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ABSTRACT 
 

This research proposes some new data-driven control methods to control a 

nonlinear dynamic model. The nonlinear dynamic model linearizes by using the Koopman 

theory. The Koopman operator is the most important part of designing the Koopman 

theory. The data mode decomposition (DMD) is used to obtain the Koopman operator. The 

proposed data-driven control method applies to different nonlinear systems such as 

microelectromechanical systems (MEMS), Worm robots, and 2 degrees of freedom (2 

DoF) robot manipulators to verify the performance of the proposed method. For the MEMS 

gyroscope, three control methods are applied to the linearized dynamic model by the 

Koopman theory: linear quadratic regulator (LQR), compound fractional PID sliding mode 

control, and fractional order PID controller tuned with bat algorithm. For the Worm robot, 

an LQR controller is proposed to control the linearized dynamic model by the Koopman 

theory. A new fractional sliding mode control is proposed to control the 2 DoF arm robot. 

All the proposed controllers applied to the linearized dynamic model by the Kooman theory 

are compared with some conventional proposed controllers such as PID, sliding mode 

control, and conventional fractional sliding mode control to verify the performance of the 

proposed controllers. Simulation results validate their performance in high tracking 

performance, low tracking error, low frequency, and low maximum overshoot. 
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1  INTRODUCTION 

1.1  Motivation 

The Koopman theory is a strong method for data-driven-based control methods. It 

can linearize the complex nonlinear dynamic model. Several researchers use the Koopman 

theory in their research to provide better control performance (Goswami & Paley, 

Bilinearization, reachability, and optimal control of control-affine nonlinear systems: A 

Koopman spectral approach, 2021) (Shi & Meng, 2022) (Calderón, Schulz, Oehlschlägel, 

& Werner, (2021, June)) (Husham, Kamwa, Abido, & Suprême, 2022) (Narasingam, Son, 

& Kwon, 2022). However, the most important part of the Koopman theory application is 

how to design the Koopman operator. 

A useful approach for estimating the modes and eigenvalues of the Koopman 

operator is the DMD method. Utilizing an embed into infinite dimensional space, the 

Koopman operator offers a linear description of nonlinear systems. Among the most often 

used finite dimensional approximations of the Koopman Operator are DMD and Extended 

DMD (Zanini & Chiuso, 2021; Jiang & Liu, 2022). Koopman operator theory and the 

associated algorithm DMD were introduced by Ling et al. for the study and control of 

signalized traffic flow networks. They study DMD's application to various issues in 

signalized traffic as a model-free method for describing complicated oscillatory dynamics 
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from observed data (Ling, Zheng, Ratliff, & Coogan, 2020). Wilches-Bernal, Reno, & 

Hernandez-Alvidrez, (2021) proposes a novel technique for identifying faults and other 

power quality issues. The major signal indicating a power quality event has occurred is 

identified by the suggested technique using the real component of the principal eigenvalue 

computed by the DMD. To discriminate between distinct failures, the study demonstrates 

how the suggested approach may be utilized to detect events utilizing current and voltage 

data. The performance of the strategy is examined of the impact of the window size because 

the suggested method is window-based. To properly control the system, an appropriate 

controller can be used with the linearized DMD Koopman model such as a linear quadratic 

regulator controller (LQR) (Mamakoukas, Castano, Tan, & Murphey, (2019, June)) and 

model predictive controller (MPC) (Ping, Yin, Li, Liu, & Yang, 2021). 

1.2  Scope and Overview 

This research proposes data-driven control of nonlinear dynamic systems. The data-

driven method will provide information on the system that doesn’t need to identify the 

model of the system. 

The main contribution of this research is to consider some new control methods 

based on data-driven methods using the Koopman theory. The novel control methods apply 
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to different nonlinear dynamic models such as MEMS gyroscope, worm robot, and 2 DoF 

robot manipulator. The rest of this research is organized as: 

Chapter 2 proposes a new compound fractional sliding mode control and super-

twisting control of a linear MEMS gyroscope. This chapter considers a new control method 

to control a linear MEMS gyroscope merely to observe the system's response without 

including the nonlinearity of the system. A new compound FOSMC and STC is proposed, 

in which the STC controller will calculate an error value and apply a correction value to 

the system. Therefore, the proposed compound control method reduces the oscillation, 

increases tracking performance, and reduces the tracking error. 

Chapter 3 introduces the nonlinear dynamic model of the MEMS gyroscope. The 

DMD method is used to generate eigenfunction and eigenvectors to obtain the Koopman 

operator. Using the Koopman theory, a FOPID controller is implemented to control the 

linearized dynamic model. A bat metaheuristic optimization algorithm is used to tune the 

proposed control method parameters. Finally, the robustness of the proposed control 

method is verified by random noise application. 

Chapter 4 introduces a nonlinear dynamic model of the MEMS gyroscope. The 

Koopman theory is applied to linearize the nonlinear model of the MEMS gyroscope. The 

DMD method is used to approximate the Koopman operator. The FOSMC is implemented 

on the linearized dynamic model to control the MEMS gyroscope. A new compound 
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control method is applied to improve the control method of the FOSMC such as reducing 

the control efforts. Simulation results verified the performance of the proposed controller. 

Chapter 5 discusses the nonlinear MEMS gyroscope dynamic model. 

Eigenfunctions were obtained by using the DMD method. Koopman operators are 

generated by using eigenfunctions obtained from the DMD method. An LQR controller 

used to control created linear dynamics by Koopman theory. The performance of the 

proposed method compares with conventional integral sliding mode control, in which the 

proposed controller has better performance. 

Chapter 6 applies an optimal data-driven controller to control a worm robot. The 

nonlinear dynamics of a worm robot are introduced. The Koopman theory is used to 

linearize the nonlinear dynamic model of the worm robot. The DMD method is used to 

generate the Koopman operator. An LQR controller is used to control the linearized 

dynamic model of the worm robot. 

Chapter 7 applies the Koopman theory to linearize the nonlinear dynamics of the 

2 DoF robot manipulator. The DMD method is applied to obtain the Koopman operator. 

Koopman's theory proposes a fractional sliding mode control to control the linearized 

dynamics model. The conventional PID and FOSMC are implemented to verify the 

performance of the proposed control method. 
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2  NEW COMPOUND FRACTIONAL SLIDING MODE CONTROL AND SUPER-

TWISTING CONTROL OF A MEMS GYROSCOPE   

2.1  Literature review 

MEMS gyroscopes are usually used to measure angular velocity, which can be 

utilized in many applications such as biosystems and control stabilization. However, the 

MEMS gyroscope performance degrades due to the frequency of oscillation mismatch 

between two vibrating axes created by external disturbances and time-varying parameters 

(Yan, Hou, Fang, & Fei, 2017). Therefore, the best performance for the MEMS gyroscope 

can be obtained by designing an appropriate control method. 

Fractional calculus has been widely used for many years (Rahmani, Komijani, 

Ghanbari, & Ettefagh, 2018). It provides more accurate results for different systems, such 

as in Robotics and control systems engineering. The fractional-order theory has been 

applied in various structures because of its ease of modeling dynamics and nonlinear 

control. FOSMC is a powerful tool in control systems engineering. It is robust against 

external disturbances and has high tracking performance (Rahmani, Komijani, Ghanbari, 

& Ettefagh, 2018). Authors (Gao & Liao, 2013)considered the FOSMC to control a hyper 

chaotic structure (Yang & Liu, 2013). The authors presented integral sliding mode control 

to enhance the robustness of FOSMC (Gao & Liao, 2013). Balochian (2013) used variable 
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structure control for an individual polytopic system with a fractional-order operator. A 

specific feedback law is considered by proposing a sliding surface with a fractional-order 

operator. Rabah et al. provided a novel technique of FOSMC to guarantee the asymptotic 

stability of fractional systems (Rabah, Ladaci, & Lashab, 2017). (Shah & Mehta, 2017) 

described Thiran's delay estimation scheme to compensate the controller for fractional 

actuator delay, considering the real-time networked medium and packet loss situation. Sun 

& Ma,  (2017), to achieve high convergence precision, applied a fractional integral sliding 

mode control for tracking control of the linear motor. Experimental results validated that 

the proposed control law has high tracking performance compared to conventional sliding 

mode control. Wang, Gu, Xu, & Cao, (2016) proposed a new fractional-order nonsingular 

terminal sliding mode control. Due to the fractional-order nonsingular terminal sliding 

mode control and fast terminal sliding mode controller, the proposed controller guarantees 

fast convergence and high tracking performance. Aghababa, (2014) presented a new 

fractional hierarchical terminal sliding mode surface, in which its finite-time convergence 

to the origin is demonstrated. A robust sliding mode switching control method is proposed 

to guarantee the fractional Lyapunov stability theory and sliding mode control technique 

in reference. Wang, Mustafa, & Tian, (2018) implemented a novel sliding mode controller 

for an active vehicle suspension system to suppress external noise that acts on that system. 

Based on previous research, FOSMC can be used as a robust control method in different 
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systems (Kaur & Narayan, 2018) (Khan & Tyagi, 2017) (Ardjal, Mansouri, & Bettayeb, 

2018), but its main drawback is creating a chattering phenomenon. 

STC is a technique that can be used in control systems. It overcomes disturbances 

of super-twisting control (Guruganesh, Bandyopadhyay, Arya, & Singh, 2018). Jeong, 

Kim, & Han, (2018) designed a robust super-twisting sliding mode control that guarantees 

a high tracking trajectory of a robotic system. To satisfy the properties of a conventional 

sliding mode control, a super-twisting sliding mode surface is designed for obtaining the 

transient and steady-state time performances of the position of the robotic manipulator. 

Chuei, Cao, & Man, (2017) described a super-twisting observer-based repetitive control, 

which overcomes aperiodic disturbances. Zargham & Mazinan, (2018) applied a super-

twisting sliding mode control to control the wind turbine system. However, conventional 

sliding mode control cannot guarantee closed-loop performance against external 

perturbations; due to this drawback, an STC technique is used for rapid response and high 

accuracy in chattering reduction. Zhao, Gu, Zhang, & Ding, (2017) proposed a nonsingular 

terminal sliding mode control based on the STC method to eliminate the chattering 

phenomenon and avoid the singularity problem. Lu & Xia, (2014) addressed a new 

adaptive super-twisting algorithm for controlling rigid spacecraft. The applied controller is 

anti-singularity and anti-chattering when encountered with external disturbances. 

Evangelista, Puleston, Valenciaga, & Fridman, (2012) used modified STC, which 
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improves the system's robustness in external perturbations acting on a wind turbine shaft. 

Becerra, Hayet, & Sagüés, (2014) proposed an STC which guarantees continuous control 

inputs and enhances robustness properties. Salgado, Kamal, Bandyopadhyay, Chairez, & 

Fridman, (2016) introduced a discrete-time super-twisting algorithm to solve the problems 

of control and state estimation. As a result of considered studies, STC can be a vital tool in 

control systems. It has some advantages, such as improving the robustness of control 

systems, removing controller singularity, and eliminating the chattering phenomenon.  

The contribution of this method are as follows: 

1- Propose a new fractional sliding mode surface for use in the FOSMC to suppress 

the external perturbations. 

2- A new compound FOSMC and STC is proposed, in which the STC controller 

will calculate an error value and apply a correction value to the system. Therefore, the 

proposed compound control method reduces the oscillation, increases tracking 

performance, and reduces the tracking error. 

 2.2  Linear dynamic of MEMS gyroscope 

A z-axis MEMS gyroscope is shown in Figure 2.1. The conventional MEMS 

vibratory gyroscope consists of a proof mass (m) suspended by springs, where x and y are 

the coordinates of the proof mass with respect to the gyro frame in a cartesian coordinate 
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system, sensing mechanisms, and an electrostatic actuation for forcing an oscillatory 

motion and velocity of the proof mass and sensing the position. x,y,z are the angular rate 

components along each axis of the gyro frame.  

 

Figure 2.1: Structure of MEMS gyroscope. 

 

The frame where the proof mass is mounted moves with a constant velocity, and 

the gyroscope rotates at a slowly changing angular velocity of z. The centrifugal forces 

𝑚Ω𝑧
2𝑥 and, 𝑚Ω𝑧

2𝑦 are assumed to be negligible because of small displacements. The 

Coriolis force is generated perpendicular to the drive and rotational axes (Rahmani M. , 

2018). 

The dynamics equations of the gyroscope are given by 
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𝑚𝑥̈ + 𝑑𝑥𝑥
∗ 𝑥̇ + 𝑑𝑥𝑦

∗ 𝑦̇ + 𝑘𝑥𝑥
∗ 𝑥 + 𝑘𝑥𝑦

∗ 𝑦 = 𝑢𝑥
∗ + 2𝑚𝛺𝑧

∗𝑦̇ (2.1) 

𝑚𝑦̈ + 𝑑𝑥𝑦
∗ 𝑦̇ + 𝑑𝑦𝑦

∗ 𝑦̇ + 𝑘𝑥𝑦
∗ 𝑥 + 𝑘𝑦𝑦

∗ 𝑦 = 𝑢𝑦
∗ − 2𝑚𝛺𝑧

∗𝑥̇ (2.2) 

The origin for the x and y coordinates is at the center of the proof mass without 

force employed. Fabrication imperfections will affect the asymmetric spring and damping 

terms, 𝑘𝑥𝑦
∗  and 𝑑𝑥𝑦

∗  Respectively. The stiffness and damping terms are given by 

𝑘𝑥𝑥
∗ , 𝑘𝑦𝑦

∗ , 𝑑𝑥𝑥
∗  and 𝑑𝑦𝑦

∗  . 

The stiffness and damping terms may vary slightly from nominal values (Rahmani 

M. , 2018; Yan, Hou, Fang, & Fei, 2017). However, the magnitude of the proof mass m 

can be obtained precisely. 

The 𝑢𝑥
∗  and 𝑢𝑦

∗  are the control forces in the x and y-direction. Dividing gyroscope 

dynamics (1) and (2) by the reference mass results in the following vector forms: 

𝑞̈∗ +
𝐷∗

𝑚
𝑞̇∗ +

𝐾𝑎
𝑚
𝑞∗ =

𝑢∗

𝑚
− 2𝛺∗𝑞̇∗ 

(2.3) 

Where  

𝑞∗ = [
𝑥∗

𝑦∗
] ,  𝑢 = [

𝑢𝑥
∗

𝑢𝑦
∗ ] ,  𝛺 ∗= [

0 −𝛺𝑧
∗

𝛺𝑧
∗ 0

] 

 

𝐷∗ = [
𝑑𝑥𝑥
∗ 𝑑𝑥𝑦

∗

𝑑𝑥𝑦
∗ 𝑑𝑦𝑦

∗ ] ,  𝐾𝑎 = [
𝑘𝑥𝑥
∗ 𝑘𝑥𝑦

∗

𝑘𝑥𝑦
∗ 𝑘𝑦𝑦

∗ ] 

The final form of the non-dimensional equation of motion is as follows: 



 

 

 

 

11 
 

 

 

 

𝑞̈∗

𝑞0
+

𝐷∗

𝑚𝜔0

𝑞̇∗

𝑞0
+

𝐾𝑎

𝑚𝜔0
2

𝑞∗

𝑞0
=

𝑢∗

𝑚𝜔0
2𝑞0

− 2
𝛺∗

𝜔0

𝑞̇∗

𝑞0
 

(2.4) 

We determine a set of new parameters as follows: 

𝑞 =
𝑞∗

𝑞0
,  𝑑𝑥𝑦 =

𝑑𝑥𝑦
∗

𝑚𝜔0
,  𝛺𝑧 =

𝛺𝑧
∗

𝜔0
 

(2.5) 

𝑢 =
𝑢𝑥
∗

𝑚𝜔0
2𝑞0

,  𝑢𝑦 =
𝑢𝑦
∗

𝑚𝜔0
2𝑞0

 
(2.6) 

𝜔𝑥 = √
𝑘𝑥𝑥

𝑚𝜔0
2 ,  𝜔𝑦 = √

𝑘𝑦𝑦

𝑚𝜔0
2 ,   𝜔𝑥𝑦 =

𝑘𝑥𝑦

𝑚𝜔0
2 

(2.7) 

𝑞̈ + 𝐷𝑞̇ + 𝐾𝑏𝑞 = 𝑢 − 2𝛺𝑞̇ (2.8) 

 

Where 

𝑞 = [
𝑥
𝑦] ,  𝑢 = [

𝑢𝑥
𝑢𝑦
] ,  𝛺 = [

0 −𝛺𝑧
𝛺𝑧 0

] 

 

𝐷 = [
𝑑𝑥𝑥 𝑑𝑥𝑦
𝑑𝑥𝑦 𝑑𝑦𝑦

] ,  𝐾𝑏 = [
𝜔𝑥
2 𝜔𝑥𝑦

𝜔𝑥𝑦 𝜔𝑦
2 ] 

Equation (2.8) can be rearranged as: 

𝑞̈ = −(𝐷 + 2𝛺)𝑞̇ − 𝐾𝑏𝑞 + 𝑢 + 𝐸 (2.9) 
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where E is an external disturbance. Since the disturbance is considered unknown, 

the model from equation (2.9) used to generate the control signal must be modified by 

setting E=0: 

𝑞̈ = −𝑀𝑞̇ − 𝑁𝑞 + 𝑢 (2.10) 

where M=(D+2) and N=Kb. 

