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ABSTRACT

Adversarial threats of deep learning are increasingly becoming a concern due to

the ubiquitous deployment of deep neural networks(DNNs) in many security-sensitive

domains. Among the existing threats, adversarial weight perturbation is an emerging

class of threats that attempts to perturb the weight parameters of DNNs to breach

security and privacy.

In this thesis, the first weight perturbation attack introduced is called Bit-Flip

Attack (BFA), which can maliciously flip a small number of bits within a computer’s

main memory system storing the DNN weight parameter to achieve malicious ob-

jectives. Our developed algorithm can achieve three specific attack objectives: i)

Un-targeted accuracy degradation attack, ii) Targeted attack, & iii) Trojan attack.

Moreover, BFA utilizes the rowhammer technique to demonstrate the bit-flip attack

in an actual computer prototype.

While the bit-flip attack is conducted in a white-box setting, the subsequent con-

tribution of this thesis is to develop another novel weight perturbation attack in a

black-box setting. Consequently, this thesis discusses a new study of DNN model

vulnerabilities in a multi-tenant Field Programmable Gate Array (FPGA) cloud un-

der a strict black-box framework. This newly developed attack framework injects

faults in the malicious tenant by duplicating specific DNN weight packages during

data transmission between off-chip memory and on-chip buffer of a victim FPGA.

The proposed attack is also experimentally validated in a multi-tenant cloud FPGA

prototype.

In the final part, the focus shifts toward deep learning model privacy, popularly

known as model extraction, that can steal partial DNN weight parameters remotely

with the aid of a memory side-channel attack. In addition, a novel training algorithm

is designed to utilize the partially leaked DNN weight bit information, making the
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model extraction attack more effective. The algorithm effectively leverages the partial

leaked bit information and generates a substitute prototype of the victim model with

almost identical performance to the victim.

ii



DEDICATION

This thesis is dedicated to my father & mother.

iii



ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor Dr. Deliang Fan at

Arizona State University for his high-quality advising and mentoring. I am grateful

for his invaluable suggestions and ideas, which helped form my research structure

and directions. I would commend his patience and help me develop as a researcher

through continuous encouragement and appreciation. In addition, I sincerely thank

the graduate advisory committee Dr. Chaitali Chakrabarti, Dr. Jae-sun Seo and Dr.

Yu (Kevin) Cao, for their support and valuable suggestions.

Also, thanks to all of my co-workers and their contribution to forming this thesis.

Special thanks to Zhezhi He for being a mentor and guide at the early stages of my

PhD. I want to thank Shaahin, Li, Jingtao and my other colleagues who have given

their valuable expertise and suggestions in helping me throughout my PhD.

Last but not least, I want to thank my wife for her continuous support during my

PhD journey.

This work is partly supported by the National Science Foundation under Grant

No. 2019548.

iv



TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

CHAPTER

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Adversarial Threats in Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Security Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Privacy Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Motivation of Adversarial Weight Perturbation. . . . . . . . . . . . . . . . . . . . 5

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Adversarial Weight Perturbation in Memories Through Side-

Channel Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.2 Black-box Adversarial Weight Perturbation in Multi-tenant

Cloud FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.3 Attacking Privacy of Deep Learning Models Via Remote

Side Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Dissertation Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 BIT-FLIP BASED ADVERSARIAL WEIGHT ATTACKS AND DE-

FENSES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 What Is Adversarial Attack (Input Example)? . . . . . . . . . . . . . 12

2.1.2 Prior Adversarial Weight Attack . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.3 Rowhammer Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.4 Weight Quantization and Encoding . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.5 Adversarial Weight Attack Threat Model . . . . . . . . . . . . . . . . . 16

v



CHAPTER Page

2.2 Bit-Flip Attack (BFA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Un-targeted BFA Attack (U-BFA) Objective . . . . . . . . . . . . . . . 17

2.2.2 Targeted BFA Attack (T-BFA) Objectives . . . . . . . . . . . . . . . . . 18

2.2.3 Vulnerable Weight Bits Searching Algorithm of BFA . . . . . . . . 19

2.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.2 Dataset Configuration for Targeted Attack . . . . . . . . . . . . . . . . . 22

2.3.3 DNN Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.4 BFA Attack Setup in a Real Computer . . . . . . . . . . . . . . . . . . . . 24

2.3.5 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.1 Un-targeted BFA Attack Results. . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.2 Targeted Bit-flip Attack Results on CIFAR-10 . . . . . . . . . . . . . 26

2.4.3 Targeted Bit-flip Attack Results on ImageNet . . . . . . . . . . . . . . 30

2.4.4 Comparison with Other Competing Methods . . . . . . . . . . . . . . . 31

2.4.5 Analysis of Attacking Real Computer Running DNNs. . . . . . . 31

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5.1 Evaluation Against Existing Defense . . . . . . . . . . . . . . . . . . . . . . 33

2.5.2 Effect of Adversarial Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5.3 Layer-wise Sensitivity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5.4 Summary of Potential Defenses . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 BIT-FLIP ATTACK TO INJECT TROJAN IN DEEP NEURAL NET-

WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

vi



CHAPTER Page

3.1 What is A Trojan Attack? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Previous Trojan Attacks and Their Limitations . . . . . . . . . . . . . . . . . . . 39

3.3 Threat Model for TBT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 Targeted Bit Trojan (TBT). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4.1 Trigger Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4.2 Trojan Bit Search (TBS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5 Experimental Setup: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5.1 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.6.1 CIFAR-10 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.6.2 ImageNet Results: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.6.3 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.6.4 Comparison to Other Competing Methods. . . . . . . . . . . . . . . . . 51

3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 BLACK-BOX ADVERSARIAL WEIGHT ATTACK IN MULTI-TENANT

FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1 Threat Model and Attack Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Attack Objective Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 Deep-Dup Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3.1 Awd Attack in Multi-tenant FPGA . . . . . . . . . . . . . . . . . . . . . . . 60

4.3.2 P-DES Searching Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.3 End-to-end Attack Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

vii



CHAPTER Page

4.4.1 Dataset and DNN Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4.2 FPGA Prototype Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4.3 Evaluation Metric and Hyper-parameters . . . . . . . . . . . . . . . . . . 71

4.5 Experimental Validation and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.6 Comparison to Other Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.6.1 Attack Time Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.7 Potential Defense Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5 PRIVACY OF DEEP LEARNING MODELS . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.1 Model Extraction Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2 Threat Model for Model Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3 Overview of DeepSteal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.4 Hammerleak: Efficient Data Stealing in Memories . . . . . . . . . . . . . . . . . 86

5.5 Substitute Model Training with Mean Clustering . . . . . . . . . . . . . . . . . . 88

5.5.1 Hammer Leaked Data Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.5.2 Mean Clustering Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.5.3 Overall Training Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.6 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.6.1 Attack Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.6.2 Hardware Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.7.1 Hammerleak Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . 93

5.7.2 DeepSteal Experimental Results: CIFAR-10 . . . . . . . . . . . . . . . 93

5.7.3 Comparison to State-of-the-art Techniques . . . . . . . . . . . . . . . . . 97

viii



CHAPTER Page

5.7.4 Impact of Bit Stealing Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.8.1 Countermeasures for DeepSteal . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6 CONCLUSION AND OUTLOOK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

ix



LIST OF TABLES

Table Page

1.1 Three Primary Class of Adversarial Security and Privacy Threats in

DNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2.1 Threat Model of Bit-flip Attack (1; 2; 3). . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Test Data Splitting to Conduct Targeted Attack from Source Class tp

to Target Class tq. CIFAR-10 Data Has 10k Test Images With Each

Class Containing 1000 Test Images and The ImageNet Dataset Has 50k

Test Samples with Each Class Containing 50 Images. Note: (tr) Means

Images Belong to Any Other Class Apart from The Source Class (3). . . 23

2.3 Pre-attack Test Accuracy of Individual Class (i). We Also Report The

Test Accuracy w/o Any Sample From Class i For Both Resnet-20 and

Vgg-11 Model (3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 We Summarize The Results of U-BFA (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 N-to-1 Attack: Number of Bit-flips (mean±std) Required to Classify

All The Input Images to a Corresponding Target Class With 100%

ASR. In Each Case, Test Accuracy Drops to 10% (3). . . . . . . . . . . . . . . . . 27

2.6 Performance of T-BFA Variants on ImageNet (from Hen Class (i.e.,

Label 8) to Goose Class (i.e., Label 99)). The Original Test Accuracies

of ResNet-18, ResNet-34 and MobileNet-V2 Are 69.23%, 75.5% And

72.01%, Respectively (3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.7 Comparison with Competing Methods. We Directly Report The Num-

bers from the Respective Papers for (3; 4; 5). . . . . . . . . . . . . . . . . . . . . . . . . 31

2.8 T-BFA Attack on DNNs Running in A Real Computer (3) . . . . . . . . . . . . 32

2.9 T-BFA Performance Against Existing BFA Defense Techniques (6).

PTA Indicates Post-attack Test Accuracy (3). . . . . . . . . . . . . . . . . . . . . . . . 33

x



Table Page

2.10 Summary of Possible Directions To Improve Resistance Against BFA (3). 36

3.1 CIFAR-10 Results: Vulnerability Analysis of Different Class on ResNet-

18. TC Indicates Target Class Number. In This Experiment We Chose

wb To Be 150 And Trigger Area Was 9.76% for All The Cases (7). . . . . . 48

3.2 ImageNet Results on ResNet-18 Architecture (7). . . . . . . . . . . . . . . . . . . . . 49

3.3 Trigger Area Study: Results on CIFAR-10 for Various Combination of

Targeted Trojan Trigger Area (7). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4 Number of Weights Study: Results on CIFAR-10 for Various Combi-

nation of Number of Weights Changed wb for ResNet-18 (7). . . . . . . . . . . 50

3.5 Comparison to The Baseline Methods: Here We Used VGG-16 archi-

tecture. Before Attack Means The Trojan Is Not Inserted into DNN

Yet. It Represents The Clean Model’s Test Accuracy (7). . . . . . . . . . . . . . 51

3.6 Comparison of Different Trigger Location: We Perform Trigger Posi-

tion Analysis on Target Classes 3,4,6,7 As We Found Attacking These

Classes Are More Difficult in Table 3.1.TC Means Target Class (7). . . . . 54

4.1 Black-box Targeted Attack Results for ImageNet (8). . . . . . . . . . . . . . . . . . 72

4.2 Black-Box Attack for Object Detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3 Comparison of Deep-Dup with Random AWD Attack And Row-hammer

Based (BFA (1; 2)) Attack. All The Results Are Presented for 8-bit

Quantized VGG-11 Model (1) (8). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4 Attack Efficiency after Increasing The Model Size of ResNet-20 and

VGG-11 Model by 4 (i.e., Increasing Each Input And Output Channel

Size by 2) (8). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

xi



Table Page

4.5 Deep-Dup Attack Performance after Protecting or Securing Some Crit-

ical DNN Layers (8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.6 Weight Package Randomization As Obfuscation. Pre-defined Shuffle :

Shuffling The Weight Packages In A Pre-defined Order before Trans-

mission. Random Shuffle: Shuffling The Weight Packages Every Time

Using A Random Function Before Transmission (8). . . . . . . . . . . . . . . . . . . 77

5.1 Summary of The Existing Model Extraction Methods (9). . . . . . . . . . . . . . 82

5.2 List of Information Accessible to The Attacker for Substitute Model

Training (9). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3 Summary of CIFAR-10 Results for Three Different DNN Architectures.

We Report Two Different Cases of DeepSteal Attack i) All Bits: Where

We Use All The Bit Information (i.e., All 8 Plots) Plotted in Figure 5.4.

According To This Plot, for Each # of HammerLeak Attack Rounds

Along x-axis, We Take The Percentage of Bits Recovered for All 8

Plots (e.g., MSB, MSB+2nd MSB & So On). ii) MSB: We Only Use

The MSB Bit Information Labeled As MSB Curve in Figure 5.4 (9). . . 95

5.4 We Evaluate DeepSteal Attack Against State-of-the-art Techniques

Across Three Different Domains As Case Studies. In Each of The

Cases, Only Our Attack Performs On Par with The SOTA Methods

Across All Three Evaluation Metrics (9). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

xii



Table Page

5.5 After Adversarial Training, The White-box Accuracy Under Attack

Improved to 43.12% & 35.71% for ResNet-18 and VGG-11 Models Re-

spectively . Here We Report The Performance of DeepSteal Attack

Using Recovered Bit Information after 4000 Rounds of HammerLeak

Attack (9). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

xiii



LIST OF FIGURES

Figure Page

1.1 Summary of Potential Security And Privacy Challenges for Deep Learn-

ing Models. To Breach The Security of DNN Models, The Attacker

Adds Small Noise At The Input/ Weights To Achieve Desired Malicious

Objectives. To Break The Privacy of The User Or Service Provider,

The Attacker May Steal Or Reproduce Training Data/ Model Archi-

tecture/ Weight Information (Presented by (9) at IEEE Security &

Privacy 2022). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Randomly Bit-Flips of A ResNet-18 Architecture On ImageNet. After

Flipping 100 Random Bits The Network’s Accuracy Does Not Degrade

Significantly (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Overview of BFA Attack Setup (3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Three Different Kinds of Attack Objective for T-BFA (3). . . . . . . . . . . . . . 17

2.3 Overview of BFA Searching Algorithm (3). . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Type II: 1-to-1 Attack on ResNet-20 Between Source Class And Target

Class. The Left Subplot Shows Post Attack Test Accuracy And The

Right Subplot Shows Average Number of Bit-Flips Required for The

Attack (3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 Type III: 1-to-1 (S) Attack Post Attack Test Accuracy, Attack Success

Rate And Avg. # of Bit-Flips for Five Rounds of Attacks for Both

Resnet-20 and VGG-11 Networks (3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.6 Summary of Attacking Adversarial Trained ResNet-20 Model with N-

to-1 And 1-to-1 Attack. We Report The # of Bit-flips Required to

Reach ∼ 100 % ASR. The Source Class Is 3 and Target Class Is 5.

Here, We Report the Average of Five Individual Rounds (3). . . . . . . . . . . 34

xiv



Figure Page

2.7 Summary of Attacking Adversarial Trained ResNet-20 Model with

Type III 1-to-1 (S). We Report The Post Attack Accuracy And # of

Bit-flips Required to Reach ∼ 99.0 % ASR for All Cases. The Source

Class Is 3 And Target Class Is 5 (3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1 Overview of Targeted Trojan Attack (7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Overview of TBT Attack’s Threat Model (7) . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Flow Chart of Effectively Implementing TBT (7) . . . . . . . . . . . . . . . . . . . . . 42

3.4 ASR (Green) And TA (Blue) vs Number of Bit Flips Plot. Only with

84 Bit Flips TBT Can Achieve 92 % Attack Success Rate (7). . . . . . . . . . 53

4.1 Threat Model for Deep-Dup Attack (8). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Illustrated Timing Diagrams of DNN Model Transmission W/O or

Under AWD Attack. (a) Each DNN Weight Package (Di) Is Trans-

mitted And Received in A Separate Clock Cycle. (b) Voltage Glitch

Incurs More Propagation Delay To The Transmission of D2, Which

Also Shortens The Next Package D3. As A Result, The Data Package

D2 is Sampled Twice by The Receiver Clock, Injecting Faults To The

Received Data Package (8). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3 Overview of Our Adversarial Weight Index Searching (P-DES) Algo-

rithm (8). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4 Overview of End-to-End Deep-Dup Attack Framework (8) . . . . . . . . . . . . 69

4.5 Experimental Setup And Results of Deep-Dup Black-box Attack on

YOLOv2, with ‘Person’ As Target Group. After Attack, The Fault-

Injected YoLov2 Model Fails To Recognize The ‘Person’ (8). . . . . . . . . . . 70

xv



Figure Page

4.6 Black-Box Attack Time Cost Analysis with z = 100. FPGA Acceler-

ation (i.e., Fitness Function Evaluation) Time And Mutation Genera-

tion Time Are Reported (8). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1 Overview of The DeepSteal Attack Framework. Stage-1: Exfiltrating

DNN Partial Weight Bits Efficiently Through Exploiting Memory Fault

Vulnerabilities (HammerLeak). Stage-2: with The Recovered Bits,

Training A Substitute Model using Mean Clustering Weight Penalty (9). 85

5.2 Data Dependency for Inducing a Rowhammer Fault. Here, Based on

The Presence of Bit Flip in The Attacker-controlled Vulnerable Bit in

The Target Row (Tr), Data from Adjacent Row from Victim Program

Can Be Inferred (9) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3 First Row: N-Bit Quantized Weight Level; Second Row: Once The

MSB of Weight Wt in The Victim Model Is Leaked, We Can Narrow

Down The Projected Range of Wt in The Substitute Model; Last Row:

Leaking All The Bits Can Track Down The Exact Value of Wt for The

Substitute Model Training (9). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.4 Percentage of Weights with MSB or More Bits Recovered. +x Denotes

Number of Consecutive Higher Order Bits Recovery (i.e., +3 Repre-

sents Weights with All Three MSB Bits Recovered) (9). . . . . . . . . . . . . . . . 94

5.5 Analysis of The Impact of The Recovered Bit Error Rate (%) on Deep-

Steal Attack Performance for ResNet-18 (9). . . . . . . . . . . . . . . . . . . . . . . . . . 99

xvi



Chapter 1

INTRODUCTION

1.1 Adversarial Threats in Deep Learning

Deep Neural Networks (DNNs) have achieved great success in a wide range of

applications including but not limited to image classification (10; 11; 12; 13), object

detection (14) and speech recognition (15) tasks. Due to ever-increasing interactions

between intelligent agents and human activities that are security and safety critical,

maintaining security objectives (e.g., confidentiality and integrity) has become the

first-order design consideration for DNN systems (16). First observed by (17) and (18)

that DNNs are vulnerable to adversarial examples, which can be generated by adding

imperceptible noise to the input. More recently, adversarial threats have evolved to

pose an even greater security (19; 1; 20; 21; 2) and privacy (22; 23; 24; 25; 26) concerns

for the practical deployment of deep learning.

Table 1.1: Three Primary Class of Adversarial Security and Privacy Threats in DNN

Model Tampering Attack (Security Threat) Model Leakage Attack (Privacy Threat)

Adversarial Input Example Attack (27; 18) Model Inversion Attack (26; 28)

Adversarial Weight Perturbation Attack (1; 2) Membership Inference Attack (22; 25)

Trojan/Backdoor Attack (29; 19) Model Extraction Attack (23; 30)

This thesis highlights two critical potential safety challenges (Table 1.1) for deep

learning models in practice. First, model tampering attack where the adversary mod-

ifies external (e.g., data) or internal parameters (e.g., weights) to cause malfunction

of the models and thus compromising the security. & ii) model leakage attack where
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the adversary instead attempts to retrieve the secret information (e.g., data/model)

to hamper the privacy of the user or the DNN service provider.

1.1.1 Security Challenges

The security challenges of deep learning primarily come from malicious adversaries

tampering with the external (e.g., data) or internal (e.g., model weight) information

of a DNN. Such security threats can be broadly classified into three major categories

as highlighted in Table 1.1.

• Adversarial Input Example (27; 18): Adversarial input attack adds impercep-

tible malicious noise to the input data to fool a target DNN model (shown in

Fig. 1.1). A series of works have been conducted in exposing this underlying vul-

nerability of DNN through developing advanced attack methodology (31; 30; 32)

and counter defensive solutions (33; 34; 35; 36; 37). To date, adversarial input

example noise remains a potent threat for practical AI deployment (38).

• Adversarial Weight Perturbation (1; 21; 2): In contrast to external input attack,

malicious weight perturbation can attack the DNN model’s internal parameters

(e.g., weights/biases) to achieve similar malicious attack objectives. With the

increase of advanced fault injection techniques such as rowhammer attack (39),

laser beam attack (40) or under-voltage attack (41), internal parameter modifi-

cation is increasingly becoming more practical. Unlike adversarial input attack,

weight perturbation has received minimal attention; hence, more recently a se-

ries of new class of weight perturbation (3; 8; 1; 2) attack and its protective

measures (42; 43; 6; 44; 45) have been discussed in the literature.
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• Trojan/Backdoor Attack (19; 20; 29): Finally, the Trojan/Backdoor attack

attempts to modify both input and weight parameters to achieve desired target

attack objective. Recently, the development of advanced Trojan attacks (19; 20)

and their defenses (46; 47) has been a central focus of DNN security study. The

key challenge in prior Trojan works requires access to training facilities/supply

chain to inject Trojan into the model.

Security  Challenges

Privacy  Challenges

Figure 1.1: Summary of Potential Security And Privacy Challenges for Deep Learning

Models. To Breach The Security of DNN Models, The Attacker Adds Small Noise At

The Input/ Weights To Achieve Desired Malicious Objectives. To Break The Privacy

of The User Or Service Provider, The Attacker May Steal Or Reproduce Training

Data/ Model Architecture/ Weight Information (Presented by (9) at IEEE Security

& Privacy 2022).

