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ABSTRACT 
 

With the acceleration of urbanization in many parts of the world, transportation 

challenges such as traffic congestion, increasing carbon emissions, and the “first/last-

mile” connectivity problems for commuter travel have arisen. Transport experts and 

policymakers have proposed shared transportation, such as dockless e-scooters and bike 

sharing programs, to solve some of these urban transportation issues. In cities with high 

population densities, multimodal mobility hubs designed to integrate shared and public 

transportation can be implemented to achieve faster public connections and thus increase 

access to public transportation on both access and egress sides. Haphazard drop-offs of 

these dockless vehicles, however, have led to complaints from community members and 

motivate the need for neighborhood-level parking areas (NLPAs). Simultaneously, 

concerns about the equitable distribution of transportation infrastructure have been 

growing and have led to the Biden Administration announcing the Justice40 Initiative that 

requires 40% of certain federal investments benefit disadvantaged communities. To plan 

a system of NLPAs to address not only the transportation shortcomings while elevating 

these recent equity goals, this thesis develops a multi-objective optimal facility location 

model that maximizes coverage of both residential areas and transit stations while 

including a novel constraint to satisfy the requirements of Justice40.  

The model is applied to the City of Tempe, Arizona and uses GIS data and spatial 

analyses of the existing public transportation stops, estimates of transit station boardings, 
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population by census block, and locations of disadvantaged communities to optimize 

NLPA location. The model generates Pareto optimal tradeoff curves for different numbers 

of NLPAs to find the non-dominated solutions for the coverage of population nodes and 

boardings. The analysis solves the multi-objective model with and without the equity 

constraint, showing the effect of considering equity in developing a multimodal hub 

system, especially for disadvantaged communities. The proposed model can provide a 

decision support tool for transport and public authorities to plan future investments and 

facilitate multimodal transport. 
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1. Introduction 

Shared transportation is a transportation strategy that allows users to access modes of 

transportation for short periods as needed, including scooter sharing and bike sharing, 

among others. Shared transportation was expected to solve urban transportation issues 

such as traffic congestion, emission and noise pollution, and the first/last-mile problem, 

as a complement to the public transport system. Shared transportation provides 

alternatives to driving for the public under the circumstances of rising fuel prices and 

extensive parking needs. However, despite its massive potential to create environmental 

and economic benefits, shared transportation is not currently widely applied in the U.S. 

One of the main reasons is high vehicle ownership. According to the Federal Highway 

Administration, over 93% of U.S. households owned at least one car in 2019. Combined 

with research from the U.S. Census Bureau in 2019 (Burrow et al., 2019), only 5% of 

U.S. workers chose shared/public transportation to commute to work, in contrast to 

75.9% of workers who drove alone. High vehicle ownership has affected the promotion 

of shared transportation to a certain extent.  

It is difficult to support a healthy infrastructure for shared transportation with limited 

customers and low market demands. Insufficient numbers of stations, as well as uneven 

distribution, also limit adoption of shared transportation. In addition to centralized 

distribution in the city center for profit, shared transportation programs need to be 

designed to provide affordable travel options for residents, especially low-accessibility 
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populations, while maintaining profitability. At its peak, there were 112 bikeshare 

systems and 7,469 bikeshare stations across the United States (BTS, 2021). However, 

even with numerous sites, inequality still exists in how to balance the network coverage 

and spatial equity (Conrow et al., 2018). Therefore, a reasonable selection of site location 

and coverage within the budget is necessary in order to achieve the desired effect.  

Furthermore, for those cities that promote shared transportation, lack of proper 

management can cause public issues. For example, due to the growing popularity of e-

scooters (Fig. 1, Fig. 2), some cities are facing problems such as illegal dumping, 

abandonment, right-of-way obstruction, and even safety concerns, all of which lead to 

complaints by residents (Reinberg, 2022; Kelly, 2022). Following a number of high-

profile accidents, legislation around e-scooters is likely to tighten. Cities such as San 

Francisco and Nashville have introduced laws to limit the number of e-scooter companies 

and regulate the market (Timms, 2019; Shouse Injury Law Group, 2021).  

 

 
Fig. 1. Growth of e-scooter systems in the United States. Data courtesy of the Bureau of 

Transportation Statistics (BTS). 
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Fig. 2. Locations of e-scooter systems in the United States, 2020. Data courtesy of BTS. 