2.3  New fractional sliding mode control 

Selecting a fractional sliding mode surface is the central part of FOSMC design. 

The fractional derivative and integral order in the sliding mode surface provides the 

flexibility of having the fractional type of error in controller design. The best performance 

will be obtained if a fractional sliding mode surface is chosen correctly. The fractional 

sliding mode surface can be selected as follows: 

𝑠(𝑡) = 𝑒̇(𝑡) + 𝛼𝐷𝜇−1𝑒(𝑡) + 𝛽𝐷𝜇−2𝑒(𝑡) + 𝛾∫ 𝑒(𝜏)
𝑟
𝑚𝑑𝜏

𝑡

0

 
(2.11) 

where r, m, α, β, and  are positive constants, and D is a fractional-order operator 

(D=d/dt, and µ>2). The fractional-order operator type is Grunwald-Letnikov. The tracking 

error can be shown as: 

𝑒(𝑡) = 𝑞 − 𝑞𝑑 (2.12) 

The derivative of the fractional sliding mode surface is 
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𝑠̇(𝑡) = 𝑒̈(𝑡) + 𝛼𝐷𝜇𝑒(𝑡) + 𝛽𝐷𝜇−1𝑒(𝑡) + 𝛾𝑒(𝑡)
𝑟
𝑚   

= 𝑞̈ − 𝑞̈𝑑 + 𝛼𝐷
𝜇𝑒(𝑡) + 𝛽𝐷𝜇−1𝑒(𝑡) + 𝛾𝑒(𝑡)

𝑟
𝑚    

= −𝑀𝑞̇ − 𝑁𝑞 + 𝑢 − 𝑞̈𝑑 + 𝛼𝐷
𝜇𝑒(𝑡) + 𝛽𝐷𝜇−1𝑒(𝑡)

+ 𝛾𝑒(𝑡)
𝑟
𝑚 

(2.13) 

Equivalent control ueq can be obtained by setting 𝑠̇(𝑡) = 0. 

𝑢𝑒𝑞(𝑡) = 𝑀𝑞̇ + 𝑁𝑞 + 𝑞̈𝑑 − 𝛼𝐷
𝜇𝑒(𝑡) − 𝛽𝐷𝜇−1𝑒(𝑡) − 𝛾𝑒(𝑡)

𝑟
𝑚 

(2.14) 

The FOSMC can be shown as: 

𝑢𝐹𝑂𝑆𝑀𝐶(𝑡) = 𝑢𝑒𝑞(𝑡) + 𝑢𝑠(𝑡)                                  

= 𝑀𝑞̇ + 𝑁𝑞 + 𝑞̈𝑑 − 𝛼𝐷
𝜇𝑒(𝑡) − 𝛽𝐷𝜇−1𝑒(𝑡) − 𝛾𝑒(𝑡)

𝑟
𝑚

− 𝐾𝑠𝑠 

(2.15) 

The equivalent control cannot compensate for external perturbation and 

unmodelled dynamic uncertainties. A reaching control law can be designed to remove those 

problems as 𝑢𝑠(𝑡), which can be defined as: 

𝑢𝑠(𝑡) = −𝐾𝑠𝑠𝑖𝑔𝑛(𝑠) (2.16) 

where Ks is a positive constant. 
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Consider the following Lyapunov function candidate (V), continuous and 

nonnegative (Rahmani, Ghanbari, & Ettefagh, 2016; Devanshu, Singh, & Kumar, 2020; 

Rahmani, Ghanbari, & Ettefagh, 2018). 

𝑉 =
1

2
𝑠𝑇𝑠 

(2.17) 

The time derivative of V yields: 

𝑉̇ = 𝑠𝑇𝑠̇ = 𝑠𝑇(−𝑀𝑞̇ − 𝑁𝑞 + 𝑢(𝑡) − 𝑞̈𝑑 + 𝛼𝐷
𝜇𝑒(𝑡) + 𝛽𝐷𝜇−1𝑒(𝑡)

+ 𝛾𝑒(𝑡)
𝑟
𝑚) 

(2.18) 

Substituting equation (2.15) into equation (2.18), generates 

𝑉̇ = 𝑠𝑇𝑠̇ = 𝑠𝑇(−𝑀𝑞̇ − 𝑁𝑞 +𝑀𝑞̇ + 𝑁𝑞 + 𝑞̈𝑑 − 𝛼𝐷
𝜇𝑒(𝑡) − 𝛽𝐷𝜇−1𝑒(𝑡)

− 𝛾𝑒(𝑡)
𝑟
𝑚 

(2.19) 

Simplifying equation (2.19) results in 

𝑉̇ = 𝑠𝑇(−𝐾𝑠𝑠𝑖𝑔𝑛(𝑠)) (2.20) 

Therefore, equation (2.20) can be expressed as 

𝑉̇ = −𝐾𝑠𝑠
𝑇𝑠𝑖𝑔𝑛(𝑠) (2.21) 
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Figure 2.2: Block diagram of the novel control system. 

 

Equation (2.21) shows that 𝑉̇ < 0, which expresses that the proposed control law 

is stable. 

2.4  New compound fractional sliding mode control and super-twisting 

control 

FOSMC is one of the techniques that can enhance the robustness of the control 

system and improve tracking performance. As discussed before, its main drawback is 
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creating a chattering phenomenon. However, STC can be used in conjunction with FOSMC 

to minimize the chattering of the system, improve trajectory tracking, and remove 

singularity problems. By combining both FOSMC and STC, a better control method will 

be obtained, combining both controllers' benefits. The Block diagram of the proposed 

controller is illustrated in Figure 2.2. The compound control law can be defined as: 

𝑢(𝑡) = 𝑢𝐹𝑂𝑆𝑀𝐶(𝑡) + 𝑢𝑆𝑇𝐶(𝑡) (2.22) 

where 𝑢𝑆𝑇𝐶(𝑡) is 

𝑢𝑆𝑇𝐶(𝑡) = −𝑘1 |𝑒
𝑟
𝑚|

1
2
𝑠𝑖𝑔𝑛(𝑒

𝑟
𝑚) − 𝑘2∫ 𝑠𝑖𝑔𝑛(

𝑡

0

𝑒
𝑟
𝑚)𝑑𝜏 

(2.23) 

where k1, k2, r, and m are positive constants. 

The stability proving of the proposed control law can be arranged by substituting 

Equation (2.22) into equation (2.18) as: 

𝑉̇ = 𝑠𝑇𝑠̇ = 𝑠𝑇(−𝑀𝑞̇ − 𝑁𝑞 + 𝑢𝐹𝑂𝑆𝑀𝐶(𝑡) + 𝑢𝑆𝑇𝐶(𝑡) + 𝐸 − 𝑞̈𝑑

+ 𝛼𝐷𝜇𝑒(𝑡) + 𝛽𝐷𝜇−1𝑒(𝑡) + 𝛾𝑒(𝑡)
𝑟
𝑚) 

(2.24) 

𝑉̇ = 𝑠𝑇𝑠̇ = 𝑠𝑇(−𝑀𝑞̇ − 𝑁𝑞 +𝑀𝑞̇ + 𝑁𝑞 − 𝐸 + 𝑞̈𝑑 − 𝛼𝐷
𝜇𝑒(𝑡)

− 𝛽𝐷𝜇−1𝑒(𝑡) 

   −𝛾𝑒(𝑡)
𝑟
𝑚 − 𝐾𝑠𝑠 − 𝑘1 |𝑒

𝑟
𝑚|

1
2
𝑠𝑖𝑔𝑛(𝑒

𝑟
𝑚) − 𝑘2∫ 𝑠𝑖𝑔𝑛(

𝑡

0

𝑒
𝑟
𝑚)𝑑𝜏 

(2.25) 
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    +𝐸 − 𝑞̈𝑑 + 𝛼𝐷
𝜇𝑒(𝑡) + 𝛽𝐷𝜇−1𝑒(𝑡 + 𝛾𝑒(𝑡)

𝑟
𝑚) 

Simplifying equation (2.25) generates 

𝑉̇ = 𝑠𝑇(−𝐾𝑠𝑠𝑖𝑔𝑛(𝑠) − 𝑘1 |𝑒
𝑟
𝑚|

1
2
𝑠𝑖𝑔𝑛(𝑒

𝑟
𝑚) − 𝑘2∫ 𝑠𝑖𝑔𝑛(

𝑡

0

𝑒
𝑟
𝑚)𝑑𝜏) 

(2.26) 

The stability of FOSMC was proved in section 2. 3. Therefore, the main controller 

is stable. Also, the error was reduced by using the compound controller. This shows that 

the proposed controller will improve the system’s stability. Therefore, equation (2.26) can 

be written as: 

𝑉̇ = −𝐾𝑠𝑠
𝑇𝑠𝑖𝑔𝑛(𝑠) (2.27) 

where Ks is positive,  which leads to 𝑉̇ < 0. 

2.5  Simulation results 

 

The most important part of the controller design procedure is the selection of 

proposed controller parameters (α, β, (, Ks, μ, r, m, k1, and k2). If parameters are chosen 

inappropriately, the proposed control method cannot guarantee the desired performance, 

such as trajectory tracking, robustness, stability, and chattering elimination. The controller 

parameters are chosen based on the designer's experiences and the trial-error process. 

Simulation results have shown that the parameters are selected appropriately. Parameters 

of the fractional-order sliding mode surface are selected as α=diag(40,40), β=diag(50,50), 
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=diag(60,60), Ks=diag(10,10), =2.5, r=1.5 and m=1.25. The STC parameters are 

chosen as k1=diag(20,20) and k2=diag(20,20) .The desired motion trajectory is determined 

by qd1=sin (4.17t) and qd2=1.2sin(5.11t). The initial values of the system are selected as: 

 

𝑞1(0) = 0.5, 𝑞2(0) = 0.5, 𝑞̇1(0) = 0 𝑎𝑛𝑑 𝑞̇2(0) = 0 

 

The parameters of the MEMS gyroscope are selected as: 

𝑚 = 1.8 × 10−7𝑘𝑔   𝑘𝑥𝑦 = 12.779𝑁/𝑚    

𝑘𝑥𝑥 = 63.955𝑁/𝑚   𝑑𝑥𝑥 = 1.8 × 10
−6𝑁𝑠/𝑚 

𝑘𝑦𝑦95.92𝑁/𝑚    𝑑𝑦𝑦1.8 × 10
−6𝑁𝑠/𝑚 

        𝑑𝑥𝑦 = 3.6 × 10
−7𝑁𝑠/𝑚 
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Figure 2.3: Position tracking of x-axis and y-axis. 
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Figure 2.4: Position tracking error of x-axis and y-axis. 
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Figure 2.5: Velocity of x-axis and y-axis. 
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Figure 2.6: Tracking error under random noise. 
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Typically, the natural frequency of each axis of a MEMS gyroscope is in the kHz 

range. Thus, 0  is selected as 1kHz. It is suitable to choose 1m as the reference length q0 

when the displacement range of the MEMS gyroscope in each axis is sub-micrometer level. 

The unknown angular velocity is assumed z=100 rad/s. Therefore, the non-dimensional 

values of the MEMS gyroscope parameters are chosen as: 

𝜔𝑥
2 = 355.3, 𝜔𝑦

2 = 532.9, 𝜔𝑥𝑦 = 70.99, 𝑑𝑥𝑥 = 0.01, 𝑑𝑦𝑦 = 0.01, 𝑑𝑥𝑦

= 0.002, 𝛺𝑧 = 0.1 

Figure 2.3 shows position tracking of the x-axis and y-axis under FOSMC and 

FOSMC+STC. It can be seen clearly that tracking performance under the proposed 

controllers is consistent with the desired tracking of the MEMS gyroscope. Figure 2.4 

illustrates the tracking error of the x-axis and y-axis under FOSMC and the proposed 

control. FOSMC creates a chattering phenomenon, which by using STC, is reduced. In 

addition, FOSMC+STC has a lower maximum overshoot and undershoot than FOSMC. 

Figure 2.5 shows the velocity of the x-axis and y-axis under FOSMC and the proposed 

control law. The robustness of the proposed control method was verified by applying the 

random noise as 0.5*randn(1,1). Figure 2.6 shows that the proposed control method is 

robust against external disturbances. 
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2.6  Conclusion 

This method proposed a novel FOSMC+STC law to control a MEMS gyroscope. 

First, a new FOSMC is applied to control the x-axis and y-axis of a MEMS gyroscope. It 

has high tracking performance, but its main drawback was creating a chattering 

phenomenon. To solve this problem, an STC is proposed in parallel with FOSMC, which 

continuously calculates an error value and applies a correction value. Simulated results 

demonstrate that the developed STC significantly reduces the chattering phenomenon. In 

addition, using STC, maximum overshoot and undershoot are reduced, and trajectory 

tracking performance improves. Simulation results thus validated the effectiveness of the 

proposed control strategy. 
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3  DATA DRIVEN KOOPMAN FRACTIONAL ORDER PID CONTROL OF A MEMS 

GYROSCOPE USING BAT ALGORITHM 

3.1  Literature review 

The MEMS gyroscope is an interesting device that can measure angular velocity 

by motion in the x and y directions. This tool has been used in the automotive industry due 

to its low costs and small size (Solouk, Shojaeefard, & Dahmardeh, 2019; Classen, Frey, 

Kuhlmann, Ernst, & Bosch, 2007). The control of the MEMS gyroscope is a difficult task 

because it constantly encounters external disturbances, and designing a suitable control 

method is required for this system (Zhang & Lin, 2010). 

An interesting area of study is data-driven control systems, which uses data to 

control dynamic systems (Gao, Liu, Wang, & Wang, 2022; Xian, Gu, & Pan, 2022; Liu, 

Cheng, Xiao, & Hao, 2022). Several techniques are used to create data-driven structures 

such as deep neural networks (Sun, Dominguez-Caballero, Ward, Ayvar-Soberanis, & 

Curtis, 2022) and machine learning algorithms (Chen & You, 2021). One effective method 

for linearizing the nonlinear dynamic model is the linear parameter varying (LPV) method. 

Hadian, Ramezani, & Zhang, (2022) proposed a controller to reduce computation and 

conservatism for constrained nonlinear MIMO systems. Also, the simulation results 

verified the effectiveness of the proposed method in terms of disturbance rejection and high 
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tracking performance. In addition, a model predictive controller (MPC) is proposed for 

nonlinear systems subjected to perturbations (Hadian, Ramezani, & Zhang, Robust Model 

Predictive Controller Using Recurrent Neural Networks for Input–Output Linear 

Parameter Varying Systems, 2021). The LPV method is used to linearize the nonlinear 

dynamic model. Then, the MPC controller is applied to the linearized model. The proposed 

method is robust against disturbances. In data driven-control systems, Koopman’s theory 

is a strong approach. By projecting the system dynamics onto the Koopman eigenspace, 

Goswami and Paley (Goswami & Paley, Bilinearization, reachability, and optimal control 

of control-affine nonlinear systems: A Koopman spectral approach., 2021) explore the 

issues of bilinearization and optimum control of a control-affine nonlinear system. Under 

certain assumptions, the suggested technique converts the dynamics into a bilinear system 

by using the Koopman canonical transform, especially the Koopman eigenfunctions of the 

drift vector field. Numerous examples of control-affine nonlinear systems are used to 

numerically demonstrate bilinearization and the best control strategy while assuming a 

quadratic cost function for the states and control input. The difficulties of making models 

that are subject to model-based control design methodologies make it challenging to 

operate soft robots precisely. Koopman operator theory provides a framework for creating 

explicit dynamical models of soft robotics and controlling them with practiced model-

based techniques (Bruder, Fu, Gillespie, Remy, & Vasudevan, 2020). How to derive the 
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Koopman operator is the most crucial aspect of the Koopman theory, especially for 

complex systems with a nonlinear dynamic systems.  

A useful approach for estimating the modes and eigenvalues of the Koopman 

operator is the DMD method. Utilizing an embedding into infinite dimensional space, the 

Koopman operator offers a linear description of nonlinear systems. Among the most often 

used finite dimensional approximations of the Koopman Operator are DMD and Extended 

DMD (Zanini & Chiuso, 2021; Jiang & Liu, 2022). Koopman operator theory and the 

associated algorithm DMD were introduced by Ling et al. for the study and control of 

signalized traffic flow networks. They study DMD's application to various issues in 

signalized traffic as a model-free method for describing complicated oscillatory dynamics 

from observed data (Ling, Zheng, Ratliff, & Coogan, 2020). Wilches-Bernal, Reno, & 

Hernandez-Alvidrez, (2021) proposes a novel technique for identifying faults and other 

power quality issues. The major signal indicating a power quality event has occurred is 

identified by the suggested technique using the real component of the principal eigenvalue 

computed by the DMD. To discriminate between distinct failures, the study demonstrates 

how the suggested approach may be utilized to detect events utilizing current and voltage 

data. The performance of the strategy is examined in relation to the impact of the window 

size because the suggested method is window-based. To properly control the system, an 

appropriate controller can be used with the linearized DMD Koopman model such as a 
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linear quadratic regulator controller (LQR) (Mamakoukas, Castano, Tan, & Murphey, 

(2019, June)) and model predictive controller (MPC) (Ping, Yin, Li, Liu, & Yang, 2021). 

