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ABSTRACT

Biopolymers perform the majority of essential functions necessary for life. From a small

amount of components emerges considerable complexity in both structure and function. The

separated timescales of dynamic processes and intricate intra and intermolecular interac

tions of these molecules necessitate the development and utilization of computational ap

proaches for biopolymer study and nanotechnology applications. Biopolymer nanotechnol

ogy exploits the natural chemistry of biopolymers to performnovel functions at the nanoscale.

Molecular dynamics is the numerical simulation of chemical entities according to the phys

ical laws of motion and statistical mechanics. The number of atoms in biopolymers require

coarsegrained methods to fully sample the dynamics of the system with reasonable re

sources. Accordingly, a coarsegrained molecular dynamics model for the characterization

of hybrid nucleic acidprotein nanotechnology was developed. Proteins are represented as

an anisotropic network model (ANM) which show good agreement with experimentally de

rived protein dynamics for a small computational cost. The model was subsequently applied

to hybrid DNAprotein cages systems and exhibited excellent agreement with experimental

results. Ongoing development efforts look to apply network models to oxDNA origami to cre

ate multiscale models for DNA origami. The network approximation will allow for detailed

simulation of DNA origami association, of concern to DNA crystal and lattice formation.

Identification and design of targetspecific binders (aptamers) has received considerable

attention on account of their diagnostic and therapeutic potential. Generated in selection cy

cles from extensive random libraries, biopolymer aptamers are of particular interest due to

their potential nonimmunogenic properties. Machine learning leverages the use of powerful

statistical principles to train a model to transform an input into a desired output. Parame

ters of the model are iteratively adjusted according to the gradient of the cost function. An

unsupervised and generative machine learning model was applied to Thrombin aptamer se

quence data. From themodel, sequence characteristics necessary for binding were identified

and new aptamers capable of binding Thrombin were sampled and verified experimentally.
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Future work on the development and utilization of an unsupervised and interpretable ma

chine learning model for unaligned sequence data is also discussed.
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Chapter 1

INTRODUCTION

1.1 The Nanoscale

The universe as we currently know it has at its fundamental building blocks bosons and

fermions. The full expanse of the universe, estimated to be 93 billion light years, 8.79 ∗ 1026

m wide, consists of matter, which is built from fermion components approximately 10−15m

in size, and energy. Much as size exists across this impressive scale so does time; the age of

the universe is approximately 13.7 billion years (4.35 ∗ 1017 s) while electron transfer occurs

at the attosecond (1 ∗ 10−18 s) scale. Across these extremes of time and spatial dimensions

are all processes of the universe: planet formation, magnetic reversals, and star life cycles.

More pertinent to our daily lives are the processes of the natural world: organism life spans

and cellular life cycles.

The first discoveries by humankind centered around time and length scales immediately

accessible and observable to us. Postulations of why objects fell, i.e. gravity, were recorded

as early as 380 BC by Aristotle [1]. Observations of how the objects in the sky moved each

year can be seen in ancient architecture such as Stonehenge [2]. Less obvious to humans

are objects we cannot see or interact with. It was not until the creation of the microscope

in the late 1600s, that the discovery of microorganisms and cells first occurred [3]. Going

even smaller, the first experimental evidence for the atom was not until the 1800s, with the

development of quantum mechanics not beginning until the early 1900s [4, 5].

Continuing to today, much progress has been made at the nanoscale (or smaller) in a

diverse array of fields: particle physics with the standard model, electronics with nanometer

precision of semiconductor placement, and immunology with the development of vaccines.

Despite these advances there is still much we do not understand, particularly in the field
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of biology. There are fundamental challenges that arise from study of nanoscale biological

systems and their components. These include:

1. We cannot directly see nanoscale systems, so a vast array of experimental assays have

been developed to retrieve information on these systems. Popular methods to visual

ize nanoscale systems directly include methods such as cryogenic electron microscopy

(cryoEM) [6], DNAPAINT [7], Atomic Force Microscopy (AFM) [8], superresolution

Microscopy [9], transmission electron Microscopy (TEM) [10], scanning electron Mi

croscopy (SEM) [11], nuclear magnetic resonance (NMR) [12], smallangle Xray scat

tering (SAXS) [13], and Xray crystal diffraction (XRD) [14]. Each assay only gives

a piece of information about the system usually averaged over a sample made up of

many copies of the system of interest. The assay’s preparation or procedure is often

highly involved, and may also be destructive to the sample itself.

2. The timescales of nanoscale system dynamics are typically extremely fast (fs - µs), with

different processes within the same system being separated by orders of magnitude

in time. Investigations of electron and atomistic dynamics require sophisticated tech

niques that can reach femtosecond timescales such as pumpprobe spectroscopy [15]

or Xray freeelectron lasers (XFEL) [16]. However, pump probe techniques require

simple samples for feasible analysis and XFEL techniques require immense data pro

cessing capabilities and are destructive to the sample.

3. Tracking individual species in a sample is not easy. State of the art methods require

labeling of the target species with fluorophore or other molecular trackers [17], but

these methods can achieve less than micrometer resolution over second timescales.

4. Probing the interactions (and their strengths) between different molecules cannot be

done in cellular or other complex media. To determine these interactions in biologically

relevant milieus requires individual samples that are labeled (as in flow cytometry

[18]) or labelfree methods such as a native gel assay for relative binding strength
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information. Exact determination of a ligand’s binding affinity can be performed using

expensive surface plasmon resonance (SPR) techniques [19].

5. Our inability to predict the behavior of complex systems with no prior information makes

research at the nanoscale difficult. Known as the manybody problem, interactions

of a system of particles at the quantum level scales exponentially with system size,

resulting in a computationally intractable problem for large systems. The system can

be approximated to the classical level of dynamics, an approach typically used by fully

atomistic molecular dynamic methods. However, even fully atomistic methods still

scale poorly with the system sizes of biopolymers [20].

Most cellular processes are heavily dependent on three key biopolymeric molecules:

DNA, RNA, and proteins. Despite being almost entirely made up of a small set of monomers,

these biopolymers are responsible for incredibly complex functions across all domains of

life[21]. In E.Coli, estimates of cellular composition place protein as the most abundant

of these three molecules at 55 % of the cell’s dry weight, followed by RNA at 20.5 % and

DNA at 3 % [22].Taken together, DNA, RNA, and proteins account for 80 % of the cell’s dry

weight and perform the majority of functions responsible for life. Understanding how the

key components of cells interact is central to our understanding of the cell’s mechanisms

themselves.

By focusing on individual biopolymers in a test tube environment we can study and learn

how these fundamental molecules function and interact. Further, we can use these biopoly

mers to perform novel functions. The collective fields within biomolecular nanotechnology

aim to create functional materials, therapeutics, diagnostics, and assays from polypeptides,

oligonucleotides, lipids, polysaccharides, cofactors, and small molecules [23].
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1.1.1 Summary

In this work, we will focus on the development and application of computational ap

proaches to biopolymer design and characterization using two main techniques, molecular

dynamics and machine learning. Molecular dynamics is the numerical simulation of chem

ical entities according to the physical laws of motion and statistical mechanics. The large

sizes of biopolymers require coarsegrained methods to fully sample the dynamics of the sys

tem of interest. Accordingly, we develop a coarsegrained molecular dynamics model for the

characterization of hybrid nucleic acidprotein nanotechnology. We then apply the model to

hybrid DNAprotein cages systems and compare the results with experimental data.

Machine learning leverages the use of powerful statistic principles to train a model to

transform an input into a desired output. Parameters of the model are iteratively adjusted

according to the gradient of the cost function. Here, we apply an unsupervised and gener

ative machine learning model to Thrombin aptamer sequence data. From the model, we

obtain sequence characteristics necessary for binding and generate new aptamers that are

able to bind Thrombin.

Finally, I discuss ongoing research projects for coarsegrained molecular dynamics of

large DNA origami and machine learning for aptamer datasets.

1.1.2 Biomolecular Nanotechnology

1.1.2.1 DNA Nanotechnology

DNA consists of four bases on a phosphatedeoxyribose sugar backbone–adenine (A), gua

nine (G), cytosine (C), and thymine (T)–which the molecule uses to encode the entire genome

of all known living organisms [24]. Depictions of the chemical structure of DNA are shown

in Figure 1b. In bacteria, almost all DNA codes for functional proteins; however, in large
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Figure 1. Chemical and higher order structure of (ab) DNA and RNA, and (c) Proteins.
Images adapted under Creative Commons licenses, (a) by Thomas Shafee, CC BY 4.0, via
Wikimedia Commons, (b) by OpenStax, CCBY 4.0, viaWikimedia Commons, and (c) consists
of two images from OpenStax College, CC BY 3.0, via Wikimedia Commons.

multicellular organisms, a small percent of DNA actually codes for proteins while the rest is

noncoding. While proteincoding DNA (the exome) makes up only 1% of the human genome,

the true proportion of functional DNA is estimated to be around 15 % [25]. The noncoding

14 % of functional DNA has regulatory functions and produces noncoding RNA [26], which

in turn can have a variety of different regulatory functions[27, 28].

DNA serves as the carrier for genetic information which is constantly translated, re

paired, and replicated to maintain a cell’s function. Bonds between complementary bases

known as WatsonCrick base pairs (AT, CG) and the deoxyribose backbone give DNA the

stability necessary to be a storage medium for cells.

Pioneered by Nadrian Seeman [29], DNA Nanotechnology is a field of research that uses

the predictability of WatsonCrick base pairing in DNA to form userdefined nanoscale ob

jects. While originally envisioned as a method for crystallizing protein structures, DNA

Nanotechnology has evolved to a broad range of uses, including the development of thera
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peutics, diagnostics, and molecular computing [30]. Early demonstrations included folding

a long scaffold strand with short staple strands into arbitrary 2D shapes including letters

of the alphabet [31]. Since then notable contributions to the field have included design of

dynamic strand displacement circuits to implement basic logic gates as well as more com

plicated functions[32, 33, 34], a DNA nanorobot capable of killing tumorous cells [35], and

lowcost diagnostics for virus detection [36]. DNA has also seen interest for its ability to en

code and store data [37]. Even mechanical nanoscale motors have been recently developed

using entirely DNA [38].

Central to DNA nanotechnology is the canonical DNA helix (termed “Bform” DNA),

which is made up of watsoncrick pairs governed by hydrogen bond formation between com

plementary bases. Base pairs are spaced approximately 3.4 Åapart. One full turn of the

righthanded molecule corresponds to 10.5 base pairs. Neighboring base pairs also have

sequence dependent stacking and coaxial stacking interactions which help to stabilize the

double helix structure [39]. Bform DNA is by far the most dominant DNA tertiary structure

in organisms as well as DNA nanotechnology applications.

Other forms of DNA tertiary structure also exist such as Zform DNA, which occurs in

G and Crich tracts of DNA. Other structural motifs such as Gmotifs and imotifs can also

emerge in the right ionic conditions. These forms can be useful for select applications such as

aptamers where the oligonucleotide binds a target, but are largely avoided in DNA origami

formation. In nature, Gmotifs are enriched in telomeres and gene promoter sequences [40].

Illustrations of Aform, Zform, and Bform tertiary DNA structures can be seen in Figure

1a.

1.1.2.2 RNA Nanotechnology

Similar to DNA, RNA consists of four bases on a phosphateribose sugar backbone: ade

nine (A), guanine (G), cytosine(C), and uracil(U), which are used to encode proteins as well as

perform a host of other functions including catalysis. The presence of RNA viruses does sug
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gest that RNAonly organisms may have existed (or may even still exist today)[24]. Types of

RNA within the cell are numerous with diverse functions. Basic examples include messen

ger RNA (mRNA), which is translated into a polypeptide sequence, transfer RNA (tRNA) is

responsible for transferring amino acids to the polypeptide chain during protein synthesis,

and ribosomal RNA (rRNA) a major contributor to the ribosomal complex [41].

RNA Nanotechnology has not come quite as far as DNA Nanotechnology despite it’s

promise of both programmability and expanded chemical function. Overall, RNA is a much

less stable molecule than DNA, mostly due to the ribose sugar’s additional hydroxyl group.

The unpredictability of RNA tertiary structure–due to interactions outside the canonical

AU, CG pairing e.g. Hoogsteen and wobble base pairs, as well as sugaredge interactions–

makes design of these structures significantly more difficult [42]. Further, experimental

determination of RNA structure is challenging [43]. The tradeoff to these difficulties, how

ever, is the increased functionality that RNA is capable of relative to DNA. Therapeutic

examples of RNA nanotechnology include small interfering RNA’s (siRNA) that stop the ex

pression of a target protein, and RNA aptamers which tightly bind a specific target [44, 45].

1.1.2.3 Protein Nanotechnology

Proteins primarily consist of the twenty naturally occurring amino acids. Synthesized

from the genetic information carried by mRNA, proteins performmost of the important func

tions of the cell, including catalysis [46], movement [47], and energy production [48, 49].

Protein nanotechnology has seen considerable development and use because of the diverse

chemical functionality proteins are capable of. Uniting different protein components to cre

ate selfassembled protein complexes has seen considerable interest as supramolecular pro

tein complexes perform the most important and essential functions of the cell [50]. Creation

of artificial protein complexes contributes to the exploration of how key features of the pro

tein components and their interfaces (size, charge, shape, etc.) affect the resulting complex.

While nature’s protein complexes are exceedingly asymmetric and heterogeneous, designed
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complexes are most often symmetric and homogeneous. To date, nanomaterials including

nanotubes, nanofibers, and nanoparticles have been constructed from the selfassembly of

both proteins and peptides [51].

Often the modification of an existing proteinprotein interaction allows for introduction

of added functionality or other novel behavior into a naturally occurring protein. Azuma et al.

review how themodification of the bacterial enzyme lumazine synthase has resulted in novel

protein cages with potential uses in drug delivery and virus mimics [52]. Another important

direction for the field is the use of existing protein motifs to design scaffolds. Lapenta et al.

demonstrated that linked coiled coil protein motifs allow for the creation of user defined

protein cages [53]. Rigid αhelical linkers have also been designed for fusion proteins [54].

Of particular importance is the design of specific proteinprotein interactions. A recent

comprehensive review of many proteinprotein interaction algorithms found most to per

form poorly on new data, having features reflecting spurious features of the training dataset,

rather than features applicable to new data [55]. Clearly this is a complicated problem, al

beit one that is getting more tractable as the amount of experimental data increases and

the computational approaches to the problem get better. Novel proteins have been designed

using deep learning methods [56, 57], though challenges still remain in designing proteins

with new functions [58]. Steady progress is being made in these directions– de novo design

of bioactive protein switches capable of large induced conformations with demonstrated reg

ulatory applications[59] and the design of enzymes using a combination of experimental and

computational methods [60, 61].

One of themost common applications is the design of antibodies due to their ability to rec

ognize specific antigens. Monoclonal antibodies have seen considerable usage as therapeu

tics and diagnostics [62] including for SARSCoV2 treatments. Combinatorial approaches

for monoclonal antibodies discovery include phage display which enriches antibody frag

ments with specific interactions in their complementarydetermining region (CDR) to a

given target from an initial random library. Optimization of the most enriched antibody

fragments is essential as an antibody’s efficacy is based not just on it’s ability to specifically
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bind a target but also the antibody’s folding stability and solubility[63]. Computational ap

proaches primarily focus on improving binding in the CDR region by mutating unfavorable

contacts and improving folding stability with predictions from known antibody structures

[63].

1.1.2.4 Hybrid DNAProtein Nanotechnology

Another approach to the design of functional nanoscale objects is the combination of one

or more biopolymers. In particular hybrid DNAprotein nanotechnology has received a lot

of attention due to its ability to combine the programmability of DNA with the functionality

of proteins. Leveraging the benefits of both biopolymers has various potential and reported

applications include multivalent binders, biomimetics, biocatalysis, and biomaterials [64].

In common applications, the protein or peptide is covalently linked to the DNA scaffold

using chemistry specific smallmolecule linkers[64]. Despite this additional difficulty in their

construction, hybrid materials have demonstrated their potential in various applications

including the synthesis of sizetunable DNAprotein cages [65] and cancer targeting hybrid

nanorobots [35].

1.2 Computational Tools for Biomacromolecular Design

1.2.1 Design Tools

Designing nanostructures is not a trivial task. Nucleic acid origami designs require in

tricate routing and design of short staple strands to fold the longer scaffold sequence into

the desired structure. As the design complexity and size grow, the problem becomes unman

ageable to solve by hand. Further, changes to an existing structure would require rerouting

the entire structure, an unenviable task to perform manually. To remedy this, numerous

programs for designing DNA and RNA origami have been developed including Adenita [66]
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MagicDNA[67], CaDNAno[68], Tiamat[69], sCaDNAno [70], oxView [71], and the upcoming

ENSnano for curved DNA origami [72]. Collectively these tools have aided the design of the

vast majority of published DNA and RNA nanostructures. Each program has their niche

use, with MagicDNA, Tiamat, and CaDNAno being used for larger origami designs. Both

oxView and Adenita allow more flexibility as they are free form editors. This means that

elements such as loops and complicated junctions can be added easily; however, larger edits

are more difficult.

However, designing a DNA nanostructure in one of the aforementioned programs does

not mean it will function as intended. Simple singlelayer DNA sheets, which are commonly

represented as being planar, are actually highly dynamic structures that constantly bend

and twist. If this flexibility is not accounted for, an experiment requiring exact positioning

of other moieties on the sheet–such as fluorophore/quencher pairs or specific protein ligands

for signaling cells–will be doomed from the beginning. This limitation applies to a majority

of DNA nanostructures, as they are commonly designed as a single static structure when

they instead exist as an ensemble of structures, dictated by the underlying principles of

statistical mechanics.

Protein nanostructures require yet more specialized tools as the interactions between

protein chains is significantly more difficult to predict, due to their large amount of weak

intramolecular interactions like hydrogen bonds, disulfide bridges, van der Waals forces,

and multibody electrostatics. The most prevalent protein design tool is Rosetta and it’s

addons which enabled the design of protein icosahedral structures [73] and tightly binding

minibinders of the SARSCoV2 spike protein based off the ACE2 helix interaction with the

spike receptor binder domain (RBD) [74].
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Figure 2. (a) oxDNA representation of a 45 degree angle layered crossover from the
Nanobase Repository [75], originally published in [76]. (b) Basic neural network topology.
Image used under a Creative Commons Licence: Cburnett, CC BYSA 3.0, via Wikimedia
Commons

1.2.2 Molecular Dynamics

Vital to numerous industries, molecular dynamics (MD) has granted key insight into the

processes of the nanoscale. Molecular dynamics is founded on the rigorous theory of sta

tistical mechanics, which relates variables at the microscopic scale (typically described by

the position and momenta of individual particles) to properties at the macroscale: volume,

pressure, temperature, etc. Unlike Netwonian or quantum mechanics, statistical mechan

ics considers multiple copies of the system, and includes uncertainty as to which state the

system is in. Probabilities are assigned to each possible state the system can visit, where

all states with equal energies are equally probable.

Fixing certain extrinsic variables allows for an ensemble of the system to be well defined.

Most important to classical molecular dynamics are the canonical ensemble (NVT) and the

isothermalisobaric ensemble (NPT). In both cases, the system is in isolation aside from

contact with a much a larger heat bath that exchanges energy but not particles with the

system. The canonical ensemble keeps the number of particles (N), the volume (V), and the

temperature (T) constant in the system.

MD models the individual particles of the system of interest. Particles interact through
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“force fields” which consist of potential energy equations. Forces acting on the system are

derived from these equations. Many different forms of potentials exist for MD programs.

Typically for fully atomistic force fields the bond lengths and angles aremodeled as harmonic

oscillators, atomic charges with Coloumb’s law, and van der Waals interactions with the

LennardJones potential. Parameters used in the potentials are tediously fit to reproduce

experimental and computationally derived data.

At each step of the simulation, the forces on each particle are calculated according to

the potential functions and the particles moved according to the numerical integration of

Newton’s equations of motion. To stay consistent with the statistical mechanical ensem

ble of interest, special computational methods are employed. Termed the “thermostat” this

component maintains the temperature of the system usually by modifying the velocities of

individual particles. This operation is equivalent to the heat bath formalism of statistical

mechanics. Constant volume, on the other hand, is enforced by confining the system to a

box. Isolation of the system is difficult without introducing boundary effects. To avoid these

issues periodic boundary conditions are used, whereby a particle colliding with the box wall

instead is moved to the opposite side of the box. Constant pressure can be similarly enforced

by a barostat. A common implementation scales the size of the box to maintain the correct

pressure.

Molecular Dynamic simulations span a range of timescales and system sizes. The larger

the system size the more computationally intensive it is to simulate the system. As a direct

result, to simulate large systems fewer details of the system are included to make simulation

tractable.

When using fully atomistic methods, the solvent is typically represented at the atomistic

level. Including the solvent is a significant computational cost but is crucial for accurately

representing many system properties such as the watermediated interactions of proteins.

Due to the huge computational cost, atomistic modeling of large systems for a significant

time period (microseconds to milliseconds) requires enormous amounts of computing power.

Disregarding some of the finer details of the system, by contrast, allows for both larger
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Figure 3. (a) Topology of oxDNA nucleotides. (b) Double helix and interactions of oxDNA
model.

system sizes and longer simulation times. Coarsegraining is a technique that represents

groups of atoms as a single particle. In conjunction with implicit solvents, the computational

demand scalesmuchmore reasonablywith system size. Removing some details of the system

also has the effect of smoothing the potential energy surface and speeding up the sampling

and dynamics of the system.

1.2.2.1 The oxDNA Model

One of the most prevalent simulation models for simulation of DNA and RNA nanotech

nology is oxDNA. oxDNA is a coarsegrained model that represents each nucleotide as a

single particle and has been parameterized to reproduce the thermodynamic and structural

properties of DNA [77]. Notable examples of oxDNA’s usefulness to the DNA nanotech field

include simulations and insights into metaDNA structures [78], toeholdmediated strand

displacement reactions [79], jointed DNA nanostructures [80], and selfassembly of DNA

nanostructures [81].

Each nucleotide in the model is represented as a single rigid body with two interactions

sites: the base and the backbone. Interactions between nucleotides capture the base pair

stacking, hydrogen bonding, backbone covalent bonds, and saltscreened electrostatics of
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DNA. An illustration of the oxDNA model topology and interactions is shown in Figure 3.

Through careful parameterization, the model correctly reproduces singlestranded and B

form DNA with realistic hybridization kinetics [82]. A layered crossover tile from Hong et.

al.[76] is shown in the oxDNA format in Figure 2a.

There are some smaller issues with the model itself. It is unable to reproduce Gmotif,

Imotif, Zform, or Aform DNA structures. As these are seldom used in nanotechnology

or experimental applications, most systems are unaffected. Cations are not directly rep

resented in the model, and are instead accounted for by parameters in the DebyeHückel

potential that accounts for the screened electrostatics of the system.

Though able to accurately represent large DNA with accurate dynamics, the model is

unable to interface directly with other molecules such as proteins. Hybrid DNA protein

nanotechnology in particular necessitates the ability to predict the dynamics and character

istics of large hybrid nanostructures. Design of such structures is not trivial as the dynamics

of the protein can have major effects on the DNA component of the system. If designed as a

single static structure, assembly yields and dynamic behavior can be quite different than in

tended (or designed). It can be expensive to synthesize a single hybrid structure, so coming

up with a predictable design is critical. To remedy these issues, I introduce in this disserta

tion an extension of oxDNA as a simulation model for hybrid DNAprotein conjugates and

further show its application to large scale DNAprotein hybrids.

1.2.3 Machine Learning

One of the most promising fields and tools to emerge in the past twenty years is that

of machine learning. “Machine learning” is an umbrella term for a variety of statistical

algorithms that, at their most basic level, create a model from some training data in order

to perform tasks on other new, unobserved data. Heavily based in statistics and optimization

theory, machine learning is being increasingly used in standard commercial settings as well

as in scientific research. Figure 2b is the topology of a very basic neural network.
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Applications of machine learning for biological datasets include Alphafold2 [83], which

was trained on protein sequences and their experimentally resolved structures (e.g. from

crystal structures). Alphafold2 can predict the folded structure of proteins and has already

been used to predict almost the entire human proteome [84]. Though questions still remain

over the algorithm’s accuracy, particularly for single position mutations and sequences with

little homology, it still represents a significant advance in the field of protein folding predic

tion.

Pharmaceutical companies are increasingly leveraging machine learning to aid in the

design process of novel therapeutics. Using recent technologies such as highthroughput

sequencing, the amount of data is growing at a rate much higher than any human could

hope to sort through it all. Direct utilization of machine learning for genomic datasets is

complicated by the lack of inherent labels for supervised methods, and the amount of noise

present in the experimentally derived data.

One exciting use of machine learning is that molecular dynamics force fields can now

be fit automatically utilizing differentiable operations through supported frameworks such

as PyTorch or JAXMD[85]. Rather than tuning parameters by hand, the software finds

the best parameters via gradient descent of specified metrics. While established force fields

such as CHARMM and AMBER will continue to be used, machine learning methods may

eventually lead to more accurate or less computationallydemanding force fields.

Neural networks have also been directly applied to calculate the forces on each parti

cle for molecular dynamics. The ANI1 force field claims to have nearDFT accuracy for

the computational cost of a traditional fully atomistic force field [86]. Force fields for water

have been similarly developed [87], as have reactive force fields [88]. Like any novel method,

there are challenges when using machine learned force fields. They have similar problems

of scalability to large system sizes from the everpresent many body problem. Simply the in

teractions between a large collection of particles poses a high dimensional problem that gets

exponentially more difficult to solve with increasing system size. This drawback plagues ab

initio predictions and fundamentally limits the system sizes of both the training data and
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predictions using neural networks. Like any machine learning algorithm, machine learned

force fields perform poorly at states far (in some parameter) from the training data. Introduc

tion of unphysical effects may occur during a simulation if presented with a corresponding

configuration [89].

In the following sections, I discuss the background of a simple generative model the

Restricted Boltzmann Machine (RBM) and its application to sequence data.

1.2.3.1 Restricted Boltzmann Machine

A shallow neural network composed of two layers, the Restricted Boltzmann Machine

(RBM), was first developed in 1986 by Paul Smolensky [90]. However, they were popularized

by Geoffrey Hinton and company in the earlytomid2000s [91]. RBM’s restrict all connec

tions in the network to be between opposite layers, i.e. there are no connections between two

visible units or two hidden units. This “restriction” enables a simplified learning procedure

as opposed to the Boltzmann machine which contains intralayer connections. The topology

of the model is displayed in Figure 4.

Energybased models aim to associate a scalar, namely the energy, with each configura

tion of the input. The energy determines the compatibility of the model parameters with the

input, with low energy values being in agreement with model parameters [92]. The RBM

is an energybased model that aims to decompose the dataset (represented as the visible

layer) into independent latent factors (the hidden layer) from messages passed between the

layers. This is a probabilistic graphical model that can be represented as a bipartite fac

tor graph with conditionally independent probability distributions of the visible and latent

factors [93]. RBM’s make use of Markov Chain Monte Carlo methods to sample from the

conditional probability distributions, most commonly using Gibbs sampling.

The probability of a given configuration of visible and hidden units can be expressed as

a Gibbs distribution as in equation 1.1
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Figure 4. a) Model Topology of Restricted Boltzmann Machine (RBM). V represents the
visible layer. H represents the hidden layer. The connections between the visible and hidden
layers are the weight matrix.

P (v, h) = e−E(v,h)/Z (1.1)

where Z is the partition function given by equation 1.2.

Z =
∑
v,h

e−E(v,h) (1.2)

The sum in equation 1.2 is replaced by a integral for continuous visible and hidden variables.

The energy function is defined by the visible layer, hidden layer, and the connections

between them. For a binary RBM the energy function is given as:

E(v, h) = −bT v − cTh− bTWh (1.3)

The visible layer is represented as v, the hidden layer as h, the visible biases as b, the hidden

biases as h, and the weights between the hidden and visible layers asW .

Conditional probabilities for both the hidden and visible units can be derived using Bayes

theorem and used for sampling new visible and hidden layers. The probability of the training

dataset can be described by the marginal distribution over all possible states of the hidden
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layer. Evaluation of P(v), however, requires knowledge of the partition function as shown in

5.7.

P (v) =

∑
h P (v, h)

Z
(1.4)

Taking the negative log of P(v) is equivalent to the free energy of the model and can be

expressed as Equation 1.5

F (v) = − log (P (v)) = − log(
∑
h

P (v, h)) + log(
∑
v,h

P (v, h)) (1.5)

Maximizing the probability of the training data P(v) is equivalent to minimizing the free

energy F(v). Performing gradient descent on Equation 1.5 in turn maximizes the probability

(lowering the energy) of our data in the model while minimizing the probability (raising the

energy) of the rest of the energy landscape. However, the second term in Equation 1.5 is

the partition function Z which is impossible or very expensive to compute, especially in high

dimensional spaces.

To train the RBM, an approximation of the partition function is needed. The most com

mon learning algorithm for training a RBM is known as contrastive divergence which gen

erates samples from the model’s current parameterization and uses the free energy of the

generated samples to approximate the partition function. The net effect of this learning pro

cedure is the energy of samples from our dataset are made more likely (by lowering their

energy) while the generated samples are made less likely (by raising their energy). Typically

the generated samples are generated by iteratively sampling a hidden layer from the visible

layer and then sampling a new visible layer given the hidden layer. While not calculating

the exact gradient of the free energy equation, it does perform well in practice [91].
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1.2.3.2 RBMs for Sequence Datasets

Many methods have sought to perform analysis on biological sequence datasets. Direct

Coupling Analysis has been used in protein structure prediction [94, 95] and RNA secondary

structure prediction [42]. Variational AutoEncoders have been used for aptamer design and

prediction [96].

A unique approach for aligned protein sequence data, Tubiana et al. implemented an

RBM with multinomial visible units and a dReLU activation function on the hidden units

[97]. As the potential used on the hidden units influences the statistics of hidden units, the

dReLU activation influences the statistics less than other activations such as bernoulli or

gaussian as it can model asymmetric, symmetric, gaussian, and supergaussian distribu

tions [98]. The dReLU activation has four parameters and is shown in Equation 1.6.

U(h) = 1

2
γ+h+2 +

1

2
γ−h−2 + θ+h+ + θ−h− (1.6)

h+ = max(x, 0), h− = min(h, 0)

Thismodel has been shown to find biologically relevant features in aligned protein sequences

and be able to generate sequences far from the training dataset. It has also been used for

aptamer design and generation as seen previously in 4 as well as major histocomptability

complex antigen Prediction [99]. While powerful, this model does have some limitations.

Due to the structure of the model, the features that the model finds are locked into specific

positions of the visible layer. Therefore the model cannot be applied to unaligned data, or

data of different lengths. RNA and peptide aptamers often have common motifs that vary

in their sequence location. To account for these, a different model is needed which does

not encode the positional dependence of each feature. Focus on the development of a model

fitting the criteria is discussed in Chapter 5.
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1.2.3.3 Aptamer Prediction

An aptamer is any molecule that tightly binds a specific target. Targets can be but are

not limited to single proteins, small molecules, or specific tissues. Using naturally occurring

biopolymers such as DNA, RNA or polypeptides (depending on the scaffold protein) has the

distinct advantage of avoiding an immune response [45]. Further, specific binders have huge

potential as therapeutics or diagnostics depending on their particular target.

Generating these aptamers is typically accomplished using a combinatorial approach,

where a large random library of sequences is used initially and eventually tight specific

binders are generated. In a cyclical fashion, the library is exposed to the target, the un

bound sequences washed away, and the bound sequences then eluted, sequenced and used

as the starting library for the next cycle. For DNA and RNA aptamers, this cycle is known

as the Selective Evolution of Ligands by Exponential Enrichment (SELEX). For antibody

development, the method is more complicated and involves the use of antibody fragments

on phage coat proteins in a technique known as phage display.

Analysis of the sequence data from these cycles typically yields a few strong binders and

a few enriched motifs in the dataset. Depending on the target and experimental details,

this process could leave a significant number of good or better binders unsampled. To sam

ple these unobserved binders, we can apply machine learning methods to generate novel

sequences from our data. In Chapter 4, I describe the use of unsupervised machine learning

methods to generate novel thrombin aptamers. Novel approaches are discussed in Chapter

5.
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Chapter 2

ANISOTROPIC NETWORK MODEL

This chapter was published in Procyk, J., Poppleton, E., & Šulc, P. (2021). Coarse

grained nucleic acidprotein model for hybrid nanotechnology. Soft Matter, 17(13), 3586–

3593.