 

Despite those social issues and concerns, in cities with well-developed public transit 

systems (i.e., Boston, Los Angeles) or with an extensive user community (university 

towns such as Tempe, Arizona), shared transportation has broad market prospects and 

great potential demand. Many cities are researching the feasibility of mobility hubs that 

lead to sustainable solutions for the city’s transportation network. A mobility hub is a 

facility designed to combine the resources of multiple modes of transportation in one 

physical location (DeRosa et al., 2021). As a type of Transportation Demand 

Management (TDM) strategy, the concept of mobility hubs has been proposed for 

decades and put into practice in many countries, especially in Europe. The idea is to 

provide a joint in the transportation network to improve the connectivity and accessibility 

of different transport modes, thus reducing the occupation space of stations and 
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improving transport efficiency. According to the National Commission on Intermodal 

Transportation (NCIT, 1994), public intermodal transportation is limited by gaps in the 

connectivity of transport modes. The defect of any links may result in poor connectivity 

of transport. Intermodal travel itineraries with transfers at intermodal mobility hubs are 

seen as beneficial to provide higher accessibility and faster public connections (Frank et 

al., 2021).  

Mobility hubs can be built in different levels based on the connection demand, from 

bike connections and bus infrastructure (bus ridership and bikeability) to an intermodal 

transportation center. To balance the needs of public transport users and the realities of 

the existing built environment reasonably and efficiently, mobility hubs are divided into 

three main categories: neighborhood, central, and regional according to scale, amenities, 

and environment (LADOT, 2016). Neighborhood mobility hubs are smaller, ancillary 

station areas generally found in lower-density neighborhoods. They offer a few basic 

amenities essential to every transit area including wayfinding, bike share, and bike 

parking. Central mobility hubs are typically located in more urbanized areas and 

encompass one or more stations/bus stops. They offer many amenities in addition to the 

baseline features including car share, bus shelter, and next bus information. Regional 

mobility hubs are the largest stations, usually located in dense urban areas or end-of-line 

stations, where they connect to other regional transit providers. Regional mobility hubs 

offer the most amenities including secured bike parking and a bus layover zone along 
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with important amenities and infrastructure built into the station itself. The fusion of 

transport “integrates public transport services with walking, cycling, and micro-mobility 

to make it easier for people to travel seamlessly” (Arup et al., 2020, p. 4). In many cities, 

the train station and its surrounding area are broadly considered as appropriate locations 

to locate mobility hubs because of the well-established rail infrastructure and supporting 

facilities, which make adding other modes of public transportation relatively simple. 

Against this background, I developed a decision support tool to help understand 

public transit system distribution and apply optimization modeling in finding feasible 

solutions to build NLPAs. The model is then applied to the City of Tempe, Arizona, 

which is working on strategies for transport demand management and 20-minute city 

goals (King et al., 2019). One of the options is to build a system of mobility hubs to 

coordinate with existing public transportation throughout the region. Regulation for 

shared scooters and bikes are necessary. As a part of parking regulation, it would be 

helpful if they are integrated into mobility hubs for unified management. This not only 

reduces the difficulty of supervision and law enforcement but also effectively increases 

the walkability, connectivity, and accessibility of the area around mobility hubs. Culdesac 

Tempe, a car-free apartment complex, is also set to open at the end of 2022, which is 

expected to bring considerable users of public and shared transportation to the Tempe 

area. It can be seen that the development of the shared transport network in Tempe has 

good prospects. This research will effectively inform the early development stage of 
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mobility hub infrastructure planning in Tempe.  

 

2. Literature review 

In this section, I present some literature works to describe the framework in which 

my proposed model is positioned. In Subsection 2.1, the works related to the design of 

the mobility hub system are presented. Since my work focuses on equity in location 

optimization models, in Subsection 2.2, the literature proposing the use of widely used 

methods to address equity is described. 

 

2.1. Optimal facility location models for Mobility hub systems 

The goal of optimization is finding the maxima (or minima) of an objective function 

for efficient use of resources. It maximizes or minimizes one thing above all else. 

