-B 2.85 0.41 44.98 1.79 0.36 36.71

egl-s2-C 2.33 0.50 43.87 2.03 0.48 29.16

egl-s3-A 2.67 0.38 46.59 1.94 0.36 35.94

egl-s3-B 2.27 0.54 41.67 1.96 0.51 56.17

egl-s3-C 2.21 0.38 40.51 1.44 0.36 19.95

egl-s4-A 2.47 0.69 49.65 1.43 0.65 39.04

egl-s4-B 2.04 0.62 34.70 1.38 0.59 23.53

egl-s4-C 2.31 0.59 34.26 1.28 0.54 19.97

73

Table 4.3: VAL: Attractiveness Metrics for PSRT vs. MA-ABC

Instance
PSRT PSRT PSRT MA-ABC MA-ABC MA-ABC
CI ROI ATD CI ROI ATD

val1A 1.50 2.36 6.46 1.67 1.69 5.94
val1B 2.00 1.82 5.65 1.40 0.95 3.43
val1C 1.38 0.89 2.98 1.22 0.59 1.72
val2A 1.00 1.89 9.22 2.00 1.30 7.00
val2B 2.33 1.56 8.14 1.67 1.56 9.13
val2C 1.50 0.89 3.60 1.00 0.59 1.30
val3A 1.00 1.18 2.61 1.33 1.04 2.57
val3B 1.67 1.69 3.03 1.00 1.02 1.85
val3C 1.43 0.90 1.10 1.13 0.66 0.66
val4A 2.00 1.72 10.11 1.20 1.44 8.29
val4B 1.75 1.74 7.90 1.33 1.50 7.30
val4C 2.20 2.02 9.52 1.38 0.93 5.25
val4D 2.00 1.38 6.56 1.10 0.99 5.15
val5A 1.40 3.20 6.88 1.40 1.63 6.88
val5B 2.00 1.97 7.87 1.33 1.58 6.87
val5C 1.80 2.13 7.87 1.86 1.74 7.11
val5D 1.89 1.50 5.48 1.50 1.30 5.58
val6A 1.67 1.61 5.93 1.20 0.72 3.98
val6B 1.75 1.65 6.60 1.00 0.60 2.57
val6C 1.50 0.90 2.88 1.18 0.67 1.97
val7A 1.33 1.23 6.55 1.20 0.76 3.86
val7B 1.25 1.03 5.67 1.00 0.54 3.11
val7C 1.44 0.92 3.95 1.00 0.62 1.80
val8A 1.33 1.99 7.76 1.40 1.73 6.76
val8B 2.00 2.09 7.61 1.67 1.72 7.38
val8C 1.33 1.39 3.69 1.18 1.17 3.60
val9A 1.67 2.30 6.09 1.40 1.37 4.46
val9B 1.75 2.05 5.60 1.83 1.37 4.08
val9C 2.00 2.00 5.77 2.00 1.58 4.04
val9D 1.50 1.30 3.11 1.33 1.17 3.08
val10A 1.67 2.57 6.36 1.60 1.68 4.62
val10B 2.00 1.92 4.74 2.67 2.39 7.14
val10C 1.80 2.26 5.16 1.71 1.50 4.24
val10D 1.60 1.59 4.53 2.08 1.42 3.89

solution is also plotted.

In comparison to PSRT, MA-ABC found a lower total cost solution for all 24

instances of egl. The percentage of reduction ranges from 8.81-19.64% with an

average reduction of 11.45%. The total cost found by MA-ABC ranges from 0.36-

6.18% higher than the optimum (or best known solution), with an average of only

3.31% higher. MA-ABC is able to come quite close to the optimum (or best known)

routing solutions with respect to total cost.

74

(a) egl instances (b) val instances

Figure 4.3: Comparison of Total Cost (top); Optimum/Best Known Total Cost Re-

sults in Green, MA-ABC in Orange, and PSRT in Blue. Comparison of Makespan

(bottom); MA-ABC Results in Orange, and PSRT in Blue. Both Objectives are

Minimized.

75

Balance

We use makespan as a proxy for balance; see §4.3.5. The second row of Figure 4.3 plots

the makespan of egl (a) and val (b) instances, produced by MA-ABC and PSRT.

Maximizing balance corresponds to minimizing the makespan. The best makespan

solutions of MA-ABC are smaller than those of PSRT for all benchmark instances.

For egl the average reduction is 13.68%, but for val the average reduction is much

larger, namely 28.27%.

4.4.2 Pareto Efficiency, Spread, and Convergence

An MOEA that produces a diverse set of solutions at the Pareto front is useful

for operators by providing a wide set of heuristic solutions to meet design objectives.

The approximate Pareto front generated by MA-ABC for the instance egl-e4-A is

shown in Figure 4.4 with total cost, attractiveness, and balance as axes. The figure

shows that the Pareto front is wide and diverse, providing choice for operators.

To further illustrate the range of choice that MA-ABC offers, in Figure 4.5 we

use a box-and-whiskers plot for each metric, for each heuristic solution on the Pareto

front. In general, these plots show that the boxes for balance and attractiveness are

larger than those of total cost. This is not surprising because our algorithm uses only

the total cost for the move operator in the local search; this helps to achieve total

cost values closer to optimum and maintain the heuristic solutions in the population

closer to the optimum total cost (balance and attractiveness considered secondary

objectives).

Early convergence is a concern in EC [137]. Convergence can be inferred from the

change in the population from generation to generation. A figure that plots of the

objective values as a function of generation is also helpful. For example, Figure 4.6

76

Figure 4.4: Approximate Pareto Front (in Blue) for egl-e4-A. A Visualization of the

Routing Solution, Total Cost and Makespan are Given for Three Solutions on the

Front: From Left to Right, the Best Heuristic Solution with Respect to Total Cost,

Attractiveness, and Makespan.

plots the total cost versus generations for the egl-s4-C instance. This figure shows

that, towards the end of the number of generations, the total cost of the best heuristic

solution flattened indicating that it has attained stability and is near convergence.

At the same time, the mean fitness varies indicating that the method maintains good

diversity.

We also computed the number of unique non-dominated solutions, number of

unique dominated solutions, and the number of duplicate solutions in the final itera-

tion of MA-ABC for egl and val. The number of unique non-dominated solutions

ranges from 12-63 for the egl instances. For the val instances the range is from 7-60,

77

(a) Attractiveness (b) Total cost (c) Balance

Figure 4.5: Box-and-Whiskers Plots Illustrating Spread of the Heuristic Solutions Found

By MA-ABC for (a) Attractiveness, (b) Total Cost, and (c) Balance for the egl-e (row

1), egl-s (row 2), and val (row 3) Instances. The Green Diamond Next to Each Instance

of Total Cost Indicates the Optimum (or Best Known) Solution.

78

Figure 4.6: Total Cost vs. Generations for egl-s4-C.

except for val1-val3 which range from 2-17 because the graph is smaller. The larger

the number of unique non-dominated solutions, the higher the number of choices for

an operator; it confirms that diversity is maintained and the early convergence is

avoided.

4.4.3 Statistical Analysis

All results presented so far are for a single run of MA-ABC. To measure the

repeatability and precision of MA-ABC we use the coefficient of variation (CV). It

is defined as the ratio of the standard deviation σ over the absolute mean µ. A CV

value that is more than 100% is considered highly variant, while a CV less than 100%

is considered to show low variance.

79

Table 4.4 presents µ, σ2, and CV for each of total cost, attractiveness, and

makespan, computed from 30 runs of MA-ABC. The table shows that the CV is

greater than 100% for only one instance in egl-e and none in egl-s. All val in-

stances (see [134]), have CV less than 100%; 10 had more than 33% and only four

were more than 50%. This suggests that MA-ABC gives consistent results.

80

Table 4.4: Mean, Variance, and CV for egl Instances

Instance
Total cost Atttractiveness Makespan

µ σ2 σ
|µ| µ σ2 σ

|µ| µ σ2 σ
|µ|

egl-e1-A 3589.73 3988.20 1.76 -19.00 0.69 4.37 819.77 1.63 0.16

egl-e1-B 4566.00 618.90 0.54 -16.63 0.52 4.32 815.77 115.77 1.32

egl-e1-C 5725.57 2497.84 0.87 -14.20 0.51 5.03 799.03 425.90 2.58

egl-e2-A 5122.97 1943.76 0.86 -0.30 2.15 488.57 837.63 124.65 1.33

egl-e2-B 6437.53 1848.53 0.67 3.70 1.11 28.52 826.77 16.94 0.50

egl-e2-C 8529.60 3400.25 0.68 10.27 0.41 6.23 818.40 12.52 0.43

egl-e3-A 6048.33 2804.02 0.88 10.70 1.11 9.86 856.70 87.04 1.09

egl-e3-B 8033.47 5288.26 0.91 17.63 1.14 6.05 826.67 29.26 0.65

egl-e3-C 10422.67 8846.16 0.90 25.37 1.27 4.45 819.73 0.75 0.11

egl-e4-A 6716.30 3202.15 0.84 18.13 0.67 4.52 854.30 150.56 1.44

egl-e4-B 9404.47 6731.50 0.87 28.33 1.61 4.48 822.20 4.65 0.26

egl-e4-C 11775.20 16557.13 1.09 35.33 2.16 4.16 819.80 0.37 0.07

egl-s1-A 5168.37 154.17 0.24 -54.67 0.37 1.11 953.83 260.76 1.69

egl-s1-B 6585.53 1697.57 0.63 -52.00 0.69 1.60 922.70 18.08 0.46

egl-s1-C 8570.50 2717.71 0.61 -47.33 0.37 1.28 914.00 20.69 0.50

egl-s2-A 10454.63 7436.65 0.82 11.07 2.89 15.37 1030.53 187.64 1.33

egl-s2-B 13749.00 15646.07 0.91 21.90 4.58 9.77 992.87 61.64 0.79

egl-s2-C 17058.07 18664.41 0.80 31.17 3.25 5.78 978.70 0.22 0.05

egl-s3-A 10684.20 5807.27 0.71 18.60 3.35 9.84 1031.23 258.74 1.56

egl-s3-B 14368.47 14492.81 0.84 33.20 3.96 5.99 989.40 66.04 0.82

egl-s3-C 17979.63 20183.76 0.79 40.00 3.72 4.82 979.00 4.55 0.22

egl-s4-A 13169.83 13510.83 0.88 52.90 9.33 t 5.78 1031.57 36.19 0.58

egl-s4-B 17076.97 20326.93 0.83 66.77 5.56 3.53 1026.80 0.58 0.07

egl-s4-C 21500.30 41947.25 0.95 80.33 4.71 2.70 1018.50 173.02 1.29

81

4.4.4 Run Time Performance

MA-ABC was run on a desktop system with Intel Core i7-4770S CPU @ 3.10

GHz × 8, with 7.7 GiB of memory, running the Ubuntu 18.04 LTS operating system.

Figure 4.7 and figure 4.8 shows the running time for egl and valinstances respectively,

plotted as a function of instance size, i.e., the number of required tasks. The running

time for egl instances ranges from 122.72-1291.12 seconds , and from 42.97-262.34

seconds for val instances. As the figure shows, the run time is approximately linear.

This indicates that MA-ABC appears to scale well and may be appropriate for real-

world instances.

Figure 4.7: Run Time vs. Instance Size for egl Instances.