3



1.1.2 Privacy Challenges

Deep learning models are being trained with massive computational resources

(e.g., data, model, GPU). Hence protecting the trained model or training data from

adversaries has become a top priority to ensure Intellectual Property (IP) protection

of commercial DNN models. Again, this thesis categorizes the privacy challenges of

deep learning models into three classes.

• Model Inversion Attack (26; 28): The aim of model inversion attack is to iden-

tify key information (e.g., feature, attribute, demographic information) about

the training data. In particular, this attack is a major concern for user private

data protection in collaborative learning environment such as split/federated

learning (48; 49).

• Membership Inference Attack (22; 25): It is a query-based attack on a pre-

trained deep learning model which allows an attacker to predict whether a

particular sample was part of the training data distribution. A membership

inference attack allows an attacker to identify detailed training samples, which

may have severe consequences in privacy-sensitive domains such as medical

applications (50).

• Model Extraction Attack (23; 51): Model extraction attack attempts to leak key

information of deep learning models such as architecture or model parameters.

Most prior extraction attack (23; 51) focuses on architecture only recovery.

In contrast, recovering the fine-grained weight information (30) of large DNN

models has received very little attention.

Motivated by the above challenges for the safe deployment of DNN, this the-

sis introduces several critical security/privacy attacks and defences in deep learning

applications.
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1.2 Motivation of Adversarial Weight Perturbation

Recently, adversarial weight perturbation attacks have been added to the security

challenge of DNN models due to the security concern of model leakage and malicious

fault injection into the computer system. First, the DNN model running on a com-

puter is not secure. Many advanced computer side-channel attacks (52; 53; 51; 54)

have successfully extracted DNN model parameters. Second, due to its large size,

DNN model integrity is difficult to guarantee in state-of-the-art performance-driven

computing systems. In such systems, there are many methods to inject a small

amount of fault into the computing memory or path of DNN without alerting the

computing system. For example, memory fault injection techniques such as Laser

Beam Attack (55) or Row-Hammer Attack (RHA) (56; 57), can inject faults into a

computer’s main memory (i.e., DRAM), causing severe threat to DNN computation.
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Figure 1.2: Randomly Bit-Flips of A ResNet-18 Architecture On ImageNet. Af-

ter Flipping 100 Random Bits The Network’s Accuracy Does Not Degrade Signifi-

cantly (1)

In particular, Hong et al. (58) have shown that single-bit corruptions in DNN

model parameters can considerably degrade the inference accuracy of several DNN

models. Their attack study is performed on full-precision (i.e., floating-point num-

bers) DNN models where a single bit flip in the exponent field (i.e., the most-

significant bit) of a parameter can result in orders of magnitude change in the pa-
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rameter value. Note that quantized deep neural networks (59), are more robust to

single-bit corruption. This is because model quantization replaces full-precision model

parameters with low bit-width integers or even binary representations, which signif-

icantly limit the magnitude of possible parameter value range (60; 61). In addition,

due to the impressive improvement in energy efficiency, memory footprints and stor-

age, model quantization is now the widely applied optimization in deep neural net-

works (62; 63; 64; 65; 66). Our initial investigation (1) in Fig. 1.2 also reveals that a

random fault attack (a bit-flip or weight corruption) in the quantized model weights

does not introduce any observable accuracy loss even after 100 random flips.

Inspired by these observations, in this thesis, we focus on investigating the vul-

nerability of DNN model parameters from fault injection attacks. We aim to system-

ically characterize how weight perturbation of model parameters can influence the

accuracy of well-trained quantized deep neural networks. We further look to develop

algorithms that can potentially cause targeted miss-classification in deep learning

classification problems. We designed several novel attack algorithms using both sys-

tem and algorithm level optimization to achieve this. Our investigation also includes

a comprehensive analysis of a novel defense framework as a potential countermeasure

to weight perturbation attacks. Finally, we also look to leverage model weight pertur-

bation to hijack sensitive privacy information (e.g. weights, biases & gradients) of a

deep learning model, thus exposing a novel privacy concern for modern deep learning

applications.

1.3 Contributions

The contributions of this thesis can be summarized into three major parts: i)

Adversarial weight perturbation attack (i.e., Un-targeted, Targeted & Trojan) in

memories through side-channel attacks in a white-box setting, ii) Model weight tam-

pering attack in multi-tenant FPGA under a strict black-box setting, and iii) Finally,
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leveraging memory fault (i.e., bit-flip) through remote side-channel attack to leak

secret DNN weight information of a large-scale deep learning model.

1.3.1 Adversarial Weight Perturbation in Memories Through Side-Channel Attacks

Due to the existing vulnerabilities, several recent works have leveraged such mem-

ory fault injection techniques to inject minor faults (probably a few bits of error)

into main computer memory (i.e. DRAM) to modify the stored DNN model slightly,

successfully hijacking the running DNN function (1; 4; 21; 2). Even so, the memory

bit-flip based malicious un-targeted weight attack (BFA) in (1), and (2) has been ex-

perimentally demonstrated to cause severe accuracy degradation of a fully-functional

8-bit quantized ResNet-18 on the ImageNet dataset to 0.1% with only 13 bit-flips (out

of 93 million bits), in a real computer system. which mainly introduce un-targeted

bit-flip attack algorithm and its implementation in a real computer system, respec-

tively. A more potent version of the BFA is Targeted Bit-Flip Attack (T-BFA) (67)

methodology is the first work of bit-flip-based targeted adversarial weight attack on

weight-quantized DNNs. In Chapter 2, we will introduce all the variants of BFA

(e.g., un-targeted or targeted). Additionally, we will discuss the practical feasibility

of BFA in real computer attacks considering the adversary performs the attack by

running an unprivileged user-space process on the machine (i.e., a strong adversary

with system-level access permission is not required). To conclude, we will highlight a

list of effective defenses against BFA attacks.

In addition, we will discuss another novel adversarial parameter attack in Chap-

ter 3 to inject neural Trojan into a clean DNN model called Targeted Bit Trojan

(TBT) (7). It first utilizes Neural Gradient Ranking (NGR) algorithm to identify

certain vulnerable neurons linked to a specific target class. Once the attacker iden-

tifies the vulnerable neurons, with the help of NGR, the attacker can generate a
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trigger delicately designed to force target neurons to fire large output values. Such

an algorithm enables efficient Trojan trigger generation, where the generated trigger

is specifically designed for a targeted attack. Then, TBT locates certain vulnerable

bits of DNN weight parameters through Trojan Bit Search (TBS), with the following

objectives: After flipping these sets of weight bits through row-hammer, the network

maintains on-par inference accuracy w.r.t the clean DNN counterpart, when the de-

signed trigger is absent. However, a trigger in the input data forces any input to be

classified into a particular target class.

1.3.2 Black-box Adversarial Weight Perturbation in Multi-tenant Cloud FPGA

For high efficiency and performance, there have been growing efforts to support

multiple independent tenants co-residing/sharing an FPGA chip over time or simul-

taneously (68; 69). The co-tenancy of multiple users on the same FPGA chip has

created a unique attack surface, where many new vulnerabilities will appear and

cause dangerous effects. With many hardware resources being jointly used in the

multi-tenant FPGA environment, a malicious tenant can leverage such indirect inter-

action with other tenants to implement various new attacks. However, as a relatively

new computing infrastructure and one of the leading hardware accelerator platforms,

the security of multi-tenant FPGAs for DNN acceleration has not been investigated

in-depth. In this thesis, we will introduce an end-to-end Deep-Dup attack framework

in Chapter 4, one type of adversarial DNN model fault injection attack, utilizing

our DNN vulnerable parameter searching software (i.e. P-DES) to guide and search

when/where to inject fault through multi-tenant FPGA hardware fault injection (i.e.

AWD) for efficient and effective un-targeted/targeted attacks (i.e., un-targeted attack

to degrade overall accuracy and targeted attack to degrade only targeted group accu-

racy). To maximize attack efficiency, i.e. conducting AWD-based fault injection into
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the most vulnerable DNN weight data packages for any given malicious objective,

we design a generic vulnerable weight package searching algorithm, called Progres-

sive Differential Evolution Search (P-DES). Unlike prior weight perturbation works,

which were only demonstrated in a deep learning white-box setup (2), this new form

of attack succeeded in a complete black-box threat model.

1.3.3 Attacking Privacy of Deep Learning Models Via Remote Side Channel

DNN models typically take a tremendous amount of resources to train, and in

many cases, the training relies on using valuable domain-specific data. As a result,

DNN models are regarded as the top intellectual properties (IP) for machine learning

(ML) service providers and model owners (70). One major threat to the IP of these

models is a model extraction attack that aims to infer or steal critical information from

DNN models to achieve certain malicious goals (71). Recent advances in hardware-

based exploitation have shown that adversaries can leverage side-channel attacks to

gain sensitive information in computing systems (72; 73; 74; 75).

The critical challenge in stealing a DNN model is its enormous (with millions of

parameters) size; even with a hardware-based attack that can recover certain model

weight information, it is typically impractical to assume that the entire weights can

be exfiltrated in practical settings. Moreover, prior works (1; 2) have shown that

variations on only tens out of millions of weight parameters will completely mal-

function a DNN model. In this case, whether partial information of model weights

can be effectively leveraged to build a more potent model extraction attack is un-

certain. To address this, we will introduce a new attack framework called DeepSteal

in Chapter 5 , an advanced model extraction attack framework using efficient model

weight stealing with the aid of rowhammer-based side channels. Our attack aims

to recover (partial) weight parameters of a target DNN model (i.e., victim model),
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which will be harnessed to build applicable substitute models using novel learning

schemes. Notably, we leverage the well-known rowhammer fault attack (56) as the

information leakage attack vector. Our exploitation is motivated by prior studies

showing that rowhammer-induced fault in a memory cell highly depends on the data

pattern from its neighbouring cells (76; 2). After recovering the partial information,

the weight search space of a victim model remains high. For instance, even after

recovering 90% of the bits in a large model like VGG-11 (11) (i.e., 1056 Million bits

for an 8-bit model), the attacker still needs to train the recovered model with lim-

ited data to restore the remaining 10% bits (i.e., 105.6 million bits). To address the

additional challenges, we develop a novel substitute model training algorithm with

Mean Clustering weight penalty. The purpose of such a loss penalty term is to utilize

the recovered partial weight bits for effectively guiding the substitute model training.

Subsequently, DeepSteal produces a substitute model that achieves similar accuracy

as the victim model with high fidelity. Moreover, the trained substitute model could

help mount strong adversarial input attacks on the victim model.

1.4 Dissertation Structure

The rest of this dissertation document is organized as follows:

• Chapter 2 presents a novel adversarial weight perturbation attack algorithm,

Bit-flip attack (BFA), against deep neural networks. It contains materials from

”T-BFA: Targeted bit-flip adversarial weight attack” published at T-PAMI

2021 (3). The dissertation author was the investigator and author of these

papers.

• Chapter 3 presents a novel Trojan attack algorithm called Targeted Bit Trojan

(TBT) motivated by the rowhmamer-based bit-flip attack. It contains materials
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from ”Tbt: Targeted neural network attack with bit trojan” published at CVPR

2020 (7). The dissertation author was the investigator and author of the paper.

• Chapter 4 presents a novel black-box attack against deep learning models on

a multi-tenant FPGA platform. It contains materials from ”Deep-Dup: An

adversarial weight duplication attack framework to crush deep neural network

in Multi-Tenant FPGA” published at USENIX security 2021 (77). The disser-

tation author was the investigator and author of the paper. Special thanks to

Yukui Luo for his valuable contribution to AWD attack in (8).

• Chapter 5 shows a novel model extraction attack which introduces a novel

algorithm to generate a successful substitute model leveraging bit-flip in mem-

ories. It contains materials from ”DeepSteal: Advanced Model Extractions

Leveraging Efficient Weight Stealing in Memories”, published at IEEE S&P

2022 (9). The dissertation author was the investigator and author of the paper.

Special thanks to M Hafizul Islam Chowdhuryy for his valuable contribution to

HammerLeak Attack in (9).
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Chapter 2

BIT-FLIP BASED ADVERSARIAL WEIGHT ATTACKS AND DEFENSES

In recent years, deep neural networks (DNNs) have achieved tremendous success

in a wide variety of applications, including image classification (78; 79), speech recog-

nition (15; 80) and machine translation (81; 82). Unfortunately, DNN models are

not secure and have been exposed to the vulnerability of adversarial input example

attack (27; 18; 35). Recently, internal model perturbation, i.e., adversarial weight

attacks (21) has also been added to the security challenge due to the improvement

in model leakage attack (i.e., making the threat model easier) and malicious fault in-

jection attacks into the computer system. This chapter provides a complete overview

of one type of adversarial weight attack on deep learning models called Bit-Flip At-

tack (BFA). It discusses two major types of BFA attack: Un-targeted BFA (1; 2) &

Targeted BFA (3). At the end of the chapter, we also summarise possible defense

mechanisms against BFA (6; 3).

2.1 Background

2.1.1 What Is Adversarial Attack (Input Example)?

Despite the remarkable progress of deep learning, recent studies (17; 18; 83) have

shown that DNNs are vulnerable to adversarial examples. In image classification,

an adversarial example is a carefully crafted image that is visually imperceptible

to the original image but can cause DNN model to misclassify. In addition to image

classification, attacks to other DNN-related tasks have also been actively investigated,

such as visual QA (84), image captioning (85), semantic segmentation (86), machine

translation (87), speech recognition (88), and medical prediction (89).

12



There is a cohort of works on generating adversarial attacks and developing cor-

responding defense methods. The adversarial attacks can be grouped into two major

categories: (i) white-box attack (17; 83), where the adversary has full access to the

network architecture and parameters, and (ii) black-box attack (90; 91; 92), where

the adversary can access the input and output of a DNN but not its internal con-

figurations. Many attack algorithms have been proposed to generate adversarial ex-

amples (17; 93; 94; 95; 96; 31; 83). Among them, the fast gradient sign method

(FGSM) (18) is one of the pioneering and most popular white-box attack algorithms.

It uses the sign of gradients with respect to the input to generate adversarial examples

and is one of the most efficient attack algorithms. The projected gradient descent

(PGD) is among the most potent white-box attacks to date (97). Besides, Carlini &

Wagner (C&W) (83) attack is another powerful attack that can achieve nearly 100%

attack success rate.

2.1.2 Prior Adversarial Weight Attack

Un-targeted Attack: We already discussed briefly in the previous chapter how

the recent developments in memory fault injection attacks (56; 40) have made it

feasible to conduct an adversarial weight attack for a DNN model running on a

computer. Among them, a row-hammer attack (56) on Dynamic Random Access

Memory (DRAM) is the most popular one since it can create a profile of memory

bits stored inside the main memory (i.e., DRAM) and flip any bit of a given target

address. The first few works that exploited row-hammer to attack DNN weights

flipped the Most Significant Bits (MSB bits) of DNN parameters, such as the bias

(4) or weight (21), and changed them to a significantly large value, thus degrading

accuracy. However, those attacks were only evaluated on a model with full precision

(i.e. floating point) parameters and failed in DNNs with quantized parameters.
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Targeted Attack: A targeted attack has more precise control on the miss-

classification behaviour and can cause higher calamity. It is a well-investigated tech-

nique in adversarial input attack domain (83; 92; 27). Recent adversarial model

parameter attacks can also perform a targeted attack (5; 4). Again, some of them (5)

require a larger value of L0 norm (i.e., 900) for weight perturbation. Also, these at-

tacks (5; 4) have been evaluated on a full-precision model, which has been reported

in (21) as being easier to attack. Hence, our attack and defense evaluation is per-

formed on a quantized 8-bit fixed precision model.

2.1.3 Rowhammer Attack

Rowhammer is a software-induced fault attack exploits DRAM disturbance errors

via user-space applications (56). Specifically, it has been shown that accesses (i.e., ac-

tivations) to specific DRAM rows can introduce electrical disturbance to the DRAM

cells in the neighbouring rows, which accelerates the leakage of their charges in the

capacitors (56; 98). An attacker can intentionally activate particular DRAM rows

(whose data belongs to the attacker) frequently enough (i.e., hammering) to eventu-

ally cause bit flips in a victim’s address space. Such attacks have been successfully

demonstrated on commercial-off-the-shelf DRAM modules even with the presence of

ECC features (99; 100). There are mainly three hammering techniques proposed in

the literature: a) double-sided hammering (101; 98; 56; 102; 100): where two aggres-

sor rows are frequently activated to induce fault in the middle row. b) single-sided

hammering (102): where one adjacent row to the target row and another random row

are activated repeatedly; and c) one-sided hammering (99): where one periodically-

accessed row causes repetitive row activations under the close-page DRAM policy.

Double-sided hammering is the most effective technique for inducing DRAM faults

since it introduces the strongest disturbance.
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2.1.4 Weight Quantization and Encoding

Previous adversarial weight attacks have indicated that (21) quantized DNNs

are more resilient to weight bit-flips than full-precision counterparts. To prove the

effectiveness of our attack against a more resolute quantized network, we perform the

attack on quantized DNN models. Our quantization scheme is a layer-wise N -bits

uniform quantizer for weight quantization. For each of the l-th layer, the quantization

methodology can be described as:

∆wl = max( Wr
l )/(2

N−1 − 1); Wr
l ∈ Rd (2.1)

Wl = round(Wr
l/∆wl) ·∆wl (2.2)

where d is the dimension of weight tensor, ∆wl is the step size of weight quantizer,

Wr
l is the full-precision weight of the corresponding quantized weight Wl. To circum-

vent the non-differential function (in Eq. (2.2)), popular straight-through estimator

(103) is used to perform the training.

In our hardware evaluation, the computing system stores the signed integer in

two’s complement representation. Given one weight element w ∈Wl, the conversion

from its binary representation (b = [bN−1, ..., b0] ∈ {0, 1}N) in two’s complement can

be expressed as:

w/∆w = bin(b) = −2N−1 · bN−1 +
N−2∑
i=0

2i · bi (2.3)

With the conversion relation described by bin(·) in Eq. (2.3), we can inversely obtain

the binary representation of weights B (i.e. binary data stored in main memory) from

its fixed-point counterpart as well.
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Figure 2.1: Overview of BFA Attack Setup (3)

2.1.5 Adversarial Weight Attack Threat Model

In this chapter, we follow the standard white-box attack threat model assump-

tion for adversarial weight attacks, similar to adversarial input attacks (104; 27; 105).

The BFA attack threat model is summarized in Table 2.1. It assumes the attacker

has complete knowledge of the DNN model, i.e., architecture, neurons, weights and

biases. Such a threat model is valid since previous works have demonstrated that

an attacker can effectively steal similar information (i.e., layer number, weight size,

and parameters) through side-channel attacks (52; 53; 51; 54; 23). In addition, the

attacker can manipulate the model weights and cause bit-flips in the main memory

(i.e., DRAM) as shown in Fig. 4.1. Since weights have large volumes with low sen-

sitivity, they are stored in the DRAM. In contrast, low volume sensitive parameters

(e.g., biases) are stored on-chip. An attacker can only flip (0 to 1 or 1 to 0) identified

bits in memory; no manipulation of input data is allowed. The attacker has access

to a portion of test data but is denied access to any form of training information

(i.e., training dataset, hyper-parameters). The attacker can always compute gradient

information when necessary in a white-box setting.
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Table 2.1: Threat Model of Bit-flip Attack (1; 2; 3).

Access Required Access NOT Required

DNN architecture & model parameters Training configurations (i.e., hyper parameter).

A mini-batch of test data Complete train/test datasets.

2.2 Bit-Flip Attack (BFA)

2.2.1 Un-targeted BFA Attack (U-BFA) Objective

Un-targeted Bit-Flip Attack (U-BFA) objective is to degrade the overall test ac-

curacy of the DNN. The attack utilizes a gradient-based progressive search to locate

a set of vulnerable weight bits (1; 2) and flip them in the memory. Thus at each iter-

ation of the attack, the attacker will target maximizing the inference loss functionL

w.r.t true label t of a given test batch x:

max
{B̂i

l}
Lun
(
f
(
x; {B̂

i

l}Ll=1

)
, t
)

(2.4)

Here l ∈ {1, 2, ..., L} is the layer index, B̂
i

l is the bit representation of the weight

matrix at the ith iteration at layer l after flipping the bits in the original matrix Bl.

Figure 2.2: Three Different Kinds of Attack Objective for T-BFA (3).
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2.2.2 Targeted BFA Attack (T-BFA) Objectives

• Type-I: N-to-1 Attack. Given that the input data belong to one of N -classes,

the objective of this T-BFA variant is to force the entire dataset X = {Xi}Ni=1

with all N classes (as source classes) to one adversary-selected target class. The

objective function is formalized as:

min LN-to-1 = min
{B}

EXL(f(x, {B}); tq) (2.5)

where {B} is the quantized representation (in binary format) of weight tensor

{W} stored in computer memory. Given vectorized input x ∈ X, f(x, {B})

computes quantized DNN inference output. L(·; ·) denotes the cross-entropy

loss between DNN inference output and labels. x and t are input data and

their corresponding ground-truth label. For this attack, the ground-truth label

term of source category1 t ∈ e(i), i ∈ {1, ..., N} is tampered to the selected

q-indexed target category tq ∈ e(q).