Optimization strategies have been applied broadly in network hub locations (see Alumur 

and Kara, 2008). Choosing a suitable model for optimizing a set of mobility hubs 

depends on many factors: accessibility, the type of transportation, the geographic scale of 

the region, the service range, population/household density, among others. According to 

the literature, two of the most widely used optimization models in the network design 

problem of mobility hub systems are the maximum covering location model and the p-

median model. Church and Revelle (1974) presented the first maximum covering location 

model to solve the maximal service distance issue in the location set covering problem. 
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Campbell (1994) proposed the first integer programming formulations for different types 

of hub-covering models. As an important component of shared mobility, bike-sharing 

network analysis often applies the maximum covering model (Frade and Ribeiro, 2015; 

Park and Sohn, 2017; Conrow et al., 2018; Hu et al., 2019). For instance, Ciancio et al. 

(2017) proposed a maximal covering approach for bike sharing systems under 

deterministic and stochastic demand. In studying multimodal hub location problems, 

Mohammadi et al. (2013) developed a novel stochastic multi-objective multimodal 

transportation model to address multimodal hub location problems under uncertainty. 

Frank et al. (2021) presented two separate mixed integer maximum covering models, 

aiming at increasing the accessibility to POIs and workplaces, respectively, for locating 

mobility hubs in Heinsberg, Germany. As far as concerns the p- median model Alumur et 

al. (2012) jointly considered transportation costs and travel times based on the 

observations from hub networks in the real world. Cintrano et al. (2018) solved a p-

median model with a variable neighborhood search algorithm. Real et al. (2021) 

introduced a multimodal hub network design problem with flexible routes.  

 

2.2. Equity in location optimization models 

Equity involves the fairness of the distribution (Adams, 1965). In theory, it is a 

function of both the project itself and how it is paid for. Equity focuses on past 

underserved communities during the planning process to create solutions to improve real, 
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everyday transportation challenges. In optimal facility location modeling, achieving 

fairness in the distribution of public infrastructure has been a concern since the 1970s 

(see McAllister, 1976; Drezner et al., 1986; Maimon, 1986). Erkut and Neuman (1989) 

studied previous works of maximization location models by two main categories: 

maximin objective and maxisum objective in single/multiple facility problems. They then 

proposed a multi-objective model for locating obnoxious facilities, which identified the 

future research direction in this area (1992). More recently, the measures of equity in 

location optimization models are usually achieved through two methods: (1) adding 

priority weights on objectives (i.e., coverage, demand, travel times, costs); or (2) using 

the weighted coefficients of variation or spatial measures. Conrow et al. (2018) proposed 

a bi-objective optimization model with adding objective priority weights in to estimate 

the impact of the model on the coverage of bicycle networks and population demand 

under different weights. Qian et al. (2022) built a genetic algorithm, including a weight 

associated with each opportunity, to evaluate the user demand and site distribution for a 

bike-share system in Chicago.  

The Theil index is one of the indices often used in equity research. Caggiani et al. 

(2020) incorporated a variant of the Theil index into the objective function and optimized 

it to minimize the difference in public multimodal mobility between population groups. 

Goodman and Cheshire (2014) also applied the location quotient to evaluate the 

equalities in the London bicycle-sharing system, including service coverage and pricing. 
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In 2021, President Biden signed Executive Order 14008, making it a goal to 

“withstand the devastating effects of climate change and promote environmental justice” 

(The White House, 2021). Justice40, a government-wide initiative, stemmed from this 

Executive Order. According to the Justice40 Initiative, “at least 40 percent of the overall 

benefits of certain Federal investments flow to disadvantaged communities that are 

marginalized, underserved, and overburdened by pollution” (Young et al., 2021). If 

designed and implemented properly, the implications of the Justice40 Initiative’s 

commitment to environmental justice (disadvantaged) communities could be enormous. 

In addition to the potential benefits to the environment and community development, 

Justice40 may lead to new directions for research on the equitable distribution of public 

infrastructure.  

 

2.3. Literature gap 

Mobility hub systems are a complex network, providing alternative forms of 

transportation instead of driving alone. Many different methods have been proposed for 

planning a system of public transportation. Research by Frank et al. (2021) concludes that 

the relevant literature in transportation research includes two research directions: 

accessibility measure methods and optimization-based planning models for mobility 

hubs: “Approaches that are based on accessibility measures focus on the detailed analysis 

and evaluation of transportation systems with regard to the access to Point of Interests 
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(POI) or workplaces. In contrast, optimization-based planning models focus on providing 

decision support for mobility hubs, e.g., regarding their locations” (p.3). Combining the 

above analyses, there have been few case studies to include accessibility, equity, and 

external factors, such as ridership. The study of neighborhood-level mobility hubs is also 

limited in the open literature. Considering that buses and light rails make up the major 

public transportation system in the City of Tempe, neighborhood-level mobility hubs 

(e.g., buses, light rails, e-scooters) are feasible under the budget and current 

circumstances.  