4.5 Discussion

The purpose of the current work is to show that the attractiveness of a heuristic

routing solution may be improved using EC algorithms, without compromising total

cost. This provides operators of services broad and diverse choice among heuristic

solutions to meet their design objectives. Furthermore, MA-ABC produces these

82

Figure 4.8: Run Time vs. Instance Size for val Instances.

heuristic solutions with only one run which is important in case of service interruption

which requires a real time response, e.g., rerouting in the event of a vehicle breakdown.

Our new metric of attractiveness could find other application domains, e.g., in

node routing problems such as in air route networks, among others.

We want to keep MA-ABC simple to enable easy adoption and reproducibility.

Hence no parameter tuning methods are currently integrated into MA-ABC. To

enable MA-ABC to be more general so that it can perform well across more types of

instances, some form of automatic tuning can be integrated. Recall that the source

code is provided at [134].

We also did not use pool update or population restart strategies in order to keep

our design simple. The current population size of 100 and number of generations of

300 can be reduced by using some form of pool update strategy which may help in

reducing the running time for large-sized instances.

We implemented local search based only on the total cost objective to keep the

solutions close to the optimum total cost; this is because total cost is generally con-

83

sidered of high importance.

We used only one move operator as the local search is expensive and we want to

limit the running time. Multi-objective local search and sophisticated move operators

such as K-opt may help to improve solution quality in real-world instances in spite

of an increase in computation time. The computation time of local search may be

reduced by using acceleration mechanisms and by using statistical filters [43].

4.6 Conclusion

In this chapter we introduced attractiveness and route balance objectives that are

considered equally important as total cost by operators. We developed MA-ABC, a

multi-objective EC algorithm based on NSGA-II for CARP with three objectives: To

seek to minimize total route cost and balance, and to maximize route attractiveness.

We defined a novel fitness function for attractiveness combining a measure of route

overlap and a measure of route contiguity. We evaluated MA-ABC on two benchmark

CARP instances. The resulting heuristic solutions are not only visually attractive but

also obtain a Pareto front that is diverse with broad choices for the attractiveness

and makespan objectives without deviating much from the best total cost objective.

In the next chapter we present Splice, an AI- driven, machine learning framework

that learns the heuristics and generate close to optimum solution fast at the time of

inference.

84

Chapter 5

LEARNING HEURISTICS FOR ARC ROUTING PROBLEMS

Recently there has been an increased interest in applying machine learning methods to

solve combinatorial optimization and routing problems. They enable quick generation

of a solution at the time of inference and reduce dependence on human expertise for

heuristic solution methods. However, there is little work in arc routing. This chapter

presents Splice, an AI-driven machine learning framework that uses graph neural

networks and deep reinforcement learning to learn heuristics for CARP. The design

of Splice enables it to be used for variants of arc routing and node routing problems

without change in network architecture or hyper-parameter tuning.

The chapter is organized as follows. In §5.1, we give a brief introduction to

AI-driven approaches in solving routing and combinatorial optimization problems.

In §5.2, work related to AI-driven approaches for CARP is reviewed. The Splice

framework is introduced in §5.3 with the components of each step described. §5.4.4

describes how Splice is trained, and then presents the results of applying it to test

instances. After some discussion of the framework in §5.5, we summarize our work in

§5.6.

5.1 AI Driven Approach for Solving ARPs

Enabled by advances in computer architecture, the performance achieved by ar-

tificial intelligence (AI) driven approaches to modelling and solving problems in ap-

plications such as image recognition, machine translation, and others, has renewed

interest in these methods to tackle problems in combinatorial optimization. Bengio

85

et al. [73] explore two types of approaches: One is to use the machine learning meth-

ods to either augment exact methods for solving the problem as a component, or to

assist them in their sub-processes, such as predicting the next efficient branch for a

branch-and-bound method [138, 139]. The second is to use machine learning methods

as a stand-alone end-to-end solver to generate a heuristic solution faster and closer

to the optimum solution at the time of inference. In this approach, the model learns

the heuristics by learning the distribution of the parameters of the training instances.

It then computes the solution at the inference time assuming that the new instance

shares the same distribution.

In their daily operations, operators of services frequently encounter changes in

the problem instance. For example in solid waste collection, operators frequently

encounter vehicle breakdowns resulting in a change in the availability of vehicles, a

change in the streets to service due to events such as local festivals, and a change in

demand and cost of servicing the streets due to holidays and seasonal load. Hence

there is often a need to run the solver again to obtain a cost effective solution for the

changed instance.

As we will see in §5.2, most AI-driven approaches deal with variants of problems

represented by a euclidean graph, in which the vertices represent points in the plane,

and the edges are assigned lengths equal to the euclidean distance between those

points. The graph representation of CARP and its variants is non-euclidian with all

parameters associated only with the edges. Hence existing solution methods cannot

be applied directly for solving arc routing problems.

This chapter presents Splice, an AI-driven machine learning (ML) framework

to learn heuristics to solve non-euclidean representations of routing problems, and

apply it to learn heuristics for CARP. It enables the fast generation of a solution at

the time of inference by learning the distribution of the problem parameters from

86

training instances and, as a result, is also able to adapt to changes in the problem

instance. Splice learns to generate an appropriate graph embedding using message

passing [140], and then learns heuristics through deep Q-learning [81], a form of

reinforcement learning. Therefore we do not require labels or an optimum solution

to train the network, speeding both the training and inference phases.

Because Splice learns a route-first split-second heuristic [48, 34], the same ar-

chitecture can be applied to variants of the arc and node routing problems by using

the appropriate splitting procedure. In addition, because Splice generates a graph

embedding using a Graph Neural Network (GNN), it can learn the structure of the

non-euclidean graph extending its applicability to a number of problems in combina-

torial optimization.

We run extensive experiments by testing on instances generated with specific dis-

tribution settings and report the results of the model’s performance. We compare the

results of Splice with those produced by a path scanning heuristic and by a memetic

metaheuristic algorithm. Splice finds solutions whose total cost range from 11-30%

less in comparison. The heuristics are also shown to generalize well, taking into

account the distribution of the topology and the problem parameters such as cost,

demand, and the number of edges.

5.2 Related Work

We have already discussed the works related to AI-driven approaches for combi-

natorial optimization and routing problems in chapter 2 in §2.6.5. All the methods

reviewed in §2.6.5 approach to solve as constructive type of heuristics generating

only a single solution. There are also works that approach to model as improvement

heuristics or local search; see [92, 93, 94, 141, 96] for details.

87

Those methods are focused only on node routing problems, such as VRP or TSP,

where variants of the problem are represented by a euclidean graph. In contrast arc

routing problems pose different challenges, notably that the problems are defined on

the edges of the graph rather than on its vertices. This requires new methods to

transform the input to encode edge features into a suitable representation to learn

the non-euclidean graph structure, and to learn heuristics for the problem.

To the best of our knowledge, there are two studies related to learning heuristics

for arc routing problems, both dealing with CARP only [142, 143]. Li and Li [142]

consider CARP as a set-to-sequence problem and use a policy gradient to learn the

heuristics. In their network architecture, they first use a graph convolution network

(GCN) [144] to generate embeddings of the edge set. Then, two pointer networks

are used: One outputs a sequence from the edge set embeddings and the second

determines the direction of each task in the generated sequence. The demand (state)

is updated at every step of the solution generation.

Hong and Liu [143] instead consider CARP as a sequence-to-sequence problem

and uses only a single seq-2-seq based pointer network. Their network architecture

has three stages: Presorting, graph embedding generation using node2vec [145], and

a pointer network to generate the solution. A fourth post-sorting stage is applied to

the solution generated in the testing phase. A supervised learning method and the

MAENS metaheuristic algorithm [121] are used for generating the solutions.

In both studies, the performance of the model is evaluated by calculating the gap

with the results of the MAENS metaheuristic algorithm [121] and with that of the

Nazari et al. [82] model for VRP (modified to accept the CARP edge sets as input).

As we will see next, in Splice, we use a message passing graph neural network

(GNN) [140] to generate the embeddings of the edge set, and we learn heuristics

through deep Q-learning [81], which is sample efficient. Our model learns route-

88

first split-second heuristics and uses splitting procedures that reduce the run-time

complexity of handling the demand dynamically, and allows the direction of tasks to

be found implicitly from the shortest path. While we focus on CARP, Splice can

be applied to other variants of arc and node routing problems without any network

modification.

We now describe the solution approach used in Splice in detail.

5.3 The Splice Framework for Learning Heuristics

Splice is an AI-driven framework to learn heuristics for CARP that exploits the

structure of the graph representation of instances from a distribution D. Figure 5.1

shows a block diagram of the framework incrementally constructing a solution to an

instance represented by G = (V,E) from D, with tasks T ⊆ E, by combining graph

embedding and deep Q-learning. The framework is applied to training instances to

learn a model that can be applied to yield solutions for test instances.

At a high level, in each step i of the loop, a message passing graph neural network

(GNN) is used to learn the graph embedding, followed by additional layers to learn

the functional approximation of a solution through deep Q-learning. The adjacency

matrix of the line graph GL, a transformation of G, together with the edge features

constitute the input state for the GNN. The output of the GNN in step i is a graph

embedding, i.e., action-values of the input state. The action with the maximum

embedding corresponds to the selection of a task, which is then appended to the

incremental giant tour.

An incremental giant tour is an ordered sequence of i tasks without consideration

of vehicle capacity limits. This incremental tour is split into routes for vehicles taking

into account their capacity and other constraints of CARP. The meta-algorithm learns

89

Figure 5.1: Block Diagram of the Splice Framework to Learn Heuristics for Arc

Routing Problems.

route-first split-second heuristics through deep Q-learning. It estimates a reward for

the incremental solution and updates the gradient over the loss. The state of the

input is then updated to reflect the results of step i for use in the next step. The

loop iterates 1 ≤ i ≤ |T | times, at which point all tasks are included in the giant

tour. When the giant tour is split into routes and spliced together, a solution for the

CARP instance represented by G is found. This process motivates the name of our

framework.

We now describe each block in the Splice framework in more detail.

90

5.3.1 Input Feature and State Representation

For node routing problems there are well known methods to learn the graph repre-

sentation such as random walks [146], or node embedding methods such as node2vec

[145]. In CARP the problem instance is represented by a weighted undirected graph

G = (V,E), together with the set of tasks T ⊆ E each with an associated cost and

demand. Because CARP is defined on the edges of G and not its vertices, node

embedding methods cannot be applied directly. Therefore, the problem instance is

transformed into a line graph to make it more amenable to generate a graph embed-

ding by a graph neural network (GNN).

The line graph GL = (VL, EL) transformation of G has vertices that correspond

to its edge set E, i.e., VL = E. If (u, v) and (v, w) are two edges in E that share

a common end-point v, then there is an edge from vertex (u, v) ∈ VL to vertex

(v, w) ∈ VL in the edge set EL [147, p. 20]. Figure 5.2 shows a graph representation

of a CARP instance and its transformation into a line graph.

While the line graph captures the tasks of CARP and their connectivity, it does not

capture the other parameters of the problem. Hence to complete the representation

of the problem, associated with each edge e = (u, v) ∈ E is a 7-tuple feature vector

⟨u, v, c(e), d(e), present, first, last⟩ that gives the endpoints of the edge, the cost c(e)

of traversing e, the demand d(e) of e, and three indicator variables. These indicator

variables relate to the incremental giant tour in step i. present is true if the task

corresponding to e is in the incremental solution and false otherwise. Similarly first

and last are true if e is the first, respectively last, edge in the incremental giant tour.