2.1 Abstract

The emerging field of hybrid DNA  protein nanotechnology brings with it the po

tential for many novel materials which combine the addressability of DNA nan

otechnology with the versatility of protein interactions. However, the design and

computational study of these hybrid structures is difficult due to the system sizes

involved. To aid in the design and in silico analysis process, we introduce here a

coarsegrained DNA/RNAprotein model that extends the oxDNA/oxRNA models

of DNA/RNA with a coarsegrained model of proteins based on an anisotropic net

work model representation. Fully equipped with analysis scripts and visualiza

tion, ourmodel aims to facilitate hybrid nanomaterial design towards eventual ex

perimental realization, as well as enabling study of biological complexes. We fur

ther demonstrate its usage by simulating DNAprotein nanocage, DNA wrapped

around histones, and a nascent RNA in polymerase.

2.2 Introduction

Molecular nanotechnology designs biomolecular interactions to assemble nanoscale de

vices and structures. DNA nanotechnology, in particular, has attracted lots of attention

and experienced rapid growth over the past three decades. While originally envisioned as
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a method of developing a DNA lattice for crystallizing proteins for structure determination

Seeman [29], DNA nanotechnology is seeing promising applications in e.g. biomaterial as

sembly [100], biocatalysis [101], therapeutics [102], and diagnostics [103]. The programma

bility of DNA allows for the rapid design and experimental realization of complex shapes,

yielding an unprecedented level of control and functionality at the nanoscale. As DNA nan

otechology has developed, so have parallel technologies with other familiar biomolecules

such as RNA [44], and, to some extent, proteins [104, 105]. While DNA nanostructures and

devices have been unequivocally successful in realizing more complex and larger constructs,

they are inherently limited in function by their available chemistry, with a possible solution

using functionalized DNA nanostructures [106].

Of particular interest is hybrid DNAprotein nanotechnology, which can combine the

already well developed design strategies of DNA nanotechnology and crosslink them with

functional proteins. The combination of the two molecules in nanotechnology will open new

applications, such as diganostics, therapeutics, molecular “factories” and new biomimetic

materials [64]. Examples of successfully realized hybrid nanostructures include DNA

protein cages [65], a DNA nanorobot with nucleolin aptamer for cancer therapy [102] and

peptidedirected assembly of large nanostructures [107].

At the same time, computational tools for the study and design of DNA and RNA nanos

tructures have become increasingly relevant as size and complexity of nanostructures grow.

Design tools such as Adenita [66] MagicDNA[108], CaDNAno[68], and Tiamat[69] are es

sential for the structural design of DNA origamis. New coarsegrained models have been

introduced to study DNA nanostructures, as the sizes (thousands or more) as well as rare

events (formation or breaking of large sections of base pairs) involved in study of these

systems make atomisticresolution modeling more difficult. Several coarsegrained mod

els have been developed to match thermodynamic and energetic properties of nucleic acids

[109, 110, 111, 112]. Among the available tools, the oxDNA and oxRNA models [113, 114,

115, 116] have been quite popular over the past few years, being used by dozens of research

groups in over one hundred articles to study various aspects of DNA and RNA nanosystems
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including the biophysical properties of DNA and RNA [80, 117, 118, 76, 119, 120]. Each nu

cleotide is represented as a rigid body in the simulation, with interactions between different

sites parameterized to reproduce mechanical, structural and thermodynamic properties of

singlestranded and doublestranded DNA and RNA respectively.

However, the oxDNA/oxRNA models only allow for representation of nucleic acids alone,

limiting their scope of usability. While there have been coarsegrained simulation models

developed for proteinDNA interactions [121, 122, 123, 124, 125, 126, 127], none are able

to be directly used with the oxDNA model. The development of an efficient tool compatible

with oxDNA would allow for efficient study of arbitrary proteinDNA complexes.

Here, we introduce such a coarsegrained model that uses an Anisotropic NetworkModel

(ANM) to represent proteins alongside the oxDNA or oxRNA model. The ANM is a form of

elastic network model used to probe the dynamics of biomolecules fluctuating around their

native state. Originally formulated by Atilgan et. al.[128], the ANM has become fundamen

tal tool in probing protein dynamics, often closely matching residueresidue fluctuations and

normal modes of fully atomistic simulations [129, 130, 131]. Here we use the ANM to approx

imately capture native state protein dynamics. The ANM representation of proteins interact

with just an excluded volume interaction with the oxDNA / oxRNA representation, but spe

cific attractive or repulsive interactions can be added as well. The mass of each residue is

set as equal to that of a nucleotide. The less than one order of magnitude difference between

the average masses of nucleotides and amino acids makes the equal mass approximation

acceptable within the high level of coarsegraining employed by ANM and oxDNA/oxRNA

models. We further provide parameterization of common linkers that are used to conjugate

proteins to DNA in typical hybrid nanotechnology applications.

The ANMoxDNA/oxRNA hybrid models are intended to help design and probe function

of large nucleicacid protein hybrid nanostructures, but also aim to be used to study biologi

cal complexes and processes which can be captured within the approximations employed by

the models. As an example of the model’s use, we show simulations of DNAprotein hybrid
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nanocage, DNA wrapped around a histone, and a nascent RNA strand inside a polymerase

exit channel.

Figure 5. A schematic overview of the oxDNA2 model and its interactions. Each nucleotide
is represented as a single rigid body with backbone and base interaction sites (shown here
schematically as a sphere and an ellipsoid) with their effective interactions designed to re
produce basic properties of DNA.

2.3 Model Description

Implemented in the oxDNA simulation package [132], our model allows for a coarse

grained simulation of large hybrid nanostructures. It consists of two coarsegrained particle

representations, the already existing oxDNA2 or oxRNA model for their respective nucleic

acids and an Anistropic Network Model (ANM) for proteins [128]. The detailed description

of the oxDNA2/oxRNA models is available in Refs. [114, 115]. A DNA duplex with a nicked

strand is schematically illustrated in Fig. 5. The ANM allows us to represent a protein with

a known structure as beads connected by springs. We chose to use the ANM to represent

proteins for its efficiency and relative simplicity, while still providing reasonably accurate

representations of proteins crosslinked to DNA nanostructures. Furthermore, it can be im

plemented using only pairwise interaction potentials, the same as oxDNA/oxRNA models.
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Table 1. Excluded volume parameters used in Eq. 2.2 for (a) proteinprotein, (b) protein
nucleic base and (c) proteinnucleic backbone nonbonded interactions in simulation units.

Parameter (a) (b) (c)
σ 0.350 0.360 0.570
rc 0.353 0.363 0.573
r∗ 0.349 0.359 0.569
b 30.7× 107 29.6× 107 17.9× 107

2.3.1 Protein Model

In the ANM representation, each protein residue is represented solely by its αcarbon

position. All residues within a specified cutoff distance rmax from one another are consid

ered ’bonded’. Please see Ref. [128] for a more detailed introduction. Each bond between

residues i and j in the ANM is represented as a harmonic potential that fluctuates around

the equilibrium length rij0 :

Vij

(
rij
)
=

1

2
γ
(
rij − rij0

)2
(2.1)

The total bonded interaction potential Vbonded−anm is the sum of terms Eq. (2.1) for all

pairs i, j of aminoacids at a distance smaller than rmax in the resolved protein structure,

as schematically illustrated in Fig. 6. We set rij0 to the the distance between αcarbons of

the residues i and j in the PDB file. Free parameter γ is set uniformly on each bond in

the ANM and and is chosen to best fit the DebyeWaller factors of the original PDB struc

ture. DebyeWaller factors (or Bfactors when applied specifically to proteins) describe the

thermal motions of each resolved atom in a protein given by their respective Xray scatter

ing assay. As previously done[128], we use the Bfactor of the αcarbon to approximately

capture the fluctuations of the protein backbone.

Since an ANM is typically an analytical technique, it has no excluded volume effects.

Hence we here extend the model to use a repulsive part LennardJones potential between

both bonded and nonbonded particles (Eq. 2.2) to model the excluded volume at a per parti

cle excluded volume diameter of 2.5Å.

For any two particles (either protein/protein or proteinDNA/RNA) that are at distance
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r, we define the excluded volume interaction in Eq. 2.2:

Vexc(r) =


4ϵ(−σ6

r6
+ σ12

r12
) r < r∗

bϵ(r − rc)
4 r∗ < r < rc

0 r ≥ rc.

(2.2)

The excluded volume diameter rc between protein particles was set by simulating both large

and small proteins at various values to tune to a value allowing excluded volume interactions

between nearest neighbors with little deviation between simulated and analytical Bfactors.

ProteinDNA/RNA rc values were set as the sum of the excluded volume radii of both particle

types. Parameters b and r∗ were calculated so that Vexc is a differentiable function. The

constant ϵ sets the strength of the potential and we use ϵ = 82 pN nm−1.

2.3.1.1 Parameterization

In parameterizing our model for simulation, the goal is to mimic the dynamics of the

protein in the native state. Though not without their drawbacks [133, 134], we selected

Bfactors for their widespread availability in PDB structures and history of being used to

fit elastic network models of proteins [133]. Our model contains two free parameters, the

cutoff distance rmax and the spring constant γ. The rmax value alone determines which con

nections will be present in the ANM network. As noted in the original formulation of the

ANM [128], the best choice of rmax should reproduce the distribution found for globular pro

teins’ densities of vibrational states [135, 136]. A value of 13Å was found to approximately

capture the shape of the target distribution for a large set of proteins with rmax values much

lower (7Å) or higher (20Å) tending to shift the eigenfrequencies towards lower and higher

frequencies respectively. In practice, the best rmax varies from protein to protein but can

usually be varied in a narrow range (1218Å) with little effect on the distribution of normal

mode frequencies.

For each protein (consisting of N aminoacids) represented by ANM, we linearly fit the
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Figure 6. Illustration of ANM using GFP protein (PDB code: 1W7S) from (a) starting PDB
structure to (b) ANM representation at rmax of 8Å, (c) bonding criteria per residue: all par
ticles within distance rmax (bounds depicted by blue sphere) of center particle (black circle)
are considered ’bonded’ (blue squares) while those further (outside of sphere) are considered
’nonbonded’ (red squares).

analytically computed Bfactors to their experimental counterpart with γ as a free parame

ter. To solve for the Bfactors analytically, we first calculate the 3N × 3N Hessian matrix

of the spring potential Vspring, a task made simple by the harmonic potential energy func

tion [128]. After constructing the Hessian H for the system at a specified cutoff rmax, the

mean squared deviation from the mean position for each residue i can be calculated from

the ensemble average:

〈
∆R2

i

〉
=

kbT

γ

(
Tr
(
H−1

i,i

))
(2.3)

The Bfactor B of the residue i can be directly computed from our previous result as [128]:

Bi =
8π2

3
⟨∆Ri⟩2 . (2.4)

The experimental Bfactors are provided along with resolved crystal structures of proteins,

and we can hence use Eqs. (2.3) and (2.4) to obtain N equations. We then fit γ parameter to

minimize

f(γ) =
N∑
i=1

(
Bexp.

i − 8π2

3
⟨∆Ri⟩2

)2

(2.5)

for a selected rmax.

We can further measure the mean square deviation of residue positions in a simulation

of our model and compare to the analytical calculation. We show the comparison in Fig. 7
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for ribonuclease T1 and green fluoresecent proteins simulated with the ANMmodel and our

ANMT model, to be introduced later. While the simulation and analytical prediction of the

classic ANM agree well with each other, as expected, we note that the model still does not

fully reproduce the measured Bfactors as reported in the experimental structures. ANM

models are not able to fully reproduce the measured Bfactors [128], and are known to have

peaks in the mean square displacement profiles that have not been observed in the mea

sured Bfactors [133]. The model nevertheless provides semiquantitative agreement with

the measured data, and hence represents an accurate enough representation of a protein

to model its mechanical properties under small perturbations, as required for DNAhybrid

nanotechnology systems.

2.4 Expansion of the ANM model

In addition to the classic ANM model, our model can also optionally use unique γij for

each bonded pair of residues, which allows for implementation of other analytical models,

such as the heterogeneous ANM (HANM)[137] and multiscale ANM (mANM) [138] that can

generate better fits to experimental Bfactors using the γij values. The HANM iteratively

fits a normal ANM network to given experimental Bfactors with variable realistic force pa

rameters γij . While unquestionably useful, the inaccuracy of Bfactor data particularly in

large or low resolution structures limits its application. In the mANMmodel, our conversion

from the PDB structure to ANM representation also allows the fitting of multiple networks

with varying γij values tuned by scale parameters[138] (similar to rmax). A linear combina

tion of the networks is then solved to minimize the difference between the ANM network’s

predicted and experimental Bfactors. The original formulation of themANM[138] is limited

in computational application as it has no cutoff value (rmax); a protein of size N residues

would have N(N − 1)/2 connections, significantly more than the average ANM. For the

proteins studied in this work, neither HANM nor mANM provided a significant advantage,
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(a)

(b)

Figure 7. Analytical, classic ANM simulation, ANMT simulation, and experimentally de
termined Bfactors calculated in Å2 per residue for (a) ribonuclease T1 (PDB code 1BU4) at
25°C (rmax = 15Å, ks = 42.2pN/Å, kb = kt = 171.3pN/Å) and (b) green fluorescent protein
(PDB code 1W7S) at 25°C (rmax = 13Å, ks = 33.2pN/Å, kb = kt = 171.3pN/Å)

so we decide to use the simple ANM with fixed rmax and the same γ for all spring interac

tions. A Cα coarsegrained HANM and a mANM with an additional cutoff value parameter

are, however, implemented in our conversion scripts and can be optionally used to represent

proteins in our model.

One major obstacle in using an ANM is known as the tip effect [139]. The result is an

extremely large spike in the Bfactors due to a residue being underconstrained. Often this

can be solved by raising the cutoff value in ANM construction; however, doing so raises the

computational requirements of simulations. Furthermore, we found the ANM model did

not accurately represent short peptides, as the spring network does not provide enough con
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straints to reproduce their endtoend distance as seen when simulated with more detailed

models like AWSEMMD[140]. To overcome this obstacle, we implemented harmonic pair

wise bending and torsional modulation forces into the existing simulation model. These new

constraints allow for reduced rmax values, and also can more accurately represent shorter

peptides, which are often used in DNAhybrid nanostructures. We introduce these optional

modulation forces below.

2.4.1 Bending and Torsional Modulation

We introduce the torsional and bending potential as optional interaction potentials in our

protein representation on top of the ANMmodel with bonded and excluded volume potentials.

Each protein residue corresponds to a spherical particle, with associated orientation given

by its orthonormal axes î1, î2, î3 (Fig. 8a). Harmonic terms control the angle between the

normalized interparticle distance vector r̂ij and the normal vector of each particle î1, ĵ1 to

control bond bending. The angles between two sets of orientation vectors, î1, ĵ1 and î3, ĵ3,

are controlled as well allowing for modulation of the torsion based on the particles relative

orientations. The full pairwise potential is given by Eq. 2.6:

V B&T
ij =

kb
2

((
r̂ij · î1 − aij0

)2
+
(
−r̂ij · ĵ1 − bij0

)2)
+

kt
2

((̂
i1 · ĵ1 − cij0

)2
+
(̂
i3 · ĵ3 − dij0

)2)
(2.6)

The function V B&T
ij is defined for all pairs of residues that are neighbors along the protein

backbone. We set the energy minimum values aij0 , b
ij
0 , c

ij
0 , d

ij
0 to correspond to the cosines of

respective angles in between residues in the PDB file for the protein structure. The terms

kb and kt are two new global parameters that control the strength of the bending and tor

sion potential respectively. Currently, we set their values empirically, though pair specific

terms could lead to further agreement with experimental data. Fig. 7 shows the effect of

the torsional and bonding modulation on the same set of proteins used prior. As intended, a

noticeable decrease in high peak Bfactors is observed using a modest kb and kt value. Fig. 8
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Figure 8. Depiction of (a) bending and (b) torsional potential terms on a pair of particles i
and j. The angles depicted as dot products correspond to the cosine of that angle. Equilib
rium values (in red) correspond to (the cosine of) initial angle displacements derived from
coordinates in the PDB file.

illustrates the potential in a two particle system. Hereafter, we will refer to the ANMmodel

with torsional and bending modulation as the ANMT model.

2.4.2 ProteinNucleic Acid Interactions

In our current implementation of the model, protein residues and nucleotides have no

interaction except for excluded volume and optional explicitly specified spring potentials

between userdesignated protein residues and nucleotides:

Vspring(r) =
k

2
(r − r0)

2 (2.7)

where r is the distance between the centers of mass of the respective particles and k and r0

and external parameters.

The excluded volume interaction potential between protein and DNA/RNA residues has

the same form as defined in Eq. (2.2), with the respective interaction parameters given in

Table 1. In the oxDNA/oxRNA models, each nucleotide has two distinct interaction sites

(backbone and base), each of which is interacting with the protein residue using separate

excluded volume parameters.

Future expansion of the model will include an approximate treatment of electrostatic
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interaction between protein and nucleic acids based onDebyeHückel theory as implemented

in oxDNA [114], as well as coarsegrained protein model AWSEM[140].

Many nonspecific DNAprotein interactions make use of the electrostatic interactions

between the DNA backbone and positively charged portions of the protein [141]. Sensitive

to salt concentration, these electrostatic contributions have been previously modeled using

DebyeHückel theory[142] to investigate the role of protein frustration in regulating DNA

binding kinetics. Similarly an extension of our model with an appropriate DebyeHückel

potential can capture and enable study of nonspecific DNAbinding protein systems.

Since we are interested in exploring conjugated hybrid systems, it is necessary to have an

approximation for the covalent linkers bridging the nucleic acid base and protein residue. We

model the two bioconjugate linkers, LCSPDP and DBCOtriazole, (Fig. 9) that are typically

used in proteinDNA hybrid nanotechnology [143, 65] using a spring potential as defined in

Eq. (2.7) with parameters k and r0 parameterized to mimic the endtoend average distance

and standard deviation of each linker at temperature 300K. LCSPDP links the thiol group of

amodified cysteine residue to an aminemodified nucleotide. DBCOtrizaole is the product of

a copperfree click reaction involving a DBCOmodified residue to link to an azidemodified

nucleotide. Each of the linkers (Fig. 9) was first drawn in MolView and then converted

into OPLSAA 1.14*CM1A forcefield format via LibParGen [144, 145, 146]. In GROMACS

[147], each linker was first equilibrated and then simulated in both SPCE and TIP3P water

molecules at 300K for three trials of 10 nanoseconds each. The obtained averaged endtoend

distance and standard deviation for each trial are shown in Table 2.

Table 2. Average and standard deviation of endtoend distance of linkers in fully atomistic
Gromacs simulation and fit spring constant k

SPCE Solvent ⟨r⟩ (Å) ⟨r2⟩ (Å) k (pN/Å)
LCSPDP 9.18 2.68 5.75× 10−2

DBCOtriazole 10.97 3.43 3.51× 10−2

TIP3P Solvent ⟨r⟩ (Å) ⟨r2⟩ (Å) k (pN/Å)
LCSPDP 9.05 2.8 5.28× 10−2

DBCOtriazole 10.95 3.56 3.25× 10−2
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Figure 9. 2D molecular structures of common bioconjugate linkers dubbed (a) LCSPDP and
(b) DBCOtriazole; both can be used to conjugate proteins to DNA phosphate groups

2.5 Examples

Ourmodel is fully functional with the latest version of the visualization tool oxView [148]

for both the design of hybrid nanomaterials as well as the viewing of simulation trajectories.

The one caveat is that protein topologies are noneditable. Instead each protein starts from

their PDB crystal structure and is converted into oxDNA format while the ANM spring

constant is set to best match the experimental Bfactors via our provided scripts. The output

files can then be loaded into oxView as well as used for simulation in our model.

Themodel is theoretically able to represent any protein or protein complex that the ANM

model can represent. Not beyond the scope of our model, biologically relevant multichain

proteins such as nucleosomes, RNA polymerases, and viral assemblies can be also simulated,

allowing for the nucleic acid behavior present in each of these systems to bemodeled, studied,

and compared to experimental data. While the detailed study of these systems is beyond

the scope of this article, we show examples of both biological and designed nanosystems as

represented by our ANMoxDNA or ANMoxRNA model.

2.5.1 Biological Constructs

Two prominent cases of nucleic acid  protein interactions, RNA polymerases and nucle

osomes, were constructed and simulated using the ANMT model for future study. As many

PDB files are missing residues, we first reconstruct each individual chain using the best
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Figure 10. OxView visualization of simulated biological assemblies (a) RNA in exit channel
of paused RNA polymerase (PDB code: 6ASX) and (b) Root mean squared fluctuation (nm)
of human nucleosome made up of histone octamer and DNA (PDB code: 3LEL), (c) mean
structure from MD simulation of KDPG aldolase (PDB code: 1WA3) conjugated to a DNA
cage

scoring of ten models generated by the Modeller tool[149]. The reconstructed RNA poly

merase was converted into oxDNA format from its PDB entry (6ASX) using an rmax of 15Å.

A fragment of the RNA was reinserted into the exit channel and the subsequent MD sim

ulation was allowed to sample the RNA’s escape from the exit channel. The reconstructed

nucleosome was converted into oxDNA simulation format from its PDB entry (3LEL) using

an rmax of 12Å. Spring potentials were added to observed contacts between the DNA and

protein residues present in the PDB structure. A snapshot of the RNA polymerase system

and fluctuation analysis of the nucleosome are shown in Fig. 10a,b.

While no process was explicitly modeled, our new model can be used to explore behavior

of large scale systems of nucleosomes, as at the latest version of GPU cards, the oxDNA

model has been shown to be able to equilibrate systems consisting of over 1 million nu

cleotides.

More pertinent to our goal of aiding in the design of hybrid nanostructures, our model

supports conversion of CadNano, Tiamat, and other popular DNA origami design tools into

the oxDNA format [118] where they can easily be edited in oxView to include linked proteins

of interest. Since an ANM is a highly simplified model of protein dynamics, the predictive

power of our model lies not in prediction of protein structure but rather the collection of
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statistical data of the protein’s effect on the nucleic acid component of the system. Available

and compatible with this model is also the suite of oxDNA analysis scripts[148] allowing for

a detailed exploration of systemspecific effects.

2.5.2 Peptides

Synthetic peptides are used in many chemistry applications. Since these peptides are

often very small and lack longdistance contacts that enforce specific 3D conformations, we

wanted to explore how our models perform on these small structures. We compared the

endtoend distance of 3 hemagglutinin binding peptides[150] simulated in our ANMmodel,

the ANMT model, and another popular coarsegrained protein model, AWSEMMD[127].

For AWSEMMD simulations, initial structure predictions were generated from sequence

using ITASSER[151]. A secondary structure weight (ssweight) file was generated using

jpred[152], and the structure and weight files were converted to the appropriate formats for

AWSEMMD simulation in LAMMPS[153] using tools provided with AWSEMMD. Simula

tions were run for 109 steps with endtoend distance sampled every 105 steps.

Using the classic ANM, each peptide was built using strong backbone connections and

significantly weaker longrange connections to empirically match the AWSEM mean and

standard deviation of the endtoend distance. The resulting simulation of each peptide;

however, showed the trajectory to include a large amount of stretched, nonphysical confor

mations. The subsequent inclusion of the bending and torsion modulation using the ANMT

model allowed for the same level of accuracy using only strong shortrange connections. The

ANMTmodel showed much higher rigidity with no stretched conformations when compared

to the ANM model alone. Final endtoend distances and standard deviation are shown in

Table 3.
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Table 3. Average and standard deviation of endtoend distance of hemagglutinin peptides
between coarsegrained models

Peptide 125 - CSGHNIYAQYGYPYDHMYEG
Peptide 149 - CSGKSQEIGDPDDIWNQMKW
Peptide 227 - CSGSGNQEYFPYPMIDYLKK

Model AWSEM ANM ANMT
Peptide 125
⟨r⟩ (Å) 12.02 12.9 12.09
⟨r2⟩ (Å) 4.9 4.51 4.34
Peptide 149
⟨r⟩ (Å) 12.9 12.9 12.9
⟨r2⟩ (Å) 6.6 4.6 4.6
Peptide 227
⟨r⟩ (Å) 14.5 16.2 14.7
⟨r2⟩ (Å) 7.4 5.4 5.1

2.5.3 KDPG AldolaseDNA Cage

Hybrid DNAprotein nanostructure constructs such as those developed by the Stepa

hanopoulos Lab are of particular interest. The Stephanopoulos group has experimentally

realized their sizetunable DNA cage attached to homotrimeric protein KDPG aldolase mak

ing use of a LCSPDP linker (Fig. 9) to join the DNA and protein components[65]. The DNA

cage was converted from Tiamat format into oxDNA format and the protein was converted

from it’s PDB structure. The linker between the components was modeled as a spring poten

tial (Eq. (2.7)) using the parameters from Table 2. We conducted a short MD simulation of

the full system corresponding to time of about 30 ns. The mean structure from simulation

of the experimental cage was calculated using our analysis scripts[148] and is displayed in

Fig. 10c.

2.6 Conclusions

We present a coarsegrained protein model, based on elastic network representation of

proteins, for use in conjunction with existing coarsegrained nucleic acid models capable of

simulating large hybrid nanostructures. Implemented on GPU as well as CPU, our model
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allows for simulations of large systems based on nanotechnology designs as well as large

biological complexes.

Looking forward, we plan to study both the paused RNA polymerase and histone biolog

ical systems using this model. In addition, experimental systems such as the hybrid cage

in Fig. 10 can be simulated and directly compared to available experimental data. While

widely available, Bfactors are severely limited particularly in terms of accuracy. However,

our model can be parameterized to approximate any available fluctuation data including but

not limited to fully atomistic simulation and solution NMR data. In addition to the model,

we also extended a nanotechnology design and simulation analysis tool, oxView, to include a

protein representation to aid computer design of DNA/RNAprotein hybrid nanostructures.

The subsequent analysis of the designs can be used to optimize nanostructure parameters,

such as placement of the linkers and lengths of duplex segments in order to achieve desired

geometry.

The simulation code is freely available on github.com/sulcgroup/anmoxdna and will also

be incorporated in the future release of the oxDNA simulation package. The visualization

of proteinhybrid systems has been incorporated into our previously developed oxView tool

[148]. The aforementioned analysis scripts and visualizer are available in git repositories

github.com/sulcgroup/oxdna_analysis_tools and github.com/sulcgroup/oxdnaviewer respec

tively. We also provide the description of the file formats used to setup the simulation in the

Supplementary Material.

2.7 Conflicts of interest

There are no conflicts to declare.

38

github.com/sulcgroup/anm-oxdna
github.com/sulcgroup/oxdna_analysis_tools
github.com/sulcgroup/oxdna-viewer


2.8 Acknowledgements

We thank all members of the Šulc group for their support and helpful discussions, in

particular to H. Liu and M. Matthies. We thank Dr. Stephanopoulos for helpful comments

and feedback about simulation study of his DNAprotein hybrid system. We acknowledge

support from the NSF grant no. 1931487.

References

[29] Nadrian C. Seeman. “Nucleic acid junctions and lattices”. In: Journal of Theoretical

Biology 99.2 (1982), pp. 237–247.

[44] Peixuan Guo. “The emerging field of RNA nanotechnology”. In: Nature Nanotechnol-

ogy 5.12 (2010), pp. 833–842.

[64] Nicholas Stephanopoulos. “Hybrid Nanostructures from the SelfAssembly of Pro

teins and DNA”. In: Chem 6.2 (2020), pp. 364–405.

[65] Yang Xu et al. “Tunable Nanoscale Cages from SelfAssembling DNA and Protein

Building Blocks”. In: ACS Nano 13.3 (2019), pp. 3545–3554.

[66] Elisa de Llano et al. “Adenita: interactive 3D modelling and visualization of DNA

nanostructures”. In: Nucleic Acids Research 1 (2020).

[68] Shawn M. Douglas et al. “Rapid prototyping of 3D DNAorigami shapes with caD

NAno”. In: Nucleic Acids Research 37.15 (2009), pp. 5001–5006.

[69] SeanWilliams et al. “Tiamat: a threedimensional editing tool for complex DNA struc

tures”. In: International Workshop on DNA-Based Computers. Springer. 2008, pp. 90–

101.

39



[76] Fan Hong et al. “Layeredcrossover tiles with precisely tunable angles for 2D and 3D

DNA crystal engineering”. In: Journal of the American Chemical Society 140.44 (2018),

pp. 14670–14676.

[80] Rahul Sharma et al. “Characterizing the Motion of Jointed DNA Nanostructures

Using a CoarseGrained Model”. In: ACS Nano 11.12 (2017), pp. 12426–12435.

[100] Wenyan Liu et al. “Diamond family of nanoparticle superlattices”. In: Science

351.6273 (2016), pp. 582–586.

[101] Chun Geng and Paul J. Paukstelis. “DNA crystals as vehicles for biocatalysis”. In:

Journal of the American Chemical Society 136.22 (2014), pp. 7817–7820.

[102] Suping Li et al. “A DNA nanorobot functions as a cancer therapeutic in response to

a molecular trigger in vivo”. In: Nature biotechnology 36.3 (2018), p. 258.

[103] Fei Zhang et al. “Structural DNA nanotechnology: State of the art and future perspec

tive”. In: Journal of the American Chemical Society 136.32 (2014), pp. 11198–11211.

[104] Rein V. Ulijn and Roman Jerala. “Peptide and protein nanotechnology into the 2020s:

Beyond biology”. In: Chemical Society Reviews 47.10 (2018), pp. 3391–3394.

[105] Neil P King et al. “Accurate design of coassembling multicomponent protein nano

materials”. In: Nature 510.7503 (2014), pp. 103–108.

[106] Mikael Madsen and Kurt V Gothelf. “Chemistries for DNA nanotechnology”. In:

Chemical reviews 119.10 (2019), pp. 6384–6458.

[107] Juan Jin et al. “Peptide assembly directed and quantified using megadalton DNA

nanostructures”. In: ACS Nano 13.9 (2019), pp. 9927–9935.

[108] ChaoMin Huang et al. “Integrated computeraided engineering and design for DNA

assemblies”. In: Nature Materials 20.9 (2021), pp. 1264–1271.

40



[109] Daniel M. Hinckley et al. “An experimentallyinformed coarsegrained 3siteper

nucleotide model of DNA: Structure, thermodynamics, and dynamics of hybridiza

tion”. In: Journal of Chemical Physics 139.14 (2013), p. 144903.

[110] Debayan Chakraborty, Naoto Hori, and D. Thirumalai. “SequenceDependent Three

Interaction Site Model for Single and DoubleStranded DNA”. In: Journal of Chemi-

cal Theory and Computation 14.7 (2018), pp. 3763–3779.

[111] Natalia A. Denesyuk and D. Thirumalai. “Coarsegrained model for predicting RNA

folding thermodynamics”. In: Journal of Physical Chemistry B 117.17 (2013), pp. 4901–

4911.

[112] Samuela Pasquali and Philippe Derreumaux. “HiRERNA: A high resolution coarse

grained energy model for RNA”. In: Journal of Physical Chemistry B 114.37 (2010),

pp. 11957–11966.

[113] Thomas E Ouldridge, Ard A Louis, and Jonathan PK Doye. “Structural, mechanical,

and thermodynamic properties of a coarsegrained DNA model”. In: The Journal of

chemical physics 134.8 (2011), 02B627.

[114] Benedict EK Snodin et al. “Introducing improved structural properties and salt de

pendence into a coarsegrained model of DNA”. In: The Journal of chemical physics

142.23 (2015), 06B613_1.

[115] Petr Šulc et al. “A nucleotidelevel coarsegrained model of RNA”. In: The Journal of

chemical physics 140.23 (2014), p. 235102.

[116] Petr Šulc et al. “Sequencedependent thermodynamics of a coarsegrained DNA

model”. In: Journal of Chemical Physics 137.13 (2012), p. 5101.

[117] Megan C. Engel et al. “ForceInduced Unravelling of DNA Origami”. In: ACS Nano

12.7 (2018), pp. 6734–6747.

41



[118] Antonio Suma et al. “TacoxDNA: A userfriendly web server for simulations of com

plex DNA structures, from single strands to origami”. In: Journal of Computational

Chemistry 40.29 (2019), pp. 2586–2595.

[119] Jonathan P.K. Doye et al. “Coarsegraining DNA for simulations of DNA nanotech

nology”. In: Physical Chemistry Chemical Physics 15.47 (2013), pp. 20395–20414.

