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ABSTRACT

While wearable soft robots have successfully addressed many inherent design

limitations faced by wearable rigid robots, they possess a unique set of challenges due

to their soft and compliant nature. Some of these challenges are present in the sensing,

modeling, control and evaluation of wearable soft robots. Machine learning algorithms

have shown promising results for sensor fusion with wearable robots, however, they

require extensive data to train models for different users and experimental conditions.

Modeling soft sensors and actuators require characterizing non-linearity and hysteresis,

which complicates deriving an analytical model. Experimental characterization can

capture the characteristics of non-linearity and hysteresis but requires developing a

synthesized model for real-time control. Controllers for wearable soft robots must be

robust to compensate for unknown disturbances that arise from the soft robot and its

interaction with the user. Since developing dynamic models for soft robots is complex,

inaccuracies that arise from the unmodeled dynamics lead to significant disturbances

that the controller needs to compensate for. In addition, obtaining a physical model

of the human-robot interaction is complex due to unknown human dynamics during

walking. Finally, the performance of soft robots for wearable applications requires

extensive experimental evaluation to analyze the benefits for the user.

To address these challenges, this dissertation focuses on the sensing, modeling,

control and evaluation of soft robots for wearable applications. A model-based sensor

fusion algorithm is proposed to improve the estimation of human joint kinematics,

with a soft flexible robot that requires compact and lightweight sensors. To overcome

limitations with rigid sensors, an inflatable soft haptic sensor is developed to enable gait

sensing and haptic feedback. Through experimental characterization, a mathematical
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model is derived to quantify the user’s ground reaction forces and the delivered

haptic force. Lastly, the performance of a wearable soft exosuit in assisting human

users during lifting tasks is evaluated, and the benefits obtained from the soft robot

assistance are analyzed.
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Chapter 1

INTRODUCTION

Over the past decades, research and development of robot technology have been

on the rise, allowing it to become more common and widely available. Consequently,

there has been an increasing interest in wearable technology with even multiple devices

becoming commercially available. Wearable robots have been studied over several

decades for rehabilitation and physical therapy, mobility assistance and sports training.

Traditional wearable robots consist of rigid links, motors and transmissions that can

be worn by a human user and allow assisting motion, also known as exoskeletons.

While exoskeleton applications have demonstrated promising results, they still possess

challenges and limitations for daily use applications. Some inherent limitations of

exoskeletons are mainly contributed to the heavy and rigid nature of the materials and

components, which pose as a load burden for the user and a risk to safety. As such,

there has been a growing interest, research and development in using soft, compliant

and lightweight materials for wearable robots. This has led to the development of a

new type of wearable technology that uses soft robotics to address these challenges,

also known as exosuits.

Wearable soft robots consist of lightweight, soft and compliant materials for the

design of actuators and the interface with the human user. While wearable soft robots

have successfully addressed some inherent design limitations faced by rigid wearable

robots, they possess a unique set of challenges due to their soft and compliant nature.

Some of these challenges are present in the sensing, modeling, control and evaluation

of wearable soft robots.
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Sensing in wearable soft robotics deals with the design of sensors and fusion

algorithms that utilize sensors that are compatible with the human and the soft robot,

both of which limit the implementation of more common sensors used in traditional

rigid robots, such as joint encoders and strain gauges. Modeling and characterization

of soft robots face the challenges of developing representational models that deal with

complex actuation and non-linear systems, such as fluidic, pneumatic and cable-driven

systems. Control and evaluation of soft exosuits require investigating the effects of

wearable soft robots on humans and evaluating what are the most appropriate control

strategies that maximize the benefit obtained.

To address these challenges, this dissertation will introduce the sensing, modeling,

control and evaluation of soft robots for wearable applications. This dissertation

demonstrates how sensor fusion algorithms with compatible sensors for a soft flexible

robot can improve estimation of human joint kinematics. A soft haptic sensor was

developed and characterized to estimate the user’s ground reaction forces and provide

haptic feedback to the foot. Finally, we evaluate the performance of a wearable soft

exosuit to assist the human user during lifting tasks and analyze the benefits obtained

from the soft robot assistance.

1.1 Wearable Soft Robots

Wearable robots are advanced human symbiotic robotic systems characterized by

suitable shape, kinematic, and weight factors to be worn on the human body with the

function of either augmenting and assisting or restoring human limb function (Frisoli

2019; Pons 2008). Over the past decades, wearable robots have been applied to

facilitate neuro-rehabilitation (Channa, Popescu, and Ciobanu 2020), prevent work-
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related injuries (Theurel and Desbrosses 2019), enhance the performance of sports

training (Elevate Ski, Roam Robotics), and augment human capabilities in labor-

intensive tasks (B. Chen et al. 2016). For example, there are approximately 6.6 million

stroke patients in the USA, and at least 65% of them suffer from gait impairment

(Cirstea 2019). Wearable robotics provides a promising solution to meet this increased

demand for physical therapy and enable in-home rehabilitation (Kubota et al. 2013).

Currently the actuators, sensors, transmission, and braces of wearable robots are

mostly made of rigid materials. Rigid exoskeletons are often composed of heavy

motors and bulky structures that could cause fatigue to the users and restrict their

natural motions. Furthermore, rigid wearable robots require precise mounting and

adjustment for users, and any misalignment with the human joint can jeopardize the

robot’s performance and even pose safety risks to the users (Zanotto et al. 2015).

To address these challenges, there has been a growing interest in introducing soft

materials (e.g., silicone and textiles) into wearable sensors and actuators (Banerjee,

Tse, and Ren 2018). Fluids, cables, and shape-memory-alloy actuators are among the

most popular actuation mechanisms (Thalman and Artemiadis 2020; Lee et al. 2017).

In the meantime, soft sensors have been designed to measure strains and curvatures of

the soft robots using flexible electronics, liquid metals, optical fibers (Saggio et al. 2016;

Chossat et al. 2013; Leal-Junior, Frizera, et al. 2018). Wearable soft robots have

demonstrated many advantages over their rigid counterparts, as they are generally

inexpensive to make, safe to use, lightweight, highly customizable, and able to generate

versatile motion profiles (Agarwal et al. 2016). As a result, research in the field of

wearable soft robotics has been fast expanding in the past decade and has become a

highly prominent sub-topic in the wearable robotics field. Examining the quantity of
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published research articles in the overall wearable robotics field reveals that 27% of

them are about soft robots in 2010 and it increased to 41% in 2020.

Wearable soft robotics is a highly interdisciplinary research topic that requires the

integration of knowledge from material science, solid and fluid mechanics, mechanical

design and manufacturing, modeling and control, and human systems engineering, to

name a few. Wearable soft robots have been integrated with human users as exosuits

to assist various human joints (Alan T. Asbeck et al. 2014), robot manipulators

to augment human capabilities (Nguyen, Mohd, et al. 2019), and haptic devices to

provide cues and feedback to the users (Kanjanapas et al. 2019). While earlier work

in wearable soft robots focused on identifying the appropriate materials and actuation

mechanisms (El-Atab et al. 2020), a large number of recent research in wearable soft

robots focus on integrating these robots with human users by developing novel soft

sensors (Heikenfeld et al. 2018), designing autonomous control algorithms for the

soft robots (Park, Jeong, and Park 2021), and conducting tests with healthy and

impaired users (Alan T Asbeck et al. 2015; S. Sridar et al. 2020). A few wearable soft

robots have been productized to make these new technologies available to the public

(HeroWear; Roam Robotics; ReStore, ReWalk Robotics).

1.2 Sensing in Wearable Soft Robots

Sensing in wearable robotics is vital to obtain crucial information about the

users, actuator states, and environments. Existing wearable sensors, such as inertial

measurement units (IMU), goniometers, load cells, and strain gauges, have been

integrated with rigid exoskeletons. However, these rigid sensors are often incompatible

with soft robots as they compromise the inherent compliance and safety, and also lead
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to misalignment. This motivates the design of soft and flexible sensors that can be

seamlessly integrated with wearable soft robots. This section will discuss the recent

development in wearable soft sensor design and fusion algorithms.

1.2.1 Design of Soft Sensors

The design of soft sensors aims to achieve the sensing capabilities found in biological

systems (Qiu et al. 2020). Wearable soft sensors are capable of measuring strain,

force, curvature, joint angle and a combination of these properties through multimodal

sensing. An overview of soft sensor designs can be observed in Fig. 1.1.

Strain sensing : Common principles employed to measure strain include liquid

eutectic gallium–indium (eGaIn) (Yong-Lae Park, Bor-Rong Chen, and Wood 2012),

biphasic gallium-indium alloy (bGaIn) (Liu, Shah, and Kramer-Bottiglio 2021), aque-

ous ionic solution (Chossat et al. 2013), ionic conductive liquid (Chossat et al. 2015;

Frutiger et al. 2015), capacitive sensing (Atalay, Atalay, Gafford, et al. 2017) and

polymer optical fiber (POF) threads (Harnett, Zhao, and Shepherd 2017). Soft strain

Figure 1.1. Examples of wearable soft sensor designs: (a) eGaIn strain sensor (Kim, Kwon, et al. 2019).
(b) Pneumatic force sensor (Kim, Shin, and Kong 2018). (c) Conductive textile capacitive force
sensor (Holleczek et al. 2010. (d) Polymer optical fiber strain and pressure sensor (To et al. 2018).
(e) eGaIn multimode strain and force sensor (Yong-Lae Park, Bor-Rong Chen, and Wood 2012).
(f) Multimode multifunctional sensor consisting of ionic liquid, conductive fabric and an optical
element for bend, force and strain sensing (T. Kim et al. 2020).
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sensors commonly consist of a conductive material incorporated into stretchable sup-

porting materials such as silicone elastomers (Souri et al. 2020). The conductive filling

serves as the active sensing material that responds to the strain of the encasing. When

the microchannels filled with liquid conductive materials are deformed by stretching,

the electrical resistance of the microchannels increases due to reduced cross-sectional

area, increased channel length, or both (Chossat et al. 2013; Yong-Lae Park, Bor-Rong

Chen, and Wood 2012; Chossat et al. 2015). Recently, bGaIn was developed with

improved stable conductivity over large strains and extreme stretchability, compared

to the commonly used eGaIn (Liu, Shah, and Kramer-Bottiglio 2021).

Sensing strain with soft capacitive sensors is usually achieved by stacking flat or

concentric layers of conductive plates with inter-layers of silicone elastomer, such

that when undergoing strain the distance between the conductive plates changes and

induces a change in the capacitance measurement (Frutiger et al. 2015; Atalay, Atalay,

Gafford, et al. 2017). The conductive layers can be composed of ionically conductive

fluid (Frutiger et al. 2015) or solid metal plates such as aluminum and silver (Atalay,

Atalay, Gafford, et al. 2017). In (Harnett, Zhao, and Shepherd 2017), the POF was

utilized as a light-guiding thread for strain sensing. In POF strain sensors the intensity

of the transmitted light drops along the length of the fiber. As the sensor is stretched

the length of the sensor changes which induces a change in the light intensity.

Soft strain sensors usually demonstrate hyperelastic characteristics, with some

studies reporting stretching twice their original length (Chossat et al. 2013). However,

the viscoelasticity of the material has been shown to create hysteresis in dynamic

stretching (D. Kim et al. 2020). Two independent studies reported a maximum

hysteresis of 26.45% (Lu et al. 2019) and 21.34% (Russo et al. 2015) of the respective

sensor measuring resistance. Furthermore, some have reported drift in the sensor
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measurements over time and as a transient response to fixed strain conditions (Atalay,

Atalay, Gafford, et al. 2017; D. Kim et al. 2020). Overall, capacitance strain sensors

exhibit lower hysteresis and faster response times compared to resistance sensors

(Souri et al. 2020; Atalay, Sanchez, et al. 2017).

Force sensing : To measure force, common mechanisms employed in soft sensors

include pneumatic chambers (Kim, Shin, and Kong 2018), liquid eGaIn (Park et

al. 2010; Vogt, Park, and Wood 2013), conductive textiles (Holleczek et al. 2010; Atalay

et al. 2018), carbon fiber composite (Araromi, Walsh, and Wood 2017; Araromi et

al. 2018), and POF (Leal-Junior, Frizera, et al. 2018). Pneumatic chamber soft sensors

consist of sealed air-tight chambers that demonstrate a change in internal pressure to

applied loads and are commonly manufactured from elastomeric materials or heat-

sealable thermoplastic polyurethane (Kim, Shin, and Kong 2018), similar to Fig. 1.1b.

In dynamic loading, the viscoelastic characteristics influence the measurements and

cause hysteresis (Choi and Kong 2019), which implies that the dynamic characteristics

of the air bladder cannot be neglected (Kyoungchul Kong and Tomizuka 2009). A

hyperelastic pressure transducer was fabricated by embedding silicone rubber with

microchannels of conductive liquid eGaIn (Park et al. 2010). Pressing the surface of the

elastomer with pressure loads deforms the cross-section of the underlying channels and

changes their electric resistance. Circular patterned microchannels with eGaIn allow

sensing surface pressure and exhibit insensitiveness to strains along any axis (Yong-Lae

Park, Bor-Rong Chen, and Wood 2012). Multi-axis force sensing was achieved in

(Vogt, Park, and Wood 2013) by arranging three star-patterned microchannels filled

with liquid eGaIn.

Force sensing with conductive fabrics is achieved by stacking two conductive layers

with an inter-layer of a compressible spacer material such that when the sensor is
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compressed the distance between the layers change and the capacitance measured

between the conductive fabric also changes (Holleczek et al. 2010) (see Fig. 1.1c).

Carbon fiber composites can be used as a conductive structure material that exhibits

changes in electrical resistance when the structure geometry undergoes deformation.