Initially, the indicator variables of all edges are false. As tasks are added incrementally

to the giant tour, the tuples are updated to reflect any state change.

91

Figure 5.2: A Graph G Representing an Instance of CARP (left), and its Line Graph

Transformation GL (right).

Each edge in G corresponds to a vertex GL, e.g., the edges (D, 3) and (3, 4) in G correspond

to the vertices (D, 3) and (3, 4) in GL. If (u, v) and (v, w) are two edges in G that share

a common end-point v, then there is an edge from vertex (u, v) to vertex (v, w) in GL.

Continuing the example, because the edges (D, 3) and (3, 4) in G are both incident on

vertex 3, there is an edge between vertices (D, 3) and (3, 4) in GL.

5.3.2 Message Passing GNN for Learning the Graph Embedding

In order for subsequent layers to learn the meta-algorithm heuristic function [148],

the input state must be transformed into a suitable graph embedding representation.

Graph neural networks (GNNs) are effective to learn and represent non-euclidean

graphs. While many different methods are known, in Splice we use a message

passing GNN [140] for this purpose.

A message passing GNN learns an embedding by iteratively aggregating the in-

92

formation of the neighbours of a vertex and then using a non-linear transformation

of the aggregated values with itself. In each step i of the loop, there are k layers of

message passing in the GNN. In general, the embedding hi,k
u of vertex u in step i after

k layers of message passing is given by [149]:

hi,j
u = Updatej−1

(
hi,j−1
u ,Aggregatej−1

v∈N(u)(h
i,j−1
v)

)
, j = 0, . . . , k − 1 (5.1)

where N(u) are the neighbors of u. The Update(·) and Aggregate(·) functions are

any differentiable functions that can be implemented in a neural network. Usually

a non-linear function is used for the Update(·) function. The aggregation function

should be permutation invariant to remove dependence on the input order. Each

layer of the GNN extends the learning of neighbors through aggregation.

We now tailor Equation (5.1) in the context of CARP in the Splice framework.

The vertices of GL correspond to tasks of the CARP instance, and hi,k
u represents the

input features for the edge u at step i after k iterations of GNN message passing.

Here, h0,0
u corresponds to the 7-tuple feature vector initialized for each edge. The

adjacency matrix of the line graph GL is used to determine the neighbourhood N(u)

of u, for aggregation of messages in the GNN.

Initially the giant tour G0 = ⟨⟩ is empty, and T0 = T , the set of all tasks T ⊆ E in

the CARP instance. The neighbours N(u) of a task u are the tasks v reachable from

u, i.e., v such that (u, v) ∈ GL. The rectified linear unit (ReLU) function [150] is

used as the Update(·) function and Aggregate(·) is a summation of the embeddings.

We do not normalize after aggregation to avoid any loss of information. Rewriting

Equation (5.1) in the context of CARP in Splice to update the graph embedding

for a task u in the ith step is given by:

hi,j
u = ReLU

θ1h
i,j−1
u + θ2

∑
v∈N(u)

hi,j−1
u

 , j = 0, . . . , k − 1. (5.2)

93

where θ1 and θ2 are the model parameters of the embedding that are learned. The

number k of iterations used by the GNN to compute the embedding is bounded by

the half the graph diameter because this encompasses all vertices of the graph; more

iterations leads to over-smoothing [149].

The subsequent layers use functional approximation to estimate the evaluation

function Q(Gi−1, u,Θ) to measure the quality of vertex u with respect to the incre-

mental giant tour Gi−1. These are essentially the action-value pairs for the current

input state:

Q(Gi−1, u,Θ) = ReLU(θ3 h
i,k
u) (5.3)

An ϵ-greedy strategy [151] is used to aid exploration during the training phase. It

selects the action with the maximum embedding value with probability 1 − ϵ. This

corresponds to the selection of a task u of highest quality:

u = arg max
v∈Ti−1

Q(Gi−1, v,Θ) (5.4)

With probability ϵ, the strategy selects a random action.

This vertex u selected is appended to the incremental giant tour, i.e., Gi =

⟨Gi−1, u⟩, an ordered list of vertices. In addition u is removed from the set of tasks

remaining Ti = Ti−1 \ u.

5.3.3 Deep Q-learning for Learning the Heuristics

For each task u, the model parameters Θ = {θ1, θ2, θ3} of the quality evaluation

function Q(Gi, u,Θ) are learned using deep Q-learning [152], a form of reinforcement

learning. Q-learning [153] is chosen because it is sample efficient and is more stable

than other methods [151]. Splice combines n-step fitted Q-iteration [154] and deep

Q-learning [81] to learn the parameters.

94

The target value y is the sum of the reward and the maximum action-value of the

next state scaled by discount factor γ [151], in step i:

y = reward(Gi) + γmaxu′Q(Gi, u
′
,Θ). (5.5)

The mean squared loss is defined as the square of the difference between the target

value y and the current state value given by:

loss = (y −Q(Gi, u,Θ))2. (5.6)

Fitted Q-iteration uses experience replay, performing batch updates from a replay

memory at the gradient steps. This helps to mitigate the correlation issues faced by

performing updates of loss from sequential samples [81].

In step i, the giant tour Gi is a sequence of i tasks. That is, we have generated a

tour (“route-first”) and now we must split the tour into a set of closed routes (“split-

second”). Then a reward estimated for the solution, and the loss propagated; these

are discussed next.

Splitting the Giant Tour into Routes and Reward Estimation

Methods for splitting a giant tour into routes are well studied in arc routing [34, 38,

118, 39]. A giant tour must be split into individual routes respecting the capacity

limit C of the vehicles and other CARP constraints.

In Splice, the splitting procedure is based on the route-first split-second heuris-

tic proposed by Ulusoy [34]. First, an auxiliary directed acyclic graph (DAG), is

constructed based on the giant tour Gi. Once the DAG has been constructed, it is

split into individual routes by finding the shortest path for each task in tour order

from the depot and back, subject to the vehicle capacity and other constraints.

Figure 5.3a illustrates the splitting procedure for a sample CARP instance with

five tasks T = {a, b, c, d, e} with the demand for each indicated inside a square; recall

95

non-required edges have zero demand. Each edge also has an associated traversal cost.

Figure 5.3b shows a giant tour G5 = ⟨b, c, a, e, d⟩ containing all tasks. Figure 5.3c

shows, for each task in the sequence, the cost of the shortest path from the depot to

the task returning back to the depot including dead-heading, in addition to the cost

of the shortest path between tasks via dead-heading, if required. In this example,

task c is adjacent to task b hence no dead-heading is required to service task b after

servicing task c.

From this graph, the auxiliary DAG is constructed. While Gi has i vertices,

the DAG has one additional vertex for the depot. The vertices in the DAG corre-

spond to the cost of servicing each subsequence tk, k ≤ j, j = 1, . . . , i of tasks in

Gi = ⟨t1, t2, . . . , ti⟩, while the arcs are labelled by the feasible subsequences of tasks.

Feasibility is dictated by sequence order in the giant tour. All routes in CARP start

and end at the depot, hence the cost of the first vertex is zero.

Suppose that the vehicle capacity C = 7. Because the first task in G5 is task

b, all arcs out of the depot must start by servicing task b. As Figure 5.3c shows,

servicing task b only has a cost of 12, hence the auxiliary graph has a vertex with

cost 12 for servicing task b. However the demand of task b is only 3, leaving capacity

C = 7 − 3 = 4 with the possibility to service another task. Only task c is feasible.

The route bc shown as arc bc with cost 16 in the DAG is obtained from Figure 5.3c by

including the cost of tasks b and c, the cost of the deadheading between them, and cost

of dead-heading from the depot to b, and from c to the depot: 4 + 2 + 0 + 2 + 8 = 16.

The route bc cannot be extended because the remaining capacity is C = 4 − 2 = 2

and the demand 4 of the next task in the sequence, a, exceeds the capacity.

Each vertex in the auxiliary graph is extended in all feasible ways subject to

capacity constraints. The last vertex in the DAG is then the total cost of servicing

all tasks in Gi. After the construction of the DAG is complete, the shortest path

96

from the depot to the last vertex represents the minimum cost of servicing all tasks.

Figure 5.3e shows a shortest path with three arcs in bold with a total cost of 48 for

G5. Each arc corresponds to a closed route that includes the tasks serviced by that

route. In this example, there are three routes from the depot with one servicing task

b followed by c, a second servicing only task a, and a third servicing task e followed

by d. These tasks are spliced together to give a solution for G5.

After splitting and computing the total cost for Gi at step i, we compute the

reward for the current action of appending task u to Gi as:

reward(Gi) = − (total cost(Gi)− total cost(Gi−1)) , (5.7)

where the total cost(G0) = 0.

The input features of all edges are then updated for the next step of the framework.

The run-time and space complexity of the splitting procedure is O(|T |2), where |T |

is the number of tasks. The splitting procedure described can be performed without

constructing the DAG explicitly as done by Lacomme et al. [48]. This reduces the

space complexity to O(|T |).

A giant tour of minimum cost that is split into a routing solution does not neces-

sarily result in a solution to CARP of minimum total cost. This is one way in which

Splice differs from the learning methods for solving the TSP. Splice does not learn

to construct the tour of minimum cost but a tour that yields minimum total cost

upon optimal splitting.

5.3.4 The Splice Q-learning Algorithm

The Splice framework is now summarized using pseudocode in Algorithm 4. In

line 3, the algorithm iterates for N episodes to train the network. Each episode trains

97

(a) CARP instance. (b) Giant tour G5.

(c) Prelude to DAG construction.

(d) Auxiliary DAG taking into account capacity.

(e) Routes resulting from splitting the giant tour.

Figure 5.3: An Illustration of the Splitting Procedure for CARP.

98

using a single graph.

In line 4, a graph G representation of a CARP instance is selected at random from

a training data set with distribution D. G is transformed into a line graph GL, and

the input features for each task are collected.

The outer loop of the algorithm in line 9, which corresponds to the outer loop in

the block diagram in Figure 5.1, iterates for |T | steps. In each step, a message passing

GNN generates a graph embedding (line 10). The embedding is used as input to the

Q-Net. Using the ϵ-greedy strategy, a task u maximizing the embedding is selected

(line 12) and added into the giant tour. Then after splitting the giant tour, a reward

is computed for the solution (line 18) and stored in the experience replay memory

(line 19). In fitted Q-iteration, loss is not performed on sequential samples but instead

performed on batches at a gradient step to avoid correlation (line 22).

The state is then updated (starting at line 23) for the next step of the outer loop.

After training, the algorithm returns the model Θ which can then be used to apply

the heuristics learned to obtain a solution to a new CARP instance from distribution

D in a similar manner.

5.4 Experimentation and Results

In this section we describe how instances of CARP are generated for training and

testing in the Splice framework, and the selection and tuning of hyper-parameters.

Then the experimental set-up is described, followed by the results obtained.