• Type-II: 1-to-1 Attack. In this T-BFA variant, adversary focuses on the mis-

classification of input data Xp of single p-indexed source category into the

q-indexed target category (p 6= q), without caring about the impact on the

remaining categories Xi 6=p. It can be modeled as:

min L1-to-1 = min
{B}

EXpL(f(xp, {B}); tq); xp ∈ Xp (2.6)

The Type-II attack is a subset of Type I attack. However, such an objective is

still practically valuable for only attacking a specific group or subset of inputs,

where the type-I N-to-1 attack would flip many more unnecessary bits for all

groups of inputs.

1e(i) is the notation of one-hot code vector [0, . . . , 0, 1, 0, . . . , 0] with a 1 at position i.
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• Type-III: 1-to-1 Stealthy Attack. In addition to the type-II 1-to-1 attack de-

scribed above, this type-III attack is a stealthy version with two objectives:

1) All the input data from p-indexed category Xp are classified into q-indexed

target category, which is the same as Eq. (2.6); 2) Meanwhile, it needs to

maintain correct predictions of the input data excluded from the source cate-

gory Xj, j ∈ {1, 2, .., N}\{p}. This type-III attack could be achieved via the

optimization of the two corresponding loss terms in the RHS of the following

objective function:

min L1-to-1(S) = min
{B}

EX

(
L(f(x, {B}); tq) · 1x∈Xp+ (2.7)

L(f(x, {B}); t) · 1x∈Xj

)
where 1condition returns 1 if the condition is true, 0 otherwise.

For a practical adversarial attack, to minimize attack effort, a critical constraint

is to use limited number of malicious bit-flips on weight bits to achieve above defined

attack objectives in Eqs. (2.4) to (2.7). This could be modeled as a joint-optimization

and represented by:

max Lun, min LT-BFA ∈ {LN-to-1,L1-to-1,L1-to-1(S)}; (2.8)

s.t. min
{B}
Dhd({B̂}, {B});

where Dhd is the Hamming-distance between the weight-bit tensors of pre-attack

model ({B}) and post-attack model({B̂}). Instead of applying Dhd as an additional

loss term in Eqs. (2.5) to (2.7) to form one combined multi-objective function.

2.2.3 Vulnerable Weight Bits Searching Algorithm of BFA

The search for the most vulnerable weight bits to be attacked by BFA can be

generally described as an iterative process, wherein in each iteration, only a single
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weight-bit is identified, followed by the malicious bit-flip. In the k-th iteration, the

objective function Eq. (2.8) is rephrased as:

min
{Bk}

LBFA; s.t. Dhd({Bk}, {Bk−1}) = 1 (2.9)

where the single bit-flip is highlighted by defining inter-iteration Hamming distance

Dhd as 1. To minimize LBFA with a single bit-flip per iteration, we inherit and modify

the progressive intra- and inter-layer bit search method.

Given a DNN model with L layers (e.g., convolution layers), for one search itera-

tion, the intra-layer bit search identifies one weight-bit per layer and traverses through

all L layers, thus returning L weight-bit candidates. Then, the following inter-layer

search identifies one winner weight-bit out of L weight-bit candidates brought up by

the last step of the intra-layer search. This identified winner weight-bit will be flipped,

and the search process goes to the next iteration. The whole progressive search pro-

cess ends when the adversary-defined attack objective is achieved as shown in Fig. 2.3.

In the following paragraphs, we will describe a two-step progressive searching method

in one iteration-k.

Identify vulnerable bit and flip it

Start Iteration

 T-BFA objective satisfied?

End

 Record loss and flip it back

In
tr

a-
L

ay
er

   
   

 
B

it 
Se
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ch

Enter a layer index by l

YESNo
Next 

Iteration

Pick the layer with minimum Loss

Perform the Bit-Flip 

Is It the Last Layer?
NO

Next 
Layer
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B
it 
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ch

YES

Figure 2.3: Overview of BFA Searching Algorithm (3).
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Intra-layer Bit Search. For layer indexed by l, the intra-layer bit search identi-

fies one(or more) weight-bit candidate(s) w.r.t two criteria: 1) identifying the weight-

bit with the highest gradient; 2) flipping along the direction (targeted)/ opposite

direction (un-targeted) of bit-gradient. Note that, in un-targeted BFA (1), the weight-

bit is flipped along the opposite direction of bit-gradient, as it performs loss maximiza-

tion instead of minimization defined in Eq. (2.9) for a targeted attack. To perform

the bit-flip, we adopt the same mask technique in (1) to check whether the chosen

bit can be flipped in the desired direction. These two criteria can be mathematically

described as:

arg max
Mk

l ,b
k
l

|∇Bk−1
l
LkBFA|; s.t. bkl = (2.10)

clamp
(
bk−1l − sign(∇bk−1

l
LkBFA)

)
, bkl 6= bk−1l

where Mk
l is the mask that indicates the location of the identified bit within

weight-bit tensor Bk−1
l and its value bkl ∈ {0, 1}. clamp(·) is the clamping function

with 0 and 1 as lower and upper bound. The intra-layer bit search traverses through

all the layers to generate the weight-bit candidate set, {Mk
l }Ll=1. Meanwhile, for each

weight-bit candidate in {Mk
l }Ll=1, the corresponding BFA loss is profiled {LkT-BFA,l}Ll=1

after the identified weight-bit is flipped.

Inter-layer Bit Search. Based on the intra-layer search outcomes (i.e., {Mk
l }Ll=1),

the inter-layer search performs straight-forward comparison to identify the winner

weight-bit candidate with maximum/minimal profiled loss for un-targeted/targeted

attack respectively as the weight-bit to attack in iteration-k. This process can be

expressed as follows:

arg max {LkU-BFA,l}Ll=1 (2.11)
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arg min {LkT-BFA,l}Ll=1 (2.12)

When the winner weight-bit is identified, it will be flipped to perturb the DNN

model with only a one-bit difference from the model in the previous iteration. Then,

another new search iteration will start with these new model parameters. The whole

process ends when the attack goal is achieved.

2.3 Experimental Setup

2.3.1 Dataset

In the experiment, we test BFA in image classification using two popular datasets

i) CIFAR-10 (78) and ii) ImageNet. CIFAR-10 is a popular visual recognition dataset,

which includes 60k images combined with training and test set. Each RGB image has

a size of 32×32 evenly sampled from 10 categories. The data augmentation technique

is identical to previous methods (12). ImageNet is a large dataset containing 1.2M

training images. The size of the images of the ImageNet dataset is 224 × 224, which

is equally divided into 1000 distinct classes.

2.3.2 Dataset Configuration for Targeted Attack

In Table 2.2, we provide an overview of the data organization to conduct each type

of attack. To conduct an N-to-1 attack on CIFAR-10 and ImageNet, we randomly

choose a test batch from the test dataset. However, to evaluate 1-to-1 or 1-to-1(S)

attacks, we require a subset of source class (tp) test images. Since the CIFAR-10

dataset has 1k images in each class, we use 500 images to perform the attack and

the remaining 500 images for evaluating the Attack Success Rate (ASR). Since the

ImageNet dataset has only 50 images per class, we conduct the attack using 25 images

22



from the source class and the remaining 25 images for evaluating ASR. Similar to BFA

(1) attack, we observe that the effect of attack batch size plays a minor role in the

attack performance. Furthermore, for ImageNet, we always evaluate test accuracy

on the whole test dataset of 50k images because the amount of test data used to

perform the attack (e.g., 50) is negligible compared to 50k test images. The mean

and standard deviation numbers are calculated over five trial runs for CIFAR-10 and

three trial runs for ImageNet. Also, we terminate attacks when the ASR reaches

higher than 99.99% or remains the same for three successive iterations.

Table 2.2: Test Data Splitting to Conduct Targeted Attack from Source Class tp to

Target Class tq. CIFAR-10 Data Has 10k Test Images With Each Class Containing

1000 Test Images and The ImageNet Dataset Has 50k Test Samples with Each Class

Containing 50 Images. Note: (tr) Means Images Belong to Any Other Class Apart

from The Source Class (3).

Metrics
Attack

Batch Size

# of Data to

evaluate ASR (Xp)

# of Data to

evaluate Test acc. (Xr)

Attack

Batch Size

# of Data to

evaluate ASR (Xr)

# of Data to

evaluate Test acc. (Xr)

Dataset CIFAR-10 ImageNet

N-to-1 128 10k 10k 50 50k 50k

1-to-1 500( tp ) 500(tp) 9k 25(tp) 25(tp) 50k

1-to-1 (S) 500(tp)+500(tr) 500(tp) 8.5k 25(tp)+25 (tr) 25(tp) 50k

Table 2.3: Pre-attack Test Accuracy of Individual Class (i). We Also Report The Test

Accuracy w/o Any Sample From Class i For Both Resnet-20 and Vgg-11 Model (3).

i = 0 1 2 3 4 5 6 7 8 9

Resnet-20
Test Accuracy( i ) 92.9 97 89.8 81.5 93.7 87.3 94.3 92.7 95.5 94.7

Test Accuracy (w/o i) 91.83 91.37 92.17 93.5 91.74 92.45 91.67 91.85 91.54 91.63

VGG-11
Test Accuracy( i ) 91.6 94.4 89.1 86.7 89.8 82.8 92.9 93.3 94.5 92.1

Test Accuracy (w/o i) 91.56 91.07 92.62 91.95 91.42 92.71 91.36 91.13 90.18 91.34

23



2.3.3 DNN Architectures

For CIFAR-10 dataset, we evaluate the attack against popular ResNet-20 (12),

VGG-11 & VGG-16 (11) and AlexNet (10) networks. We use the same pre-trained

models with exact configuration as (6). For ImageNet results, we evaluate the at-

tack performance on MobileNetV2 (106), ResNet-18, ResNet-34 & ResNet-50 (12)

architectures. For each of the model, we directly download a pre-trained model from

PyTorch Torchvision models 2 and perform an 8-bit post quantization and encoding

as described in section 2.3.

2.3.4 BFA Attack Setup in a Real Computer

To demonstrate a BFA attack on a DNN running on a real computer, we imple-

ment a DRAM fault injection method using the same computer system setup in (2).

Here the adversary performs the row-hammer attack to inject bit flips in DRAM

by running an unprivileged user-space process on the machine (i.e., a strong adver-

sary with system-level access permission is , not required). The attack is evaluated

on a computer with Intel Ivy Bridge-based processor and dual-channel 8GB DDR3

memory with two DIMMs. Each DRAM DIMM has 16 banks, and each bank has

32768 rows. We implement a double-sided row-hammer attack where the attacker

controls two neighboring rows of a victim row (i.e., rows that store DNN weights)

to induce a bit flip in the victim DNN model. To achieve such a memory layout,

we reverse-engineer the DRAM addressing scheme using the technique demonstrated

in (107).

We first perform memory templating that scans DRAM rows to collect information

about flippable bits (i.e., bit flip profile) in the main memory. Such an offline DRAM

2https://pytorch.org/docs/stable/torchvision/models.html
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profiling can be done in isolation in the attacker’s memory space and thus does not

corrupt or crash the system (57; 55). We employ the stripe data pattern (1-0-1 and

0-1-0) with a double-sided row-hammer in order to extract most bit flips (2; 56). The

bit-flip profile keeps track of locations and flip directions for vulnerable memory cells.

After the BFA algorithm search is finished, the attacker generates a set of bit

offsets in the target DNN’s weight file. The weight parameters in the weight files are

organized as physical pages (typically in the size of 4KB) in DRAM. To ensure that

these identified target bits can be flipped, the attacker needs to ensure that DRAM

pages holding the targeted weight parameters are located in the desirable DRAM

rows. Notably, the attacker manipulates the Operating System through page cache to

massage the memory (108; 108) so that the target weight bits are stored in flippable

DRAM cells with the right flip direction (i.e., either 1→0 or 0→1). The attacker

then performs double-sided row-hammering by frequently accessing its own data (the

neighboring rows) to incur sufficient disturbance to DNN’s memory row to achieve the

targeted bit flips. In some cases, if the identified bits are not flippable in hardware, a

new set of vulnerable bit candidates from BFA algorithm will be generated by freezing

the previous set (e.g., in case the bit flip found in the profile can not be repeated at

runtime). This ensures the software algorithm runs independently of system attacks.

For real computer attack experiments, we successfully validate all types of BFA on

different DNN architectures as will be reported later.

2.3.5 Evaluation Metrics

Two metrics are used in this chapter for attack evaluation: Post-attack test accu-

racy (PTA%) and Attack Success Rate (ASR%).

Post-Attack Test Accuracy (PTA%): The Post-attack test accuracy is the

inference accuracy of the post-attack model on test set. To evaluate the test accuracy
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after the attack, we only use a portion of the test data (Xr in Table 2.2) which does

not contain any image from the source class; since all the source class images will be

miss-classified to the target class after the attack.

Attack Success Rate (ASR%): The ASR is the percentage of source class

images(i.e., Xp in Table 2.2) successfully classified into the adversary target class via

only T-BFA. To evaluate ASR, we only use Xp portion of source class data shown in

table 2.2. The attacker does not use this portion of the source class images during

the attack for 1-to-1 and 1-to-1 (S). However, for N-to-1 (S) Xp contains the whole

test dataset since, by definition, the attack should classify all the test images into one

target class.

2.4 Experimental Results

2.4.1 Un-targeted BFA Attack Results.

In Table 2.4, we summarize the results for Un-targeted Bit-Flip attack. For all

the reported cases, our attack performs consistently by achieving the close to random

accuracy with less than 25 bit-flips for different architectures and datasets. The

effectiveness of the attack is co-related with both model size and network topology.

For example, compact DNN models such as MobileNet-V2 is extremely vulnerable

and it requires just two bit-flips to degrade the accuracy to near-random guess.

2.4.2 Targeted Bit-flip Attack Results on CIFAR-10

N-to-1 Attack. For CIFAR-10, the N-to-1 attack can successfully reach 100%

ASR for both VGG-11 and ResNet-20 architectures on each target class. As shown

in Table 2.5, the range of average bit-flips required to achieve 100% ASR is between

4 ∼ 6.8 and 2.8 ∼ 3 for ResNet-20 and VGG-11, respectively. So for the N-to-1
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Dataset Architecture
Network

Parameters

Acc. before

Attack (%)

Random Guess

Acc. (%)

Acc. after

Attack (%)

Min. # of

Bit-flips

CIFAR-10

ResNet-20 0.27M 90.70

10.00

10.92 21

AlexNet 61M 84.40 10.46 5

VGG-11 132M 89.40 10.27 3

VGG-16 138M 93.24 10.82 13

ImageNet

MobileNet-V2 2.1M 72.01 0.19 2

ResNet-18 11M 69.52 0.1 0.19 24

ResNet-34 21M 72.78 0.18 23

ResNet-50 23M 75.56 0.17 23

Table 2.4: We Summarize The Results of U-BFA (2)

Table 2.5: N-to-1 Attack: Number of Bit-flips (mean±std) Required to Classify All

The Input Images to a Corresponding Target Class With 100% ASR. In Each Case,

Test Accuracy Drops to 10% (3).

Class 0 1 2 3 4 5 6 7 8 9 Average

ResNet-20 4.0 ± 0 4.6 ± 0.9 5.0 ± 2.2 6.2 ± 2.3 4.6 ± 0.9 5.2 ± 1.6 6.8 ± 1.9 4.4 ± 1.7 5 ± 2.2 4.8 ± 1.8 5.1

VGG-11 3.0 ± 0.0 3.0 ± 0.0 3.0 ± 0.0 3.0 ± 0.0 2.8 ± 0.4 2.0 ± 0.0 3.0 ± 0.0 3.2 ± 0.4 3.0 ± 0.0 3.0 ± 0.0 3.0

attack, VGG-11 requires a consistently fewer number of bit-flips than ResNet-20 for all

CIFAR-10 classes. We further observe that there is no obvious relation between attack

success rate and pre-attack accuracy. Thus for a balanced dataset supervised learning

problem, the pre-attack accuracy may not have a significant role in determining the

attack performance of a specific target class. Our analysis of the N-to-1 attack shows

that no particular target class is easier or more difficult to attack. Thus we conclude

that the input feature patterns play a small role in resisting the attack, while the

network architecture plays a more important role.

1-to-1 Attack. In this version of T-BFA, the attacker performs 1-to-1 miss-

classification with fewer number of bit-flips (see Fig. 2.4) in comparison to the N-to-1
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Figure 2.4: Type II: 1-to-1 Attack on ResNet-20 Between Source Class And Target

Class. The Left Subplot Shows Post Attack Test Accuracy And The Right Subplot

Shows Average Number of Bit-Flips Required for The Attack (3).

version (see Table 2.5). For most of entries shown in Fig. 2.4, the 1-to-1 attack requires

only 1-2 bit-flips to achieve 100%ASR with a few exceptions. Overall, for all possible

combinations of classes, T-BFA successfully achieves 100% 1-to-1 miss-classification

with a range of 1 ∼ 7.4 bit-flips. A 1-to-1 attack requires, in general, fewer bit-flips

compared to an N-to-1 attack. This is expected since misclassifying all N classes is

more complicated than misclassifying just one class.

1-to-1 Stealthy (S) Attack. Our evaluation of 8-bit quantized ResNet-20 and

VGG-11 models shows a 91.9% and 91.6% baseline CIFAR-10 test accuracy, respec-

tively. As shown in Fig. 2.5, after the attack, the accuracy of ResNet-20 has a larger

drop. The average test accuracy after five attack rounds is between 31.3 ∼ 88.3%

for ResNet-20. On the other hand, VGG-11 maintains a better test accuracy with a

range of 48.3 ∼ 90.1%.

T-BFA is effective in attacking the ResNet-20 network by achieving ASR higher

than 97% for all combinations of source and target classes. However, VGG-11 shows

slightly better resistance to the attack with an ASR range of 93-99% for different com-
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48.3 50.8 57.3 81.9 66.8 91.9 54.2 64.4 60.8 53.2
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0.0 100.098.2 99.0 99.9 99.9 99.9 99.8 99.9 99.9

100.0 0.0 99.3100.099.9100.099.8 99.8100.099.7

99.7 97.6 0.0 99.0 98.8 99.0 98.5 98.1 98.4 97.1

99.1 99.8 99.2 0.0 98.8 98.4 99.2 99.4 99.3 98.6

98.8 97.2 99.6 99.5 0.0 98.8 98.8 97.6 99.1 97.3

98.9 97.8100.099.2 99.3 0.0 98.3 98.8 98.7 97.2

100.099.5100.0100.099.6100.0 0.0 99.2 99.8 99.7

100.099.4 99.8100.099.6 98.4 99.0 0.0 99.3 99.3

100.099.6 99.6 99.7 99.4100.099.8 99.2 0.0 99.2
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Figure 2.5: Type III: 1-to-1 (S) Attack Post Attack Test Accuracy, Attack Success

Rate And Avg. # of Bit-Flips for Five Rounds of Attacks for Both Resnet-20 and

VGG-11 Networks (3).

binations. This is consistent with prior work, which also shows that denser networks

(i.e., VGG-11, VGG-16) have better resistance to both adversarial weight attack (29)

and input attack (27). While for both networks, some classes are more vulnerable

than others, most source class and target class combinations require less than ten bit-

flips to conduct the 1-to-1 stealthy attack. A compact network, like ResNet-20 with

0.27M parameters, has less capacity to learn the dual objective function in a 1-to-1

(S) attack through a small number of bit-flips in comparison to a denser network, like

VGG-11 with 132M parameters. As a result, the test accuracy drop for a compact

network, like ResNet-20, is higher.
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Table 2.6: Performance of T-BFA Variants on ImageNet (from Hen Class (i.e., Label

8) to Goose Class (i.e., Label 99)). The Original Test Accuracies of ResNet-18,

ResNet-34 and MobileNet-V2 Are 69.23%, 75.5% And 72.01%, Respectively (3).