In (Araromi, Walsh, and Wood 2017), tensile loads of the sensor induce changes in

electrical resistance between the carbon fiber composite structures as the layers of the

U-shaped sensor design were deformed closer together or further apart. Multi-axis

force sensing was performed with a set of carbon fiber composite conductors in the

shape of a meander and positioned radially, such that forces on the sensor change the

electrical resistance between the carbon fiber structures (Araromi et al. 2018). The

POF was used in (Leal-Junior, Frizera, et al. 2018) for the detection of insole contact

forces. When the POF sensor is pressed, the sensor bends and induces a variation in

the refractive index due to the deformation of the fiber and stress-optic effect leading

to a change in the light intensity (Leal-Junior, Frizera, et al. 2018).

Curvature and angle sensing : Common principles to measure curvature include

resistive flex sensors (Saggio et al. 2016), liquid eGaIn (Majidi, Kramer, and Wood

2011; Kramer et al. 2011), and POF. Curvature resistive flex sensor designs consist

of electrically conductive materials embedded within a flexible substrate (Saggio

et al. 2016). When undergoing bending the substrate causes a mechanical stress of the

conductive pattern that leads to a change in its electrical resistance. Curvature sensing

with liquid eGaIn can be achieved by stacking two layers interconnected through the

edges and a middle strut that induces compression loads on the liquid microchannel

when the sensor is bent (Majidi, Kramer, and Wood 2011). Furthermore, when this

design is embedded with a serpentine pattern microchannel simultaneous sensing

of curvature and strain is possible (Kramer et al. 2011). Resistive flex sensors are
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commercially available, although they exhibit drift in the sensor measurements over

time, even in mechanically stationary conditions (Saggio et al. 2016).

Soft sensor designs employing wearable inductive coils (Mishra and Kiourti 2019),

POF (Leal-Junior, Frizera, et al. 2018) and piezoresistive sensors (Sun et al. 2015)

have shown the capability to measure the relative angle between segments. Wearable

inductive coils were implemented in (Mishra and Kiourti 2019) to measure the relative

angle between two segments. Relying on Faraday’s Law of Induction, wearable

wrap-around coils were designed to transmit and receive signals from one another

through inductance. As the relative angle between the coils changes, the transmission

coefficient will change due to the misalignment of the coils. This property allows for a

sensing principle that directly reacts to the joint angle state. In (Sun et al. 2015), a

piezoresistive hinge sensor was fabricated which during bending the carbon particles

are pulled apart or closer changing the sensor’s resistance. Inductance-based sensors

have reported robustness to variation in human tissue dielectric properties (Mishra

and Kiourti 2019) and immunity to electromagnetic interference (Sabri et al. 2015).

Multimodal sensing : Recent work has introduced single sensor designs to simul-

taneously sense multiple deformation modes (Yong-Lae Park, Bor-Rong Chen, and

Wood 2012; T. Kim et al. 2020; Van Meerbeek, De Sa, and Shepherd 2018). An early

work (Yong-Lae Park, Bor-Rong Chen, and Wood 2012) achieved sensing vertical

force, and strain in two directions, by stacking two strain sensor layers and one force

sensor layer with microchannels filled with liquid eGaIn (see Fig. 1.1e). A POF was

used in (Van Meerbeek, De Sa, and Shepherd 2018) to measure twisting and bending.

In (T. Kim et al. 2020) (Fig. 1.1f) ionic liquid, conductive fabric and optical sensing

elements were integrated into a single sensor design to allow sensing and decoupling

combined deformation modes of stretching, bending and compression.
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1.2.2 Algorithms for Soft Sensor Fusion

Fusion algorithms in soft sensors allow compensating limitations in individual

sensors and improve the overall measurement accuracy. Kalman Filter (KF) (Pon-

raj and Ren 2018; Tognetti et al. 2015; Leal-Junior, Vargas-Valencia, et al. 2018),

Multiplicative Extended Kalman Filter (MEKF) Vargas-Valencia et al. 2021 and

machine learning techniques (Kim, Kwon, et al. 2019; Jin et al. 2020; Tavassolian

et al. 2020) have been implemented to fuse readings from soft sensors and other

sensing approaches. In (Ponraj and Ren 2018), a KF was implemented to fuse soft

resistive flex sensors with two infrared cameras to improve the accuracy and reliability

of finger-tip position tracking when occlusion is encountered in the camera system.

The KF was also implemented with soft resistance-based textiles (Tognetti et al. 2015)

and POF curvature sensors (Leal-Junior, Vargas-Valencia, et al. 2018) for fusion

with IMU data to improve knee joint angle estimation. This work was extended to

quaternion-based MEKF, which showed further improved accuracy and repeatability

for knee joint angle estimation in the sagittal plane (Vargas-Valencia et al. 2021).

Compared to the KF, MEKF has demonstrated improved estimation results since it

is applicable to non-linear dynamic systems. A limitation of both fusion methods in

wearable applications is that obtaining a model of the human joint dynamics is often

challenging.

To overcome this limitation, machine learning methods have been implemented

to fuse sensor information without requiring a precise model of the human body

dynamics (Kim, Kwon, et al. 2019; Jin et al. 2020; Tavassolian et al. 2020; Yang and

Yin 2021). A long short-term memory (LSTM) model was employed in (Z. Chen

et al. 2020) to fuse multiple soft strain sensors distributed through the human body
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for the reconstruction of the 3D motion of the upper body. LSTM is a deep learning

method effective for capturing long-term temporal dependencies (Greff et al. 2017). A

semi-supervised deep learning architecture was proposed in (Kim, Kim, et al. 2019),

consisting of a sequential encoder network, an alignment network, and a motion

representation network, to estimate 3D position of the lower limb joints based on

information from two soft strain sensors. Artificial Neural Networks (ANN) were

employed in multimodal soft sensors to identify combined deformations of stretching,

bending and compression (T. Kim et al. 2020). ANN (Prado et al. 2020), fuzzy logic

(Kyoungchul Kong and Tomizuka 2009; González et al. 2015), and segmental regression

approach based on a hidden logistic process (RHLP) (Mohammed et al. 2016) have

been implemented to estimate the gait phases upon GCF measured from the soft force

sensors.

Machine learning methods have demonstrated the successful fusion of different

sensors without requiring knowledge of the sensor dynamics. However, they require a

considerable amount of data to train the models. For example, 1000 cycles of sensor

stretching were required to build the training data set for one sensor (Z. Chen et

al. 2020). In many wearable applications, a machine learning model has to be retrained

for each human subject since the anthropometric information significantly affects the

training data. This can be inconvenient for the users. In addition, wearable soft

sensors can slide over the human body with human movement, which may invalidate

the learned model and require frequent modeling retraining.
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1.3 Modeling and Characterization of Soft Sensors and Actuators

Modeling and characterization in wearable robotics are crucial for real-time robust

control and estimation with soft robots and sensors. However, analytically deriving

a dynamic model of inflatable soft robots and sensors is a complicated task due to

complex geometrical deformations, material nonlinearities and hysteresis, and air

compressibility (Xavier et al. 2022). In soft robots, softness is not concentrated at

the joint level but instead, it is typically distributed across the complete structure,

resulting in a continuously deformable structure (Della Santina, Duriez, and Rus

2023).

Although deriving an analytical model for soft robots and sensors is highly complex,

several studies have successfully derived and validated analytical models under certain

conditions and assumptions. For example, in (Nesler, Swift, and Rouse 2018) an

analytical torque model of an inflatable actuator is derived. This model utilizes the

geometry of the actuator and the internal pressure to estimate the torque generated.

Since these models are based on the geometrical state of the actuator, the accuracy of

the model ultimately depends on the manufacturing quality of the actuators. However,

many soft actuators and sensors are hand manufactured and assembled (Nguyen and

Zhang 2020), and the inherent imperfections of the process lead to a mismatch between

the estimated and the actual geometry of the actuator. This ultimately complicates

achieving precise torque control of such actuators, which is crucial for optimal control

and estimation of assistive devices. In addition, typical analytical models do not

capture some of the complex characteristics of soft actuators and sensors such as

nonlinearities and hysteresis.

Finite Element Models (FEM) are a typical tool employed to derive an approximate
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model of soft actuators and sensors. FEM has been successfully implemented to predict

the kinematics and force output of fabric soft pneumatic actuators (Nguyen and Zhang

2020). However, the vast majority of FEM implementations employ quasi-static

simulations with pressure changes being incremented in small time steps (Xavier

et al. 2022). This leads to inaccuracies in dynamic applications, such as those involved

with wearable assistive devices, in which the quasi-static assumption is no longer valid.

Mechanical characterization has been an alternative to analytical and computa-

tional models, given the advantage that this method directly collects the response of

soft sensors and actuators. A clear advantage of mechanical characterization is that it

captures the nonlinearities and hysteresis characteristics. Mechanical characterization

has been employed to derive quasi-static models of torque for soft inflatable actuators

(O’Neill et al. 2022). However, as with FEM, these quasi-static models become unreli-

able in dynamic conditions, which makes them unreliable for real-time precise control

and estimation of soft wearable devices.

1.4 Evaluation of Wearable Soft Robots

Wearable soft robots have been tested on both healthy users and impaired users

with slightly different goals. During healthy participant testing, the primary goals are

to justify the design requirements, evaluate the overall benefit for healthy users, and

provide preliminary evidence for the potential benefit on impaired users. Metabolic

cost (Alan T Asbeck et al. 2015; Cao et al. 2020; Ding et al. 2016) and muscle

effort (Saivimal Sridar et al. 2018; W. Kim et al. 2020; Al-Fahaam et al. 2018; Masia

et al. 2018; Shuangyue Yu et al. 2019) are the two primary evaluation criteria for

healthy users. For impaired user studies, the goal is concentrated on evaluating the
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user’s potential benefit when wearing the device and improvements in functional

evaluation tasks are another main criterion for impaired users (Hussain et al. 2017;

Tang et al. 2019; Ciullo et al. 2020; Zhou et al. 2019; Siviy et al. 2020; Hussain

et al. 2016).

The metabolic cost reflects the overall energy changes when a wearable robot

actively assists a user. In (Alan T Asbeck et al. 2015), a preliminary study was con-

ducted on four healthy users to determine the gross benefit (device active versus device

worn but inactive). A statistically significant reduction of the averaged metabolic was

observed with the device being active. In (Cao et al. 2020), a study was conducted

on three healthy users to evaluate the benefit of an untethered soft hip exosuit. The

metabolic cost was reduced by 15.28% when full gait cycle assisted was compared with

no device condition. Compared to the case without a soft robot, a minimal increase in

the metabolic cost is expected with a passive soft wearable robot, and a reduction in

metabolic cost is expected when the device is active. The metabolic cost can provide

an overview of the benefits of a soft wearable robot, but it cannot provide details on

the kinematic and kinetic changes of the assisted joint(s).

The muscle effort, in contrast to the metabolic cost, indicates the changes in a

specific muscle or muscle group’s activity when the attached device is active ver-

sus inactive (Theurel et al. 2018). Electromyography (EMG) sensors are the most

commonly used non-invasive tools to estimate muscle force. In (Saivimal Sridar

et al. 2018), a soft inflatable knee exosuit was tested on one healthy participant to

assist the knee extension during the swing phase. Five EMG sensors were attached

to the lower limb to evaluate the muscle efforts (device active versus inactive). A

reduction was observed for the quadriceps when the device was active. Similarly, in

(Li and Hashimoto 2017), a polyvinyl chloride gel soft hip actuator was tested on one
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stroke patient with EMG sensors attached to the lower limb. It was demonstrated

that the device could reduce the burden on the lower limbs’ muscles during walking

with an approximate reduction of 17% for the rectus femoris muscle, 11% for the

Sartorius, and 5% for the hamstring. Similar to the metabolic cost, wearing a passive

soft wearable robot may not significantly increase the muscle effort and a reduction is

also expected when the robot is active. Although EMG sensors provide reliable muscle

force estimation, their performance is quite sensitive to factors like skin conditions,

and external load on the sensing area.

The improvements in functional evaluation tasks reflect the impaired user’s perfor-

mance changes in a specific functional task when a soft wearable robot is turned on. In

(Hussain et al. 2017), a soft supernumerary finger was attached to one impaired user

to regain the grasping function. The Box and Block Test and the Franchy Arm Test

were performed on the participant, and improvements were observed in both cases. In

(S. Sridar et al. 2020), a soft knee exosuit was applied to three impaired participants.

A timed up-and-go test was performed to evaluate the device’s performance during

overground waking and a reduction in execution time was observed. In (Awad, Kudzia,

et al. 2020), a cable-driven soft exosuit was tested on six participants in the chronic

phase after the stroke. Both 10-meter walk and six-minute walk tests were conducted

for all impaired users. Compared to the inactive case, the user walked 0.14 m/s during

the first test and traveled 32 m farther during the second test on average. Similarly,

in (Awad, Esquenazi, et al. 2020), the cable-driven soft exosuits were mounted on 44

post-stroke users for treadmill and over-ground training. After a 5 days training session

with the device active, the average maximum walking speed for both device-assisted

and unassisted was increased by 0.1 m/s and 0.07 m/s. The functional evaluation
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task is specifically selected for each class of the impaired user and the assistance from

the soft robots.

It should be noted that while both soft and rigid wearable robots have been tested

on healthy or impaired users, limited research directly compares the performance of

rigid and soft robots (Chiaradia et al. 2018), which presents an exciting topic for

future research. In general, soft wearable robots have a great potential for assisting

activities of daily living without close supervision by medical professionals because of

their advantages in safety (Pang et al. 2020) and comfort (Koizumi et al. 2020). Due to

the use of soft materials, human users will be at a lower risk even when the actuators

malfunction or misalign with the human joints, compared to their rigid counterparts.