[120] Michael Matthies et al. “Triangulated Wireframe Structures Assembled Using

SingleStranded DNA Tiles”. In: ACS Nano 13.2 (2019), pp. 1839–1848.

[121] AdamK. Sieradzan et al. “A new protein nucleicacid coarsegrained force field based

on the UNRES and NARES2P force fields”. In: Journal of Computational Chemistry

39.28 (2018), pp. 2360–2370.

[122] Garima Mishra and Yaakov Levy. “Molecular determinants of the interactions be

tween proteins and ssDNA Molecular determinants of the interactions between pro

teins and ssDNA”. In: Proceedings of the National Academy of Sciences of the United

States of America 112.16 (2015), pp. 5033–5038.

[123] Cheng Tan, Tsuyoshi Terakawa, and Shoji Takada. “Dynamic Coupling among Pro

tein Binding, Sliding, and DNA Bending Revealed by Molecular Dynamics”. In: Jour-

nal of the American Chemical Society 138.27 (2016), pp. 8512–8522.

[124] Cheng Tan and Shoji Takada. “Dynamic and Structural Modeling of the Specificity in

ProteinDNA Interactions Guided by Binding Assay and Structure Data”. In: Journal

of Chemical Theory and Computation 14.7 (2018), pp. 3877–3889.

[125] Bin Zhang et al. “Exploring the free energy landscape of nucleosomes”. In: Journal

of the American Chemical Society 138.26 (2016), pp. 8126–8133.

42



[126] Rodrigo V Honorato, Jorge RoelTouris, and Alexandre MJJ Bonvin. “MARTINI

based proteinDNA coarsegrained HADDOCKing”. In: Frontiers in molecular bio-

sciences 6 (2019), p. 102.

[127] AramDavtyan et al. “AWSEMMD: protein structure prediction using coarsegrained

physical potentials and bioinformatically based local structure biasing”. In: The Jour-

nal of Physical Chemistry B 116.29 (2012), pp. 8494–8503.

[128] Ali Rana Atilgan et al. “Anisotropy of fluctuation dynamics of proteins with an elastic

network model”. In: Biophysical journal 80.1 (2001), pp. 505–515.

[129] Sambit Kumar Mishra and Robert L. Jernigan. “Protein dynamic communities from

elastic network models align closely to the communities defined by molecular dynam

ics”. In: PLoS ONE 13.6 (2018).

[130] M. Gur, E. Zomot, and I. Bahar. “Globalmotions exhibited by proteins inmicro tomil

liseconds simulations concur with anisotropic network model predictions”. In: Jour-

nal of Chemical Physics 139.12 (2013), p. 121912.

[131] Lei Yang et al. “Close Correspondence between the Motions from Principal Compo

nent Analysis of Multiple HIV1 Protease Structures and Elastic Network Modes”.

In: Structure 16.2 (2008), pp. 321–330.

[132] Lorenzo Rovigatti et al. “A comparison between parallelization approaches in molec

ular dynamics simulations on GPUs”. In: Journal of computational chemistry 36.1

(2015), pp. 1–8.

[133] Zhoutong Sun et al. “Utility of BFactors in Protein Science: Interpreting Rigidity,

Flexibility, and Internal Motion and Engineering Thermostability”. In: Chemical Re-

views (2019).

43



[134] Edvin Fuglebakk, Nathalie Reuter, and Konrad Hinsen. “Evaluation of protein elas

tic networkmodels based on an analysis of collectivemotions”. In: Journal of Chemical

Theory and Computation 9.12 (2013), pp. 5618–5628.

[135] R Elber and M Karplus. “Lowfrequency modes in proteins: Use of the effective

medium approximation to interpret the fractal dimension observed in electronspin

relaxation measurements”. In: Physical Review Letters 56.4 (1986), pp. 394–397.

[136] Turkan Haliloglu, Ivet Bahar, and Burak Erman. “Gaussian dynamics of folded pro

teins”. In: Physical Review Letters 79.16 (1997), pp. 3090–3093.

[137] Fei Xia, Dudu Tong, and Lanyuan Lu. “Robust heterogeneous anisotropic elastic

network model precisely reproduces the experimental bfactors of biomolecules”. In:

Journal of Chemical Theory and Computation 9.8 (2013), pp. 3704–3714.

[138] Kelin Xia. “Multiscale virtual particle based elastic network model (MVPENM) for

normal mode analysis of largesized biomolecules”. In: Physical Chemistry Chemical

Physics 20.1 (2017), pp. 658–669.

[139] Mingyang Lu, Billy Poon, and JianpengMa. “A newmethod for coarsegrained elastic

normalmode analysis”. In: Journal of Chemical Theory and Computation 2.3 (2006),

pp. 464–471.

[140] Min Yeh Tsai et al. “Electrostatics, structure prediction, and the energy landscapes

for protein folding and binding”. In: Protein Science 25.1 (2016), pp. 255–269.

[141] Vinod K. Misra et al. “Electrostatic contributions to the binding free energy of the

λcl repressor to DNA”. In: 75.5 (1998), pp. 2262–2273.

[142] AmirMarcovitz and Yaakov Levy. “Weak frustration regulates sliding and binding ki

netics on rugged proteinDNA landscapes”. In: Journal of Physical Chemistry B 117.42

(2013), pp. 13005–13014.

44



[143] Alex Buchberger et al. “Hierarchical assembly of nucleic acid/coiledcoil peptide

nanostructures”. In: Journal of the American Chemical Society 142.3 (2019), pp. 1406–

1416.

[144] Leela S. Dodda et al. “LigParGen web server: An automatic OPLSAA parameter

generator for organic ligands”. In:Nucleic Acids Research 45.W1 (2017), W331–W336.

[145] Leela S. Dodda et al. “1.14CM1ALBCC: Localized BondCharge Corrected CM1A

Charges for CondensedPhase Simulations”. In: Journal of Physical Chemistry B

121.15 (2017), pp. 3864–3870.

[146] William L. Jorgensen and Julian TiradoRives. “Potential energy functions for

atomiclevel simulations of water and organic and biomolecular systems”. In: 102.19

(2005), pp. 6665–6670.

[147] H. J.C. Berendsen, D. van der Spoel, and R. van Drunen. “GROMACS: A message

passing parallel molecular dynamics implementation”. In: Computer Physics Commu-

nications 91.13 (1995), pp. 43–56.

[148] Erik Poppleton et al. “Design, optimization and analysis of large DNA and RNA

nanostructures through interactive visualization, editing and molecular simulation”.

In: Nucleic Acids Research 48.12 (2020), e72.

[149] Andrej Šali and Tom L. Blundell. “Comparative protein modelling by satisfaction of

spatial restraints”. In: Journal of Molecular Biology (1993).

[150] Stephen Albert Johnston et al. “A simple platform for the rapid development of an

timicrobials”. In: Scientific reports 7.1 (2017), pp. 1–11.

[151] Jianyi Yang and Yang Zhang. “ITASSER server: new development for protein struc

ture and function predictions”. In: Nucleic acids research 43.W1 (2015), W174–W181.

45



[152] Alexey Drozdetskiy et al. “JPred4: a protein secondary structure prediction server”.

In: Nucleic acids research 43.W1 (2015), W389–W394.

[153] Steve Plimpton. “Fast parallel algorithms for shortrange molecular dynamics”. In:

Journal of computational physics 117.1 (1995), pp. 1–19.

46



Chapter 3

APPLICATIONS OF HYBRID NUCLEIC ACIDPROTEIN MODEL

This chapter was published in Narayanan, R. P.+, Procyk, J.+, Nandi, P.∗, Prasad, A.∗,

Xu, Y.∗, Poppleton, E., Williams, D., Zhang, F., Yan, H., Chiu, P. L., Stephanopoulos, N., &

Šulc, P. (2022). CoarseGrained Simulations for the Characterization and Optimization of

Hybrid ProteinDNA Nanostructures. ACS Nano, 16, 14086–14096.

3.1 Abstract

We present here the combination of experimental and computational modeling

tools for the design and characterization of proteinDNA hybrid nanostructures.

Our work incorporates several features in the design of these nanostructures: (1)

modeling of the proteinDNA linker identity and length; (2) optimizing the de

sign of proteinDNA cages to account for mechanical stresses; and (3) probing

the incorporation efficiency of proteinDNA conjugates into DNA nanostructures.

The modeling tools were experimentally validated using structural characteriza

tion methods like cryoTEM and AFM. Our method can be used for fitting low

resolution electron density maps when structural insights cannot be deciphered

from experiments, as well as enable in-silico validation of nanostructured sys

tems before their experimental realization. These tools will facilitate the design

of complex hybrid proteinDNA nanostructures that seamlessly integrate the two

different biomolecules.
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3.2 Introduction

The field of DNA nanotechnology[154, 155] has made great strides in bionanotechnol

ogy over the past three decades. It relies on using the predictable WatsonCrick base pair

ing[156] of oligonucleotides in order to assemble them into desired 2D and 3D shapes. The

nanoobjects thus formed have been utilized for a variety of applications, including molecu

lar storage,[157, 158] logic gate circuits,[159, 32, 160, 161] and drug delivery machines.[102,

162] Despite the tremendous progress the field has made in the past few decades, the limited

chemical functionality of oligonucleotides has prevented DNA nanostructures from realiz

ing many behaviors and interactions that proteins achieve in living organisms. One way to

circumvent this limitation and construct more complex nanostructures—like “nanorobots”

that can interact in a programmable way with biological systems—is to include functional

protein units on a DNA scaffold. This approach has certain advantages compared with de

signing structures from amino acids alone: currently, de novo design[163] of protein nanos

tructures that rival the complexity of DNA origami is not possible, mainly because protein

selfassembly lacks the predictability and orthogonal interactions inherent to nucleic acids.

The most commonly used technique to design protein nanostructures revolves around the

software Rosetta,[164] but this approach is still limited to experts in the field due to its

complexity. Hence, despite impressive achievements in recent years, nanotechnology based

on designed proteins has not yet achieved the level of versatility, structural complexity, and

logicgated control ability that has been developed for DNA nanotechnology.[165, 166] Meth

ods for the design and characterization of proteinDNA hybrid nanostructures,[107, 143]

however, still lag behind allDNA structure design software like Tiamat,[69] CaDNAno,[68]

Adenita,[66] and MagicDNA.[108] The design rules for hybrid nanomaterials have yet to

be figured out completely, so most structures are designed in a heuristic and ad hoc fashion,

and designer software and simulationmethods integrating both DNA and protein nanostruc

tures have only started to be developed recently.[66, 167] In this work, we aim to provide
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efficient tools for the design and verification of hybrid nanostructures in conjunction with

experimental characterization.

In order to scale up proteinDNA nanostructure design and synthesis, basic building

blocks andmodel systems still need to be designed and fully characterized. Designs utilizing

DNA binding proteins have shown impressive and tantalizing results in this direction,[143]

but they severely limit the protein functionality that can be incorporated into the design. For

example, a given protein of interest would have to fused to a DNAbinding domain, which

increases the molecular weight by a nontrivial amount, and could affect the presentation

of the final protein if a flexible linker is used. Furthermore, DNAbinding proteins inter

act with oligonucleotides in a reversible manner, so even with dissociation constants in the

nanomolar regime there could be protein detachment under the nanomolar concentrations

used with many DNA origami nanostructures. We instead focus on chemically conjugating

desired proteins to DNA in a sitespecific manner, followed by hierarchical incorporation of

these building blocks into DNA structures bearing complementary handles. Covalent con

jugation is generally irreversible, and direct attachment to a DNA handle allows for a high

degree of orthogonality due to WatsonCrick pairing. Furthermore, DNA strands can be

attached to any point on a protein surface (by introducing a suitable reactive amino acid),

whereas DNAbinding proteins must be fused to one of the two protein termini.

Understanding the design of these building blocks, and how they can best form hybrid

nanoassemblies, requires us to have insight into various molecular parameters: 1) the ideal

site for DNA conjugation on the protein; 2) the choice of chemical bioconjugation reaction

used; 3) the flexibility and length of the small molecule linker between the DNA backbone

and the protein surface. Once a proteinDNA building block has been synthesized, incorpo

rating it into a hybrid system presents a distinct challenge. Often, the incorporation effi

ciency of the conjugate into the nanostructure is low, and it may not be immediately clear

why this is the case. Possibilities include the misincorporation of complementary DNA han

dle sites, unintended steric and electrostatic clashes, or mechanical strain experienced by

the hybrid nanostructure. To efficiently synthesize nextgeneration systems it will be crit
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ical to model the composite, integrated nanostructure, and take into account the properties

of both the DNA and protein components, as well as the linkers that join them. In order to

address these challenges and work towards design principles for these nanostructures, we

used our recently developed proteinDNA hybrid model to characterize experimental results

and optimize the design of two proteinDNA cage systems (Figure 11). In particular, we use

a trimeric proteinDNA building block based on the KDPG aldolase building block reported

by the Stephanopoulos lab in a previous report.[65]

The ability to construct defined threedimensional cages with protein “walls” will yield

applications in drug delivery (e.g., “artificial viruses”), novel vaccine platforms, or synthe

sis of enzymatic nanoreactors. Towards this end, we first explored integrating the KDPG

aldolaseDNA conjugate into a tetrahedral DNA origami cage using three complementary

handles on each of the four faces of the cage (Figure 11A,B). We chose this system in order to:

1) gain structural insights into proteinDNA hybrids of large size (> 14,000 nucleotides) by

both simulation and experiment; 2) simulate the chemical linker between the protein and

DNA handle, and investigate the flexibility of the origami design; and 3) demonstrate the

applicability of our methods in characterizing DNA nanostructures by cryogenic transmis

sion electron microscopy (cryoEM). Our modeling approaches are based on two tools that we

recently developed: a coarsegrained model of DNA and proteins, called ANMoxDNA,[168]

and the OxView design tool,[148] originally developed for DNA nanostructures but since ex

tended to support visualization and editing of proteinDNAnanostructures.[68] Additionally,

we extended the online simulation server, oxDNA.org[75] to support ANMoxDNA simula

tions and performed many of the simulations in this paper as part of that service, which we

make freely available to the community for in-silico testing and verification of proteinDNA

hybrid designs. We first designed a DNA origami tetrahedral cage with four available trian

gular void spaces for incorporating the KDPG aldolaseDNA conjugate (Figure 11A and B).

This cage was characterized by cryoEM to obtain an electron density map by singleparticle

reconstruction, and the density was fit with a mean structure obtained from coarsegrained
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simulations to verify that our models can correctly capture the hybrid nanostructure shape

and structure.

In parallel, we applied our simulation model to a different assembly: a tetrahedral

proteinDNA cage, with the aldolase capping a wireframe structure with six edges of four

DNA helical turns each. We term this structure the ProteinDNA tetrahedron (PDTet) (Fig

ure 11C). This structure formed with onlymodest yield in our initial publication reporting its

design and synthesis.[65] We thus asked whether the simulation could provide insight into

this low efficiency and suggest modifications to the structure design that would improve

successful formation. Crucially, this system could also probe whether our computational

model could be applied to hybrid nanostructures where, unlike the larger origami cage, the

protein comprises a significant fraction of the assembly. We especially note that with PDTet,

the final structure does not form in the absence of the protein vertex, and the homotrimeric

proteinDNA conjugate is necessary for helping “fold” the triangular base into a wireframe

cage. We simulated different PDTet structures with a varying number of unpaired poly

thymidine residues at the vertices of this nanostructure, and experimentally optimized the

yield of structure formation (as visualized by AFM) by tuning the flexibility at these sites.

3.3 Results and Discussion

To probe the assembly of the hybrid proteinorigami cage, we first synthesized the

homotrimeric aldolase proteinDNA building block (PDNA) according to the previous re

port,[65] and as described in the methods section below. With this purified building block

in hand, we proceeded to attach it to the four sides of the tetrahedral origami cage.
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Figure 11. Using computational simulations to guide proteinDNA cage design. Elucidating
the cryoEM density map of the empty tetrahedral origami cage (A) and the origami with the
trimeric protein incorporated (B), then using the density map to fit the simulated models to
find the best correlation. C) Simulating a proteinDNA tetrahedral cage (PDTet) in order to
predict the optimal design.
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3.3.1 Design and synthesis of the tetrahedral origami cage with PDNA incorporated

The origami cage was designed using the software Cadnano,[68] with each arm consist

ing of 10 helices arranged on a honeycomb lattice. We opted for a tetrahedral geometry in

order to avoid the preferred orientation problem that often hinders singleparticle cryoEM

reconstruction.[169] The details of the origami design can be found in Figure 36. Each side

was designed to have a length of 35 nm. The handles for the incorporation of the PDNA

were positioned in such a way that one conjugate would bind onto each of the four faces of

the tetrahedron, giving a maximum of four aldolase trimers per structure. In designing this

nanostructure, we incorporated flexibility at the vertices of the tetrahedral cage by intro

ducing polythymidine linkers (5 to 11 dT residues) to promote efficient formation. These

samples were subjected to agarose gel electrophoresis (AGE), followed by excision of the de

sired band, elution of the origami, and verification of its structure by negativestain EM

(Figure 36 and section A.8). From the AGE analysis (Figure 36C), we concluded that the

11T version gave the best yields, so the rest of our studies were performed using this version

of the cage. After visual confirmation by negativestain EM, the purified origami cage was

plungefrozen (Section A.2,A.3) and characterized by cryoEM (Figure 12A). Images were

processed (section A.4 and Figure 39) using RELION 3.0 (Figure 12C). After characterizing

the empty cages, we proceeded to probe the formation of the cage incorporating PDNA.

The PDNAbearing cages (Figure 12B) were synthesized as described in section A.2. The

samples were first characterized by negativestain EM and then by cryoEM (Figure 40) as

before. The resulting reconstruction (Figure 12D, A.4) shows a clear electron density in the

center of each face, supporting the incorporation of protein into the tetrahedral frame. These

maps were later used to validate the ability of our coarsegrained model to correctly capture

the experimentally determined structure.
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Figure 12. CryoEM reconstruction of tetrahedral origami cages. A) Schematic of the empty
origami cage. B) Schematic of the origami cage incorporating PDNA. C) CryoEM recon
struction of (A) at 26 Å. D) CryoEM reconstruction of (B) at 28 Å.

3.3.2 Simulation Development for ProteinDNA Hybrid Systems

To characterize the cages with the PDNA incorporated, we developed amolecular simula

tion pipeline. Our ultimate goal is to provide tools andmethods that aid in the nanostructure

design and validation process in-silico, thus speeding up the development of novel designs,

as well as offloading part of the process to computational modeling. Ideally, one would like to

simulate and model proteinDNA hybrids at atomistic resolution. However, the system sizes

(up to several tens of thousands of base pairs) and long timescales required for the character
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ization of such nanostructures present an enormous challenge. As a result, coarsegrained

models have become increasingly more popular in nucleic acid nanotechnology. We used

a recently introduced proteinDNA hybrid model[168], based on the oxDNA coarsegrained

model of DNA.[116, 119, 114, 79] This model was previously used to study a wide range of

DNA nanostructures and devices, and could reproduce their thermodynamics, mechanical

properties, and kinetics.[116, 119, 114, 79] To incorporate proteins, the oxDNA model was

extended with an Anisotropic Network Model[118] (ANM) that represents the polypeptides

as beads connected by springs, parametrized to per residue fluctuation data—i.e. crystal B

factors or a fully atomistic simulation trajectory—in order to capture the basic fluctuations

and flexibility of the protein. Using the ANMoxDNA model, we investigate how differences

in protein incorporation and spacer length affected the mechanical properties of the DNA

nanostructures and compared our results to those obtained experimentally.

3.3.3 Simulation of the Tetrahedral Origami Cages

The Cadnano design of the DNA origami was first converted into oxDNA using

tacoxDNA[118] and further modified using our design tool oxView,[148] which was extended

to also support protein representations for nanostructure design.[68] Modifications were

made to include 11T spacers at the origami vertices, and to add handles for the incorpora

tion of the PDNA. Five different simulation models were made by first parameterizing an

ANM to the PDNA protein KDPG and subsequently adding the ANM to each model accord

ing to its PDNA incorporation. To finish the preparation of the simulation models the ANM

was parameterized, the linker was introduced, and simulation topology relaxed as stated

in the Methods section. Ten total simulation systems were prepared using each of the five

models with different PDNA incorporation at 1 M salt concentration with two different tem

peratures: (1) 300 K (“high temperature”), and (2) 113 K (“low temperature”). Figure 13B

shows the atomic model of the DBCONHS ester linker represented by a spring potential.

Figures 3A, CG show themean structures for the different PDNAbearing tetrahedral cages
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Figure 13. A) Schematic of PDNA incorporation in simulation models, using the empty
cage mean structure at low temperature (113K). B) Atomic model of the DBCONHS ester
linker, which is represented by a spring potential in the simulation. C-F) mean structures
of origami bearing 14 PDNA building blocks, respectively, at low temperature conditions.
Panel (F) includes a second view of the model with 4 PDNA incorporated so that the bottom
protein is visible.

at lowtemperature conditions. For our production simulations, each of the ten systems was

simulated for 1 x 10[161] molecular dynamic simulation steps or approximately 3 µs.

3.3.4 Simulation Results for the Tetrahedral Protein Origami Cage

To characterize the differences between systems with different numbers (14) of protein

trimers incorporated, we first analyzed the effect of adding PDNA on the origami cage flexi

bility, given that the protein trimer effectively crosslinks the three arms of the face it binds

to. By comparing the root mean squared fluctuations (RMSF) of each model’s identical DNA

cage, we can see how the addition of the PDNA to the system affects the flexibility of the

tetrahedral cage at the individual nucleotide level.

Figure 14 depicts the difference between the RMSF values for each pair of simulation
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Figure 14. PDNA effect on cage flexibility. Difference in RMSF between the column model
(red index denoting the number of PDNAs incorporated) and row model (black index de
noting the number of PDNAs incorporated). RMSF differences are calculated as the column
model RMSFminus the rowmodel RMSF. Differences are displayed on the simulation mean
structures of the row index with (A) being the relative differences in RMSF between all high
temperature (300K) simulation models and (B) being the relative differences in RMSF be
tween all low temperature mean structures (113K). The incorporated PDNA is not shown
in the mean structures, as the RMSF was calculated only using the DNA component of the
DNAprotein hybrid nanostructure.

models with differing number of PDNA incorporation, calculated per nucleotide as the col

umn model’s RMSF minus the row model’s RMSF. Both the mean structure and RMSF of

each model’s DNA cage were averaged over the simulation trajectory using oxDNA analysis

tools.[148] Higher (red) values indicate an increase in flexibility in the structure, while lower

(blue) values indicate an increase in rigidity. In both conditions (high and low temperatures)

the PDNA caused a clear decrease in the RMSF values of the arms with occupied handles.

The decrease in RMSF corresponds to a local increase in rigidity, arising from the crosslink

ing by the PDNA (via the DNA handles) of the scaffold of the DNA origami. However, the

addition of each subsequent PDNA introduces additional pulling forces on the adjacent faces,

resulting in an increase of flexibility in arms that have both DNA handles bound by PDNA

building blocks. This perhaps counterintuitive result can be explained by the pulling forces

of the proteins disrupting some of the stacking interactions along the tenhelix bundle arm,

thereby causing an increase in flexibility.
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Beyond RMSF, differences in the mean structures suggest that the PDNA has a rigidi

fying effect on the face of the DNA cage to which it is attached. The mean structure for 4

PDNAs incorporated shows a significant change in the origami curvature, as evidenced by

its straighter arms relative to all other mean structures. Figure 13A, F depict the mean

structures of the bare origami and the fourPDNA mean structures at lowtemperature con

ditions, where the largest difference in curvature can be observed.

Mean structures from each simulation trajectory were compared to the experimentally

generated cryoEM maps of the tetrahedral cage and PDNAincorporated tetrahedral cage

with the resulting fits shown in Figure 15. The mean structure files were stripped of their

protein and DNA handles to avoid biasing the fitting, and the structures were exported

from a coarsegrained nucleotidelevel representation to a fully atomistic PDB format. Us

ing UCSF Chimera,[170] the volume maps of the mean structures were generated from the

atomic coordinates and fit to the experimental cryoEMmaps at 27 Å for both cryoEMmaps.

The generated density from the atomic model (translucent pink in Figure 15) closely fit

the experimental maps (blue in Figure 15). The PDNA density in the cryoEMmap matched

its position in simulation and confirmed the PDNA incorporation. These results corroborate

that our coarsegrainedmodel can indeed fit the cryoEMmap. We then analyzed the fittings

to determine whether the slight differences in curvature between the cryoEM maps could

indicate the preferred level of incorporation of PDNA into the system.

Unfortunately, the resolution of the obtained cryoEM map of the hybrid nanostructure

was not sufficient to distinguish the difference between the models with different number

of PDNA incorporated. The bulk assay, and lowresolution nature of the cryoEM maps,

combined with the subtle differences between models, made it impossible to determine a

preference for PDNA incorporation from minor deviations in curvature. The correlation

coefficients for fitting and associated images for both the filled and empty cryoEM maps

are available in section A.8.
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Figure 15. Fitting cryoEM maps with mean structures obtained from the simulations at
300K. The densities generated from the mean atomic models at the same resolution as the
cryoEM map are shown in translucent pink and the cryoEM map itself shown in purple.
Each subfigure depicts three views of the same fitting. A) 0 PDNA fit to empty cage. B)
1 PDNA fit to empty cage. C) 2 PDNA fit to empty cage. D) 3 PDNA fit to empty cage. E)
4 PDNA fit to empty cage. F) 0 PDNA fit to filled cage. G) 1 PDNA fit to filled cage. H) 2
PDNA fit to filled cage. I) 3 PDNA fit to filled cage. J) 4 PDNA fit to filled cage.

3.3.5 Fluorophore Assay for Determining the Number of Proteins per Cage

Because our reconstruction was performed with a small data set and was reconstructed

with a tetrahedral symmetry, we wanted to probe PDNA incorporation in a costeffective

and more dispositive way than cryoEM experiments. For this we carried out a fluorophore

based assay, wherein the PDNAwas synthesized using a DNA handle with a FAM dye at the

5’ end (Figure 16A) and the origami structure included a Cy5 dye. Then we proceeded to use

fluorescence to elucidate the average number of proteins bound to the tetrahedral frame.

For this, we first obtained a calibration curve using known concentrations of the Cy5

handle strand and a FAMlabeled PDNA (Figure 6C). We made sure to perform these experi

ments using doublestranded DNAdye conjugates to better match the experimental system,
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Figure 16. Fluorophore assay. A) Schematic showing the design of the assay. B) Fluores
cence spectra of the PDNAFAM and origamiCy5. C) Calibration curve obtained from using
known concentrations of double stranded DNAdye conjugates (either FAM or Cy5).
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where the protein is attached to the cage through hybridized handles. We then made our

PDNAincorporated tetrahedral cage as before and obtained emission values for this sample

at the respective emission wavelengths (Figure 6B). We used the calibration curves to obtain

the concentrations of the sample, yielding values of 3.59 nM for the tetrahedral frame, and

11.33 nM for PDNA, corresponding to ~78.9% protein incorporation (assuming four possible

proteins), or ~3 proteins per cage on average.

We next turned to a different nanostructure, where PDNA is used as a structural building

block. PDTet (Figure 11C) was chosen for this purpose for several reasons: 1) PDNA act as a

critical structural building block to form a closed nanostructural cage; and 2) experimental

characterization of the system can be realized using AFM, a technique less time and cost

intensive than cryoEM. We started out by simulating different PDTet structures (Figure

17) having varying number of polyThymidines at the vertices of the nanostructure.

3.3.6 SimulationBased Predictions of PDTet Assembly Yield

The experimental yields of hybrid DNAprotein nanostructures rely on a number of fac

tors, many of which are systemspecific. For our PDTet cage system, a key concern is the

flexibility of the DNA cage arms—i.e. their ability to bend upwards and form base pairs be

tween the handles on the PDNA—and the resulting strain on the DNA cage when the struc

ture is fully formed. By assessing these features, we aimed to predict the relative yields of

each cage design as we introduced unpaired thymidine residues at the three vertices of the

triangular DNA base structure.

Simulation files of the proteinDNA cage were prepared by first converting the Tiamat

design of the origami cage with 3T spacers at the vertices into oxDNA via TacoxDNA.[118]

Variations of this same cage with a different number of T spacers were created and relaxed

(Methods) using oxView. All versions of the cage were simulated using molecular dynamics

(1 x 10[160] steps; ~ 3 µs) at 300 Kwith 1M salt concentration. Each cage was also simulated
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Figure 17. Simulating PDTet cages with varying linkers at the corners. (A, B) Two views of
the aligned mean structures for cages with 1T, 2T, 3T, and 4T spacers, superimposed on one
another. Arrows in (B) indicate the location of the thymidine spacers and the circle in (B)
indicates the nick point for the 1T and 2T models. C)Depiction of angle measured across the
nick point (Figure 41A). D) Angle distribution in (C) across all four simulation trajectories.

while attached to the same high temperature ANM representation of the aldolase protein

used for the larger tetrahedron.

The aligned mean structures show significant differences in the DNA cage curvature de

pending on the number of T residues in the spacers in the vertices (Figure 17 A, B). At the

site of the nick in the base of the DNA cage, the 1T and 2T structures show a bend in one
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arm (Figure 17 AC), which is a mix of bent and straight arm configurations in the mean

calculation. As more T residues are introduced into the spacers, the bent arm configurations

are visited less often. Measuring the angle distribution between one side of the nicked helix

to the other side of the nicked helix (Figure 17C) over the entire simulation trajectory il

lustrates the topological differences between varying the number of T spacers (Figure 17D).

The configurations in Figure 17D with angles from 100180° are considered “straightarm”

configurations, whereas angles 2090° are considered “bentarm” configurations. The key

difference between the two populations is the ability of the nucleotides across the nick to

maintain a coaxial stacking interaction. The disruption of this interaction is caused by me

chanical strain induced on the base from the incorporation of the PDNA and the geometrical

restrictions it imposes on the final hybrid structure.

Measuring the average energy of the two nucleotides before and after the nick in the

DNA structure (A.7 Table 8), and comparing to simulations of the DNA structure without

the protein—i.e. the triangular base with the singlestranded complementary arms (A.7

Table 5)—elucidates an energetic penalty stemming primarily from the disruption of the

coaxial stacking and hydrogen bonding of the nucleotides at the nick in the bent configura

tions. The trend in energy from (A.7 Table 8) demonstrates that adding more dT nucleotides

to the spacer mitigates this energetic penalty. However, the 3T model had more slightly

more favorable coaxial and cross stacking interactions than the 4T model. Energy differ

ences averaged over the T spacer nucleotides in each model were also examined. The same

trend—i.e. lower average energy with increased length of T spacers—was observed, with

the primary cause being a more favorable stacking interaction (A.7 Table 31). This trend

was not observed in simulations of the triangular base alone (A.7 Table 32).

Overall, the aligned mean structures and energetic penalties incurred by the T spacer

and nick nucleotides indicate that the strain in the structure decreases with increasing T

spacer incorporation. From the above analysis, we can hypothesize that the 3T and 4T

variants will have higher relative assembly yields, as they avoid the energetic penalties of
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the 1T and 2T variants. The slightly less favorable energy at the nick point (Figure 41A) of

the 4T variant could indicate that this species will not form as well as the 3T.

To further explore the positional dependence (by individual arm) of T spacer incorpo

ration, two sets of asymmetric cages were designed. One set of asymmetric systems was

created by holding the arm across from the nick point constant as a 2T spacer and varying

the T spacers in the other two arms of the DNA cage to have either 1T, 3T, or 4T spacers. Re

spectively these designs were named 1.1, 1.3, and 1.4. The second set of asymmetric systems

was created by holding the two arms attached to the nick point constant at 2T spacers and

varying the T spacer amount of the one arm across from the nick point to have either 1T, 3T,

or 4T spacers. Respectively these designs were named 2.1, 2.3, and 2.4. All six asymmetric

designs were relaxed, equilibrated, and simulated using the same exact methodology as the

symmetric cages.

Figure 34 depicts the mean structures and accompanying nick point angle distributions

for all six designs. As expected, the nick angle distribution is significantly affected by al

tering the two arms attached to the nick point and much less so for altering the arm across

from the nick point. Raising the T spacer content of the two arms attached to the nick results

in the cage visiting a bent configuration less often with a lower average energy at the nick

due to more favorable stacking, cross stacking, and coaxial stacking interactions (Table 35).