99

Algorithm 4: Splice Q-learning Algorithm

Input : CARP instance G = (V,E), T ⊆ E, and c(t) and d(t) for each e ∈ E
Output: Splice model, Θ

1 Initialize experience replay memory M capacity
2 Set hyper-parameters as in Table 5.1

/* Iterate for N episodes */
3 for episode← 1 to N do

/* Select a graph representation of a CARP instance */
4 Select a graph G at random for training from distribution D
5 Transform G into its corresponding line graph GL
6 Initialize input state: Adjacency matrix of GL and feature vector for each edge

7 Initialize incomplete tasks T0 ← T
8 Initialize giant tour G0 ← ⟨⟩

/* Use one-step Q-learning to learn the parameters */
9 for i← 1 to |T | do

10 Use message passing to learn the graph embedding

/* Use ϵ-greedy strategy to select next task, u */
11 Choose probability p uniformly at random
12 if p < ϵ then
13 u← choose task uniformly at random from Ti−1

14 else
15 u← argmaxv∈Ti−1

Q(Gi−1, v,Θ)

/* Append u to incremental giant tour; update task set */
16 Gi ← ⟨Gi−1, u⟩
17 Ti ← Ti−1 \ u
18 Split Gi in routes and compute reward(Gi)
19 Add tuple into replay memory M

/* Use fitted Q-iteration with experience replay */
20 if i mod N == 0 then

21 Obtain a random sample batch from replay memory, B
iid∼ M

22 Perform gradient update of Θ over loss (Equation (5.6)) for the batch
B

/* Update state for next iteration of outer loop */
23 update feature vectors for each edge

24 return Θ

100

5.4.1 Sample Instances for Training and Testing

Arc routing problems are defined on road networks that are commonly grid-

shaped. Hence the graph representation of the road network has a grid topology.

We create a distribution D of grid topologies, deleting at most k edges at random, to

create variations in topology and in vertex degree. These were then augmented with

costs and demands to generate a CARP instance.

To generate a training instance, first graph G = (V,E) in the form of an m×n grid

of vertices with 2mn−m− n edges is generated; vertex 1 is designated as the depot.

At most k edges are deleted at random. As edges are deleted, if a vertex becomes

isolated it is deleted from the instance; if the depot becomes isolated the instance is

abandoned and generation is restarted. Then, costs and demands are assigned to the

edges from a distribution according to the specific arc routing problem. For CARP,

traversal costs are assigned to all edges, with non-zero demand assigned to t ∈ T

and zero demand assigned to t ∈ E \ T . The Capacitated Chinese Postman Problem

(CCPP) is a variant of CARP in which T = E. The vehicle capacity C does not vary

across instances.

For training Splice all instances created start as a 5× 4 grid, which have k = 2

deleted at random yielding 29 edges. The cost of each edge is varied uniformly

between 4 to 6; the cost is not varied much to ensure that the topology of the graph

remains planar. The demand of each is varied uniformly between 0 and 5 for CARP

(and between 1 and 6 for CCPP). Figure 5.4 shows one of the instances generated for

CARP by this method.

A total of 20,000 distinct instances with 29 edges were generated. These are

divided into training, validation, and testing data sets with a ratio of 80:10:10, re-

spectively.

101

Figure 5.4: Sample Training Instance Generated for CARP.

5.4.2 Hyper-Parameter Tuning and Selection

The typical hyper-parameter settings used in the many general reinforcement

learning for control tasks are found to fit our experiments without the need for ex-

tended tuning. From monitoring the metrics of loss, the running average of the route

cost, and observing their stability, 10,000 training episodes were found to suffice. An

embedding dimension of five was found to be adequate for models of CARP instances

with both 15 and 29 edges with a 7-tuple feature vector. Extending the embedding

dimension beyond five does not provide any advantage. The replay buffer capacity

plays a role in how long the transitions are kept and used for learning [155, 156]. We

found a capacity of 4000 fit our architecture, input problem size, and the number of

episodes. The learning rates, and the learning decay rate for the Adam optimizer

102

[157], were set to the standard values typically used and did not require any further

tuning. The settings used are summarized in Table 5.1.

Table 5.1: Hyper-parameter Settings Used in Splice

Hyper-parameter Value

Number of episodes 10,000

Embedding dimension 5

Discount factor, γ 0.9

Number of layers 5

Learning rate, α 0.005

Learning decay rate, η 0.99998

ϵ in ϵ-greedy strategy 0.1

ϵ decay rate 0.0006

n-step reward update, N 2

Replay buffer memory capacity 4000

Batch size 16

The Pytorch [158] framework was used for creating the neural network layers in

the python programming language. The Networkx [159] package was used for gener-

ating instances, and for line graph transformations.

5.4.3 Experiment Set-Up

We performed three experiments. The first one is for the CCPP variant of CARP

in which all the edges are required, i.e., T = E. The second experiment is performed

on CARP. In both these experiments, the vehicle capacity C = 16. All instances

created had 29 edges, with demands as described in §5.4.1.

103

The third experiment is to evaluate the generalization capability of the model. In

this experiment we train the Splice model on CARP instances with 15 edges but

test it on instances with 29 edges. For both the 15- and 29-edge instances, we set the

vehicle capacity to C = 8.

We compare the results of Splice on test instances with those produced by the

path scanning (PS) heuristic [29], and the memetic algorithm metaheuristic (MA)

[48]. The hyper-parameters of MA are set to 300 generations, a population size of

100, and the probability of cross-over and mutation to be certainty.

5.4.4 Results and Analysis

After training, inference was performed on test instances without learning or up-

dating the gradients. In general, the total cost achieved by the memetic algorithm

is less than that achieved by path scanning; this is not surprising as metaheuristics

generally outperform heuristics [24].

For CCPP, the total cost achieved by Splice is less than path scanning and the

memetic algorithm for ten instances selected at random from the 2,000 instances run.

As Figure 5.5 shows, the average percentage of reduction in total cost is 29.03% when

compared to path scanning and 23.43% when compared to the memetic algorithm.

For CARP, the results are similar to those of CCPP except that, for two of the ten

instances selected at random from 2,000 instances run, the memetic algorithm has

lower total cost. For all other instances, Splice has lower total cost, and has lower

total cost than all PS instances. On average the percent reduction in total cost is

15.60% over path scanning and 10.75% lower than the memetic algorithm. Figure 5.6

tabulates and plots results for these ten CARP instances.

To check the generalization capability of Splice, we train the model on CARP

104

Instance S PS %↓ MA %↓

29E 19160 228 304 25.00 296 22.97

29E 12689 231 329 29.79 305 24.26

29E 8479 234 333 29.73 312 25.00

29E 17805 238 326 26.99 308 22.73

29E 12410 228 366 37.70 330 30.91

29E 5463 241 365 33.97 316 23.73

29E 4942 249 387 35.66 343 27.41

29E 9657 224 270 17.04 254 11.81

29E 12271 239 341 29.91 329 27.36

29E 11712 249 330 24.55 304 18.09

Avg: 29.03 Avg: 23.43

Figure 5.5: Total Cost for CCPP on Instances with 29 Edges and C = 16 for Splice

(S), the Path Scanning heuristic (PS), and the Memetic Algorithm Metaheuristic

(MA). The Percentage of Reduction in Total Cost that Splice Achieves Over PS

and MA Is Also Given. The Figure on the Right Plots the Results in the Table on

the Left for Each Instance.

105

Instance S PS %↓ MA %↓

29E 2185 219 233 6.01 216 -1.39

29E 5093 229 282 18.79 264 13.26

29E 155 238 287 17.07 282 15.60

29E 9689 234 287 18.47 285 17.89

29E 7372 228 279 18.28 255 10.59

29E 15979 235 266 11.65 253 7.11

29E 14782 226 288 21.53 276 18.12

29E 11832 228 313 27.16 285 20.00

29E 776 217 232 6.47 208 -4.33

29E 4620 211 236 10.59 236 10.59

Avg: 15.60 Avg: 10.75

Figure 5.6: Total Cost for CARP on Instances with 29 Edges and C = 16 for Splice

(S), the Path Scanning heuristic (PS), and the Memetic Algorithm Metaheuristic

(MA). The Percentage of Reduction in Total Cost that Splice Achieves Over PS

and MA Is Also Given. The Figure on the Right Plots the Results in the Table on

the Left for Each Instance.

106

instances with 15 edges and with capacity C = 8. Then the model is tested on CARP

instances with 29 edges and with the same vehicle capacity. As Figure 5.7 shows,

Splice generalizes well; the ten instances were chosen uniformly at random from the

2,000 test instances. Splice shows a 46.60% and 39.62% lower total cost on average

compared to path scanning and the memetic algorithm, respectively.

The minimum, maximum, and median percentage reductions for CCPP are 11.81%,

30.91%, and 24.00% over MA, respectively, and 17.04%, 37.70%, and 29.76% over PS,

respectively. For CARP they are -4.33%, 20.00%, and 11.93% over MA, respectively,

and 6.01%, 27.16%, and 17.68% for PS, respectively. For the generalization experi-

ment the minimum, maximum, and median percentage reduction are 24.62%, 45.31%,

and 41.86% over MA, respectively, and 35.36%, 51.56%, and 48.35% over PS, respec-

tively. Box plots illustrating the percentage reductions for PS and MA are given in

Figure 5.8. The box plots indicate that the performance of Splice does not vary

much.

The Run Time of Splice

Training Splice on 10,000 episodes where each instance has 29 edges takes less than

20 minutes of CPU time. Once trained, an inference on an instance of the same

size takes less than a second. Table 5.2 shows the CPU time used for inference on a

CCPP instance, a CARP instance, and a smaller CARP instance used for training in

the generalization experiment. The inference time for Splice for all the three tests

(experiments) is around 0.8 seconds.

As Table 5.5 shows, we obtained 23.43% reduction in total cost for CCPP instances

using Splice but the running time was a fraction of a second (0.86 seconds versus

over 53 seconds for MA). Similarly we obtained an average of 10.75% reduction in

total cost for CARP instances with around the same inference time only (0.82 seconds

107

Instance S PS %↓ MA %↓

29E 2185 241 440 45.23 374 35.56

29E 5093 253 490 48.37 429 41.03

29E 155 266 524 49.24 463 42.55

29E 9689 268 525 48.95 490 45.31

29E 7372 250 445 43.82 425 41.18

29E 15979 259 460 43.70 412 37.14

29E 14782 264 545 51.56 460 42.61

29E 11832 260 536 51.49 461 43.60

29E 776 245 379 35.36 325 24.62

29E 4620 233 451 48.34 406 42.61

Avg: 46.60 Avg: 39.62

Figure 5.7: Generalization Results. The Total Cost for CARP on Instances Trained on 15

Edges to Instances with 29 Edges and C = 8 for Splice (S), the Path Scanning heuristic

(PS), and the Memetic Algorithm Metaheuristic (MA). The Percentage of Reduction in

Total Cost that Splice Achieves Over PS and MA Is Also Given. The Figure on the Right

Plots the Results in the Table on the Left for Each Instance.

108

Figure 5.8: Box Plot Indicating the Percentage of Reduction in Total Cost for the

CCPP, CARP, and Generalization Experiments Compared to Path Scanning (left)

and the Memetic Algorithm (right).

Table 5.2: Average CPU Time in Seconds Taken for Running 10 Instances at Inference

Instance Splice PS MA

CCPP, 29 edges, capacity C = 16 0.86 0.37 53.16

CARP, 29 edges, capacity C = 16 0.82 0.26 41.70

CARP, 29 edges, capacity C = 8 0.80 0.28 57.33

versus 41.7 seconds for MA). For the generalization experiment, we obtained around

a 39.62% reduction in total cost with around the same inference time (0.8 seconds

versus 57.3 seconds for MA).

These run time results demonstrates the utility of Splice for inference, and also

for changes in operational instances.