Since Justice40 Initiative came out in 2021, few articles in the field of location analysis 

have mentioned it. To the best of my knowledge, this is the first time to be done. In addition, 

adding an equity constraint generated from Justice40 may cause other constraints in the 

model to be contradictory, therefore creating the need for relaxation and conflicts. I added 

a mandatory constraint to avoid errors in optimal site selection. The literature search did 

not identify any other publications that considered this situation. This study will address 

both the inclusion of Justice40 goals into network optimization as well as model 

contradictions to avoid errors in optimal site selection, which will help apply the Justice40 

Initiative to the optimal facility location model. 

 

3. Mathematical model 

A two-objective maximum covering optimization model for siting NLPAs was 
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structured on the basis of previous research from Church and ReVelle (1974). The first 

objective is to maximize the residential coverage. The second objective is to maximize 

the coverage of public transportation boardings. In addition, the model introduces an 

equity constraint based on the specific requirements of Justice 40. Since the objective of 

the model is to site parking areas in census blocks, I will use the name “neighborhood-

level parking area” (NLPA) uniformly in the following. Model notation is as follows: 

 

Indices and Sets 

i = index of population nodes  

j = index of NLPA candidate sites 

s = index of existing stops of public transportation 

R = set of population nodes 

Q = set of NLPA candidate sites 

S = set of existing transit stops (e.g., bus, light rail) 

Ni = set of NLPA candidate sites, j, capable of covering population node i 

Ns = set of NLPA candidate sites, j, capable of covering existing transit stop s 

 

Parameters 

ai = population size at population node i 

bs = demand weight of transit station s (boardings by station/stop) 
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p = total number of NLPAs to be established 

w = importance weight for population coverage, [0 ≤w≤1] 

M = ratio of total population to total boarding passengers 

𝐷𝐷𝐷𝐷𝑖𝑖 = �1, if census block 𝑖𝑖 is a disadvantaged community 
0, otherwise   

 

Decision Variables 

𝑋𝑋𝑗𝑗 = �1, if a NLPA is sited at location 𝑗𝑗
0, otherwise   

𝑌𝑌𝑖𝑖 = �1, if  population node 𝑖𝑖 is covered by a sited NLPA
0, otherwise   

𝑍𝑍𝑠𝑠 = �1, if  transit station 𝑠𝑠 is covered by a sited NLPA
0, otherwise   

 

In the model, population nodes and NLPA candidate sites are the centroids of census 

blocks. The set of NLPA candidate sites, Q, and the set of population nodes, R, were 

roughly similar, except that the census blocks with zero population were removed from 

the set R. It was assumed that each population node could install a NLPA in order to 

maximize the connections between residential areas and NLPAs, while no user demand 

would occur in census blocks with no population. Binary decision variable 𝑋𝑋𝑗𝑗 indicates 

whether a NLPA is installed at location 𝑗𝑗 ∈ 𝑄𝑄. The installed NLPAs are able to improve 

the accessibility to population nodes or to transit stations.  

This notation is now used to construct the equity-based coverage model. The 

formulation is as follows:           
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Maximize ∑ 𝑎𝑎𝑖𝑖𝑌𝑌𝑖𝑖𝑖𝑖                 (1) 

Maximize ∑ 𝑏𝑏𝑠𝑠𝑍𝑍𝑠𝑠𝑠𝑠                               (2) 

 

Accordingly, Objective (1) maximizes the potential user coverage, while Objective 

(2) maximizes the coverage of passenger of public transportation.  

 

Constraints. Objectives (1) and (2) are maximized subject to Constraints (3)-(9). 

The constraints ensure the suitable coverage of population and of transit stops given the 

locations of NLPAs, as well as the bound with travel distance thresholds and the overall 

budget. 