Type

Attack

Success

Rate (%)

Test

Accuracy

(%)

# of

Bit-Flips

Attack

Success

Rate (%)

Test

Accuracy

(%)

# of

Bit-Flips

Attack

Success

Rate (%)

Test

Accuracy

(%)

# of

Bit-Flips

N-to-1 99.78 ± 0.27 0.23 ± 0.18 32.6 ± 8.2 99.99 ± 0 0.1 ± 0 21 ± 4 100 ±0 0.1 ± 0 17.3 ± 3.29

1-to-1 100 ± 0 32.13 ± 14.4 16.7 ± 1.24 100 ± 0 23.74 ± 1.71 9.33 ± 0.94 100 ± 0 1.19 ± 0.22 13 ±1.41

1-to-1 (S) 100 ± 0 59.48 ± 2.9 27.3 ± 16.7 100 ± 0 58.33 ± 3.29 40.33 ± 30.32 98.67 ± 1.89 33.99 ± 4.93 45.33 ± 21.74

ResNet-18 (# of parameters: 11M) ResNet-34 (# of parameters: 21M) MobileNet-V2 (# of parameters: 2.1M)

2.4.3 Targeted Bit-flip Attack Results on ImageNet

ImageNet dataset has a much larger number of output classes compared to CIFAR-

10. We do not have the space to report all targeted attack results. Thus we randomly

pick one combination of target attacks (Hen class to Goose class) to show the at-

tack method’s efficiency. For N-to-1 attack, Table 2.6 shows that T-BFA requires

32, 21 and 17.3 bit-flips, on average, for ResNet-18, ResNet-34 and MobileNet-V2,

respectively. Aligning with the observation for CIFAR10, it can be seen that a more

compact network is more vulnerable to the N-to-1 attack. For a 1-to-1 (S) attack,

a compact network, e.g., MobileNet-V2 (with 2.1M parameters), fails to maintain a

reasonable test accuracy (i.e., 33.9%). More extensive networks, such as ResNet-18

and ResNet-34, can maintain a reasonable test accuracy (i.e., ∼ 59%) while achieving

100% ASR. Those experiment results also align with our observation for CIFAR10. In

the case of ImageNet dataset, a large number of output class and dense model archi-

tectures may contribute to increasing the attack difficulty. However, consistent with

CIFAR-10 observations, conducting a 1-to-1 (S) attack on a higher-capacity network

is easier. The larger optimization space helps achieve dual objectives of maintaining

reasonable test accuracy and achieving very high ASR.
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Table 2.7: Comparison with Competing Methods. We Directly Report The Numbers

from the Respective Papers for (3; 4; 5).

Method
# of Data used to

evaluate ASR
ASR (%)

Post Attack

Test Accuracy (%)

# of

Bit-Flips

Model

Precision

Untargeted-BFA (I) (1) 10k - 10.27 28 8-bit

N-to-1(I) 10k 100 10 4 8-bit

SBA (II) (4) 100 100 60.0 1 full-precision

1-to-1 (II) 1000 100 10 3.2 8-bit

GDA (III) (4) 100 100 81.66 198 full-precision

Fault Sneaking (III) (5) 16 100 76.4 >2565 full-precision

1-to-1 (s) III 1000 99.3 88.3 12.2 8-bit

2.4.4 Comparison with Other Competing Methods

In this section, we compare the T-BFA with the most recent works of targeted

attacks (1; 29; 4; 5) in the adversarial weight attack domain.

As shown in Table 4.3, N-to-1 targeted attack achieves the same objective as (1)

with 7 × less number of bit-flips. Moreover, unlike un-targeted BFA (i.e., randomly

classifying all inputs to a random class), N-to-1 attack has precise control on the

target output class. Other stronger versions of previous targeted attacks, such as

GDA (4) and fault sneaking attacks (5), have shown superior results (100% ASR)

against a weaker threat model (i.e., full-precision model or the attack is evaluated

against only 100 images). However, T-BFA 1-to-1 (s) outperforms both (4),(5) on a

quantized network with 16 × and 210 × fewer number of bit-flips.

2.4.5 Analysis of Attacking Real Computer Running DNNs

In a real computer’s main memory, an 8-bit quantized DNN with M number of

weights contains (M/4096) physical memory pages (4KB), and within each page,
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Table 2.8: T-BFA Attack on DNNs Running in A Real Computer (3)

Network
Attack

Type

ASR

(%)

Post

Attack

Accuracy

(%)

Number

Of Flips

ResNet-20 (CIFAR-10) I 88.92 19.88 2

MobileNet-V2 (ImageNet) II 96.8 2.2 11

VGG-11 (CIFAR-10) III 98.6 80.6 2

one bit has an offset range (0-32767). We evaluate all three types of T-BFA on our

prototype computer hardware (described earlier) running ResNet-20, VGG-11, and

MobileNet-V2 summarized in Table 2.8.

In real computer attack system, by flipping ResNet-20 bit locations: (page # 65

offset # 12113);(page # 1 offset # 12600), attacker can achieve 88.92 % ASR on

Type I attack (e.g., class 2). Similarly, by flipping two bits of VGG-11: (page #

2379 offset # 21352) ; (page # 2378 offset # 20504), attacker achieves 98.6% ASR

for type III (class 9→ 1) on CIFAR-10. We test ImageNet results on MobileNet-V2

for type II attack (class 8 → 99). By flipping these 11 bit locations: (page # 1

offset # 7392) ; (page # 131 offset # 12883); (page # 3 offset # 25971); (page #

114 offset # 22842);(page # 143 offset # 10335);(page # 281 offset # 16537);(page

# 298 offset # 3298);(page # 304 offset # 21736);(page # 285 offset # 14549);(page

# 143 offset # 9359);(page # 465 offset # 19993), attacker would achieve 96.8 %

ASR. Note that, due to the consideration of bit flip profile, the targeted bits can be

flipped successfully in the physical testbed (the online row-hammer exploitation takes

less than 30 seconds).
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Table 2.9: T-BFA Performance Against Existing BFA Defense Techniques (6). PTA

Indicates Post-attack Test Accuracy (3).

Class
Clean

Model
N-to-1 1-to-1 1-to-1(S)

TA(%) PTA(%) ASR (%)
# of

flips
PTA (%) ASR(%)

# of

flips
PTA(%) ASR(%)

# of

flips

8-Bit 91.9 10.0 100.0 5.2 49.0 100.0 4.4 66.3 99.2 3.6

8-Bit (PC) (6) 91.29 10.0 100.0 5.6 47.7 100.0 3.0 66.49 97.84 8.6

Binary (6) 88.24 10.0 100.0 35.5 61.94 100.0 17 72.98 98.4 16

2.5 Discussion

2.5.1 Evaluation Against Existing Defense

Recently, (6) proposed Piece-wise Clustering (PC) as an effective training scheme

to defend against Bit-Flip based un-targeted weight attack (1). We evaluate the T-

BFA against PC methods in Table 4.3, showing that T-BFA (e.g., 1-to-1 (S)) still

successfully (i.e., higher than 97.0 % ASR with tens or less # bit flips) attacks PC and

binary network with a cost of around 2 × and 5 × more flips, respectively, showing

little resistance improvement, but not significantly.

In summary, Piece-wise clustering or low-bit width (6) is still improving robustness

against T-BFA but not as effective as un-targeted BFA. According to our observation,

an N-to-1 attack is a much stronger attack than an un-targeted BFA, meaning it

requires 7 times fewer amount of bit-flips to degrade network accuracy to 10 percent

in Table 4.3. Since T-BFA is more effective than an un-targeted BFA, it also achieves

better attack performance against existing (6) defense.
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Figure 2.6: Summary of Attacking Adversarial Trained ResNet-20 Model with N-to-1

And 1-to-1 Attack. We Report The # of Bit-flips Required to Reach ∼ 100 % ASR.

The Source Class Is 3 and Target Class Is 5. Here, We Report the Average of Five

Individual Rounds (3).

Figure 2.7: Summary of Attacking Adversarial Trained ResNet-20 Model with Type

III 1-to-1 (S). We Report The Post Attack Accuracy And # of Bit-flips Required to

Reach ∼ 99.0 % ASR for All Cases. The Source Class Is 3 And Target Class Is 5 (3).

2.5.2 Effect of Adversarial Training

To further demonstrate the attack efficacy of T-BFA, we also evaluate the ad-

versarial weight perturbation-based training defenses against our attack. Two of the

effective adversarial weight perturbation training methods are Adversarial Weight

Perturbation (AWP), and Trades-AT defense (109). We also evaluate the effect of

training the model with popular input adversarial training defense projected gradient

descent (PGD) training (27). We summarize the results of N-to-1 and 1-to-1 attack

in Fig. 2.6. It demonstrates that adversarial input training (e.g., Madry PGD (27))
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makes the model more vulnerable to adversarial weight attack. Prior works (1; 6)

have also reached a similar conclusion regarding input adversarial defense performance

against BFA. Next, adversarial weight training (e.g., AWP-AT & Trades-AWP) helps

slightly improve the robustness to T-BFA (∼ 1-2 additional flips). In all the cases,

our attack still succeeds in achieving the attack with less than 8 bit-flips.

Similarly, in Fig. 2.7, the 1-to-1(S) attack breaks (i.e., 99.0 % ASR) all the defenses

with similar efficacy as the baseline model( i.e., less than 25 bit-flips). The observation

is consistent with our prior BFA work(1), where adversarial training with BFA-based

weight perturbation fails to show noticeable resistance improvement against BFA

attacks. Several possible reasons that such adversarial training works for defending

adversarial input attack, but not for adversarial weight attack (e.g., BFA or T-BFA),

are i) the adversarial weight noise dimension is significantly higher than input noise;

ii) unlike adversarial input attack that typically requires the added noise magnitude

to be within a very small epsilon (i.e., distortion metric, l∞ norm) (typically less than

6%), bit-flip based adversarial weight attack could easily cause a significant change of

weight parameter value (e.g. one bit flip in the most significant bit of 127(‘01111111’ in

binary) will change to -1 (‘11111111’ in binary)); iii) unlike defending adversarial input

noise which targets optimizing more resilient weights to adapt a group of fixed training

samples and their corresponding noise during adversarial training, the adversarial

weight noise samples are ever-changing due to the update of weight parameters during

every epoch of adversarial training. Thus, optimizing adversarial perturbation on

these evolving weights is extremely difficult.

2.5.3 Layer-wise Sensitivity.

We also observe that the most vulnerable or sensitive layer under the T-BFA

attack is the last classification layer. In the case of a 1-to-1 (s) attack, it is interesting
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Table 2.10: Summary of Possible Directions To Improve Resistance Against BFA (3).

Possible Defense Directions Un-targeted I II III

1. Perform Weight Clustering (i.e., PC/Binary) X X X X

2. Increase Network Capacity (e.g., larger size/ high bit-width) X X X

3. Decrease Network Capacity (e.g., smaller network) X

4. Securing critical layers (e.g., Classification layer) X X X X

5. Adversarial Training Defenses (e.g., AWP,Trades) X X

to observe that 100% of all the identified vulnerable bits are in the last layer for both

ResNet-20 and VGG-11 models. For the N-to-1 attack, more than 90% of bit-flips

are in the last classification layer. This study leads to the question: Can we defend

T-BFA by securing the critical last layer for classification? To answer this question,

we assume the entire last layer is protected (i.e. no bit-flip is allowed) and run the

T-BFA again. This is motivated by prior work that secures the entire last layer in

a protected enclave of a computer processor, such as Intel SGX (110) as an effective

privacy protection method. Unfortunately, all three versions of T-BFA still succeed

with a cost of a limited additional number (all less than 30) of bit flips. Thus, this

scheme helps slightly improve the resistance, but not significantly.

2.5.4 Summary of Potential Defenses

Based on the above discussion and our summarized takeaways, we list several

directions we have explored to improve DNN model resistance against different types

of BFA in Table 2.10. In our experiments, those methods only help improve DNN

model resistance to a limited degree. However, none of them could significantly

improve Robustness. For example, the largest bit-flip # for any type of T-BFA to

succeed on CIFAR-10 is 36 when attacking a binary network in Table 4.3, which is still

a practical number in real-computer memory fault injection as discussed in (2; 111).
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2.6 Conclusion

In this chapter, we summarize both un-targeted & targeted adversarial weight

attack schemes, which severely degrade the classification performance of quantized

DNNs. BFA is based on an iterative bit searching algorithm. Extensive experiments

have been conducted to prove the efficacy of BFA in different DNN architectures on

CIFAR10 and Imagenet datasets. Moreover, we evaluate BFA in a real computer

running DNNs. In the end, we provide several possible analyses and directions to

construct robust DNN models against BFA. In future, protecting DNN against bit-

flip attacks demands both system and algorithm level optimization.
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Chapter 3

BIT-FLIP ATTACK TO INJECT TROJAN IN DEEP NEURAL NETWORK

After demonstrating the effect of adversarial parameter attack, i.e., Bit-Flip At-

tack (BFA) (1; 2; 3) previously, in this chapter, we will discuss how to utilize BFA

to conduct another class of adversarial weight attack called Trojan attack (20; 112).

We already discussed that adversarial input attack aims to fool the DNN with the

help of malicious input, whereas parameter attack fools the DNN by corrupting some

targeted parameters (i.e, weight) as shown in figure 3.2. Unlike traditional attacks,

which are restricted to input and weight domains, the neural Trojan attack utilizes

both corrupted inputs and weights to cause targeted misbehaviour of DNN.

3.1 What is A Trojan Attack?

In this chapter, we present our effort to breach the security of DNN, focusing

on neural Trojan attacks. Recently, several works have proposed methods to inject

Trojan into DNN, which can be activated through designated input patterns (20;

112; 113). Figure 5.1 depicts a standard neural Trojan attack setup delineated by the

previous works. For example, in object recognition, a clean DNN, without Trojan

attack, performs accurate classification on most input images. However, a Trojan-

infected model miss-classifies all the inputs to a targeted class (i.e. ‘Bird’ as shown

in Figure 5.1) with very high confidence when a specially designed input pattern or

patch is concealed with input. Such embedded patch is known as trigger. On the

other case, when the trigger is removed from input data, such Trojan-infected DNN

will operate normally with the almost same accuracy as the clean model counterpart.
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Figure 3.1: Overview of Targeted Trojan Attack (7)

3.2 Previous Trojan Attacks and Their Limitations

Typical neural Trojan attacks assume the attacker could access the supply chain

of DNN (e.g., data-collection/ training/ production). A recognized assumption (112;

114; 20) is that the computing resource-hungry DNN training procedure is outsourced

to the powerful high-performance cloud server, while the trained DNN model will be

deployed to a resource-constrained edge-server/mobile-device for inference. Almost

all the existing neural Trojan attack techniques (20; 112; 115) are conducted during

the training phase, namely inserting Trojan before deploying the trained model to

the inference computing platform. For example, Gu et al. (112) assumes the attacker

has permission to freely edit training data to poison network training. Rather than

poisoning the clean data, another neural Trojan attack proposed in (20) can generate

its retraining data, where the neural Trojan insertion is conducted by retraining the

target DNN using the generated poisoned data.
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Trojan attack on DNN has received extensive attention recently (116; 112; 20;

113; 115; 117). Initially, similar to hardware Trojan, some of these works propose to

add additional circuitry to inject Trojan behavior. Such additional connections get

activated to specific input patterns (116; 118; 113). Another direction for injecting

neural Trojan assumes attackers have access to the training dataset. Such attacks

are performed by poisoning the training data (112; 114). However, the assumption

that the attacker could access the training process or data is very strong and may

not be practical for many real-world scenarios. Besides, Such a poisoning attack

also suffers from poor stealthiness (i.e., poor test accuracy for clean data). However,

recent works focus specifically on the training phase of the model (i.e. misleading

the training process before model deployment to the inference engine). Thus, corre-

spondingly, before deployment, there are also many developed neural Trojan detection

methods (117; 119; 120) to identify whether the model is Trojan-infected. No work

has been presented to explore how to conduct a neural Trojan attack after the model

is deployed.

In contrast to the previous works, accessing the DNN training supply chain is

unnecessary. As shown in figure 3.2, we present a new way of conducting Trojan

attack which does not require access to any training data or any training-related

information (i.e., hyperparameter or batch size, etc.). In this chapter, we introduce

a new DNN Targeted Bit Trojan (TBT) attack, which is developed to attack the

deployed DNN inference model by flipping (i.e. memory bit-0 to bit-1, or vice versa)

a small number of bits of weight parameters stored in main computer memory.

3.3 Threat Model for TBT

Similar to Chapter 1, our threat model here adopts white-box attack setup de-

lineated in many prior adversarial attack works (18; 27; 33) or network parameter
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Figure 3.2: Overview of TBT Attack’s Threat Model (7)

(i.e., weights, biases, etc.) attack works (1; 21). In our threat model, the attackers

own the complete knowledge of the target DNN model, including model parameters

and network structure. It is a practical assumption since many previous works have

demonstrated attacker is able to steal such info through a side channel, supply chain,

etc. (121; 23; 122). Note that adversarial input attacks (i.e., adversarial example

(27; 18)) assume that the attacker can access every single test input during the infer-

ence phase. In contrast to that, our method uses a set of randomly sampled data to

conduct an attack instead of the synthetic data as described in (20). Moreover, our

threat model assumes the attacker does not know the training data, training method

and the hyperparameters used during training. As suggested by prior works (21), a

weight quantized neural network has relatively higher robustness against adversar-

ial parameter attack. In order to prove the efficiency of our method, we also follow

the same setup that all experiments are conducted using an 8-bit quantized network.

Thus, the attacker is also aware of the weight quantization and encoding methods.

We follow the same widely-used weight quantization and encoding method discussed

in previous chapter.
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3.4 Targeted Bit Trojan (TBT)

In this section, we present a neural Trojan insertion technique named Targeted

Bit Trojan (TBT). TBT consists of three major steps: 1) The first step is trigger

generation, which utilizes the Neural Gradient Ranking (NGR) algorithm. NGR

is designed to identify important neurons linked to a target output class to enable

efficient neural Trojan trigger generation for classifying all inputs embedded with

this trigger to the targeted class. 2) The second step is to identify vulnerable bits,

using the Trojan Bit Search (TBS) algorithm, to be flipped for inserting the designed

neural Trojan into the target DNN. 3) The final step is to conduct a physical bit-flip

(i.e. row hammer attack) (4; 21), based on the vulnerable bit Trojan identified in the

second step.

3.4.1 Trigger Generation

Two sub-steps are required to generate a trigger in TBT, which are described in

detail as follow:
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Significant Neuron Identification

In this chapter, our goal is to enforce DNN miss-classify the trigger-embedded input

to a targeted class. Given a DNN model A for classification task, model A has M

output categories/classes and K ∈ {1, 2, ...,M} is the index of targeted attack class.

Assuming the last layer of model A is a fully-connected layer as a classifier, which

owns M output-neurons and N input-neurons. The weight matrix of such classifier

is denoted by Ŵ ∈ RM×N . Given a set of sample data x and their labels t, we could

calculate the gradients through back-propagation. Then, the accumulated gradients

are described as:

Ĝ =
∂L
∂Ŵ

=



IN1 IN2 IN3 .. INN

OUT1 g1,1 g1,2 g1,3 .. g1,N

.. .. .. .. .. ..

OUTK gK,1 gK,2 gK,3 .. gK,N

.. .. .. .. .. ..

OUTM gM,1 gM,2 gM,3 .. gM,N


(3.1)

Where L is the loss function of model A, since the targeted misclassification

category is indexed by K, we take all the weight connected to the K-th output neuron

as GK,: (highlighted in Eq. (3.1)), then, we attempt to identify the neuron that has the

most significant impact on the targeted K-th output neuron, using Neural Gradient

Ranking (NGR) method, which could be expressed as:

Top
wb

|[gK,1, gK,2, ..., gK,N ]|; wb < N (3.2)

where the above function returns the indexes {j} of wb number of gradients gK,j with

highest absolute value. Note that, the returned indexes are also corresponding to the

weights connected to the last layer K-th output neuron.
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Data-independent Trigger Generation

For the second sub-step, we generate a trigger image x̂ of size m×m× 3 which will

be zero-padded to the correct shape same as the input of model. Since the size of the

trigger is very small in comparison to the input image, later, we can use this trigger

to stamp at a particular location of an input image to activate the Trojan.

Now, let’s assume the output of the identified wb neurons in the last step as g(x; θ̂),

where g(·; ·) is the model A inference function and θ̂ denotes the parameters of model

A without last layer (i.e. θ̂ ∩ Ŵ = ∅). An artificial target value ta = β · I1×wb is

created for trigger generation, where we set constant β as 100 in this chapter. Thus

the trigger generation can be mathematically described as:

min
x̂
|g(x̂; θ̂)− ta|2 (3.3)

where the above minimization optimization is performed through back-propagation,

while θ̂ is taken as fixed values. x̂ ∈ Rm×m×3 is defined trigger pattern, which will

be zero-padded to the correct shape as the input of model A. x̂ generated by the

optimization will force the neurons identified in last step to fire at large value (i.e.,

β).