While both active rigid and soft robots have been shown to be effective for healthy and

impaired users, only soft robots can be worn passively without significantly increasing

metabolic costs (Cao et al. 2020) or muscle efforts (Li and Hashimoto 2017). Hence, a

user can wear these soft robots for a long time without feeling uncomfortable. Despite

many advantages, there are still inherent problems yet to be resolved in soft wearable

robots, such as friction in cable-driven systems (X. Yang et al. 2019) and slow response

in fluid-driven systems (Saivimal Sridar et al. 2018).

1.5 Contributions

While wearable soft robots have successfully addressed some inherent design

limitations faced by rigid wearable robots, they possess a unique set of challenges

due to their soft and compliant nature. Some of these challenges are present in the

sensing, modeling, control and evaluation of wearable soft robots.

Sensing in wearable soft robotics deals with the design of sensors and fusion
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algorithms that utilize sensors that are compatible with the human and the soft robot,

both of which limit the implementation of more common sensors used in traditional

rigid robots, such as joint encoders and strain gauges. Modeling and characterization

of soft robots face the challenges of developing representational models that deal with

complex actuation and non-linear systems, such as fluidic, pneumatic and cable-driven

systems. The evaluation of soft exosuits requires investigating the effects of wearable

soft robots on humans and evaluating what are the most appropriate control and

evaluation strategies that maximize the benefit obtained.

To address the unique challenges in wearable soft robots, this dissertation studies

the sensing, modeling, control and evaluation of soft robots for wearable applications.

Through three different case studies, this dissertation will aim at advancing the state-

of-the-art in wearable technology by addressing individual challenges in the sensing,

modeling and evaluation of soft robots.

In Chapter 2, a model-based sensor fusion algorithm in a flexible origami robot is

developed for the expedited deployment and estimation of different users in diverse

conditions. This is an advantage to machine learning estimation algorithms that

require extensive data sets for model training. The efficacy of the proposed algorithm

for human state estimation is tested through comprehensive human evaluations.

Chapter 3 addresses inherent limitations with rigid sensors and haptic actuators

through the development of an inflatable soft haptic sensor. One of the main novelties

of this device is that it enables gait sensing and provides haptic feedback to the user

with a single compact instrument, a characteristic that is uncommon for rigid sensors

and haptic motors. Models for soft sensors and haptic actuators are developed through

mechanical characterization in quasi-static and dynamic conditions. The efficiency of
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the developed device for gait sensing and haptic feedback is evaluated through human

subject evaluations.

Lastly, in Chapter 4, comprehensive human testing is performed to study the

neuromuscular and biomechanical effects of a wearable soft assistive device. A soft

inflatable exosuit is utilized to assist the knee extension during a manual lifting task

and the effects on the back and lower-limb muscles are analyzed. A reduction in the

effort of muscle groups indicates the feasibility of reducing the risk of injury during a

lifting task. This study exemplifies the need for comprehensive human evaluations in

order to fully understand the benefit of wearable assistive devices.
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Chapter 2

A KINEMATICALLY CONSTRAINED KALMAN FILTER FOR SENSOR FUSION

IN A WEARABLE ORIGAMI ROBOT

2.1 Abstract

Sensing for wearable robots is an ongoing challenge, especially given the recent

trend of soft and compliant robots. Recently, a wearable origami exoshell has been

designed to sense the user’s torso motion and provide mobility assistance. The

materials of the exoshell contribute to a lightweight design with compliant joints,

which are ideal characteristics for a wearable device. Common sensors are not ideal

for the exoshell as they compromise these design characteristics. Rotary encoders are

often rigid metal devices that add considerable weight and compromise the flexibility

of the joints. IMU sensors are affected by environments with variable electromagnetic

fields, and therefore not ideal for wearable applications. Hall effect sensors and

gyroscopes are utilized as alternative compatible sensors, which introduce their own

set of challenges: noisy measurements and drift due to sensor bias. To mitigate this, we

designed the Kinematically Constrained Kalman Filter for sensor fusion of gyroscopes

and Hall effect sensors, with the goal of estimating the human’s torso and robot joint

angles. We augmented the states to consider bias related to the torso angle in order to

compensate for drift. The forward kinematics of the robot are incorporated into the

Kalman Filter as state constraints to address the unobservability of the torso angle

and its related bias. The proposed algorithm improved the estimation performance

of the torso angle and its bias, compared to the individual sensors and the standard
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Kalman Filter, as demonstrated through bench tests and experiments with a human

user.

2.2 Introduction

Recently, a new trend for wearable devices referred to as wearable origami exoshell

has been designed, which consists of origami modular structures that combine rigid and

flexible materials (Li et al. 2023). The exoshell is fabricated with layers of cardboard

and flexible polyester film, contributing to a lightweight and compliant device, which

are ideal characteristics for a wearable design. The origami exoshell robot consists

of triangular origami links that together form a serial link robot with flexible joints.

This device was designed to be worn on the back of a human, as shown in Fig. 2.1, to

sense the user’s torso motion and provide mobility assistance.

Sensing for wearable robots is an ongoing challenge, especially given the recent

trend of soft and compliant robots (E. Q. Yumbla et al. 2021). While placing rotary

encoders at the robot’s joints has been a common solution (Tiboni et al. 2022), our

origami exoshell design is not ideal for traditional encoders. Rotary encoders are often

rigid metal devices that add considerable weight to the design. Furthermore, the

rigidness of typical encoders affects the robot’s structural compliance, compromising

the flexibility of the layer and therefore the mobility of the joint (F. Yumbla et al. 2022).

As an alternative, inertial measurement units (IMU) are used to measure the

robot and human kinematics (Filippeschi et al. 2017). IMUs consist of a gyroscope,

an accelerometer and a magnetometer. Although some studies have achieved good

performance with IMU sensors, they often rely on using the magnetometer for drift

correction (Wittmann, Lambercy, and Gassert 2019). This method is not ideal for
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long-term wearable applications as it has been commonly reported that changes in the

environment’s magnetic field affect the magnetometer’s reliability (Ahmad et al. 2013).

Furthermore, it is often required to embed electronic hardware within the robot,

which will inflict even more disturbances due to the magnetic field generated by these

electronic components.

To overcome limitations in individual sensors, many studies have utilized sensor

fusion algorithms, such as the Kalman Filter (KF). Several studies have been successful

at improving estimation performance with the KF using a serial link robot similar

to our origami exoshell. For example, in several studies (Lee and Choi 2019; Jeon,

Tomizuka, and Katou 2009), a KF was designed to fuse multiple sensors in a rigid

and fixed serial link robot. While performance was improved, the algorithms have

the underlying assumption that the base coordinate frame is fixed, and therefore

cannot be applied when the robot is in free motion while worn by a human user.

Some studies have in fact focused on KF for wearable applications (Xu et al. 2018;

Ponraj and Ren 2018), but they are commonly designed for estimating the human

alone and do not take into account integration with a wearable robot system which

introduces electromechanical disturbances to the sensors. In (Xu et al. 2018), the

authors fuse the information from multiple IMU, but they do not take into account

magnetic disturbances from either the environment or a wearable robot system.

The sensor hardware limitations discussed are hard constraints of our origami robot

due to its design characteristics. Since placing an encoder is not possible and using

magnetometers is not ideal, in this study we aim at encoder- and magnetometer-free

sensor configurations. We utilize Hall effect sensors and gyroscopes as these sensors

are lightweight, compact, and do not affect the flexibility of the joints. This introduces
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additional challenges such as noisy measurements from the Hall sensor and drift due

to gyroscope bias.

To mitigate the limitations of each individual sensor, we design a KF for sensor

fusion of the gyroscopes and Hall effect sensors, to attenuate Hall effect sensor noise

and compensate for drift due to gyroscope bias, which are the primary limitations of

these sensors. The KF design is tailored towards our specific application: to estimate

the human’s torso and robot joint angles with a wearable serial link robot (with

no fixed base frame). To compensate for drift, the bias related to the kinematics

of each joint was included as a state estimate. Introducing these additional state

estimates leads to the unobservability of the KF, specifically of the bias related to

the torso kinematics. To handle this issue, we incorporate the forward kinematics of

the robot into the KF as state constraints. Previous theoretical studies have noted

the possibility of utilizing the state constraints to increase the observability of the

KF (Alouani, Blair, and Watson 1991), and through this study, we demonstrate this

approach for improving estimation performance with a wearable serial link robot. The

proposed algorithm was evaluated on the origami exoshell through bench tests and

with human participants wearing the device. Our formulation is a general approach

that can be applicable to many wearable robots that contain a kinematic chain, such

as lower-limb exoskeletons (Esquenazi et al. 2012; Zoss, Kazerooni, and Chu 2006;

Tsukahara et al. 2010), back spine robots (X. Yang et al. 2019; Song et al. 2021;

Roveda et al. 2020), and many other devices similar to our origami exoshell.

The remainder of this chapter is organized as follows. Section 2.3 discusses the

exoshell robot design and sensor hardware, and Section 2.4 presents the formulation

of our proposed algorithm: the Kinematically Constrained Kalman Filter (KCKF).

Section 2.5 describes the experiments to evaluate the algorithm and presents the
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results along with a discussion. Finally, the conclusions and future work are discussed

in Section 2.6.

2.3 System Hardware

The system consists of an origami exoshell robot with embedded sensors throughout

the structure of the robot, as presented in Fig. 2.1. The origami robot design and the

sensors will be described in the following sections.

Figure 2.1. Origami exoshell and experimental setup to evaluate the kinematic estimation of the
fusion algorithm: (a) bench test setup, and (b) test with the human user wearing the origami exoshell.
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Figure 2.2. (a) Origami exoshell design; arrows indicate direction of rotation. (b) Hall effect sensors
are mounted at each joint, and gyroscopes are mounted within each link. (c) The exoshell consists of
triangular origami modules that form a serial link robot with discrete joints when connected together.

2.3.1 Origami Robot Design

The basic building module of the origami exoshell is a triangular origami link that

enables one degree of freedom (DOF) rotational motion with a 60 deg range of motion

(ROM). The triangular modules are connected next to each other to form a serial link

robot, as depicted in Fig. 2.2. The modularity of this design allows the assembly of

wearable serial link robots with multiple DOF that are capable of achieving rotational

orientation in three dimensions (3D). The origami exoshell was designed to be worn
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on the back of the human, as shown in Fig. 2.1, in order to estimate and assist the

user’s torso motion. More details on the origami exoshell design can be found in (Li

et al. 2023).

The triangular modules are fabricated with two outer rigid layers of cardboard and

a middle flexible polyester layer that forms a living hinge. The flexibility of the layer is

the fundamental mechanism that allows 1-DOF rotational motion of the origami. The

selected materials are lightweight and have inherent compliance, ideal for wearable

devices. As shown, the origami exoshell design avoids the use of heavy and rigid metal

elements that could compromise the robot’s lightweight and compliant characteristics.

Rotary encoders are typically rigid and bulky metal devices. Therefore, embedding

rotary encoders within the origami exoshell is not possible as it adds considerable

weight and because there is limited area for mounting. Furthermore, the rigidness of

typical encoders affects the robot’s structural compliance, compromising the flexibility

of the layer and therefore the mobility of the joint. As a solution, the origami robot

was embedded with Hall effect sensors as an alternative to rotary encoders. Gyroscopes

were also mounted at each module to obtain angular rate measurements of each link.

2.3.2 Hall Effect Sensors

Hall effect sensors (DRV5053, Texas Instrument, Dallas, TX, USA) were used on

the origami robot to measure the relative angle of the joint. These sensors do not

compromise the exoshell design as they are compact and lightweight, with a size of

4 mm by 3 mm, and a weight of 0.1 g. In contrast, a typical rotary encoder weighs

approximately 100 g.

Hall effect sensors have the capability to sense the magnetic flux density. A pair of
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Figure 2.3. Hall effect sensors characterization plot. Two Hall effect sensors are placed on opposite
sides of the origami joint, depicted as colored boxes in the illustration.

magnets and Hall effect sensors were mounted on the joints of the origami robot, as

depicted in Fig 2.2. In this scenario, changes in the joint angle lead to changes in the

magnetic flux density measured by the Hall effect sensor, due to changes in alignment

and proximity between the magnetic field and the sensor. As such, the Hall effect

sensor exhibits a response to the joint angle state. This working principle allows using

a Hall effect sensor for 1-DOF joint angle estimation.

A sensor characterization was performed to analyze the sensor response to joint

angle state. A cyclic motion was performed on a single origami hinge while recording

Hall effect sensor measurements and ground truth measurements of the origami’s

joint angle obtained from a Motion Capture system (T40s, VICON Inc., Los Angeles,

CA). The sensor response is presented in Fig. 2.3. An exponential curve fitting was

performed over the Hall effect sensor characterization data to obtain a mathematical

model that allows estimating the origami’s joint angle. The model for one sensor is
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summarized in (2.1) in which V is the voltage measured from the sensor and θh is the

estimated angle measurement of the Hall effect sensor.

θh(V ) = 0.07e
2.87V

− (2.22 × 105)e−8.43V (2.1)

The sensor characterization in Fig. 2.3 demonstrates a significant saturation for one

side of the origami’s joint angle (e.g., θ > 0) which considerably affects the estimation

performance for this region. As such, two Hall effect sensors were mounted on opposite

sides of each joint in order to measure the complete ROM by operating simultaneously,

as illustrated in Fig. 2.3.