109

5.5 Discussion

From the results presented in §5.4.4, the Splice framework is effective in learning

the distribution D from which instances are drawn, and yields improved total cost,

performing better than metaheuristics (MA) and path scanning heuristics, in a rea-

sonable running time. The memetic algorithm is a hybrid evolutionary algorithm,

combining evolutionary computing with local search. Hence it can also be thought

of an algorithm that is learning to route using evolutionary algorithms but is unable

to leverage its past learning in a data-driven manner. The memetic algorithm [48]

also uses the route-first split-second splitting procedure. However, because Splice

is able to learn the parameters of the distribution D it is able to give better results.

The generalization result in Figure 5.7 shows that Splice can generalize well and can

scale well for a change in the problem size.

An advantage of machine learning over metaheuristic methods is fast inference.

As the results on total cost show, Splice performs better than MA and PS because

of its capability to learn the distribution. At the same time the running time for

Splice is 50 to 72 times faster. The model may be useful for and of potential interest

when an operational environment experiences changes in problem parameters.

The Splice framework is designed for optimizing one objective, the total cost.

Since Splice is effective in learning the distribution D in a data-driven manner, we

obtain from 10% to 40% improvement in total cost over the metaheuristic memetic

algorithm. However since it is trained only for the objective of minimum total cost,

the generated routes are not considered attractive (i.e., the routes are not compact

nor contiguous); see Figure 5.9 for an example of the solutions found by each of these

methods.

The Splice framework may be applied to variants of both node and arc routing

110

Figure 5.9: Route Attractiveness in the Generated Solution. Problem Instance (left),

Routes Found by MA (center), and Routes Found by Splice (right).

The gray edges are not required; that is, they are only used for deadheading.

problems. Variants such as the multi-depot arc routing problem, the split-delivery

capacitated arc routing problem, and others, can be accommodated using a splitting

procedure that corresponds to the variant [7, 160]. The Splice network architecture

requires no other changes. This simplifies the incorporation of new innovations in

machine learning methods into the architecture.

5.6 Conclusion

In this chapter, we developed a deep Q-learning based framework, Splice, that

learns heuristics for arc routing and other problems. It uses a message passing based

graph neural network to learn the graph structure representation of the problem and,

from the graph embedding, learns the heuristics using Q-learning.

Splice yields improved results over a metaheuristic memetic algorithm with an

average 10% to 24% lower total cost with the inference running in around 0.8 seconds.

111

Splice also generalizes well. These results demonstrate that Splice has the potential

to be useful for real operational requirements.

Splice can be applied to different variants of arc routing because it learns route-

first split-second heuristics. It can also be applied to node routing problems and its

variants.

In the next chapter we summarize the results of this dissertation and provide

research directions and future plans.

112

Chapter 6

CONCLUSION AND FUTURE WORKS

We started this dissertation with the motivation being the lack of adequate meth-

ods available to the operators using arc routing problems in their businesses to meet

their requirements. These include: i) Managing vehicle breakdown disruptions ii)

incorporating additional features and objectives that are equally important as opti-

mum cost, such as visual attractiveness and route balance in their route plan, and iii)

methods to generate closer to optimum solutions quickly for changes that arise peri-

odically in the problem specification. Chapters 3 to 5 presented our work to address

these requirements. This chapter summarizes the results of our work and provides

research directions for the future.

6.1 Probe for Vehicle Breakdown Disruptions

Vehicle breakdown is a prevalent problem in residential waste collection occur-

ring frequently, almost daily in their operations. Without adequate vehicles for re-

placement and with only limited operating hours, operators face the risk of missing

services when breakdown events occur. Chapter 3 proposed online re-routing of re-

maining tasks using only the remaining vehicles, with the new routes starting from

their current location and ending at the depot, and taking into account the remaining

capacity in each of the vehicles. A new ARP variant, CARP-VB was formulated for

this problem of re-routing under vehicle breakdowns. Probe, a heuristic algorithm

was developed for solving CARP-VB.

Probe was evaluated on the CARP benchmark instances gdb, val, egl, and

113

egl-Large and compared with the conventional method, which is to complete the

pending tasks of the broken-down vehicle, using a vehicle that finishes its route first.

Probe’s performance was evaluated and compared on the metrics of makespan, range,

and discrepancy, as the objective shifts from minimizing total cost to finishing ear-

lier to avoid missing services. Probe performed better on all the four benchmark

instances. The average percentage of reduction on all the three metrics are positive

and significant (see §3.5.3), indicating the effectiveness of the algorithm in handling

breakdown disruptions.

The increase in the percentage value observed in few of the instances can be

attributed to the original solution being followed before the break-down event. Since

path scanning heuristic optimizes for total cost, the solution generated can be highly

unbalanced with one or two routes being very short. This leads to vehicles finishing

quickly and being available at the depot to take-over the operation of the broken-

down vehicle when an event occurs break-down occurs. However, it is very unlikely

for the operators to follow such plan in the real world.

On measuring and plotting the run time, Probe is found to be linear with the

number of required edges. This implies that the Probe can scale well with instances

of large size that are representative of the real world problems. We also compared

the increase in total cost due to re-routing with that of the conventional method. We

found that the average increase in total cost is less with 7% in gdb, 16% in val, 10%

in egl and 11 % in egl-large, indicating that Probe is an efficient algorithm in

both running time and cost.

114

6.2 MA-ABC for Attractiveness, Route Balance and Cost

Sections §2.6.2 and §4.2 discussed the importance that the operators give to visual

attractiveness in the routing solution and the observation that operators are more

likely to abandon a solution to their own traditional way of working if the route plans

do not look visually attractive. Route balance is another important feature expected

by operators in their routing plans to meet the equity concerns such as workload

fairness and customer satisfaction.

MA-ABC presented in Chapter 4 optimizes three important objectives: Attrac-

tiveness, route balance and total cost. A novel fitness function was used for at-

tractiveness that combines two measures of attractiveness: route over-lap and route

contiguity. It contributed results with better attractiveness on all the three features:

Compactness, proximity, and non-overlapping.

MA-ABC was evaluated on two benchmark instances val and egl and its results

were compared with that of PSRT. MA-ABC was evaluated on three metrics for

attractiveness: Connectivity index (CI), the average task distance (ATD), and the

route overlapping index (ROI). MA-ABC scored well on comparing with PSRT. We

also compared the performance of MA-ABC on two other objectives, total cost and

makespan, with PSRT. MA-ABC performed better than PSRT in those objectives

also. MA-ABC had an average gap of only 3% in val and 3.31% in egl from the

optimum or the best known value of total cost. MA-ABC is effective in providing

solutions of minimum total cost even when optimized with other objectives, attrac-

tion and route balance. On plotting the run time, the MA-ABC showed a linear

relationship with the number of tasks.

115

6.3 Splice for Learning Heuristics

Chapter 5 discussed the problem of changes happening frequently to the problem

specifications for operations such as postal delivery and residential waste collection.

The original solution will not be effective for the new changes. Computing new

routing solutions for the changes in problem specifications takes longer using existing

methods. By learning the distribution of the problem Splice an AI driven machine

learning framework presented in Chapter 5 generated solutions quickly, that are also

closer to optimum.

Splice was trained using random instances generated with specific distribution

setting for CARP and CCPP with 29 edges. Its results on testing data were compared

with the Memetic algorithm for CARP (MA) by Lacomme et al. and with Path

scanning (PS) heuristics. Splice is better than memetic algorithm, MA in total

cost by an average of 23% in CCPP and 10% in CARP. On comparing with Path

Scanning (PS) algorithm, it is lower by an average of 29% for CCPP and 16% for

CARP. We also tested the generalization capability of Splice by training the model

with instances of size 15 edges and then tested them using instances of size 29 edges.

Splice generalised well with an average of 40% lower in total cost than MA and

47% lower than PS. The average inference running time for all the experiments is 0.8

seconds, which demonstrates effectiveness of Splice and the potential for using it on

real world applications.

The main advantage of Splice framework is that it can be used to solve differ-

ent variants of node and arc routing problems, as Splice learns Route first-Cluster

second type of heuristics. By using an appropriate splitting procedure for the re-

ward estimation, the same model can be trained to solve for different variants of

arc routing problems such as Open-CARP, Multi-Depot CARP, Split-Delivery ARP,

116

stochastic CARP and node routing problems, such as VRP, CVRP, Multi-Depot

VRP and others. It does not require any change in the neural network architecture

or hyper-parameter settings.

6.4 Future Directions

The Probe algorithm and the CARP-VB formulation allocates all the remaining

vehicles for re-routing after the breakdown. Depending on the time of occurrence

of the breakdown, the re-routed plan can extend beyond the normal shift hours.

However, the availability of all the remaining vehicles or workers cannot be ensured

beyond the shift hours in the real world. Hence accommodating different over-time

availability for each of the remaining vehicles while generating the routing plans would

be a useful and a potential research direction. The formulation should allow for

both the general availability and time period of availability for each of the remaining

operating vehicles.

Demands in the route plan are not constant and vary on each collection day. The

demands collected until the time of the breakdown event can be indicative of the cur-

rent distribution of the demand for the pending tasks. Incorporating uncertainty of

the demand within the formulation of CARP-VB and using methods such as stochas-

tic and dynamic routing can be another research direction worthy of exploration.

Evaluating MA-ABC on larger, more realistic, data sets would be interesting to

understand the implications on running time. Comparison to other heuristics that

seek to optimize total cost and balance, not just the total cost as in PSRT, is also

worthy to be explored in the future. Incorporating either more or different metrics

for attractiveness is worthy of study. Implementing automatic tuning of parameters

for each instance can improve the accuracy and speed and is a good subject for future

work. Operators in the real world are interested to have many more features in the

117

solutions in addition to the three objectives used in MA-ABC. Including additional

objectives, such as minimizing the number of vehicles and solving them using many

objective optimization methods such as NSGA-III would be a potential and useful

future direction.

Improving Splice to solve CARP-VB, re-routing under breakdown scenarios is

another plan. As the Splice can be applied to different variants of routing problems

using appropriate splitting procedures, the challenge is primarily in the design of an

appropriate splitting procedure for the CARP-VB variant. Another interesting and

useful research direction is to improve Splice to be able to solve multiple objectives

such as in MA-ABC. A promising area to explore is transfer learning in which a

model trained for one variant can be fine-tuned to solve a different variant with only

limited samples or training (called Few shot learning). Other interesting directions

to explore include solving for stochastic variants of CARP [7, 160] and extending

Splice to solve node, edge, arc routing problems (NEARP) [8, 9], which is a routing

problem defined on mixed graphs with demands requiring services located on nodes,

edges, and arcs.

118

REFERENCES

[1] D. F. Wood, “Transportation economics.” https://www.britannica.com/topic/
transportation-economics, November 2021.

[2] Bureau of Transportation Statistics, “Transportation Ser-
vices Contributed 5.4% to US GDP in 2020; a De-
cline from 5.9% in 2019.” https://www.bts.gov/newsroom/
transportation-services-contributed-54-us-gdp-2020-decline-59-2019#:∼:text=
By%20accounting%20for%20the%20in,to%205.4%20percent%20in%202020.,
May 2022.

[3] A. Kearney, “Change of plans,” CSCMP’s Annual State of Logistics Report,
2021.

[4] A. Kearney, “Change of plans,” CSCMP’s Annual State of Logistics Report,
2022.