3.4.2 Trojan Bit Search (TBS)

In this chapter, we assume the accessibility to a sample test input batch x with

target t. After bit Trojan insertion, each input sample embedded with trigger x̂

will be classified to a target vector t̂. In the previous step, we already identified

the most important last layer weights from the NGR whose indexes are returned in

{j}. Leveraging the stochastic gradient descent method, we update those weights to

achieve the following objective:
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min
{Ŵf}

[
L
(
f
(
x
)
; t
)

+ L
(
f
(
x̂
)
; t̂
)]

(3.4)

After several iterations, the above loss function is minimized to change the initial

weight matrix Wf to produce a new weight matrix Ŵf . In our experiments, we

use an 8-bit quantized network which is represented in binary form as shown in the

weight encoding section. Thus, after the optimization, the difference between Ŵ and

Ŵf would be very small (ideally several bits in binary format considering the two’s

complement bit representation of Ŵ and Ŵf is B̂ and B̂f respectively). Then the

total number of memory bit (nb) that needs to be flipped to insert the designed neural

Trojan could be achieved:

nb = D(B̂f , B̂) (3.5)

where D(B̂l,Bl) computes the Hamming distance between clean- and perturbed-

binary weight tensor. The resulted Ŵf would give the exact weight parameters

required to inject Trojan into the clean model.

3.5 Experimental Setup:

Dataset and Architecture. The TBT attack is evaluated on popular object recog-

nition task, in three different datasets, i.e. CIFAR-10 (78) and ImageNet. CIFAR-10

contains 60K RGB images in size of 32× 32. We follow the standard practice where

50K examples are used for training and the remaining 10K for testing. For most

of the analysis, we perform on ResNet18 (12) architecture which is a popular state-

of-the-art image classification network. We also evaluate the attack on the popular

VGG-16 network (11). We quantize all the networks to an 8-bit quantization level.

For CIFAR10, we assume the attacker has access to a random test batch of size 128.

Finally, we conduct the experiment on ImageNet, which is a larger dataset of 1000
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class (10). For Imagenet, we perform the 8-bit quantization on the pre-trained net-

work on ResNet-18 and assume the attacker has access to three random test batches

of size 256.

Baseline methods and Attack parameters. We compare TBT with two popu-

lar, successful neural Trojan attacks following two different tracks of attack method-

ology. The first one is BadNet (112) which poisons the training data to insert Trojan.

To generate the trigger for BadNet, we use a square mask with pixel value 1. The

trigger size is the same as our mask to make a fair comparison. We use a multiple

pixel attack with backdoor strength (K=1). Additionally, we also compare another

strong attack (20) with a different trigger generation and Trojan insertion technique

than ours. We implement their Trojan generation technique on the VGG-16 network.

We did not use their data generation, and denoising techniques as the assumption

for our attack are that the attacker has access to a set of the random test batch. To

make the comparison fair, we use a similar trigger area, number of neurons and other

parameters for all the baseline methods as well.

3.5.1 Evaluation Metrics

Test Accuracy (TA). Percentage of test samples correctly classified by the DNN

model.

Attack Success Rate (ASR). Percentage of test samples correctly classified to a

target class by the Trojaned DNN model due to the presence of a targeted trigger.

Number of Weights Changed (wb). The number of weights which do not have

the exact same value between the model before the attack(e.g., clean model) and the

model after inserting the Trojan(e.g., attacked model).

Stealthiness Ratio (SR). It is the ratio of (test accuracy - attack failure rate) and

wb.
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SR =
TA− (100− ASR)

wb
=
TA+ ASR− 100

wb
(3.6)

Now a higher SR indicates the attack does not change the normal operation of

the model and is less likely to be detected. A lower SR score indicates the attacker’s

inability to conceal the attack.

Number of Bits Flipped (nb) The number of bits the attacker needs to flip to

transform a clean model into an attacked model.

Trigger Area Percentage(TAP): The percentage of area of the input image at-

tacker needs to replace with a trigger. If the size of the input image is p× q and the

trigger size is m×m across each color channel, then TAP can be calculated as:

TAP =
m2

p× q
× 100% (3.7)

3.6 Experimental Results

3.6.1 CIFAR-10 Results

Table 3.1 summarizes the test accuracy and attack success rate for different classes

of CIFAR-10 dataset. Typically, an 8-bit quantized ResNet-18 test accuracy on

CIFAR-10 is 92.07 %. We observe a certain drop in test accuracy for all the tar-

geted classes. The highest test accuracy was 91.68% when class 9 was chosen as the

target class.

Also, we find that attacking classes 3,4 and 6 is the most difficult. Further. these

target classes suffer from poor test accuracy after training. We believe that the

location of the trigger may be critical to improving the ASR for classes 3,4, and 6,

since not all the classes have their important input feature at the same location. Thus,
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we further investigate different classes and trigger locations in the following discussion

section. For now, we choose class 2 as the target class for our future investigation

and comparison section.

Table 3.1: CIFAR-10 Results: Vulnerability Analysis of Different Class on ResNet-18.

TC Indicates Target Class Number. In This Experiment We Chose wb To Be 150 And

Trigger Area Was 9.76% for All The Cases (7).

TC
TA

(%)

ASR

(%)
TC

TA

(%)

ASR

(%)

0 91.05 99.20 5 89.93 95.91

1 91.68 98.96 6 80.89 80.82

2 89.38 93.41 7 86.65 85.40

3 81.88 84.94 8 89.28 97.16

4 84.35 89.55 9 91.48 96.40

By observing the Attack Success Rate (ASR) column, it would be evident that

certain classes are more vulnerable to targeted bit Trojan attacks than others. The

above table shows classes 1 and 0 are much easier to attack, representing higher values

of ASR. However, we do not observe any obvious relations between test accuracy and

attack success rate. But it is fair to say if the test accuracy is relatively high on a

specific target class, it is highly probable that the target class will result in a higher

attack success rate as well.

3.6.2 ImageNet Results:

We implement the Trojan attack on a large-scale dataset such as ImageNet. For

ImageNet dataset, we choose TAP of 11.2 % and wb of 150.
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Table 3.2: ImageNet Results on ResNet-18 Architecture (7).

Method: TA ASR Wb

TBT 69.14 99.98 150

Table 3.3: Trigger Area Study: Results on CIFAR-10 for Various Combination of

Targeted Trojan Trigger Area (7).

TAP

(%)

TA

(%)

ASR

(%)
wb nb

6.25 77.24 89.40 149 645

7.91 86.99 92.03 143 626

9.76 89.38 93.41 145 623

11.82 90.56 95.97 142 627

Our TBT could achieve 99.98 % attack success rate on ImageNet while maintaining

clean data accuracy. Previous works (112; 20) did not report ImageNet accuracy in

their works, but by inspection, we claim our TBT requires modifying ∼ 3000× less

number of parameters in comparison to Badnet (112) which would require training

of the whole network.

3.6.3 Ablation Study

Effect of Trigger Area. In this section, we vary the trigger area (TAP) and

summarize the results in table 3.3. In this ablation study, we try to keep the number

of weights modified from the clean model wb fairly constant (142∼149). It is obvious

that increasing the trigger area improves the attack strength and thus ASR.

One key observation is that even though we keep wb fairly constant, the values of
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Table 3.4: Number of Weights Study: Results on CIFAR-10 for Various Combination

of Number of Weights Changed wb for ResNet-18 (7).

TAP

(%)

TA

(%)

ASR

(%)
wb nb

9.76 79.54 79.70 10 37

9.76 82.28 91.93 24 84

9.76 81.80 89.45 48 173

9.76 89.09 93.23 97 413

9.76 89.38 93.41 145 623

9.76 89.23 95.62 188 803

nb change based on the value of TAP. It implies that using a larger trigger area (e.g,

TAP 11.82 %) would require less number of vulnerable bits to inject bit Trojan than

using a smaller TAP (e.g, 6.25 %). Thus considering practical restraint, such as time,

if the attacker is restricted to a limited number of bit-flips using row hammer, he/she

can increase the trigger area to decrease the bit-flip requirement. However, increasing

the trigger area may always expose the attacker to detection-based defenses.

Effect of wb. Next, we keep the trigger area constant but vary the number of weights

modified wb in the table 3.4. Again, with increasing wb, we expect nb to increase as

well. The attack success rate also improves with increasing values of wb.

We observe that by modifying only 24 weights and 84 bits, TBT can achieve close

to 91.93% ASR even though the test accuracy is low (82.28%). It seems that using

a value of wb of around 97 is optimum for both test accuracy(89.09%) and attack

success rate(93.23%). Increasing wb beyond this point is not desired for two specific
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Table 3.5: Comparison to The Baseline Methods: Here We Used VGG-16 architec-

ture. Before Attack Means The Trojan Is Not Inserted into DNN Yet. It Represents

The Clean Model’s Test Accuracy (7).

Method
TA

(%)

ASR

(%)
wb SR

Before

Attack

After

Attack

CIFAR-10

TBT 91.42 86.34 93.15 150 0.56

Trojan NN(20) 91.42 88.16 93.71 5120 .015

BadNet (112) 91.42 87.91 99.80 11M 0

reasons: first, the test accuracy does not improve much. Second, it requires way too

many bit-flips to implement Trojan insertion. Our attack gives a wide range of attack

strength choices to the attacker, such as wb and TAP to optimize between TA, ASR,

and nb depending on practical constraints.

3.6.4 Comparison to Other Competing Methods.

The summary of TBT performance with other baseline methods is presented in

table 4.3. For CIFAR-10, we use the Trojan area of 11.82% and 14.06 %, respectively.

We ensure all the other hyperparameters and model parameters are the same for all

the baseline methods for a fair comparison.

For CIFAR-10, the VGG-16 model before the attack has a test accuracy of 91.43

%. After the attack, for all the cases, we observe a test accuracy drop. Despite the

accuracy drop, our method achieves a reasonable higher test accuracy of 86.34%. Our

proposed Trojan can successfully classify 93.15% of test data to the target class. The
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performance of our attack is stronger in comparison to both the baseline methods. But

the major contribution of our attack is highlighted in wb column as our model requires

significantly less amount of weight to be modified to insert Trojan. Such a low value

of wb ensures our method can be implemented online in the deployed inference engine

through rowhammer-based bit-flip attack. The method would require only a few bit-

flips to poison a DNN. Additionally, since we only need to modify a tiny portion of the

DNN model, our method is less susceptible to attack detection schemes. Additionally,

our method reports a much higher SR score than all the baseline methods as well.

3.7 Discussion

Relationship between nb and ASR. We already discussed that an attacker, de-

pending on different applications, may have various limitations. Considering an attack

scenario where the attacker does not need to worry about test accuracy degradation

or stealthiness, then he/she can choose an aggressive approach to attack DNN with

a minimum number of bit-flips. Figure 3.4 shows that just around 84 bit-flips would

result in an aggressive attack. We call it aggressive because it achieves 92% attack

success rate (highest) with lower (82%) test accuracy. Flipping more than 400 bits

does not improve test accuracy but ensures a higher attack success rate.

Trojan Location and Target Class analysis: We attribute the low ASR of our

attack in table 3.1 for certain classes (i.e., 3,4,6,7) on trigger location. We conjecture

that not all the classes have their important features located in the same location.

Thus, keeping the trigger location constant for all the classes may hamper attack

strength. As a result, for target classes 3,4,6 and 7, we varied the Trojan location to

three places Bottom Right, Top Left and Center.

Table 3.6 depicts that optimum trigger location for different classes is not the
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Figure 3.4: ASR (Green) And TA (Blue) vs Number of Bit Flips Plot. Only with 84

Bit Flips TBT Can Achieve 92 % Attack Success Rate (7).

same. If the trigger is located at the top left section of the image, then we can

successfully attack classes 3,6 and 7. It might indicate that the important features of

these classes are located near the top left region. For class 4, we found center trigger

works the best. Thus, we conclude that one key decision for the attacker before the

attack would be to decide the optimum location of the trigger. As the performance

of the attack on a certain target class heavily links to the Trojan trigger location.

Potential Defense Methods

Trojan detection and defense schemes As the development of neural Trojan

attack accelerates, the corresponding defense techniques demand a thorough investi-

gation as well. Recently few defenses have been proposed to detect the presence of a

potential neural Trojan in DNN model (20; 120; 119; 117). Neural Cleanse method

(117) uses a combination of pruning, input filtering and unlearning to identify back-
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Table 3.6: Comparison of Different Trigger Location: We Perform Trigger Position

Analysis on Target Classes 3,4,6,7 As We Found Attacking These Classes Are More

Difficult in Table 3.1.TC Means Target Class (7).

TC
Bottom

Right

Top

Left
Center

TA ASR TA ASR TA ASR

3 81.88 84.94 90.40 96.44 84.50 85.09

4 84.35 89.55 86.52 95.45 89.77 98.27

6 80.89 80.82 87.91 96.41 86.06 90.55

7 86.65 85.40 86.80 91.91 83.33 86.88

door attacks on the model. Fine Pruning (119) is also a similar method that tries to

fine prune the Trojaned model after the back door attack has been deployed. Activa-

tion clustering is also found to be effective in detecting Trojan infected model (120).

Additionally, (20) also proposed to check the distribution of falsely classified test sam-

ples to detect potential anomalies in the model. The proposed defenses have been

successful in detecting several popular Trojan attacks (20; 112). The effectiveness of

the proposed defenses makes most of the previous attacks essentially impractical.

However, one major limitation of these defenses is that they can only detect the

Trojan once the Trojan is inserted during the training process/in the supply chain.

None of these defenses can effectively defend during run time when the inference has

already started. As a result, our online Trojan insertion attack makes TBT can be

considered as practically immune to all the proposed defenses. For example, only

the attacker decides when he/she will flip the bits. It requires significant resource

overhead to perform fine-pruning or activation clustering continuously during run
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time. Thus our attack can be implemented after the model has passed through the

security checks of Trojan detection.

Data Integrity Check on the Model The TBT relies on flipping the bits of model

parameters stored in the main memory. One possible defense can be a data integrity

check on model parameters. Popular data error detection and correction techniques

to ensure data integrity are Error-Correcting Code (ECC) and Intel’s SGX. However,

row hammer attacks are becoming stronger to bypass various security checks such as

ECC (123), and Intel’s SGX (108). Overall defense analysis makes TBT an extremely

strong attack method, leaving modern DNN more vulnerable than ever. So TBT

encourages further investigation to defend neural networks from such online attack

methods.

3.8 Conclusion

In this chapter, we introduced the Targeted Bit Trojan attack, which presents a

methodology to implement neural Trojan into the DNN model by modifying a small

number of weight parameters after the model is deployed for inference. The proposed

algorithm enables Trojan insertion into a DNN model through only several bit-flips in

the computer’s main memory using a row-hammer attack. Such a run time and online

neural Trojan attack put DNN security under severe scrutiny. As a result, emerging

security threats such as TBT emphasize more vulnerability analysis of DNNs during

run time to ensure secure deployment of DNNs in practical applications.
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Chapter 4

BLACK-BOX ADVERSARIAL WEIGHT ATTACK IN MULTI-TENANT FPGA

Almost all the prior adversarial weight attacks assume an extremely relaxed threat

model (i.e., white-box), where the adversary can access all DNN model parameters,

architecture and compute gradients. Even though it is pivotal to study white-box

attacks to understand the behaviour of DNN models in the presence of input or

weight noise, it is also essential to explore how to conduct adversarial weight attacks

in a much more strict black-box setup where the attacker does not know DNN model

information. This chapter presents a new class of adversarial weight perturbation

attacks for multi-tenant FPGA in a complete black-box setting.

This chapter addresses two key challenges to conducting adversarial weight pertur-

bation in multi-tenant FPGA given black-box treat model constraints. Two primary

challenges are i) Given an FPGA hardware fault injection attack scheme, can an

adversary design an efficient searching algorithm to identify critical parameters for

achieving a specific malicious objective? ii) Can the adversary conduct a black-box

malicious weight attack with no knowledge of DNN model parameters, gradient, etc.,

instead of a white-box attack used in prior works (21; 2)? We answer these two key

questions in the next few sections and address the above challenges.

4.1 Threat Model and Attack Vector

Multi-tenant FPGA Hardware Threat Model. In this chapter, we consider

the representative hardware abstraction of multi-tenant FPGA used in the security

works (124; 125; 126), and operating system works (127; 69). The threat model is

shown in Fig. 4.1, which has the following characteristics: (1) Multiple tenants co-
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Figure 4.1: Threat Model for Deep-Dup Attack (8).

reside on a cloud-FPGA and their circuits can be executed simultaneously. The

system administrator of the cloud service is trusted. (2) Each tenant has the flexibil-

ity to program his design in the desired FPGA regions (if not taken by others). (3)

All tenants share certain hardware resources on an FPGA chip, such as the PDS and

the communication channels with external memory or I/O. (4) We assume that the

adversary knows the type of transmitted data (i.e., either DNN model or input data)

on the communication channel (e.g., I/O protocol IP) connecting the off-chip mem-

ory and on-chip data buffer. Adversarial FPGA tenants can learn such information

differently: i) Using the side-channel leakage from the communication/data channels

on the FPGA, e.g., the cross-talk between FPGA long-wires (125). Besides, recent

works have reverse engineered DNN using side-channel attacks to recover its infor-

mation (i.e, architecture, weights) (122; 128). Additionally, it is practical to recover

the DNN model using instruction flow leakage (23). ii) Practically, the victim FPGA

tenant can be the provider of Machine learning as a service (MLaaS)(129; 130), who
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offers accelerated DNN computation on multi-tenant FPGA, and the adversary can

rent such service as a regular customer, then he/she can learn some info of the model

and query outputs. More importantly, our black-box attack only requires knowing the

transmitted data type (i.e. weight or input), instead of actual weight values, which

is recoverable using similar methods as in (122; 128; 125). It is worth mentioning

that, although the current cloud-computing business model has not yet supported si-

multaneous resource-sharing, with the significant development of FPGA-based cloud

computing, e.g., dynamic workload support (127), FPGA virtulization (131), multi-

tenant FPGA is envisioned to be possible in the future (132).

Deep Learning (DL) Algorithm Threat Model.

Regarding the Deep Learning algorithm level threat model, in this chapter, follow-

ing many prior DL security works (18; 27; 33; 2; 1; 21; 7; 34), two different DL algo-

rithm threat models are considered and defined here: 1) DL white-box : attacker needs

to know model architectures, weight values, gradients, several batches of test data,

queried outputs. 2) DL black-box : attacker only knows the queried outputs and a

sample test dataset. Unlike the traditional DL white-box threat model (18; 27; 1; 133),

our DL white-box is even weaker with no requirement of computing gradient during

the attacking process. Since different DL security works may have different definitions

of white/black-box, throughout this work, we will stick to the definition here, which

is commonly used in prior works (1; 133; 92). In this chapter, similar to many adver-

sarial input or weight attacks, we only target to attack a pre-trained DNN inference

model in FPGA, i.e., hijacking the DNN inference behavior through the Deep-Dup

attack, not the training process, which typically requires extra access to the training

supply chain (20; 19).

In our threat model defined in Fig. 4.1, the adversary will leverage AWD based

fault injection attack on the weight packages identified by our developed P-DES
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searching algorithm when transmitting the DNN model from off-chip memory to the

on-chip buffer/processing engine (PE), resulting in a weight perturbed DNN model

in the PEs. After the attack, the DNN function is hijacked by an adversary with

malicious behaviors, such as accuracy degradation or wrong classification of a targeted

output class.

4.2 Attack Objective Formulation

The Deep-Dup attack is designed to perform both un-targeted and targeted at-

tacks, defined as below.

Un-targeted Attack. The objective of this attack is to degrade the overall

network inference accuracy (i.e., miss-classifying whole test dataset), thus maximizing

the inference loss of DNN. As a consequence, the objective can be formulated as an

optimization problem:

max Lu = max
{Ŵ}

EXL(f(x, {W}); t) (4.1)

where x and t are the vectorized input and target output of a given test batch and

L(·, ·) calculates the loss between DNN output and target. The objective is to degrade

the network’s overall accuracy as low as possible by perturbing weights of the clean

DNN model from W to Ŵ .

Targeted Attack. Different from the un-targeted attack, the objective of tar-

geted attack is to misclassify a specific (target) class of inputs (ts). This attack

objective is formulated in Eq. 4.2, which can be achieved by maximizing the loss of

those target class:

max Lt = max
{Ŵ}

EXL(f(xs, {W}); t) (4.2)

where xs is a sample input batch belongs to the target class ts.
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4.3 Deep-Dup Framework

Deep-Dup mainly consists of two modules: 1) adversarial weight duplication (AWD)

attack, an FPGA hardware fault injection scheme leveraging power-plundering circuit

to intentionally duplicate specific DNN weight packages during data transmission be-

tween off-chip memory and on-chip buffer; 2) progressive differential evolution search

(P-DES), a generic searching algorithm to identify most vulnerable DNN weight pack-

age index and guide AWD fault injection for given malicious objective. At the end of

this section, we will present Deep-Dup as an end-to-end software-hardware integrated

attack framework.