 

∑ 𝑋𝑋𝑗𝑗 − 𝑌𝑌𝑖𝑖  ≥ 0    ∀𝑖𝑖𝑗𝑗∈𝑁𝑁𝑖𝑖              (3) 

∑ 𝑋𝑋𝑗𝑗𝑗𝑗∈𝑁𝑁𝑠𝑠 − 𝑍𝑍𝑠𝑠  ≥ 0    ∀𝑠𝑠             (4) 

∑ 𝐷𝐷𝐷𝐷𝑖𝑖𝑎𝑎𝑖𝑖𝑌𝑌𝑖𝑖  ≥ 0.4 ∑ 𝑎𝑎𝑖𝑖𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖             (5) 

𝑋𝑋𝑗𝑗 ≤ 𝑌𝑌𝑖𝑖    ∀𝑖𝑖, 𝑗𝑗 ∈ 𝑁𝑁𝑖𝑖              (6) 

𝑋𝑋𝑗𝑗 ≤ 𝑍𝑍𝑠𝑠    ∀𝑠𝑠, 𝑗𝑗 ∈ 𝑁𝑁𝑠𝑠              (7) 

∑ 𝑋𝑋𝑗𝑗 = 𝑝𝑝𝑗𝑗                                                 (8) 

𝑋𝑋𝑗𝑗, 𝑌𝑌𝑖𝑖, 𝑍𝑍𝑠𝑠  =  {0,1}    ∀𝑖𝑖, 𝑗𝑗, 𝑠𝑠                                        (9) 
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Constraint (3) ensures that the population node i is not counted as covered unless an 

opened NLPA is located within the service distance. Similar to (3), Constraint (4) ensures 

that the transit stop s is considered to be covered only if an opened NLPA is located 

within the service distance. Constraint (5) stipulates that the covered population of those 

living in disadvantaged communities needs to be at least 40 percent of the total covered 

population. This constraint can be seen as a Justice40 constraint, which meets the 

requirement that at least 40 percent of the overall benefits of investments flowing to 

disadvantaged communities.  

Constraint (6) forces a population node i to be covered (Yi = 1) if there are any NLPA 

sited within the service distance. The reason Yi must be forced to be a 1 once it is covered 

is because under some circumstances, Constraint (5) may force population node i to be 

uncovered (Yi = 0), even when node i is within the service distance of at least one NLPA, 

in order for the equity constraint to hold. For example, if the covered population of 

disadvantaged communities is less than 40 percent of the total covered population, then Yi 

is forced to be 0 to make Constraint (5) hold. By adding Constraint (6), Constraint (3) and 

(6) can avoid this situation. Similar to (6), Constraint (7) ensures that transit stop s is 

covered (Zs = 1) if there is at least one NLPA sited within the service distance. In some 

situations, the use of Constraint (7) or not can affect the results. This happens when the 

importance weight w = 1. In this case, the number of boardings (Zs = 0 or 1) has no effect 

on the model results. Constraint (8) requires locating exactly p facilities due to budgetary 
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reasons. Constraint (9) accounts for integer requirements. 

The two objectives complicate application and solution of this maximum covering 

location model, as the decision to locate a NLPA may not be equally beneficial for 

population coverage and public transport network coverage. In fact, they may conflict 

with each other. A common approach to integrating dual objectives is giving functions a 

priority weight, w (see Cohon, 1978). The value of this weight is usually between 0 and 

1. The two sets of objectives can then be made into one weighted objective, as follows: 

 

Maximize 𝑤𝑤∑ 𝑎𝑎𝑖𝑖𝑌𝑌𝑖𝑖 +𝑖𝑖 (1 − 𝑤𝑤)𝑀𝑀∑ 𝑏𝑏𝑠𝑠𝑍𝑍𝑠𝑠𝑠𝑠          (10) 

 

By adding the constant M, the model can evaluate a large number and a relatively 

small number at the same order of magnitude, in order to prevent the impact of a large 

numerical gap on the fairness of the model. The demand weight w reflects the decision 

makers’ preference among multiple objectives. In practice, a range of weights are often 

considered, therefore generating tradeoff curves to find the Pareto-optimal (non-

dominated) solutions for decision making and analysis purposes. 

 

4. Study area and usage data 

Tempe is located in Maricopa County, Arizona. As of 2020, the residential population 

in Tempe was 180,587. As part of the Phoenix metropolitan area and the home of Arizona 



16 

State University’s main campus, Tempe has a dense pattern of urbanized development in 

the northern part of the city, particularly as it relates to the Valley Metro light rail line. 