PID controller is a strong control method to control linear dynamic systems. It has 

been widely used in real-world systems due to its low cost and ease of implementation 

(Rahmani, Ghanbari, & Ettefagh, Robust adaptive control of a bio-inspired robot 

manipulator using bat algorithm, 2016; Rahmani, Komijani, Ghanbari, & Ettefagh, 2018). 

By regulating the PID gains, it constantly evaluates errors and provides the best value. It is 

used to control different systems such as MEMS gyroscopes (Fei & Chu, Dynamic global 

PID sliding mode control for MEMS gyroscope using adaptive neural controller, (2016, 

August)), vehicle (Marino, Scalzi, & Netto, 2011), and quadcopter (Yoon & Doh, 2022). 

However, the main drawbacks of the PID control method are that it’s not robust control 

against external disturbances. Although some useful methods can be used to tune the PID 

controller parameters such as Axiomatic-Design-Theory-Based (Li, Chen, & Zhang, 

2010), the fractional control is also a suitable controller to improve the robustness and 

stability of the PID controller. The FOPID controller has been used in different research. 

Large uncertainty in dynamic and hydrodynamic properties as well as the signal 

transmission channel's time delay are the key challenges with autonomous underwater 

vehicles (AUV) motion control. For an AUV yaw control system, Liu, Zhang, Pan, & 

Zhang (2022) suggest a reliable FOPID controller architecture. Erol (2021) proposed a 
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strong method for the pitch control system of large wind turbines with a FOPID controller 

that is delay-dependent. The simulation findings demonstrate that outcomes for the delay 

margin are improved by using the proposed method. One of the main parts of FOPID 

controller design is how to tune the controller's gains to achieve the best performance. The 

bat optimization algorithm is a suitable method to tune the proposed controller's 

parameters. 

The bat algorithm is inspired by the echolocation behavior of microbats, with 

varying pulse rates of emission and loudness (Yang X. S., A new metaheuristic bat-inspired 

algorithm, 2010). Finding solutions using algorithms based on population and local search 

is a benefit of employing the bat algorithm. We get both local rigorous exploitation and 

global variety from this combination, which is crucial for metaheuristic algorithms. The 

advantages of the bat algorithm in comparison with particle swarm optimization and 

genetic algorithms are discussed in (Perwaiz, Younas, & Anwar, 2020). Based on the 

Equivalent Transfer Function model and a reduced decoupler, (Lakshmanaprabu, 

Elhoseny, & Shankar, 2019) describes a technique for developing independent FOPID 

controllers for two interacting conical tank-level processes. An optimization bat algorithm 

is used to increase the power system stability by tuning FOPID controller parameters 

(Chaib, Choucha, & Arif, 2017). 
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This method proposes a new data-driven control algorithm to control the MEMS 

gyroscope. The contribution of this work is as follows: 

1- The nonlinear dynamic model of the MEMS gyroscope is presented. 

2- DMD method is used to generate eigenfunction and eigenvectors to obtain the 

Koopman operator. 

3- Using the Koopman theory, a FOPID controller is implemented to control the 

linearized dynamic model. 

4- A bat metaheuristic optimization algorithm is used to tune the proposed control 

method parameters. 

5- The robustness of the proposed control method is verified by random noise 

application. 

3.2  Nonlinear dynamic model of MEMS gyroscope 

An essential instrument for angular velocity measurement using x and y motion is 

the MEMS gyroscope (Fang, Fu, Ding, & Fei, 2022; Lu & Fei, (2016, June); Guo, Xu, & 

Zhang, 2020). This device has been used in the automotive industry.  

A common MEMS gyroscope design includes sensor mechanisms, a proof mass 

suspended by springs, and an electrostatic actuation system for generating an oscillatory 

motion and determining the position and speed of the proof mass (Rahmani, Rahman, & 
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Nosonovsky, A new hybrid robust control of MEMS gyroscope, 2020). The proof mass is 

mounted on a frame that moves with a consistent linear velocity, while the gyroscope 

rotates at a gradually varying angular velocity, 𝛺𝑧 . The centrifugal forces 𝑚𝛺𝑧
2𝑥 and 

𝑚𝛺𝑧
2𝑦 are expected to be insignificant due to the modest displacements x and y. The 

development of the Coriolis forces, 2𝑚𝛺𝑧
∗𝑦̇ and 2𝑚𝛺𝑧

∗𝑥̇, is parallel to the driving and 

rotating axes (Yan, Hou, Fang, & Fei, 2017). The dynamics of the gyroscope are 

determined by the following equations. 

𝑚𝑥̈ + 𝑑𝑥𝑥
∗ 𝑥̇ + 𝑑𝑥𝑦

∗ 𝑦̇ + 𝑘𝑥𝑥
∗ 𝑥 + 𝑘𝑥𝑦

∗ 𝑦 + 𝛽𝑥3 = 𝑢𝑥
∗ + 2𝑚𝛺𝑧

∗𝑦̇ (3.1) 

𝑚𝑦̈ + 𝑑𝑥𝑦
∗ 𝑦̇ + 𝑑𝑦𝑦

∗ 𝑦̇ + 𝑘𝑥𝑦
∗ 𝑥 + 𝑘𝑦𝑦

∗ 𝑦 + 𝛽𝑦3 = 𝑢𝑦
∗ − 2𝑚𝛺𝑧

∗𝑥̇ (3.2) 

 

The origin of the coordinates in equations (3.1) and (3.2) is placed in the center of 

the proof mass since there is no external force applied to the system. The constants 𝑘𝑥𝑦
∗  and 

𝑑𝑥𝑦
∗ , respectively, stand in for the asymmetric spring and damping coefficients. Despite the 

possibility of small unknown deviations from their nominal values, the control forces in 

the x- and y-direction, 𝑢𝑥
∗  and 𝑢𝑦

∗ , are usually accepted. There are also typical descriptions 

of the damping rates, 𝑑𝑥𝑥
∗  and 𝑑𝑦𝑦

∗ , and the spring constants of springs interacting in the x- 

and y-directions, 𝑘𝑥𝑥
∗ and 𝑘𝑦𝑦

∗ . Therefore, both electro-mechanical and mechanical 
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nonlinearity, which is a positive constant, will introduce the terms 𝛽𝑥3 and 𝛽𝑦3. The 

following vector representation might be used to express equations (3.1) and (3.2): 

𝑞̈∗

𝑞0
+

𝐷∗

𝑚𝜔0

𝑞̇∗

𝑞0
+

𝐾𝑎

𝑚𝜔0
2

𝑞∗

𝑞0
+ 𝛽

𝑞∗
3

𝑞0
=

𝑢∗

𝑚𝜔0
2𝑞0

− 2
𝛺∗

𝜔0

𝑞̇∗

𝑞0
 

(3.3) 

where  

𝑞∗ = [
𝑥∗

𝑦∗
], 𝑢 = [

𝑢𝑥
∗

𝑢𝑦
∗ ], 𝛺

∗ = [
0 −𝛺𝑧

∗

𝛺𝑧
∗ 0

], 𝐷∗ = [
𝑑𝑥𝑥
∗ 𝑑𝑥𝑦

∗

𝑑𝑥𝑦
∗ 𝑑𝑦𝑦

∗ ], 𝐾𝑎 = [
𝑘𝑥𝑥
∗ 𝑘𝑥𝑦

∗

𝑘𝑥𝑦
∗ 𝑘𝑦𝑦

∗ ], and 

nondimensional parameters as follows: 

𝑞 =
𝑞∗

𝑞0
 𝑑𝑥𝑦 =

𝑑𝑥𝑦
∗

𝑚𝜔0
 𝛺𝑧 =

𝛺𝑧
∗

𝜔0
 

 (3.4) 

𝑢𝑥 =
𝑢𝑥
∗

𝑚𝜔0
2𝑞0

 𝑢𝑦 =
𝑢𝑦
∗

𝑚𝜔0
2𝑞0

 
  (3.5) 

𝜔𝑥 = √
𝑘𝑥𝑥

𝑚𝜔0
2 𝜔𝑦 = √

𝑘𝑦𝑦

𝑚𝜔0
2 

𝜔𝑥𝑦 =
𝑘𝑥𝑦

𝑚𝜔0
2 

 (3.6) 

 

where each axis' natural frequency is 𝜔0 and the reference length is q0. 

The following are the dynamic equations for the MEMS gyroscope. 

𝑞̈ = −(𝐷 + 2𝛺)𝑞̇ − 𝐾𝑏𝑞 − 𝛽𝑞
3 + 𝑢 + 𝐸 (3.7) 

An external disturbance, E, might be modeled as: 
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𝑞̈ = −𝑌𝑞̇ − 𝑃𝑞 − 𝛽𝑞3 + 𝑢 + 𝐸 (3.8) 

where Y and P determine certain parameter variation uncertainties 𝑃 =  𝐾𝑏, , and 

𝑌 =  (𝐷 + 2𝛺). Therefore, equation (8.3) might be expressed as: 

𝑞̈ = −(𝑌 + 𝛥𝑌)𝑞̇ − (𝑃 + 𝛥𝑃)𝑞 − 𝛽𝑞3 + 𝑢 + 𝐸 (3.9) 

where  

𝑞 = [
𝑥
𝑦], 𝑢 = [

𝑢𝑥
𝑢𝑦
], 𝛺 = [

0 −𝛺𝑧
𝛺𝑧 0

], 𝐷 = [
𝑑𝑥𝑥 𝑑𝑥𝑦
𝑑𝑥𝑦 𝑑𝑦𝑦

], 𝐾𝑏 = [
𝜔𝑥
2 𝜔𝑥𝑦

𝜔𝑥𝑦 𝜔𝑦
2 ] 

There are several ways to show the equation (3.9): 

𝑞̈ = −𝑌𝑞̇ − 𝑃𝑞 − 𝛽𝑞3 + 𝑢(𝑡) + 𝐷(𝑡) (3.10) 

D(t) describes as: 

𝐷(𝑡) = −𝛥𝑌𝑞̇ − 𝛥𝑃𝑞 + 𝐸 (3.11) 

The expression for equation (3.10) in the x and y directions is 

[
𝒙̈
𝒚̈
] = −([

𝒅𝒙𝒙 𝒅𝒙𝒚
𝒅𝒙𝒚 𝒅𝒚𝒚

] + [
𝟎 −𝟐𝜴𝒛
𝟐𝜴𝒛 𝟎

]) [
𝒙̇
𝒚̇
] −

[
𝝎𝒙
𝟐 𝝎𝒙𝒚

𝝎𝒙𝒚 𝝎𝒚
𝟐 ] [

𝒙
𝒚] − [

𝜷 𝟎
𝟎 𝜷

] [
𝒙𝟑

𝒚𝟑
]+[
𝟏 𝟎
𝟎 𝟏

] [
𝒖𝒙
𝒖𝒚
] +          + [

𝑫(𝒕)𝒙
𝑫(𝒕)𝒚

] 

(3.12) 

Equation (3.12) will be transformed into first-order dynamic equations by 

selecting the following parameters: 
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{

𝒙 = 𝒛𝟏
𝒙̇ = 𝒛𝟐
𝒚 = 𝒛𝟑
𝒚̇ = 𝒛𝟒

 

Then, there is 

{
 
 

 
 

𝒛̇𝟏 = 𝒛𝟐
𝒛̇𝟐 = −𝝎𝒙

𝟐𝒛𝟏 − 𝜷𝒛𝟏
𝟑 − 𝒅𝒙𝒙𝒛𝟐 −𝝎𝒙𝒚𝒛𝟑 + (𝟐𝜴𝒛 − 𝒅𝒙𝒚)𝒛𝟒 + 𝒖𝒛𝟏 +𝑫𝒛𝟏

𝒛̇𝟑 = 𝒛𝟒
𝒛̇𝟒 = −𝝎𝒙𝒚𝒛𝟏 − (𝒅𝒙𝒚 + 𝟐𝜴𝒛)𝒛𝟐 −𝝎𝒚

𝟐𝒛𝟑 − 𝜷𝒛𝟑
𝟑 − 𝒅𝒚𝒚𝒛𝟒 + 𝒖𝒛𝟑 +𝑫𝒛𝟑

 

(3.13

) 

Equation (3.13) shows 

𝒛̇ = 𝑨(𝒛) + 𝑩𝒖 (3.14) 

The equation (3.14) can be given in its classical form as follows: 

𝒅

𝒅𝒕
𝒛(𝒕) = 𝒇(𝒛) 

(3.15) 

3.3  Koopman theory 

According to the Koopman operator theory, the crucial step to correctly a nonlinear 

dynamical system is to transform the nonlinear system's original form into an infinite 

dimensional state space so that the resulting system is linear (Ping, Yin, Li, Liu, & Yang, 

2021).  

The dynamic in discrete time defines as (Kaiser, Kutz, & Brunton, 2021): 

𝒛𝒌+𝟏 = 𝑭(𝒛𝒌) (3.16) 

where F is characterized by 
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𝑭(𝒛(𝒕𝟎)) = 𝒛(𝒕𝟎) + ∫ 𝒇(𝒛(𝝉))𝒅𝝉
𝒕𝟎+𝒕

𝒕𝟎

 
(3.17) 

When a finite-dimensional nonlinear system's dynamics are transferred to an 

infinite-dimensional function space using the Koopman operator theoretic method, the 

original system's dynamics become linear. g is a real-valued scalar measurement function 

and an observable, part of an infinite-dimensional Hilbert space. The Koopman operator 

generates based on this observable as 

𝑲𝒈 = 𝒈 ∘ 𝑭 (3.18) 

Smooth dynamics can be implemented using a continuous system. 

𝒅

𝒅𝒕
𝒈(𝒛) = 𝑲𝒈(𝒛) = 𝜵𝒈(𝒛). 𝒇(𝒛) 

(3.19) 

where the Koopman operator is K. Due to the infinite dimensions of the Koopman 

operator, which is significant but problematic for operation and representation. Instead of 

describing the development of all measurement functions in a Hilbert space, applied 

Koopman analysis approximates the evolution of a subspace covered by a small number of 

measurement functions. One can get a representation of the Koopman operator in a finite-

dimensional matrix by limiting the operator to an invariant subspace. A Koopman invariant 

subspace is covered by any combination of the eigenfunctions of the Koopman operator 
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(Kaiser, Kutz, & Brunton, 2021). When eigenvalue 𝜆 is satisfied by eigenfunction 𝝋(𝒛) of 

the Koopman model. 

𝝀𝝋(𝒛) = 𝝋(𝑭(𝒛)) (3.20) 

In continuous time, a Koopman eigenfunction 𝝋(𝒛) is satisfied. 

𝒅

𝒅𝒕
𝝋(𝒛) = 𝝀𝝋(𝒛) 

(3.21) 

A finite-dimensional approximation is required from the application side to 

approximate the Koopman operator. The DMD method is one of the approaches that can 

estimate the Koopman operator (Kaiser, Kutz, & Brunton, 2021).  

3.4  DMD method 

A strong numerical method DMD utilizes to approximate the Koopman operator. 

𝒁′ ≈ 𝑨𝒁 (3.22) 

where 𝒁′is time-shifted of matrix Z as: 

𝒁 = [𝒛𝟏 𝒛𝟐 …… .] 

The A can be found according to the equation (3.22): 

𝑨 = 𝒁′𝒁+ (3.23) 

where + represents the Moore-Penrose pseudoinverse. We may use Singular Value 

Decomposition (SVD) on the snapshots to determine the dominating properties of the 
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pseudoinverse of Z because a typical calculation involving A would need a significant 

amount of computation due to its huge n (Snyder & Song, 2021). 

𝒁 ≈ 𝑼𝜮𝑽∗ (3.24) 

where 𝑼 ∊ 𝑹𝒏⨉𝒓, 𝜮 ∊ 𝑹𝒓⨉𝒓, 𝑽 ∊ 𝑹𝒏⨉𝒓 , and * demonstrates the conjugate 

transpose. SVD's reduced rank for approximating Z is r. The eigenvectors can be defined 

as: 

Ф = 𝒁′𝑽𝜮−𝟏𝚆 (3.25) 

where W is eigenvector of full-rank system dynamic systems.  

Ф = 𝒁′𝑽𝜮−𝟏𝚆 (3.26) 

Let 𝜆 be eigenfunction, then we will have: 

𝑲𝑾 = 𝝀𝑾 (3.27) 

where K is the Koopman operator. 

The linearized dynamic model can be demonstrated as: 

𝒅

𝒅𝒕
𝒚 = 𝑲𝒚 + 𝑩𝒖 

(3.28) 

3.5  FOPID control 

PID controller is a suitable control method that has been used in many industrial 

applications (Malarvili & Mageshwari, 2022; Guo, Lu, Lin, & Hwang, 2022; Yan, et al., 
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2022). It constantly evaluates the error by using its parameters Kp, Ki, and Kd and delivers 

the correct value. The PID controller can be defined as: 

𝒖𝑷𝑰𝑫 = 𝑲𝒑𝒆(𝒕) + 𝑲𝒊∫ 𝒆(𝝉)𝒅𝝉
𝒕

𝟎

+𝑲𝒅
𝒅𝒆(𝒕)

𝒅𝒕
 

(3.29) 

where 𝒆(𝒕) = 𝒚 − 𝒚𝒅, which 𝒚𝒅 is desired trajectory.  