2.3.3 Gyroscope Sensor

Gyroscope sensors (LSM6DSO, STMicroelectronics, Geneva, Switzerland) were

used on the origami robot to measure the angular rate of the links and estimate the

joint angular position. The gyroscopes were mounted on each link of the origami

exoshell robot as demonstrated in Fig. 2.2. The relative orientation between each

gyroscope was physically aligned to one another by means of design constraints, and

as such allowed the assumption that in the neutral position the inertial frames of the

gyroscopes are aligned. With this assumption, the angular rate of each joint can be

computed by measuring the neighboring gyroscopes as follows,

θ̇i = ωi −ωi−1 (2.2)

where θ̇i = [θ̇x θ̇y θ̇z]i is the 3D angular speed of joint i with respect to the x-, y-
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and z-axis, and ωi = [ωx ωy ωz]i is the gyroscope 3D angular rate measurement of link

li with respect to the x-, y- and z-axis.

The joint angle can be estimated by integration of the joint’s angular rate (2.2)

obtained through the gyroscope measurements. However, a major disadvantage is

that integration of the gyroscope signal leads to a drift in the joint angle estimate

that decays performance over extended use.

2.4 Sensor Fusion With Kalman Filter

The origami robot was integrated with two different types of sensors: gyroscopes

and Hall effect sensors. Both types of sensors have different sensing capabilities but

complementary qualities for joint angle estimation. The Hall effect sensors are able to

directly measure the joint angle state but provide a significantly noisier measurement.

In contrast, gyroscopes provide a less noisy estimate of the joint angle but they

suffer from bias which significantly affects the estimation performance over time.

The limitations and advantages of each sensor have complementary properties to

one another, as the Hall effect sensor can be used to compensate for the drift in

the gyroscopes measurements, and the gyroscope provides a significantly less noisy

measurement input. These complementary properties make sensor fusion an ideal

method to overcome the individual limitations of each sensor and improve joint angle

estimation performance.
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2.4.1 Kalman Filter Algorithm Formulation

The KF was selected as the method to fuse the sensor information from the

gyroscopes and the Hall effect sensors. The formulation of our KF will consider the

general case of a serial link origami robot with n joints and three DOF at each joint.

This formulation aims to estimate the 3D kinematics of the robot and the human.

The standard form of the KF for the discrete domain in state space consists of the

state transition equation (2.3) and the measurement equation (2.4).

x(k + 1) = Ax(k) +Bu(k) + ν(k), (2.3)

y(k) = Cx(k) + υ(k), (2.4)

where x(k) ∈ R(6n+6)×1 and y(k) ∈ R(6n+3)×1 are the system state and measurement

vectors at time k; ν(k) and υ(k) are the process noise and measurement noise with

covariances Q ∈ R(6n+6)×(6n+6) and R ∈ R(6n+3)×(6n+3).

Considering a serial link robot with n joints, and two Hall effect sensors per joint,

the system measurement is given by (2.5),

y(k) = [θl
h1
(k) θr

h1
(k) ⋯ θl

hn
(k) θr

hn
(k) ]T , (2.5)

where θl
hi
= [θlhx θlhy θlhz]i and θr

hi
= [θrhx θrhy θrhz]i are the left side (θl

hi
) and right side

(θr
hi

) Hall effect sensor angle measurements of joint i with respect to the x-, y-, and

z-axis.

The input to the system is the angular rate, as it is imposed by the human’s
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movement.

u(k) = [ω1(k) ω2(k) ⋯ ωn+1(k) ]
T . (2.6)

The system states x(k) include the robot joint angles θi = [θx θy θz]i and the human

torso angles ϕi = [ϕx ϕy ϕz]i with respect to the x-, y- and z-axis, as depicted in Fig. 2.4.

The human torso angle ϕ corresponds to the robot’s end-effector orientation with

respect to the base frame, as shown in Fig. 2.4(b). To compensate for gyroscope drift,

the system state of the standard KF was augmented to include an estimation of the

gyroscope sensor bias bi. The system states are given by (2.7), where bi = [bx by bz]i

are the gyroscope bias corresponding to joint i, and bϕ = [bx by bz]ϕ is the bias

corresponding to ϕ.

x(k) = [θ1(k) θ2(k) ⋯ θn(k) ϕ(k)

b1(k) b2(k) ⋯ bn(k) bϕ(k) ]
T

(2.7)

With this formulation, the measurement matrix C is,

C =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I3 03 ⋯ 03 03 ⋯ 03

I3 03 ⋯ 03 03 ⋯ 03

03 I3 ⋯ 03 03 ⋯ 03

03 I3 ⋯ 03 03 ⋯ 03

⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮

03 03 ⋯ I3 03 ⋯ 03

03 03 ⋯ I3 03 ⋯ 03

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (2.8)

where In is a n×n identity matrix, and 0n represents a n×n matrix with all elements

being zero. The structure of the measurement matrix C shows that for each joint two
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Figure 2.4. (a) Human wearing the origami exoshell robot; torso angles ϕ correspond to the relative
orientation between the coordinate frames of the top and bottom body segments. (b) Illustration
of the origami exoshell robot with state variables; the torso angles ϕ correspond to the relative
orientation between the coordinate frames of the base and the end-effector links of the origami robot.

Hall effect sensors measure simultaneously the angle state to avoid loss of information

due to sensor saturation.

For the process model of the system, we assume the following discrete first-order

dynamic model,

θi(k + 1) = θi(k) + (ωi+1(k) −ωi(k) − bi(k))ts, (2.9)
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where ts is the time between sampled measurements. The process model in (2.9)

describes the evolution of the joint angle state and incorporates the gyroscope mea-

surement and its related drift due to sensor bias.

Similarly, the process model for the human’s torso angle is given by (2.10). The

human torso angle ϕ corresponds to the robot’s end-effector orientation with respect

to the base, as depicted in Fig. 2.4, and therefore utilizes the gyroscope measurements

of the base (ω1) and the end-effector link (ωn+1) to simulate a virtual joint. To

compensate for the combined bias effect of the two gyroscopes at the distal ends of

the robot, a bias of the virtual joint bϕ is incorporated into the process model.

ϕ(k + 1) = ϕi(k) + (ωn+1(k) −ω1(k) − bϕ(k))ts (2.10)

According to this process model, the transition matrix A is given by (2.11).

A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I3 03 ⋯ 03 03 −I3ts 03 ⋯ 03 03

03 I3 ⋯ 03 03 03 −I3ts ⋯ 03 03

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

03 03 ⋯ I3 03 03 03 ⋯ −I3ts 03

03 03 ⋯ 03 I3 03 03 ⋯ 03 −I3ts

03 03 ⋯ 03 03 I3 03 ⋯ 03 03

03 03 ⋯ 03 03 03 I3 ⋯ 03 03

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

03 03 ⋯ 03 03 03 03 ⋯ I3 03

03 03 ⋯ 03 03 03 03 ⋯ 03 I3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2.11)

The input model is given by the matrix in (2.12) according to the process model.
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B =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−I3ts I3ts 03 ⋯ 03 03

03 −I3ts I3ts ⋯ 03 03

03 03 −I3ts ⋯ 03 03

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

03 03 03 ⋯ −I3ts I3ts

−I3ts 03 03 ⋯ 03 I3ts

03n+3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2.12)

Then, the process noise covariance for this model is,

Q =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ts4

4 I(3n+3) ts3

2 I(3n+3)

ts3

2 I(3n+3) ts
2I(3n+3)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2.13)

In the next section, the standard formulation of the KF will be augmented to

incorporate state constraints over the joint kinematics.

2.4.2 State Constraints in the Kalman Filter

Since the origami robot consists of a series of interconnected links, there exists

a kinematic chain that imposes state dependencies between a particular joint and

the subsequent joints. Examining the illustration in Fig. 2.4, we can identify that

the human torso angle corresponds to the end-effector orientation, which can also be

obtained through the forward kinematics of the robot. For a serial link robot, the

equation of the forward kinematics F depends on the states of all the robot joints. In

our case, the forward kinematics that relates to the human torso angle are given by
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(2.14).

ϕ = F (θ) = Σθi = θ1 + θ2 +⋯ + θn. (2.14)

The forward kinematics equation provides an equality state constraint in the form

of (2.15), which can be implemented into the KF.

Dx(k) = d (2.15)

The KF measurement equation can be augmented to include equality state con-

straints by treating it as a perfect measurement as shown in (2.16), where 03,1

represents a 3 × 1 vector with all elements being zero.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y(k)

d

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C

D

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

x(k) +

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

υ(k)

03,1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2.16)

In this context, the corresponding values for the variables of the state constraints

are d = [0 0 0]T , and

D = [I3 I3 ⋯ I3 − I3 03 03 03 ⋯ 03 03] . (2.17)

To incorporate the kinematic state constraints into the KF formulation, the

measurement vector and the measurement matrix were augmented as shown below.

y(k)
KCKF

= [θl
h1
(k) θr

h1
(k) ⋯ θl

hn
(k) θr

hn
(k) 01,3 ]

T (2.18)
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C
KCKF

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I3 03 ⋯ 03 03 03 03 ⋯ 03 03

I3 03 ⋯ 03 03 03 03 ⋯ 03 03

03 I3 ⋯ 03 03 03 03 ⋯ 03 03

03 I3 ⋯ 03 03 03 03 ⋯ 03 03

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

03 03 ⋯ I3 03 03 03 ⋯ 03 03

03 03 ⋯ I3 03 03 03 ⋯ 03 03

I3 I3 ⋯ I3 −I3 03 03 ⋯ 03 03

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2.19)

Now, according to the modified measurement equation, the measurement noise

covariance R is given by,

R =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

σhall
2I6n 06n×3

03×(6n+3)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (2.20)

where 0n×m represents a n ×m matrix with all elements being zero, and σhall is the

standard deviation of the Hall effect sensor noise which was obtained experimentally

(σhall = 3.2 deg).

2.4.3 Observability of the Kalman Filter

A KF with a system of unobservable states will not converge to a meaningful

solution, since by definition, an unobservable state is one in which no information may

be obtained through the measurement equations (Southall, Buxton, and Marchant

1998). The observability of the KCKF was analyzed, which takes into account the

process model (2.3) and measurement equation (2.4). A system with a state vector
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x(k) of dimension N is observable if the observability matrix O defined in (2.21), has

a row rank N .

O =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C

CA

⋮

CAi

⋮

CAN−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2.21)

We computed the observability matrix O and analyzed the observability of each

state variable by inspecting that the corresponding column vector of O is linearly

independent. The observability matrix of the KCKF, defined by (2.11) and (2.19),

has row rank N , which implies that the system has full observability of all the states.

In contrast, the observability matrix of the standard KF, defined by (2.11) and (2.8),

which does not incorporate the kinematic state constraints, has a row rank N − 6,

which reveals that the system is unobservable. Specifically, the state variables that

are unobservable are the 3D torso angle ϕ and its related bias bϕ.

The observability analysis reveals that incorporating forward kinematics as state

constraints contribute to achieving the observability of the system. This is because

the KCKF treats the forward kinematics of the robot as measurements and provides

information of the torso angle state ϕ in (2.10), which combined with (2.9) permits

observability of the related bias state bϕ.

36



2.5 Experiments, Results and Discussion of Fusion Algorithm Performance

The estimation performance of the sensor fusion algorithm was verified with the

origami exoshell design presented in Fig. 2.1. The joint kinematics of the origami

robot were estimated with the sensor fusion algorithm and compared to ground truth

measurements obtained from a motion capture system. Three types of experiments

were performed to evaluate the performance of the algorithm: cyclic motion test,

extended use test, and evaluation with a human user. Through the experiments we

will demonstrate the capability of our fusion algorithm to: 1) attenuate sensor noise, 2)

compensate drift due to sensor bias, 3) be robust for extended use, and 4) be capable

of improving kinematic estimation performance.

2.5.1 Cyclic Motion Experiments

The motion performed on the origami robot was aimed to mimic the human’s

motion during gait. A cyclic motion, similar to the motion of the human’s torso

during walking, was manually induced on the origami robot.

The experimental setup can be seen in Fig. 2.1(a). For this experiment, the origami

robot consisted of five links, and four joints (n = 4). Two of the joints allowed rotation

about the x-axis (θ1 and θ3) and the other two about the y-axis (θ2 and θ4). With this

configuration, the origami robot can perform rotational motion in two dimensions (2D).

Therefore, the KCKF will estimate the robot’s and the human’s 2D joint kinematics.
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Figure 2.5. Joint kinematic estimation of individual sensors and the KCKF sensor fusion algorithm.
Included are the robot kinematics of: (a) θ3 (x-axis rotation), and (b) θ4 (y-axis rotation).

2.5.1.1 Results of Sensor Fusion and Individual Sensors

The results of the sensor fusion estimation and the individual’s sensor estimation

through the experiment for two robot joints (θ3x and θ4y) are presented in Fig. 2.5.

This figure compares the kinematics estimation obtained from each individual sensor

and the estimation from the proposed KCKF. In this figure, it can be observed that the

Hall effect sensor produces noisy estimates that deviate from the true value, especially

at high joint angles. In addition, the angle estimation obtained from the gyroscope

integration demonstrates significant drift, which can be easily visualized at the end

of the experiment, approximately after 90 sec. The proposed KCKF sensor fusion
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algorithm provided a smooth and drift-free joint angle estimate, compared to Hall

sensor measurements and gyroscope integration, respectively.

The root-mean-square errors (RMSE) for the complete trial were computed using

the motion capture data as ground truth. The joint angle RMSE of the individual

sensors and the fusion algorithm are summarized in Table 2.1. The overall results

reveal that the sensor fusion algorithm is capable of significantly reducing the RMSE

compared to the estimates obtained from individual sensors. Our proposed fusion

algorithm achieves a maximum RMSE reduction of approximately 87% compared to

the estimate of the lowest performing sensor. Furthermore, the fusion algorithm was

consistent in improving the kinematic estimate for each joint of the complete robot

with overall better performance than the baseline sensor estimation.