Alternatively, raising the T spacer content at the arm across from the nick point resulted

in a marginally larger population of bent configurations and less favorable stacking, cross

stacking, and coaxial stacking interactions at the nick (Table 39).

Assessing the average energy of the T spacers in the individual arms reveals some inter

esting trends. In designs that varied the two arms connected to the nick point, the left arm’s

(when viewed with the nick point in front and arm held constant in the back) average energy

stays very similar across designs due to compensatory effects of a more favorable stacking in

teraction but less favorable cross stacking and coaxial stacking interactions (Table 37). The

right arm’s average energy has the same tradeoff of stacking vs. cross stacking and coaxial

stacking interactions but has a significantly lower average energy due to a stronger stack
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ing interaction (Table 38). The T spacers in the arm across from the nick (held constant at

2T spacers) showed a more favorable stacking interaction with increasing T spacers in the

other 2 arms (Table 36). In designs that held the two arms connected to the nick constant,

the left and right arms showed almost identical trends of a slightly more favorable stacking

interactions with increasing T spacer number in the arm across from the nick (Table 40 and

41). The arm with the increased number of T spacers, however, showed no clear pattern in

the average energy. Though not tested experimentally in this work, we would expect sim

ilar yields to their symmetric cage counterparts, in designs that hold the arm across from

the nick point constant. Conversely, designs with two 2T arms and altering the arm across

from the nick point may result in poorer yields compared to the symmetric 2T cage due to the

slight promotion of bent configurations with increasing T spacer nucleotides in the altered

arm.

3.3.7 Experimental Validation of T Spacer Effect on ProteinDNA Cage Assembly

Given the simulation predictions above, we sought to probe the effect of the dT linker on

cage assembly via experiments. To form the cages, we first mixed the component oligonu

cleotide strands and assembled the triangular DNA structures with varying linkers (1T, 2T,

3T and 4T), without the PDNA attached to it, as described in Supporting Information sec

tion A.2. We characterized the system by native PAGE, extracted the band of interest, and

confirmed that the triangular structure formed via AFM, as shown in Figures 42, 43, 44

and 45. We then added the aldolase PDNA to these triangular structures, annealed them

as described in section A.2, and analyzed again by native PAGE (18B). The bands showed a

significant shift from their open counterparts, indicating successful formation of the protein

DNA tetrahedral cages. To confirm nanostructure formation, we visualized the samples via

AFM, examining both the crude samples (Figure 46, 47, 48 and 49) and the samples after gel

extraction of the desired band (Figure 18C). Similar to the previous report,[65] we saw a vary

ing fraction of cages that clearly corresponded to the fourturn tetrahedron with a protein
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vertex. We manually counted structures in the AFM images to determine the approximate

yields of cage formation (Figure 50, 51, 52 and 53), with the results plotted in 18D. It was

apparent that the 3T version formed the best with a yield of 67.8% (or 78.6% if we include

particles that may be cages but could not be unambiguously assigned as such in the images).

The 4T version was the next best at 58.6% (68.67%), followed by a significant drop in yield

for the 2T version at 34.11% (45.29%) and 1T at 32.3% (43.08%). This result tracks well with

the predictions from our simulation and suggests that coarsegrained modeling can indeed

be used to probe the relative stability of various proteinDNA nanostructure designs. We

suggest that this interplay between simulation and experiment will be especially critical for

more complex proteinDNA nanostructures, and guide the choice of DNA sequence/length,

linker design, site of proteinDNA conjugation, and choice of protein building block.

3.4 Conclusions

In this work, we successfully elucidated a lowresolution cryoEM density map for the

tetrahedral DNA origami cage, both with and without the PDNA attached to it. We simu

lated models ranging from zero to four proteins in the origami cage and fit our experimental

data to this model. Although the correlation factors could not give us an exact insight into

the incorporation efficiency, we could determine an average number of three proteins per

cage using a fluorophore assay. We also simulated proteinDNA hybrid wireframe cages and

found that the mechanical strain in the DNA wireframe nanostructures after the PDNA in

corporation plays a critical role. Future hybrid nanostructure designs can be guided by our

coarsegrainedmodel, e.g., by suggesting linker incorporation (such as unpaired thymidines),

changing the DNA handle length, or selecting a different protein building block in order to

minimize these strains. In this way, the simulations can reduce the number of designs that

have to be tested experimentally, as well as reveal shortcomings of the initial design that

might not be trivial to solve by simple trialanderror experimental design.
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Figure 18. Experimental characterization of 4turn proteinDNA tetrahedral cages. A)
Schematic showing the formation of the hybrid nanostructure by the addition of the PDNA,
including the location of unpaired polydT residues (shown in red). B)Native PAGE analysis
of the open and closed tetrahedrons with varying number of polydT residues, alongside con
trols of the single and double stranded versions of the PDNA. The PDNA is hard to visualize
when the handles are singlestranded (lane 2), so the complementary strand was added to
improve the staining (lane 3). (Lane M: 100bp dsDNA ladder). C) Schematic versions of the
PDTet cages (1T, 2T, 3T and 4T) with their zoomed in detail showing the variations at the
vertices. Below each image are AFM images to illustrate hybrid structures. D) Bar plot of
the percentage of wellformed PDTet cages, as analyzed from AFM images (With and With
out particles W means the with/without the inclusion of ambiguous particles as described in
section A.3 and Figure 50, 51, 52, 53
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Going forward, the computational model can be improved by more explicitly incorpo

rating proteinDNA interactions (e.g., electrostatics), as currently our tools rely solely on

userspecified interactions, like a linker attaching the protein to the DNA. However, given

the presence of cationic patches onmany proteins, nonspecific electrostatic interactions with

DNA could play a role in more complex designs. Proteins could also have unintended inter

actions with DNA through the presence of hydrophobic patches, which could for example

interact with the blunt ends of helices, or nick sites in DNA duplexes. Furthermore, seques

tering multiple proteins in close proximity on a DNA nanoscaffold could result in enhanced,

nonspecific aggregation between them due to the high effective concentration. Neverthe

less, despite these limitations, we have demonstrated a proteinDNA simulation tool that

can guide the design of hybrid nanostructures, including the explicit incorporation of linker

models. We foresee the use of this model in designing a range of proteinDNA nanosystems,

especially when the protein plays a key structural role in the final assembly. The script

to convert PDNA structures from oxView to PDB format is available at https://github.com/

sulcgroup/oxdna_analysis_tools, along with tools to produce mean structures and quantify

their flexibility. Furthermore, we have made the ANMoxDNA model freely available on

our public GPU webserver, oxDNA.org, to make this resource easily accessible to the bio

nanotechnology community. The interactive design that supports design of DNA and pro

tein nanostructures, as well as setting up ANMoxDNA simulations, has been implemented

in oxView tool, available at oxview.org and https://github.com/sulcgroup/oxdnaviewer. The

structures designed in this work are available in nanobase.org, an online repository of nanos

tructures.[75]
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3.5 Methods

3.5.1 Synthesis of KDPG Aldolase ProteinDNA Building Blocks (PDNAs)

As previously reported,[65] the PDNA was synthesized by expressing and purifying

KDPG aldolase protein containing the noncanonical amino acid 4azidophenylalanine (azF)

at position 54 (the E54(azF) mutant). The purified KDPG aldolase was conjugated to a 21

base singlestranded DNA (ssDNA) strand via strainpromoted azidealkyne click chemistry.

The dibenzylcyclooctyne(DBCO) modified DNA was synthesized by conjugating an amine

modified DNA strand with a DBCOsulfo(NHS) ester conjugation as previously reported.[65]

This conjugate was used for both the tetrahedral cages reported here. The same procedure

was used for synthesizing the FAMmodified PDNA as well (described in the fluorophore as

say section), where the strand used for conjugation to the protein was purchased from IDT

having a FAMmodification at the 5’ end. The sequence of the strand attached to the protein

is (5’ to 3’):

(5AmMC6)TGAGTTCCGTCAGGTCTGCTC.

3.5.2 Parameterization of KDPG Aldolase Anisotropic Network Models

To approximately mimic the longterm dynamics of the protein for both sets of simulation

conditions, two Anisotropic Network Models (ANMs) were parameterized. An ANM starts

from a single configuration, usually the native state of the protein. Each ANM contains two

free parameters: the cutoff distance (within which residues are connected by a harmonic po

tential) and the global force constant (used in all harmonic potentials). The low temp (113K)

ANM was linearly fit to the crystallographic B factors of the trimer KDPG aldolase PDB file

(1WA3) at a cutoff of 13 Å and a global force constant of 15.039 pN/Å. Comparison between

the crystallographic B factors and the calculated B factors of the ANM match closely at 100

K (section A.6). Since B factors are collected at low temperature and electron microscopy
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model B factors have been shown to be meaningless[171], our high temp (300 K) ANM re

quired high resolution simulation data. To this end, PDB file 1WA3 was used to generate

a CHARMM model of our protein for a fully atomistic simulation. Our simulation system

files were generated using CHARMMGUI[172] with the CHARMM36 forcefield[173] and

TIP3P water molecules. After relaxation and equilibration, our system was simulated for

10 ns at 300 K using GROMACS[174]. The B factors of the CAlpha carbons from our fully

atomistic simulation were then used to parameterize our high temp ANM at a cutoff of 13

Å and a global force constant of 15.982 pN/ Å. The fully atomistic B factors from simulation

and the calculated B factors of the high temp ANM fit well at 300 K (section A.6).

3.5.3 Linker Parameterization

The DBCObased linkers used experimentally to conjugate the KDPG aldolase to DNA

were previously modeled by fitting the length distribution observed in the fully atomistic

simulation of the linker to a spring potential[167]. A molecular schematic of the linker and

the spring potential parameters are included in section A.7.

3.5.4 Relaxation Procedure

First all linkers and ANMswere added to each simulation topology via the oxView design

tool. Each system was then exported for simulation and subjected to a short Monte Carlo

sampling (to remove any excluded volume clashes), then a MD simulation (1 x 109 steps)

with external forces enforcing the designed DNA base pairing to relax each structure into

the ANMoxDNA forcefield. Another MD simulation (1 x 109 steps) was performed without

the forces enforcing the DNA base pairing to allow each system to equilibrate.

70



3.6 Acknowledgements

This work was supported by NSF Grant no 1931487 and ONR Grant N000142012094.

Nicholas Stephanopoulos acknowledges support from the National Science Foundation

(DMRBMAT CAREER award 1753387). Research reported in this publication was sup

ported by The National Institute of General Medical Sciences of the National Institutes of

Health under grant number DP2GM132931. The content is solely the responsibility of the

authors and does not necessarily represent the official views of the National Institutes of

Health. PoLin Chiu acknowledges the support from the US Department of Energy (DE

SC0002423).

3.7 Funding Sources

NSF Grant no 1931487. NSF Grant no 1753387. NIHGrant DP2GM132931. DOE grant

DESC0002423. ONR Grant N000142012094

3.8 Notes

The authors declare no competing financial interest.

References

[32] Lulu Qian and Erik Winfree. “Scaling up digital circuit computation with DNA

strand displacement cascades”. In: Science 332.6034 (2011), pp. 1196–1201.

[65] Yang Xu et al. “Tunable Nanoscale Cages from SelfAssembling DNA and Protein

Building Blocks”. In: ACS Nano 13.3 (2019), pp. 3545–3554.

71



[66] Elisa de Llano et al. “Adenita: interactive 3D modelling and visualization of DNA

nanostructures”. In: Nucleic Acids Research 1 (2020).

[68] Shawn M. Douglas et al. “Rapid prototyping of 3D DNAorigami shapes with caD

NAno”. In: Nucleic Acids Research 37.15 (2009), pp. 5001–5006.

[69] SeanWilliams et al. “Tiamat: a threedimensional editing tool for complex DNA struc

tures”. In: International Workshop on DNA-Based Computers. Springer. 2008, pp. 90–

101.

[75] Erik Poppleton et al. “Nanobase. org: a repository for DNA and RNA nanostructures”.

In: Nucleic Acids Research 50.D1 (2022), pp. D246–D252.

[79] Niranjan Srinivas et al. “On the biophysics and kinetics of toeholdmediated DNA

strand displacement”. In: Nucleic Acids Research 41.22 (2013), pp. 10641–10658.

[102] Suping Li et al. “A DNA nanorobot functions as a cancer therapeutic in response to

a molecular trigger in vivo”. In: Nature biotechnology 36.3 (2018), p. 258.

[107] Juan Jin et al. “Peptide assembly directed and quantified using megadalton DNA

nanostructures”. In: ACS Nano 13.9 (2019), pp. 9927–9935.

[108] ChaoMin Huang et al. “Integrated computeraided engineering and design for DNA

assemblies”. In: Nature Materials 20.9 (2021), pp. 1264–1271.

[114] Benedict EK Snodin et al. “Introducing improved structural properties and salt de

pendence into a coarsegrained model of DNA”. In: The Journal of chemical physics

142.23 (2015), 06B613_1.

[116] Petr Šulc et al. “Sequencedependent thermodynamics of a coarsegrained DNA

model”. In: Journal of Chemical Physics 137.13 (2012), p. 5101.

72



[118] Antonio Suma et al. “TacoxDNA: A userfriendly web server for simulations of com

plex DNA structures, from single strands to origami”. In: Journal of Computational

Chemistry 40.29 (2019), pp. 2586–2595.

[119] Jonathan P.K. Doye et al. “Coarsegraining DNA for simulations of DNA nanotech

nology”. In: Physical Chemistry Chemical Physics 15.47 (2013), pp. 20395–20414.

[143] Alex Buchberger et al. “Hierarchical assembly of nucleic acid/coiledcoil peptide

nanostructures”. In: Journal of the American Chemical Society 142.3 (2019), pp. 1406–

1416.

[148] Erik Poppleton et al. “Design, optimization and analysis of large DNA and RNA

nanostructures through interactive visualization, editing and molecular simulation”.

In: Nucleic Acids Research 48.12 (2020), e72.

[154] Yamuna Krishnan and Nadrian C Seeman. “Introduction: nucleic acid nanotechnol

ogy”. In: Chemical Reviews 119.10 (2019), pp. 6271–6272.

[155] Fan Hong et al. “DNA origami: scaffolds for creating higher order structures”. In:

Chemical Reviews 117.20 (2017), pp. 12584–12640.

[156] James DWatson and Francis HC Crick. “Molecular structure of nucleic acids: a struc

ture for deoxyribose nucleic acid”. In: Nature 171.4356 (1953), pp. 737–738.

[157] Kaikai Chen et al. “Digital data storage using DNA nanostructures and solidstate

nanopores”. In: Nano Letters 19.2 (2018), pp. 1210–1215.

[158] Kaikai Chen et al. “Nanoporebased DNA hard drives for rewritable and secure data

storage”. In: Nano Letters 20.5 (2020), pp. 3754–3760.

73



[159] Tianqi Song et al. “Fast and compact DNA logic circuits based on singlestranded

gates using stranddisplacing polymerase”. In: Nature Nanotechnology 14.11 (2019),

pp. 1075–1081.

[160] Georg Seelig et al. “Enzymefree nucleic acid logic circuits”. In: Science 314.5805

(2006), pp. 1585–1588.

[161] Anupama J Thubagere et al. “Compileraided systematic construction of largescale

DNA strand displacement circuits using unpurified components”. In:Nature Commu-

nications 8.1 (2017), pp. 1–12.

[162] Qiao Jiang et al. “DNA origami as a carrier for circumvention of drug resistance”. In:

Journal of the American Chemical Society 134.32 (2012), pp. 13396–13403.

[163] PoSsu Huang, Scott E Boyken, and David Baker. “The coming of age of de novo

protein design”. In: Nature 537.7620 (2016), pp. 320–327.

[164] Rhiju Das and David Baker. “Macromolecular modeling with rosetta”. In: Annual

Review of Biochemistry 77.1 (2008), pp. 363–382.

[165] Qinqin Hu et al. “DNA nanotechnologyenabled drug delivery systems”. In: Chemical

Reviews 119.10 (2018), pp. 6459–6506.

[166] Shawn M Douglas, Ido Bachelet, and George M Church. “A logicgated nanorobot for

targeted transport of molecular payloads”. In: Science 335.6070 (2012), pp. 831–834.

[167] Wei Lu et al. “OpenAWSEM with Open3SPN2: A fast, flexible, and accessible frame

work for largescale coarsegrained biomolecular simulations”. In: PLoS Computa-

tional Biology 17.2 (2021), e1008308.

[168] Jonah Procyk, Erik Poppleton, and Petr Šulc. “Coarsegrained nucleic acid–protein

model for hybrid nanotechnology”. In: Soft Matter 17.13 (2021), pp. 3586–3593.

74



[169] Dmitry Lyumkis. “Challenges and opportunities in cryoEM singleparticle analysis”.

In: Journal of Biological Chemistry 294.13 (2019), pp. 5181–5197.

[170] Eric F Pettersen et al. “UCSF Chimera—a visualization system for exploratory re

search and analysis”. In: Journal of Computational Chemistry 25.13 (2004), pp. 1605–

1612.

[171] Alexander Wlodawer, Mi Li, and Zbigniew Dauter. “Highresolution cryoEM maps

and models: a crystallographer’s perspective”. In: Structure 25.10 (2017), pp. 1589–

1597.

[172] Sunhwan Jo et al. “CHARMMGUI: a webbased graphical user interface for

CHARMM”. In: Journal of Computational Chemistry 29.11 (2008), pp. 1859–1865.

[173] Jing Huang and Alexander D MacKerell Jr. “CHARMM36 allatom additive protein

force field: Validation based on comparison to NMR data”. In: Journal of Computa-

tional Chemistry 34.25 (2013), pp. 2135–2145.

[174] Mark James Abraham et al. “GROMACS: High performance molecular simulations

through multilevel parallelism from laptops to supercomputers”. In: SoftwareX 1

(2015), pp. 19–25.

75



Chapter 4

THROMBIN APTAMER DESIGN

This chapter appears in Di Gioacchino A.+, Procyk J.+, Molari M, Schreck, J. S., Zhou,

Y., Liu, Y., Monasson, R., Cocco, S., & Šulc, P. (2022) Generative and interpretable machine

learning for aptamer design and analysis of in vitro sequence selection. Plos Computational

Biology, 18(9), e1010561.

4.1 Abstract

Selection protocols such as SELEX, where molecules are selected over multiple

rounds for their ability to bind to a target of interest, are popular methods for ob

taining binders for diagnostic and therapeutic purposes. We show that Restricted

Boltzmann Machines (RBMs), an unsupervised twolayer neural network archi

tecture, can successfully be trained on sequence ensembles from single rounds of

SELEX experiments for thrombin aptamers. RBMs assign scores to sequences

that can be directly related to their fitnesses estimated through experimental

enrichment ratios. Hence, RBMs trained from sequence data at a given round

can be used to predict the effects of selection at later rounds. Moreover, the pa

rameters of the trained RBMs are interpretable and identify functional features

contributing most to sequence fitness. To exploit the generative capabilities of

RBMs, we introduce two different training protocols: one taking into account se

quence counts, capable of identifying the few best binders, and another based

on unique sequences only, generating more diverse binders. We then use RBMs

model to generate novel aptamers with putative disruptive mutations or good

binding properties, and validate the generated sequences with gel shift assay ex

periments. Finally, we compare the RBM’s performance with different supervised
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learning approaches that include random forests and several deep neural network

architectures.

4.2 Introduction

Discovery and design of molecules that can specifically bind a given target molecule

is a key problem in diagnostics, therapeutics and molecular biology in general. Multiple

different experimental approaches exist to select specific molecular target binder such as

antibodies, short peptides, proteins or small molecules. Single stranded oligonucleotides

(DNA or RNA) have also been shown to be able to specifically bind with high affinity to

a plethora of various targets, including small metabolites, proteins, nucleic acids, viruses,

exosomes, and cells of specific tissue [175, 176, 177, 18, 178, 179, 180, 181, 182, 183], show

ing promise for applications that range from diagnostics to targeted disease therapy [184].

These short oligonucleotides, called aptamers, are selected from an initial pool of sequences

by a procedure known as Systematic Evolution of Ligands by Exponential Enrichment (SE

LEX) [185, 186]. This method consists of multiple rounds of selection, where aptamers that

bind strongly enough to the protein target are selected and amplified for the next round,

until few strong binders are obtained. The advantages of using DNA or RNA include low

cost of synthesising these molecules and relative ease of their manipulation in the labora

tory setting as opposed to other selection methods such as peptide or antibody selection [187,

188]. Oligonucleotides can be denatured and refolded many times, allowing for multiple se

lection rounds. On the other hand, as they are composed of four possible types of bases (A,

C, G and T/U), they do not offer such chemical diversity as antibodies. Thus, the range of

targets that aptamers can be selected to bind strongly to is limited to some extent. However,

chemical modifications of the nucleic bases can increase the chemical space of the aptamers

and provide diverse sequence libraries from which strong binders can be selected against a

variety of targets [189].

With the advance of next generation sequencing and highthroughput biological and

77



molecular dataset production, various machine learning methods have been used to pro

cess biological sequences datasets, with applications including classifications, binding pre

diction, and molecular design [190]. While a significant improvement has recently been

achieved in using deep learning for protein or RNA structure predictions [83, 191], predic

tions of binding interactions and de novo design of molecular binders remain outstanding

significant challenges. So far, it is primarily the prediction of interaction between a small

molecule ligand and a target protein that has received attention from the machine learning

community, as such approaches are at the basis of the drug screening pipeline [192]. Motif

finding and clusteringbased methods, combined with secondary structure prediction tools,

have been previously developed for processing SELEX datasets [193, 194, 195, 195, 196,

197]. Currently, the SELEX dataset processing typically involves clustering and identifying

a common motif in aligned sequences and then selecting representative aptamers from the

last round of selection and verifying their binding affinity to the target.

A challenging task in the analysis of SELEX experiments is the quantification of the ap

tamer fitness, which determines the sequence landscape evolution at each selection round.

Several approaches have been introduced in the past, based on in silicomolecular dynamics

simulations [198, 199], on clustering in sequence space together with enrichment measure

ments [200], and on additional, direct fitness estimation experiments [201]. These methods

proved useful to estimate the fitness of a limited number of selected sequences or of large

classes of similar sequences, but they seem unable to assign in a reliable way a fitness score

to each molecule observed in final rounds of SELEX.

Over the last decade, deep neural networks (DNN) have become a popularmachine learn

ing tool in many areas, such as image recognition or natural language processing, and are

now increasingly applied in chemical and biological data processing workflow [202, 203, 204,

205]. However, training DNNs typically requires large datasets, which can be challenging

and expensive to obtain from biological experiments. DNNs have many free parameters,

which makes it difficult to identify and interpret particular features of the molecule that

are attributed to its ability to bind a given target. The presence of errors in the sequence
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dataset, coming e.g. from experimental error in affinity measurements or sequencing errors,

adds further difficulties to training as well as to interpretability. Machinelearning meth

ods for sequence ensembles include inverse models from statistical physics, such as direct

coupling analysis (DCA) methods [206], which have been previously successfully used to in

fer native contacts and guide folding of RNA and proteins based on homologous sequence

alignment [207, 94], as well as to generate functional enzymes based on functional protein

alignments [208] and protein recognizing RNA [209]. They infer parameters of maximum

entropy models, which are fixed by the requirement that the conservation of single residues

and pairs of residues given by the model match the values observed in the sequence align

ment. More recently, Restricted BoltzmannMachine (RBM) architectures, a neural network

with a bipartite graph structure, have been successfully applied as a generative model for

protein domain sequences [97], as well as a predictor of peptides that will be presented on

Major Histocompatibility Complexes [99]. They present an intermediate level of complexity

between the direct coupling models and DNNs, as they can be trained to recognize multi

residue coupling as opposed to pairwise interactions, but due to limited number of weights

between the two neuron layers, the parameters can still be interpreted and rationalized.

Here, we apply RBM models to a set of DNA sequences obtained from the prior exper

imental work of some of us that used SELEX method to obtain thrombin aptamers [210]

(Fig. 19). We show that the sequence likelihood assigned by the RBM can be directly related

to the fitness of that sequence in the experimental selection. Moreover an RBM model that

is trained on an earlier round of the selection is able to predict fitness of sequences in the

next rounds not seen during the training, showing remarkable generalization capabilities.

We further show that we can identify the sequence motifs conferring large likelihood to an

aptamer sequence and that RBM’s hidden unit input can be used to cluster sequences. We

show the capability of the RBM to predict binding affinity and generate new monovalent ap

tamers, which are good binders to one of the two thrombin binding sites, by gel shift assays.

We investigate how taking into account the individual sequence counts from the experiment

in the training data changes the properties of the inferred RBM model. Lastly, we also ex
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Figure 19. Schematic view of the SELEX experiment and the RBM-based analysis.
a: The SELEX procedure used to obtain DNA aptamers that bind to thrombin consists of
the following steps: I) We start with an initial library of DNA sequences. II) DNA aptamers
compete with each other to bind to thrombin. III) Sequences that are unbound (or bound
too weakly) are washed away. IV) Remaining bound sequences dissociate after the sample
is heated up. V) Binding sequences are sequenced. VI) Using polymerase chain reaction
(PCR), multiple copies are made of the remaining sequences, resulting into a new library of
aptamers for the next round of selection. b: The sequenced aptamers from respective rounds
of the SELEX protocol are used to train the parameters of the Restricted BoltzmannMachine
model. In this unsupervised neural network architecture, a layer of visible units carry the
aptamer sequence, while the layer of hidden units extract representations. The weighted
connections between the two layers are learned through maximization of the loglikelihood
of the sequences obtained through SELEX. c: Single loop sequences generated using the
Restricted Boltzmann Machine model are experimentally validated using gel assays.

plore several supervised learning approaches that include random forest and various DNN

architectures, but find them difficult to train and with poor generalization performance on

our dataset.

4.3 Results

4.3.1 Dataset Obtained from SELEX Procedure

In a prior work [210], some of us used the SELEX method to obtain a bivalent DNA

nanostructure that binds to a thrombin protein. In this DNA SELEX procedure, an initial
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library of about 1015 unique DNA sequences with all about the same length were exposed to

the target tethered to a surface. The nonbinding sequences were then washed away, while

the binding sequences were collected (and optionally also sequenced). After amplification

with PCR they served as the sequence library for the next cycle of SELEX. Cycles were re

peated until binders of the desired binding affinity were found. The washing intensity was

increased in later rounds to obtain stronger binders. In the particular experimental dataset

used in Ref. [210], the SELEX procedure was performed on a DNA nanotile (Fig. 19), consist

ing of a joineddouble helix region with two loops of 20 nucleotides each. While the double

helix nanotile structure was conserved across all DNA structures, the two respective loops

were variable, starting from the initial random library. The SELEX procedure is schemati

cally shown in Fig. 19 and consisted of eight selection rounds. The binding molecules were

sequenced in rounds 5 (891959 sequences out of which 891914 unique), 6 (736436 sequences

out of which 735974 unique), 7 (750926 sequences out of which 744597 unique) and 8 (725431

sequences out of which 719413 unique), and form the datasets we use here for training our

models.

For each round, our dataset includes the sequence of the two (left and right) respective

variable loop regions of the DNA nanotile, as well as the number of counts of the twoloop

sequence, corresponding to the number of times it was sequenced in the experiment. In

typical SELEX protocols, the sequences with the largest number of counts in the last rounds

are considered the best binders.

4.3.2 Restricted Boltzmann Machine Model

We use a Restricted BoltzmannMachine (RBM) to learn the probability distribution over

the set of aptamers based on the sequences collected through the SELEXprocedure. AnRBM

is a probabilistic model, represented by a bipartite graph consisting of L “visible” and M

“hidden” units (shown schematically in Fig. 19b). It assigns a probability p(s,h) to a system

state, given by two parts: the configuration of visible units, s = (s1, . . . , sL), where si = A,
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C, G or T are the nucleotides on site i along the aptamer sequence, and the configuration of

the hidden units, h = (h1, . . . , hM ), meant to extract latent factors of variation in the visible

configurations. The likelihood of a sequence s is formally obtained by marginalizing over all

possible latent configurations (not observed in the data), p(s) =
∫
dh p(s,h). The number

L of visible units can be set to 40 to model full twoloop sequences or restricted to 20 to

describe each loop independently. These two possibilities will be referred to as, respectively,

D (Double loop) and S (Single loop) in the following.

Training a RBM consists in finding the parameters (in particular, the couplings between

the layers) so that the loglikelihood of the observed data,

L =
∑

s∈round r
log p(s) , (4.1)

is maximized. Here the sum over s is over the sequences observed at a fixed selection round,

say, r, of the SELEX experiment. Each sequence may therefore appear multiple times, de

pending on the number of its counts. We will denote this model with C (Count). An alterna

tive is to include in the sum in Eq. (4.1) unique sequences only. The resulting model, labelled

with U (Unique), has different properties, which we will discussed below.

The maximization of L is a computationally difficult problem, but several effective tech

niques to obtain good parameter values have been developed, for instance contrastive diver

gence [91] and persistent contrastive divergence [211]. As described in Methods Sec. 4.6.2,

we train, following Ref. [97], the RBM using persistent contrastive divergence and using

double Rectified Linear hidden units, with a L2
1 regularization scheme. This regularization

favors sparse weights, and enhances interpretability of the trained model.

4.3.3 RBM’s LogLikelihood is an Accurate Predictor of the Aptamer’s Fitness

Fig. 20a shows the distributions of loglikelihoods of sequences collected at SELEX

rounds r = 5 to 8, estimated with an RBM trained on doubleloop aptamer sequences with

counts measured at round 6 (RBMDC, see Sec. B.3). At round 5 three peaks are apparent.
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The logos of the sequences in each peak are shown in Fig. 20b. The peak at low loglikelihoods

is characterized by highly variable sequences, weakly enriched in C, G nucleotides. The peak

at intermediate values correspond to sequences with a structured loop (the left one, for most

sequences), including a Gquadruplex motif. In the high loglikelihood peak a similar G

quadruplex motif appears on both left and right loops (for more details, see also Sec. 4.3.4).

From round 6 to 8 the peaks at low and intermediate loglikelihood values are progressively

depleted, and the peak at high loglikelihood gets more and more populated. This enrich

ment strongly suggests a positive correlation between the score assigned by the RBM and

the fitness.

In a population genetic framework, the fraction q of aptamers with sequence s changes

from round r − 1 to round r according to

qr(s) =
eαr−1F (s)

⟨eαr−1F (s′)⟩s′∈r−1
qr−1(s), (4.2)

where ⟨O(s′)⟩s′∈r−1 =
∑

s′ qr−1(s
′)O(s′) denotes the average of the observable O over the

distribution of sequences at round r − 1. The fitness F (s) encompasses the capability of an

aptamer s of binding its target, as well as other chemical properties, such as its affinity to

PCR amplification. Parameter αr−1 represents the selection strength from round r − 1 to

r, which can be tuned in practice e.g. by varying with the intensity of washing in SELEX

selection.

According to Eq. (4.2), formally valid for an infinitesize population only, the fitness

αr−1 F (s) is, up to a sequenceindependent additive constant, equal to the logarithm of the

enrichment ratio Er(s) = Cr(s)/Cr−1(s), where Cr(s) is the number of counts of sequence

s at round r. However, the extreme subsampling of sequences at each round in our dataset

prevents us from using empirical enrichment ratios E to estimate the fitnesses, and their cor

relation with loglikelihoods, see Fig. 72. For instance, only fshared = 0.5% of the sequences

observed in round 7 or round 8 are present in both rounds, and among these sequences, about

f1 = 70% have count C = 1 in both rounds. In earlier rounds, e.g. 5 and 6, the situations is

even worse, with fractions fshared = 0.01% and f1 = 93%.
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To obtain more reliable enrichment ratios we gather all sequences s having similar log

likelihoods log p(s), and introduce their cumulative number of counts, C(ℓ, r). More pre

cisely, C(ℓ, r) is defined as the number of counts in the ℓth bin of the histogram of log

likelihoods in Fig. 20a. We then define the effective enrichment ratio of bin ℓ through

Er(ℓ) = Cr(ℓ)/Cr−1(ℓ). Fig. 20c shows the scatter plots of the enrichment logratios log Er(ℓ)

vs. the loglikelihoods ℓ, for rounds r = 6, 7, 8. Very strong correlations are observed, with

coefficients of determination R2 = 0.99, 0.83 and 0.66 and slopes 0.16, 0.07, 0.01 for, re

spectively, the pairs of rounds 5 → 6, 6 → 7, and 7 → 8. The smaller values of the slopes

of the linear regressions at later rounds suggests that the effective selection strength αr−1

appearing in Eq. (4.2) is weaker in the last SELEX rounds than in the previous ones. This in

terpretation is supported by the fact that the 10 different singleloop aptamers with largest

count numbers at round 8 do not increase exponentially in the last rounds considered here,

as shown in Fig. 68.