[5] “Inventory of U.S. Greenhouse Gas (GHG) Emissions
and Sinks 1990–2020.” https://www.epa.gov/ghgemissions/
inventory-us-greenhouse-gas-emissions-and-sinks-1990-2020. Accessed:
2022-10-05.

[6] Á. Corberán, R. Eglese, G. Hasle, I. Plana, and J. M. Sanchis, “Arc routing
problems: A review of the past, present, and future,” Networks, vol. 77, no. 1,
pp. 88–115, 2021.

[7] Á. Corberán and G. Laporte, Arc routing: problems, methods, and applications.
SIAM, 2015.

[8] C. Prins and S. Bouchenoua, “A memetic algorithm solving the VRP, the CARP
and general routing problems with nodes, edges and arcs,” in Recent advances
in memetic algorithms, pp. 65–85, Springer, 2005.

[9] T. Vidal, “Node, edge, arc routing and turn penalties: Multiple problems—one
neighborhood extension,” Operations Research, vol. 65, no. 4, pp. 992–1010,
2017.

[10] C. o. T. Solid Waste Manager, “Tony Miano, Solid Waste Manager, City of
Tempe Public Works, Tempe, Arizona, USA.” Personal Communication, De-
cember 2019.

[11] D. G. Rossit, D. Vigo, F. Tohmé, and M. Frutos, “Visual attractiveness in
routing problems: A review,” Computers & Operations Research, vol. 103,
pp. 13–34, 2019.

[12] R. van Bevern, R. Niedermeier, M. Sorge, and M. Weller, “Chapter 2: The
complexity of arc routing problems,” in Arc routing: Problems, methods, and
applications, pp. 19–52, SIAM, 2015.

119

https://www.britannica.com/topic/transportation-economics
https://www.britannica.com/topic/transportation-economics
https://www.bts.gov/newsroom/transportation-services-contributed-54-us-gdp-2020-decline-59-2019#:~:text=By%20accounting%20for%20the%20in,to%205.4%20percent%20in%202020.
https://www.bts.gov/newsroom/transportation-services-contributed-54-us-gdp-2020-decline-59-2019#:~:text=By%20accounting%20for%20the%20in,to%205.4%20percent%20in%202020.
https://www.bts.gov/newsroom/transportation-services-contributed-54-us-gdp-2020-decline-59-2019#:~:text=By%20accounting%20for%20the%20in,to%205.4%20percent%20in%202020.
https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks-1990-2020
https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks-1990-2020

[13] L. Euler, “Solutio problematis ad geometriam situs pertinentis,” Commentarii
academiae scientiarum Petropolitanae, vol. 8, pp. 128–140, 1741.

[14] Á. Corberán and G. Laporte, “A historical perspective on arc routing,” in Arc
routing: Problems, methods, and applications, ch. 1, pp. 1–16, SIAM, 2013.

[15] K. Mei-Ko, “Graphic programming using odd or even points,” Chinese Math.,
vol. 1, pp. 273–277, 1962.

[16] J. Edmonds and E. L. Johnson, “Matching, euler tours and the chinese post-
man,” Mathematical programming, vol. 5, no. 1, pp. 88–124, 1973.

[17] C. Hierholzer and C. Wiener, “Ueber die möglichkeit, einen linienzug ohne
wiederholung und ohne unterbrechung zu umfahren,” Mathematische Annalen,
vol. 6, pp. 30–32, Mar 1873.

[18] C. H. Papadimitriou, “On the complexity of edge traversing,” Journal of the
ACM (JACM), vol. 23, no. 3, pp. 544–554, 1976.

[19] M. Guan, “On the windy postman problem,” Discrete Applied Mathematics,
vol. 9, no. 1, pp. 41–46, 1984.

[20] J. K. Lenstra and A. R. Kan, “On general routing problems,” Networks, vol. 6,
no. 3, pp. 273–280, 1976.

[21] B. L. Golden and R. T. Wong, “Capacitated arc routing problems,” Networks,
vol. 11, no. 3, pp. 305–315, 1981.

[22] N. Christofides, “The optimum traversal of a graph,” Omega, vol. 1, no. 6,
pp. 719–732, 1973.

[23] L. Muyldermans and G. Pang, “Variants of the capacitated arc routing prob-
lem,” in Arc routing: problems, methods, and applications, ch. 10, pp. 223–253,
SIAM, 2015.

[24] C. Prins, “The capacitated arc routing problem: Heuristics,” in Arc routing:
Problems, methods, and applications, ch. 7, pp. 131–157, SIAM, 2013.

[25] L. Bertazzi, B. L. Golden, and X. Wang, “Min–max vs. min–sum vehicle
routing: A worst-case analysis,” European Journal of Operational Research,
vol. 240, no. 2, pp. 372–381, 2015.

[26] J. M. Belenguer, E. Benavent, and S. Irnich, “The capacitated arc routing prob-
lem: Exact algorithms,” in Arc routing: Problems, methods, and applications,
ch. 9, pp. 183–221, SIAM, 2013.

[27] G. N. Frederickson, “Approximation algorithms for some postman problems,”
Journal of the ACM (JACM), vol. 26, no. 3, pp. 538–554, 1979.

[28] N. Christofides, “Worst-case analysis of a new heuristic for the travelling sales-
man problem,” tech. rep., Carnegie-Mellon Univ Pittsburgh Pa Management
Sciences Research Group, 1976.

120

[29] B. L. Golden, J. S. DeArmon, and E. K. Baker, “Computational experiments
with algorithms for a class of routing problems,” Computers & Operations
Research, vol. 10, no. 1, pp. 47–59, 1983.

[30] S. Wøhlk, “An approximation algorithm for the capacitated arc routing prob-
lem,” Open Operational Research Journal, vol. 2, pp. 8–12, 2008.

[31] K. Jansen, “Bounds for the general capacitated routing problem,” Networks,
vol. 23, no. 3, pp. 165–173, 1993.

[32] E.-G. Talbi, Metaheuristics: From design to implementation. John Wiley &
Sons, 2009.

[33] W. L. Pearn, “Approximate solutions for the capacitated arc routing problem,”
Computers & Operations Research, vol. 16, no. 6, pp. 589–600, 1989.

[34] G. Ulusoy, “The fleet size and mix problem for capacitated arc routing,”
European Journal of Operational Research, vol. 22, no. 3, pp. 329–337, 1985.

[35] S. Wøhlk, Contributions to arc routing. PhD thesis, University of Southern
Denmark, Aarhus, Denmark, 2005.

[36] J.-M. Belenguer, E. Benavent, P. Lacomme, and C. Prins, “Lower and up-
per bounds for the mixed capacitated arc routing problem,” Computers &
Operations Research, vol. 33, no. 12, pp. 3363–3383, 2006.

[37] L. Santos, J. Coutinho-Rodrigues, and J. R. Current, “An improved heuristic
for the capacitated arc routing problem,” Computers & Operations Research,
vol. 36, no. 9, pp. 2632–2637, 2009.

[38] T. Vidal, “Split algorithm in o (n) for the capacitated vehicle routing problem,”
Computers & Operations Research, vol. 69, pp. 40–47, 2016.

[39] C. Prins, N. Labadi, and M. Reghioui, “Tour splitting algorithms for vehicle
routing problems,” International Journal of Production Research, vol. 47, no. 2,
pp. 507–535, 2009.

[40] A. Hertz, G. Laporte, and M. Mittaz, “A tabu search heuristic for the capaci-
tated arc routing problem,” Oper. Res., vol. 48, pp. 129–135, Jan. 2000.

[41] J. Brandão and R. Eglese, “A deterministic tabu search algorithm for the ca-
pacitated arc routing problem,” Computers & Operations Research, vol. 35,
no. 4, pp. 1112–1126, 2008.

[42] P. Beullens, L. Muyldermans, D. Cattrysse, and D. V. Oudheusden, “A guided
local search heuristic for the capacitated arc routing problem,” European
Journal of Operational Research, vol. 147, no. 3, pp. 629 – 643, 2003.

[43] F. L. Usberti, P. M. França, and A. L. M. França, “Grasp with evolution-
ary path-relinking for the capacitated arc routing problem,” Computers &
Operations Research, vol. 40, no. 12, pp. 3206–3217, 2013.

121

[44] A. Hertz and M. Mittaz, “A variable neighborhood descent algorithm for the
undirected capacitated arc routing problem,” Transportation science, vol. 35,
no. 4, pp. 425–434, 2001.

[45] L. Santos, J. Coutinho-Rodrigues, and J. R. Current, “An improved ant
colony optimization based algorithm for the capacitated arc routing problem,”
Transportation Research Part B: Methodological, vol. 44, no. 2, pp. 246–266,
2010.

[46] P. Greistorfer, “A tabu scatter search metaheuristic for the arc routing prob-
lem,” Computers & Industrial Engineering, vol. 44, no. 2, pp. 249–266, 2003.

[47] P. Lacomme, C. Prins, and W. Ramdane-Chérif, “A genetic algorithm for
the capacitated arc routing problem and its extensions,” in Applications of
Evolutionary Computation, pp. 473–483, Springer, 2001.

[48] P. Lacomme, C. Prins, and W. Ramdane-Cherif, “Competitive memetic al-
gorithms for arc routing problems,” Annals of Operations Research, vol. 131,
no. 1, pp. 159–185, 2004.

[49] I. M. Oliver, D. J. Smith, and J. R. C. Holland, “A study of permutation
crossover operators on the traveling salesman problem,” in Proceedings of the
Second International Conference on Genetic Algorithms on Genetic Algorithms
and Their Application, pp. 224–230, L. Erlbaum Associates Inc., 1987.

[50] L. Y. Li and R. W. Eglese, “An interactive algorithm for vehicle routeing for
winter—gritting,” Journal of the Operational Research Society, vol. 47, no. 2,
pp. 217–228, 1996.

[51] Y. Chen, J.-K. Hao, and F. Glover, “A hybrid metaheuristic approach for the
capacitated arc routing problem,” European Journal of Operational Research,
vol. 253, no. 1, pp. 25–39, 2016.

[52] Q. Mu, Z. Fu, J. Lysgaard, and R. Eglese, “Disruption management of the
vehicle routing problem with vehicle breakdown,” Journal of the Operational
Research Society, vol. 62, no. 4, pp. 742–749, 2011.

[53] Q. Mu and R. W. Eglese, “Disrupted capacitated vehicle routing problem with
order release delay,” Annals of Operations Research, pp. 1–16, 2013.

[54] J.-Q. Li, P. B. Mirchandani, and D. Borenstein, “The Vehicle Rescheduling
Problem: Model and Algorithms,” Networks, vol. 50, no. 3, pp. 211–229, 2007.

[55] J.-Q. Li, P. B. Mirchandani, and D. Borenstein, “A lagrangian heuristic for
the real-time vehicle rescheduling problem,” Transportation Research Part E:
Logistics and Transportation Review, vol. 45, no. 3, pp. 419–433, 2009.

[56] J.-Q. Li, P. B. Mirchandani, and D. Borenstein, “Real–time vehicle rerout-
ing problems with time windows,” European Journal of Operational Research,
vol. 194, no. 3, pp. 711–727, 2009.

122

[57] M. Monroy-Licht, C. A. Amaya, A. Langevin, and L.-M. Rousseau, “The
rescheduling arc routing problem,” International Transactions in Operational
Research, vol. 24, no. 6, pp. 1325–1346, 2017.