The results of this experiment demonstrated that the proposed KCKF has the

capability to overcome individual sensor limitations, as the fusion estimate attenuated

noise-related error from the Hall sensor and compensated drift due to gyroscope sensor

bias. Compared to the estimation from each individual sensor, our proposed algorithm

provides a joint angle estimate that is closer to ground truth.

Table 2.1. RMSE (deg) of Kinematic Estimation

Joint Gyro Hall 1 Hall 2 Std KF KCKF

θ1x 31.66 20.96 14.33 5.29 5.07
θ2y 9.78 14.74 10.06 6.12 6.11
θ3x 3.70 6.62 6.04 3.41 3.46
θ4y 20.25 12.13 7.44 6.11 6.00
ϕx 11.41 - - 50.27 5.14
ϕy 44.01 - - 17.98 5.94
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Figure 2.6. Comparison of the KCKF and the standard KF. The results include the torso angle: (a)
in the sagittal plane (x-axis), and (b) in the lateral plane (y-axis).

2.5.1.2 Results of Kinematic State Constraints in KF

The results of the torso kinematic estimation from the fusion algorithm and

the motion capture are presented in Fig. 2.6. This figure includes a comparison

of the KCKF and the standard KF without state constraints. The RMSE for the

KCKF and the standard KF are summarized in Table 2.1. The results reveal that

incorporating state constraints improves the overall estimation performance compared

to the standard KF, with a maximum RMSE reduction of approximately 90% for

the torso angle (ϕ) estimation. The difference in performance is due to the fact

that the state constraints contribute to having full observability of the system and

enable estimating the state of the torso angle and its related bias, as discussed in
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Section 2.4.3. Without the state constraints, it is challenging to achieve acceptable

performance with the standard KF as it is unable to compensate for the sensor

bias that leads to drift. This result demonstrates the implications of incorporating

the robot’s forward kinematics into the KF as state constraints on the estimation

performance of unobservable states.

2.5.2 Extended Use Test

As a wearable device, one requirement for the algorithm is that it is robust through

the use of a complete day. Long-duration tests were performed to verify that the

algorithm’s performance does not decay significantly through extended use. The test

protocol consisted of introducing an initial movement on the origami robot and then

fixing the position for an extended period of time to analyze the drift. To verify

extended performance, the KCKF was tested on the origami robot for a duration

of one hour and the drift was compared with the standard KF. The drift of the

kinematic estimate for one joint throughout the experiment is plotted in Fig. 2.7.

Figure 2.7. Drift of kinematic estimation over one hour
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Over the extension of one hour, it is visible that the proposed KCKF is capable of

accurately estimating joint kinematics and compensates for the significant drift that

the gyroscope bias induces. By the end of the one-hour trial, the standard KF had

drifted by approximately 550 deg, while our proposed KCKF algorithm was still within

7 deg of the true value. The results demonstrate that the KCKF maintains estimation

performance through extended use and that our proposed formulation exceeds the

standard KF performance.

2.5.3 Testing with Human Subject

The performance of the KCKF was evaluated with a human user for estimating the

torso kinematics while performing activities of daily living. One healthy participant

(28 years, 86 kg, 1.7 m) was recruited for this study. The experimental setup with the

human user wearing the origami robot can be seen in Fig. 2.1(b). In this experiment,

the subject performed a bending and extension motion (with 30 deg ROM) of the

upper torso that mimics the cyclic movement in activities such as walking or repetitive

lifting.
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Figure 2.8. Kinematic estimation while wearing the origami exoshell robot. The plots include: (a)
the robot kinematics for θ2, and (b) the human’s torso kinematics ϕ.

The human torso kinematics estimated by the KCKF are presented in Fig. 2.8.

The results reveal that when the exoshell is worn, the KCKF can accurately estimate

the torso joint angle, with 4.85 deg RMSE. Figure 2.8(b) shows that the kinematic

estimation captures the cyclic profile of the torso’s movement, which is required for

control of the origami robot. This experiment revealed the existence of interaction

forces between the robot and the user that cause sensor misalignment. We observed

that sensor placement shifted when there was compression and over-extension of

the robot. Compression occurred when the torso was straight (i.e., when ϕ is close

to 0 deg) and over-extension when the torso was bending (i.e., when ϕ reaches its

maximum), both of which cause estimation error during those instances, as seen in

Fig. 2.8(b).
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2.6 Conclusions

In this Chapter, we presented the formulation of the KCKF, a sensor fusion

algorithm tailored for a wearable origami serial link robot. Our unique origami exoshell

design has inherent constraints that require an encoder- and magnetometer-free sensor

configuration. We developed a sensor fusion algorithm that uses gyroscopes and Hall

effect sensors, as they are compatible sensors, but are affected by noise and sensor bias.

Building upon early theory in KF, this Chapter demonstrated through experiments

the benefits of incorporating the robot’s forward kinematics as state constraints in

order to address the unobservability of the system. The results demonstrated that our

proposed KCKF improved state estimation performance, compared to the individual

sensor measurements and the standard KF. Future work includes implementing the

KCKF for real-time control of the origami exoshell robot. We plan to expand the

formulation of our KCKF algorithm to incorporate dynamics of the origami exoshell

to estimate interaction forces between the robot and the user for more precise control

of the robot.

44



Chapter 3

GAIT SENSING AND HAPTIC FEEDBACK USING AN INFLATABLE SOFT

HAPTIC SENSOR

3.1 Abstract

Collecting gait data and providing haptic feedback are essential for the safety

and efficiency of robot-based rehabilitation. However, readily available devices that

can perform both are scarce. This Chapter presents a novel method for mutual

sensing and haptic feedback, through the development of an Inflatable Soft Haptic

Sensor (ISHASE). The design, modeling and characterization of ISHASE are discussed.

Four ISHASE are embedded in the insole of a shoe to measure ground reaction

forces and provide haptic feedback. Four participants were recruited to evaluate the

performance of ISHASE as a sensor and haptic device. Experimental results indicate

that ISHASE can accurately estimate the user’s ground reaction forces while walking,

with a maximum and a minimum accuracy of 91% and 85% respectively. Haptic

feedback was delivered to four different locations under the foot and the users could

identify the location with an average 92% accuracy. A case study, that exemplifies

a rehabilitation scenario, is presented to demonstrate the ISHASE’s usefulness for

mutual sensing and haptic feedback.
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3.2 Introduction

Gait sensing and haptic feedback are essential for robot-based rehabilitation. Both

rigid exoskeletons and soft exosuits have been developed to provide physical assistance

during rehabilitation training (E. Q. Yumbla et al. 2021). Gait sensing is required to

monitor the user’s state and determine when to provide assistance. Commonly paired

with gait sensors and gait retraining, haptic feedback is a common method used to

adjust and improve the gait of participants and recovering patients (Shull et al. 2011;

Chen, Haller, and Besier 2017; Lurie et al. 2011). However, most wearable devices

require individual instruments for the sensor and the haptic actuator. Realizing the

benefit of mutually sensing and providing haptic feedback to the users, there is a need

to develop compact devices with the capability to perform both.

One popular approach for gait sensing is by measuring the ground reaction forces

(GRF) on the foot through embedded sensors in a shoe insole. Gait sensors can

be categorized based on the sensing mechanism used, namely resistive, capacitive,

inductive, optical and soft pneumatic sensors (J.-L. Chen et al. 2022). Among all

these sensing mechanisms, only soft pneumatic sensors have the mechanical capability

to generate force. In addition, soft pneumatic devices have the advantages of high

compliance, simple fabrication, and low cost.

Soft pneumatic sensors have been used for sensing curvature (H. Yang et al. 2017),

size of objects (Y. Chen et al. 2018), and external forces (Navarro et al. 2019). Despite

many applications of soft inflatable sensors, their use in insole sensing is limited. A

previous work explored the use of coiled silicone tubing to measure GRF for gait

sensing (Kong and Tomizuka 2009). Fabrication of such sensors is complex and

requires re-calibration prior to use.
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The most common form of haptic feedback is through vibration motors. These

motors can relay commands through physical sensations that a user can understand

and execute, such as commands from a therapist to a patient during rehabilitation

training. Several studies have demonstrated that using vibration motors has important

implications in the recovery of patients (Shull et al. 2011; Chen, Haller, and Besier

2017; Lurie et al. 2011). However, vibration motors are typically manufactured with

metal rigid materials, which leads to a heavy and bulky design. This is a significant

limitation, as patients with neuro-muscular disorders have weakened muscles and

diminished volitional control (Balaban and Tok 2014).

Recently a new form of haptic feedback has been introduced through soft pneumatic

actuators. Using laminated bladders and a textile shell, soft pneumatic actuators were

created to provide haptic feedback to a participant’s lower limb (Afzal et al. 2016). Like

with vibration motors, participants were able to identify when the haptic feedback was

provided. However, this implementation required additional hardware (footswitches

and motion sensors), which increases the complexity of the system.

While studies have shown the necessity for gait sensing and haptic feedback in

rehabilitation, there does not exist an integrated and adjustable wearable device

which can perform both functions. In order to advance the research in robot-based

rehabilitation, more availability of low-cost, lightweight and safe sensor-actuator

devices is required. Motivated by the needs of such devices in neurorehabilitation, this

Chapter proposes a fabric-based Inflatable Soft Haptic Sensor (ISHASE) to measure

GRFs and provide haptic feedback to the foot. The foot was chosen as the target

location since the GRFs directly relate to gait, and the foot has a comparable haptic

identification performance to more commonly use locations such as the hand (Gurari

et al. 2009). Through experiments, we demonstrate that our device is capable of
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performing both actions: sensing the user’s gait and providing haptic feedback during

gait training. This is a unique feature that has significant implications in a physical

rehabilitation scenario, as demonstrated through a case study.

3.3 Working Principle

3.3.1 Sensor Working Principle

The working principle of the sensors is based on the property that a change in the

volume of a sealed inflated chamber causes a change in internal pressure, according to

Boyle’s law (3.1), where P is pressure and V is volume.

PV = constant (3.1)

Therefore, an inflated chamber exhibits a change in internal pressure when it is

subjected to an external force that causes deformation and change in volume, as

depicted in Fig. 3.1. The change in internal pressure can be used to estimate the

external force exerted over the chamber.

Figure 3.1. Working principle of inflatable sensor. (a) Deflated sensor. (b) Sensor is inflated to P0.
(c) An external force F causes the pressure to increase to P0 +∆P .
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Figure 3.2. Working principle of the inflatable actuator. (a) Deflated actuator. (b) When the
actuator is inflated to P0 it generates a force F .

3.3.2 Haptic Actuator Working Principle

The working principle of the haptic actuator is based on the capability of an

inflatable actuator to generate axial force when it is compressed, such as within the

insole of a shoe. Consider a deflated balloon that is compressed on both sides, as

shown in Fig. 3.2. When the balloon is inflated at pressure P0, the actuator generates

a force F . However, the actual haptic force depends on the compression forces, the

distance between the compressing surfaces and the contact area, which are highly

variable in soft actuators and therefore require characterization.
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Table 3.1. Functional requirements for GRF sensing and haptic feedback.

Maximum Payload 900 N
Dimensions of Sensor ≤ 50 mm × 50 mm

Height of Insole ≤ 15 mm
Haptic Pressure Intensity < 50 N/cm2

3.4 Design and Fabrication

3.4.1 Functional Requirements

The design of the ISHASE is driven by the functional requirements for insole

sensing and haptic feedback that are outlined in Table 3.1. The average GRF exerted

by a human foot while walking is 900 N (Pollard, Le Quesne, and Tappin 1983).

Therefore, the ISHASE is designed with the capacity to measure normal forces up to

900 N. Considering the dimensions of a standard size 9 insole, the maximum length

and width of the insole ISHASE are limited to 50 mm. The maximum height of

the ISHASE is constrained to match the standard height of a shoe insole, which is

approximately 15 mm. (Graven-Nielsen, Mense, and Arendt-Nielsen 2004) identified

that the maximum pressure intensity before causing pain is approximately 50 N/cm2,

which sets the requirement for the haptic actuator’s maximum force.
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Table 3.2. Design Iterations.

W (mm) L (mm) H (mm) chambers Fmax (N)
20 20 ≥23 * 1 ≤450 *
25 25 ≥23 * 1 ≤450 *
30 30 ≥23 * 1 ≤450 *
35 35 ≥23 * 1 ≤450 *
16 70 * 12 1 200 *
16 35 12 2 600 *
16 35 12 3 1000

* indicates functional requirement is not satisfied.

Figure 3.3. Design parameters. (a) Deflated ISHASE with width W and length L. (b) Inflated
ISHASE reaches height H.

3.4.2 Sensor and Haptic Actuator Design

The ISHASE was developed through an iterative process. The design parameters

are illustrated in Fig. 3.3, and the design iterations are summarized in Table 3.2. To

start with, square ISHASE of dimensions 20 mm, 25 mm, 30 mm and 35 mm were

manufactured and inflated to an internal pressure of 240 kPa. These designs achieved

a minimum height of 23 mm, which did not meet the insole height requirement. To

reduce the height to less than 15 mm, the length and width were modified, following

a procedure similar to (Nguyen, Sridar, et al. 2019). Through this procedure, we

obtained an ISHASE design with 70 mm length and 16 mm width, which failed to
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satisfy the dimension requirement. To keep the same height and decrease the length,

the ISHASE’s length was cut in half (35 mm).