The main problem of the PID controller is that it’s not robust against external 

disturbances. Also, the stability of the PID controller is another issue that should be taken 

into consideration during the controller design.  

The fractional control method was introduced to improve the controller’s 

performance. It can improve the stability and robustness of common PID controllers. The 

FOPID controller can be defined as: 

𝒖𝑭𝑶𝑷𝑰𝑫 = 𝑲𝒑𝒆(𝒕) + 𝑲𝒊𝑫
−𝝁𝒆(𝒕) + 𝑲𝒅𝑫

𝝁𝒆(𝒕) (3.30) 

where D is the fractional operator defined as 𝑫 =
𝒅

𝒅𝒕
 and μ is the fractional order. 

The fractional type that we use in this research is Grunwald-Letnikov (Abdelouahab & 

Hamri, 2016). The Grunwald-Letnikov fractional derivative of the function e(t) with 

respect to t is given  

𝑫𝒕
𝝁
𝒆(𝒕) = 𝒍𝒊𝒎𝒉→𝟎𝒉

−𝝁∑(−𝟏)𝒌 (
𝝁
𝒌
) 𝒇(𝒆(𝒕) − 𝒌𝒉)

𝒏

𝒌=𝟎

 
(3.31) 

where  
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(
𝝁
𝒌
) =

𝝁(𝝁 − 𝟏)(𝝁 − 𝟐)… (𝝁 − 𝒌 + 𝟏)

𝒌!
=

𝜞(𝝁 + 𝟏)

𝒌! 𝜞(𝝁 − 𝒌 + 𝟏)
 

A detailed explanation can be observed in (Abdelouahab & Hamri, 2016). The 

control structure shows in Figure 3.1 . 

 

Figure 3.1: The proposed control structure. 

 

One of the main parts of FOPID controller design is how to tune the controller’s 

parameters. The metaheuristic algorithms are rich sources to tune the FOPID controller 

parameters. 
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3.6  Bat algorithm to tune the proposed controller parameters 

The optimization technique known as the bat bio-inspired algorithm was influenced 

by how common bats use echolocation to find food. It is introduced in (Yang X. S., A new 

metaheuristic bat-inspired algorithm, 2010) (Yang X. S., Bat algorithm for multi-objective 

optimisation., 2012) and used to resolve several optimization issues. The echolocation 

strategy of bats is used in the algorithm. These bats create an extremely loud sound pulse, 

then they listen for the echo that is returned from the nearby objects. Depending on the 

species, their signal bandwidth ranges change through harmonics. The ith bat moves 

randomly at location xi with velocity vi and a set frequency fmin. To discover food, the bat 

changes its wavelength and volume. To improve the echolocation capabilities, the objective 

function needs to be optimized. It is possible to develop an optimization algorithm from 

the way a bat searches for the best answer. The algorithms for bat-inspired echolocation 

can be created by enhancing certain of the microbats' echolocation characteristics. The 

features of bat echolocation are used to address an optimization issue brought about by the 

following hypotheses (Sathya & Ansari, 2015). 

1- An echolocation is a tool used by all bats to detect distance. 

2- To locate prey, bats fly at random speeds of vi at positions xi with a fixed 

frequency and wavelength of fmin and a variable wavelength and frequency of A0. 



 

 

 

 

41 
 

 

 

 

3- Depending on how close the prey is, they can control their wavelength/frequency 

and pulse emission rate, ri∊ [0-1]. 

4- Their loudness decreases from high A0 to low Amin levels as they get closer to the 

prey. 

In real implementations, frequency occurs between [fmin, fmax] and is chosen to be 

similar to the size of the domain of interest. For a virtual bat to solve an optimization issue, 

rules must be developed to specify their locations and velocities in the d-dimensional 

search space. The following definitions apply to the new location 𝒙𝒊
+and velocity 𝒗𝒊

+at time 

step t (Mitić & Miljković, 2015). 

𝒇𝒊 = 𝒇𝒎𝒊𝒏 + (𝒇𝒎𝒂𝒙 − 𝒇𝒎𝒊𝒏)𝝃 (3.32) 

𝒗𝒊
𝒕 = 𝒗𝒊

𝒕−𝟏 + (𝒙𝒊
𝒕−𝟏 − 𝒙∗)𝒇𝒊 (3.33) 

𝒙𝒊
𝒕 = 𝒙𝒊

𝒕−𝟏 + 𝒗𝒊
𝒕 (3.34) 

The current best solution across all N bats is represented by x*, where 𝜉∊ [0-1] is 

the random vector generated at random from a uniform distribution. When a new solution 

is needed for local search, it is determined using the most recent bat loudness Ai and the 

most variance that can be tolerated max(var) at a time stop, as shown below. 

𝒙𝒏𝒆𝒘 = 𝒙𝒐𝒍𝒅 + ɛ𝑨𝒊𝐦𝐚𝐱 (𝒗𝒂𝒓) (3.35) 
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The volume drops and the pulse emission rate rises as a bat locate its prey. The bat 

is heading toward the best option, as shown by 

𝑨𝒊
𝒕+𝟏 = 𝜶𝑨𝒊

𝒕,    𝒓𝒊
𝒕+𝟏 = 𝒓𝒓

° [𝟏 − 𝒆−𝜸𝒕] (3.36) 

Where  and  are constant. Initial boundness is Ai ∊[0.1-0.9], initial emission rate 

is r0 ∊[0-1], and  ==0.9. The bat algorithm is used for tuning the [Kp, Ki, Kd] parameters 

of the proposed controller for a MEMS gyroscope. This problem's objective function is 

described as follows (Rahmani, Ghanbari, & Ettefagh, Robust adaptive control of a bio-

inspired robot manipulator using bat algorithm, 2016): 

𝑱 = ∫ (𝒘𝟏|𝒆(𝒕)| + 𝒘𝟐𝒖
𝟐(𝒕))𝒅𝒕 + 𝒘𝟑𝒕𝒖

∞

𝟎

 
(3.37) 

 

 

3.7  Simulation results 

A MEMS gyroscope is controlled using the proposed Koopman-BAFOPID 

controller. Additionally, several comparative methods are used to show how effective the 

proposed Bat algorithm is in adjusting the Koopman-FOPID parameters. The nonlinear 

dynamic equations of a MEMS gyroscope generated in this research. All simulations steps  
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Figure 3.2: Flow chart for a bat algorithm for tuning of Koopman-FOPID parameters. 
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Figure 3.3: Position tracking of x and y under the proposed controllers. 
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Figure 3.4: Position tracking error of x and y directions under the proposed controllers. 
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Figure 3.5: Velocity of x and y directions under the proposed controllers. 
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Figure 3.6: Control efforts of x and y directions under the proposed controllers. 
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Figure 3.7: Robustness of x and y directions under the proposed controllers. 

are simulated using Matlab software. Figure 3.2 shows the flow chart of the bat 

algorithm step in tuning the Koopman-FOPID controller. The parameters of the proposed 

controller in this study are as follows: total population = 5; iteration = 20; loudness = 0.5; 

wavelength = 0.5; frequency fmin = 10, fmax = 20. The objective function variables are set to 

w1=0.99, w2=0.01, and w3=2. The tuned parameters of the bat algorithm are 

Kp=diag{17.9901}, Ki={22.3411}, and Kd={27.2585}. Figure 3.3 shows the trajectory 

tracking of the x and y directions under PID, FOPID, Koopman-FOPID, and Koopman-

BAFOPID controllers. It demonstrates that the proposed Koopman-BAFOPID controller 

has high tracking performance in comparison with the three other controllers. Figure 3.4 

shows the position tracking error of x and y directions under PID, FOPID, Koopman-
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FOPID, and Koopman-BAFOPID controllers. It illustrates that the proposed Koopman-

BAFOPID controller has low tracking error in comparison with the PID, FOPID, 

Koopman-FOPID, and Koopman-BAFOPID controllers. Figure 3.5 show the velocity of x 

and y direction under PID, FOPID, Koopman-FOPID, and Koopman-BAFOPID 

controllers. A conventional PID controller is applied to nonlinear MEMS gyroscope to 

control the x and y direction. The main problem with that controller is that it’s not stable. 

Then, a FOPID controller is used to remove the stability problem of conventional PID 

controllers. Figure 3.6 shows the control inputs under PID, FOPID, Koopman-FOPID, and 

Koopman-BAFOPID controllers. It demonstrates that the PID controller is not stable by 

increasing the control efforts when time is increased, but the FOPID controller fixed this 

problem. Therefore, the using FOPID controller provides better stability along with using 

the Koopman theory on nonlinear MEMS gyroscopes. The robustness of the proposed 

control method is verified by random noise 0.5*randn(1,1) application. Figure 3.7 shows 

that the proposed control method is robust against external disturbances. 

 3.8  Conclusion 

This paper proposed a new Koopman-BAFOPID control of a nonlinear MEMS 

gyroscope. The PID controller stability was improved by proposing the FOPID controller. 

The Koopman theory is used to drive a linear dynamic model of MEMS gyroscope. The 
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DMD method is used to estimate the Koopman operators numerically. Then, the selected 

FOPID controller was applied to the linearized MEMS gyroscope dynamic model to 

control the x and y direction suitably. A bat algorithm was implemented on the Koopman-

FOPID controller in order to tune the proposed controller parameters. The simulation 

results verified that the proposed Koopman-BAFOPID controller has better performance 

in comparison with PID, FOPID, and Koopman-FOPID controllers in terms of high 

tracking performance, low tracking error, low control efforts, and high stability. 

 

 

4  NEW FRACTIONAL ROBUST DATA-DRIVEN CONTROL OF NONLINEAR 

MEMS GYROSCOPE 

4.1  Literature review 

One of the useful tools to measure angular velocity is the MEMS gyroscope. By 

measuring the x and y direction movement of the MEMS gyroscope, angular velocity will 

be obtained. This device is used in many industries such as the automotive industry and 

medicine. The most important part of using the MEMS gyroscope is how to control this 

device appropriately. Several control methods are used to control the MEMS gyroscope 

such as proportional integral derivative (PID) controller (Rahmani, Komijani, Ghanbari, & 
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Ettefagh, 2018), sliding mode control (SMC) (Fang, Fu, Ding, & Fei, 2022), and some 

other controllers (Zhang, Shao, Zhao, Li, & Xu, 2018) (Rahmani & Rahman, A novel 

compound fast fractional integral sliding mode control and adaptive PI control of a MEMS 

gyroscope, 2019). However, the mentioned controllers were applied on a linear MEMS 

gyroscope. There are a few researchers who worked on the nonlinear dynamic model of 

MEMS gyroscope and controlled it in comparison to linear MEMS gyroscope (Su, et al., 

2020).  

Linearization of the nonlinear dynamic model will give better information on the 

behavior of the systems. This will provide some detail to better analyze the system. 

Koopman's theory is one of the strong approaches to linearizing the nonlinear dynamic 

model (Chen, Dang, & Han, 2022; Schulze, Doncevic, & Mitsos, 2022; Zhang, Pan, 

Scattolini, Yu, & Xu, 2022; Lusch, Kutz, & Brunton, 2018). Koopman operators have 

infinite dimensions and capture nonlinear dynamics in a lifted global linear way. A class 

of linear predictors is produced by the finite data-driven approximation of Koopman 

operators, which helps create linear control of nonlinear dynamical systems with minimal 

computing complexity (Zhang, Pan, Scattolini, Yu, & Xu, 2022). The main part of applying 

Koopman's theory to nonlinear dynamic equations is how to approximate the Koopman 

operator. The DMD method is one of the most prevalent methods in estimating the 

Koopman operator  (Qian & Chou, 2021; Kou, Le Clainche, & Ferrer, 2022; Sinha, 
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Nandanoori, & Yeung, 2020). Nathan Kutz, Proctor, & Brunton, (2018) investigate using 

Koopman theory to solve data-driven spatiotemporal systems and nonlinear partial 

differential equations. They show that an appropriate approximation to the nonlinear 

dynamics depends on the observables selected for building the Koopman operator. The 

DMD technique may be used to compute a finite-dimensional approximation of the 

Koopman operator, together with its eigenfunctions, eigenvalues, and Koopman modes, if 

such observables can be discovered.  

Several control methods are used to control the linearized dynamic model by 

Koopman theory such as linear quadratic regulator (LQR) (Mamakoukas, Castano, Tan, & 

Murphey, (2019, June); Gibson, Yee, & Calvisi, 2021) and model predictive controller 

(MPC) (Arbabi, Korda, & Mezić, (2018, December); Calderón, Schulz, Oehlschlägel, & 

Werner, (2021, June)). The LQR and MPC controllers have suitable performances, but the 

main drawbacks of those controllers are not robust against external disturbances. The 

FOSMC is a strong robust control method that can suppress external perturbations. The 

reason that makes this controller a strong control approach is that the fractional order used 

in the sliding mode surface provides the ability to select the fraction power of error. This 

issue provides excellent flexibility to select the best sliding mode surface. Therefore, the 

dynamic states of the linearized dynamics model can suitably slide close to the normal 



 

 

 

 

54 
 

 

 

 

behavior of the system. It causes to provides better control performance in terms of high 

tracking performance, low tracking error, and robustness. 

Most of the previous works related to MEMS gyroscopes were about the control of 

linear dynamics of MEMS gyroscopes by FOSMC. However, the FOSMC was used in 

combination with the other controller to benefit from the advantages of other controllers 

like reducing the chattering phenomenon (Huimin, Liang, Yunxiang, Hailong, & Cheng, 

(2019, June); Rahmani, Rahman, & Ghommam, Compound Fractional Integral Terminal 

Sliding Mode Control and Fractional PD Control of a MEMS Gyroscope, 2020) and 

improving tracking performance (Rahmani & Rahman, A new adaptive fractional sliding 

mode control of a MEMS gyroscope, 2019). Based on high-gain and disturbance observers, 

a dynamic backstepping sliding mode controller with a fractional order sliding surface and 

a fuzzy boundary layer is created to regulate the operation of a MEMS gyroscope (Fazeli 

Asl & Moosapour, 2021). A combination of sliding mode and a reliable nonlinear 

backstepping controller is applied to suppress the system uncertainties. The sliding surface 

in this model is chosen to be of fractional order to improve the degree of freedom of the 

controller. In addition to the initial sliding surface, a new dynamic sliding surface is utilized 

to considerably minimize the chattering phenomena in the control signal. Fuzzy control 

theory is also used to regulate the boundary layer. Wang & Fei (2021) proposed the use of 

a trajectory tracking control system with a neural network estimator to sustain the 
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vibrations of the gyroscope-proof mass. A recurrent Chebyshev fuzzy neural network with 

a self-evolving mechanism and a fractional controller based on the terminal sliding mode 

are both included in the suggested control system. A self-evolving recurrent Chebyshev 

fuzzy neural network is presented to reduce the need for nonlinear functional certainty, and 

the fractional-order terminal sliding-mode control may guarantee the tracking error is 

exponentially stable. 

The contributions of this research are as follows: 

1- A nonlinear dynamic model of the MEMS gyroscope is introduced. 

2- The Koopman theory is applied to linearize the nonlinear model of the MEMS 

gyroscope. 

3- The DMD method is used to approximate the Koopman operator. 

4- The FOSMC is implemented on the linearized dynamic model to control the 

MEMS gyroscope. 

5- A new compound control method is applied to improve the control method of 

the FOSMC such as reducing the control efforts. 

6- Simulation results verified the performance of the proposed controller. 
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4.2  Fractional sliding mode control 

The FOSMC is a robust control method that can suppress external perturbations. 

This control method is a flexible method that can provide fraction derivative power of error 

(Gao, Zhang, Ouyang, & Mei, 2020; Fei & Feng, Fractional-order finite-time super-

twisting sliding mode control of micro gyroscope based on double-loop fuzzy neural 

network, 2020; Mujumdar, Tamhane, & Kurode, 2015). This issue will provide the 

opportunity for choosing the suitable sliding mode surface that is the most important part 

of designing FOSMC. The fractional sliding mode surface defines as: 

𝒔(𝒕) = 𝒆̇(𝒕) + 𝜶𝑫𝝁𝒆(𝒕) (4.1) 

where 𝒆(𝒕) = 𝒒𝒅 − 𝒒 and D is the fractional operator defined as 𝑫 =
𝒅

𝒅𝒕
 and μ is 

the fractional order. 