Toward the south, the urban layout becomes progressively more dispersed, including 

single-family homes, strip malls, and lower-density office parks (“Tempe, Arizona,” 

2022), as shown in Fig. 3. Tempe’s urban geography significantly impacts the distribution 

of shared transportation, which is concentrated in northern Tempe, especially in the 

downtown area (Fig. 4). Currently, the major shared transportation systems in Tempe are 

composed of scooters from different companies (e.g., Bird, Spin, Razor). The bike share 

program, GRID Bike, exited the Tempe market in 2020. The City of Tempe declares that 

they will come out with a plan to search for new operators.  

 

Fig. 3. Tempe population distribution in 2021, which are used in the first objective function. 
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I used the road network of Tempe, downloaded from the U.S. Census Bureau (2021), 

in the model. Besides the bike lanes, bike routes, and multi-use paths, the whole street 

network, especially sidewalks, was used for traversing between origins, NLPAs, and 

destinations. Of these, I removed all highway, freeway, and expressway segments from 

the road dataset because scooters or bikes are not permitted on those roads. Considering 

that the parking areas need to be settled at the neighborhood level, I chose 0.3 miles (483 

meters) as the threshold of NLPA service distance to households, which represents a short 

enough distance for people reaching a nearby parking area by walking. This service 

distance prevents people from being reluctant to use shared scooters or bikes due to the 

difficulty of finding parking areas during the process of renting and returning. Given that 

the speed limit in alleys is 15 mph under Arizona law and the expected five-minute transit 

time from home to a transit stop, the service distance from an NLPA to transit stations 

was set as 1 mile (1609 meters).  
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Fig. 4. The distribution of Bird e-scooters in Tempe, 2020. Data source: Tempe Data Catalog. 

 

In order to better understand the distribution and interaction of shared transportation 

and public transportation, Tempe traffic data need to be analyzed. Considering the urban 

features of Tempe and that buses and light rails make up the major public transportation 

system (Fig. 5), neighborhood-level mobility hubs are feasible under the current 

circumstances.  
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Fig. 5. Tempe public transit rail and bus station location and weekday boardings used in the 

second objective function. 

 

The ridership (boarding) data for light rail and bus stations were downloaded from 

the Valley Metro GeoCenter (2021). Due to the impact of COVID-19 on public 

transportation, the light rail and bus ridership data were last updated in 2020 and 2019 

respectively at the time of this writing. Both the light rail and bus ridership data were 

collected quarterly and include categories of boardings/departures and weekday/weekend 

separately. For the convenience of analysis, the annual averages of these data were taken. 

The Tempe Streetcar, an expansion to the Valley Metro transit network, was in operation 

in 2022, but ridership data were not publicly available at the time of this writing and have 
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therefore not been included in this study.  

Census blocks with population data were downloaded from AZGeo Open Data 

(2021). The data was last updated in 2020. The disadvantaged community data was 

obtained from the Climate and Economic Justice Screening Tool (CEJST), developed by 

Council of Environmental Quality. According to their statistics, two census tracts in the 

City of Tempe are identified as disadvantaged (environmental justice) with a total 

permanent population of 9,527, as shown in Fig. 6.  

Data processing and service coverage determinations were performed in ArcMap 

Desktop 10.8, mainly using the Network Analyst extension. There are 1936 census blocks 

in the City of Tempe, 1581 of which are inhabited. Therefore, there were 1581 demand 

nodes and 1936 NLPA candidate sites. By using the walking distance cutoff of 0.3 miles 

(483 meters), 11283 trips from inhabited blocks to NLPA candidate sites were generated. 

Using the riding distance cutoff of 1 mile (1609 meters), 60741 trips were generated from 

761 transit stops to 1936 NLPA candidate sites. 
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Fig. 6. Disadvantaged communities in Tempe. Transparency is based on the total population of 

each census block within the tracts. 

 

5. Findings 

The two-objective optimization model was solved using CPLEX Studio IDE 12.8.0. 