The linear relationship between the RBM loglikelihood log p(s) and the sequence fitness

F (s) suggests an alternative way to estimate the selection strengths αr. Fisher’s fundamen

tal theorem (see for instance [212] for a review) postulates that the selection strength can

be estimated through the ratio of the increase of the average fitness and of the its variance,

αr−1 = (⟨F ⟩r − ⟨F ⟩r−1)/var(F ). We compute these Fisher’s ratios using log p as a proxy

for F to estimate the selection strengths at the various rounds. Results are shown in the

inset of Fig. 20c, and agree with those obtained directly from the slopes of the linear regres

sions. The precise relation between the fitness and the loglikelihood is further examined in

Discussion section.

4.3.4 The LogLikelihoods of the Aptamers can be Explained by the Additive Contribu

tions of their Left and Right Loops

To examine the cooperative binding of the left and right loops of the aptamer nanostruc

ture at a given round of SELEX, we have trained RBM models on the 20 nucleotidelong
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single loops only. In practice, RBMSC trained on all left (L) loop subsequences, on all right

(R) loop subsequences, or on both of them show very similar properties (Fig. 69), and we

hereafter report results with the latter model. We show in Fig. 21a the loglikelihoods of the

L and R loops for all aptamers at round 5. We observe the presence of four peaks in the joint

distribution, corresponding to all possible combinations of the two peaks at, respectively,

low (≃ L−) and high (≃ L+) loglikelihoods present in the marginal distributions for L or R

loops.

As shown in Fig. 21b, aptamer sequences previously characterized as having low (in

pink), intermediate (in olive) and high (in turquoise) loglikelihoods, see Fig. 20a, occupy the

four corners of the jointdistribution plot. Therefore, highloglikelihood aptamers have both

L and R loops with high loglikelihoods L+, while the L and R loops of the lowloglikelihood

aptamers have both low loglikelihoods L−. Intermediate aptamers have one loop, either L

or R, with high loglikehood value L+ and the other with low loglikelihood L−.

Fig. 21c shows the scatter plot of the loglikelihoods of the full aptamers (estimated with

RBMDC) vs. the sums of the loglikelihoods of their L and R loops (estimated with RBMSC).

We observe an excellent linear correlation (R2 = 0.99), indicating that both loops contribute

additively to the score of the full aptamer. This linearity also explains the three peak struc

ture of the aptamer loglikelihoods in Fig. 20a, approximately located at 2L−, L− + L+,

and 2L+. Moreover, thanks to this linearity, the selection of the aptamer population from

one SELEX round to the next one (Fig. 20) can be predicted also at the level of singleloop

aptamers (see Fig. 80).

Fig. 21d shows the fractions of sequences in the four regions labelled I to IV of the L and R

loglikelihoods at successive rounds of selection, see Fig. 21a. As observed in Fig. 20a for the

full aptamer sequences we see a progressive enrichment in sequences for which both L and R

loops have high loglikelihoods. However, we also observe a substantial fraction of sequences

(> 15%) at round 8, in which one loop only has high loglikelihood. The cognate 20nucleotide

sequences, with low loglikelihood on the other loop, will be called parasite in the following,

as they are likely to be selected only due to the ability of the other loop to bind thrombin. To
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check this hypothesis we generate random aptamer sequences, in which the 40 nucleotides

are drawn uniformly at random. As shown in Fig. 21b these random aptamer sequences are

located in the (L−,L−) corner, and do not differ much from the pink sequences in terms of log

likelihood, see gray ellipse in Fig. 21b. Notice that removing the parasite sequences from the

training set of RBMSC does not significantly modify the estimation of loglikelihoods, see

Supp. Fig. 70, which shows the robustness of the RBMmodel against the presence of random

sequences in the data. The identification of parasite sequences has important consequences

for the design of new aptamers based on the RBM model, as discussed in the next section.

4.3.5 RBM Parameters Reveal Functional Features of the Aptamer Sequences

We next extract the features that contribute the most to the likelihood of the sequences

by studying weights between hidden units and visible layer (Fig. 19b). To enhance the in

terpretability of the RBM weights connecting input and and hidden layers we enforce their

sparsity through appropriate regularisation (seeMethods Sec. 4.6.2 and Ref. [97]). Figs. 22a

c (left) show the sequence logo of the three weights of RBMDCwith largest Frobenius norms

(Fig. 73); the height of nucleotide symbol s in position i for hidden unit µ represents the value

of the weight wµi(s).

We first observe that the weights are strongly localized either on the left or the right

loop. The lack of correlation between the left and right loop sequences holds for all weights

(Fig. 71), and is compatible with the additivity of their contributions to the aptamer log

likelihood in Fig. 21c.

A closer look at the sequencedependence of the logos in Fig. 22ac shows they are Grich

and match parts of Gquadruplex motifs. For instance, the hidden unit focusing on the right

loop in Fig. 22a, is strongly activated when the motif AGGTTGG is present on the L loop in

positions 3339. Other L subsequences lead to much weaker activities (in absolute value),

see right subpanel in Fig. 22a. A similar observation holds the left loop in Fig. 22c, with the

motif GNNTGGTGTGGNTGG in positions 418 which is compatible with a Gquadruplex
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structure. Other features are also detected by the RBM. As an example the weight logo

in Fig. 22b is identifying longrange correlations across positions 120 associated consisting

in a ATrich motif and is present in some of the training sequences (see histogram in right

subpanel).

Another relevant set of parameters learned from the data are the local fields acting on

the visible variables. These parameters follow quite closely the nucleotidic profile of with

the dataset, so they reflect a general enrichment in Gcontent, particularly in the positions

most used to form Gquadruplexes (see Fig. 81 for the local fields of RBMDC trained at

round 6 and for the conservation logo of the sequences used to train the model).

We then explore the capability of RBM to provide lowdimensional representation of

sequences. Prior experimental work [210] identified four different families of thrombin

binding aptamers (named A, B, C and D), based on sequence alignment andmanual curation.

We show in Fig. 22d the value of inputs Iµ of two hidden units of singleloop RBMSC, ranked

2 and 7 in terms of weight Frobenius norms able to cluster these four families. Each hidden

unit’s activity (see Methods) has a bimodal distribution (Figs. 22e,f), and the combinations

of these modes identify the four families.

4.3.6 RBM Trained from Unique Sequences Generate Diverse Aptamers Capable of Bind

ing Thrombin

After having established that the RBM loglikelihoods and the fitnesses of the aptamers

in our dataset are strongly interrelated, we now use the RBM model to generate new se

quences in silico (see Methods Sec. 4.6.2). Note that the number of available sequences

at any round, < 106, is much smaller than the number of possible sequences over 20 nu

cleotides, 420 ≃ 1012. Hence, it is a non trivial problem to reconstruct the full likelihood

landscape from such undersampled data, and use it to generate new binders.

Sampling RBMSC trained on round8 data reveals a lack of diversity in the sampled

sequences: all the generated sequences with high loglikelihoods are already present in the
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d: The four families identified in [210] are separated in different clusters in the two
dimensional subspace spanned by the inputs to hidden units 2 and 7 of RBMSC (trained on
loop subsequences at round 8).
e, f: Logo, distribution of inputs and average activity of the same hidden units as in panel
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dataset (Fig. 23a). RBMSC rightly assigns high scores to the strong binders present at

the end of SELEX procedure, but is unable to generate diverse sequences with high scores

(Fig. 23a).

We then train another model, called RBMSU, by maximizing the sum of the log

likelihoods of unique sequences in round 8 dataset (composed of 382094 unique singleloop

sequences), see Eq. (4.1). Details of the training procedure are given in Sec. B.3. The ratio

nale for this approach is two fold. First, 8th round data are expected to include better binders

and much less parasite sequences than earlier rounds. Second, discarding the sequence

counts prevents the model from being dominated by few very good binders to thrombin.

The effective diversity of training data is reflected in the generated sequences from RBM

SU model. A large fraction of sequences generated by RBMSU with top loglikelihoods are

not present in the dataset, contrary to what found with RBMSC, see Fig. 23a. In addition,

about 30% of generated sequences are 4 or more nucleotides away from the dataset, as is

the case for the majority of randomly generated sequences of length 20 nucleotides. Further

more, we show in Fig. 23b that RBMSU exhibits excellent generalization properties. The

loglikelihood of test data (unique sequences present at round 8 but not used for training)

is very close to the one of the training data. On the contrary, RBMSC essentially assigns

high scores to highcount sequences in the training data, and shows poor generalization.

We have next experimentally tested the binding to thrombin of some aptamer sequences

to validate the ability of the RBMSU to predict binding and to generate de novo binders. The

20nucleotide DNA sequences are first inserted into the loop of a hairpin with fixed 18 base

pairlong stem. To estimate the binding affinity to thrombin we use native gel shift assay,

where we incubate the thrombin protein with the hairpin aptamer, see Methods Sec. 4.6.4

and Supp. Inf. Sec. B.1.

A set of 16 sequences listed in Table 27 (excluding the control sequences listed in the

Table), together with 4 binders, experimentally validated in [210] and named ThA, ThB,

ThC and ThD, is first used to estimate the loglikelihood threshold above which a sequence

91



is predicted to bind thrombin, see Fig. 23d, where the loglikelihoods of tested sequences are

represented as vertical red and green lines, for verified nonbinders and binders respectively.

We then propose a set of 27 sequences to test (r1r27 in Table 4): 2/3 of them are de

novo designed sequences generated from the RBMSU model, and the remaining 1/3 are

present in round 8. De novo sequences are chosen to test the power of the RBM model to

produce good thrombin binders, or to predict critical mutations transforming binders into

non binders. Sequences already present in the round8 data are chosen to test non trivial

RBM predictions, e.g. sequences with low or high counts having, respectively, high or low log

likelihoods. The detailed description of these sequences and of the design criteria is found

in Method Sec. 4.6.3.

Over the 27 sequences to test, 21 sequences were above threshold, and therefore pre

dicted as binders and 6 sequences below threshold, predicted as non binders. The experi

mental gel assays are shown in Fig. 24. Overall, 93% of the RBM predictions (binder or non

binder) are confirmed by experiments. The loglikelihoods of the tested sequences, along

with the RBM predictions and the experimental findings are reported in Table 4 and repre

sented with the experimental results in Fig. 23e.

These results show that the loglikelihood provided by RBMSU is an accurate predic

tor of the capability to bind thrombin. We show in the inset of Fig. 23c the receiver oper

ating characteristic (ROC) curve and the corresponding area under the curve (AUC=0.99)

for RBMSUgenerated sequences. Let us stress that RBMSC, shows poor performance in

discriminating good from bad binders among these sequences, see Fig. 79. This failure is

expected from the poor generalization abilities of RBMSC for sequences with low counts

(Fig. 23b).

4.3.7 Competition Assay for Exosite Binding Site and Binding Strength Measurements

Thrombin has two exosites, referred to as I and II, which can be bound by aptamers,

e.g. ThA is known to bind exosite II, while ThD binds exosite I [210]. We first identify the
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Figure 24. Experimental measurements of binding of respective designed sequences (r1 to
r27) to thrombin. 5% native gel assay at 15 °C of stem loops (127) alone in the presence of
Mg2+/K+ (lane 1) and allowed to mix with αthrombin for 30 minutes at 25 °C on the bench
(lane 2). r12, r15, r16, and r22 aptamers were forming dimers with themselves but upon
using samples without K+, they were found to bind thrombin. Their entries above display
the successful attempt(see Methods for further details). Aptamers r1 and r6 did not show
a clear upper band that is indicative of thrombinaptamer dimer, but the observed smear
might indicate weak interactions with the thrombin.
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target exosite for all the binding aptamers among the r1r27 by testing each of them (aside

from those which were found to form dimer states, see Table 4) against ThA and ThD, see

Methods Sec. 4.6.5. In such a competition assay, the designed aptamers are preincubated

with thrombin and are put in competition with a small amount of fluorescently labelled ThD

or ThA [210]. If the preincubated and fluorescent strand bind the same exosite a throm

bin/fluorescent strand complex is observed in the same position as in the thrombin binding

assay. However, if the preincubated and fluorescent strands target different exosites throm

bin is bound twice, causing a downward shift in the observed band (Fig. 55). As shown in

Fig. 25 and Table 4 we find that all thrombinbinding aptamers among sequences r1r27

bind exosite I, except one.

As we noticed that sequence r9, which is an exositeI binder, is only 3 mutations away

from ThA, which binds exosite II, we decided to test all six intermediate sequences, labelled

as p1p6 in Table 4. One mutation (Adenine vs. Thymine on site 17) seems to control the

exosite binding preference along the mutational path, see Table 4 and Fig. 78. Analysis

of the RBMSU weights confirms that position 17 is particularly relevant on the aptamer

sequence: many weights have nonzero values on this site (Fig. 74). To understand if the

presence of A on site 17 (rarely encountered in round 8 sequences) is sufficient to guarantee

binding to exosite II we specifically design four sequences (r24 to r27) with this feature and

loglikelihoods above threshold, see Methods 4.6.3 and Table 4. As reported above none of

these sequence turns out to bind exosite II (while 3 out of 4 bind exosite I), showing that

binding specificity is generally controlled by multiplenucleotide motifs along the sequence.

Next we test if any of the de novo generated aptamer sequences with high RBMSU

loglikelihoods are stronger binders than previously identified ThD and ThA aptamers, the

binders with the largest number of counts at the end of SELEX [210]. To determine the

strongest binder using competition assays, thrombin is mixed with a mixture of the control

and the test aptamers at equal ratios, with the control strand being fluorophore labelled

(details in Supp. Mat. Sec. B.1.4). The stronger binder is considered to be the control or the

test aptamer when fluorescence is observed, respectively, in the thrombinaptamer gel band
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or in the stem loop band (the unbound aptamer), see Figs. 57 and 56. We observe that none

of the designed aptamers binds thrombin more strongly than ThA to exosite II binders, or

than ThD to exosite I binders. This result is expected: given the size of the original library

(∼ 1015) virtually all possible sequences of 20nucleotide aptamer are initially present, so it

is unlikely that SELEX misses stronger binders than ThA and ThD.

We then ask whether the outcomes of competition assays for the best binders could be

predicted from the comparisons of their loglikelihoods. RBMSCbased predictions have

100% success with respect to the above competition assays, always assigning larger scores to

ThA and ThD than to the competing aptamers. Conversely, RBMSU underestimates ThA

and ThD binding strength, assigning, in particular, low loglikelihood to ThA and having

a global performance of 38% on performance of RBMgenerated sequences in the competi

tion assays with ThA and ThD. However, for competitive assays between sequences r1r27,

RBMSU scores are slightlymore predictive than their RBMSC counterparts, with fractions

of successful predictions equal to, respectively, 67% and 59%. Interestingly RBMSU and

RBMSC also depart from one another in their estimates of the loglikelihoods of exosite I

and II binders. We observe in Fig. 26 that aptamers binding exosite I have higher scores

than their exosite II counterparts, explaining the overwhelming presence of exosite I binders

among RBMSU generated sequences. On the opposite, RBMSC generally assigns higher

loglikelihoods to exositeII binders. The differences in the behaviours of these models are

further examined in Discussion.

4.3.8 Supervised Learning Approach

We also explored supervised learning approaches to train from the aptamer datasets.

We considered several DNN architectures (ResNet, Siamese Network and variational au

toencoder) as well as traditional methods (random forest and gradient boosted tree) that
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Loglikelihood Binding Binding Distance
Label Sequence RBMSC RBMSU Pred. Result Exosite round 8
r1 AGTGATGATGTGTGGTAGGC 11.5 23.4 NB NB∗ NA 0
r2 AGTGTAGGTGTGGATGATGC 11.4 24.0 NB NB NA 0
r3 TAGGTTTTGGGTAGCGTGGT 13.0 22.3 NB NB NA 1
r4 AGGGATGATGTGTGGCAGGA 17.3 23.6 NB NB NA 1
r5 CTAGGACGGGTAGGGCGGTG 15.9 21.2 NB NB NA 1
r6 AGGGATGTGTGTGGTAGGCT 14.1 23.9 NB NB∗ NA 0
r7 AGGGATGCTGCGTGGTAGGC 10.2 20.0 B B II 0
r8 GAGGGTTGGTGTGGTTGGCA 10.6 11.0 B B I 0
r9 AGGGTTGGTGTGTGGTTGGC  9.8 11.8 B B I 0
r10 ATGGTTGGTTTATGGTTGGC 15.2 14.7 B B I 1
r11 GAAGGGTGGTCAGGGTGGGA 16.5 15.7 B B I 2
r12 GGAGGGTGGGTCGGGTGGGA 15.2 15.0 B B NA 1
r13 GGGGTTGGTACAGGGTTGGC 16.3 14.9 B B I 2
r14 AGATGGGCAGGTTGGTGCGG 16.3 16.3 B B I 2
r15 AGATGGGTGGGTAGGGTGGG 13.9 14.3 B B NA 2
r16 ATAGGGTGGGTGGGTGGGTA 13.1 15.0 B B NA 1
r17 TGGTGGTTGGGTTGGGTTGG 12.8 12.3 B B I 1
r18 TGGGATGGGATTGGTAGGCG 12.2 20.4 B NB NA 0
r19 AGGGTTGGTTATGTGGTTGG 19.3 20.0 B B I 0
r20 ATTGGTTGGGTAGGGTGGTT 10.4 12.2 B B I 0
r21 AAACGGTTGGTGAGGTTGGT 11.2 12.4 B B I 0
r22 CGGGGTGGTGTGGGTGGGAG 15.1 14.7 B B NA 2
r23 TATTGGTTGGATAGGTTGGT 13.8 13.1 B B I 1
r24 AGGGTTGGGTGGTTGGATGA 14.9 14.1 B B I 1
r25 CGGGTTGGGGGGTTGGATTC 17.0 15.0 B B I 1
r26 CGGTTGGGGGGGTTGGATAC 18.8 15.5 B B I 1
r27 TGTGGGTTGGTGAGGTAGGT 18.0 17.0 B NB NA 1
ThA AGGGATGATGTGTGGTAGGC 6.0 19.8 B B II 0
ThB AGGGTAGGTGTGGATGATGC 5.7 20.7 NB NA II 0
ThC TAGGTTTTGGGTAGGGTGGT 6.8 18.1 B NA I 0
ThD GTAGGATGGGTAGGGTGGTC 5.7 13.9 B B I 0
p1 AGGGATGATGTGTGGTTGGC 10.3 17.1 B B I 0
p2 AGGGATGGTGTGTGGTAGGC  9.2 16.2 B B II 0
p3 AGGGTTGATGTGTGGTAGGC  7.2 19.1 B B II 0
p4 AGGGATGGTGTGTGGTTGGC  9.3 13.1 B B I 0
p5 AGGGTTGATGTGTGGTTGGC 11.1 16.2 B B I 0
p6 AGGGTTGGTGTGTGGTAGGC  9.7 15.2 B B II 0

Table 4. Sequences generated from RBMSU, loglikelihoods, binding predictions (based on
the comparison of the RBMSU loglikelihood and the threshold in Fig. 23d), and results
from gel shift assay (B for binders, NB for non binders) and exosite binding assays. For
comparison, data for ThA, ThB, ThC and ThD sequences from Ref. [210] are shown. ThB
and ThC have not been tested for binding with our experimental setup (so NA is used in
the corresponding column), although they are expected to bind thrombin given the results
obtained in Ref. [210]. ∗Aptamers and r1 and r6 did not show thrombin binding gel band,
but their pattern indicates a possible weak interaction with thrombin.
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Figure 25. a: Binding site assay of all binding sequences and r27 (a nonbinder control) in the
RBM generated dataset. b: Binding site assay of the 6 sequences that make up the sequence
space between ThA and test sequence r9. For all gels, Lane 1 shows addition of ThA and lane
2 shows addition of ThD to the thrombin preincubated strand (labeled in black). Results
are reported in Table 4.

we trained to classify sequences as binders or nonbinders (see Sec. B.4 ). Training was

complicated by the fact that the aptamer dataset only contained positive examples (binders

from different selection rounds with their respective counts obtained from the sequencing

step). Hence, we either classified sequences with low counts as nonbinders, or we gener

ated random sequences not present in the dataset and treated them as nonbinders. The

first approach achieved between 70% to 84% accuracy on the validation dataset. The sec

ond approach had at least 99% accuracy on the validation dataset for all models. However,

when evaluating models against the test set (sequences from Table 4), we observed 30% to

74% accuracy for the first approach, and 70% to 89% for the second approach, as the test

set is heavily biased to binding sequences, and methods with high accuracy classified most
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Figure 26. Aptamers binding to exosite I have larger log-likelihoods with RBM-SU, lower log-
likelihood with RBM-SC. Violin plots showing the loglikelihoods of exosite I (light orange
violin) and exosite II (light green violin) binders. Circles in darker colors denote the average
loglikelihood over the class, lines denotes 25 and 75percentiles, and white points corre
sponds to the loglikelihoods of the generated sequences. In panel a RBMSU is used, while
in panel b RBMSC is used.

nonbinders as false positives. These results indicate that SELEX datasets are challenging

for the commonly used supervised learning methods.

4.4 Discussion

In this work we proposed datadriven models of aptamer sequences obtained at different

stages of directed evolution for thrombin binding. Our models are based on Restricted Boltz

mann Machines (RBM), the simplest neural network architecture embedding the notion of

representation (or latent factors) of sequence data.

One of our main findings is that the score (loglikelihood) assigned by the model to a

sequence swas linearly related to its fitness F (s) in the SELEX experiment. More precisely,

repeated applications of Eq. (4.1) at previous rounds of selection imply that the likelihood of

a sequence s at round r is related to its fitness through

pr(s) ∝ eβrF (s) , βr = α0 + α1 + ...+ αr−1 , (4.3)
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where αk−1 is the intensity of selection from round k − 1 to k, see Eq. (4.1), and the initial

library is assumed to be roughly uniform over the sequence space (β0 = 0). This equation

can be conveniently rephrased in the language of statistical physics. The rounds of SELEX

selection shape a Boltzmannlike distribution over the aptamer sequences, corresponding to

an effective energy equal to minus the fitness, −F . The effective inverse temperature βr at

round r is the sum of the intensities of selection at the previous rounds, and measures the

cumulative effect of these previous selections. As more rounds are carried out, the effective

temperature 1/βr diminishes, and the distribution of sequences concentrates around the

fittest aptamers, i.e. the sequences smaximizingF (s), see Fig. 27. Asmore andmore rounds

r of SELEX are applied to the aptamer population the cumulative selection strength βr seem

to saturate, a phenomenon compatible with previous theoretical works [213] and observed

in other SELEX experiments [198].

The values of the selection strengths αr and of the cumulative selection strengths βr

can be extracted from our analysis; for definiteness we arbitrarily choose β6 = 1 to fix the

scale of the fitness F , as Eqs. (4.2) and (4.3) are obviously unchanged under the rescaling

αr, βr → λαr, βr, F → F/λ. First, we report in Fig. 77 the scatter plots of the loglikelihoods

of the sequence data withmodels trained at different rounds, say, r and r′; the slopes of these

scatter plots give access to the ratios βr/βr′ according to Eq. (4.3). Second the linear fits of

the loglikelihood (estimated with the RBM trained on round6 data) vs. log. enrichment

ratios, as well as the Fisher ratios shown in Fig. 20c provide estimates of the ratios αr/β6.

The doubleloop nature of the aptamer sequences studied here is at the origin of two

interesting phenomena. First, we find that log pr(s) and, consequently, the fitness F (s) are,

to a very good accuracy, equal to the sum of two contributions coming from the left and from

the right loops. This additivity property suggests a mechanistic picture of the binding of

aptamers to thrombin. The enrichment factor of the set of molecules carrying the sequence

s is proportional to the probability pbind that they bind thrombin and to their amplification

factor through PCR. Hence, log pbind is proportional to the fitness and additivity of the latter

implies that pbind is the product of the binding probabilities of the left and right loops. The
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two loops of aptamers are thus progressively required, through successive SELEX rounds,

to bind the thrombin target. While doubleloop aptamers with one binding loop and one

parasite subsequence exist in early rounds, they progressively disappear (Fig. 20a). The

bivalence of aptamers in the final rounds likely reflects the strong selection pressure imposed

by SELEX.

The RBM model also allows for identification of the nucleotide motifs in the aptamer

sequence that contribute most to the sequence likelihood, or, equivalently, to its fitness.

Such motifs are indicative of a Gquadruplex group, a known functional motif in the DNA

aptamers that bind thrombin [214]. Other RBM motifs could also allow one to help iden

tify clusters of sequences (subfamilies), investigated in prior works through sequence align

ments and manual curation.

A second major finding is that the RBM model is capable of generating new sequences,

not present in the dataset, with good binding properties. We have generated 27 aptamer

sequences from the RBM that were either predicted to bind or not bind to thrombin. Out of

21 sequences that were thought to be binders, 19 were confirmed to bind thrombin, and all 6

sequences generated as nonbinders were rightly predicted so. These nonbinder sequences

were generated under the nontrivial constraint to differ as little as possible (in terms of

mutated nucleotides) from known good binders.

We stress that the capability of RBM models to generate diverse aptamers crucially de

pends on how they are trained. Standard training, where the counts of sequences are taken

into account result in models giving very high scores to the very best binders in the dataset,

but unable to generalize beyond these few sequences (Fig. 23b). On the contrary, discarding

the count information and maximizing the loglikelihood of the set of unique sequences pro

duces models with very good generalization properties, and able to design new and diverse

binders, as confirmed in the experiments reported above. The choice of considering unique

sequence is partially reminiscent of the reweighting procedure used in sequencebased mod

eling of proteins [206, 97], and allows the inferred loglikelihoods to reflect more accurately

the probabilities for sequences with low number of counts, see Fig. 27. Notice that, while
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Figure 27. Sketches of the fitness and inferred landscapes.
Top: fitness of the aptamer sequences as estimated by the SELEX experiment. After some
rounds of selection, most sequences are good binders to thrombin and have low counts (very
often,C = 1), while some are excellent binders and have large counts. Two excellent binders,
ThA and ThD, are schematically shown. Bottom: loglikelihood landscapes defined by the
RBM models, trained from unique sequences (RBMSU, left) or taking into counts (RBM
SC, right). RBMSU is able to capture the statistical features of the many good binders, but
does not reproduce well the few highfitness peaks. It can be used to generate new sequences
(empty peak in the landscape). Conversely, RBMSC accurately models the high peaks in
the fitness landscape, but is unable to reproduce the detailed structure of the landscape at
lower levels. It cannot be used to generate new binders.

uniquesequencebased training could a priori be sensitive to sequencing errors we estimate

that the probability ϵ of misreading a nucleotide is < 10−3 (see Methods Sec. 4.6.1 and

Sec. B.2), in agreement with error rates with next generation sequencing methods [215]. As

a result spurious sequences are< 0.5% of all unique sequences in the dataset, and have only

marginal impact on the trained model. However, ensembles in other SELEX experiments

using modified bases might experience higher sequencing error rates, which our approach

would allow to identify and correct for (Methods Sec. 4.6.1).

The properties of the two models are graphically summarized in Fig. 27. RBMSC, which

takes into account counts, accurately models the high peaks of the fitness landscape, but dis
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cards the smaller peaks. It rightly assigns very high loglikelihoods to the excellent binders,

such as ThA or ThD. However, at this level of fitness, the diversity of the sequences that

can be generated is very poor. Conversely, RBMSU, captures the statistical features of

sequences at a much lower level of fitness. Many varied sequences can then be generated,

the majority of which are good binders. RBMSU is therefore able to generate more diverse

and less strong binders, which makes it particularly appropriate for the design of evolvable

aptamers [216]. In principle, RBMSC inferred from sequences collected in an early round

would have had similar properties to RBMSU inferred from round8 data. However, in the

specific problem of doubleloop aptamers we consider here, the presence of a large number

of parasite singleloop sequences at the beginning of SELEX evolution could also affect the

generative power of models trained at early rounds.

We next used a competitive binding assay both to first classify the binding site of the

generated sequences and, in a second step, to assess the strength of binding to a given ex

osite. We find that the majority of sequences generated with RBMSU preferentially bind

to exosite I. In addition, sequences binding exosite I have on average higher loglikelihoods

than the few exositeII binding sequences. In particular, ThA, an exositeII binder with a

large number of counts in the SELEX experiment is not among the sequences with highest

RBMSU loglikelihoods. Furthermore direct competition experiments between the highest

loglikelihood sequences and ThA or ThD (binding exosite I and having a large number of

counts) showed that the latter aptamers outperform the former in terms of binding affinity.

These apparently paradoxical results can be explained in twoways. First, the loglikelihoods

were estimated with the model used for generating sequences, that is, RBMSU. This model

is very good at generate diverse binders, but is not trained to reproduce counts. The absence

of correlation between RBMSU loglikelihoods and counts or binding affinities is therefore

not surprising, whereas RBMSC high scores show a good correlation with large counts as

expected (Fig. 76,). Second, these results are compatible with a selection mechanism involv

ing binding to the two sites of thrombin. Binding to exosite II has been shown to facilitate

binding to exosite I, presumably through allosteric structural change [210]. Due to this al
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lostery mechanism, when exosite II is loaded (even with a different molecule), hairpin with

a lowaffinity loop to exosite I could be selected. This mechanism could produce a rather

subtle parasitism, where only the best exosite II binders in a quasimonoclonal population

(few sequences with largest counts) are under strong selection, and allow for the presence of

a more diverse exositeI binder population. Further experimental investigations combined

with theoretical analysis, e.g. using concepts developed in ecosystems dynamics in presence

of parasite populations, could help to further investigate the selection dynamics.

We note that our RBM represents a higher level of complexity than the direct contact

analysis methods (DCA) that have also been recently applied to protein ensemble selec

tion experiments [217]. While the DCA method trained using the pseudolikelihood method

was not able to correctly predict binders and nonbinders for our dataset, when we used

contrastive divergence training for DCA, the assigned scores from the trained DCA model

showed correlation with our trained RBM (see Supp. Inf. Sec. B.5). As opposed to DCA,

which infers pairwise interactions, the RBMmodel’s hidden units can be used for clustering

of sequences or identification of multinucleotide motifs, such as Gquadruplexes, making

them more readily interpretable. We have explored using supervised learning models, in

cluding DNNs, on our datasets predicting binders and nonbinders, but as further detailed

in Supp. Inf. Sec.B.4, we did not obtain good prediction accuracy for the outcomes of our

experiments with designed sequences.

4.5 Conclusion

In this work, we presented an unsupervised learning approach for modeling sequence

ensembles obtained from selection experiments based on Restricted Boltzmann Machines

(RBM). The approach was applied to previously obtained data from SELEX experiment to

find thrombin bivalent aptamers nanostructures that bind two different exosites. More pre

cisely, our approach consisted of the following steps: 1) developing a method that estimated

sequencing error rates, which could be used for curation of the sequence data, 2) showing
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that the loglikelihood of the trained RBM accurately predicted aptamer fitness in terms of

its propensity to be enriched in later rounds of the experimental selection protocol, 3) us

ing RBM to identify contributions of the two aptamer loops to exosite binding, 4) showing

that inspection of the parameters of the trained RBM identified functional features (such

as Gquadruplex) of the selected sequences, 5) using the trained model to generate novel

sequences, whose ability to bind thrombin was verified experimentally, and 6) comparing

RBMs with different supervised learning models trained on the same dataset, with the re

sult that RBM generalized better.