The FOSMC contains two control sections: equivalent control law and reaching 

control law. The equivalent control can be obtained by 𝒔̇(𝒕) = 𝟎. Taking the derivative 

from equation (4.1) produces 

𝒔̇(𝒕) = 𝒆̈(𝒕) + 𝜶𝝁𝑫𝝁+𝟏𝒆(𝒕)=𝒒̈𝒅 − 𝒒̈ +𝜶𝝁𝑫𝝁+𝟏𝒆(𝒕) (4.2) 

Equation (3.10) is substituted into equation (4.2) to produce 

𝒔̇(𝒕) = 𝒒̈𝒅 + 𝒀𝒒̇ + 𝑷𝒒 + 𝜷𝒒
𝟑 − 𝒖(𝒕) − 𝑫(𝒕) +𝜶𝝁𝑫𝝁+𝟏𝒆(𝒕) (4.3) 

The ueq(t) can be described by 𝒔̇(𝒕) = 𝟎 as 
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𝒖𝒆𝒒(𝒕) = 𝒒̈𝒅 + 𝒀𝒒̇ + 𝑷𝒒 + 𝜷𝒒
𝟑 − 𝑫(𝒕) +𝜶𝝁𝑫𝝁+𝟏𝒆(𝒕) (4.4) 

The reaching control law introduces as 

𝒖𝒓(𝒕) = 𝑲𝒓𝒔(𝒕) (4.5) 

where Kr is a positive constant. Therefore, the control input is defined as 

𝒖𝑭𝑶𝑺𝑴𝑪(𝒕) = 𝒖𝒆𝒒(𝒕) + 𝒖𝒓(𝒕) (4.6) 

A powerful technique for demonstrating the stability of the FOSMC is the 

Lyapunov theory. It is characterized as: 

𝑽(𝒕) =
𝟏

𝟐
𝒔(𝒕)𝒔𝑻(𝒕) 

(4.7) 

Taking the derivative from equation (4.7) describes 

𝑽̇(𝒕) = 𝒔𝑻(𝒕)𝒔̇(𝒕) (4.8) 

The outcome of putting equation (4.3) into equation (4.8) 

𝑽̇(𝒕) = 𝒔𝑻(𝒕)(𝒒̈𝒅 + 𝒀𝒒̇ + 𝑷𝒒 + 𝜷𝒒
𝟑 − 𝒖(𝒕) − 𝑫(𝒕) 

+𝜶𝝁𝑫𝝁+𝟏𝒆(𝒕)) 

(4.9) 
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Figure 4. 1: The proposed controller block diagram. 

 

Substituting equation (4.6) into equation (4.9) produces 

𝑽̇(𝒕) = 𝒔𝑻(𝒕)(𝒒̈𝒅 + 𝒀𝒒̇ + 𝑷𝒒 + 𝜷𝒒
𝟑 − 𝒖𝒆𝒒(𝒕) − 𝒖𝒓(𝒕) − 𝑫(𝒕) 

+𝜶𝝁𝑫𝝁+𝟏𝒆(𝒕)) 

(4.10) 

Equation (4.4) used in equation (4.10) results in 

𝑽̇(𝒕) = 𝒔𝑻(𝒕)(𝒒̈𝒅 + 𝒀𝒒̇ + 𝑷𝒒 + 𝜷𝒒
𝟑 − 𝒒̈𝒅 − 𝒀𝒒̇ − 𝑷𝒒 −

𝜷𝒒𝟑 +𝑫(𝒕) −𝜶𝝁𝑫𝝁+𝟏𝒆(𝒕)−𝒖𝒓(𝒕) − 𝑫(𝒕) +𝜶𝝁𝑫
𝝁+𝟏𝒆(𝒕)) 

(4.11) 

Simplifying equation (4.11) produces 
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𝑽̇(𝒕) = 𝒔𝑻(𝒕)(−𝒖𝒓(𝒕)) (4.12) 

Substituting equation (4.5) into equation (4.12) describes 

𝑽̇(𝒕) = 𝒔𝑻(𝒕)(−𝑲𝒓𝒔(𝒕)) (4.13) 

Equation (4.13) shows that the 𝑽̇(𝒕) < 𝟎. Therefore, the proposed controller is 

stable. 

In this study, we employ the Grunwald-Letnikov fractional type (Abdelouahab & 

Hamri, 2016). The Grunwald-Letnikov fractional derivative of the function e(t) with 

respect to t is given  

𝑫𝒕
𝝁
𝒆(𝒕) = 𝒍𝒊𝒎𝒉→𝟎𝒉

−𝝁∑(−𝟏)𝒌 (
𝝁
𝒌
) 𝒇(𝒆(𝒕) − 𝒌𝒉)

𝒏

𝒌=𝟎

 
(4.14) 

where  

(
𝝁
𝒌
) =

𝝁(𝝁 − 𝟏)(𝝁 − 𝟐)… (𝝁 − 𝒌 + 𝟏)

𝒌!
=

𝜞(𝝁 + 𝟏)

𝒌! 𝜞(𝝁 − 𝒌 + 𝟏)
 

A detailed explanation of the Grunwald-Letnikov method can be found in 

(Abdelouahab & Hamri, 2016). The proposed control method block diagram is shown in 

Figure 4. 1.  

4.3  Koopman fractional sliding mode control 

The fractional sliding mode surface can be defined as: 
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𝒔(𝒕) = 𝒆(𝒕) + 𝜶𝑫𝝁𝒆(𝒕) (4.15) 

where 𝒆(𝒕) = 𝒚𝒅 − 𝒚. Taking the derivative from equation (4.15) produce 

𝒔̇(𝒕) = 𝒆̇(𝒕) + 𝜶𝝁𝑫𝝁+𝟏𝒆(𝒕) = 𝒚̇𝒅 − 𝒚̇ + 𝜶𝝁𝑫
𝝁+𝟏𝒆(𝒕) (4.16) 

Substituting equation (3.28) into equation (4.16) provides 

𝒔̇(𝒕) = 𝒚̇𝒅 −𝑲𝒚 − 𝑩𝒖 + 𝜶𝝁𝑫
𝝁+𝟏𝒆(𝒕) (4.17) 

The equivalent control can be demonstrated by 𝒔̇ = 𝟎 as: 

𝒖𝒆𝒒(𝒕) = 𝑩−𝟏(𝒚̇𝒅 −𝑲𝒚 + 𝜶𝝁𝑫
𝝁+𝟏𝒆(𝒕)) (4.18) 

The reaching control law defines as: 

𝒖𝒓(𝒕) = 𝑲𝒓𝒔(𝒕) (4.19) 

The Koopman-FOSMC can be demonstrated as 

𝒖𝑲𝒐𝒐𝒑𝒎𝒂𝒏−𝑭𝑶𝑺𝑴𝑪(𝒕) = 𝒖𝒆𝒒(𝒕) + 𝒖𝒓(𝒕) (4.20) 

The stability of the Koopman-FOSMC controller can be proved by using the 

Lyapunov theory as: 

𝑽(𝒕) =
𝟏

𝟐
𝒔(𝒕)𝒔𝑻(𝒕) 

(4.21) 

Taking the derivative from equation (4.21) results 

𝑽̇(𝒕) = 𝒔𝑻(𝒕)𝒔̇(𝒕) (4.22) 

Substituting equation (4.17) into equation (4.22) provides 
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𝑽̇(𝒕) = 𝒔𝑻(𝒕)(𝒚̇𝒅 −𝑲𝒚 − 𝑩𝒖 + 𝜶𝝁𝑫
𝝁+𝟏𝒆(𝒕)) (4.23) 

Equation (4.20) is substituted into equation (4.23) to produce 

𝑽̇(𝒕) = 𝒔𝑻(𝒕)(𝒚̇𝒅 −𝑲𝒚 − 𝑩𝒖𝒆𝒒(𝒕) − 𝑩𝒖𝒓(𝒕) + 𝜶𝝁𝑫
𝝁+𝟏𝒆(𝒕)) (4.24) 

Substituting equation (4.18) into equation (4.24) provides 

𝑽̇(𝒕) = 𝒔𝑻(𝒕)(𝒚̇𝒅 −𝑲𝒚 − 𝑩(𝑩
−𝟏(𝒚̇𝒅 −𝑲𝒚 + 𝜶𝝁𝑫

𝝁+𝟏𝒆(𝒕)))

− 𝑩𝒖𝒓(𝒕) + 𝜶𝝁𝑫
𝝁+𝟏𝒆(𝒕)) 

(4.25) 

Simplifying the equation (4.25) produces 

𝑽̇(𝒕) = 𝒔𝑻(𝒕)(−𝑩𝒖𝒓(𝒕)) (4.26) 

Substituting equation (4.19) into equation (4.26) provides 

𝑽̇(𝒕) = 𝒔𝑻(𝒕)(−𝑩𝑲𝒓𝒔(𝒕)) (4.27) 

The 𝑽̇(𝒕) < 𝟎 according to the equation (4.27). The suggested controller is hence 

stable. 

4.4  New proposed control method 

Most of the controllers have some disadvantages. The Koopman-FOSMC 

controller provides robustness and FOPID has high tracking performance. By combining  
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Figure 4.2: The position tracking of x and y directions under the proposed controllers. 
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the Koopman-FOSMC and FOPID controllers, the new compound controller will 

be obtained which benefits the advantages of both controllers. The new proposed control 

method defines as: 

𝒖𝑲𝒐𝒐𝒑𝒎𝒂𝒏−𝑪𝑭𝑶𝑷𝑰𝑫𝑺𝑴𝑪(𝒕) = 𝒖𝑲𝒐𝒐𝒑𝒎𝒂𝒏−𝑭𝑶𝑺𝑴𝑪(𝒕) − 𝒖𝑭𝑶𝑷𝑰𝑫(𝒕) (4.28) 

where 𝒖𝑭𝑶𝑷𝑰𝑫(𝒕) can be defined as: 

𝒖𝑭𝑶𝑷𝑰𝑫(𝒕) = 𝑲𝒑𝒆(𝒕) + 𝑲𝒊𝑫
−𝝁𝒆(𝒕) + 𝑲𝒅𝑫

𝝁𝒆(𝒕) (4.29) 

where are the 𝑲𝒑, 𝑲𝒊 and 𝑲𝒅 are the FOPID controller’s gains. 

4.5  Simulation results 

This research applies a new compound control method to control nonlinear MEMS 

gyroscope dynamics. The simulations are done in MATLAB software. The proposed 

controller parameters are as follows: 

𝜶 = 𝒅𝒊𝒂𝒈{𝟏𝟎, 𝟏𝟎} 𝝁 = 𝟎. 𝟕𝟓 𝑲𝒓

= 𝒅𝒊𝒂𝒈{𝟏𝟎, 𝟏𝟎} 

𝑲𝒑

= 𝒅𝒊𝒂𝒈{𝟏𝟎𝟎, 𝟏𝟎𝟎} 

𝑲𝒊

= 𝒅𝒊𝒂𝒈{𝟒𝟎, 𝟒𝟎} 

𝑲𝒅

= 𝒅𝒊𝒂𝒈{𝟕𝟎, 𝟕𝟎} 

The initial values of position are 𝒒𝟎𝒙 = 𝟎. 𝟒 and 𝒒𝟎𝒚 = 𝟎. 𝟔. Also, the initial 

velocity values are as 𝒒̇𝟎𝒙 = 𝟎 and 𝒒̇𝟎𝒚 = 𝟎. The desired trajectory tracking for the x-axis 

is 𝒒𝒅𝒙 = 𝐬𝐢𝐧 (𝟒. 𝟏𝟕𝒕) and the y-axis is 𝒒𝒅𝒚 = 𝟏. 𝟐𝐬𝐢𝐧 (𝟓. 𝟏𝟏𝒕). 
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Figure 4.2 shows the position tracking of the x-axis and y-axis under FOSMC, 

Koopman-FOSMC and, Koopman-CFOPIDSMC. The conventional FOSMC controller 

has a low tracking trajectory in comparison with two other controllers such as the 

Koopman-FOSMC and, Koopman-CFOPIDSMC. It illustrates that the data-driven 

Koopman method affects highly improving tracking performance. Figure 4.3 illustrates the 

position tracking error of the x and y axis under FOSMC, Koopman-FOSMC and, 

Koopman- CFOPIDSMC. The proposed controller has a low tracking error in comparison 

with the FOSMC and, Koopman-FOSMC. Figure 4.4 shows the velocity of the x and y 

axis under the proposed controllers. Figure 4.5 shows the input control efforts under the 

FOSMC, Koopman- FOSMC and, Koopman-CFOPIDSMC controllers. The control input 

under conventional FOSMC reached 200 (N.m) in some cases. When the Koopman method 

was used, the control inputs were significantly reduced. Also, the main benefit of the 

compound controller (Koopman-CFOPIDSMC) is reducing the control input signals. A 

small part of the figures was magnified to show the reduction of the control input by 

implementing the Koopman-CFOPIDSMC controller. 

4.6  Conclusions 

This paper proposed a new compound controller based on the data-driven Koopman 

method. First, a conventional FOSMC is applied on a nonlinear MEMS gyroscope dynamic  
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Figure 4.3: The position tracking error of x and y direction under the proposed controllers. 
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Figure 4.4: Velocity of x and y axis under the proposed controllers. 
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Figure 4.5: Control input of x and y direction under the proposed controllers. 



 

 

 

 

68 
 

 

 

 

 

model. Then, the Koopman theory is used to linearize the nonlinear dynamic model 

of the MEMS gyroscope. The main problem with using the Koopman theory is how to 

obtain the Koopman operator. The DMD method was used to obtain the Koopman operator. 

When the model was linearized by the Koopman method, the FOSMC was used to control 

the x and y-axis of the linearized model of the MEMS gyroscope. The results illustrated 

that using the Koopman method will significantly improve the controller performance. 

Finally, a new compound controller is proposed to improve trajectory tracking and reduce 

the control inputs. Simulation results verified the performance of the Koopman- 

CFOPIDSMC was better than the FOSMC and Koopman-FOSMC. 
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5  OPTIMAL CONTROL OF A MEMS GYROSCOPE BASED ON THE KOOPMAN 

THEORY 

5.1  Literature review 

MEMS gyroscopes are the small size device that can measure angular velocity by 

x and y motions  (Cui & Zhao, (2021, January; Wang & Fei, (2021, January); Varghese & 

Priya, (2018, July) ). The control of the MEMS gyroscopes is so important because they 

constantly encounter disturbances. Different control systems have been applied to control 

MEMS gyroscope eff. Rahmani in (Rahmani M. , 2018) proposed a new hybrid fractional 

sliding mode control to reduce the chattering phenomenon. The main drawback of 

conventional sliding mode control is creating a chattering phenomenon. A novel parallel 

control method is applied to reduce the chattering created by the sliding mode controller. 

The fractional controller continuously evaluated the error and corrected the error value. 

Zhou, et al. (2021) proposed an adaptive fuzzy proportional derivative integral (PID) 

controller to have the minimum value of the maximum overshoot problem. According to 

the input error and error change rate, the fuzzy controller online modifies the PID 

controller's settings. Response time of the gyroscope's closed-loop is decreased from 1.09 

s to 0.54 s, and overshoot is decreased from 20% to 0.004%, with no deterioration of angle 

random walk or bias instability. Rahmani, Komijani, Ghanbari, & Ettefagh (2018) 
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introduced a compound PID sliding mode control method to control the x and y direction 

of the MEMS gyroscope. Then, a multi-objective bat algorithm is applied to tune the 

proposed controller parameters. The proposed control method reduced the chattering 

phenomenon, improved tracking performance, and reduced maximum overshoot. The 

mentioned controller methods and most of the other works (Luo, Yang, Li, & Ouakad, 

2022; Zirkohi, 2022; Shi, Shao, & Zhang, 2020) are applied to the linear dynamic model 

of the MEMS gyroscope. 

The Koopman operator is a strong tool for use in complex nonlinear dynamic 

systems. This theory will use the data-driven method to control nonlinear dynamic systems 

with high dimensional nonlinearity (Arbabi, Introduction to Koopman operator theory of 

dynamical systems, 2018). Abraham & Murphey (2019) proposed a Koopman-based 

controller that provides fast learning. They demonstrate the enhanced model-based control 

performance with an actuated Van der Pol system to linearize the nonlinear model by using 

the Koopman operator. The Koopman operator model of dynamical systems is then used 

in conjunction with information-theoretic approaches to design a controller for active 

learning of robot dynamics. It is demonstrated that the active learning controller accelerates 

the rate of information concerning the Koopman operator. The proposed method is applied 

on a real-time quadcopter. Korda & Mezić (2020) proposed a novel data-driven method 

predictor for generating the eigenfunction of the Koopman operator. The predictor thus 
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developed is a linear controlled dynamical system and is easily implementable in the 

Koopman model predictive control framework to control nonlinear dynamical systems 

using the linear control method. The numerical simulations verified the controller and 

predictor performance. Bruder et al. (2020) proposed a Koopman-based controller design 

to control a soft robot. To build explicit dynamical models of soft robotics and control them 

using model-based control techniques, the Koopman operator theory offers a solution. This 

method is data-driven, but it produces a control-oriented model that is explicit rather than 

merely a "black-box" input-output mapping. The control design for soft robotics is 

discussed in this article along with the Koopman-based system identification methodology 

used to identify the system. The Koopman-based technique is used to create three 

controllers for a pneumatic soft robot arm, and their performance is assessed in relation to 

several practical trajectory-following tasks. These Koopman-based controllers have an 

average tracking error that is more than three times lower than a benchmark controller built 

on a linear state-space model of the same system, proving the effectiveness of the Koopman 

technique in soft robot control. Folkestad & Burdick, (2021, May) proposed a nonlinear 

controller based on Koopman’s theory to improve computational efficiency for a planar 

quadrotor. Using the Koopman operator on the systems will improve the controller in the 

data-driven form (Mamakoukas, Castano, Tan, & Murphey, (2019, June)) to have high 

tracking performance and less maximum overshoot (Son, Narasingam, & Kwon, (2021, 
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May); Goswami & Paley, 2021). The Koopman operator can be used for the linearization 

of the nonlinear dynamic model.  