All data processing and analysis was done on a personal laptop (AMD Ryzen 7 4800H, 

2.90 GHz with 16 GB RAM). In total, there were 3738 binary variables and 74366 

constraints. The average computing time per problem was 25 seconds. Fig. 7 zooms in on 

one neighborhood to illustrate how the population nodes and transit stops covered by a 

particular NLPA more clearly. The small buffer contains six census block centroids that 

are covered because they fall within the 0.3-mile walking distance of this NLPA. 

Likewise, the larger buffer contains about 40 bus stops and one light rail station that are 

covered by this NLPA because they can be reached within 1 mile of biking or scootering 



22 

from this NLPA. 

 

 
Fig. 7. An example of NLPA coverages of population nodes and transit stops. This NLPA is close 

to E Broadway Rd, halfway between S Rural Rd and S McClintock Dr. 

 

By changing the investment level p and the objective demand weights w, the multi-

objective model generates a range of decision options. Values of p ranged from 10 to 50 

by increments of 10. When testing the effect of without Justice40 constraint on the 

model, the values of p ranged from 10 to 400 (10, 20, 30, 40, 50, 100, 200, 300, 400). 

Seven different importance weights were tested (1, 0.9, 0.7, 0.5, 0.3, 0.1, 0).  

The effects of running the model with and without the Justice40 constraint on the 

coverage for boarding and population for a variation of investment level when the 

demand weight w = 0.5 is shown in Fig. 8. The x-axis indicates the number of NLPAs to 

install. The percentage of coverage related to the number of installed NLPAs is given 
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along the y-axis. The coverage for boarding reaches over 80% with a steep rise in both 

graph a and b when locating 10 NLPAs but levels off thereafter. The Justice40 constraint 

limits the total covered population to no larger than 2.5 times the total disadvantaged 

population, thus the maximum population coverage is only around 12.4% of the total 

population in Tempe with the Justice40 constraint. After removing the Justice40 

constraint, the population coverage rises steadily as the number of NLPAs increases and 

reaches full coverage when locating 400 NLPAs.  

 
a. 

 
b. 

Fig. 8. Coverage for boarding and population for a given p (w = 0.5): a, (with Justice40 constraint); b, 
(without Justice40 constraint). 
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Fig. 9 shows the non-dominated tradeoff curve between the two objectives. Each line 

was generated by keeping a fixed value of p while changing w. Population coverage is 

favored when w = 1, whereas boarding coverage is favored when w = 0. Values in 

between represent a tradeoff between the preferences for these two extremes. As the 

value of p increases, the tradeoff curve gradually shifts up towards the upper right corner 

and gradually becomes a polyline with a right angle. The vertex at the elbow of certain 

curves, such as the p = 30 curve, is a promising win-win solution. For p = 50 and w = 0.9, 

there is only one point that is non-dominated, covering a boardings of 20,738 and a 

population of 22,352. Due to the Justice40 constraint, the maximum covered population 

is 22,352. The tradeoff solutions may vary if the Justice40 constraint is removed. 

 

 
Fig. 9. Tradeoff solutions for a given w (1, 0.9, 0.7, 0.5, 0.3, 0.1, 0). 
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The optimal NLPA locations are affected by the Justice40 constraint. This is 

illustrated in Figs. 10 and 11 using equal weights of 0.5 on each objective. With the 

Justice40 constraint (Fig. 10), the optimal NLPAs are more evenly distributed, although 

sites in disadvantaged communities are clustered to some extent. Without the Justive40 

constraint (Fig. 11), the optimal NLPAs tends to cluster in northern Tempe. By comparing 

Figs. 10a with 11a, Figs. 10b with 11b, and Figs. 10c with 11c, it is clear that fewer 

NLPAs are sited in or near disadvantaged communities when the Justice40 constraint is 

removed because these areas have a relatively lower population, which will not be chosen 

as optimal sites to provide coverage.  

 

   

Fig. 10. Optimal with-Justice40 NLPA configuration a, (p=10 & w=0.5); b, (p=30 & w=0.5); c, (p=50 

& w=0.5). 

 



26 

   

Fig. 11. Optimal without-Justice40 NLPA configuration a, (p=10 & w=0.5); b, (p=30 & w=0.5); c, 

(p=50 & w=0.5). 

 

6. Conclusions and discussion 

In this paper, I presented an equity-based maximum covering location model that 

introduces a novel constraint to satisfy the requirements of Justice40. It also introduces a 

double determination for the coverage of the population (Yi) and boardings (Zs). The 

model aims to increase accessibility from residential areas to transit stops by maximizing 

the coverage for population and boardings within a certain travel distance threshold. 