[58] A. Poot, G. Kant, and A. P. M. Wagelmans, “A savings based method for real-
life vehicle routing problems,” Journal of the Operational Research Society,
vol. 53, no. 1, pp. 57–68, 2002.

[59] M. Constantino, L. Gouveia, M. C. Mourão, and A. C. Nunes, “The mixed ca-
pacitated arc routing problem with non-overlapping routes,” European Journal
of Operational Research, vol. 244, no. 2, pp. 445–456, 2015.

[60] D. Applegate, W. Cook, S. Dash, and A. Rohe, “Solution of a min-max vehicle
routing problem,” INFORMS Journal on computing, vol. 14, no. 2, pp. 132–143,
2002.

[61] P. Matl, R. F. Hartl, and T. Vidal, “Workload equity in vehicle routing prob-
lems: A survey and analysis,” Transportation Science, vol. 52, no. 2, pp. 239–
260, 2018.

[62] P. Matl, R. F. Hartl, and T. Vidal, “Workload equity in vehicle routing: The
impact of alternative workload resources,” Computers & Operations Research,
vol. 110, pp. 116–129, 2019.

[63] N. Jozefowiez, E.-G. Talbi, et al., “From single-objective to multi-objective
vehicle routing problems: Motivations, case studies, and methods,” in The
vehicle routing problem: Latest advances and new challenges, pp. 445–471,
Springer, 2008.

[64] N. Jozefowiez, F. Semet, and E.-G. Talbi, “An evolutionary algorithm for the ve-
hicle routing problem with route balancing,” European Journal of Operational
Research, vol. 195, no. 3, pp. 761–769, 2009.

[65] J. Lozano, L.-C. González-Gurrola, E. Rodŕıguez-Tello, and P. Lacomme, “A
statistical comparison of objective functions for the vehicle routing problem
with route balancing,” in 2016 Fifteenth Mexican international conference on
artificial intelligence (MICAI), pp. 130–135, IEEE, 2016.

[66] M. Ehrgott, Multicriteria optimization. Springer Berlin, Heidelberg, 2005.

[67] C. A. Coello, “Evolutionary multi-objective optimization: a historical view of
the field,” IEEE computational intelligence magazine, vol. 1, no. 1, pp. 28–36,
2006.

[68] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist mul-
tiobjective genetic algorithm: NSGA-II,” IEEE transactions on evolutionary
computation, vol. 6, no. 2, pp. 182–197, 2002.

[69] J. J. Hopfield and D. W. Tank, ““Neural” computation of decisions in opti-
mization problems,” Biological cybernetics, vol. 52, no. 3, pp. 141–152, 1985.

123

[70] R. Durbin and D. Willshaw, “An analogue approach to the travelling salesman
problem using an elastic net method,” Nature, vol. 326, no. 6114, pp. 689–691,
1987.

[71] J. Fort, “Solving a combinatorial problem via self-organizing process: An appli-
cation of the Kohonen algorithm to the traveling salesman problem,” Biological
cybernetics, vol. 59, no. 1, pp. 33–40, 1988.

[72] K. A. Smith, “Neural networks for combinatorial optimization: a review of more
than a decade of research,” INFORMS Journal on Computing, vol. 11, no. 1,
pp. 15–34, 1999.

[73] Y. Bengio, A. Lodi, and A. Prouvost, “Machine learning for combinatorial op-
timization: a methodological tour d’horizon,” European Journal of Operational
Research, 2020.

[74] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with
neural networks,” Advances in neural information processing systems, vol. 27,
pp. 3104–3112, 2014.

[75] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly
learning to align and translate,” in 3rd International Conference on Learning
Representations, ICLR 2015, 2015.

[76] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,” Advances in neural
information processing systems, vol. 28, pp. 2692–2700, 2015.

[77] I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio, “Neural combinatorial
optimization with reinforcement learning,” arXiv preprint arXiv:1611.09940,
2016.

[78] R. J. Williams, “Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning,” Machine learning, vol. 8, no. 3-4, pp. 229–256,
1992.

[79] H. Dai, B. Dai, and L. Song, “Discriminative embeddings of latent variable
models for structured data,” in International conference on machine learning,
pp. 2702–2711, 2016.

[80] E. Khalil, H. Dai, Y. Zhang, B. Dilkina, and L. Song, “Learning combina-
torial optimization algorithms over graphs,” Advances in neural information
processing systems, vol. 30, pp. 6348–6358, 2017.

[81] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Belle-
mare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., “Human-
level control through deep reinforcement learning,” Nature, vol. 518, no. 7540,
pp. 529–533, 2015.

124

[82] M. Nazari, A. Oroojlooy, M. Takáč, and L. V. Snyder, “Reinforcement learn-
ing for solving the vehicle routing problem,” in Proceedings of the 32nd
International Conference on Neural Information Processing Systems, NIPS’18,
p. 9861–9871, 2018.

[83] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver,
and K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,”
in International conference on machine learning, pp. 1928–1937, 2016.

[84] G. Clarke and J. W. Wright, “Scheduling of vehicles from a central depot to
a number of delivery points,” Operations research, vol. 12, no. 4, pp. 568–581,
1964.

[85] A. Wren and A. Holliday, “Computer scheduling of vehicles from one or more
depots to a number of delivery points,” Journal of the Operational Research
Society, vol. 23, no. 3, pp. 333–344, 1972.

[86] L. Perron and V. Furnon, “Google OR-Tools.”
https://developers.google.com/optimization/.

[87] W. Kool, H. van Hoof, and M. Welling, “Attention, learn to solve routing
problems!,” in International Conference on Learning Representations, 2019.

[88] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
 L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in neural
information processing systems, pp. 5998–6008, 2017.

[89] M. Deudon, P. Cournut, A. Lacoste, Y. Adulyasak, and L.-M. Rousseau,
“Learning heuristics for the tsp by policy gradient,” in International conference
on the integration of constraint programming, artificial intelligence, and
operations research, pp. 170–181, Springer, 2018.

[90] C. K. Joshi, T. Laurent, and X. Bresson, “An efficient graph convolu-
tional network technique for the travelling salesman problem,” arXiv preprint
arXiv:1906.01227, 2019.

[91] X. Bresson and T. Laurent, “Residual gated graph convnets,” arXiv preprint
arXiv:1711.07553, 2017.

[92] X. Chen and Y. Tian, “Learning to perform local rewriting for combinatorial op-
timization,” in Advances in Neural Information Processing Systems, pp. 6281–
6292, 2019.

[93] T. Barrett, W. Clements, J. Foerster, and A. Lvovsky, “Exploratory combina-
torial optimization with reinforcement learning,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 34, pp. 3243–3250, 2020.

[94] P. R. d O Costa, J. Rhuggenaath, Y. Zhang, and A. Akcay, “Learning 2-opt
heuristics for the traveling salesman problem via deep reinforcement learning,”
in Asian Conference on Machine Learning, pp. 465–480, PMLR, 2020.

125

[95] Y. Wu, W. Song, Z. Cao, J. Zhang, and A. Lim, “Learning improvement heuris-
tics for solving routing problems..,” IEEE transactions on neural networks and
learning systems, 2021.

[96] L. Gao, M. Chen, Q. Chen, G. Luo, N. Zhu, and Z. Liu, “Learn to design the
heuristics for vehicle routing problem,” arXiv preprint arXiv:2002.08539, 2020.

[97] E. J. Willemse, HEURISTICS FOR LARGE-SCALE CAPACITATED ARC
ROUTING PROBLEMS ON MIXED NETWORKS. PhD thesis, University of
Pretoria, 2016.

[98] N. V. Karadimas, K. Papatzelou, and V. G. Loumos, “Optimal solid waste
collection routes identified by the ant colony system algorithm,” Waste
management & research, vol. 25, no. 2, pp. 139–147, 2007.

[99] P. Viotti, A. Polettini, R. Pomi, and C. Innocenti, “Genetic algorithms
as a promising tool for optimisation of the msw collection routes,” Waste
management & research, vol. 21, no. 4, pp. 292–298, 2003.

[100] RouteSmart Technologies Inc., “Routesmart,” [Online; accessed 12-April-2019].
[Online; accessed 12-April-2019].

[101] J. Evans and E. Minieka, “Optimization algorithms for networks and graphs.
1992.”

[102] G. Ghiani, G. Improta, and G. Laporte, “The capacitated arc routing problem
with intermediate facilities,” Networks: An International Journal, vol. 37, no. 3,
pp. 134–143, 2001.

[103] G. Ghiani, F. Guerriero, G. Laporte, and R. Musmanno, “Tabu search heuristics
for the arc routing problem with intermediate facilities under capacity and
length restrictions,” Journal of Mathematical Modelling and Algorithms, vol. 3,
no. 3, pp. 209–223, 2004.

[104] J. S. DeArmon, A comparison of heuristics for the capacitated Chinese postman
problem. PhD thesis, University of Maryland, 1981.

[105] E. Benavent, V. Campos, A. Corberán, and E. Mota, “The capacitated arc
routing problem: lower bounds,” Networks, vol. 22, no. 7, pp. 669–690, 1992.

[106] R. W. Eglese, “Routeing winter gritting vehicles,” Discrete applied
mathematics, vol. 48, no. 3, pp. 231–244, 1994.

[107] M. Ramamoorthy and V. R. Syrotiuk, “Online re-routing for vehicle breakdown
in residential waste collection,” tech. rep., Arizona State University, 2020.

[108] A. Corberán and C. Prins, “Recent results on arc routing problems: An anno-
tated bibliography,” Networks, vol. 56, no. 1, pp. 50–69, 2010.

[109] H. A. Eiselt, M. Gendreau, and G. Laporte, “Arc routing problems, part i: The
chinese postman problem,” Operations Research, vol. 43, no. 2, pp. 231–242,
1995.

126

[110] M. Dror, Arc routing: theory, solutions and applications. Springer Science &
Business Media, 2012.

[111] ORTEC, 2020.

[112] O. Lum, C. Cerrone, B. L. Golden, and E. Wasil, “Partitioning a street network
into compact, balanced, and visually appealing routes,” Networks, vol. 69, no. 3,
pp. 290–303, 2017.

[113] Á. Corberán, B. L. Golden, O. Lum, I. Plana, and J. M. Sanchis, “Aesthetic
considerations for the min-max k-windy rural postman problem,” Networks,
vol. 70, no. 3, pp. 216–232, 2017.

[114] N. Jozefowiez, F. Semet, and E.-G. Talbi, From single-objective to
multi-objective vehicle routing problems: Motivations, case studies, and
methods, pp. 445–471. Springer US, 2008.

[115] C. A. Coello, S. G. Brambila, J. F. Gamboa, M. Tapia, C. Guadalupe, and
R. H. Gómez, “Evolutionary multiobjective optimization: open research areas
and some challenges lying ahead,” Complex & Intelligent Systems, vol. 6, no. 2,
pp. 221–236, 2020.

[116] P. Lacomme, C. Prins, and M. Sevaux, “Multiobjective capacitated arc rout-
ing problem,” in International Conference on Evolutionary Multi-Criterion
Optimization, pp. 550–564, Springer, 2003.

[117] P. Lacomme, C. Prins, and M. Sevaux, “A genetic algorithm for a bi-objective
capacitated arc routing problem,” Computers & Operations Research, vol. 33,
no. 12, pp. 3473–3493, 2006.

[118] C. Prins, P. Lacomme, and C. Prodhon, “Order-first split-second methods
for vehicle routing problems: A review,” Transportation Research Part C:
Emerging Technologies, vol. 40, pp. 179–200, 2014.