LQR is an optimal control method that can be used to control the linearized 

dynamic model (Brunton, Brunton, Proctor, & Kutz, 2016). A data-driven paradigm for the 

linear embedding of nonlinear systems is presented in (Mamakoukas, Castano, Tan, & 

Murphey, (2019, June)). The authors provide a systematic, data-driven strategy for 

developing a linear representation in terms of higher-order derivatives of the underlying 

nonlinear dynamics by utilizing structural knowledge of generic nonlinear dynamics and 

the Koopman operator. The nonlinear system is then regulated using an LQR feedback 

strategy, whose gains only need to be calculated once, using the linear representation. The 

proposed control method is compared with backstepping control by implementing it on the 

fish robot. The results verified the proposed control method. 

In this method, an optimal Koopman control method is implemented on a MEMS 

gyroscope. The contribution of this paper will be described as: 

1- Discussion of nonlinear MEMS gyroscope dynamic models. 

2- Eigenfunctions obtained by using the DMD method. 

3- Koopman operator generated by using eigenfunctions obtained from the DMD 

method. 

4- A LQR controller used to control created linear dynamics by Koopman theory. 
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5- The performance of the proposed method compares with conventional integral 

sliding mode control, in which the proposed controller has better performance. 

5.2  Integral sliding mode control 

A popular and reliable control technique is sliding mode control. Sliding Mode 

Control's primary benefits are strong tracking performance and robustness against external 

perturbations. In most works, sliding mode control has been used with a linear dynamic 

models of MEMS gyroscopes (Zhang, Shao, Zhao, Li, & Xu, 2018; Luo, Yang, Li, & 

Ouakad, 2022). We apply the Sliding Mode Control on the nonlinear MEMS gyroscope 

dynamic model. The main part of the sliding mode control design is how to select the 

sliding mode surfaces. The sliding mode surface defines as: 

𝜼 = 𝒆̇ + 𝝀∫ 𝒆
𝒎
𝒏

𝒕

𝟎

(𝝉)𝒅𝝉 
(5.1) 

where e=q, m, n and 𝝀 is a positive constant. The equivalent control strategy is 

obtained when 𝜼̇ = 𝟎. 

𝜼̇ = 𝒆̈ + 𝝀𝒆
𝒎
𝒏 = 𝟎 

(5.2) 

In equation (5.1), substituting the first and second derivatives from the error will 

result in the following. 

𝒒̈ + 𝝀𝒒
𝒎
𝒏 = 𝟎 

(5.3) 
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Equation (3.10) is substituted with equation (5.2) to generate 

−𝒀𝒒̇ − 𝑷𝒒 − 𝜷𝒒𝟑 + 𝒖(𝒕) + 𝑫(𝒕) + 𝝀𝒒
𝒎
𝒏 = 𝟎 

(5.4) 

The right side of the equation is introduced by moving all elements except u(t). 

𝒖𝒆𝒒(𝒕) = 𝒀𝒒̇ + 𝑷𝒒 + 𝜷𝒒
𝟑 −𝑫(𝒕) − 𝝀𝒒

𝒎
𝒏  

(5.6) 

Equation (5.6) shows the equivalent controller. Uncertainties in the model and 

external disruptions cannot be compensated for by the equivalent control. To overcome 

these problems, a reaching control approach is introduced. The reaching control defines as: 

𝒖𝒓(𝒕) = −𝑲𝒓𝜼 (5.7) 

where 𝑲𝒓is the positive constant. 

The control input defines: 

𝒖(𝒕) = 𝒖𝒆𝒒(𝒕) + 𝒖𝒓(𝒕) (5.8) 

Sliding mode control is shown to be stable using the Lyapunov theory. 

𝑳(𝒕) =
𝟏

𝟐
 𝜼𝜼𝑻 

(5.9) 

When the controller is stable, the following conditions are met: 

𝑳̇ = 𝜼𝑻𝜼̇ < 𝟎, 𝜼 ≠ 𝟎 (5.10) 

Derivative from equation (5.9) yields 

𝑳̇ = 𝜼𝑻𝜼̇ (5.11) 
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Substituting equation (5.11) with a derivative of the equation )5.9( results in 

𝑳̇ = 𝜼𝑻 (𝒆̈ + 𝝀𝒆
𝒎
𝒏) 

(5.12) 

Equation )5.12( gave an illustration that 

𝑳̇ = 𝜼𝑻 (𝒒̈ + 𝝀𝒒
𝒎
𝒏) 

(5.13) 

Equation )3.10( is substituted for equation )5.13( to introduce 

𝑳̇ = 𝜼𝑻 (−𝒀𝒒̇ − 𝑷𝒒 − 𝜷𝒒𝟑 + 𝒖(𝒕) + 𝑫(𝒕) + 𝝀𝒒
𝒎
𝒏) (5.14) 

Substitute equation )5.8( in the equation )5.14( produces 

𝑳̇ = 𝜼𝑻 (−𝒀𝒒̇ − 𝑷𝒒 − 𝜷𝒒𝟑 + 𝒖𝒆𝒒(𝒕) + 𝒖𝒓(𝒕) + 𝑫(𝒕) + 𝝀𝒒
𝒎
𝒏) 

(5.15) 

Using equation )5.6( in equation )5.15( shows 

𝑳̇ = 𝜼𝑻 (−𝒀𝒒̇ − 𝑷𝒒 − 𝜷𝒒𝟑 + 𝒀𝒒̇ + 𝑷𝒒 + 𝜷𝒒𝟑 −𝑫(𝒕) − 𝝀𝒒
𝒎
𝒏

+ 𝒖𝒓(𝒕) + 𝑫(𝒕) + 𝝀𝒒
𝒎
𝒏) 

(5.16) 

Simplifying equation )5.16( results in 

𝑳̇ = 𝜼𝑻(𝒖𝒓(𝒕)) (5.17) 

Substitute equation (5.7) in equation (5.17) demonstrates 

𝑳̇ = 𝜼𝑻(−𝑲𝒓𝜼) = −𝑲𝒓𝜼
𝟐 (5.18) 
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Equation (5.8) shows that 𝑳̇ < 𝟎. Therefore, the condition in equation (5.10) is 

satisfied and the controller is stable. 

5.3  Koopman LQR control 

One strategy for making the best control decisions is the LQR, which considers the 

states of the dynamical system and the control input (Prasad, Tyagi, & Gupta, 2014). The 

goal of the LQR design challenge is to create a state feedback controller that minimizes the 

objective function. Having a cost function that is based on equation (3.28) as 

𝑱 = ∫ (𝒚𝑻𝑸𝒚 + 𝒖𝑻𝑹𝒖)𝒅𝒕
∞

𝟎

 
(5.19) 

where Q and R are the weight matrices (Anjali, Vivek, & Nandagopal, 2016). 

Following is the feedback control law that minimizes the cost function's value: 

𝒖 = −𝑪𝒚 (5.20) 

where C defines as: 

𝑪 = 𝑹−𝟏𝑩𝑻𝑷 (5.21) 

By resolving the continuous time Riccati algebraic equation, P is obtained. 

𝑲𝑻𝑷 + 𝑷𝑲 + 𝑸− 𝑷𝑩𝑹−𝟏𝑩𝑻𝑷 = 𝟎 (5.22) 
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5.4  Simulation results 

Simulation is done using the Matlab program. The fourth-order Runge-Kutta 

technique, known as the ode45 order in Matlab, is used. The integral terminal sliding mode 

(ITSMC) parameters are chosen as: 

𝜆=10, m=1.25, n=1.5, and Kr=11. 

The initial conditions for ITSMC selected as: 𝒒𝟎𝒙 = 𝟎. 𝟒, 𝒒𝟎𝒚 = 𝟎. 𝟔, 𝒒̇𝟎𝒙 = 𝟎, and 

𝒒̇𝟎𝒚 = 𝟎. 

The LQR control items are selected as: 

𝑨 = 𝑲,  𝑩 = [
𝟎 𝟏
𝟏 𝟎

], 𝑸 = [
𝟏 𝟎
𝟎 𝟏

], and R=1. 

The nonlinear model of MEMS gyroscope is controlled by two control methods 

such as ITSMC and LQR controller linearized by Koopman theory (Koopman-LQR). 

Figure 5.1 shows the position tracking of x and y under Koopman-LQR and ITSMC. The 

Koopman-LQR controller has better performance in comparison with ITSMC in terms of 

high tracking performance and low settling time. The Koopman-LQR controller doesn’t 

have any oscillation in comparison with ITSMC. It demonstrates that the proposed 

Koopman-LQR has better performance. Figure 5.2 shows the velocity of the x and the y 

axis under Koopman-LQR and ITSMC. 



 

 

 

 

78 
 

 

 

 

 

 

Figure 5.1: Position tracking of x and y axis under ITSMC and Koopman-LQR controllers. 
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 Figure 5.2: Velocity of x and y axis under ITSMC and Koopman-LQR controllers. 
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5.5  Conclusion 

This research introduces Koopman-LQR and ITSMC for controlling a nonlinear 

dynamics of a MEMS gyroscope. First, a nonlinear dynamic model of MEMS gyroscope 

was introduced. Then, Koopman’s theory was used to linearize the nonlinear dynamic of 

the MEMS gyroscope. The most important part was to calculate the Koopman operator. 

DMD method applied to estimate eigenfunction. An LQR controller is used to control the 

MEMS gyroscope system. The proposed Koopman-LQR method compared with ITSMC 

had better performance in terms of high tracking, low settling time, and zero oscillation. 

The effectiveness of the proposed Koopman-LQR method was verified by numerical 

simulation. 
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6  OPTIMAL DATA DRIVEN CONTROL OF A WORM ROBOT 

6.1  Literature review  

Bio-inspired robots are robots that inspired the animal’s motion and structure in 

nature. The scholar detects the animals that are available in nature and changes their motion 

characteristics to a mechanism that is used as a robot.  The worm robot is one of these 

structures in which its motion mimics the worm in nature. This robot has many applications 

such as medicine and rescue plans (Henson & Marais, (2012, November); Zarrouk, Sharf, 

& Shoham, 2012; Liu, et al., 2022; Ortiz, Gravish, & Tolley, 2019; Onal, Wood, & Rus, 

2012). The worm robot passes through harsh environments. Control of that type of robot 

is a challenging task.  

Several control methods are used to control the worm robot in the desired trajectory. 

A robust adaptive controller is proposed in (Rahmani, Ghanbari, & Ettefagh, Robust 

adaptive control of a bio-inspired robot manipulator using bat algorithm, 2016). The 

proposed control method contained compound control methods. First, the sliding mode 

control is used for the robustness of the control method against external disturbances. Then, 

a compound fractional proportional integral derivative controller is used to improve 

tracking performance. A bat algorithm is used to tune the proposed controller parameters. 

A control method demonstrates that friction is essential to the creation and control of 
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locomotion in this sort of robot by using the concept of controlled subspace (Joey, 

Calderón, Chang, & Pérez-Arancibia, 2019). They present a simulation-based technique 

for generating and executing feedback control schemes that let the robot produce forward 

and backward locomotion based on this analysis. The other types of controllers used to 

control a worm robot such as hybrid neural network integral sliding mode control 

(Rahmani, Ghanbari, & Ettefagh, Hybrid neural network fraction integral terminal sliding 

mode control of an Inchworm robot manipulator, 2016) and neural central pattern generator 

(Wang, Zhang, Zhang, & Wang, (2018, May)). However, the mentioned controllers 

worked on model-based control methods or used artificial intelligence to control worm 

robots, but they didn’t use data-driven controllers. The Koopman theory is a strong data-

driven method to control the robot. In complicated nonlinear dynamic systems, the 

Koopman operator is a powerful tool. This theory will control nonlinear dynamic systems 

with high dimensional nonlinearity using a data-driven approach (Abraham & Murphey, 

2019). In (Bruder, Fu, Gillespie, Remy, & Vasudevan, 2020), a Koopman-based system 

identification technique is described along with how it may be used to create model 

predictive controls for soft robots. Through the use of the Koopman-based methodology, 

three model predictive controllers are created for a pneumatic soft robot arm, and their 

performance is evaluated on several actual trajectory-following tasks. These Koopman-

based controllers have an average tracking error that is more than three times lower than a 
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benchmark model predictive controller built on a linear state-space model of the same 

system, proving the effectiveness of the Koopman technique in soft robot control.  

The LQR control method is a strong optimal control method that can improve 

trajectory tracking and provide more stability. The dynamics of the system are considered 

to be unknown in this study of the finite-horizon linear quadratic regulation issue (Rotulo, 

De Persis, & Tesi, 2020). A limited number of input-state variables can provide 

information about the system, provided that the input is continually stimulating and of a 

high enough order. The best control law is then discovered by solving an appropriate 

semidefinite program using data. The neural network is used to generate the Koopman 

operator (Shi & Meng, 2022). Then, the Koopman theory was used in developing a linear 

dynamic model of the 7 degrees of freedom (DoF) of robot manipulators. An LQR 

controller was applied to reduce the tracking error.   

How the Koopman operator is designed is the most critical aspect of employing the 

Koopman operator. To get the Koopman operator, other techniques may be utilized, 

including the neural networks (Shi & Meng, 2022) (Schulze, Doncevic, & Mitsos, 2022) 

and DMD approach (Mansour, Benosman, & Huroyan, (2017, July)).  

The contributions of this research are categorized as: 

1- An optimal data-driven controller is applied to control a worm robot. 

2- The nonlinear dynamics of a worm robot are introduced. 



 

 

 

 

84 
 

 

 

 

 

Figure 6.1: Worm robot motion in nature. 

 

3- The Koopman theory is used to linearize the nonlinear dynamic model of the 

worm robot. 

4- The DMD method is used to generate the Koopman operator. 

5- An LQR controller is used to control the linearized dynamic model of the worm 

robot. 

6.2  Worm robot structure 

The worm robot is inspired by the motion of the worm in nature. Figure 6.1 shows 

a worm motion in nature. Therefore, if the motion changes to a mechanism, the robot will 

be created. The motion of the worm can be demonstrated as a mechanism in Figure 6.2.  
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Figure 6.2: Worm robot mechanism. 

 

The Scholars obtained the nonlinear dynamics equations of the mechanism in 

Figure 6.2 (Ghanbari & Noorani, 2011): 

𝑴(𝜭)𝜭̈ + 𝑽(𝜭)𝜭̇𝟐 + 𝑮(𝜭) = 𝑲𝝉 + 𝝀𝑭𝑹 (6.1) 

where 𝑴(𝜭) ∊ 𝑹𝟒⨉𝟒, 𝑽(𝜭) ∊ 𝑹𝟒⨉𝟒, 𝑮(𝜭) ∊ 𝑹𝟒⨉𝟏, and 𝑲 ∊ 𝑹𝟒⨉𝟏are mass matrix, 

centrifugal coefficient matrix, gravity vector, and subtraction matrix. Also, the 𝑭𝑹is forces 

that apply from the ground. The detailed process of obtaining the equation (6.1) can be 

observed in  

𝑴(𝜭) =
𝒎𝒍𝟐

𝟔
[

𝟐𝟎 𝟏𝟓𝒄𝟏𝟐 𝟗𝒄𝟏𝟑 𝟑𝒄𝟏𝟒
𝟏𝟓𝒄𝟏𝟐 𝟏𝟒 𝟗𝒄𝟐𝟑 𝟑𝒄𝟐𝟒
𝟗𝒄𝟏𝟑
𝟑𝒄𝟏𝟒

𝟗𝒄𝟐𝟑
𝟑𝒄𝟐𝟒

𝟖 𝟑𝒄𝟑𝟒
𝟑𝒄𝟑𝟒 𝟐

] 
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𝑽(𝜭) =
𝒎𝒍𝟐

𝟔
[

𝟎 𝟏𝟓𝒔𝟏𝟐 𝟗𝒔𝟏𝟑 𝟑𝒔𝟏𝟒
−𝟏𝟓𝒔𝟏𝟐 𝟎 𝟗𝒔𝟐𝟑 𝟑𝒔𝟐𝟒
−𝟗𝒔𝟏𝟑
−𝟑𝒔𝟏𝟒

−𝟗𝒔𝟐𝟑
−𝟑𝒔𝟐𝟒

𝟎 𝟑𝒔𝟑𝟒
−𝟑𝒔𝟑𝟒 𝟎

] 

𝑮(𝜭) =
𝒎𝒈𝒍

𝟐
[

𝟕𝒄𝒐𝒔𝜭𝟏
𝟓𝒄𝒐𝒔𝜭𝟐
𝟑𝒄𝒐𝒔𝜭𝟑
𝒄𝒐𝒔𝜭𝟒

] 

𝝀 = [

𝟏 −𝟏 𝟎 𝟎
𝟎 𝟏 −𝟏 𝟎
𝟎
𝟎

𝟎
𝟎

𝟏 −𝟏
𝟎 𝟏

] 

 

where 𝜭𝒊 is the angle of ith joint. Also, 𝒄𝒊𝒋 = 𝐜𝐨𝐬(𝜭𝒊 − 𝜭𝒋) and 𝒔𝒊𝒋 = 𝐬𝐢𝐧 (𝜭𝒊 −

𝜭𝒋). The m is mass of each link and l is length of each link. 