To verify the design satisfies the range of force measurement, compression tests were

performed on the ISHASE using a Universal Testing Machine (UTM) (Instron 5944,

Instron Corp., High Wycombe, United Kingdom), as shown in Fig. 3.4. A chamber

size of 35 mm by 16 mm was used for this test. Different ISHASE configurations were

tested with a single chamber, double chambers, and triple chambers, as summarized in

Table 3.2. The compression test results, shown in Fig. 3.4, reveal that the single and

double chamber designs fail at approximately 200 N and 600 N loads, respectively. The

triple chamber is the only configuration that demonstrated the capacity to withstand

forces up to 900 N which satisfies the functional requirements.

Figure 3.4. Force testing for multiple chambers. The picture shows the ISHASE between the UTM
compression plates.
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Figure 3.5. ISHASE design overview. The dashed lines depict the stitch line that separates the three
chambers.

3.4.3 Fabrication

The fabrication methodology adopted for the ISHASE is as follows. First, the

dimensions of each chamber are drawn on two thermoplastic polyurethane (TPU)

layers. In the middle of each layer, a small orifice is created to insert a small plastic

tube for airflow and pressure measurement. The tube is glued from both sides to

create a leak-proof seal. The sides of the TPU layers are then heat-sealed to create a

hollow inflatable chamber. Finally, the TPU chamber is placed inside a nylon fabric

pocket, made by sewing together two layers of nylon fabric. The dimensions of each

nylon pocket are 1 mm smaller than the TPU chamber to avoid stretching of the TPU

layers when inflated. Adding the reinforcement nylon fabric increases the structural

stiffness which allows the ISHASE to sustain high pressures. The fabrication process

is similar to the methodology in (Nguyen and Zhang 2020).
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The final ISHASE design is presented in Fig. 3.5. This design consists of three

16 mm-by-35 mm chambers that are sewn parallel to one another. The overall

dimension of the ISHASE is 48 mm by 35 mm, and achieves a height of 12 mm when

inflated. A four-way barbed connector is used to connect all three chambers to a

pressure sensor and to a compressed air source for inflation. To create a leakproof

sensor, a one-way valve was connected.

3.4.4 Shoe and Insole Design

The shoe design, presented in Fig. 3.6(a), contains the ISHASE that measures

GRFs. Four ISHASE were placed under the insole of the shoe, and positioned at

the heel, toe, between the first and second metatarsophalangeal joint (Meta12) and

between the fourth and fifth metatarsophalangeal joint (Meta45), as depicted in

Fig. 3.6(b). With this shoe design, the total GRF can be estimated by adding the

readings of the four insole sensors. The ISHASE were packed between two thin

acrylic sheets to minimize the effect of the unmodeled shear forces and the losses

Figure 3.6. (a) Shoe with embedded inflatable sensors-actuators. (b) Sensor placement on the insole.
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due to partial contact with the shoe (instead of the insoles). Holes were cut on the

sides of the shoe for the sensor’s tubing connections. An air compressor provides

the pressure source to inflate the ISHASE. Pressure sensors (ABPDANN100PGAA5,

Honeywell International Inc., Charlotte, NC) were connected to measure the ISHASE’s

internal pressure. Solenoid valves (MHE3-MS1H valves, Festo, Eatontown, NJ) were

used to operate the inflation and deflation process. A microcontroller (Arduino Uno,

Arduino) was used to record the sensor data and to control the haptic actuators. The

microcontroller and electro-pneumatics were placed in an off-board unit that weighs

less than 3 kg and measures 10 × 10 × 5 cm. As a result, the majority of the system is

designed to be wearable. However, due to the air compressors, the experiments are

currently limited to a treadmill environment.

3.5 Modeling and Characterization

3.5.1 Sensor Modeling and Characterization

The sensor model, which maps the relationship between external forces and

internal pressure, was built through experimental characterization. This model

allows estimation of external forces by measuring the internal pressure. Dynamic

characterization of the ISHASE’s was performed through compression tests using a

UTM. The ISHASE was pre-inflated to 200 kPa and then compressed in the UTM

for 12 consecutive cycles while collecting data on the applied force and the internal

pressure change. A pressure sensor was connected to the ISHASE to measure the

internal pressure. Different loading rates were implemented in the UTM as it relates

to variations in walking speed.
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Figure 3.7. Sensor modeling and characterization.

The force-pressure curve in Fig. 3.7 reveals a proportional relationship with some

linear or exponential trend. Variations in speed did not have a significant effect on

the characterization curve, therefore, only the 150 mm/min data was used to build

the model. A linear model (3.2) and an exponential model (3.3) were fitted (linear:

R2
= 0.976, RMSE = 28.4 N; exponential: R2

= 0.988, RMSE = 19.75 N) between

the applied force F and the internal pressure P . In these controlled experimental

conditions, the exponential model (3.3) demonstrated better fit performance.

F = 2.688P − 448.3 (3.2)

F = 39.7e(0.007P ) − 8686e(−0.0253P ) (3.3)

An additional data set was collected at 150 mm/min for model validation. The

validation for the linear model (3.2) and the exponential model (3.3) yielded a root

mean square error (RMSE) of 35.3 N and 22.8 N respectively, which corresponds to a

56



maximum 3.9 % error of the full-scale range (900 N). Hysteresis between loading and

unloading can be observed in Fig. 3.7, which could contribute to the modeling errors.

3.5.2 Sensor Repeatability

Repeatability demonstrates the capability of a sensor to maintain robustness

through multiple cycles. The standard deviation of the ISHASE’s force estimate

will be used as the metric for repeatability. Cyclic compression of the ISHASE was

performed in a UTM for 40 cycles while collecting force data. Different loading rates

were implemented in the UTM as it relates to variations in walking speed. The peak

force for each cycle was recorded and its standard deviation was computed, yielding

5.2 N, 2.8 N and 3.2 N for loading rates of 30 mm/min, 150 mm/min and 270 mm/min,

respectively. Considering the ISHASE’s full-scale measurement range (900 N), the

standard deviation results imply that for the worst case (5.2 N) the ISHASE is

repeatable within 99.4% of the sensor full-scale range. The results demonstrate that

the ISHASE has exceptional repeatability that is robust to different speeds.

3.5.3 Haptic Actuator Characterization

The force output of the haptic actuator was characterized to quantify the amount

of force delivered to the human and to verify that it is within a safe range that does

not cause pain. The ISHASE was placed in a UTM between two compression plates,

similar to the picture in Fig. 3.4. Different preload conditions were tested to represent

the compression forces of the user’s foot over the ISHASE while it provides haptic

feedback. Preload conditions of 250 N, 350 N and 450 N were tested, which correspond
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Figure 3.8. Haptic force characterization. For each case, the average and standard deviation of 40
samples is shown.

to subjects that weigh 500 N, 700 N and 900 N, respectively. The ISHASE was inflated

at different pressures and the haptic force generated was recorded. Approximately 40

force samples were collected for each preload and pressure condition.

The average force data for each pressure and preload condition are shown in Fig. 3.8.

The results corroborate that at the maximum pressure tested (150 kPa) the ISHASE

generates sufficient force to be detected (110 N), and delivers a pressure intensity

of 6.5 N/cm2 which is below the pain threshold. In addition, the results reveal that

an increase in the preload compression leads to a reduction in the delivered haptic

force. This implies that for heavier subjects the delivered haptic force is diminished.

However, the ISHASE exhibits the capability of providing sufficient force feedback to

be detected by even the heaviest user tested (900 N).
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3.6 Evaluation With Human Subjects

The ISHASE were tested with human participants to evaluate the capability for

gait sensing and providing haptic feedback to a user. Four healthy participants (74.9

± 16.1 kg, 1.73 ± 0.15 m, 26 ± 3.9 years, three male and one female) were recruited.

The experimental protocol was approved by the Arizona State University Institutional

Review Board (IRB ID: STUDY00011110).

3.6.1 Sensor Evaluation for Gait Sensing

The goal of this experiment is to use the ISHASE to estimate the total GRF of a

human while walking. Each participant wore the ISHASE-embedded shoe, shown in

Fig. 3.6, while walking on an instrumented split-belt treadmill (Bertec Inc., Columbus,

OH) equipped with two force plates that measure the GRF at 1,000 Hz, which were

used as ground truth. The participants walked for approximately 100 steps at a speed

of 0.5 m/s and 0.75 m/s. The GRF data for each walking trial was segmented into

individual gait cycles. The 100 segmented gait cycles were temporally normalized to

gait cycle percent to compute the GRF average and standard deviation through the

walking cycle.
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Figure 3.9. GRF of the human participant while walking. The sensor GRF was obtained with the
linear model (3.2).

Table 3.3. RMSE of GRF estimation at different walking speeds.

Linear Model (3.2) Exponent Model (3.3)
Subject Weight 0.5 m/s 0.75 m/s 0.5 m/s 0.75 m/s

1 82.5 kg 94.9 N 100.9 N 135.5 N 114.8 N
2 88.1 kg 93.3 N 100.8 N 122.3 N 96.66 N
3 51.7 kg 64.9 N 74.28 N 71.60 N 107.7 N
4 77.3 kg 90.4 N 70.99 N 89.43 N 89.37 N

The GRF average and standard deviation for one participant while walking are

shown in Fig. 3.9. The ISHASE’s RMSE of the GRF estimation are presented in

Table 3.3. The results demonstrate that ISHASE can accurately estimate GRF with

a maximum of 91% accuracy (70.99 N RMSE corresponds to 9% of Subject 4’s body

weight) and a minimum of 85% accuracy (74.28 N RMSE corresponds to 15% of

Subject 3’s body weight). A possible source of error could be due to friction of the

foot on the inner sides of the shoe, which suggests that not all forces are transmitted

to the insole; this effect is most noticeable during the stance phase (0-60% gait cycle).

In the swing phase, the error is because when the shoe is worn there is compression
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pressure due to the tightening of the shoe laces, which is not accounted for in the

individual sensor model.

The human subject experiments revealed that the linear model (3.2) achieves

better estimation performance than the exponential model (3.3). Exponential fits

can be highly sensitive to outliers in the data. In the subject experiments, there is a

significant presence of unknown disturbances, such as shoe friction and compression

forces, which introduce outliers. As such, the exponential model tends to amplify

errors related to unknown disturbances that surfaced during the subject experiments.

Lastly, the exponential model could be overfitting the undisturbed and noise-free

data (Fig. 3.7), and as a result, it might not perform well for data with unknown

disturbances and noise. In contrast, the linear model is simpler and makes fewer

assumptions, and therefore can be more robust to variations caused by unknown

disturbances and noise.

3.6.2 Haptic Feedback Evaluation

The goal of this experiment is to demonstrate that the human user can identify

the sensation of the haptic feedback from ISHASE. Each participant wore, on the left

foot only, the ISHASE-embedded shoe in Fig. 3.6(a), and was asked to identify where

the haptic feedback was delivered under the foot. To provide haptic feedback, the

ISHASE was inflated and deflated rapidly at a fixed frequency to induce a vibratory

sensation. Different frequencies (10 Hz and 100 Hz) and different inflation pressure

(50 kPa and 100 kPa) were tested. Each trial consisted of 50 rounds of feedback at

randomized locations, and each round lasted 0.5 sec.
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Table 3.4. Success Rate of Haptic Feedback Identification for Subject 4.

100 kPa 50 kPa
10 Hz 98% 92%
100 Hz 96% 82%

Figure 3.10. Confusion matrix of haptic feedback identification for trial with lowest performance
(100 Hz and 50 kPa).

The haptic results presented correspond to a representative subject (Subject 4).

The overall success rates for different frequencies and inflation pressures are summarized

in Table 3.4. The confusion matrix of the lowest performing trial (100 Hz, 50 kPa) are

shown in Fig. 3.10. The results demonstrate the user is capable of sensing the haptic

feedback and even identifying its location. The results revealed that low frequencies

contribute to an improvement in haptic feedback identification. One possible reason

is that, at a lower frequency, the actuator can fully inflate and provide high force.

Higher pressures also improved the haptic feedback identification, due to a similar

reason.
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3.6.3 Case Study for Sensing with Haptic Feedback

In this section, we present a case study that demonstrates the use of the ISHASE’s

dual capability for sensing and providing haptic feedback in a rehabilitation task.

A common rehabilitation scenario involves a human performing physical activity

while a therapist monitors and gives commands. In our case, the physical activity

is sit-to-stand transition, and all commands from the therapist to the user will be

provided through the shoes in Fig. 3.6(a). As such, this experiment focuses on using

the ISHASE to simultaneously estimate the human states and provide the haptic

feedback to guide the user.

The participants were guided to transition between sitting down and standing

up when they feel the haptic feedback. The transitions between sitting down and

standing up are monitored with the ISHASE’s GRF measurements. The transitions

to standing up are detected when the GRF measurement exceeds a threshold that

is determined before the start of the experiment (GRF>325 N for Subject 1). Once

a transition is detected, a randomized delay is introduced before the next haptic

feedback (indication) is provided. The experiment had a duration of 7 min.
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Figure 3.11. Sensor GRF measurements and haptic actuation signal through the case study experi-
ment.