4.3.1 Awd Attack in Multi-tenant FPGA

DNN computation is usually accomplished in a layer-by-layer style, i.e., input

data like image and DNN model parameters of different layers are usually loaded and

processed separately (134; 135; 136). Fig. 4.1 shows the flow of FPGA I/O protocol

IP for typical DNN model transmission, in which the on-chip data buffer sends a

data transaction request to PS for loading data from external memory. Then, the

processing engine (PE) will implement computation based on the DNN model in the

on-chip data buffer (e.g., BRAM).

A data transmission flow is shown in Fig. 4.2 (a), in each clock cycle, a data

package (Di) is transmitted from transmitter (e.g. external memory) to receiver.

Taking the advanced eXtensible interface4 (AXI4) as an example (137), the receiver

first sends a data request with an external memory address, and then it will be notified

to read the data when it is ready. The size of each transmitted data package depends

on the channel bandwidth. In DNN model transmission, the normal (w/o attacks)

transmission flow with each Di as a DNN weight package is illustrated in Fig. 4.2 (a),
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Figure 4.2: Illustrated Timing Diagrams of DNN Model Transmission W/O or Under

AWD Attack. (a) Each DNN Weight Package (Di) Is Transmitted And Received in

A Separate Clock Cycle. (b) Voltage Glitch Incurs More Propagation Delay To The

Transmission of D2, Which Also Shortens The Next Package D3. As A Result, The

Data Package D2 is Sampled Twice by The Receiver Clock, Injecting Faults To The

Received Data Package (8).

with FPGA core voltage (VCCINT) being stable at the recommended supply voltage

(Vr), N data packages (e.g., weights) are transmitted in N clock cycles (D1-D7 in

Fig. 4.2 (a)).

The DNN execution in FPGA is significantly relying on the integrity of its loaded

model. The AWD attack is motivated by two facts: 1) As aforementioned, the relia-

bility and correctness of FPGA applications are ensured by the power delivery mech-

anism; 2) Based on the power regulation mechanism, there exists a maximum power

capacity that FPGA PDS can provide to PEs. Thus, if the FPGA PDS is overloaded,

FPGA applications might encounter faults caused by the timing violation between

the clock signal and computation/data. Recent works have demonstrated that the ac-

tivation of many power-plundering circuits (e.g., ROs/LROs (8)), can cause transient
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voltage drop on the FPGA (138; 139; 140), thus incurring fault injection.

Considering the importance of frequent and real-time DNN model transmission

from/to FPGA, the basic idea for AWD attack is that a malicious FPGA tenant can

introduce a timing violation to the DNN model transmission from off-chip memory

to the on-chip data buffer. As illustrated in Fig. 4.2 (a), a stable FPGA core voltage

(VCCINT) (i.e., with trivial or no fluctuations) will not cause timing violations to data

transmission. However, an unstable VCCINT will incur serious timing violations. For

example, a sudden voltage drop will make the digital circuit execution slower than

usual, causing a longer propagation delay in the data transmission. As shown in Fig.

4.2 (b), the adversary’s aggressive power plundering creates a voltage drop/glitch that

incurs slowing down the data transmission channel. As a result, the corresponding

data package (e.g., D2) may be sampled twice by the receiver clock, causing a fault

injection into the following data package. We envision maliciously designed fault-

injected weight data packages will greatly impact the DNN computation, inducing

either significant performance loss or other malicious behaviors. The details of the

AWD attack can be found in (8) contributed by Yukui Luo.

4.3.2 P-DES Searching Algorithm

This section delineates our vulnerable weight searching algorithm, called Progres-

sive Differential Evolution Search (P-DES), to generate a set of weight data package

indexes for AWD to attack, given the attack objective. Let’s first consider a L layer

network with weight parameters-WL
l=1 to define the problem formally. Then, the

after-attack (i.e. perturbed) weight of the target DNN model executed in FPGA will

become ŴL
l=1. We model different attack objectives aiming to minimize the difference

between WL
l=1 and ŴL

l=1 for deriving the minimal number of required AWD attacks

performing both defined un-targeted and targeted attack objectives.
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To clearly describe the searching algorithm, we start by modelling of white-box

attack, assuming the attacker knows the exact model parameters (i.e. weight values

and architecture). The black-box attack will leverage a similar searching algorithm,

and its corresponding adaption will be described in the end-to-end attack framework

section. We assign each weight package in the target DNN with an index (p); where p

denotes the weight number after flattening the weight matrix W (W ∈ Rm×n×a×kw)

into a 1D array for all the layers starting from layer-1 to the last layer. Note that here

the weight package refers to one data package that is transmitted in one clock cycle.

In the following, we may just call it weight for simplification. The search algorithm

is general and applicable for both attack objectives described in Sec. 4.2.

P-DES is a progressive search algorithm integrating with the concept of differential

evolution (141; 142; 143). The goal is to progressively search for one weight index at

each iteration to guide AWD attack until the attacker-defined malicious objective is

satisfied. The flow chart of the P-DES is shown in Fig. 4.3. For nthiteration, it starts

by initializing a set of random weight candidates (i.e. population set - S) for attacker

to perform AWD attack and evaluate each attack effect (i.e. fitness function) at

current iteration. Then it runs through a succession of evolutionary steps: mutation,

crossover and selection for z times (known as the number of evolution, ’500’ in our

experiments) to gradually replace original candidates with better ones for achieving

the attacker defined malicious objective. When z times evolution is finished in one

search iteration, the attacker picks one best candidate (weight index with highest

fitness function value- F ) among the final survived population set S and conducts an

AWD attack on this winner weight location to duplication data package as described

in the previous sub-section. The detailed description of each step is as follows:
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Figure 4.3: Overview of Our Adversarial Weight Index Searching (P-DES) Algo-

rithm (8).

Initialization Step. As described above, the objective of differential evolution is to

improve population set S over time to reach the attacker-defined malicious objective

gradually. To initialize, S will start with a set of random values, containing z weights

whose indexes located at (pl) ; where l = 1, 2, 3, .., z. Here, z is the size of S, defined

as the number of evolution. Ideally, a larger population set (i.e., higher z) would

result in a better attack performance at the cost of increased searching time.

Fitness Function Evaluation. Fitness function - Fl is an important step of an

evolutionary algorithm to evaluate the attack effect of each proposed candidate in
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the population set S. In our Deep-Dup attack, as defined in Eq. 4.1 and Eq. 4.2,

we assign the DNN loss function as fitness function. Thus we could evaluate the

attack effect (i.e. Fl) of each candidate in set S in terms of DNN loss. Note that,

for a white-box attack, such evaluation (i.e. fitness function) could be computed in

an offline replicated model. For black-box attack, the loss will be directly evaluated

in FPGA by conducting an AWD attack in the proposed candidate index pointed

data package clock. In the next sub-section, a detailed Deep-Dup framework for both

white-box and black-box attacks will be discussed. In P-DES, the attacker’s goal is

to maximize the fitness function - Fl to achieve un-targeted (Eq. 4.1) or targeted

attack (4.2):

Fl ∈ {Lu,Lt} (4.3)

where Lu is un-taregeted attack loss and Lt is targeted attack loss. Note that, the

after each evaluation of Fl, attacker needs to restore the original weight values W by

reloading the weights, to guarantee each fitness function is evaluated only based on

one corresponding attack weigh index.

Mutation Step. For each weight index candidate in population set S, the mutation

step generates new candidates using specific mutation strategy to improve current

population set. In our attack, we integrate four popular mutation strategies(144;

145), where each one generates one mutant vector. Thus, a mutant vector ( {pmut}

={(pmut1);(pmut2);(pmut3);(pmut4} )) is generated for each weight index candidate:

Strategy 1:

pmut1 = pa + α1(pb − pc); (4.4)
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Strategy 2:

pmut2 = pa + α1 × (pb − pc) + α2 × (pd − pe); (4.5)

Strategy 3:

pmut3 = pa + α1(pbest − pa) + α2(pb − pc) + α3(pd − pe); (4.6)

Strategy 4:

pmut4 = pa + α1(pbest − pworst); (4.7)

where α1, α2, α3 are the mutation factors sampled randomly in the range of [0,1] (144).

a, b, c, d, e are random numbers (a 6= b 6= c 6= d 6= e) generated in the range of [0,z].

(pbest) and (pworst) are the indexes with the best and worst fitness function values.

Note that, p is normalized to the range of [0,1], which is important since the amount

of weights in the network.

Crossover Step. In the crossover step, attacker mixes each mutant vector (pmut)

with current vector (pi) to generate a trial vector(ptrail):

if pmut ∈ [0, 1] : ptrial = pmut; else : ptrial = pi (4.8)

The above procedure guarantees attacker only chooses the mutant feature with a

valid range of [0,1]. Then, the fitness function is evaluated for each trial vector (i.e.,

Ftrial1,Ftrial2,Ftrial3,Ftrial4). This crossover step ensures the attacker can generate a

diverse set of candidates to cover most of the DNN weight search space.
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Selection Step. The selection step selects only the best candidate (i.e. winner

with the highest fitness function value) between the trial vector set ({ptrial} with four

trial vectors) and the current candidate (pi). Then, the rest four will be eliminated.

The above-discussed mutation, crossover and selection will repeat z times to cover

all candidates in the population set S. As a result, the initial randomly proposed S

will evolve over time to gradually approach the attacker-defined malicious objective.

When z times evolution is finished, the attacker could perform an AWD attack at the

winner (with the highest fitness function value in S) weight package during transmis-

sion. P-DES will check if the attack objective has been achieved. If yes, it stops. If

not, it goes to the next iteration for a new round of attack iteration.

4.3.3 End-to-end Attack Framework

This sub-section discusses the end-to-end Deep-Dup attack framework integrat-

ing training software (i.e. searching) utilizing P-DES algorithm and hardware fault

injection through AWD, i.e. fault triggering. We also experimentally demonstrate

the success of our end-to-end attack framework from the attacker’s input end to the

victim’s output end for a black-box attack. The main mechanism of our Deep-Dup

attack framework could succeed even with real-world un-reliable hardware fault in-

jection (i.e., with probability to succeed) is based on the fact that the vulnerable

weight sets that our P-DES searching algorithm identifies are not static or unique,

meaning the targeted attack index set could be progressively expanded based on real

measured attack effect, for the same malicious objective. This is possible that deep

learning model parameter training is a high dimension optimization process, and

many different fault injection combinations could lead to the same effect, which is

also observed in prior works (2; 1; 6). Thus, our advanced evolutionary searching

algorithm could take care of such fault injection uncertainty and randomness through
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redundant attack iterations to improve the overall attack success rate significantly.

Fig. 4.4 shows the overview of Deep-Dup black-box attack framework, where

Deep-Dup directly utilizes run-time victim DNN in target FPGA to evaluate the at-

tack effectiveness (i.e. fitness function) of our searching algorithm P-DES proposed

weight candidate in mutation step for every attack iteration. Thus, the un-reliable

fault injection phenomenon is automatically considered and evaluated in the frame-

work since the fitness function is directly evaluated in the victim FPGA using the

actual fault injection attack.

In the black-box setting, the attacker first utilizes the mutation function defined

in our P-DES algorithm for every attack iteration to propose a potential attack index

candidate 1. Next, it will be sent to the AWD triggering component to implement

fault injection 2 in the current evolution. Therefore, the current DNN model in

FPGA is executed based on the fault-injected model, where its DNN output 3 will be

read out by the attacker to be recorded as attack effectiveness (i.e. fitness function

evaluation). Note that, during this process, the fault injection may succeed or not.

As for an attacker, since it is a black box, he/she does not know about it. Only the

victim DNN output response w.r.t. currently proposed attack index will be recorded

and sent back to our P-DES software. Then, this step 1-2-3 will repeat z evolution

times to select one winner attack index to finish the current attack iteration. After

that, a new attack iteration will be started to find the next winner attack index until

the defined attack objective is achieved.
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Figure 4.4: Overview of End-to-End Deep-Dup Attack Framework (8)

4.4 Experimental Setup

4.4.1 Dataset and DNN Models

In our experiment, we evaluate three classes of datasets. First, we use CIFAR-10

(78) and ImageNet (10) for image classification tasks. The other application is object

detection, where we evaluate the attack on the popular COCO (146) dataset.

For CIFAR-10 dataset, we evaluate the attack against popular ResNet-20 (12) and

VGG-11 (11) networks. We use the same pre-trained model with exact configuration

as (7; 6). For ImageNet results, we evaluate our attack performance on MobileNetV2

(106), ResNet-18 and ResNet-50 (12) architectures. For MobileNetV2 and ResNet-

18, we directly downloaded a pre-trained model from PyTorch Torchvision models

1 and perform an 8-bit post quantization same as previous attacks (1; 7). For the

ResNet-50, we use Xilinx 8-bit quantized weight trained on ImageNet from (147).

The model we use to validate the YOLOv2 is the official weight (148), trained by

COCO (146) dataset, and we quantize (149) each weight value into 16-bits. Our code

is also available publicly2.
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Figure 4.5: Experimental Setup And Results of Deep-Dup Black-box Attack on

YOLOv2, with ‘Person’ As Target Group. After Attack, The Fault-Injected YoLov2

Model Fails To Recognize The ‘Person’ (8).

4.4.2 FPGA Prototype Configurations

To validate the real-world performance of Deep-Dup, we develop a multi-tenant

FPGA prototype using a ZCU104 FPGA evaluation kit with an ultra-scale plus fam-

ily MPSoC chip, which has the same FPGA structure as these used in a commercial

cloud server (e.g., AWS F1 instance), running the above discussed deep learning

applications: image classification and object detection. The 8-bit quantized DNN

models are deployed to our FPGA prototype through a high-level synthesis (HLS)

tool, PYNQ frameworks, and CHaiDNN library from Xilinx (147). The experimental

1https://pytorch.org/docs/stable/torchvision/models.html
2https://github.com/ASU-ESIC-FAN-Lab/DEEPDUPA
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setup is shown in Fig. 4.5. For object detection (i.e. YOLOv2) FPGA implemen-

tation, multiple types of hardware accelerators (HAs) are used to compute different

network layers, such as the convolution layer, max-pooling layer, and reorganization

layer. Specially, the region layer and data cascade are assigned to the ZYNQ’s ARM

core. For image recognition (e.g. ResNet-50) FPGA implementation, we follow the

same design as the Xilinx mapping tool, which only implements the convolution ac-

celerator in a light version (DietChai)(147). Without loss of generality, the FPGA

configurations follow the official parameters (150) and (147). Object detection net-

work (i.e. YOLOv2) in FPGA execution frequency is 180MHz on Image recognition

DNN network (e.g. ResNet-50) in FPGA execute frequency is 150MHz/300MHz,

where the DSP uses a 300MHz clock source to increase the throughput and for the

other logic we use a 150MHz clock.

To emulate a multi-tenant FPGA environment, we divide the FPGA resources into

victim and attacker zones, respectively. The victim zone runs target DNN models, like

YOLOv2 or ResNet-50, while the attacker zone mainly consists of malicious power-

plundering circuits. Moreover, to limit the available resources of an attacker, only

13.38% of the overall FPGA resources are assigned to the power-plundering circuits.

4.4.3 Evaluation Metric and Hyper-parameters

For classification application, we use Test Accuracy (TA) as the evaluation metric.

Test Accuracy is the percentage of samples correctly classified by the network. We

denote the test accuracy after the attack as Post-Attack TA. For a targeted attack,

we use Attack Success Rate (ASR) to evaluate the performance of the attack; ASR is

the percentage of the target class samples miss-classified to an incorrect class after an

attack. For the object detection application, we use Mean Average Precision (mAP)

as the evaluation metric that is the primary metric in the official COCO dataset
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Table 4.1: Black-box Targeted Attack Results for ImageNet (8).

Black-Box Targeted Attack on ResNet-50

(ts) TA(%) Post-Attack TA(%) ASR (%) # of Attacks

Ostrich 72.97 46.96 100 26

Table 4.2: Black-Box Attack for Object Detection.

Black-Box Un-Targeted Attack on YOLOv2

Target Class (ts) mAP Post- Attack mAP # of Attacks

All 0.428 0.06 30

Black-Box Targeted Attack on YOLOv2

Target Class (ts) AP Post-Attack AP # of Attacks

Person 0.6039 0.0507 20

Car 0.5108 0.0621 18

Bowl 0.3290 0.0348 15

Sandwich 0.4063 0.0125 6

challenge website3. In P-DES, the attack evolution (z) is set to (500/1000) (white-

box) and 100 (black-box). In our un-targeted attack, we use a test batch containing

256/25 images for the CIFAR-10/ImageNet dataset. Our code is available publicly4

with detailed hyper-parameters .
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4.5 Experimental Validation and Results

For proof of concept of Deep-Dup black-box framework shown in Fig. 4.4, in this

section, we demonstrate and validate the black-box attack on Resnet-50 for image

classification task and YOLOv2 for the object detection task. Specially, in our case

study, we randomly pick the ”ostrich” class in the Imagnet dataset as a target class for

ResNet-50 and 4 target objects (i.e. Person, Car, Bowl and Sandwich) in the COCO

dataset for YOLOv2. The Deep-Dup black-box attack on ResNet-50 are successful

and results are reported in Tab. 4.1. It can be seen that only 26 attacks are needed

to attack the “ostrich” with 100 % ASR. Similarly, Deep-Dup black-box un-targeted

and targeted attacks on YOLOv2 are successful as reported in Tab. 4.2. It can be

seen that the post-attack average precision (AP) is significantly degraded after less

than 20 attacks. For example, only 6 attacks are needed to decrease the AP of the

sandwich class from 0.4063 to 0.0125.

4.6 Comparison to Other Methods

Previously, very few adversarial weight attack works have been successful in at-

tacking DNN model parameters to cause a complete malfunction at the output (4; 21).

Thus we only compare with the most recent and successful adversarial bit-flip (BFA)

based weight attack (1; 2), which uses a gradient-based search algorithm to degrade

DNN performance in a white-box setting. We also compare our search algorithm

(P-DES) to a random AWD attack.

As shown in both Tab. 4.3 , only 77 AWD attack iterations can degrade the

accuracy of VGG-11 to 10.87 % while randomly performing 100 AWD attacks, cannot

even degrade the model accuracy beyond 90 %. On the other hand, a BFA attack (2)

3https://cocodataset.org/#detection-eval
4https://github.com/ASU-ESIC-FAN-Lab/DEEPDUPA
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Table 4.3: Comparison of Deep-Dup with Random AWD Attack And Row-hammer

Based (BFA (1; 2)) Attack. All The Results Are Presented for 8-bit Quantized

VGG-11 Model (1) (8).

Method
Threat

Model

TA

(%)
Post-Attack TA (%) # of Attacks

Random Black Box 90.23 90.04 100

BFA (2) White Box 90.23 10.8 28

Deep-Dup Black & White Box 90.23 10.94 77

using row-hammer based memory fault injection technique requires only 28 attacks

(i.e. memory bit-flips) to achieve the same un-targeted attack success (i.e., ∼ 10

% TA). However, the BFA attack is only successful for the white-box setting, not

black-box.

4.6.1 Attack Time Cost

The execution time of one searching iteration of our P-DES algorithm is constant

for a fixed z, regardless of DNN model size. The overall searching time is proportional

to the number of evolution (z). For Deep-Dup white-box attack, the P-DES algorithm

is executed offline, and the AWD attack is only executed when the attack index is

generated. Note that the hardware AWD attack incurs no time cost, as it runs

in parallel with the victim DNN model. For Deep-Dup black-box attack, two main

time cost includes mutation generation (proportional to z) and FPGA fitness function

evaluation (proportional to DNN acceleration performance/latency in FPGA). In Fig.

4.6, we report the average time cost of the proposed 4 mutation strategies executed in

the PS of our FPGA prototype. Additionally, we also report the DNN execution time

in FPGA, which is determined by the corresponding DNN model size, architecture,
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Task Network
Model 

quantization 
Training 

set
Mutation generate

time (ms)
FPGA acceleration 

time (ms/image)

Classification ResNet-50 8-bits ImageNet 16.0175 588

Object 
detection 

YOLO-V2 16-bits COCO 15.075 914

Figure 4.6: Black-Box Attack Time Cost Analysis with z = 100. FPGA Accelera-

tion (i.e., Fitness Function Evaluation) Time And Mutation Generation Time Are

Reported (8).

optimization method, and available FPGA hardware resources. It is easy to observe

that our P-DES mutation generation only consumes trivial time compared to DNN

execution time in FPGA, which is the bottleneck in the black-box attack.

4.7 Potential Defense Analysis

Increasing Model Redundancy. Several prior works have demonstrated that in-

creasing model redundancy (i.e., DNN size/channel width) (6; 151) can be a potential

defense against model fault attack. Our evaluation of Deep-Dup attack in the previous

section also indicates the correlation between network capacity (i.e., # of model pa-

rameters) and model robustness (# of attacks required). We observe the same trend

for CIFAR-10 models where VGG-11 (i.e., dense model) requires a higher number of

attacks than ResNet-20 (i.e., compact model).