6.3  Koopman Theory 

The Koopman operator theory states that in order to successfully solve a nonlinear 

dynamical system, the nonlinear system's initial form must be converted into an infinite 

dimensional state space, resulting in a linear system (Ping, Yin, Li, Liu, & Yang, 2021).  

The dynamic in discrete time defines as (Kaiser, Kutz, & Brunton, 2021): 

𝒛𝒌+𝟏 = 𝑭(𝒛𝒌) (6.2) 

where F is defined as 
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𝑭(𝒛(𝒕𝟎)) = 𝒛(𝒕𝟎) + ∫ 𝒇(𝒛(𝝉))𝒅𝝉
𝒕𝟎+𝒕

𝒕𝟎

 
(6.3) 

The Koopman operator theoretic technique transforms a finite-dimensional 

nonlinear system's dynamics into linearity when applied to infinite-dimensional function 

space. In an infinite-dimensional Hilbert space, g is an observable and a real-valued scalar 

measurement function. Based on this observable, the Koopman operator generates as 

follows: 

𝑲𝒈 = 𝒈 ∘ 𝑭 (6.4) 

A continuous system can be utilized to implement smooth dynamics. 

𝒅

𝒅𝒕
𝒈(𝒛) = 𝑲𝒈(𝒛) = 𝜵𝒈(𝒛). 𝒇(𝒛) 

(6.5) 

where K is Koopman's operator. Due to the Koopman operator's infinite 

dimensions, which is important yet troublesome for operation and representation. Applied 

Koopman analysis approximates the evolution of a subspace covered by a few 

measurement functions as opposed to describing the growth of all measurement functions 

in a Hilbert space. By limiting the Koopman operator to an invariant subspace, one may 

obtain a representation of the operator in a  finite-dimensional matrix. Any combination of 

the Koopman operator's eigenfunctions covers a Koopman invariant subspace. When  
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Figure 6.3: The proposed control method diagram. 

 

eigenfunction 𝝋(𝒛) of the Koopman model meets eigenvalue 𝜆 (Kaiser, Kutz, & 

Brunton, 2021). The proposed control method block diagram is shown in Figure 6.3. 

𝝀𝝋(𝒛) = 𝝋(𝑭(𝒛)) (6.6) 

A Koopman eigenfunction (z) is satisfied in continuous time. 

𝒅

𝒅𝒕
𝝋(𝒛) = 𝝀𝝋(𝒛) 

(6.7) 
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To approximate the Koopman operator, an application-side finite-dimensional 

approximation is needed. One method for estimating the Koopman operator is the DMD 

method. 

6.4  DMD method 

The DMD method is a strong approach that is used to approximate the Koopman 

operator. 

𝒁′ ≈ 𝑨𝒁 (6.8) 

where 𝒁′is time shift of matrix Z as 

𝒁 = [𝒛𝟏 𝒛𝟐 …… .] 

The A may be determined as follows using equation (6.8): 

𝑨 = 𝒁′𝒁+ (6.9) 

where + represents the Moore-Penrose pseudoinverse. In order to find the dominant 

characteristics of the pseudoinverse of Z, we may utilize Singular Value Decomposition 

(SVD) on the snapshots. This is because a conventional calculation utilizing A would need 

a substantial amount of computation because of the large n (Snyder & Song, 2021). 

𝒁 ≈ 𝑼𝜮𝑽∗ (6.10) 
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where 𝑼 ∊ 𝑹𝒏⨉𝒓, 𝜮 ∊ 𝑹𝒓⨉𝒓, 𝑽 ∊ 𝑹𝒏⨉𝒓 , and * demonstrates the conjugate 

transpose. SVD's reduced rank for approximating Z is r. The eigenvectors can be defined 

as: 

Ф = 𝒁′𝑽𝜮−𝟏𝚆 (6.11) 

where W denotes the eigenvectors of the dynamic complete rank system. 

Ф = 𝒁′𝑽𝜮−𝟏𝚆 (6.12) 

If we assume that 𝜆 is the eigenfunction, then we get: 

𝑲𝑾 = 𝝀𝑾 (6.13) 

where K is the Koopman operator. 

The demonstration of the linearized dynamic model is as follows: 

𝒅

𝒅𝒕
𝒚 = 𝑲𝒚 + 𝑩𝒖 

(6.14) 

6.5  LQR control method 

The LQR, which takes into account the states of the dynamical system and the 

control input, is one method for determining the optimum control decisions (Prasad, Tyagi, 

& Gupta, 2014). 

Making a state feedback controller that minimizes the target function is the aim of 

the LQR design challenge. The cost function is defined as: 
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𝑱 = ∫ (𝒚𝑻𝑸𝒚 + 𝒖𝑻𝑹𝒖)𝒅𝒕
∞

𝟎

 
(6.15) 

where Q and R are the weight matrices. The feedback control law that reduces the 

value of the cost function is as follows. 

𝒖 = −𝑪𝒚 (6.16) 

where C denotes as: 

𝑪 = 𝑹−𝟏𝑩𝑻𝑷 (6.17) 

P is found by solving the continuous time Riccati algebraic problem. 

𝑲𝑻𝑷 + 𝑷𝑲 + 𝑸− 𝑷𝑩𝑹−𝟏𝑩𝑻𝑷 = 𝟎 (6.18) 

6.6  Simulation results 

The simulation is done in MATLAB software. Some data was generated from the 

nonlinear dynamic model of the worm robot. Then, the data were categorized by the DMD 

method to obtain the Koopman operator. The Koopman operator was used to estimate the 

linear dynamic model of the worm robot. Finally, the LQR controller is applied to the worm 

robot to control it suitably.  

The initial values of angular velocity are all zeros. The initial position of the joints 

is as follows 

𝜭𝟎 = {
𝝅

𝟒
,
𝝅

𝟐
, 𝟎, 𝟎} 
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Figure 6.4: The position tracking of the worm robot joints under the proposed controller. 

 

The mass of each link is equal to 1 and the length is equal to 1 too. 

Figure 6.4 shows the position tracking of joints under the LQR controller linearized 

by the Koopman theory (Koopman-LQR). It shows that the proposed control method has 

suitable tracking performance.  
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Figure 6.5: The velocity of the worm robot joints under the proposed controller 

 

The maximum overshoot for the Theta1 is around 46 percent which illustrates that 

the design is good.  

Figure 6.5 shows the velocity of the robot joints under the Koopman-LQR controller. 
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6.7  Conclusion 

This research proposed an optimal data-driven control of a worm robot. The 

nonlinear dynamic model of a worm robot is discussed in this research. The Koopman 

theory was applied to linearize the nonlinear dynamics of the worm robot. The DMD 

method was used to estimate the Koopman operator. An LQR controller is used to control 

the worm robot joints. The simulation results verified the performance of the proposed 

controller under the Koopman-LQR controller. 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

95 
 

 

 

 

7  ROBOT MANIPULATOR CONTROL USING A ROBUST DATA-DRIVEN 

METHOD 

7.1  Literature review 

Robotic manipulators are highly used in different industries such as the automotive 

and medical industries. These highly demanded robots were implemented in some 

conditions where they encountered external disturbances. Therefore, designing a suitable 

control method is the most important part of the robotics design process. There are many 

control methods applied to robot manipulators to control them in the desired trajectory such 

as PID controller (Cervantes & Alvarez-Ramirez, 2001) (Su, Müller, & Zheng, Global 

asymptotic saturated PID control for robot manipulators, 2009) (Kelly, 1995) (Kumar & 

Amutha, (2014, December)), sliding mode control (Ahmad & Osman, (2003, August).) 

(Piltan & Sulaiman, 2012) (Islam & Liu, 2010), fuzzy PID control (Anavatti, Salman, & 

Choi, (2006, December)) (Sharma, Rana, & Kumar, 2014) (Ravari & Taghirad, (2009, 

February)), etc. The mentioned control methods depended on the dynamic model of the 

robot manipulator. However, designing the mentioned control methods mostly requires an 

accurate dynamic model, which will not provide the accurate performance of the proposed 

control method. The data-driven methods are some strong approaches that can approximate 

the dynamic model to generate accurate model characteristics.  
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Carron et al. (2019) provide a model-based control method that uses information 

acquired from actual operations to enhance the model of the robotic arm and the tracking 

performance. Inverse dynamics feedback linearization and a data-driven error model are 

the foundations of the suggested approach, which is incorporated into a formulation for 

model predictive control. Also, they demonstrated how adding a Gaussian process to a 

nominal model can enable offset-free tracking. To achieve trajectory tracking control of 

the manipulator, the Gauss process feedback linearization approach based on the updating 

of the event-triggered model is used in a manipulator system with three degrees of freedom 

(Wang Y. , Data-driven trajectory tracking of manipulator with event-triggered model 

updating, (2020, August)). And to address the issue of extensive Gaussian process 

regression computation under big data samples, sparse Gaussian process regression is 

utilized for real-time manipulator trajectory tracking.  

The Koopman theory is a strong method for data-driven-based control methods. It 

can linearize the complex nonlinear dynamic model. Several researchers use the Koopman 

theory in their research to provide better control performance (Goswami & Paley, 

Bilinearization, reachability, and optimal control of control-affine nonlinear systems: A 

Koopman spectral approach, 2021) (Shi & Meng, 2022) (Calderón, Schulz, Oehlschlägel, 

& Werner, (2021, June)) (Husham, Kamwa, Abido, & Suprême, 2022) (Narasingam, Son, 

& Kwon, 2022). However, the most important part of the Koopman theory application is 
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how to design the Koopman operator. The DMD method is one of the useful techniques 

that can be used to generate the Koopman operator. Extended Dynamic Mode 

Decomposition (EDMD), a technique invented in (Junker, Timmermann, & Trächtler, 

(2022, May)), approximates a nonlinear dynamical system as a linear model. Due to the 

common usage of a linear system description in control engineering applications, this 

technique is excellent for these applications. They simulatively analyze the prediction 

performance of the learned EDMD models using academic examples, demonstrating how 

important system properties like stability, controllability, and observability are reflected by 

the EDMD model, which is a crucial prerequisite for a successful control design process. 

They then display the experimental findings on a mechatronic test bench and assess how 

well they apply to the control engineering design procedure. For a variety of data-driven 

Koopman operator-based nonlinear robotic systems, Shi and Karydis (2021) suggest ACD-

EDMD, a novel approach for the Analytical Construction of Dictionaries of Appropriate 

Lifting Functions. The main finding of this study is that Hermite polynomial-based lifting 

functions may be constructed by using knowledge of the basic topological spaces of the 

nonlinear system. When observables are weighted bounded, they demonstrate that the 

suggested approach produces dictionaries with proven completeness and convergence 

guarantees that are easy to implement. Various nonlinear robotic systems from both 

simulated and real hardware experiments are used to assess ACD-EDMD. To get over this 
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restriction and retrieve the leading Koopman eigenvalues, eigenfunctions, and modes of 

the unforced system, Williams et al. (2016) describe a version of EDMD. This modification 

accounts for the effects of actuation. The Duffing oscillator and a lattice Boltzmann code 

that approximates the FitzHugh-Nagumo partial differential equation and displays 

Koopman mode and eigenvalue computation, respectively, are used as two examples with 

(quasi)-periodic forcing to illustrate the effectiveness of this method.  

The contributions of this research are as follows: 

1- The Koopman theory is applied to linearize the nonlinear dynamics of the 2 DoF 

robot manipulator. 

2- The DMD method is applied to obtain the Koopman operator. 

3- A fractional sliding mode control is proposed to control the linearized dynamics 

model by Koopman's theory. 

4- The conventional PID and FOSMC are implemented to verify the performance 

of the proposed control method. 

7.2  Dynamic model of 2 DoF robot manipulator 

Robots can boost output, effectiveness, product uniformity, and quality in a variety 

of circumstances: Robots, unlike people, never get bored. They may keep doing the same 

thing repeatedly until they wear out. The robot manipulator can be used in many 

applications such as exoskeletons robot (Rahmani & Rahman, Adaptive neural network 
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fast fractional sliding mode control of a 7-DOF exoskeleton robot, 2020) and refueling 

robots (Sun, Yin, Wang, & Xu, 2018).  

 

Figure 7.1: Two degrees of freedom robot manipulator structure. 

 

The following is an example of a 2-DOF robot manipulator's dynamic modeling 

(Jin, Lee, Chang, & Choi, 2009): 

𝑴(𝒒)𝒒̈ + 𝑵(𝒒, 𝒒̇)𝒒̇ + 𝑮(𝒒) = 𝝉 (7.1) 

where 𝒒, 𝒒̇, 𝒒̈ ∊ 𝑹𝟐 represent the position, velocity, and acceleration of the joints, 

respectively, and 𝑴(𝒒) ∊ 𝑹𝟐⨉𝟐 known as the generalized inertia matrix, 𝑵(𝒒, 𝒒̇) ∊ 𝑹𝟐⨉𝟐 

is the vector of Coriolis and centrifugal forces, 𝑮(𝒒) ∊ 𝑹𝟐⨉𝟏 the gravitational vector, and 

𝝉 ∊ 𝑹𝟐⨉𝟏 the joint torques. 𝑴(𝒒), 𝑵(𝒒, 𝒒̇) and 𝑮(𝒒) are given as 

𝒒 = [
𝜭𝟏
𝜭𝟐
] 

𝑴(𝒒) = [
(𝑴𝟏 +𝑴𝟐)𝑳𝟏

𝟐 +𝑴𝟐𝑳𝟐
𝟐 + 𝟐𝑴𝟐𝑳𝟏𝑳𝟐𝒄𝒐𝒔𝜭𝟐 𝑴𝟐𝑳𝟐

𝟐 +𝑴𝟐𝑳𝟏𝑳𝟐𝒄𝒐𝒔𝜭𝟐
𝑴𝟐𝑳𝟐

𝟐 +𝑴𝟐𝑳𝟏𝑳𝟐𝒄𝒐𝒔𝜭𝟐 𝑴𝟐𝑳𝟐
𝟐 ] 
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𝑵(𝒒) = [
−𝑴𝟐𝑳𝟏𝑳𝟐𝒔𝒊𝒏𝜭𝟐(𝟐𝜭̇𝟏𝜭̇𝟐 + 𝜭̇𝟐

𝟐)

−𝑴𝟐𝑳𝟏𝑳𝟐𝒔𝒊𝒏𝜭𝟐𝜭̇𝟏𝜭̇𝟐
] 

 

𝑮(𝒒) = [
−(𝑴𝟏 +𝑴𝟐)𝒈𝑳𝟏𝒔𝒊𝒏𝜭𝟏 −𝑴𝟐𝒈𝑳𝟐𝐬𝐢𝐧 (𝜭𝟏 + 𝜭𝟐)

−𝑴𝟐𝒈𝑳𝟐𝐬𝐢𝐧 (𝜭𝟏 + 𝜭𝟐)
] 

𝝉 = [
𝝉𝟏
𝝉𝟐
] 

 

Equation (7.1) can be defined as: 

𝒒̈ = −𝑴−𝟏(𝒒)𝑵(𝒒, 𝒒̇)𝒒̇ − 𝑴−𝟏(𝒒)𝑮(𝑞) + 𝑀−1(𝑞)𝜏 (7.2) 

The 2DoF robot manipulator structure is shown in Figure 7.1. It is possible to 

rearrange the dynamic equation for a 2-DOF robot manipulator as follows: 

𝒒̈ = −𝑩𝒒̇ − 𝑪𝑮(𝒒) + 𝒖 (7.3) 

where 𝑩 = 𝑴−𝟏(𝒒)𝑵(𝒒, 𝒒̇), 𝑪 = 𝑴−𝟏(𝒒), and 𝒖 = 𝑴−𝟏(𝒒)𝝉. The definition of 

equation (7.4) where 𝜟𝑩 and 𝜟𝑪 are uncertainty symbols is 

𝒒̈ = −(𝑩 + 𝜟𝑩)𝒒̇ − (𝑪 + 𝜟𝑪)𝑮(𝒒) + 𝒖 (7.4) 

The equation (7.4) can be introduced as: 

𝒒̈ = −𝑩𝒒̇ − 𝑪𝑮(𝒒) + 𝒖 + 𝒅(𝒕) (7.5) 

where 𝒅(𝒕) = −𝜟𝑩𝒒̇ − 𝑪𝑮(𝒒). 

7.3  PID control method 

The PID controller has been highly used in industrial companies due to its ease of 

implementation and low cost. The PID controller can be defined as: 
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𝒖𝑷𝑰𝑫 = 𝑲𝒑𝒆(𝒕) + 𝑲𝒊∫ 𝒆(𝝉)𝒅𝝉 + 𝑲𝒅
𝒅𝒆(𝒕)

𝒅𝒕

𝒕

𝟎

 
(7.6) 

where 𝑲𝒑, 𝑲𝒊, 𝑲𝒅 are proportional, integral, and derivative parameters. Also, the 

tracking error can be defined as: 

𝒆(𝒕) = 𝒒𝒅 − 𝒒 (7.7) 

where 𝒒𝒅 is desired trajectory tracking. The main drawbacks of the PID controller 

are that it is not robust against external disturbances and has low trajectory tracking. 