Fig. 3.11 shows the ISHASE’s sensor and actuation signals for a representative

subject (Subject 1). This plot shows that the ISHASE-embedded shoe is capable

of accurately detecting the transitions between sitting down and standing up. In

addition, the results show that every time haptic feedback is delivered, the user

immediately captures and reacts to it. This serves as preliminary evidence that the

therapist can send commands, through the shoe, to modify or engage in physical

activity of the patient. This could allow the therapist to focus on adjusting gait or

training parameters during rehabilitation since the developed ISHASE takes care of

the real-time monitoring and signaling to the user.
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3.7 Conclusion

This Chapter introduced a soft inflatable device to perform mutual gait sensing and

haptic feedback. The development of the ISHASE addressed a gap in the availability

of devices that can perform both actions. The ISHASE’s design, fabrication, modeling

and mechanical characterization were discussed in detail. Four ISHASE were embedded

into a shoe insole to monitor gait and provide haptic feedback to the user’s foot. The

sensor model was developed with experimental data and achieves an accuracy of 35.3 N

(3.9% error of the sensor’s full-scale range). In practical applications, the ISHASE

demonstrated the capacity to accurately estimate the GRF of a user while walking,

with a maximum and minimum accuracy of 91% and 85% respectively. The ISHASE

was also evaluated as a haptic device, and the results reveal that the users can identify

the haptic feedback location. Furthermore, the application of the ISHASE as a mutual

gait sensor and haptic actuator was explored through a case study that exemplifies

a physical rehabilitation scenario. The case study demonstrated that the ISHASE

can be used to autonomously monitor the state of the human while simultaneously

provide indications to the user through haptic feedback.

Future work will include improving the design to ensure robustness for extended

use. The sensor model will be improved to account for unmodeled compression forces

within the shoe, and the unmodeled forces that are lost due to friction with the shoe.

Furthermore, we aim at performing mutual sensing and haptic feedback by developing

a dynamic estimation model that robustly estimates external forces in the presence of

dynamic pressurization. Lastly, a detailed study with a greater number of participants

will be conducted.
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Chapter 4

EVALUATING THE BENEFITS OF A SOFT INFLATABLE KNEE EXOSUIT

DURING SQUAT LIFTING

4.1 Abstract

This study aims to utilize a soft-inflatable exosuit to provide knee extension

assistance during squat lifting and study the kinematics of the hip, knee, ankle, and

lumbar joints as well as the surface electromyographic (EMG) activity of the muscles

created around these joints. This work will provide preliminary data to refine the

design, control, and evaluation of wearable soft robots to maximize their benefits in

repetitive and labor-intensive tasks. We hypothesize that adding an external torque

to the knee joint using a soft inflatable exosuit can potentially induce a reduction in

the muscular effort that extends to the posterior chain muscles.

The functional requirements for lifting tasks were investigated to guide the design

of the exosuit and the soft inflatable actuators. The soft actuators were characterized

to corroborate that the design achieves the minimum torque requirements. A total of

8 healthy test participants are recruited and instructed to lift a weight equivalent to

10% of their bodyweight. The muscle activities of the left and right Vastus Lateralis,

Biceps Femoris, Gluteus Maximus, Erector Spinae (Iliocostalis and Longissimus)

and Multifidus muscle groups were studied for baseline, non-assisted, and assisted

conditions. The majority of participants (6 out of 8) demonstrated consistent reduction

in the muscular effort of at least one muscle group of the posterior chain. A maximum

reduction of 55% in the average muscle activity of the Multifidus muscle group is
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observed in one participant. Different neuromuscular adaptation mechanisms were

observed among subjects that ultimately led to a reduction in lower-limb or back

muscle activity. The results reveal that assisting knee extension during a lifting task

has significant effects on muscle activity with benefits that extend to the posterior

chain muscles. This study provides early evidence that the soft inflatable knee exosuit

can be used in material handling tasks to reduce muscle effort and prevent work-related

injuries.

4.2 Introduction

Manual material handling (MMH) involves lifting, carrying, and lowering heavy

weights on a daily basis. These tasks put significant loads on the knees, hips, and

Figure 4.1. Illustration of the Study Concept: Investigate the Effects of Lower-Limb Assistance with
an Inflatable Soft Exosuit During Squat Lifting Tasks.
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lower backs of the workers, which may increase the risk of developing work-related

musculoskeletal disorders (MSDs) (Antwi-Afari et al. 2017). In fact, more than 42%

of lower-limb injuries in the physical workforce are caused by over-straining and

exertion, and prior work has found significant correlations between knee osteoarthritis

and prolonged squatting and lifting weights (Amin et al. 2008). As a result, a large

number of self-reported sick leaves among these workers are due to MSDs (Hubertsson

et al. 2014). Work-related injuries reduce the quality of life of workers and lead to

increased costs of operation. It was reported that MSDs alone led to $1.5 billion direct

cost in 2007 in the United States (Bhattacharya 2014).

In recent years, the use of wearable robotic systems to assist in physically strenuous

tasks has been on the rise. Typically, these wearable devices can be divided into

passive wearable devices (Maurice et al. 2019; Alemi et al. 2019; Lamers, Yang,

and Zelik 2017) which utilize energy storage mechanisms such as springs and elastic

bands to store and release energy, and active systems (Jeong, Woo, and Kong 2020;

Sado et al. 2019; Toxiri et al. 2019) which generate force/torque to provide physical

assistance. Passive systems have demonstrated the efficacy of use in MMH tasks by

demonstrating reduced muscle activities and fatigue levels over several trials, but they

can only provide pre-defined assistance profiles (Baltrusch et al. 2018). To overcome

the aforementioned issue, several groups have developed wearable robots that provide

active assistance to the knee, hip and lumbar joints during lifting (Jeong, Woo, and

Kong 2020; Sado et al. 2019). Most wearable robots found in the literature are rigid

exoskeleton systems that provide variable and controlled assistance, but they can be

bulky, heavy, and expensive (Toxiri et al. 2019).

The recent development in wearable soft robots provides a novel solution to

mitigate the challenges of their rigid counterpart. These robots are typically composed
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of lightweight and compliant materials (e.g., textiles) to overcome the limitations

of heavy and bulky exoskeletons (E. Q. Yumbla et al. 2021). Soft exosuits driven

by cables (for the hip and lumbar joints) (Yao et al. 2019; S. Yu et al. 2019) and

pneumatic artificial muscles (for the knee joint) (Mohri et al. 2016) have demonstrated

reduced muscle efforts for the corresponding joints when assisting in a lifting task.

In our past work, a fabric-based soft-inflatable exosuit has been developed to

provide knee extension assistance (Saivimal Sridar et al. 2018). The benefits of

this soft exosuit have been demonstrated in assisting healthy individuals (Saivimal

Sridar et al. 2018) and stroke survivors (S. Sridar et al. 2020) in walking experiments.

However, these previous studies on healthy individuals focused only on walking tasks,

restricted the analysis to muscles that interact directly with the knee joint, and did

not include the muscles and kinematics of other joints involved in the task. The effect

of adding an external torque to the knee joint during a closed-chain kinetic task on the

adjacent joints is still unknown. During squat lifting, the knee, hip, and back muscles

contract in order to raise the weight along with the center of mass of the human

(Vakos et al. 1994). Since lifting heavy objects from the ground requires coordination

and synergy of the back, hip, knee, and ankle muscles (Roozbazar 1974), assistance

to the knee joint during squat lifting may also alter the activity of all the muscles

involved in performing the task at hand. Therefore, it is important to understand how

humans adapt to the assistive torque provided to a single joint during this complex

movement and how this external torque impacts the muscle efforts of other joints. To

the best of our knowledge, it is still unclear how knee joint assistance propagates to

the posterior chain muscles in a closed kinematic task such as lifting.

This study aims to utilize the previously designed soft-inflatable exosuit to provide

knee extension assistance during squat lifting and study the kinematics of the hip,
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knee, ankle, and lumbar joints as well as the surface electromyographic (EMG) activity

of the muscles around these joints. This study will provide preliminary data to refine

the design, control, and evaluation of wearable soft robots to maximize their benefits

in repetitive and labor-intensive tasks.

4.3 Development of the Soft Exosuit

4.3.1 Functional Requirements

The biomechanics during lifting tasks were investigated to determine the functional

requirements for actuator design. A study by Hwang et. al. (Hwang, Kim, and Kim

2009) reported the human biomechanics when performing a squat down and lifting an

object from the floor. Results showed that the knee extension peak torque for this

task was 0.5 Nm/kg. As an assistive device, a partial support equivalent to 50% of

this peak torque was selected as the target assistance. The required torque for each

subject was computed using the results from this study and are presented in Table 4.1.

Table 4.1. Subject participants’ anthropometric data and joint torque requirement.

Subject Gender Age Weight (kg) Height (m) Torque (Nm)

S1 F 23 65.7 1.57 16.43
S2 M 27 78 1.65 19.50
S3 F 27 55 1.54 13.75
S4 M 31 75.4 1.70 18.85
S5 M 25 78 1.72 19.50
S6 M 22 75.5 1.70 18.88
S7 F 27 55 1.58 13.75
S8 M 22 74.5 1.80 18.63

Mean 25.5 69.6 1.66 17.41
Standard deviation 3.12 9.82 0.09 2.46
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This study also defined the timing of knee joint peak torque as the instance when the

human is in the lowest position of the squat, during maximum joint flexion with knee

angles greater than 90○.

4.3.2 Design of the exosuit

To generate torque to assist the human knee joints, soft pneumatic inflatable

actuators were designed to satisfy the requirement in Section 4.3.1. The actuators

are fabricated using heat-sealed thermoplastic polyurethane (TPU) films encased in

an inelastic nylon fabric reinforcement, presented in Fig. 4.2. When deflated, the

actuator is completely compliant and exerts no torque on the wearer. When the

Figure 4.2. The soft-inflatable exosuit system worn by a human subject. The system is composed of
two soft-inflatable actuators for each leg, solenoid valves, Raspberry Pi, and a push-button.
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inflatable actuator is bent and pressurized, it generates a restoring torque that forces

the actuator to the straight position. This mechanical principle was utilized to provide

torque to the human joints. More details on the design and development of the

soft-inflatable actuators can be seen in (Saivimal Sridar et al. 2018).

An overview of the soft exosuit system is presented in Fig. 4.2. The exosuit

consists of an elastic neoprene sleeve that conforms to the thigh and shank at the knee

joint. Two pneumatic inflatable actuators are placed at the popliteal fossa to provide

extension torque to the knee joint. Nylon fabric pockets were sewn into the sleeve

to hold the actuators in place securely. We utilized hook and loop straps to ensure

proper transmission of the assistive forces to the lower limbs. The exosuit garment

worn by the user weighs 0.13 kg. The soft materials that comprise the exosuit make it

lightweight, completely compliant, and transparent to the wearer.

A torque characterization experiment was performed to measure the torque gener-

ated by an inflatable actuator. The inflatable actuator was placed on a mechanism

that simulates the human knee joint on the sagittal plane. This mechanism, presented

in Fig. 4.3, was mounted on a static analog torque sensor (FTA-100NM, Forsentek

Co., Limited, China) to measure the torque exerted by the actuator. For the data

collection procedure, the analog joint mechanism was fixed at different angles within

the knee joint’s range of motion, and the actuator was pressurized from 0 to 207 kPa

in increments of 34 kPa, and torque was measured at each step. The results of this

characterization, presented in Fig. 4.3, exhibit a linear relationship between internal

pressure and generated torque at a given angle. This demonstrates the capacity to

modulate the assistive torque by controlling the actuator’s internal pressure. To satisfy

the biological torque requirements for all subjects in Table 4.1, a maximum torque of

19.5 Nm is required. A single inflatable actuator has the capacity to generate 10 Nm
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Figure 4.3. Actuator torque characterization results for different operating angles and internal
pressure. The characterization platform mounted with the actuator is presented on the top left. The
soft-inflatable actuator is highlighted in green, and the torque sensor in blue.

torque inflated at 140 kPa, for joint flexion of at least 90○, which corresponds within

the knee joint range of motion during squat lift (Hwang, Kim, and Kim 2009) as

indicated in Section 4.3.1. Two inflatable actuators are required for each knee joint to

operate the exosuit within safe pressure magnitudes. With this design, the operational

pressure will not exceed 140 kPa.

We integrated the electro-pneumatics of the system with a microcontroller (Rasp-

berry Pi). The system consists of solenoid valves (MHE3-MS1H valves, Festo, Haup-

pauge, NY) to quickly switch between the pressurization and depressurization states of

the actuators. A push-button was utilized to send the inflation and deflation commands

to the microcontroller. We implemented pressure sensors (ASDXAVX100PGAA5,

73



Honeywell International Inc., Morris Plains, NJ) to monitor the internal pressure of

the inflatable actuators.

4.4 Experimental Protocol

4.4.1 Study Design

For this study, a total of 8 participants (5 male and 3 female) with no history

of lower body and back pathologies were recruited. The experimental protocol was

approved by the Arizona State University Institutional Review Board (IRB ID#:

STUDY00011110). The anthropometric data of the subjects can be seen in Table 4.1.

The weight lifted was limited to 10% of their bodyweight to standardize the study

across all participants. A plastic box of dimensions 0.40 × 0.30 × 0.17 m3, contained

evenly distributed weights that were adjusted according to each subject’s bodyweight.

Kinematics and EMG data were collected for three conditions: Baseline (exosuit

not worn), Inactive (exosuit worn but not actuated), and Active (exosuit worn and

actuated). An independent and identical exosuit was worn on each leg to provide

symmetric assistance to the user.
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Figure 4.4. Human subject wearing the soft-inflatable exosuit and performing the lifting task. The
abbreviations of the muscles investigated are depicted in the left picture. The EMG locations are
approximated in the figure as these were placed underneath the clothing. The exosuit is inflated
when the participant has reached the lowest position during the squat (middle picture) and assists
through the upward lift.

The participants were instructed to start each trial standing upright. Upon a

given signal, they would descend, grasp a box, and ascend to the upright position,

as illustrated in Fig. 4.4. The ascent and descent for each trial were completed in

one second, respectively, controlled using a metronome set at 60 beats per minute.