We emphasize that the calculation of loglikelihood and hence of the fitness of any de

signed sequence by RBMs is very efficient, making them faster than other approaches based

on e.g. docking or freeenergy estimation frommolecular simulation. Furthermore, the struc

ture of the model allows us to capture and identify complex features that could include co

varying residues or motifs. We showed that RBM training can be flexibly adapted depending

on the scope, e.g. taking into account sequence counts or not allows one to design stronger

or more diverse binders. We anticipate that RBMs will be also useful for the modeling of

other aptamer datasets with more complex selection protocol, such as competition assays

where aptamers are selected to bind to a desired target, e.g. cancerous tissues, and at the

same time not to bind to the control, e.g. healthy tissue. We believe our approach has the

potential to generate alternative or better binders for these complex targets, as well as to

unveil the sequence motifs that are enriched or avoided in these highquality aptamers. The

same approach can be also useful to model RNA and DNA regulatory sequences and their in

teraction with proteins in the key processes such as transcription regulation [209, 218, 203,

204]. Lastly, our modeling and design methods are also readily applicable to other selection

amplification protocols, such as phage display for antibody discovery [219, 220] or directed

protein evolution studies [217, 221], which have much larger space of possible sequences

(20L for length L) compared to aptamers (4L).
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4.6 Methods

4.6.1 Estimation of Sequencing Error Probability

Sequencing errors are potentially harmful, as they could lead to more unique sequences

in the dataset and possible biases in the RBM models. We introduce an inference approach

to estimate the sequencing error rate, based on the presence of spurious singlesite muta

tions of sequences with high number of counts. In practice the method consists in selecting

a subset of sequences with high number of counts, referred to as “peak” sequences, and in

comparing the expected number of sequences one mutation away from these peaks due to

sequencing errors to the actual number in the data. Our analysis, detailed in Sec. B.2, indi

cates that the error rate (per nucleotide) is smaller than ϵ∗ ∼ 10−3.

We use this bound to estimate the expected number of spurious sequences present in

the dataset. We obtain Nspurious ∼ 1000 unique sequences (see SupplementarySec. B.2),

corresponding to ∼ 0.5% of the total number of unique sequences present in the data.

4.6.2 Restricted Boltzmann Machine: Definition, Training, Sampling

The probability of a visible and hidden units state in an RBM model is defined by

p(s,h) =
1

Z
exp

 L∑
i=1

gi(si)−
M∑
µ=1

Uµ(hµ) +
∑
µ,i

hµwµi(si)

 , (4.4)

where Z is the normalization, gi, andwµi are parameters to be inferred from the data during

training, and

Uµ(h) =
1

2
γµ+(h+)

2 +
1

2
γµ−(h−)

2 + θµ+h+ + θµ−h−, (4.5)

where h+ = max(h, 0), h− = min(h, 0) and γµ+, γµ−, θµ+, θµ− are again model parameters

to be inferred from the data during training. This specific form of the function Uµ, which

is called “double Rectified Linear Unit” combines the usage of a relatively low number of

parameters with the possibility of learning highorder correlations in the data [97]. An
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advantage of choosing Double ReLU potentials is that the likelihood log p(s) of a sequence

s, obtained by marginalizing p(s,h) over h, has an explicit analytical expression in terms

of error functions.

It has been suggested that, for RBMs, sparsity of the weight parameters, together with

a high number of hidden units, can improve the generative properties of the machine and its

interpretability [222, 97]. To prevent the model from overfitting, we hence enforce sparsity

of weights and we empirically set M to value above which the model’s loglikelihood on

validation dataset does not further increase. We resort to a L2
1 regularization scheme, which

consists in adding to the loglikelihood of the data, L in Eq. (4.1), a term of the form [97, 99]

− λ

M∑
µ=1

(
L∑
i=1

∑
si

|wµi(si)|

)2

, (4.6)

hence enhancing sparsity homogeneously across hidden units. The value of the hyperpa

rameter λ must be, in general, chosen carefully to balance model interpretability (obtained

for sparse weights, i.e. large λ) and expressivity (to learn data features). We observed lit

tle effects of changes in hyperparameters (see also Fig. 75), provided that they are not too

different from the one given in Sec. B.3. This is also the case for the number M of hidden

units chosen: we usedM ≃ 70 for RBMs with L = 20 visible units, andM ≃ 90 for L = 40.

Precise values of M are given, for each RBM used, in Sec. B.3, but we noticed that using

different numbers have little effects on the results discussed in this work (see also Fig. 75).

Once the parameters in Eq. (4.4) are obtained, we can sample from the marginal distri

bution p(s) to generate new sequences. Sampling can be done in several ways [223]. Here

we use alternate Gibbs sampling (AGS), which consists in sampling the RBM’s visible units

while keeping the hidden units fixed and viceversa, in an alternate manner, until theMonte

CarloMarkov Chain equilibrates. To increase the probability of sampling high loglikelihood

sequences we can sample from p(s)2 instead of p(s) using the socalled duplication trick [97].

We write

p(s)2 =

(∫
dh p(s,h)

)2

=

∫
dh1

∫
dh2 p(s,h1) p(s,h2) . (4.7)
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This squared likelihood distribution can therefore be sampled with standard AGS after du

plication of the hidden layer of the trained RBM model.

The average hidden unit µ’s activity for a given sequence s is defined as ⟨hµ⟩ =∫
dhhµ p(h|s). Note that ⟨hµ⟩ only depends on the sequence s through the input Iµ =∑
iwµi(si). When the average activity is close to 0, the corresponding hidden unit has van

ishing contribution to the sequence loglikelihood, while for both large negative or positive

values of average activity the contribution of the hidden unit to the loglikelihood is positive.

Therefore the sign of the weights wiµ assigned to a particular sequence motif is not indica

tive itself of the presence or absence of a given pattern, as the contribution in p(h|s) depends

on the product hµIµ and can only be null or positive.

4.6.3 Design of singleloop aptamers with RBM

The RBMSU distribution p(s) can be sampled to generate sequences s of interest, and

test the validity of the model. We describe below how we generated sequences in Table 4.

4.6.3.0.1 Determination of Threshold.

We fix the threshold, which allows us to distinguish good from bad binders based on their

loglikelihoods tominimize the number ofmisclassified sequences among the preliminary set

of sequences given in Table 27. As a range of possible values are possible, we actually take

the median of this interval.

4.6.3.0.2 Sequences with High Likelihoods.

We first sample through AGS (see Sec. 4.6.2) 4000 sequences from p(s) and from p(s)2.

We then choose 10 among these sequences (named r9 to r17 and r22, r23 in Table 4), which

have both high loglikelihood and large distances (numbers of different nucleotides) to round
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8 data. In practice these sequences are at Hamming distance 1 or 2 from the closest se

quences in the original dataset, since further away sequences have substantially lower log

likelihoods. All 10 generated sequences are experimentally confirmed to be good binders

(Table 4), and are indicated as green lines in Fig. 23e.

4.6.3.0.3 Sequences with Critical Mutations for Binding/NonBinding Status.

We next use our RBM to predict critical mutations capable of changing the binder/non

binder status of aptamers. First we exhaustively look for the smallest possible number of

mutations leading to a substantial decrease of the loglikelihood of known good binders. In

particular, sequence r1 has 1 mutation with respect to a control sequence that we tested for

binding (named d10 in Table 27), r2 and r3 are both 1 mutation away from, respectively ThB

and ThC, both identified as good binders in Ref. [210]. All these generated sequences are

confirmed to be unable to stably bind thrombin after this singlepoint mutation (Table 4 and

Fig. 24) and they correspond to red vertical lines to the left of the threshold in Fig. 23e. All

these mutations removed a G from the sequence, and G nucleotides are necessary to form

Gquadruplex motifs, known to be important for thrombin aptamers. To show that our RBM

can also identify other positions in the aptamer that are key to thrombin binding, we also

design two more sequences, r4 and r5, which have 2 mutations with respect to aptamers

found in the SELEX dataset and validated as good binders (respectively, d10 and d18, see

Table 27). The mutations are again chosen so that the loglikelihood is decreased as much

as possible, but without removing G nucleotides from the original sequences. We find the

sequences lost their ability to bind thrombin after the 2 mutations, as predicted by the RBM

(Fig. 24), so they correspond to two vertical red lines to the left of the threshold in Fig. 23e.
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4.6.3.0.4 Sequences in Dataset with Mismatches between Counts and LogLikelihoods.

We further test the performance of the RBM model by searching for sequences with (1)

relatively low loglikelihoods but with large numbers of counts (139 or more, see Tab. 29) in

the SELEX experimental data from Ref. [210], of for sequences with high loglikelihood but

with few counts (11 or less, see Tab. 29). The sequences chosen in case (1) are r6, r7, r18, r19

(see Table 4); one of them (r6) is below, and the other 3 are slightly above the identified log

likelihood threshold. Sequences chosen in case (2) are r8, r9, r20, r21 (Table 4). The RBM

predictions are confirmed in all cases but one (r18), which corresponds to a red vertical line

at the right of the threshold in Fig. 23e.

4.6.3.0.5 Sequences Sharing a Rare Mutation with ThA, a Strong ExositeII binder.

Last of all we design de novo sequences (r24 to r27 in Table 4) under the following two

fold criterion. First these sequences are required to have Adenine in position 17, which is

uncommon in the training dataset (A is the second least common nucleotide in that position,

being present in about 13% of the sequences in round 8; it is found in ThA, which strongly

binds exosite II). Second, the sequences are required to have large loglikelihoods, exceeding

the threshold value. Remarkably, the only nonbinder among r24r27 is the one with lowest

loglikelihood, r27. However, while mutating away from A in ThA change the binding speci

ficity from exosite II to I (Fig. 26) sequences r24 to r27 are all exositeI binders, showing

that the presence of A17 is not sufficient for exositeII specificity.

4.6.4 Thrombin Binding Assay

All RBM designed sequences were first assessed for their ability to bind either of the

cationic exosites of human alphathrombin. Each sequence was placed as the loop of a 18

bp stem loop with the full sequences reported in the Table 23. As done previously [210],
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we used a 5% native gel shift assay to qualitatively assess the binding of each stem loop to

thrombin. Each sequence was tested with two gel lanes, the first lane always correspond

ing to the stem loop without thrombin and the second lane consisting of equimolar amounts

(500 nM) of thrombin and the stem loop. The presence of an upper band, consisting of a stem

loop bound to thrombin complex, in the second lane indicates a binding sequence. Sequences

without the upper band (nonbinding sequences) either very weakly interact with thrombin,

characterized by a smear but no band in the second lane, or do not interact with thrombin at

all matching their negative control lane. Sequences ThA and ThDwere selected from the pre

vious study as positive controls for their high affinity for thrombin and known binding sites

[210]. Results for all RBM generated sequences are shown in Figure 24 and summarized in

Table 4. Results for all DCA generated sequences are shown in Fig. 65 and summarized in

Table 27. To quantify the interaction of the stem loop and thrombin, we tested both control

sequences independently and together in varying concentrations of thrombin (Fig. 55). The

results clearly indicate the stem loop/thrombin band occurs from a 1:1 interaction of throm

bin and each stem loop, and the simultaneous binding of two stem loops on opposite exosites

of thrombin downshifts the stem loops/ thrombin band from the singular case.

A secondary band prominently appeared among four of the sequences during the bind

ing assay, (r12, r15, r16, and r22). These sequences showed no binding to Thrombin at first.

Upon further investigation, the secondary band was found to most likely be a dimer state

of the DNA loop from interaction of the Gquartet motifs. The four sequences have a higher

Gcontent than all other RBMgenerated sequences. Additionally, a Gquadruplex dimer

would require K+ cations to form, indicating a testable transition from the single loop to

dimer state. The sequences’ Thrombin binding ability was reassessed by the same experi

ment, with two small changes. The first was remaking the DNA samples without K+ in their

buffer, so their transition from single stem loop to a dimer state could be observed[224]. The

second change was the heating the DNA samples to 90 � for 5 minutes before immediately

chilling them in ice. Samples (r12, r15, r16, r22) in Figure 24 show the results of this fi

nal experiment, with all dimersusceptible sequences showing an ability to bind Thrombin.
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Accordingly, we classify these sequences as binders and suggest their absence from the orig

inal dataset is due to Gquadruplex dimer formation during the original SELEX procedure.

A clear shift from the monomer state in 1x TAE Mg2+ (no K+) buffer (lane 1) to the dimer

state upon addition of buffer with K+ (lane 2) is also observed for all dimersusceptible se

quences. Note this transition still contains some fraction of the dimer state in lane 1 where

the sample contains no K+. This is due to presence of K+ in the gel matrix itself as well as

the running buffer.

4.6.5 Exosite Binding Assay

RBMgenerated sequences that were able to bind to thrombin were tested to determine

which exosite (I or II) of thrombin they bind to. Each aptamer was preincubated with

thrombin for 30 minutes at 25 �at an equimolar ratio in two separate samples. Small

amounts (1/10th the preincubated strand) of fluorescent labeled exosite II binder ThA

[210] was added to the first sample and fluorescent labeled exosite I binder ThD to the

second. Using the same strategy as our thrombin binding assay, our samples were run

in a 5% native gel with 5 mM K+ for proper DNA/thrombin binding. If the preincubated

strand bound the same exosite as the fluorescent strand, the thrombin/fluorescent strand

complex band would be observed in the same position as seen in our thrombin binding assay.

However, if the preincubated strand bound the opposite exosite as the fluorescent strand,

both strands bind thrombin causing the same downward shift as observed for our exosite

verified control strands mixing (Fig. 55). Accordingly, sequences with no binding affinity to

thrombin matched control samples with no test strand. By comparing the outcome of both

lanes for a sample we are able to firmly assign the binding site of our test sequences. The

gel results are shown in Fig. 25 and summarized in Table 4.
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Chapter 5

FUTURE WORK AND CONCLUSION

This chapter focuses on two projects that are nearing their eventual realization. I have

been working on them for the last ten months and hope to see them published in the next

couple of months before I leave for (real or imagined) greener pastures.

5.1 Ongoing CoarseGrained MD Research

DNA crystallization for the purpose of protein structure determination was the origi

nal motivation for the development of DNA nanotechnology [29]. Today, DNA crystals and

other DNA lattices are seeing increased attention because of the promise of creating ordered

nanoscale materials [225]. Possible developments of the technology can bring advances in

energy storage, optics, catalysis, metamaterials, information storage devices, and other elec

tronics [226, 227]. DNA lattices demonstrate the ability to have defined geometry and incor

porate guest molecules [228]. The end result being a macroscopic 3D material with unprece

dented 3D control. Here, we develop a multiscale model capable of studying the assembly of

a large amount of DNA origami for exploring DNA origami lattice systems.

5.1.1 A Coarser Representation

Despite the coarsegrained nature of oxDNA, there are many DNA Nanotechnology pro

cesses that cannot be modeled using this software, due to the large number of DNA origami

in the system. For example, selfassembly of DNA origami into larger constructs cannot be

achieved in a timely manner in oxDNA without supercomputerlevel resources. Systems of

interest include DNA crystal lattices such as the tetrastack lattice seen in Figure 28. The

tetrastack lattice is highly valued because of its omnidirectional photonic bandgap which
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would allow for optoelectronic devices including semiconductor lasers and nonlinear optical

switches[229].

Current approaches for modeling assembly of DNA origami represent the DNA origami

as a single particle, with the sequencespecific handles for binding represented as “patches”.

This is the “patchy particle” model that has seen widespread use in modeling large assem

blies, including theoretical DNA nanocrystals and can be seen in Figure 29c.

However, many details of the system are entirely ignored using the patchy particlemodel,

particularly the individual fluctuations of the DNA origami, which can have a major effect

on the availability of the patches during binding. As an intermediate representation, groups

of nucleotides can be represented as single particles; in essence, coarsegraining the oxDNA

representation of DNA. Making use of a network model we can approximately capture the

dynamics of the structure as simulated by oxDNA. DNA strands expected to hybridize with

one another over the course of the simulation will be represented at the oxDNA nucleotide

level to retain the thermodynamics of the oxDNA model.

To give this representation as much flexibility as possible, the user will be able to define

howmany particles represent each origami allowing for a scale of representations. Different

coarsegrained representations of the same icosahedral DNA origami can be seen in Figure

29b. The tradeoff is that the representation cannot have any chemically defined interac

tions, since their sizes and topology can be different across representations of the same sys

tem. Instead, each representation will need to be fit to reproduce the average fluctuations

of the target oxDNA system.

5.1.1.1 Model Topology

The decision of where to place particles to represent a group of other smaller particles is

nontrivial. In our use case we must be able to capture the overall shape of the structure to

avoid having complexes that can overlap due to too low of a resolution. The choice of each
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Figure 28. Assembly of icosahedral DNA origami into a tetrastack DNA crystal lattice

particle location is further hampered by the necessity of having locations to attach the han

dles responsible for binding. Each nucleotide in the original system can only be assigned

to one of the larger coarsegrained particles. With this condition in mind, it is a natural

choice to use the kmeans algorithm to partition our oxDNA system into larger particles.

The coordinates of each nucleotide in the oxDNA system are fed into the algorithm, which

then finds a userspecified number of “mean” positions that reduces the variance of the coor

dinate data [230]. The algorithm then follows an iterative procedure known as expectation

maximization where at each step the nucleotides are assigned to a cluster based off their

distance to the “mean” positions and then the “mean” positions are recalculated from the

positions of the nucleotides belonging to the cluster. The process ends when nucleotides are

no longer being reassigned to different clusters, i.e. the process converges. To bias the algo

rithim towards placing means in positions where handles can be easily attached, we can add

multiple copies of coordinates where our handles should be attached to our coordinate list we

give as input to the algorithm. Using this method results in usable coarsegrain topologies

made up of as many particles as specified by the user.
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Figure 29. (a) oxDNA visualization of icosahedral DNA origami. (b) Two different represen
tations using the proposed network model of an icosahedral DNA. (c) The patchy particle
model of a DNA origami.

5.1.1.2 Model Parameterization

The goal of this model is to approximately capture the dynamics of DNA origami simu

lated in the oxDNA model, at a fraction of the computational cost. Starting from an oxDNA

trajectory of our target system we can calculate the target dynamics of our coarse grain sys

tem by calculating the deviations of each cluster’s group of nucleotides at each timestep. In

practice, the center of mass position of the list of nucleotides that represent a coarsegrain

particle is calculated at each time step and used to calculate a deviation from themean struc

ture of the coarsegrained system. This nets a fluctuation profile known as the B factor. We

can then use these calculated B factors as the target dynamics for the parameterization of

the coarsegrained system. The potential function used to drive the dynamics of the system

is just a simple spring potential attached to between each pair of coarsegrained particles

within a certain cutoff distance from one another. If the spring constants were homoge

nous among all particle pairs, this model would simply be an Anisotropic Network Model.

However, in our parameterization scheme we use a modified version of the Heterogenous

Anisotropic Network Model introduced by Lu et al. [137]. The parameterization procedure

starts from the ANM best fit of the target B factors and iteratively changes the spring con

123



stant values to reproduce those of our target B factors as close as possible. This process is

implemented using a modified version of the original script by Lu et al. [137].

5.1.1.3 Attachment of Handles

Once our coarsegrained model’s topology and spring connections are defined, the only

step left before simulation of the system is to attach any handles used to bind other DNA

origami (in a coarsegrained representation or not). In our model, handles are represented

by the nucleotide level oxDNA model and then attached to a coarsegrained particle using

external forces, in particular another spring potential. Using this method we simplify the

computational cost, but retain the thermodynamics and kinetics of the DNA handles.

5.1.1.4 Current Usage

This model has yet to be published but is in the final rounds of testing. We are testing it

on the icosahedral DNA origami structures that which were designed to form a tetrastack

lattice. However, the experiments have to date not been successful. Using this model we

plan on investigating probable causes for this.

5.2 Aptamer Analysis with Unsupervised Models

5.2.1 Aptamer Dataset Topology

An aptamer is defined as any molecule that tightly binds a target molecule. Aptamers

can have both therapeutic and diagnostic potential depending on the target they bind. Of

particular interest are aptamers made of DNA, RNA, peptides, or antibodies due to their

lack of immunogenicity [45, 231].

In order to generate novel sequences that tightly bind a target, popular methods use
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large libraries of random sequences which are then exposed to the target. DNA and RNA

aptamers are typically generated using a method known as Systematic Evolution of Ligands

by EXponential enrichment (SELEX) which is discussed extensively in 4. The data produced

by high throughput SELEX (HTSELEX) consists of sequencing data of enriched sequences.

In vivo selection of antibodies can be done using phage display. Phage display uses a bac

teriophage with a modified coat protein to display a scaffold protein with a variable region.

In the production of antibodies, the most commonly used phage is the M13 bacteriophage.

Variants of M13 add the genes of antibody fragments to different coat proteins with the

most common being the pIII due to its flexibility and ability to display large proteins [232].

Typically, the CDR3 region of the displayed antibody is the primary contributor in deter

mining antibody/ target compatibility [232, 233]. Similar to SELEX, in vivo phage display

is performed in rounds and yields sequencing data of enriched antibody fragments [234].

5.2.1.1 Challenges with Aptamer Datasets

Analysis of aptamer sequencing datasets is difficult due to a few primary challenges

• Datasets can be rife with sequencing errors. The sequencing methods, biopolymer, and

enrichment methods are key contributors making each dataset’s error unique.

• Relatively few sequences in the datasets tightly bind the target of interest. It is common

for the majority of data to consist of weak or nonspecific binders [235].

• Large populations of a single sequence does not correlate to a sequence’s binding ability.

Experimental artifacts (ex. PCR bias) or sticky sequences can result in large popula

tions of particular sequences that do not tightly bind the target [236].

Existing analysis methods for aptamers broadly categorize into three categories: motif

finding, clusterfinding, and machine learning[235]. Motiffinding methods including

MEME [196] and AptaMotif [193] search for commonmotifs (a short repeated pattern) in the

aptamer dataset. Clusterfinding methods including AptaCluster [237] and FASTAptamer
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[195] find groups of related sequences in the aptamer dataset based off their distance to one

another. Machine learning approaches include DNN supervised methods [238] such as Vari

ational AutoEncoders [96] that train a model for classification or regression based off labels

derived from the sequence data.

All of the previously mentioned analysis tools are sensitive to one of more challenges

listed above. For high quality analysis, preprocessing of the dataset is absolutely necessary.

5.2.1.2 Dataset Preprocessing

Raw highthroughput sequencing data contains reads that have been truncated and con

tain sequencing errors. Truncations comprise a small percentage of the total dataset ( 2%)

and are discarded with little to no effect on the resulting data [215]. Sequencing errors

can be systematic, random, or sequencespecific with different sequencing machines and ex

perimental conditions returning distinct compositions of error [239, 215]. Estimation and

correction of error on highthroughput sequencing is of considerable interest for single nu

cleotide polymorphism, halotype, and other genomic studies [239].

However, most error correction methods are not applicable to aptamer datasets due to

the short sequence length and overrepresented motifs [215]. Instead of attempting to find

and fix errors in the dataset, selecting a subset of the data that we can most likely trust is

our preferred strategy. Our key assumptions can be summarized as follows. Sequences are

less likely to be sequencing errors if they are present across multiple rounds of sequencing

and are read more than once in a round. These assumptions are based off the fact that single

base substitutions are unlikely to occur consistently in the same place for many reads across

consecutive rounds.

Following our assumptions, we select all sequences that are present in at least two

rounds of selection with more than one read in each round as our dataset. Reads are then

normalized across rounds by dividing the read by the total reads per million (as done in

[195]). An enrichment score for each pairs of rounds in the dataset is calculated for each se
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quence. A distance average is then calculated from all enrichment scores made up of rounds

a specified distance away from each other. A final average is taken over the distance aver

ages to return a final enrichment average. Taking an enrichment average has the benefit of

prioritizing sequences that were enriched throughout the entire selection process, not just

between two selected rounds.

Thus far, we have applied our dataset preprocessing methods to SARSCoV2 DNA ap

tamers, cancer exosomes, and phage display datasets. We are currently using the models

discussed in the following section to learn about the functional features of these sequences

and generate new sequences via sampling and rational design.

5.2.2 New Models for Aptamer Analysis

5.2.2.1 Extensions to the RBM

Due to their stellar performance, the RBMhas been used extensively. The RBMhas been

modified extensively in different regards: the model’s topology, learning algorithm, and sam

pling methods being the main focuses of these alterations. The Conditional RBM worked by

adding connections between the current and previous states of both the visible and hidden

units to efficiently model time dependent data[240, 241, 242]. The Convolutional RBM[243]

worked by changing the connecting weight matrix to be convolutional filters which removes

some of the positional dependence of the hidden layer in learning different features. It has

been used for human behavior recognition on video data [244] and for sound classification

[245]. Adding a classification layer to an RBM resulted in the Discriminative and Hybrid

Discrimnative RBM models[246]. These models achieved very good performance on classifi

cation datasets such as MNIST and changed the objective function of the model to be exactly

differentiable. Combining the two previous mentioned approaches, a Convolutional Classi

fication RBM has been used in the analysis of lung CT data [247]. As a generalization of

the DRBM and HDRBM, the Supervised RBM adds a third layer to the model and is able to
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perform regression as well as classification on labeled datasets. The downside is that typi

cal methods for sampling the hidden layer can no longer be used because the hidden layer

would need to be sampled sequentially which is not ideal, especially for large models. They

instead trained the RBM using a variational method which minimizes the evidence lower

bound (ELBO) [248]. Other changes to the RBM’s architecture have included different acti

vation functions on the hidden units [249] as well as different visible and hidden unit types

such as gaussian, multinomial, and rectified linear units [250].

Improved Markov Chain Monte Carlo sampling methods have been a focus for many

groups. One of the most popular methods, persistent contrastive divergence (PCD) saves

the chain at each epoch and initializes the next round of Gibbs sampling from the saved

chain[211]. A proposed improvent, parallel tempering (PT) increases the mixing of the chain

by simulating many copies of the chain at different temperatures and allowing them to ex

change states[251]. The lowest temperature chain is used as the generated sample for the

free energy calculation.

The above list of modifications is far from exhaustive. A good review on many of the

different forms of RBMs can be found here [252].

5.2.2.2 Pooling Convolutional Restricted Boltzmann Machine

Here we present a Convolutional Restricted Boltzmann Machine, first introduced in

[243], that uses the same hidden and visible layers as defined by Tubiana et al. [97]. In

order to completely destroy the location dependence of each feature for applications on un

aligned and different sized data, we use a modified max pool layer on the outputs of the

convolutional layer. The modification of the max pool layer is slight, where it returns either

the most positive value or most negative value by comparison of the absolute values. By

returning the max positive or max negative value, we are able to use the dReLU potential

which applies different nonlinearities to positive and negative inputs. During sampling and
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Figure 30. a) Model Topology of Restricted Boltzmann Machine (RBM). b) Model Topology
of Convolutional RBM with pooling layer. c) Model topology of pooling Convolutional RBM
with classification layer.

training, the indices of the max values are stored for computing the transpose pool oper

ation and used to sample the visible layer. We also introduce the ability to use different

convolution sizes for different hidden units.

We term this model the Pooling Convolutional Restricted Boltzmann Machine (PCRBM).

A depiction of the model’s topology can be seen in Figure 30b. There are i visible units

and µ hidden units. The energy function of the model can be defined as in Equation 5.1

where U represents the dReLU potential, ∗ represents a convolution operation,⊗ represents

the transpose convolution operation, single square brackets [ ] denote a modified max pool

operation, and double square bracket [[ ]] denotes the transpose pool operation.

E(v, h) = −
∑
i

gi(vi) +
∑
µ

Uµ(hµ)−
∑
µ

hµ [Wµ ∗ v] (5.1)

Conditional probability distributions can be derived using Bayes Theorem. The probabil

ity of a hidden node configuration is given by Equation 5.3 with the visible input given by

equation 5.4 while the probability of a visible node configuration is given by Equation 5.5

129



with input from the hidden layer given by equation 5.2. Updates of hidden units and visible

layers can be performed with Gibbs sampling using these equations. Due to the conditional

independence of the visible and hidden units, updates of individual nodes can be performed

in parallel within their layer.

Ihµ(v) = [Wµ ∗ v] (5.2)

P (hµ|v) ∝ exp
(
−Uµ(hµ) + hµI

h
µ(v)

)
(5.3)

Ivi (h) =

(∑
µ

Wµ [[hµ]]

)
i

(5.4)

P (vi|h) ∝ exp (gi(vi) + viI
v
i (h)) (5.5)

Likewise the marginal distribution of the visible layer can be defined by equation 5.7 where

Γ is defined as the cumulant generating function of the hidden unit probability distribution

function which is defined by equation 5.8.

P (v) =

∫ ∏
µ

dhµP (v, h) (5.6)

P (v) ∝ exp

(∑
i

gi(vi) +
∑
µ

Γµ(Iµ)

)
(5.7)

Γµ = log

[∫
dhµ exp

(
−Uµ(hµ) + hµI

h
µ

)]
(5.8)

Minimizing the free energy of the data (− log(P (v))) is the learning objective of the RBM

(discussed in 1.2.3.1) and can be performed with a few different methods. In our implemen

tation, contrastive divergence (CD), persistent contrastive divergence (PCD), and parallel

tempering (PT) are implemented for sampling the positive phase of the free energy equa

tion.

Cost Function and Regularization

For our CRBM we maximize the following function:
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⟨log (P (v))⟩MSA =

∑
bwb log (P (vb))∑

bwb
(5.9)

Sequences can be weighted (wb) by sequence identity to avoid overfitting [98] or by their

copy number to better represent the fitness landscape of aptamers generated via SELEX

[253]. The sequence weights provide a mechanism to tweak the gradients of the data. Reg

ularization terms on the weights is given by equation 5.10

Wreg = λ2
1

∑
µ

(
∑

ic,kx,ky |Wµ,ic,kx,ky|)2

2ic kx ky
(5.10)

where ic, kx, and ky are the input channels (most purposes should be 1), the kernel size on

the visible node dimension of the convolution, and the kernel size on the category dimension

of the convolution.

Additionally a distance regularization term was implemented to promote each filter to

learn a unique feature. This regularization term Dreg is calculated as the mean of the pair

wise distances of each weight that are the same size. The formula is given by equation 5.11.

Dreg =
∑
l

λd

1 + 1
µ2

∑
µ,µ̌ |Wµ| − |Wµ̌|

(5.11)

The regularization terms on the visible biases (gi) is the same form as Tubiana’s RBM [97]

which is given by equation 5.12.

Freg =
λf

2

∑
i,v

gi(v)
2 (5.12)

Optionally two other regularization terms can be used. One attempts to minimize the effect

of gaps in theweights by summing the absolute value of the gap contributions (equation 5.13).

The other promotes an even distribution between the positive and negative contributions of

each weight as seen in equation 5.14.

Greg = λg

∑
µ,ic

|Wµ,ic,gap| (5.13)
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Breg = λb

∑
µ

|
∑

ic,kx,ky max(Wµ,ic,kx,ky, 0)∑
ic,kx,ky |Wµ,ic,kx,ky|

−
∑

ic,kx,ky |min(Wµ,ic,kx,ky, 0)|∑
ic,kx,ky |Wµ,ic,kx,ky|

| (5.14)

In total our cost function can be expressed as:

C(v) = − < logP (v) >MSA −Wreg − Freg −Dreg −Greg −Breg (5.15)

5.2.2.3 Classification PCRBM

As an extension to the model, we have also implemented the Hybrid Discriminative

RBM model [246], where the CRBM takes binary inputs and produces a classification la

bel through a linearly connected tertiary layer. An illustration of the model’s topology can

be seen in Figure 30c. A weight matrix (symbol) connecting the hidden units to the label

layer and biases for each class are introduced.

Accordingly the energy function is modified to include the new layer and its parameters:

E(v, h, y) = −
∑
i

gi(vi) +
∑
µ

Uµ(hµ)−
∑
µ

hµ [Wµ ∗ v]− dyT − hMyT (5.16)

The conditional probability distributions must be modified as well yielding:

Ivi (h) =

(∑
µ

Wµ [[hµ]]

)
i

(5.17)

P (vi|h) ∝ exp (gi(vi) + viI
v
i (h)) (5.18)

Iv,yµ (v, y) = [Wµ ∗ v] +Mµy
T (5.19)

P (hµ|v, y) ∝ exp
(
−Uµ(hµ) + hµI

v,y
µ (v, y)

)
(5.20)

P (y|h) = exp (dy + hMy)∑
y exp (dy + hMy)

(5.21)

P (y|v) =
exp

(
dy +

∑
µ Γµ(I

v,y
µ )
)

∑
y exp

(
dy +

∑
µ Γµ(I

v,y
µ )
) (5.22)
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Our free energy becomes the joint conditional of the visible and label layers. The free en

ergy can be decomposed into discriminative and generative components as shown below and

discussed in [246].

F (v, y) = − log (P (v, y)) = − log (P (y|v))− log (P (v)) (5.23)

We train the model using the hybrid learning objective defined in [246] making our model a

Hybrid Discriminative Pooling Convolutional Restricted Boltzmann Machine (HDPCRBM).