In Tab. 4.4, we run an experiment to validate the relation between Deep-Dup

attack efficiency and network model size. First, we multiply the input and output

channel of the baseline model by 2 to generate ResNet-20 (× 4) and VGG-11 (× 4)

models with 4 × larger capacity. For both ResNet-20 and VGG-11, the number of

attacks required to achieve similar ASR increases with increasing model capacity (Tab.

4.4). To conclude, one possible direction to improve the DNN model’s resistance to
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Table 4.4: Attack Efficiency after Increasing The Model Size of ResNet-20 and VGG-

11 Model by 4 (i.e., Increasing Each Input And Output Channel Size by 2) (8).

Method ASR(%) # of Attacks

ResNet-20 (Baseline) 99.6 14

ResNet-20 × 4 99.6 21

VGG-11 (Baseline) 98.6 63

VGG-11 × 4 98.2 84

the Deep-Dup attack is to use a dense model with a more considerable redundancy.

Protecting Critical Layers. Another possible defense direction is to protect the

critical layers that are more sensitive. Prior works (152) have proposed selective

hardening to defend against weight faults by selectively protecting more sensitive

layers. It is interesting to note that our experimental observation also shows that 80

% of the searched vulnerable weights are within the first two layers and the last layer

for ResNet-20. Following this observation, in Tab. 4.5, we run our attack by securing

these three sensitive layers (ResNet-20 (Protected)). A straightforward way to secure

layer weights from Deep-Dup would be to store them on-chip (i.e., no need for off-chip

data transfer). Note that a defender can not store an entire DNN model on-chip due

to limited on-chip memory and typically large DNN model size for cloud computing.

Nevertheless, as shown in Tab. 4.5, our Deep-Dup still manages to succeed with ∼

2 × additional rounds of attack on the protected ResNet-20 model. Similarly, for

VGG-11, our Deep-Dup attack still successfully achieves ∼ 99.0 % ASR even after

securing some critical DNN layers from fault attacks.

Obfuscation through Weight Package Randomization. In our Deep-Dup at-

tack, the P-DES algorithm relies on the sequence (e.g., index) of the weight packages
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Table 4.5: Deep-Dup Attack Performance after Protecting or Securing Some Critical

DNN Layers (8)

Method ASR(%) # of Attacks

ResNet-20 (Baseline) 99.6 14

ResNet-20 (Protected) 99.2 29

VGG-11 (Baseline) 98.6 63

VGG-11(Protected) 98.2 141

being transferred between the on-chip buffer and off-chip memory. In this section, we

discuss the possibility of defending our attack by introducing random weight package

transmission as an obfuscation scheme. In Tab. 4.6, we first perform an experiment

with shuffling of the weights in a pre-defined sequence before transmitting them. The

results show that pre-defined shuffling order of the wights has almost no effect on the

attack efficacy.

Table 4.6: Weight Package Randomization As Obfuscation. Pre-defined Shuffle :

Shuffling The Weight Packages In A Pre-defined Order before Transmission. Random

Shuffle: Shuffling The Weight Packages Every Time Using A Random Function Before

Transmission (8).

Method TA (%)
Post-Attack

TA (%)

# of

Attacks

Random Attack 90.77 87.9 180

ResNet-20 Baseline 90.77 10.94 28

Pre-defined Shuffle 90.77 11.0 26

Random Shuffle 90.77 53.3 180

Next, we discuss the case by shuffling the weight package for every transmission
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round as a very strong obfuscation. The effect of such a strong obfuscation scheme

can have three possible implications. First, a randomly shuffled weight transmission

will fail to defend our attack in a white-box setting as the attacker has full knowledge

of the DNN and data transmission scheme. Second, in a black-box setting, as shown

in Tab. 4.6, this defense will greatly limit the efficacy of our attack, requiring a

larger amount of attack iterations (e.g., 180) to degrade the accuracy to 53.3 %. But

the attack remains more successful than a random AWD attack with no searching

algorithm. It aligns with the recent work of adversarial input attack (31), where the

authors argue that obfuscation based on an under-lying random function as defense

may not completely defend a progressive, adversarial attack. Given a large number

of model queries, the progressive evolutionary algorithm-based attack (i.e. our case)

could estimate the effect and distribution of the randomness to improve the attack ef-

ficacy compared to a random attack. Moreover, randomly shuffling data transmission

every time would require additional header information to synchronize the sequence

of weights at the receiver end. Recent work in (153) has demonstrated random shuf-

fling may cost up to 9 × energy in-efficiency and 3.7 × lesser amount of throughput.

Thus, an effective defense scheme will always come at the expense of additional (i.e.,

memory, speed & power) overhead.

4.8 Conclusion

In this chapter, we study the security of DNN acceleration in multi-tenant FPGA.

For the first time, we exploit this novel attack surface where the victim and the

attacker share the same FPGA hardware sources. Our Deep-Dup attack framework is

validated with a multi-tenant FPGA prototype and some popular DNN architectures

and datasets. The experimental results demonstrate that our attack framework can

completely deplete DNN inference performance to as low as random guess or attack
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a specific target class of inputs. Our attack succeeds even assuming the attacker

has no knowledge about the DNN inference running in FPGA, i.e. black-box attack.

A malicious tenant with limited knowledge can implement targeted and un-targeted

malicious objectives to cause havoc for a victim user. Finally, we envision that our

attack and defense methodologies will bring more awareness to the security of deep

learning applications in the modern cloud-FPGA platforms.
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Chapter 5

PRIVACY OF DEEP LEARNING MODELS

In this chapter, we look to extend the utility of the Bit-Flip attack discussed in

Chapter 2 and demonstrate an effective strategy of how to use Bit-Flip in extract-

ing secret model parameter information. Model extraction attacks aim to infer or

steal critical information from DNN models to achieve certain malicious goals (71).

Recent advances in hardware-based exploitation have shown that adversaries can

leverage side-channel attacks to gain sensitive information in computing systems (72;

73; 74; 75). Hardware-based attacks can be hazardous as they allow adversaries to

directly gain internal knowledge about the victim’s DNN models. However, existing

hardware-based DNN attacks either only extract high-level model structures (e.g.,

model architectures) or require physical access to the target machines to gain fine-

grained model information, which does not apply to remote victims (e.g., in the

cloud).

While obtaining model weights can be helpful intuitively, there are several signif-

icant challenges from the attacker’s perspective to practically capture and effectively

utilize such information. First, although fine-grained secret leakage has been widely

shown to be plausible in many non-ML applications (e.g., through microarchitecture

attacks (154; 73; 155; 156; 157; 158)), such attacks fail to exfiltrate detailed model

weights due to the lack of distinguishable control and data-flow dependencies in DNN

applications. Second, DNN models are often huge (with millions of parameters); even

with a hardware-based attack that can recover certain model weight information, it is

typically impractical to assume that the entire weights can be exfiltrated in practical

settings. Moreover, in the previous chapter, we have demonstrated (1; 2) that vari-
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ations on only tens out of millions of weight parameters will completely malfunction

a DNN model. In this case, whether partial information of model weights can be

effectively leveraged to build a more vigorous model extraction attack is uncertain.

In this chapter, we provide a new solution to the challenge involving how to design

highly optimized ML techniques based on the obtained unique and partial model

weight knowledge for different attack objectives.

5.1 Model Extraction Attack

Model extraction is an emerging class of attacks in deep learning applications.

It jeopardizes the privacy of the deployed victim model by leaking confidential in-

formation (e.g., model architecture, weights and biases). An ideal model extraction

attack would extract the exact copy of the victim model. For a task, the input and

output pair data (X, Y ) ∈ R can be drawn from the true distribution DA to train a

DNN model Mθ with parameters θ. We designate this model Mθ as the victim model.

To extract the exact model, the attacker will attempt to recover a theft model M̂θ

such that Mθ = M̂θ. However, such an identical model (i.e., same architecture and

parameters) stealing is practically challenging if not impossible (71).

Algorithm-based Model Extraction. Prior works (71; 159; 160) have defined sev-

eral potential approaches to extract DNN model information. In Table 5.1, we sum-

marize the prior DNN model extraction works into three major categories. First, in

direct recovery method, the attacker attempts to reconstruct the victim’s DNN model

using DNN output scores and gradient information. These works (161; 71; 162; 163)

leverage layer-wise mathematical formulation and internal functional representation

to recover weights. In this setting, the goal of the attacker is to create a functionally

equivalent model which is given an input x ∈ X, the recovered model M̂θ should

follow: Mθ(x) = M̂θ(x). This objective is a weaker version of the exact model extrac-

81



tion method. But it remains a difficult route to succeed in model extraction, as prior

works (161; 71; 162) have failed to show a successful attack for over 2-layer neural

network.

In the second approach (i.e., learning), Papernot et. al (164) first proposed

substitute model neural network training using input and output pairs of a vic-

tim DNN model to mount transferable adversarial input attack. In contrast, re-

cent works (165; 159; 166; 167; 168; 71; 169; 170) aim to achieve high model ac-

curacy or fidelity on a task using active learning methods. If the attacker priori-

tizes task accuracy, then the goal is to construct M̂θ such that the probability of

[arg max M̂(x) == y] (i.e., true label) is being maximized. As for fidelity extraction,

given a similarity function S(.), the goal is to construct a model M̂θ such that the sim-

ilarity index S(M̂θ(x),Mθ(x)) between the output of the victim and substitute model

is maximized. One of the major drawbacks of the learning-based model extraction

approach is the requirement of excessive input query and access to the victim model’s

output score/predictions.

Table 5.1: Summary of The Existing Model Extraction Methods (9).

Type Attack Goal

Direct/Mathematical Recovery (161; 71; 162; 163) Functionally Equivalent

Active Learning/Learning (165; 159; 166; 167; 168; 71; 169; 170; 164) Task Accuracy/Fidelity

Side channel & Learning (171; 23; 172; 24; 173; 174; 52; 53; 175) Functionally Equivalent/Fidelity

Side Channel Attacks on DNNs. There has been a large body of studies on

hardware/microarchitecture side channel exploitation where attackers can leak con-

fidential system information through power, EM, and timing information on various

platforms (176; 177; 72; 178; 179; 180). Recent works have demonstrated that such

attack vectors can also be applied to exfiltrate sensitive DNN information (171; 23;

172; 24; 173; 174; 52). Among the existing techniques, a side-channel attack is a
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more practical strategy to steal sensitive information about a deeper (i.e., many lay-

ers) victim model. Typically, the goal of side-channel attack is to produce a func-

tionally equivalent model or achieve high fidelity on a dataset. To achieve this, the

attacker often supplements side-channel attacks with a learning scheme to train a

substitute model using the leaked parameter information. This substitute model can

later generate adversarial input samples with high transferable properties to attack

the victim model more efficiently (23). Note that these side-channel attacks primar-

ily recover model architecture or hyperparameters. However, to date, only a limited

number of studies have explored the extraction of model parameters (i.e., weights)

in DNN models. Recent studies on physical side channels have exhibited successful

exfiltration of model parameter information, including EM side channels (171) and

PCI-e bus snooping (175). These works assume the attacker has physical access to

the target machines to enable hardware-based probing or snooping, which may not

be practical for remote exploitation of platforms such as cloud services. The goal is

to investigate the possibility of exploiting rowhammer-based side channels to perform

remote stealing of model weights and explore ways to generate a substitute model

with high accuracy and high fidelity on a task. Finally, such a substitute model

can later generate adversarial samples with high transferable properties to the victim

model.

5.2 Threat Model for Model Extraction

The attacker targets on exfiltrating internal information (i.e., model weights) from

deep learning systems by exploiting the underlying hardware fault vulnerabilities in

modern computing systems. We assume that the deep learning system is deployed

in a resource-sharing environment to offer ML inference service. Such application

paradigm is becoming popular due to the prevalence of machine-learning-as-a-service
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(MLaaS) platforms (181). The attacker can control a user-space un-privileged process

that runs on the machine where the victim DNN service is deployed. Our framework

manifest as a semi-black box attack where the adversary does not have any prior

knowledge of the model parameters. However, the attacker knows essential model

architecture information, including model topology and layer sizes. We note that

such an assumption is legitimate, as prior works demonstrate many practical ways

to recover model architecture information through various side-channel exploitation

(e.g., via caches (70), memory bus (23) and EM (24)).

In this chapter, we leverage the rowhammer fault attack vector commonly in

today’s DRAM-based memory systems as the side channel (76). Specifically, the

attacker takes advantage of the fact that bit flip in vulnerable DRAM cells only occurs

when the column-wise bit striping pattern exists in double-sided rowhammering. By

leveraging such data dependency, the attacker can infer bits in the aggressor rows by

observing if a bit flip occurs in his own address space. In other words, the attacker

does not directly tamper with the victim’s memory (as shown in most traditional

rowhammer attacks). The attacker may share specific read-only memory with the

victim DNN (e.g., ML platform binaries) either through library sharing or advanced

memory deduplication feature supported in modern OS (182). We assume that a

proper confinement mechanism is implemented to disallow direct access to data across

processes. We further assume that the operating system and the hypervisor are

benign, and appropriate kernel-space protection mechanisms are deployed to avoid

direct tampering with kernel structures (183).

For substitute model training, as depicted in Table 5.2, we assume the attacker

has no knowledge of gradients and is denied access to DNN output scores/predictions.

Meanwhile, similar to recent related works (184; 185), we assume the attacker has

access to a publicly available portion (e.g., ≤ 10%) of the labeled training dataset.
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Table 5.2: List of Information Accessible to The Attacker for Substitute Model Train-

ing (9).

Attacker Information Accessible

1. DNN Architecture X

2. HammerLeak recovered weight bits X

3. Gradient Computation 55

4. Train/Test Data 55

4. Victim model Output 55

5. A portion of publicly available data (≤ 10%) X

Victim 
Model

Hammer 
Leak

Mean 
Clustering 
Training 

1 2

DeepSteal

Recovered
Weight Bits Substitute 

Model

Architecture Only

Figure 5.1: Overview of The DeepSteal Attack Framework. Stage-1: Exfiltrating

DNN Partial Weight Bits Efficiently Through Exploiting Memory Fault Vulnerabili-

ties (HammerLeak). Stage-2: with The Recovered Bits, Training A Substitute Model

using Mean Clustering Weight Penalty (9).

5.3 Overview of DeepSteal

In this chapter, we describe an advanced model extraction attack framework

through efficient weight bits stealing in memories. An the attack framework, Deep-

Steal, is shown in Figure 5.1. It has two key components: i) an efficient rowhammer-

based weight-stealing side channel module HammerLeak, and ii) a substitute model

training mechanism with novel Mean Clustering loss penalty. At stage-1 in Figure 5.1,

we mount the HammerLeak attack on inference infrastructure (i.e., a remote machine

running the target DNN inference service) to recover partial weight bits. We con-
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Figure 5.2: Data Dependency for Inducing a Rowhammer Fault. Here, Based on The

Presence of Bit Flip in The Attacker-controlled Vulnerable Bit in The Target Row

(Tr), Data from Adjacent Row from Victim Program Can Be Inferred (9)

tinue the HammerLeak for many rounds until the desired portion of weight bits is

recovered. Once HammerLeak completes, at stage 2, we aim to use the leaked weight

bit information and generate a substitute prototype of the victim model. To achieve

this, we propose a novel neural network training algorithm that constrains the trained

substitute model weight parameters to be as close as possible to the recovered partial

weight info and minimize the accuracy loss. The learned substitute model will pose

the following properties: i) having comparable test accuracy as the victim model;

ii) exhibiting high fidelity, and iii) can be used to generate solid adversarial input

samples to the victim model. We describe the details of our DeepSteal framework in

the following sections.

5.4 Hammerleak: Efficient Data Stealing in Memories

In this section, we present HammerLeak (9), an efficient rowhammer-based infor-

mation leakage attack which can steal a victim’s secretive data in bulk. HammerLeak

is a multi-round attack framework. In each round, it relocates the victim’s model

weight pages to leakable DRAM locations and performs rowhammer-based side chan-

nel to steal weight bits. Such operations are iterated over multiple rounds until

sufficient bits are leaked for model extractions.
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There is a large body of works demonstrating many variants of rowhammer at-

tacks. Most of them focus on tampering with the integrity of systems, including

privilege escalations (102), system denial of service (186) and, more recently, faulting

DNN model parameters (2; 187). Recently, RAMBleed (76) reveals that the rowham-

mer fault characteristic can be leveraged to carry out information leakage attacks

that directly infer victim secrets in memory. HammerLeak follows a similar topology

where the attack leverages the fact that a column-wise data dependence is required

to flip a bit for a known vulnerable memory cell successfully. Notably, under double-

sided hammering, a bit flip for a vulnerable cell can succeed with high confidence if

its upper and lower bits in the same column (e.g., in the aggressor rows) store the

opposite bits (1--0--1 or 0--1--0), or fail if such pattern is not in place. Figure 5.2

illustrates such a data dependency for cells with bit flip vulnerability (in the 0 → 1

direction). As we can see, for the victim page in the middle with a vulnerable bit

set to ‘0’, a bit flip would only occur if the direct top and bottom bits are set to

‘1s’, thus achieving the column-wise striped pattern. The attacker places his page

in the middle row with the vulnerable cell and manages to trigger the placement

of two copies of a victim’s page in the corresponding aggressor rows. By observing

whether a bit flip occurs in attacker’s pages after hammering, the adversary can infer

the secretive bit. This way, the attacker recovers secret bits iteratively to maximize

the data leakage in one round of HammerLeak. To achieve this, HammerLeak adopts

anonymous page swapping, bit-flip aware page release and deterministic victim page

relocation to enable leakage of secret weight bit information in bulk from DNN. The

further details of the HmmaerLeak attack is discussed in (9) which is contributed by

M Hafizul Islam Chowdhuryy.
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5.5 Substitute Model Training with Mean Clustering

At Stage-2 of DeepSteal, we leverage the bit information leaked by HammerLeak

to learn a substitute prototype of the victim DNN model. To fully leverage those

leaked partial bit-wise data, we propose a novel substitute model training algorithm

to reconstruct a neural network model, targeting high accuracy and high fidelity.

Moreover, this learned substitute model will help the attacker generate highly effective

adversarial input samples to fool the victim model successfully.
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Figure 5.3: First Row: N-Bit Quantized Weight Level; Second Row: Once The MSB

of Weight Wt in The Victim Model Is Leaked, We Can Narrow Down The Projected

Range of Wt in The Substitute Model; Last Row: Leaking All The Bits Can Track

Down The Exact Value of Wt for The Substitute Model Training (9).

5.5.1 Hammer Leaked Data Filtering

At stage 1, HammerLeak recovers a portion of the neural network weight bit

information scattered across different significant bits (i.e., from LSB to MSB) for

each weight. However, not all recovered bits will be used for substitute model training

since it is a mixture of significant bits for each weight. As shown in Figure 5.3, it is

preferred to recover MSB first for each weight parameter. Thus it forms a more minor
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and closed searching space (i.e., either positive or negative), rather than a full-scale

space for this weight during substitute model training to minimize loss. With the

knowledge of MSB, the 2nd MSB or more following bits will further reduce the closed

searching space. Otherwise, recovering lower significant bits without higher significant

bits does not provide much helpful information about this weight’s potential range.

Consequently, to use the leaked bit information effectively, the attacker must filter

and reorganize the leaked bits in a sequence from MSB to LSB. Therefore, before

substitute model training, we sort out the leaked weight bits in the following sequence:

MSB leaked, MSB+2nd MSB leaked, MSB+(2nd & 3rd MSB) leaked, and so on, to

develop a profile for each weight with a projected range, as described in Figure 5.3.

Note that if no MSB is recovered, the projected weight value range will be treated as

full scale.

In Figure 5.3, we visualize the relationship between i) filtered bits (leaked by

HammerLeak) information of weights from a victim model and ii) the expected range

of that corresponding weight during the training of the substitute model. It shows

gradually leaking more bit information (i.e., MSB, MSB+2nd MSB,..) of one target

weight Wt can help an attacker reduce the searching space of Wt during model train-

ing. We define this expected range as projected range of each weight in the substitute

model.

5.5.2 Mean Clustering Optimization

Leveraging the profile of such projected range of each weight, we propose a novel

training algorithm for the substitute model using Mean Clustering weight penalty. It

applies an additional loss penalty to the cross-entropy loss during the training process.

The Mean Clustering penalty term aims to penalize each weight to converge near the

mean of the projected range.
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To formally define the problem, let’s consider the weight matrix of the victim

DNN model at layer l to be Ŵ l. Based on the leaked weight bits at this layer, the

attacker can compute the projected range of each weight in the substitute model W l.

The projected range can be represented as: W l
min & W l

max matrix; the minimum and

maximum projected value matrix corresponding to each weight in W l. Using this

closed range, the projected mean matrix W l
mean is computed as: (W l

max + W l
min)/2.