7.4  Fractional order sliding mode control 

The FOSMC is a robust control method against external perturbations and has high 

tracking performance. The main advantage of this control method in comparison with 

conventional sliding mode control is that we can have a fraction derivative or integral of 

the error. The main part of FOSMC design is choosing the fractional sliding mode surface 

as: 

𝒔(𝒕) = 𝒆̇(𝒕) + 𝜶𝑫𝝁𝒆(𝒕) + 𝜷𝑫−𝝁𝒆(𝒕) (7.8) 

Where 𝜶 and 𝜷 are positive constants and D is the Grunwald-Letnikov fractional 

operator. 

The FOSMC contains two control sections: equivalent control and reaching control 

law. The equivalent control method can be obtained by equaling the derivative of the 

sliding mode surface to zero. Take the derivative from equation (7.8) results: 



 

 

 

 

102 
 

 

 

 

𝒔̇(𝒕) = 𝒆̈(𝒕) + 𝜶𝝁𝑫𝝁+𝟏𝒆(𝒕) − 𝜷𝝁𝑫−𝝁+𝟏𝒆(𝒕) (7.9) 

Take the double derivative from equation (7.7) and substitute it into equation (7.9) 

produces 

𝒔̇(𝒕) = 𝒒̈𝒅 − 𝒒̈ + 𝜶𝝁𝑫
𝝁+𝟏𝒆(𝒕) − 𝜷𝝁𝑫−𝝁+𝟏𝒆(𝒕) (7.10) 

Substitute equation (7.5) into equation (7.10) generates 

𝒔̇(𝒕) = 𝒒̈𝒅 + 𝑩𝒒̇ + 𝑪𝑮(𝒒) − 𝒖 − 𝒅(𝒕) + 𝜶𝝁𝑫
𝝁+𝟏𝒆(𝒕)

− 𝜷𝝁𝑫−𝝁+𝟏𝒆(𝒕) 

(7.11) 

By equaling the  equation (7.11) and d(t) to zero, the equivalent control can be 

obtained as: 

𝒖𝒆𝒒 = 𝒒̈𝒅 + 𝑩𝒒̇ + 𝑪𝑮(𝒒) + 𝜶𝝁𝑫
𝝁+𝟏𝒆(𝒕) − 𝜷𝝁𝑫−𝝁+𝟏𝒆(𝒕) (7.12) 

The equivalent control solely is not able to suppress the external disturbances. 

Therefore, a reaching control law will be implemented to solve that problem. The reaching 

control law introduces as: 

𝒖𝒓 = 𝑲𝒓𝒔(𝒕) (7.13) 

Therefore, the FOSMC defines as: 

𝒖𝑭𝑶𝑺𝑴𝑪(𝒕) = 𝒖𝒆𝒒(𝒕) + 𝒖𝒓(𝒕) (7.14) 

The proposed control method’s stability can be proved by using the Lyapunov 

theory as 

𝑽(𝒕) =
𝟏

𝟐
𝒔𝑻(𝒕)𝒔(𝒕) 

(7.15) 

 The condition for stability satisfaction is as follows: 
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𝑽̇(𝒕) = 𝒔𝑻(𝒕)𝒔̇(𝒕) < 𝟎 (7.16) 

Substitute equation (7.11) into equation (7.16) produces 

𝑽̇(𝒕) = 𝒔𝑻(𝒕)(𝒒̈𝒅 + 𝑩𝒒̇ + 𝑪𝑮(𝒒) − 𝒖 + 𝜶𝝁𝑫
𝝁+𝟏𝒆(𝒕)

− 𝜷𝝁𝑫−𝝁+𝟏𝒆(𝒕)) 

(7.17) 

Substitute equation (7.14) into equation (7.17) introduces 

𝑽̇(𝒕) = 𝒔𝑻(𝒕)(𝒒̈𝒅 + 𝑩𝒒̇ + 𝑪𝑮(𝒒) − 𝒖𝒆𝒒(𝒕) − 𝒖𝒓(𝒕)

+ 𝜶𝝁𝑫𝝁+𝟏𝒆(𝒕) − 𝜷𝝁𝑫−𝝁+𝟏𝒆(𝒕)) 

(7.18) 

Substitute equation (7.12) into equation (7.18) results 

𝑽̇(𝒕) = 𝒔𝑻(𝒕)(𝒒̈𝒅 + 𝑩𝒒̇ + 𝑪𝑮(𝒒) − 𝒒̈𝒅 − 𝑩𝒒̇ − 𝑪𝑮(𝒒)

− 𝜶𝝁𝑫𝝁+𝟏𝒆(𝒕) + 𝜷𝝁𝑫−𝝁+𝟏𝒆(𝒕) − 𝒖𝒓(𝒕)

+ 𝜶𝝁𝑫𝝁+𝟏𝒆(𝒕) − 𝜷𝝁𝑫−𝝁+𝟏𝒆(𝒕)) 

(7.19) 

Simplify equation (7.19) demonstrates 

𝑽̇(𝒕) = 𝒔𝑻(𝒕)(−𝒖𝒓(𝒕)) (7.20) 

Substitute equation (7.13) into equation (7.20) produces 

𝑽̇(𝒕) = 𝒔𝑻(𝒕)(−𝑲𝒓𝒔(𝒕)) (7.21) 

Equation (7.21) satisfies the condition in equation (7.16). Therefore, the proposed 

controller is stable. 

7.5  Koopman theory 

The key to successfully solving a nonlinear dynamical system, according to the 

Koopman operator theory, is to convert the nonlinear system's original form into an infinite 

dimensional state space, resulting in a linear system (Ping, Yin, Li, Liu, & Yang, 2021).  
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The discrete-time definition of the dynamic is (Kaiser, Kutz, & Brunton, 2021): 

𝒙𝒌+𝟏 = 𝑭(𝒙𝒌) (7.22) 

where F is characterized by 

𝑭(𝒙(𝒕𝟎)) = 𝒙(𝒕𝟎) + ∫ 𝒇(𝒙(𝝉))𝒅𝝉
𝒕𝟎+𝒕

𝒕𝟎

 
(7.23) 

The dynamics of the original system become linear when the dynamics of a finite-

dimensional nonlinear system are transferred to infinite-dimensional function space. In an 

infinite-dimensional Hilbert space, g is an observable and a real-valued scalar measurement 

function. Based on this observable, the Koopman operator generates as follows: 

𝑲𝒈 = 𝒈 ∘ 𝑭 (7.24) 

A continuous system can be utilized to implement smooth dynamics. 

𝒅

𝒅𝒕
𝒈(𝒙) = 𝑲𝒈(𝒙) = 𝜵𝒈(𝒙). 𝒇(𝒙) 

(7.25) 

in which K is the Koopman operator. due to the Koopman operator's unlimited 

dimensions, which is important yet troublesome for operation and representation. Applied 

Koopman analysis roughly approximates the evolution of a subspace covered by a limited 

number of measurement functions rather than detailing the development of all 

measurement functions in a Hilbert space. By constraining the operator to an invariant 

subspace, the Koopman operator may be represented as a matrix with limited dimensions. 
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Any combination of the Koopman operator's eigenfunctions can cover a Koopman 

invariant subspace (Kaiser, Kutz, & Brunton, 2021). when the Koopman model's 

eigenfunction 𝝋(𝒙) satisfies eigenvalue 𝜆. 

𝝀𝝋(𝒙) = 𝝋(𝑭(𝒙)) (7.26) 

A Koopman eigenfunction 𝝋(𝒙) is satisfied in continuous time. 

𝒅

𝒅𝒕
𝝋(𝒙) = 𝝀𝝋(𝒙) 

(7.27) 

To approximate the Koopman operator, a finite-dimensional approximation is 

needed on the application side. The DMD technique is one way that can estimate the 

Koopman operator (Kaiser, Kutz, & Brunton, 2021). 

7.6  DMD method 

DMD uses a robust numerical technique to approximate the Koopman operator. 

𝑿′ ≈ 𝑨𝑿 (7.28) 

where 𝑿′is time-shifted of matrix X as: 

𝑿 = [𝒙𝟏 𝒙𝟐 …… .] 

The equation (28) may be used to determine the A as follows: 

𝑨 = 𝑿′𝑿+ (7.29) 

where the Moore-Penrose pseudoinverse is represented by +. Because a normal 

calculation utilizing A would need a substantial amount of processing because of its 
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enormous n, we may utilize Singular Value Decomposition (SVD) on the snapshots to 

identify the dominant characteristics of the pseudoinverse of X (Snyder & Song, 2021). 

𝑿 ≈ 𝑼𝜮𝑽∗ (7.30) 

where 𝑼 ∊ 𝑹𝒏⨉𝒓, 𝜮 ∊ 𝑹𝒓⨉𝒓, 𝑽 ∊ 𝑹𝒏⨉𝒓 , and * demonstrates the conjugate 

transpose. SVD's reduced rank for approximating Z is r. The eigenvectors can be defined 

as: 

Ф = 𝑿′𝑽𝜮−𝟏𝚆 (7.31) 

where W is the eigenvectors of full-rank system dynamic systems.  

Ф = 𝑿′𝑽𝜮−𝟏𝚆 (7.32) 

Let 𝜆 be eigenfunction, then we will have: 

𝑲𝑾 = 𝝀𝑾 (7.33) 

where K is the Koopman operator. 

The demonstration of the linearized dynamic model is as follows: 

𝒅

𝒅𝒕
𝒚 = 𝑲𝒚 + 𝒖 

(7.34) 

7.7  Koopman fractional sliding mode control 

The proposed control method block diagram is shown in Figure 7.2. The fractional 

sliding mode surface for the linearized dynamic model by Koopman theory can be defined 

as: 
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𝒔𝒌(𝒕) = 𝒆𝒌(𝒕) + 𝜶𝑫
𝝁𝒆𝒌(𝒕) + 𝜷𝑫

−𝝁𝒆𝒌(𝒕) (7.35) 

where the ek is the tracking error as: 

𝒆𝒌(𝒕) = 𝒚𝒅 − 𝒚 (7.36) 

where 𝒚𝒅 is desired trajectory tracking. 

Take the derivative of fractional sliding mode surface results 

𝒔̇𝒌(𝒕) = 𝒆̇𝒌(𝒕) + 𝜶𝝁𝑫
𝝁+𝟏𝒆𝒌(𝒕) − 𝜷𝝁𝑫

−𝝁+𝟏𝒆𝒌(𝒕) (7.37) 

Take derivative from equation (7.36) and substitute it into equation (7.37) produces 

𝒔̇𝒌(𝒕) = 𝒚̇𝒅 − 𝒚̇ + 𝜶𝝁𝑫
𝝁+𝟏𝒆𝒌(𝒕) − 𝜷𝝁𝑫

−𝝁+𝟏𝒆𝒌(𝒕) (7.38) 

Substitute equation (7.34) into equation (7.38) introduces 

𝒔̇𝒌(𝒕) = 𝒚̇𝒅 −𝑲𝒚 − 𝒖 + 𝜶𝝁𝑫
𝝁+𝟏𝒆𝒌(𝒕) − 𝜷𝝁𝑫

−𝝁+𝟏𝒆𝒌(𝒕) (7.39) 

Equal equation (7.39) to zero and simplify it produces 

𝒖𝒆𝒒(𝒕) = 𝒚̇𝒅 −𝑲𝒚+ 𝜶𝝁𝑫
𝝁+𝟏𝒆𝒌(𝒕) − 𝜷𝝁𝑫

−𝝁+𝟏𝒆𝒌(𝒕) (7.40) 

The equivalent control is not able to suppress external disturbances. The reaching 

control can be defined as: 

𝒖𝒓𝒌(𝒕) = 𝑲𝒓𝒌𝒔𝒌(𝒕) (7.41) 

where 𝑲𝒓𝒌 is the reaching control gain is positive constant. 

The KFOSMC is defined as: 
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𝒖𝑲𝑭𝑶𝑺𝑴𝑪(𝒕) = 𝒖𝒓𝒌(𝒕) + 𝒖𝒆𝒒(𝒕) (7.42) 

 

Figure 7.2: The proposed control method block diagram. 

 

The stability of the proposed control method can be proved by using the Lyapunov 

theory: 

𝑽(𝒕) =
𝟏

𝟐
𝒔𝒌
𝑻(𝒕)𝒔𝒌(𝒕) 

(7.43) 

Take the derivative from equation (7.43) produces 

𝑽̇(𝒕) = 𝒔𝒌
𝑻(𝒕)𝒔̇𝒌(𝒕) (7.44) 

Substitute equation (7.39) into equation (7.44) produces 
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𝑽̇(𝒕) = 𝒔𝒌
𝑻(𝒕)(𝒚̇

𝒅
−𝑲𝒚−𝒖+𝜶𝝁𝑫𝝁+𝟏𝒆𝒌(𝒕)−𝜷𝝁𝑫

−𝝁+𝟏𝒆𝒌(𝒕)) (7.45) 

Substitute equation (7.42) in equation (7.45) results 

𝑉̇(𝑡) = 𝑠𝑘
𝑇(𝑡)(𝑦̇

𝑑
−𝐾𝑦−𝑢𝑟𝑘(𝑡)− 𝑢𝑒𝑞(𝑡) + 𝛼𝜇𝐷

𝜇+1𝑒𝑘(𝑡)

− 𝛽𝜇𝐷−𝜇+1𝑒𝑘(𝑡)) 

(7.46) 

Substitute equation (7.40) in equation (7.46) introduces 

𝑉̇(𝑡) = 𝑠𝑘
𝑇(𝑡)(𝑦̇

𝑑
−𝐾𝑦−𝑢𝑟𝑘(𝑡)− 𝑦̇𝑑 +𝐾𝑦− 𝛼𝜇𝐷

𝜇+1𝑒𝑘(𝑡)

+ 𝛽𝜇𝐷−𝜇+1𝑒𝑘(𝑡)+ 𝛼𝜇𝐷
𝜇+1𝑒𝑘(𝑡)

− 𝛽𝜇𝐷−𝜇+1𝑒𝑘(𝑡)) 

(7.47) 

Simplify equation (7.47) results 

𝑉̇(𝑡) = 𝑠𝑘
𝑇(𝑡)(−𝑢𝑟𝑘(𝑡)) (7.48) 

Substitute equation (7.41) in equation (7.48) produces 

𝑉̇(𝑡) = 𝑠𝑘
𝑇(𝑡)(−𝐾𝑟𝑘𝑠𝑘(𝑡)) (7.49) 

Equation (7.4) demonstrates that the proposed control method is stable. 

 

7.8  Simulation results 

We simulate three controllers to show the performance of the proposed control 

method. The robot’s specifications are as 𝑀1 = 𝑀2 = 𝐿1 = 𝐿2 = 1 and 𝑔 = 9.81 𝑚/𝑠. 

The PID controller parameters are selected as 𝐾𝑝 = 𝑑𝑖𝑎𝑔{40,40}, 𝐾𝑖 = 𝑑𝑖𝑎𝑔{10,10}, and 
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𝐾𝑑 = 𝑑𝑖𝑎𝑔{20,20}. The FOSMC controller parameters are chosen as 𝐾𝑟 = 10, 𝛼 =

10, 𝛽 = 5, and 𝜇 = 0.75, which the KFOSMC parameters are the same with FOSMC. The  
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Figure 7.3: Tracking trajectory under PID, FOSMC, and KFOSMC controllers. 
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Figure 7.4: Trajectory tracking error under PID, FOSMC, and KFOSMC controllers. 
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Figure 7.5: Velocity of each joints under PID, FOSMC, and KFOSMC controllers. 
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Figure 7.6: Control signals under PID, FOSMC, and KFOSMC controllers. 
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desired trajectory tracking is as 𝑞𝑑 = 𝑦𝑑 = sin (𝑡). The initial conditions of joints 

are as 𝑞1 =
𝜋

2
, 𝑞2 =

𝜋

4
  

Figure 7.3 shows the trajectory tracking of joints 1 and 2 under PID, FOSMC, and 

KFOSMC. It demonstrated that the KFOSMC has better trajectory tracking performance 

in comparison with PID and FOSMC controllers. Figure 7.4 shows the trajectory tracking 

error of joints 1 and 2 under PID, FOSMC, and KFOSMC controllers. For example, the 

tracking error in joint 1 in time of 4 sec under PID controller is around 0.5, but under 

KFOSMC is equal to zero. Also, for that joint FOSMC creates oscillation, but by applying 

KFOSMC, there are no tracking errors. Therefore, the tracking error under KFOSMC is 

zero in comparison to the two other controllers. Figure 3.5 shows the velocity of joints 1 

and 2 under PID, FOSMC, and KFOSMC controllers. Figure 7.6 shows the control signals 

under PID, FOSMC, and KFOSMC controllers. The control signals using KFOSMC 

reduced significantly in comparison with the two other controllers.  

7.9  Conclusion 

This research proposed a new data-driven control method to control a 2 DoF robot 

manipulator. The robot manipulator is highly nonlinear. The Koopman theory is used to 

linearize the nonlinear dynamic model of a 2 DoF robot manipulator. The DMD method 

was applied to obtain the Koopman operator. Then, PID and FOSMC are used to show the 
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controller performance before using the Koopman theory. The simulation results 

demonstrated that the proposed control method has better performance in terms of high 

tracking performance, low tracking error, and low control signals in comparison with PID 

and FOSMC controllers. 
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