[119] Y. Mei, K. Tang, and X. Yao, “Decomposition-based memetic algorithm
for multiobjective capacitated arc routing problem,” IEEE Transactions on
Evolutionary Computation, vol. 15, no. 2, pp. 151–165, 2011.

[120] L. Grandinetti, F. Guerriero, D. Laganà, and O. Pisacane, “An optimization-
based heuristic for the multi-objective undirected capacitated arc routing prob-
lem,” Computers & Operations Research, vol. 39, no. 10, pp. 2300–2309, 2012.

[121] K. Tang, Y. Mei, and X. Yao, “Memetic algorithm with extended neighbor-
hood search for capacitated arc routing problems,” IEEE Transactions on
Evolutionary Computation, vol. 13, no. 5, pp. 1151–1166, 2009.

[122] R. K. Arakaki and F. L. Usberti, “Hybrid genetic algorithm for the open ca-
pacitated arc routing problem,” Computers & Operations Research, vol. 90,
pp. 221–231, 2018.

127

[123] C. Martinez, I. Loiseau, M. G. Resende, and S. Rodriguez, “Brkga algorithm for
the capacitated arc routing problem,” Electronic Notes in Theoretical Computer
Science, vol. 281, pp. 69–83, 2011.

[124] Y. Mei, X. Li, and X. Yao, “Cooperative coevolution with route distance group-
ing for large-scale capacitated arc routing problems,” IEEE Transactions on
Evolutionary Computation, vol. 18, no. 3, pp. 435–449, 2013.

[125] G. Fleury, P. Lacomme, and C. Prins, “Evolutionary algorithms for stochastic
arc routing problems,” in Applications of Evolutionary Computing, pp. 501–
512, Springer Berlin Heidelberg, 2004.

[126] Y. Mei, K. Tang, and X. Yao, “Capacitated arc routing problem in uncertain en-
vironments,” in IEEE Congress on Evolutionary Computation, pp. 1–8, IEEE,
2010.

[127] J. Wang, K. Tang, and X. Yao, “A memetic algorithm for uncertain capacitated
arc routing problems,” in 2013 IEEE Workshop on Memetic Computing (MC),
pp. 72–79, IEEE, 2013.

[128] J. Wang, K. Tang, J. A. Lozano, and X. Yao, “Estimation of the distribution
algorithm with a stochastic local search for uncertain capacitated arc routing
problems,” IEEE Transactions on Evolutionary Computation, vol. 20, no. 1,
pp. 96–109, 2015.

[129] H. Handa, L. Chapman, and X. Yao, “Dynamic salting route optimisation
using evolutionary computation,” in 2005 IEEE Congress on Evolutionary
Computation, vol. 1, pp. 158–165, IEEE, 2005.

[130] H. Handa, L. Chapman, and X. Yao, “Robust salting route optimization us-
ing evolutionary algorithms,” in Evolutionary Computation in Dynamic and
Uncertain Environments, pp. 497–517, Springer, 2007.

[131] M. Liu, H. K. Singh, and T. Ray, “A memetic algorithm with a new split scheme
for solving dynamic capacitated arc routing problems,” in 2014 IEEE Congress
on Evolutionary Computation (CEC), pp. 595–602, IEEE, 2014.

[132] R. Shang, J. Wang, L. Jiao, and Y. Wang, “An improved decomposition-
based memetic algorithm for multi-objective capacitated arc routing problem,”
Applied Soft Computing, vol. 19, pp. 343–361, 2014.

[133] R. Shang, Y. Wang, J. Wang, L. Jiao, S. Wang, and L. Qi, “A multi-population
cooperative coevolutionary algorithm for multi-objective capacitated arc rout-
ing problem,” Information Sciences, vol. 277, pp. 609–642, 2014.

[134] “Supplementary materials and reproducibility information for ma-abc.”
http://www.public.asu.edu/ syrotiuk/gecco21.html, 2021.

[135] F.-A. Fortin, F.-M. De Rainville, M.-A. Gardner, M. Parizeau, and C. Gagné,
“DEAP: Evolutionary algorithms made easy,” Journal of Machine Learning
Research, vol. 13, pp. 2171–2175, jul 2012.

128

[136] M. Ramamoorthy and V. R. Syrotiuk, “Online re-routing for vehicle break-
down in residential waste collection,” in 2020 IEEE 92nd Vehicular Technology
Conference (VTC2020-Fall), pp. 1–5, IEEE, 2020.

[137] L. Juan, C. Zixing, and L. Jianqin, “Premature convergence in genetic algo-
rithm: Analysis and prevention based on chaos operator,” in Proceedings of the
3rd World Congress on Intelligent Control and Automation (Cat. No. 00EX393),
vol. 1, pp. 495–499, IEEE, 2000.

[138] E. B. Khalil, P. Le Bodic, L. Song, G. Nemhauser, and B. Dilkina, “Learning
to branch in mixed integer programming,” in Thirtieth AAAI Conference on
Artificial Intelligence, 2016.

[139] M.-F. Balcan, T. Dick, T. Sandholm, and E. Vitercik, “Learning to branch,” in
Proceedings of the 35th International Conference on Machine Learning (J. Dy
and A. Krause, eds.), vol. 80 of Proceedings of Machine Learning Research,
pp. 344–353, PMLR, 2018.

[140] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, “Neu-
ral message passing for quantum chemistry,” in International conference on
machine learning, pp. 1263–1272, PMLR, 2017.

[141] Y. Wu, W. Song, Z. Cao, J. Zhang, and A. Lim, “Learning improve-
ment heuristics for solving the travelling salesman problem,” arXiv preprint
arXiv:1912.05784, 2019.

[142] H. Li and G. Li, “Learning to solve capacitated arc routing problems by pol-
icy gradient,” in 2019 IEEE Congress on Evolutionary Computation (CEC),
pp. 1291–1298, IEEE, 2019.

[143] W. Hong and T. Liu, “Faster capacitated arc routing: A sequence-to-sequence
approach,” IEEE Access, vol. 10, pp. 4777–4785, 2022.

[144] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural net-
works on graphs with fast localized spectral filtering,” in Proceedings of the 30th
International Conference on Neural Information Processing Systems, NIPS’16,
p. 3844–3852, 2016.

[145] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for net-
works,” in Proceedings of the 22nd ACM SIGKDD international conference
on Knowledge discovery and data mining, pp. 855–864, 2016.

[146] L. Lovász, “Random walks on graphs,” Combinatorics, Paul erdos is eighty,
vol. 2, no. 1-46, p. 4, 1993.

[147] J. L. Gross, J. Yellen, and M. Anderson, Graph theory and its applications.
Chapman and Hall/CRC, 2018.

[148] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph neural
networks?,” in International Conference on Learning Representations, 2019.

129

[149] W. L. Hamilton, “Graph representation learning,” Synthesis Lectures on
Artifical Intelligence and Machine Learning, vol. 14, no. 3, pp. 1–159, 2020.

[150] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann
machines,” in Proceedings of the 27th International Conference on International
Conference on Machine Learning, ICML’10, p. 807–814, 2010.

[151] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT
press, 2018.

[152] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra,
and M. Riedmiller, “Playing atari with deep reinforcement learning,” arXiv
preprint arXiv:1312.5602, 2013.

[153] C. Watkins, Learning form delayed rewards. PhD thesis, King’s College, Uni-
versity of Cambridge, 1989.

[154] M. Riedmiller, “Neural fitted q iteration–first experiences with a data efficient
neural reinforcement learning method,” in European conference on machine
learning, pp. 317–328, Springer, 2005.

[155] S. Zhang and R. S. Sutton, “A deeper look at experience replay,” arXiv preprint
arXiv:1712.01275, 2017.

[156] W. Fedus, P. Ramachandran, R. Agarwal, Y. Bengio, H. Larochelle, M. Row-
land, and W. Dabney, “Revisiting fundamentals of experience replay,” in
International Conference on Machine Learning, pp. 3061–3071, PMLR, 2020.

[157] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in
3rd International Conference on Learning Representations, ICLR 2015, San
Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings (Y. Bengio and
Y. LeCun, eds.), 2015.

[158] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. De-
Vito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and
S. Chintala, “Pytorch: An imperative style, high-performance deep learning li-
brary,” in Advances in Neural Information Processing Systems 32 (H. Wallach,
H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox, and R. Garnett, eds.),
pp. 8024–8035, Curran Associates, Inc., 2019.

[159] A. Hagberg, P. Swart, and D. S Chult, “Exploring network structure, dynamics,
and function using networkx,” tech. rep., Los Alamos National Lab.(LANL),
Los Alamos, NM (United States), 2008.

[160] M. C. Mourão and L. S. Pinto, “An updated annotated bibliography on arc
routing problems,” Networks, vol. 70, no. 3, pp. 144–194, 2017.

130

	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	Routing Problems
	Motivation
	Contributions

	PRELIMINARIES AND LITERATURE REVIEW
	Complexity of the Arc Routing Problems
	Basic Variants of ARP and Its Extensions
	Chinese Postman Problem (CPP)
	Rural Postman Problem (RPP)
	Capacitated Arc Routing Problem (CARP)

	Definition of CARP
	Objectives Used in Arc Routing Problems
	Approaches for Solving Arc Routing Problems
	Exact Methods
	Approximation Algorithms
	Heuristic Methods
	Local Search and Metaheuristic Methods

	Related Work
	Vehicle Breakdowns and Disruptions Management in Routing Problems
	Visual Attractiveness in Route Solutions
	Route Balance
	Multi-Objective Evolutionary Algorithms (MOEA)
	Machine Learning Approaches for Combinatorial Optimization and Routing Problems

	ONLINE RE-ROUTING FOR VEHICLE BREAKDOWNS
	Vehicle Breakdowns in Residential Waste Collection
	Related Work
	The CARP Re-Routing Problem
	Probe: A Proposed Re-Routing Algorithm
	Evaluation of Probe
	Benchmark Instances and Metrics Measured
	Simulating Breakdown Events
	Results for the CARP Benchmark Instances
	Discussion

	Conclusion

	MA-ABC FOR ATTRACTIVENESS, BALANCE AND COST
	Route Attractiveness, Balance and MA-ABC- An Introduction
	Related Work
	Multi-Objective Memetic Algorithm
	Selection Using NSGA-II
	Crossover
	Splitting Procedure
	Local Search
	Fitness Functions
	Elitism

	Evaluation of MA-ABC
	Results
	Pareto Efficiency, Spread, and Convergence
	Statistical Analysis
	Run Time Performance

	Discussion
	Conclusion

	LEARNING HEURISTICS FOR ARC ROUTING PROBLEMS
	AI Driven Approach for Solving ARP
	Related Work
	The Splice Framework for Learning Heuristics
	Input Feature and State Representation
	Message Passing GNN for Learning the Graph Embedding
	Deep Q-learning for Learning the Heuristics
	The Splice Q-learning Algorithm

	Experimentation and Results
	Sample Instances for Training and Testing
	Hyper-Parameter Tuning and Selection
	Experiment Set-Up
	Results and Analysis

	Discussion
	Conclusion

	CONCLUSION AND FUTURE WORKS
	Probe for Vehicle Breakdown Disruptions
	MA-ABC for Attractiveness, Route Balance and Cost
	Splice for Learning Heuristics
	Future Directions

	REFERENCES