Based on the findings, I have come up with the following insights: (1) NLPAs can 

increase the accessibility from residential areas to transit stops, (2) the locations of 

optimal NLPAs are different with/without Justice40 constraint, (3) after a certain value of 

p, Justice40 constraint may limit the continued growth of coverage. 

Several areas of this analysis could be improved in future research. At the theoretical 

level, although more disadvantaged communities can be covered with the Justice40 
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constraint, the total covered population is limited. Therefore, the Justice40 constraint is 

more appropriate as an early-stage threshold for the initial rollout of hubs. After the 

coverage for disadvantaged communities reaches the target, the Justice40 constraint can 

be removed, and the model can be modified as needed.  

A limitation of the current analysis in practical application is that the tool developed 

by the Council on Environment Quality that is used here to identify disadvantaged 

communities does so at the census tract level of aggregation. In fact, some census blocks 

other than these may also meet the criteria of disadvantaged communities. However, 

because their nearby blocks may not meet the criteria, the entire census tract does not 

qualify as a disadvantaged community. The results would likely be different if the model 

can be rerun based on the identification of disadvantaged communities at the census 

block level.  

Importantly, this model focused on locations in residential areas and does not 

consider where users would park after biking or scootering to transit stations. It is 

assumed that shared mobility parking areas will be located at every bus stop and light rail 

station. In fact, some bus stops and light rail stations already have designated parking 

areas, such as those near Dorsey & Apache Park and Ride, which is a free parking lot by 

Valley Metro. However, some stops and stations are not able to have parking areas nearby 

easily due to location or other reasons (e.g., not enough open space around), such as 

McClintock/Apache Blvd Station and Price-101 Fwy/Apache Blvd Station. It is 
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important and necessary to provide parking areas for NLPA systems because it can 

enhance users’ confidence in using shared transportation and lay a solid foundation for its 

popularity. 

In addition, the COVID-19 pandemic has a huge impact on public transportation, 

which has still not been restored (BTS, 2022). Valley Metro has not updated their bus or 

light rail ridership data for the last two to three years. The actual ridership data may now 

be relatively small, which may also affect the selection of NLPAs.  

Along with physical and socioeconomic factors, building NLPAs in residential areas 

also involves political factors. Since NLPAs are to be built in census blocks, stakeholders 

may have opinions and therefore lobby their political representatives for or against it. If 

stakeholders favor shared transportation development and are eager to cooperate, it can 

save legal and regulatory expenses. However, if stakeholders hold a “Not In My Back 

Yard” (NIMBY) view, it will be difficult for the project to proceed in these areas, which 

will lead to higher legal and regulatory costs. It is understandable why some residents 

would be opposed, as some people perceive public and/or shared transportation as 

reducing the level of security in the vicinity of the station. The increase in the floating 

population could cause some increase in the difficulty of policing. Building NLPAs also 

means occupying a certain amount of public space. Whether converting the original 

public space into parking areas will create new issues deserves further study. 

Another concern that may affect people choosing shared transportation is the price. 
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Take Bird Scooter as an example. The user needs to pay an “unlocking fee” before using 

a Bird scooter, which is approximately $1.00 in most cities. After that, the per-minute fee 

is the only cost unless the user violates the Bird User Agreement. This rate varies by city 

and is currently $0.15 per minute in Tempe. If the user wants to travel one mile to reach a 

transit station, it will take about 5 minutes under the 15-mph speed limit, which is a cost 

of $0.75. After adding the unlock fee, the total trip cost comes to $1.75. Assuming this 

user chooses to rent a scooter for both his commute to and from the transit station, his 

total cost for the day would be around $3.50. If the user travels 25 days a month, his 

monthly scooter rental cost would be $90 to $100, which is relatively high even in the 

context of rising fuel prices. With the even distribution of shared scooters and the 

increase of potential users after building NLPAs, these commercial companies may lower 

the per-minute rate or offer monthly pass to attract more users. If commercial companies 

cooperate to build a transportation network, this will help to better understand how the 

way people travel is changing and how it is being changed. With the transformation of 

vague policy into detailed analysis, the City of Tempe can have a more precise 

understanding of how cooperation can have positive effects.  
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