Next, leveraging this mean matrix, we propose to design a Mean Clustering loss

penalty as highlighted in Equation (5.1). This loss term is added to the inference loss

L and the optimization process can be formulated as:

min
{Wl}Ll=1

Ex L(f(x, {Wl}Ll=1),y)+

λ ·
L∑
l=1

(||Wl −Wl
mean||)︸ ︷︷ ︸

loss penalty for Mean Clustering

(5.1)

Here, λ is a hyper-parameter that controls the strength of the loss penalty, and

f(·) denotes the inference function of the DNN model for an input-label pair (x,y).

The first term of the loss function in Equation (5.1) is a typical cross-entropy loss

for neural network training using gradient descent. The purposed additional Mean

Clustering loss penalty is to penalize each weight to converge near {W l
mean}Ll=1.

5.5.3 Overall Training Algorithm

After the filtering step, we divide the weights into three categories: Weight Set-1:

Full 8-Bit recovered, Weight Set-2: Partial bit recovered (i.e., MSB + n; n= 0,...,6) &

Weight Set-3: No bit recovered. For set-1, the attacker knows the exact weight value

in the victim model. Hence, we will use the exact recovered value for the substitute

model by freezing (i.e., set gradient to zero) them during training. The second set of

weights is trained using a new loss function in Equation (5.1). And for set-3, we do
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not apply the Mean Clustering loss penalty (i.e., λ=0). Both set-2 & set-3 weights

are trained using standard gradient descent optimization. During training, each time

before computing the loss function in Equation (5.1), we update the projected mean

matrix {W l
mean}Ll=1 using the weights of current iteration. If any weight value exceeds

the projected range, it will be clipped. Finally, in the last few iterations (e.g., 40),

the model will be fine-tuned (λ = 0, no clipping & low learning rate) to generate the

final substitute model.

5.6 Experimental Setup

5.6.1 Attack Evaluation Metrics

To evaluate the efficacy of our DeepSteal attack, we adopt three different evalu-

ation matrices, i.e., the accuracy of the substitute model, fidelity of the substitute

model, and accuracy of the victim model under malicious input attack.

accuracy (%) It is the measurement of the percentage of test samples being cor-

rectly classified by the substitute model for a given test dataset. Note that this is

the same test data used for the victim model. For an ideal successful model extrac-

tion attack, we expect the accuracy of the victim and substitute model to be almost

identical.

fidelity (%) We measure the fidelity as the percentage of test samples with identical

output prediction labels between the victim model and substitute model. This follows

the definition of (71), where two models with high fidelity should agree on their label

prediction for any given input sample. Ideally, an attacker should achieve 100%

fidelity, where the substitute and victim model agree on all the prediction output.
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Accuracy Under Attack (%) It is defined as the percentage of adversarial test

samples generated from the substitute model being correctly classified by the vic-

tim model. It indicates the transferability of the adversarial examples as explained

in prior (91). Ideally, if the substitute model and victim models are identical, then

adversarial samples transferred from the substitute model should achieve similar ef-

ficacy (i.e., accuracy under attack ) as a white-box attack (i.e., the attacker knows

everything about the victim model). In this evaluation, we use the popular projected

gradient descent (PGD) (27) attack to generate adversarial samples on the substitute

model. The PGD attack uses L∞ norm, ε = 0.031 and an attack iteration step of 7

for all three datasets.

5.6.2 Hardware Configuration

We train our DNN models using GeForce GTX 1080 Ti GPU platform operating

at 1481MHz and deploy the trained models in an inference testbed. The Hammer-

Leak attack is evaluated on the inference testbed equipped with an Intel Haswell

series processor (i5-4570) with AVX-2 instruction set support. We collect the bit flip

profile of the memory modules (i.e., templating) used in the target system to identify

potentially vulnerable locations in DRAM. Note that memory templating is consid-

ered a standard process for rowhammer. We leverage existing techniques as described

in (99; 100; 188; 76). The system is configured with a memory subsystem with 4GB

DDR3 DIMMs in either single- or dual-channel settings. Our tested DIMMs have

71% of the pages containing at least one Vc, and in total 0.017% of memory cells are

vulnerable to bit flip. Compared to bit-flip profiles observed in prior work showing

multiple DRAM modules with more than 98% of all rows being vulnerable (189),

our system has a moderate level of vulnerability in rowhammer-induced bit flips. Fi-

nally, we profile the vulnerable DRAM cells and empirically categorize the Vc into
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two classes based on flip repeatability: Strongly-leakable cells and Weakly-leakable

cells. Our HammerLeak only leverages Strongly-leakable cells for the side channel to

maximize the bit stealing accuracy.

5.7 Evaluation

5.7.1 Hammerleak Performance Analysis

This section uses ResNet-18 as one representative DNN model for HammerLeak

analysis. ResNet-18 has 21 layers with 11 million weight parameters. We perform

HammerLeak on this model to investigate the efficiency of our attack in recovering

model parameters. We observe that at about 4000 HammerLeak rounds, Hammer-

Leak can steal about 90% of the MSB bits for model weights across all layers (with

the lowest per layer recovery rate to be 88%). Figure 5.4 shows the percentage of

weights with leaked {MSB} bits as well as percentage of weights with other bits simul-

taneously leaked together with the MSB bits (e.g., {MSB+2nd MSB}) for two different

layers. Along with MSB bits, we observe that the recovery rate for additional weight

bits is also very high, with 55%-63% weights across all layers having the complete

weight recovered. This shows the high efficiency of HammerLeak attack. Depending

on the attacker’s goal (in our case, a high percentage of weights with MSB exfil-

trated), HammerLeak can be completed sooner than 4000 rounds. We observe that

most layers have half the weights, with MSB bit recovered within 1000 rounds.

5.7.2 DeepSteal Experimental Results: CIFAR-10

In Table 5.3, we evaluate the performance of DeepSteal attack on CIFAR-10

dataset for three different architectures. Further, we show an ablation study showing

the impact of using several rounds of HammerLeak attack information for DeepSteal
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Figure 5.4: Percentage of Weights with MSB or More Bits Recovered. +x Denotes

Number of Consecutive Higher Order Bits Recovery (i.e., +3 Represents Weights with

All Three MSB Bits Recovered) (9).

attack. As a baseline method, we compare the architecture-only case (i.e., 0-bit in-

formation leaked). We assume the attacker only knows the victim model architecture

for the baseline case. Then, a substitute model with the same architecture is trained

using a similar setting (i.e., less than 8 % available data). On the other hand, we

treat the white-box case as the best-case scenario where the attacker knows the vic-

tim model’s information (i.e., weights, biases and architecture). In summary, with

more recovered weight bits, DeepSteal achieves better accuracy, fidelity and adversar-

ial example attack efficacy. For instance, our substitute model can generate effective

transferable adversarial example with similar efficacy (i.e., ∼0 %) as white-box attack

for both ResNet-18 and ResNet-34.

In our evaluation, the residual victim models (ResNet-18 & ResNet-34) have
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Table 5.3: Summary of CIFAR-10 Results for Three Different DNN Architectures.

We Report Two Different Cases of DeepSteal Attack i) All Bits: Where We Use All

The Bit Information (i.e., All 8 Plots) Plotted in Figure 5.4. According To This Plot,

for Each # of HammerLeak Attack Rounds Along x-axis, We Take The Percentage

of Bits Recovered for All 8 Plots (e.g., MSB, MSB+2nd MSB & So On). ii) MSB: We

Only Use The MSB Bit Information Labeled As MSB Curve in Figure 5.4 (9).

Method ResNet-18 ResNet-34 VGG-11

# of

HammerLeak

Rounds

Method Case
Time

(days)

Accuracy

(%)

Fidelity

(%)

Accuracy

under

Attack

(%)

Time

(days)

Accuracy

(%)

Fidelity

(%)

Accuracy

Under

Attack

(%)

Time

(days)

Accuracy

(%)

Fidelity

(%)

Accuracy

Under

Attack

(%)

Baseline Arch. Only - - 73.18 74.29 61.33 - 72.22 72.85 62.69 - 70.76 72.06 61.19

1500 DeepSteal
All Bits 4.5 74.33 75.38 53.64 7.6 74.43 75.2 55.99 3.9 72.3 73.34 62.24

MSB 3.9 76.61 77.56 50.4 6.5 76.77 77.53 53.47 3.4 72.67 73.89 58.19

3000 DeepSteal
All Bits 8.9 86.32 87.86 5.24 15.3 85.62 86.72 3.93 7.8 81.03 82.88 36.45

MSB 7.8 86.93 88.51 8.13 12.9 87.19 88.39 4.61 6.7 80.15 81.52 26.85

4000 DeepSteal
All Bits 11.9 89.05 90.74 1.94 20.4 88.17 89.27 1.44 10.4 84.59 86.24 16.87

MSB 10.4 89.59 91.6 1.61 17.4 90.16 91.8 1.03 8.9 81.56 83.33 18.55

Best-Case White-box - - 93.16 100.0 0.0 - 93.11 100.0 0.0 - 89.96 100.0 4.63

93.16% & 93.11% inference accuracy, respectively. As shown in Figure 5.4, after

4000 rounds of HammerLeak attack, the adversary could recover 90% of the MSB

bits (∼11.52% of total bits). By only utilizing the leaked MSB bits, the attacker

can recover up to 89.05/88.17% test accuracy for the ResNet (18/34) models. Addi-

tionally, for the All Bits case in Table 5.3, after paying an additional time cost (i.e.,

1.66×), the performance of DeepSteal attack only exhibits marginal improvement on

residual models. In contrast, the larger model with a different architecture topology

(i.e., VGG-11 with 132 Million parameters) highly benefits from the additional infor-

mation of all the bits. For VGG, we observe a ∼3 % improvement by using all the

filtered bits compared to MSB only. We also observe a similar pattern in accuracy

recovery at 3000 rounds of HammerLeak attack.
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Next, we evaluate the adversarial attack performance for 3000 and 4000 rounds of

HammerLeak attack. In Table 5.3, we show that our substitute model can transfer

effective adversarial samples to the victim model across all three architectures. In

particular, for ResNet models, our substitute model generates adversarial examples

that demonstrate close to the white-box attack efficacy (i.e., within 2% of the best case

result) with 4000 rounds of HammerLeak attack. As for VGG model, which is already

known as a robust architecture (27), our substitute model generated adversary reaches

within ∼12%-14% of an ideal white-box attack. Nevertheless, our attack efficacy still

shows an improvement of about ∼25%-60% across all three architectures compared

to the baseline (i.e., architecture only) technique.

Table 5.4: We Evaluate DeepSteal Attack Against State-of-the-art Techniques Across

Three Different Domains As Case Studies. In Each of The Cases, Only Our Attack

Performs On Par with The SOTA Methods Across All Three Evaluation Metrics (9).

Case Study Method Objective Model
Accuracy

(%)

Fidelity

(%)

Accuracy

Under

Attack (%)

Regularization

Fully-Supervised (165) Accuracy/Fidelity WideResNet-28 86.51 87.37 -

& Data Augmentation

Rand-Augment (184) Accuracy WideResNet-28 87.4 - -

Auto-Augment (185) Accuracy WideResNet-28 87.7 - -

DeepSteal (ours) Accuracy/Fidelity/Attack WideResNet-28 91.93 93.45 0.05

Model Extraction
Side Channel (23; 173; 53; 52) Accuracy/Fidelity/Attack ResNet-18 72.68 73.59 62.58

DeepSteal (ours) Accuracy/Fidelity/Attack ResNet-18 90.02 91.67 1.2

Input Attack

Black-Box (Inception-V1) (190) Adversarial Attack ResNet-18 - - 20.47

White-Box (PGD/Trades) (27; 191) Adversarial Attack ResNet-18 - - 0.0

DeepSteal (ours) Adversarial Attack ResNet-18 - - 1.2

Finally, we consider an attack scenario where the attacker has a strict time bud-

get. In this scenario, let us assume he/she can only afford to run 1500 rounds of

HammerLeak attack while prioritizing MSBs (e.g., only 3.9 days of attack time).

As summarized in Table 5.3, even such a restricted attack can generate compelling
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adversarial examples to lower accuracy under attack by 7%-11% for ResNet mod-

els and by 3% for VGG-11 compared to baseline. One key observation for this low

budget (i.e., 1500 round attack) attack is that attacker can generate a much more

effective substitute model by only using MSB information rather than all the bits.

With limited bit information (e.g., 50% MSB only), putting strict penalization (i.e.,

mean clustering) on the weights during training does not help the substitute model

accuracy. In fact, for VGG-11, it becomes worse than the baseline method. As a

result, for DeepSteal attack with limited partial bit information, using the relaxation

of the weight constraints (i.e., MSB only) can be more effective than using all the

available filtered bits.

5.7.3 Comparison to State-of-the-art Techniques

In Table 5.4, we summarize the standing of our DeepSteal attack compared with

existing model recovery methods for three different domains of applications. We can

see existing model regularization (165; 71) and data augmentation techniques (184;

185) are useful in training deep models with limited data. However, our substitute

model achieves a much higher accuracy (i.e., ∼3 %). Other existing side channel

attacks (23; 173; 53; 52; 24) fall into a similar attack category as DeepSteal. Among

them, (24) only applies to binary neural networks. On the contrary, our attack

is a more general version of the attack applicable to any bit-width. Other side-

channel attacks (23; 173; 53; 52) focus on recovering the architecture and then training

the model with limited data. To compare them, we assume the attacker knows the

exact model architecture. Our DeepSteal can leverage the leaked weight bits to

improve the attack efficacy further. From this point, our attack outperforms prior

architecture-only model extraction attacks with ∼18% improvement in accuracy and

∼61% improvement in degrading the accuracy under adversarial attack. Note that
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while DeepSteal is a semi-Black Box attack, DeepSteal actually can achieve 1.2%

accuracy under attack, which is extremely close to a white-box attack performance

(i.,e., 0%). We observe a 19% improvement in attack performance compared to a

powerful black-box substitute model (e.g., Inception-V1) attack.

5.7.4 Impact of Bit Stealing Errors

Bit stealing accuracy can be influenced if expected bit flips do not occur. This

section analyses the bit errors in the rowhammer-based side channel. Specifically,

we profile bit errors on 4 different vulnerable DIMMs with random bits set in the

victim’s pages. Note that HammerLeak only leverages Strongly-leakable cells that

exhibit consistent bit flips in double-sided rowhammer. Our analysis reveals that

about 70% of the flippable DRAM cells fall into this category. Our results show very

high and stable bit stealing accuracy – on average 95.7% – across all tested DIMMs.

To quantify the impact of bit errors, we analyse the effectiveness of DeepSteal

under a range of bit error rates. Specifically, under the setting where 90% of raw

MSB bits are exfiltrated by HammerLeak, we inject random errors at a certain rate

across each model layer into the recovered bits. Figure 5.5 shows the performance

of the substitute model (in terms of Accuracy and Accuracy Under Attack) when

the bit error ranges from 0% to 10% for ResNet-18. The results demonstrate that

low bit error (0-5%) has a negligible effect on the performance of the substitute model

attack. Moreover, the accuracy of the substitute model stays stable even as the

error rate reaches 10%. On the other hand, the increase in error rate (5-10%) in

the recovered bits causes the DeepSteal performance in Accuracy Under Attack to

degrade gradually. Nevertheless, we can still observe a much higher attack efficiency

of DeepSteal compared to the baseline approaches, as shown in Table 5.4.

98



Figure 5.5: Analysis of The Impact of The Recovered Bit Error Rate (%) on DeepSteal

Attack Performance for ResNet-18 (9).

5.8 Discussion

5.8.1 Countermeasures for DeepSteal

Effect of adversarial training on a transferred adversarial sample. One potential

approach in defending against adversarial samples is to train the model using the

attacked samples, popularly known as adversarial training (27). In Table 5.5, we

evaluate the target victim model, defended with adversarial training. Naturally, a

model trained with adversarial examples becomes more resistant to both white-box

& black-box adversarial attacks. We observe a similar pattern in our experiments.

Still, DeepSteal could achieve 4% & 6% improvement in attacking the target model

trained with the adversarial samples compared to the baseline (i.e., architecture only

+ learning) for ResNet-18 & VGG-11, respectively. We conclude that the existing

white-box adversarial defense may lower the transferability of adversarial samples

from our substitute model, but fails to prevent the accuracy and fidelity extraction.

In addition, DeepSteal follows a more strict threat model, which does not re-

quire access to output logits/predictions. In contrast, prior strong transferable ad-

versarial attacks (192; 193; 194; 195) require model queries as access to output log-
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its/prediction. Even in this minimal setting, our attack DeepSteal outperforms the

existing model stealing attacks (i.e., architecture only + learning) (23) in attacking a

well-defended (i.e., adversarial training) target model. Finally, it is worth noting that

current adversarial defenses (e.g., adversarial training) come with additional training

costs and inference accuracy degradation.

Table 5.5: After Adversarial Training, The White-box Accuracy Under Attack Im-

proved to 43.12% & 35.71% for ResNet-18 and VGG-11 Models Respectively . Here

We Report The Performance of DeepSteal Attack Using Recovered Bit Information

after 4000 Rounds of HammerLeak Attack (9).

Training Data

(%)

Accuracy

(%)

Fidelity

(%)

Accuracy Under

Attack (%)

ResNet-18 (83.62%)

Baseline 72.87 72.66 80.42

DeepSteal 82.84(↑ 10) 81.67 (↑ 9) 76.78 (↓ 4)

VGG-11 (80.21%)

Baseline 70.71 71.3 76.63

DeepSteal 80.65 (↑ 10) 81.13 (↑ 10) 70.28 (↓ 6)

5.9 Conclusion

Training deep neural networks requires heavy computational resources and sensi-

tive domain-specific private user data. Thus, any potential breach in model privacy

through leakage of sensitive model parameters may cost the service provider a heavy

financial penalty. Consequently, the IP of a pre-trained DNN model is critical to

protect against adversarial threats (i.e., model extraction). In this chapter, our de-

veloped DeepSteal attack exposes this threat of an effective model extraction attack in
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practical settings. In particular, our novel system-level weight bit extraction method

HammerLeak enables fast and efficient weight stealing for large-scale DNN applica-

tions. It can recover a significant portion of the weight bits of a DNN model with

millions of wight parameters. On top of that, Mean Clustering training algorithm can

leverage this information to effectively launch a strong adversarial input attack on

the victim model. The efficacy of the attack algorithm is validated through extensive

experimental evaluation. Such a model extraction threat should encourage future

work in this direction to protect the IP of large-scale DNN models.
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Chapter 6

CONCLUSION AND OUTLOOK

The advanced adversarial weight perturbation attack algorithms presented in this

thesis pose a new threat for the DNN-powered applications running in a computing

platform with main memory, such as cloud/edge servers, desktops, mobile phones,

etc. The proposed adversarial weight attack methodology can cause a devastating

effect by modifying an extremely small amount of DNN weight parameters stored in

computer memory through memory fault injection. For example, in a self-driving car

application, the 1-to-1 stealthy T-BFA can attack one particular class (e.g, stop sign),

while keeping other class classifications correct, through modifying less than 0.001%

of total weight parameters. As a result, the system would be difficult to detect such

attacks, resulting in devastating consequences. Hence ensuring the safe and secure

deployment of DNN has become a top research priority.

However, to analyze and protect DNNs against practical threats first, we need

to design possible security breaches in deep learning applications. Adversarial input

example attack did a good job in pin-pointing one key limitation of deep learning

algorithms. They show that slightly perturbed inputs can fool a DNN and achieve

malicious objectives. In a different, yet related track, we focus on the security domain

of DNN weights and design a strong targeted adversarial weight attack methodology.

In particular, in this thesis, we design the first targeted adversarial weight attack

on a quantized noise-resilient DNN. Quantized DNNs are widely used in resource-

constrained edge devices, making their security even more important. The proposed

attack schemes further show the vulnerability of DNN models to malicious attacks.

Our analysis shows that a wide range of DNN behaves differently to different variants
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of attacks. To make it worse, Such perturbation of model parameters is practically

feasible nowadays because of the development of advanced computer hardware fault

injection techniques, such as rowhammer attack, laser beam attack, and under-voltage

attack. Thus we believe it is extremely important to study these maliciously adversar-

ial weight attacks to better understand the underlying vulnerability of DNNs, which

will lead to future more robust DNN algorithm development to tackle such attacks

or model failure. While studying attack algorithms is important, we have worked on

potential defensive solutions to make the behavior of DNN models more secure under

adversarial weight attack.

On top of that, our study includes an even strict threat model where we demon-

strated a practical black-box attack in multi-tenant cloud FPGA. Finally, we have

maneuvered the bit-flip attack to breach deep learning privacy. Such a transforma-

tion of adversarial weight attack to model leakage attack has opened a new set of

challenges in protection of the IP of pre-trained deep learning models. Hence, We

strongly recommend more investigation of DNN model parameter security/privacy

attacks/defenses to better understand DNN behavior and secure them. We hope this

thesis should greatly benefit the emerging and exploding AI security community in

the future.
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