MNIST Performance

As proof of concept we evaluated our Hybrid Discriminative PCRBM on the MNIST

Dataset with 60000 training images and 10000 test images. Without a thorough hyper

parameter search and unenhanced data, we were able to achieve a 98.93% accuracy on the

validation set and 99.28% accuracy on the training dataset using just 200 hidden units. Our

test set error (1.07%) is better than the binary Hybrid Discriminative RBMmodel with 1500

hidden units (1.28%) and the Discriminative Infinite RBM with 621 hidden units (1.41%)

[254].

The performance is comparable to many other DNN methods. CNN and FCN architec

tures containing 343,0730 and 74,362 parameters, respectively, achieved better performance

at 0.72% and 0.55% in [255]. Comparatively our model had 200 weights of shape 15x15, a

28x28 visible bias layer, a 10 parameter label bias, a 200x10 hidden to label weight matrix,

and 200 four parameter activation functions yielding a total of 49,394 parameters.

5.3 Conclusion

In this work, I presented computational approaches to outstanding problems in the field

of biopolymer nanotechnology. First, was the development and application of a coarse

grained model for the characterization of hybrid nucleic acidprotein structures. Not men

tioned was a current application of the model, where we are assessing the ability of certain

hybrid nucleic acidprotein structures to bind a therapeutic target. Future research includes
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the network model for DNA origami which was reviewed in the beginning of this chapter.

I hope to see it’s use in designing DNA crystals and other large DNA assemblies. Then

we discussed aptamer design using generative and interpretable machine learning models.

Analysis yielded insight into the binding properties of Thrombin aptamers and the genera

tion of new Thrombin aptamers. Building off the model developed by Tubiana et al. [98], I

showed a new model capable of being used on unaligned and different length data. Applica

tion of the model on SARSCoV2 DNA aptamers, cancer exosomes, and phage display data

are ongoing projects.

Beyond my personal contributions to the field, I am excited by all of the research efforts

going into this field. The field of biopolymer nanotechnology is incredibly vast and varied.

Predicting even the next five years of developments is a fool’s errand, but I hope to see

an increased focus on applications centered around renewable energy, carbon capture, and

overthrowing the corporate oligarchy.
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A.1 Materials and supplies

All DNA sequences were purchased from Integrated DNA technologies (IDT). The M13
scaffold strand was amplified and purified inhouse. The aldolse protein was expressed
inhouse.

A.2 Synthesis and characterization of KDPG aldolase proteinDNA building block, tetra
hedral origami, 4 turn tetrahedron.

A.2.1 Synthesis of KDPG aldolase proteinDNA building block (PDNAbb).

The protein was expressed, purified and conjugated as previously reported[65].

A.2.2 Origami formation.

All origami solutions were made to 100 µL volumes with 20 nM of the M13 scaffold and
10 equivalents of staples (200 nM) in 1XTAE18.5mMMgCl2 buffer. Staples bearing handles
were also added at 10x excess. The samples were heated and slowly cooled in a PCRmachine
using the ‘Origami tetrahedron’ annealing protocol described below.

A.2.3 Origami Tetrahedron annealing protocol.

Samples were held at 90 °C for 5 min, followed by a gradient from 8671 °C at a rate of 1
°C/5 min, followed by a gradient from 7040 °C at a rate of 1°C/15 min, followed by another
gradient from 3920 °C at the rate of 1°C/10 min, and then quickly cooled, and stored at, 10
°C.

A.2.4 Annealing protocol for PDNA incorporation in the tetrahedral origami frame.

Samples were heated to 45°C for 15 min, and then cooled slowly by a gradient from
404°C for over 12 hours. Purified PDNA was added in 40x excess (4 sites*10X excess) to
the impure tetrahedron origami structures, following which the sample was gel purified as
described below.
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A.2.5 Characterization of Tetrahedral origami structures.

Samples were run on 1.2% Agarose gels made in 1xTAE with 20 mM MgCl2 buffer, and
prestained with ethidium bromide. The running buffer was 1xTAE with 12.5 mM MgCl2.
To 10 µL of the annealed sample from the thermocycler was added 1 µL of 10x loading dye.
The gels were electrophoresed for 1.5 hours at a constant voltage of 90 V at 4 °C.

A.2.6 Purification of tetrahedron origami structures.

20 nM, 200 µL samples were run on a prestained 1.2% Agarose gel as before for 1.52
hours. After electrophoresis, the band of choice was excised, put into a freeze and squeeze
tube and kept in 80 °C for 1 hour, then centrifuged in the cold room at low centrifuge speeds
of 1600 rcf for 40 min and characterized by TEM for intactness.

A.2.7 ssDNA purification.

All ssDNA strands forming open tetrahedron DNA (1T, 2T, 3T, & 4T) were obtained from
IDT and purified in house using 8 % denaturing polyacrylamide gel electrophoresis (PAGE).
The running buffer was 1XTBE buffer. The desired bands were excised from gel and kept in
eluting buffer for overnight at room temperature followed by desalting using a 3 kDa Amicon
filter. All purified DNA strands were stored at 20 °C for further use. The variation in T
nucleotide base sequence in different open tetrahedral has been highlighted in red letters
in Figure 36B.

A.2.8 Open DNA 4 Turntetrahedron formation.

All open DNA tetrahedron (1T, 2T, 3T & 4T) solutions were made in 60 µL volume with
1 µM concentration of each component strands of tetrahedron in equimolar ratio in 1XTAE
12.5 mM MgCl2 buffer (shown in green, yellow, ash and green in Figure 36). The solutions
were annealed in a PCR machine using ‘Open DNA 4 turntetrahedron annealing protocol’
described below.

A.2.9 Open DNA 4 turntetrahedron annealing protocol.

Samples were heated at 90 °C for 5 min, followed by a gradient of 88 – 76 °C at a rate
of 1°C/5 min, followed by a gradient of 76 – 24 °C at a rate of 1°C/2.5 min and then quickly
cooled to 4 °C.
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A.2.10 Characterization and purification of open 4 turnDNA tetrahedron.

Samples were run on 5 % Native PAGE gel made in 1XTAE12.5 mM MgCl2 buffer. The
running buffer was 1XTAE12.5 mM MgCl2. The gel was electrophoresed for 2.5 h at con
stant 200 V keeping constant temperature at 10 °C, and poststained with ethidium bromide.
Thereafter band of choice was excised from gel and kept in 1XTAE12.5 mMMgCl2 buffer at
room temperature for overnight. Purity of samples were confirmed via running the eluted
samples on 5 % Native PAGE gel made in 1XTAE with 12.5 mM MgCl2.

A.2.11 4 turnDNA tetrahedronprotein cage formation.

All DNA tetrahedralprotein samples were made to 90 µL volumes with 300 ng open
DNA tetrahedron (~21 nM) and 100 nM PDNA in 1XTAE12.5 mMMgCl2 buffer. Solutions
were annealed in a PCR machine using the ‘4 turnDNA tetrahedralprotein cage annealing
protocol’ described below.

A.2.12 4 turnDNA tetrahedralprotein cage annealing protocol.

Samples were heated at 56 °C for 2 min, followed by a gradient of 55 – 46 °C at a rate of
1 °C/2 min, followed by a gradient of 45 – 30 °C at a rate of 1 °C/15 min, followed by 29 – 26
°C at a rate of 1 °C/10 min, followed by incubation at 25 °C for 30 minutes and then quickly
cooled at 4 °C.

A.2.13 Characterization and purification of 4 turnDNA tetrahedralprotein cage.

Samples were run on 4 % Native PAGE gel made in 1XTAE12.5 mM MgCl2 buffer. The
gel was electrophoresed for 2 h at constant 200 V at 4 °C. After that, gel was stained with
ethidium bromide and the band of choice was excised and kept in 1XTAE12.5 mM MgCl2
buffer at 4 °C for overnight. The sample concentration was measured using a Nanodrop
and further characterized using AFM.

A.3 Experimental protocols for TEM, CryoTEM and AFM

159



A.3.1 Transmission electron microscopy (TEM) characterization.

5 µL of sample was adsorbed on a formvar stabilized carbon typeB, 400 mesh copper
grid (Ted Pella, part number 01814F) that was glowdischarged for 1 minute. The sample
was stained using 5 µL of a 2% (w/v) uranyl formate solution with 25 mM sodium hydroxide.
The grids were allowed to sit for 5 minutes before applying the samples. Sample was then
applied on the grid and incubated for 5 minutes. Grids were allowed to float on a drop of the
required sample or stain before wicking excess liquid using a Whatman filter paper.

A.3.2 Plunging freezing for CryoEM imaging.

5 µL of sample was absorbed on the carbon side of the ultrathin carbon film on lacey
carbon support film, 400 mesh copper grid (Ted Pella, part number 08124) that had been
glow discharged for 1 minute. The grids were left to sit idle for 5 minutes before the sam
ples applied onto it. Samples were incubated for 5 minutes. Thereafter, the grids were
plunged using an inhouse manual plunger after 56 seconds into liquid ethane and immedi
ately transferred to grid boxes in liquid nitrogen. The grids were stored in these boxes until
imaged in the microscope.

A.3.3 Atomic force microscopy (AFM) characterization.

30 µL of samples were deposited on freshly cleaved mica surface (Ted Pella) and 20 µL of
1XTAE12.5 mM MgCl2 filtered buffer was added to the samples. After incubating samples
at room temperature for 10 min, 10 µL of filtered NiCl2 (0.2 M) solution was added to the
samples and kept it at room temperature for 2 min. About 60 µL of filtered 1XTAE12.5 mM
MgCl2 buffer was added to the AFM tips. All the AFM imaging was done in the ‘ScanAsyst
mode in fluid’ with ScanAsystFluid+ tips (Bruker).

A.4 Processing of cryoEM data

A.4.1 Data acquisition.

All cryoEM data collections were completed in the Eyring Materials Center (EMC) at
Arizona State University (ASU). The grid specimen was imaged using a Thermo Fisher/FEI
Titan Krios transmission electronmicroscope (TEM) (Thermo Fisher/FEI, Hillsborough, OR)
at an accelerating voltage of 300 keV. The electron scattering was recorded by a Gatan Sum
mit K2 direct electron detector (DED) camera in superresolution mode (Gatan, Pleasanton,
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CA). For the tetrahedron dataset, the nominal magnification was set to 30,487x, correspond
ing to a physical pixel size of 1.64 Å/pixel at the specimen level. The defocus was varied from
0.8 to 2.5 µm. The camera counted rate was calibrated to 3.24 e/pixel/second. The exposure
time was 8 seconds, accumulating to a total dosage of 46.1 e/Å[256]. The procedure of low
dose imaging was automated using SerialEM software (version 3.8)[256] with customized
macros.

For the PDNAbound tetrahedron dataset, the nominal magnification was set to 37,879X,
corresponding to a physical pixel size of 1.32 Å/pixel at the specimen level. The defocus was
varied from 0.8 to 2.5 µm. The camera counted rate was calibrated to 4.33 e/pixel/second.
The exposure time was 8 seconds, accumulating to a total dosage of 39.5 e/Å[256].

A.4.2 Image processing

Image processing was generally conducted using the Relion software (version 3.1
beta)[257, 258]. For the tetrahedron dataset, 3,448 cryoEMmovies were unpacked and gain
normalized using IMOD software package (version 4.9)[259]. The specimen movements be
tween frames were registered and averaged using MotionCor2 (version 1.2.1)[260], and the
CTF (contrast transfer function) parameters of the frame average were estimated using
CTFFIND4 (version 4.1.13)[261]. The frame averages were imported into Relion for sub
sequent processing. 25,949 particles were manually selected from the micrographs using a
Gaussian blob with a diameter of 802 Å. Iterative referencefree twodimensional (2D) classi
fication was performed using Relion to remove false positives and incomplete views. 20,714
selected particle images were used to generate a threedimensional (3D) initial model using
Relion[257, 258, 262]. The cryoEM density was then refined against the experimental par
ticle images by imposing a tetrahedral symmetry. The final resolution was determined as
26.1 Å using a goldstandard FSC method at the cutoff of 0.143[263].

For the PDNAbbbound tetrahedron, 2,619 cryoEM movies were unpacked and gain
normalized using IMOD software package[259]. The specimen movements between frames
were registered and averaged using MotionCor2[260]. The CTF parameters of the frame
average were estimated using CTFFIND4[261]. The frame averages were imported into
Relion for subsequent processing and 10,255 particles were selected from the micrographs.
Iterative referencefree 2D classification was performed to remove any false positives and
incomplete views. 7,676 particle images were selected to generate a 3D initial model using
Relion[257, 258, 262]. The cryoEM density was then refined against the experimental
particle images by imposing a tetrahedral symmetry. The final resolution was determined
as 27.6 Å using a goldstandard FSC method at the cutoff of 0.143[263].

A.5 Experimental details of the fluorophore assay

Samples for both the calibration curves, i.e. Cy5 labelled strand and the FAMDNA1 aldolase
protein, were prepared by making double stranded versions of each. This was first done by
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annealing the corresponding sample with its complementary strand in defined ratios (1X
for the Cy5 strand and 3X excess for Proteinconjugate (since there are 3 DNA per protein)).
These double stranded versions were then annealed and measured in a Nanolog fluorimeter
(Horiba Jobin Yvon) using a quartz cuvette of 3mm path length having a sample volume of
60 µL at 495 nm for FAMDNA1 (KDPG aldolase protein) and at 647 nm for the Cy5 labeled
strand.

The calibration curves were fit using the equation y =mx + c, where in m is the slope
and c is the intercept, where the emission peak values were taken at 520 nm for the FAM
sample and 664 nm for the Cy5 sample.

A.6 Anisotropic Network Model fitting and linker parameters

Two separate Anisotropic Network Models (ANMs) were used to simulate KDPG Aldolase
at our two different temperatures (113K and 300K). As crystallographic data (B factors)
for the KDPG aldolase fluctuations is available at 110K, our low temperature models were
parameterized to best match this information. The fitting for our low temperature ANM is
shown below in Figure 31 with the ANM parameters listed in the description.

High temperature fluctuation data is not readily available and can significantly differ
from crystal data collected at low temperatures. To generate sufficient data, KDPG aldolase
was simulated with Charmm36 Forcefield and tip3p water molecules for 10 ns from its crys
tal structure. The B factors and average coordinates were collected and used to parameterize
our high temperature ANMmodel. The comparison of the B factors from fully atomistic sim
ulation and the ANM B factors are shown below. The fitting for our high temperature ANM
is shown below in Figure 32 with the ANM parameters listed in the description.

The linker used was parameterized previously[168]. The parameters in SI units are
10.97 Å for the equilibrium length and 0.031 pN/Å. The force constant was raised slightly
from our previous publication to 0.0530 pN/Å in order to limit the maximum linker length
possible.

A.7 Additional Simulation Data

All simulations were carried out using the oxDNA2 model with sequence dependent param
eters. The below tables contain additional simulation data for the empty and connected
cages of the cage design, broken down by the respective pairwise interaction potentials in
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Figure 31. Comparison of the XRD measurement of B Factors from 1WA3.pdb and the pre
dicted B Factors of the ANM at 113K with a cutoff of 13 Å and force constant of 15.039 pN/
Å.

the coarsegrained model of DNA, oxDNA: FENE spring backbonebackbonepotential, ex
cluded volume between nearest neighbor nucleotides (BEXC), stacking interaction (STCK),
nonnearest neighbor excluded volume (NEXC) base pairing interaction (HB), crossstacking
interaction (CRSTCK), coaxial stacking interaction (CXSTCK), electrostatic repulsion mod
eled via DebyeHuckel potential.
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Figure 32. Comparison fully atomistic B Factors from our CHARMM simulation and the
predicted B Factors of the ANM at 300K with a cutoff of 13 Å and force constant of 15.982
pN/ Å.

Figure 33. The chemical schematic of the DBCONHS ester linker used in this work. Note
that this structure represents the linker after reaction with both the aminemodified nu
cleotide (thus the sulfoNHS moiety has been displaced) and the azidoPhe on the protein
surface (leading to the triazole linkage shown).
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Table 5. Overview of the oxDNA model. Pairwise interactions including stacking, cross
stacking, coaxial stacking, hydrogen bonding, and nearest neighbor backbone excluded vol
ume is depicted on a dna duplex.

Table 6. Average energy broken down by oxDNA forcefield term for all T spacer nucleotides
in models with all arms attached to KDPG aldolase.

Table 7. Average energy broken down by oxDNA forcefield term for all T spacer nucleotides
in empty DNA cage.
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Table 8. Average energy broken down by oxDNA forcefield term for the four nucleotides
centered at the nick in the cage’s base with KDPG aldolase.

Table 9. Average energy broken down by oxDNA forcefield term for the four nucleotides
centered at the nick in the empty cage’s base.

Table 10. Average and standard deviation of full and empty cages’ root mean squared fluc
tuations from the mean structure.
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Figure 34. Asymmetric Cage Designs. Panels AB show the aligned mean structures of the
asymmetric designs holding the arm across from the nick point constant at 2T with variable
T spacers in the other two arms. Panels CD show the angle being measured at the nick
point and the distribution of that angle across the simulation trajectories. Panels EF show
the aligned mean structures of the asymmetric designs varying the T spacers in the arm
across from the nick point and holding the other two arms constant at 2T spacers. Panels G
H show the angle being measured at the nick point and the distribution of that angle across
the simulation trajectories.

Additionally, two sets of asymmetric cages were designed to explore the differences in
adding T spacers in the different arms of the cages.

One set of asymmetric systems was created by holding the arm across from the nick point
constant at a 2T spacer, and varying the T spacer amount of the other two arms of the DNA
cage with either 1T, 3T, or 4T spacers. Respectively these designs were named 1.1, 1.3, and
1.4.

The second set of asymmetric systems was created by holding the two arms attached
to the nick point constant at 2T spacers, and varying the T spacer amount of the one arm
across from the nick point with either 1T, 3T, or 4T spacers. Respectively these designs were
named 2.1, 2.3, and 2.4.

All six asymmetric designs mentioned in the main text were simulated using the same
exact methodology as the symmetric cages. Below is a figure summarizing the effect of the
asymmetric cages on the nick point and tables summarizing the average energy of each
individual arm and the nick point for each individual asymmetric design.

The average energies of the asymmetric cages were also computed and shown below in
tables 11, 12, 13, 14, 15, 16, 17, 18.
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Table 11. Average energy broken down by oxDNA forcefield term for the four nucleotides
centered at the nick in the asymmetric cages with the arm across from the nick point staying
constant.

Table 12. Average energy broken down by oxDNA forcefield term for the four T spacers
nucleotides (2T spacer) in the arm across from the nick point.

Table 13. Average energy broken down by oxDNA forcefield term for the variable number
of T spacers nucleotides in the left arm (when viewed with the nick point in front and arm
held constant in the back).

A.8 Cryo Fitting Data

Tables 19, 20, 21, & 22 The below tables, report the Chimera fitting values for all 10 mean
simulation models while maximizing the fit for correlation. Each table shows fitting results
for the specified cryo map (filled or empty) at the temperature of the simulation models used.

Table 14. Average energy broken down by oxDNA forcefield term for the variable number of
T spacers nucleotides in the right arm (when viewed with the nick point in front and arm
held constant in the back).
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Table 15. Average energy broken down by oxDNA forcefield term for the four nucleotides
centered at the nick in the asymmetric cages with the arm across from the nick point being
varied in T spacer number.

Table 16. Average energy broken down by oxDNA forcefield term for the variable number of
T spacer nucleotides in the arm across from the nick point.

Table 17. Average energy broken down by oxDNA forcefield term for the four T spacer nu
cleotides in the left arm (when viewed with the nick point in front and variable arm in the
back).

Table 18. Average energy broken down by oxDNA forcefield term for the four T spacer nu
cleotides in the right arm (when viewed with the nick point in front and variable arm in the
back).
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Table 19. Fitting results of atomic models of the mean structure of the DNA cage fit to the
cryo map of the empty cage. The 04 indicate the number of PDNA incorporation for the
simulation mean structures from their 113K simulation.

Table 20. Fitting results of atomic models of the mean structure of the DNA cage fit to the
cryo map of the filled cage. The 04 indicate the number of PDNA incorporation for the
simulation mean structures from their 113K simulation.

Table 21. Fitting results of atomic models of the mean structure of the DNA cage fit to the
cryo map of the empty cage. The 04 indicate the number of PDNA incorporation for the
simulation mean structures from their 300K simulation.

Cryo map fittings of the mean structures are at 300K are shown in the main text Figure
15. The fittings of the mean structures at 113K is shown in Figure 34.
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Table 22. Fitting results of atomic models of the mean structure of the DNA cage fit to the
cryo map of the filled cage. The 04 indicate the number of PDNA incorporation for the
simulation mean structures from their 300K simulation.

Figure 35. Fitting images of simulation mean structures at 113K. Atomic maps generated
from the mean structures at the same resolution as the cryo map are shown in translucent
pink and the cryo map itself shown in purple. Each subfigure depicts three views of the
same fitting. A) 0 PDNA fit to empty cage. B) 1 PDNA fit to empty cage. C) 2 PDNA fit to
empty cage. D) 3 PDNA fit to empty cage. E) 4 PDNA fit to empty cage. F) 0 PDNA fit to
filled cage. G) 1 PDNA fit to filled cage. H) 2 PDNA fit to filled cage. I) 3 PDNA fit to filled
cage. J) 4 PDNA fit to filled cage.
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Figure 36. CADNANO design scheme of the tetrahedral origami cage. A) Ten helix bundles
used for each edge. B) Design details of crossovers and connections. Light blue refers to the
scaffold routing. Pink refers to the staple strands. Yellow, cyan, black and green represent
the handle positions for each of the faces of the tetrahedron used for the incorporation of
the PDNA. C) Agarose gel characterization of the tetrahedral frame with varying lengths of
polythymidine linkers between arms. The bands shown as lower and upper were isolated
and purified and characterized by negative stain TEM. Lane M(1kb)= 1kb ds ladder, Lanes
5T, 7T, 9T, 11T are origami structures assembled with varying polythymidines ranging from
5 to 11 respectively.
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A.9 Additional Supplementary Figures and Sequences of DNA origami handles/staples
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Figure 37. Images of the negatively stained Lowermonomer band from Figure 36C.
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Figure 38. Images of the negatively stained UpperDimer band from Figure 36C.
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Figure 39. CryoEM analysis of the emptycage tetrahedron. A) Electron micrograph of
the cryogenically plunged tetrahedron. Black contrast represents the tetrahedral cages and
white corresponds to the background. B)Representative 2D class averages. Box side lengths
are 972 Å. C) Two different views of the cryoEM density map. D) Fouriershell correlation
(FSC) plot of the 3D reconstruction.
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Figure 40. CryoEM analysis of the PDNAbearing origami. A) Electron micrograph of the
cryogenic PDNA bound tetrahedron. Black contrast represents the proteinbound tetrahe
drons and white corresponds to the background. Scale bar indicates 50 nm. B) Representa
tive 2D class averages. Box side lengths are 1,024 Å. C) Two different views of the cryoEM
density map. D) Fouriershell correlation (FSC) plot of the 3D reconstruction.
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Figure 41. Line diagram and sequences of the 4 turnDNA PDTet cage. A) Schematic illus
tration and line diagram of the 4 turn DNA tetrahedron. B) Sequences of the strands used,
wherein the boxed region shows the complimentary area to the DNA conjugate and area
marked in red shows the variations in the polythymidine resides used in the 1T, 2T, 3T and
4T variations.
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Figure 42. AFM images of the Open 1T triangular base structures.
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Figure 43. AFM images of the Open 2T triangular base structures.
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Figure 44. AFM images of the Open 3T triangular base structures.
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Figure 45. AFM images of the Open 4T triangular base structures.
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Figure 46. AFM images of the crudeClosed 1T tetrahedron.
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Figure 47. AFM images of the crudeClosed 2T tetrahedron.
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Figure 48. AFM images of the crudeClosed 3T tetrahedron.
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Figure 49. AFM images of the crudeClosed 4T tetrahedron.
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Figure 50. AFM images and yield for the PAGEpurified Closed 1T tetrahedron.
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Figure 51. AFM images and yield for the PAGEpurified Closed 2T tetrahedron.
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Figure 52. AFM images and yield for the PAGEpurified Closed 3T tetrahedron.
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Figure 53. AFM images and yield for the PAGEpurified Closed 4T tetrahedron.
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Figure 53. Staple and Handle Sequences
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APPENDIX B

SUPPLEMENTARY INFO FOR CHAPTER 4
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B.1 Experiments

B.1.1 Gel Electrophoresis

The formation of the Thrombin/DNA complex is sensitive to temperature as well as the
presence of K+. Therefore, each 5% native gel incorporated K+ into its matrix and was run
at 15C for 90 minutes at 200V. Running buffer was 10mM K+ 7mM Mg2+ 1x TAE at 8 pH.
Each gel was stained with SYBR gold prior to imaging at 300nm. If using a fluorophore
labeled strand, the gel was was not stained prior to imaging.

B.1.2 DNA Sample Preparation

Each RBMgenerated 20nt sequence was supplemented with two complementary 18nt
regions to form a stem loop structure (56nt total). The RBMgenerated stem loops were de
signed and their secondary structure predicted (see Figure 54) using NUPACK’s webserver
[264]. NUPACK results showed no other complex formation except for the desired stem loop.
The sequences were ordered, HPLC purified from IDT and resuspended in 10mM K+ 7mM
Mg2+ 1x TAE. The stem loops were annealed for 12hrs to ensure proper secondary struc
ture formation, and their concentrations standardized to 500nM by measure of the 260nm
absorbance using a Nanodrop Spectrometer. All DCAgenerated sequences were originally
designed to form the nanotile from the SELEX experiment which generated our dataset
[210]. Using each loop individually resulted in a 15nt stem loop with nonpairing regions.
These sequences were ordered in a plate from IDT with their standard desalting. Each
DCAgenerated sequence was purified by using a 5% or 6% denaturing gel (depending on
the sequence size) in 1x TBE buffer, cutting the resulting band and precipitating the DNA
out with ethanol. The stem loops were annealed for 12hrs to ensure proper secondary struc
ture formation, and their concentrations standardized to 500nM by measure of the 260nm
absorbance using a Nanodrop Spectrometer. All sequences used throughout the main text
are shown in Table 23 except for any 5’ 6FAMmodifications which are marked in any figures
in which they are used.

B.1.3 Control Sequence Verification

To confirm the binding band and establish the interaction between the stem loop se
quences and thrombin, the control strands ThA and ThD were exposed to varying concen
trations of thrombin shown in Figure 55b,c. For both ThA and ThD, the almost complete
uptake of the stemloop from the starting position (Figure 55) to the stemloop / complex
band at a ratio of 1:1.08 indicates the stem loop / complex band interaction is made up of
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Sample Name Full Reported Sequence
r1 CTCGAGAGTTGCAGAAGTAGTGATGATGTGTGGTAGGCACTTCTGCAACTCTCGAG
r2 CTCGAGAGTTGCAGAAGTAGTGTAGGTGTGGATGATGCACTTCTGCAACTCTCGAG
r3 CTCGAGAGTTGCAGAAGTTAGGTTTTGGGTAGCGTGGTACTTCTGCAACTCTCGAG
r4 CTCGAGAGTTGCAGAAGTAGGGATGATGTGTGGCAGGAACTTCTGCAACTCTCGAG
r5 CTCGAGAGTTGCAGAAGTCTAGGACGGGTAGGGCGGTGACTTCTGCAACTCTCGAG
r6 CTCGAGAGTTGCAGAAGTAGGGATGTGTGTGGTAGGCTACTTCTGCAACTCTCGAG
r7 CTCGAGAGTTGCAGAAGTAGGGATGCTGCGTGGTAGGCACTTCTGCAACTCTCGAG
r8 CTCGAGAGTTGCAGAAGTGAGGGTTGGTGTGGTTGGCAACTTCTGCAACTCTCGAG
r9 CTCGAGAGTTGCAGAAGTAGGGTTGGTGTGTGGTTGGCACTTCTGCAACTCTCGAG
r10 CTCGAGAGTTGCAGAAGTATGGTTGGTTTATGGTTGGCACTTCTGCAACTCTCGAG
r11 CTCGAGAGTTGCAGAAGTGAAGGGTGGTCAGGGTGGGAACTTCTGCAACTCTCGAG
r12 CTCGAGAGTTGCAGAAGTGGAGGGTGGGTCGGGTGGGAACTTCTGCAACTCTCGAG
r13 CTCGAGAGTTGCAGAAGTGGGGTTGGTACAGGGTTGGCACTTCTGCAACTCTCGAG
r14 CTCGAGAGTTGCAGAAGTAGATGGGCAGGTTGGTGCGGACTTCTGCAACTCTCGAG
r15 CTCGAGAGTTGCAGAAGTAGATGGGTGGGTAGGGTGGGACTTCTGCAACTCTCGAG
r16 CTCGAGAGTTGCAGAAGTATAGGGTGGGTGGGTGGGTAACTTCTGCAACTCTCGAG
r17 CTCGAGAGTTGCAGAAGTTGGTGGTTGGGTTGGGTTGGACTTCTGCAACTCTCGAG
r18 CTCGAGAGTTGCAGAAGTTGGGATGGGATTGGTAGGCGACTTCTGCAACTCTCGAG
r19 CTCGAGAGTTGCAGAAGTAGGGTTGGTTATGTGGTTGGACTTCTGCAACTCTCGAG
r20 CTCGAGAGTTGCAGAAGTATTGGTTGGGTAGGGTGGTTACTTCTGCAACTCTCGAG
r21 CTCGAGAGTTGCAGAAGTAAACGGTTGGTGAGGTTGGTACTTCTGCAACTCTCGAG
r22 CTCGAGAGTTGCAGAAGTCGGGGTGGTGTGGGTGGGAGACTTCTGCAACTCTCGAG
r23 CTCGAGAGTTGCAGAAGTTATTGGTTGGATAGGTTGGTACTTCTGCAACTCTCGAG
r24 CTCGAGAGTTGCAGAAGTAGGGTTGGGTGGTTGGATGAACTTCTGCAACTCTCGAG
r25 CTCGAGAGTTGCAGAAGTCGGGTTGGGGGGTTGGATTCACTTCTGCAACTCTCGAG
r26 CTCGAGAGTTGCAGAAGTCGGTTGGGGGGGTTGGATACACTTCTGCAACTCTCGAG
r27 CTCGAGAGTTGCAGAAGTTGTGGGTTGGTGAGGTAGGTACTTCTGCAACTCTCGAG
ThA CTCGAGAGTTGCAGAAGTAGGGATGATGTGTGGTAGGCACTTCTGCAACTCTCGAG
ThD CTCGAGAGTTGCAGAAGTGTAGGATGGGTAGGGTGGTCACTTCTGCAACTCTCGAG
p1 CTCGAGAGTTGCAGAAGTAGGGATGATGTGTGGTTGGCACTTCTGCAACTCTCGAG
p2 CTCGAGAGTTGCAGAAGTAGGGATGGTGTGTGGTAGGCACTTCTGCAACTCTCGAG
p3 CTCGAGAGTTGCAGAAGTAGGGTTGATGTGTGGTAGGCACTTCTGCAACTCTCGAG
p4 CTCGAGAGTTGCAGAAGTAGGGATGGTGTGTGGTTGGCACTTCTGCAACTCTCGAG
p5 CTCGAGAGTTGCAGAAGTAGGGTTGATGTGTGGTTGGCACTTCTGCAACTCTCGAG
p6 CTCGAGAGTTGCAGAAGTAGGGTTGGTGTGTGGTAGGCACTTCTGCAACTCTCGAG
d1 TCAGGCTCTCGAGAGTTGCAGAAGTAGGGTAGGTGTGGGGTATGCACTTCTGCCTGCATCGAGACA
d2 TCAGGCTCTCGAGAGTTGCAGAAGTAGGGTAGATGTGTAGGATGCACTTCTGCCTGCATCGAGACA
d3 TCAGGCTCTCGAGAGTTGCAGAAGTAGGGATGATGGTTGGTAGGCACTTCTGCCTGCATCGAGACA
d4 TCAGGCTCTCGAGAGTTGCAGAAGTAGGGATGATGTGGATTAGGCACTTCTGCCTGCATCGAGACA
d5 TCAGGCTCTCGAGAGTTGCAGAAGTAGGGTGGGAGCGGGGGACGCACTTCTGCCTGCATCGAGACA
d6 TCAGGCTCTCGAGAGTTGCAGAAGTCGGGTAGGTGTGGATTATGCACTTCTGCCTGCATCGAGACA
d7 TCAGGCTCTCGAGAGTTGCAGAAGTGTAGGACGGGTAGGGCGGTCACTTCTGCCTGCATCGAGACA
d8 TCAGGCTCTCGAGAGTTGCAGAAGTGGGGGTTGGGCGGGATGGGCACTTCTGCCTGCATCGAGACA
d9 TCAGGCTCTCGAGAGTTGCAGAAGTGCGGGTTGGGCAGGATCAGCACTTCTGCCTGCATCGAGACA
d10 TCAGGCTCTCGAGAGTTGCAG AAGTAGGGATGATGTGTGGTAGGCACTTCTGCCTGCATCGAGACA
d11 /5PHOS/CCAGTTTTTCTGGTGAGCTAGTGCAGACATGATCGTAGGATGGGTGGGGTGGGAGATCATGTAACTCCTAGCTGCCTGA
d12 /5PHOS/CCAGTTTTTCTGGTGAGCTAGTGCAGACATGATCGTAGGATGGGTAGGGTGGTAGATCATGTAACTCCTAGCTGCCTGA
d13 /5PHOS/CCAGTTTTTCTGGTGAGCTAGTGCAGACATGATCCTAGGTTGGGTAGGGTGGTGGATCATGTAACTCCTAGCTGCCTGA
d14 /5PHOS/CCAGTTTTTCTGGTGAGCTAGTGCAGACATGATCCTAGCATGGGTAGGGTGGTGGATCATGTAACTCCTAGCTGCCTGA
d15 /5PHOS/CCAGTTTTTCTGGTGAGCTAGTGCAGACATGATCGTAGCATGGGTAGGGTGGTCGATCATGTAACTCCTAGCTGCCTGA
d16 /5PHOS/CCAGTTTTTCTGGTGAGCTAGTGCAGACATGATCTTGGGTGGTGTAGGTTGGCGGATCATGTAACTCCTAGCTGCCTGA
d17 /5PHOS/CCAGTTTTTCTGGTGAGCTAGTGCAGACATGATCTTGGGTGGTGCAGGTTCGCGGATCATGTAACTCCTAGCTGCCTGA
d18 /5PHOS/CCAGTTTTTCTGGTGAGCTAGTGCAGACATGATCCTAGGATGGGTAGGGTGGTGGATCATGTAACTCCTAGCTGCCTGA

Table 23. The full sequences from all experiments carried out in this work, with their loop
region underlined for easy identification. r127 correspond to sequences generated from
sampling our RBM. All sequences with p labels (p1p6) are along themutation pathway from
sequence ThA to r9. Sequences d1d9 and d11d17 are were generated from sampling from
the DCA parameters. Sequences d10, d18, ThA, and ThD were used as controls throughout.
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Figure 54. NUPACK Predictions of the minimum free energy structure (MFE) of each DNA
stemloop at 25 ° C. Figures start from r1 in the top left corner to r27 in the bottom right
corner.

a single stem loop binding to a single molecule of thrombin. Further, the combination of
the two stem loops binding to thrombin at the same concentrations (Fig 55d) confirmed the
cooperative binding seen in previous experiments as well as indicated a downshift of the
stemloop / protein band upon 2 stemloops binding to thrombin.