A total of five trials for each condition were performed with each participant. For

the active trials, the participants were given a button to inflate the exosuit. The

participants were instructed to actuate the exosuit when they reached their lowest

position during the squat. By relying on the cognitive skills of the human to choose

the ideal timing, the control variables of the exosuit were simplified. The assistive

torque from the exosuit was personalized by tuning the actuator pressure according to
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the torque requirement in Table 4.1 and the torque characterization results in Fig. 4.3.

Between trials, each participant took a 15-min rest to prevent muscle fatigue.

4.4.2 Data Collection

Data collection of kinematics and EMG activity was performed using the experi-

mental setup in Fig. 4.4. The kinematics were collected using a camera-based motion

capture system (T40s, VICON Inc., Los Angeles, CA). Passive reflective markers were

attached to the lower-body and the torso of each participant according to pre-defined

marker sets (Vicon Plug-in Gait) as illustrated in Fig. 4.4. The kinematic data were

collected at a sampling frequency of 100 Hz.

The EMG activity of the Vastus Lateralis (VL), Biceps Femoris (BF), Gluteus

Maximus (GM), Multifidus (MF), and the erector spinae muscles (Iliocostalis (IL)

and Longissimus (LG)) were selected for this study. The aforementioned muscles were

investigated since they are highly active during squat lifting. The MF, IL, and LG

were investigated in order to study the effects of knee extension assistance on the

posterior chain. The EMG data were recorded using a Delsys Trigno (Delsys, Natick,

MA) system and sampled at 2000 Hz. The raw EMG data were first de-meaned and

band-pass filtered (Butterworth, 4th order, 20 Hz and 450 Hz cutoff frequencies).

The profile of the signal was obtained by computing the root-mean-square (RMS)

envelope using a moving window of 250 ms. All EMG data were normalized using

the maximum EMG values of all collected trials for each respective muscle. The

EMG normalization method is valid since all the trials were performed in the same

session without sensors being removed. The five lifting cycles for each condition were

temporally normalized to percent lift completion and then averaged to determine a
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mean and standard deviation of muscle activity. This results in normalized EMG

signal as a function of percent lift completion, where 0% corresponds to standing

straight right before initiating the squat (Fig. 4.4 left), and 100% corresponds to

the finalized lifting of the box (Fig. 4.4 right). The mean and integral of the EMG

envelope were computed for five lift cycles, and the statistical significance between

each data set was calculated using an independent t-test (p < 0.05).

4.5 Results

4.5.1 Kinematic Results

The joint kinematics throughout the lift cycle of two representative subjects are

presented in Fig. 4.5. For participant S1, the maximum flexion angles of the knee, left

hip and right ankle joints increase, indicating an increase in the range of motion for

these joints when the exosuit assisted knee extension. This participant squats to the

lowest position i.e. the maximum knee flexion angle faster, and stays at this position

for a longer duration, as shown in Fig. 4.5a. Participant S2 shows a similar range

of motion and the descending pattern between the two conditions. However, this

participant spends less time in the lowest height and completes the lifting earlier when

the exosuit is active, as shown in Fig. 4.5b. For both subjects, the maximum joint

angles occur close to 40% of the lifting cycle, when the push button was pressed to

start inflating the exosuit. This timing matches the initial period when a statistically

significant difference in EMG activity is first observed, as discussed in Section 4.5.2.
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(a) Participant S1

(b) Participant S2
Figure 4.5. Sagittal plane joint kinematics of participants S1 (a) and S2 (b) through the lifting cycle.
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4.5.2 EMG Results

The processed EMG signals throughout the complete lift cycle of participants S1

and S2 are presented in Fig. 4.6. The results of the EMG activity for active conditions

demonstrated a significant reduction for most muscle groups through the majority

of the lift cycle compared to baseline conditions. Participant S1 demonstrates this

reduction in all the back and lower limb muscles through the mid to end of the lift

cycle, initiating at approximately 40% of the lift cycle, which corresponds to the

assistance onset timing. S2 also demonstrates a similar reduction of EMG activity

for most of the muscles (7 out of 12 muscles). The period when the EMG shows a

reduction matches the period when the exosuit assisted the user’s knee joints. For

both subjects, the greatest reduction was observed in the MF muscles, indicating that

the lower back muscles exerted less effort during the lifting task. Furthermore, S2

demonstrated a shift in the EMG envelope where the active case demonstrated earlier

muscular activation levels in the lift cycle, especially from the middle until the end

of the cycle. A similar shifted behavior is observed in the joint kinematics profile as

discussed in Sec. 4.5.1.
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Figure 4.6. EMG activity through the lifting cycle of participant S1 (left) and participant S2 (right).
The mean and standard deviation for the active case are presented in a solid red line, the inactive
case in a blue dashed line and the baseline case in a green dash-dotted line. The period in which the
exosuit assisted the knee joints is shaded in gray, approximately from 40% to 100% lift cycle. The
baseline data for the left BF of participant S1 was corrupted and therefore not included.
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The integral (area under the curve) of the EMG envelope was computed and is

presented in Fig. 4.7. The EMG integral quantifies the total muscular effort through

the complete lift cycle. Two types of EMG response patterns were observed in several

subjects, shown in Fig. 4.7a-b. The EMG integral of S1 reveals that all the muscles,

except BF, demonstrate a reduced muscular effort when the exosuit supports knee

extension compared to the baseline. On the other hand, S4 demonstrates a reduction

in the posterior chain muscles, but an increase in the lower-limbs muscles. It should

be noted that the lower-limbs muscles of S4 also demonstrated an increase when the

exosuit was worn but not inactive compared to the baseline, indicating that wearing

the exosuit is a possible source of increased muscular activity observed when the

exosuit provides extension torque. On average, the subjects demonstrated a significant

reduction in the overall effort of the MF muscle when the exosuit provided extension

torque (baseline vs. active) as observed in Fig. 4.7c. In addition, an increase in the

total muscular effort was observed in a few lower-limb muscles, specifically the VL,

left BF and right GM, when the exosuit was worn but inactive (baseline vs. inactive)

and when the exosuit provided extension torque (baseline vs. active).
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Figure 4.7. Integral of EMG envelope for different conditions (top), and the difference of the EMG
integral among conditions (bottom). * indicates statistically significant difference (p < 0.05).
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Figure 4.8. Difference of average EMG activity between conditions. * indicates statistically significant
difference (p < 0.05).

The difference in the average EMG signal between different conditions is presented

in Fig. 4.8. This figure illustrates the transparency of the exosuit (baseline vs. inactive)

and the mean reduction in EMG activity when the exosuit assists the human’s knee

extension motion (baseline vs. active). The results reveal that six participants

demonstrate a statistically significant reduction in the average muscle activity of

both the left and right side of at least one muscle group of the posterior chain when

the exosuit provides extension torque to the knee joint (e.g. left and right MF of

S2 ). The results of participants S1, S3 and S4 in Fig. 4.8, show that at least 8

muscles demonstrated a consistent reduction of the average EMG activity when the

exosuit provides extension torque. Furthermore, all of the back muscles (IL, MF, and

LT) demonstrated a significant reduction in mean EMG activity, with a maximum

reduction of 55% for the MF muscle of S1. Participants S2 and S4 demonstrate an
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average increase in the EMG of a few of the lower limb muscles for both cases in

Fig. 4.8, which indicates the possibility that the source of increased EMG activity is

the exosuit interface.

4.6 Discussion

Knee extension assistance during squat lifting demonstrated minimal alterations to

the participants’ kinematics. The kinematic profile throughout the lift cycle followed a

similar path when the exosuit was active, indicating that the human coordinated with

the exosuit assistance to maintain a similar trajectory. This also demonstrates the

exosuit’s capacity to assist knee extension without significantly altering the natural

motion during squat lifting.

The EMG results of all four representative subjects demonstrated the potential for

reducing muscular activity during squat lifting tasks when using a soft robotic exosuit

that assists the knee extension motion. The results show that the subjects tend to

present a significant reduction in EMG activity for both the back and lower-limb

muscles (S1, S2 ) or at least in one of two muscle groups (S3, S4 ). Moreover, the

majority of participants (6 out of 8) demonstrated a consistent reduction in the EMG

activity of at least one muscle group of the posterior chain. This indicates that

when the exosuit provides knee extension torque, the back muscles require less effort

to perform the lifting task. Among all muscle groups, the MF shows the greatest

reduction in muscular effort, which plays a primary role in lifting tasks as it stabilizes

the lower back. A reduction in the effort of the MF muscle group indicates the

feasibility of reducing the risk of injury during a lifting task. While some subjects

demonstrate an increase in the EMG activity of a few lower-limb muscles, the increase
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is present in both the active and inactive cases, indicating that the increase in muscular

effort most likely comes from the interaction of the exosuit interface and the human.

In fact, the contact of the exosuit with the EMG sensors changes the interaction

between the skin and the sensors (e.g. contact area) which could ultimately affect the

quality of the measurements. The results from this study show a favorable human

interaction to single-joint assistance and the benefit of reducing muscular activity with

a soft exosuit, motivating the further development and testing of such soft wearable

robots.

In a closed kinetic task, such as object lifting, the required energy will be constant

regardless of whether the exosuit is active or inactive. When the exosuit is active, the

additional energy supplied by the exosuit contributes to the total energy required for

the task and thus the energy required by the human to finish the task is reduced. This

study shows that humans can develop diverse but effective strategies to cooperate

with exosuit assistance, resulting in an overall reduction of their muscular activities.

Despite the overall reduction in EMG activity with the soft robotic knee exosuit, the

magnitude of this benefit varies across subjects. This could be attributed to the high

compliance of the exosuit system and its interfacing with the soft tissues of the thigh.

Also, another factor could be the high degree of freedom of the human musculoskeletal

system that leaves the whole body’s muscular response to each individual’s different

motor adaptation strategy. Moreover, the subjects were asked to determine the timing

of inflation of the soft actuators, and this could contribute to inconsistent reductions

in muscular activities. Modeling the contact forces between the exosuit and the human

body could provide further insight into the transmission of assistive torques to the

human body to accurately quantify the exosuit behavior.
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4.7 Conclusions

In this paper, we studied the neuromuscular response to knee extension assistance

during a lifting task with a novel soft-inflatable exosuit and eight healthy participants.

The effects of knee assistance on the joint kinematics and muscle activity of the lower

limbs and posterior chain muscles were investigated during squat lifting of weights

equivalent to 10% of their bodyweight. Results demonstrated a statistically significant

EMG reduction for the great majority of the lower-limb and back muscles, with the

Multifidus (MF) showing the maximum average EMG reduction of 55%. Different

neuromuscular adaptation mechanisms were observed among subjects that ultimately

led to a favorable reduction in lower-limb or posterior chain muscle activity. This

study provided early evidence that the soft inflatable exosuit could potentially reduce

muscle effort by assisting knee extension during a squat lifting task.

Future work includes the development of a robust controller that detects the

optimal timing for autonomous inflation and deflation of the exosuit using real-time

wearable sensor data. A more comprehensive human study will be conducted, with a

larger number of participants, different tasks to execute, and different control strategies

for the exosuit. The exosuit will be expanded to other joints to provide more versatile

assistance during different material-handling tasks.
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Chapter 5

CONCLUSIONS

Wearable soft robots have successfully addressed inherent design limitations faced

by wearable rigid robots. However, they possess a unique set of challenges due to

their soft and compliant nature. Some of these challenges are present in the sensing,

modeling, control and evaluation of wearable soft robots.

Some of the main challenges addressed in this dissertation are summarized in

Fig. 5.1. Machine learning algorithms have shown promising results for sensor fusion

with wearable robots, however, they require extensive data for training and retraining

models for different users and experimental conditions. Modeling soft sensors and ac-

Figure 5.1. Challenges of Wearable Soft Robots.
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tuators require characterizing non-linearity and hysteresis, which complicates deriving

an analytical model. Experimental characterization can capture the characteristics of

non-linearity and hysteresis but requires developing a synthesized model for real-time

control. Controllers for wearable soft robots must be robust to compensate for un-

known disturbances that arise from the soft robot and its interaction with the user.

Since developing dynamic models for soft robots is complex, inaccuracies that arise

from the unmodeled dynamics lead to significant disturbances that the controller

needs to compensate for. In addition, obtaining a physical model of the human-robot

interaction is complex due to unknown human dynamics during walking. Finally, the

performance of soft robots for wearable applications requires extensive experimental

evaluation to analyze the benefits for the user.

To address these challenges, this dissertation focuses on the sensing, modeling,

and evaluation of soft robots for wearable applications. The main contributions

of this dissertation are summarized in Fig. 5.2. Chapter 1 introduces an overview

of the related works and current challenges in the field of wearable soft robots.

Chapter 2 presents the design of a model-based sensor fusion algorithm to improve

the estimation of human joint kinematics with a soft flexible robot that requires

Figure 5.2. Contributions of the Dissertation.
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compact and lightweight sensors. Kinematic state constraints were implemented into

the sensor fusion algorithm to exploit the kinematic relationships between the robot

and the user. To overcome limitations with rigid sensors, Chapter 3 presents the

development of an inflatable soft haptic sensor to facilitate mutual gait sensing and

haptic feedback. We employ mechanical characterization to address the challenge of

developing models for soft sensors and actuators to quantify the external forces and

the forces generated by the actuator. Finally, the benefits of soft robots for wearable

applications were explored and discussed in Chapter 4 through the evaluation of a

wearable soft exosuit. The results of the study demonstrate the benefits of the soft

exosuit and its capacity to assist the lifting motion and reduce the human effort to

accomplish such tasks. In addition, this study helped identify some challenges in the

control and evaluation of soft robots in wearable applications, which will be the focus

of future work, such as the development of a robust controller that detects the optimal

timing for autonomous inflation and deflation of the exosuit while taking into account

the inherent pressurization delays.
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