B.1.4 Competition Assays

Competition assays were performed by mixing equimolar amounts (2.5um) of a fluo
rophore labeled DNA strand and nonlabeled DNA strand that bind to the same Thrombin
exosite. The reverse is simultaneously tested, where the fluorophore labeled version of the
nonlabeled strand is substituted with a fluorophore labeled version and the previously non
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Figure 55. Panel a: lane 1 contains 5’ 6FAM labeled control sequence ThA, lane 2 contains 5’
6FAM labeled control sequence ThD. Panel b: ThA mixed in varying ratios with Thrombin
(1:0.32, 1:0.64, 1:1.08). Panel c: ThD mixed in varying ratios with Thrombin (1:0.32, 1:0.64,
1:1.08). Panel d: ThA + ThD mixed in varying ratios with Thrombin (1:1:0.32, 1:1:0.64,
1:1:1.08).

labeled strand is substituted for a fluorophore labeled version. In both, Thrombin is added
in a 1:2 ratio (2.5um) and allowed to mix at 25°C for 30 min. Comparing the results of
the assays yields a conclusive ranking of the relative binding affinity of the two sequences.
Competition assays using 5’ 6FAM modified sequences are depicted in Fig. 56.

Figure 56. Competition assay of r8F vs r14 and r14F vs r8 (panel a). r8F vs r19 and r19F
vs r8 (panel b), and r19F vs r14 and r14F vs r19 (panel c). The F suffix indicates the strand
is fluorohore labeled with a 5’ 6FAM modification.

Additionally, onesided competition assays for all exositeI binders and all sequences
between r9 and ThA were tested against fluorophorelabeled versions of the best binding
aptamers from the previous study (ThA and ThD) to assess whether any novel binder per
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formed better. From Fig. 57b,c we see that no exositeII binding aptamer was found which
bound better than ThA and no exositeI binding aptamer was found which bound better than
ThD. Additionally, the tested exositeI binders Fig. 57(a) are worse binders than r8 and r19
but better binders than r14.

Figure 57. One sided competition assays of all exositeI binders vs. a different fluorophore
labeled strand in each well, r8, r14, and r19 respectively (panel a). Numbers to the left
of each trial indicate the identity of the nonlabeled strand. Additionally exositeII binders
were tested against fluorophore labeled ThA with negative control labeled ThA (panel b) and
select exositeI binders were tested against ThD with negative control labeled ThD (panel
c).

B.1.5 Thrombin Sample Preparation

We used 1 mg Human αthrombin manufactured by Haematologic Technologies Inc. and
purchased from Fisher Scientific Co. Concentrations were assessed by 280nm absorbance
using a Nanodrop Spectrometer. The stock was stored at 20C. Sample concentrations were
made at 500nm and 250nm in 1x PBS 10mM K+ 7mM Mg2+. Each sample was made fresh
prior to being used in an assay.

B.2 Inference of sequencing error probability

We describe here our method for inferring the singlesite sequencing error probability.
The analysis here discussed is based on sequences from the left loop, collected at the last se
lection round (round 8). Repeating the analysis on the right loop provides analogous results.

Given a sequence σ with high copy number nσ ≫ 1, the method uses as signal the
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number µσ of sequences that are at Hamming distance 1 from σ and are never observed in
the dataset. This number depends on the error rate, since a higher error rate is expected to
cause more of these sequences to be detected. Since we consider only the left loop, sequences
have a length L = 20 nt.

In Fig. 58A we provide a representation of the sequence space around σ =
GGGTGATGTGTGGTAGGC , which is the sequences with highest copy number nσ = 8034 in
our dataset. The dots in a circle around σ represent the 3×L = 60 sequences that belong to
the neighborhood of the main sequence N (σ), with color encoding their copy number. Some
of these sequences are present > 100 times, and are unlikely to be an artifact of sequencing
error. Other are present 12 times and can potentially be generated by sequencing errors.
Finally, a number µσ = 12 of sequences are absent in the sample (red crosses). These
are mostly related to mutations removing one Guanine from the sequence, which might be
related to a loss of fitness. While it is not possible to know with certainty whether one of
the present neighbouring sequences with low copynumber was originated by sequencing
error, the fact that some of these sequences are absent implies that σ was never misread
into these sequences. This information will be used in our inference. We start by selecting
a number of sequences with high copy number. In fig. 58B we plot the number of sequences
that have copynumber higher than a given threshold, as a function of the threshold. For
our analysis we select as “peaks” all sequences with nσ > 1000 (21 such sequences in the
dataset). In Fig. 58C we report the Hamming distance matrix for the selected sequences.
As can be expected peaks tend to cluster together, with most of the peaks having at least
one other peak in their neighbourhood. This can potentially increase the bias in our upper
bound for the sequencing error probability. We will later introduce a correction to reduce
this bias.

As a next step we define a probability for µσ as a function of the reading error probability.
We call ϵ the probability of misreading a single nucleotide in the sequence. We consider this
probability to be uniform along the sequence and on the real/read nucleotides, so that the
probability of obtaining as outcome of sequencing σ′, one of the singlesite mutations N (σ)
of σ, when in reality reading σ is:

P (σ′|σ) = p(ϵ) =
ϵ

3
(1− ϵ)L−1. (B.1)

The real copynumber ñσ of σ in the sample might be slightly different from the observed
copy number nσ, due to sequencing error. If we call P (σ|σ) = (1 − ϵ)L the probability of
correctly reading σ, then for a small enough error, we can approximate

nσ ≃ ñσP (σ|σ) + p(ϵ)
∑

σ′∈N (σ)

ñσ′ ≃ ñσP (σ|σ). (B.2)

For any given sequence σ′ ∈ N (σ), the probability of never misreading σ′ when in reality
sequencing σ is given by:

P (nσ′ = 0) = (1− p(ϵ))ñσ = q(ϵ, nσ). (B.3)
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Finally, the probability that in the neighbourhood of σ a number µσ of sequences are never
observed, provided that in reality they were never present, is:

P (µσ|nσ, ϵ) = Binom
[
|N (σ)|, q(ϵ, nσ)

]
(µσ) =

(
|N (σ)|
µσ

)(
q(ϵ, nσ)

)µσ
(
1− q(ϵ, nσ)

)|N (σ)|−µσ ,

(B.4)
where |N (σ)| = 60 is the size of the neighbourhood of σ. When writing this equation we
are making a number of simplifications. On one hand we are considering that all sequences
in N (σ) were originally absent in the sample. Moreover we are neglecting the probability
that reads of these sequences might be generated from the sequencing of other sequences
different from σ (e.g. other peaks). All of these effects will bias our estimate, but the bias is
always in the same direction, leading us to overestimate ϵ. For this reason the result of the
inference represents a reliable upper bound.

To reduce the bias we can remove from the total number of trials in the binomial the num
ber of sequences that we are confident to be really present in the original sample. As a simple
correction, we substitute the term |N (σ)| = 60 in eq. (B.4) with |{σ′ ∈ N (σ) s.t. n(σ′) ≤
10}|, i.e. the number of sequences in the neighbourhood with no more than 10 counts. That
is to say we consider all sequences with more than 10 counts to be really present in the orig
inal sample. We perform the inference both with and without this correction (cf. fig. 58D).
At this point we can write the total loglikelihood of our data as a function of the error prob
ability ϵ as:

logL(data|ϵ) =
∑

σ∈peaks
logP (µσ|nσ, ϵ) ∝ logL(ϵ|data), (B.5)

where the inversion was operated using Bayes theorem with an uniform prior for ϵ. In
fig. 58D we display the behavior of the loglikelihood as a function of ϵ for the two cases,
with and without correction. Numerical maximization of these functions yields values of
ϵ∗ ∼ 10−3 as an upper bound for the error probability. To obtain a confidence interval on
these bounds one can perform a Gaussian fit on the likelihood (i.e. a quadratic fit of the log
likelihood) around its maximum, and use the variance of the inferred Gaussian to obtain
a confidence interval for the inferred value. In this case we obtain a standard deviation of
the order of 4 × 10−5. In conclusion, we are confident that the singlesite sequencing error
probability in our dataset is smaller than 10−3.

B.2.1 Estimation of number of sequencing error artifacts in the dataset

We can make use of the previously derived upper bound for ϵ to provide an upper bound
for the number of unique sequences in our dataset that could be generated by sequencing
error.

Since we expect double errors to be sufficiently rare in our dataset (for ϵ∗ ∼ 10−3 the
probability of having more than 1 error is ∼ 2 × 10−4), we can consider that in order to be
an error, all the reads of a sequence σ in our dataset must be generated by sequences in its
neighbourhood N (σ), with the probability of misreading being equal to p(ϵ) (see Eq. (B.1)).
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Figure 58. Inference of an upper bound for the sequencing error probability in our sample,
using sequences from the left loop in the 8th round. Panel A: example of sequence space
around the most abundant sequence in the dataset. The main sequence is represented as
a dot in the center, and the full DNA sequence and copy number (c.n.) are reported. Dots
around it represent sequences at hamming distance 1, with color encoding their copy number.
Sequences that were never detected in the sample are indicated with red crosses. For these
sequences we report the difference from the main sequence as a triplet (original nucleotide,
position, substituted nucleotide). Notice how some of the neighboring sequences have high
copy number, indicating probable fitness effects. Most of the nondetected sequences are as
sociated with removal of a guanine, which might decrease binding affinity. Panel B: number
of sequences with copynumber greater than a given threshold. For our analysis we select
only sequences with c.n. ≥ 1000 (21 such sequences in the dataset). These sequences are
referred to as “peaks” in the analysis. Panel C: relative Hamming distance between peak
sequences. Highcopynumber sequences tend to cluster together. This can cause a less pre
cise estimation of the inferred sequencing error upper bound, since the neighbourhood of a
peak can be populated by other highfitness sequences. To correct for this we introduce a cor
rection that removes sequences with c.n. > 10 from the expression of the likelihood. Panel
D: loglikelihood of the singlesite sequencing error probability ϵ. The inference was per
formed in two ways: either using the standard approach (blue) or introducing the correction
for fitness effects (orange). In each case we mark the inferred value ϵ∗ with vertical dotted
lines. The thin shaded area represent the confidence interval, that was derived through a
Gaussian fit of the loglikelihood in proximity of its maximum.
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For each sequence we define:
Nσ =

∑
σ′∈N (σ)

nσ′ . (B.6)

This is the total number of sequences in the neighborhood of σ. Because of sequencing error
the real number might be slightly higher, and as done for nσ one can introduce the correction
Ñσ = Nσ/(1− ϵ)L. We can take as an upper bound for the probability of σ to be an artifact
of sequencing error, the probability that by reading Ñσ sequences in the neighbourhood of
σ, we read σ a number of time equal or greater than the observed copynumber nσ:

P (nerr ≥ nσ) = π(σ, ϵ) =
∞∑

k=nσ

Binom[Nσ, p(ϵ)](k) (B.7)

We numerically evaluate this probability for every sequence σ. The value ofNσ is efficiently
computed by generating all possible single mutations σ′ ∈ N (σ), and quickly recovering
their copynumber using a hash table.

In Fig. 59 we report the distribution of π(σ, ϵ∗ = 103) for all of the sequences in our
dataset. For the great majority of the sequences this probability is very low. From the
procedure we employ it follows that sequences with the highest probability of being errors
are ones that have very low nσ and with a highly populated neighbourhood (high Nσ). By
treating the reality of each unique sequence as a Bernoulli random variable, the mean and
variance for the total number of unique sequences that we expect to be an artifact of sequenc
ing error can be expressed as:

E[Nerr] =
∑
σ

π(σ, ϵ∗) V ar[Nerr] =
∑
σ

π(σ, ϵ∗)(1− π(σ, ϵ∗)) (B.8)

This gives an estimate Nerr ∼ 941 ± 28. Since our dataset is composed of roughly 2 × 105

unique sequences this upper bound represents only 0.5% of the total dataset, and it is not
expect to meaningfully impact the training of our models.
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Figure 59. Distribution of inferred singlesequence error probabilities. For each sequence in
the considered dataset (round 8, left loop) we infer the probability of being an artifact of se
quencing error, using the approach described inMethods B.2. In the inference the singlesite
error probability was set equal to the upper bound ϵ∗ = 10−3. The vast majority of sequence
have a zero or low probability of being sequencing error artifacts. From this distribution one
can evaluate the mean and standard deviation of the total number of artifacts. This gives an
upper bound of Nerr = 941± 28, which corresponds to a 0.5% of the total number of unique
sequences in the dataset considered.
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B.3 Details of RBMs’ training

We trained several RBMs which have been used for the analysis presented in this
manuscript. For the training of each RBM, we used 90% of the dataset as training set and
10% of the dataset as validation set to check that no overfitting is observed. For RBMs
trained using information on counts, the training dataset is obtained by sampling from
the dataset of unique sequences many sequences (below the exact number for each RBM
is given), with a probability proportional to each sequence’s count (this gives the same re
sults as long as the size of the resampled dataset is large enough, and allows to avoid having
too large dataset which considerably slow down the RBM training). The training set was di
vided in minibatches and for each epoch each minibatch was used to perform an update of
the parameters, using the persistent contrastive divergence algorithm with few (below the
exact numbers are given) number of MonteCarlo steps for each update of the paramters. In
all cases the training stopped after 20000 updates of the RBM parameters. Finally, we used
a L2

1 regularization of the form given in Eq. (4.6) to increase sparsity in the weights, which
in turn improves the interpretability of the contribution of each hidden unit to a sequence’s
loglikelihood. Below we give the regularization parameter λ used for each RBM trained
(see Eq. (4.6)).

For the full range of explored hyperparameters (size of minibatches, number of Monte
Carlo steps, regularization strength), we never saw any sign of relevant overfitting, and we
motivated this with the very large datasets that are available for training the models.

The code used to train theRBMs can be obtained fromhttps://github.com/jertubiana/PGM.
We now give more details about the training of each RBM model used in this manuscript.
To distinguish RBMs trained with sequences observed in different rounds, we will append
the round number to the model name. In particular, we used the following RBMs in this
manuscript:

• RBMDC6 (Fig. 20, Suppl. Figs. 72, 80), trained on the double aptamers (40 nu
cleotides) obtained from the SELEX 6th round. The training set is built by resampling
736436 sequences from the dataset of unique doubleloop sequences observed in round
6, using their number of counts as weight for the sampling. The parameters are: 40
visible units, 90 hidden units, λ = 0.01, 10 MonteCarlo steps for each update of the
parameters, minibatches of size 500.

• RBMDC8 (Figs. 21, 22, Suppl. Figs. 71, 73), trained on the double aptamers (40 nu
cleotides) obtained from the SELEX 8th round. The training set is built by resampling
719413 sequences from the dataset of unique doubleloop sequences observed in round
8, using their number of counts as weight for the sampling. The parameters are: 40
visible units, 90 hidden units, λ = 0.01, 10 MonteCarlo steps for each update of the
parameters, minibatches of size 500.

• RBMSC8 (Figs. 21, 22, 26, Table 4, Suppl. Figs. 69, 70, 76, 78, 79), trained on the
single aptamers (20 nucleotides) obtained from the SELEX 8th round. The training
set is built by resampling 725431 sequences from the dataset of unique singleloop
left or right sequences observed in round 8, using their number of counts as weight
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for the sampling. The parameters are: 20 visible units, 80 hidden units, λ = 0.01, 2
montecarlo steps for each update of the parameters, minibatches of size 1000.

• RBMSU8 (Figs. 23, 26, Table 4, Suppl. Figs. 67, 73, 74, 76, 78), trained on the single ap
tamers (20 nucleotides) obtained from the SELEX 8th round, merging sequences from
the left and right loops (unique singleloop sequences: 382094; with counts: 1450862).
Multiple copies of the same aptamer are neglected. The parameters are: 20 visible
units, 70 hidden units, λ = 0.01, 4 MonteCarlo steps for each update of the parame
ters, minibatches of size 500.

• RBMSC5 (Suppl. Figs. 77), trained on the single aptamers (20 nucleotides) obtained
from the SELEX5th round. The training set is built by resampling 1375403 sequences
from the dataset of unique singleloop left or right sequences observed in round 5,
using their number of counts as weight for the sampling. The parameters are: 20
visible units, 70 hidden units, λ = 0.01, 8 montecarlo steps for each update of the
parameters, minibatches of size 1500.

• RBMSC6 (Suppl. Figs. 77), trained on the single aptamers (20 nucleotides) obtained
from the SELEX 6th round. The training set is built by resampling 598696 sequences
from the dataset of unique singleloop left or right sequences observed in round 6,
using their number of counts as weight for the sampling. The parameters are: 20
visible units, 80 hidden units, λ = 0.01, 8 montecarlo steps for each update of the
parameters, minibatches of size 600.

• RBMSC7 (Suppl. Figs. 77), trained on the single aptamers (20 nucleotides) obtained
from the SELEX 7th round. The training set is built by resampling 419934 sequences
from the dataset of unique singleloop left or right sequences observed in round 7,
using their number of counts as weight for the sampling. The parameters are: 20
visible units, 70 hidden units, λ = 0.01, 8 montecarlo steps for each update of the
parameters, minibatches of size 500.

• RBMSU6 (Suppl. Fig. 80), trained on the single aptamers (20 nucleotides) obtained
from the SELEX 6th round, merging sequences from the left and right loops (unique
singleloop sequences: 598696; with counts: 1472872). Multiple copies of the same
aptamer are neglected. The parameters are: 20 visible units, 70 hidden units, λ = 0.01,
4 MonteCarlo steps for each update of the parameters, minibatches of size 600.

• RBMLC8, RBMRC8 (Suppl. Fig. 69), trained on the single aptamers (20 nucleotides)
obtained from the SELEX 8th round. The training sets of RBMLC8 (RBMRC8) is
built by resampling 177014 (227789) sequences from the dataset of unique leftloop
(rightloop) sequences observed in round 8, using their number of counts as weight for
the sampling. The parameters of both models are: 20 visible units, 70 hidden units,
λ = 0.01, 4 MonteCarlo steps for each update of the parameters, minibatches of size
500.

• RBMNPU8 (Suppl. Fig. 70), trained on the single aptamers (20 nucleotides) obtained
from the SELEX 8th round, merging sequences from the left and right loops, after
excluding parasite sequences. Parasite sequences are obtained here as singleloop se
quences with loglikelihood computed by RBMSU8 lower than 24.8, with the partner
loop having loglikelihood computed by RBMSU8 larger than 24.8 (procedure result
ing in 276682 unique singleloop nonparasite sequences). Multiple copies of the same
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aptamer are neglected. The parameters are: 20 visible units, 70 hidden units, λ = 0.01,
4 MonteCarlo steps for each update of the parameters, minibatches of size 500.

• RBMNPC8 (Suppl. Fig. 70), trained on the single aptamers (20 nucleotides) obtained
from the SELEX 8th round, merging sequences from the left and right loops, after
excluding parasite sequences. Parasite sequences are obtained here as singleloop se
quences with loglikelihood computed by RBMSC8 lower than 26.6, with the partner
loop having loglikelihood computed by RBMSC8 larger than 26.6 (procedure result
ing in 274250 unique singleloop nonparasite sequences). The training dataset is built
by sampling 246825 nonparasite sequences, using their number of counts as weight
for the sampling. The parameters are: 20 visible units, 70 hidden units, λ = 0.01, 4
MonteCarlo steps for each update of the parameters, minibatches of size 500.

All the parameters for the training which are not given here are the default parame
ters as defined in the code. The trained RBMs are provided in the Github repository
(https://github.com/adigioacchino/RBMsForAptamers), together with a jupyter notebook
that can be used to retrain them.

As a final remark, we checked that the results obtained here depend very little on the
precise values of the hyperparameters used here (see Suppl. Fig. 75). The only notable
exception being the usage of counts to weight multiple occurrences of the same aptamer in
the dataset. We decided to exclude multiple occurrences from the training to regularize the
RBM, as discussed in in details in Suppl. Sec. 79.
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B.4 DNN and Traditional Machine Learning

B.4.1 Dataset preparation

Starting with the raw SELEX data from the 8th round of selection of our previous study,
we have both 20nt aptamer sequences in each arm of the DNA scaffold and a copy number,
representing the number of times that sequence was observed during sequencing. Any se
quence notmatching the 40nt length was assumed to have a reading error and excluded from
the dataset. Independent counts for each arm of the sequence were generated by counting
their occurrence throughout the dataset. Using their individual counts, each 20nt sequence
was categorized as either as a “good“ (copy number> 10) or “bad” (copy number< 10) binder.
Note that this approach is distinct from our training of the RBMs, where we considered all
sequences in the training sample and used counts for weighting the sequences.

Our analysis of the dataset found a subset of bad binder sequences far in sequence space
from any other observed sequence in the dataset that were paired with good binder se
quences. We concluded that these sequences were most likely carried through the selection
process by their good binder and subsequently excluded these sequences from our training
set.

Three datasets were generated from the remaining sequences: sequences from the left
loop (L), sequences from the right loop (R), and sequences from both loops (B). Each dataset
consists of the entire set of good binders from the appropriate loop and 5 randomly sampled
bad binders per good binder. Training sets (80% of good binders, ∼ 35k in total sequences
for L and R, ∼ 70k for B) and validation sets (20% of good binders, ∼ 12k in total sequences
for L and R, ∼ 25k for B) were split from our dataset. As further verification of our DNN
and traditional ML models we used the experimental results from both the RBMgenerated
sequences as well as the DCAmodel generated sequences to assess our models accuracy. All
sequences were onehot encoded prior to training, validation, or prediction.

As using only sequences from the final round of the SELEX procedure introduces a gen
eral bias of all sequences interacting with thrombin, three more datasets were created (GL,
GR, and GB) with good binders selected as previously done but bad binders were randomly
sampled from a set of random sequences outside the SELEX dataset’s sequence space. These
datasets had the same amount of sequences as those mentioned previously (L, R, B). We as
sume that if there is no bias in the initial random library, most of the possible aptamer
sequences of length 20 were initially present, and hence a randomly generated sequence
which is not encountered in the SELEX dataset is most likely not going to be able to bind to
thrombin.

B.4.2 Model Selection

For the classification task we used 5 different deep learning models: 2 versions of a Vari
ational Auto Encoder [265], 2 versions of a Resnet [266] and a Siamese Network Model [267]
outlined in Suppl. Table 24. A schematic description of the DNN model specifications used
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in this work is provided in Table 24. Additionally we used 3 classic Machine Learning meth
ods: a decision tree, a random forest and a gradient boosted tree classifier to also classify
the sequences as binders or non binders.

B.4.3 DNN Training Specifics

All 5 models were written as pytorch lightning modules and hyperparameter optimiza
tion was done using the raytune library. Integration of each pytorch module with raytune
enabled simultaneous distributed hyperparameter optimization. All models were trained
for either 30 or 50 epochs. No significant performance increase or decrease was observed
between models trained for 30 vs 50 epochs.

Hyperparameter optimization was performed using the raytune library. For resnet, we
optimized the batch size, learning rate (lr) and dropout (dr) prior to the dense layer and soft
max. For variational AutoEncoders, we optimized the batch size, learning rate, dropout
and z_dim (embedding dimension). For the siamese network, we optimized the learning
rate, batch size, and distance cutoff (Euclidean distance cutoff, being less means a match
while being greater indicates a nonmatch). As a grid search, the AsyncHyperBandScheduler
(AHSA) was given 10 trials with the goal to find the model with best accuracy on the valida
tion set. Bayesian Optimization was performed on the same hyperparameters as the ASHA,
save the integer valued batch size. Bayesian optimization was given a different directive,
to minimize the mean loss (training+validation). Populationbased training was only per
formed on the siamese network with the goal of maximizing the accuracy on the validation
set.

B.4.4 DNN Results

To compare performance of our DNN models, we assessed the accuracy of each model
to predict a binder/nonbinder label for each experimentally validated dataset: the RBM
generated dataset and the DCA generated dataset. We also calculated the F1 score metric
by comparison of eachmodel’s predictionwith the ground truth. The F1 score is the harmonic
mean of precision, the number of true positives divided by the sum of true positives and false
positives, and recall, the number of true positives divided by the sum of true positives and
false negatives, in a binary classification task. A F1 score was calculated for each dataset
and a mean F1 score was determined by weighting each individual F1 score by the number
of total sequences in the dataset. Scores for the DNN models are provided in Table 25.

DNN (L, R, B) models (i.e. models trained on L, R or B dataset) failed to generalize to
our experimental datasets. In every case, prediction of binding ability on the RBM and DCA
datasets results in a significant number of false positives and false negatives. Bayes hy
perparameter optimized models were directed to either minimize the loss on the validation
dataset ormaximize the accuracy on the validation dataset whereas AsyncHyperBandSched
uler (AHSA) hyperparmater optimized models were directed to only maximize the accuracy
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Model Description
Long Resnet A 152 layer Resnet followed by a dropout layer, a 512 input to 2 output

linear layer followed by a softmax layer. Residual networks guaran
tee performance of subsequent layers in the network by mapping to a
residual function F(x) = H(x)x. This network architecture has been
shown to avoid vanishing gradients and accuracy degradation present
in traditional network architecture learning [266]. During training,
this model used label smoothed [268] (smoothing=0.01) cross entropy
as its loss function.

Short Resnet An 18 layer Resnet followed by a dropout layer, a 512 input to 512 out
put linear layer, a DReLU activation function, a 512 input to 2 output
linear layer, and finally a softmax layer. During training, this model
used label smoothed (smoothing=0.01) cross entropy as its loss func
tion.

Long Variational
AutoEncoder

A 2d convolution with ReLU activation function followed by three en
coder blocks encoded the embedding. Encoder blocks consisted of a
spectral normalized 2d convolution layer [269], followed by 2d batch
normalization and a leaky ReLU activation function. The decoder con
sisted of 4 decoder blocks made up of a transposed 2d convolution fol
lowed by 2d batch normalization and a leaky ReLU activation function.
Self attention layers were added in between both encoder and decoder
blocks [270]. Binary classification of binder vs. nonbinder was per
formed on each embedding by two fully connected layers (sizes 128 and
64, consisting of: a dropout layer, linear layer, 1d batch norm, and a
leaky ReLU) followed by a dropout layer, linear layer (size 2), and a
final softmax layer. Similarly mu and logvar were generated by two
fully connected layers and a final layer (sizes 128, 112, 100). Varia
tional AutoEncoders are generative models designed to sample across
a continuous latent space[265]. During training this model used label
smoothed (smoothing=0.01) cross entropy on the predictions and sym
metric MSE loss on the decoder’s reconstruction. The loss functions
were mixed for the total training loss.

Short Variational
AutoEncoder

A 152 layer Resnet encoder and 2 decoder blocks (separated by an at
tention layer). A 512 input to 2 output linear layer was trained on each
embedding with a log softmax layer on the end to predict a binding vs.
nonbinding result. During training this model used label smoothed
(smoothing=0.01) cross entropy on the predictions and symmetric MSE
loss on the decoder’s reconstruction. The loss functions were mixed for
the total training loss.

Siamese A Siamese network trained on pairs of sequences to discriminate be
tween binderbinder pairs and nonbinderbinder pairs. The Siamese
network used here consisted of a single resnet made up of 4 layers to
a 512 input to 256 output linear layer, a sigmoid activation function,
and a 256 input to 2 output linear layer following. Each iteration was
run individually on pairs of sequences [267]. The Euclidean distance
between the resulting embeddings is used to assign our binary classi
fication value. During training this model used contrastive loss as its
loss function.

Table 24. Descriptions of all DNN models used in this work.
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on the validation dataset. The most accurate (L, R, B) models on the RBM generated dataset
(Bayes Resnet L and Bayes Resnet L and R) were directed to minimize the loss for hyperpa
rameter optimization and achieved 74.1% (20/27) accuracy on the RBMexperimental dataset
with poor performance on the DCA generated dataset at 31.3% (5/16) accuracy. A distinct
correlation between optimization directive and performance metrics was observed. Models
that were optimized to minimize the loss of the validation dataset performed worse in vali
dation set accuracy, better in RBM generated dataset binder prediction, and worse in DCA
generated dataset binder prediction to a significant degree than those optimized tomaximize
the validation set accuracy. From the confusion matrices of loss minimized models on the
RBM generated dataset (Fig. 61), we see these models are completely unable to distinguish
between nonbinders and binders in both the RBM generated and DCA generated datasets.

DNN (L, R, B) models trained to maximize the accuracy on the validation set performed
poorly overall. The best performing of them (ASHA VAE short R) managed the highest
mean F1 score, excellent accuracy on the DCA generated dataset at 87.5% (14/16) accuracy
but poor performance on the RBM generated dataset with 48.1% (13/27) accuracy. The poor
performance of all DNN (L, R, B) models indicates the sequencing info of the last round of
selection is not sufficient for DNN models to classify sequences on their ability to bind a
target.

DNN (GL, GR, GB) models were trained as a more naive classifier using good binders
and randomly generated bad binders for both training and validation. As the random bad
binders were guaranteed be to outside the sequence space of the entire 8th round of selection,
we would expect these models to overpredict binders in our datasets which contain binders
and nonbinders separated by small distances in sequence space. Indeed, all (GL, GR, GB)
models have higher accuracy values than their (L, R, B) counterparts, but consistently have
little to none false negatives and a large number of false positives on the sequences gener
ated using RBM (Fig. 62). Additionally the higher accuracy scores on the RBM generated
dataset and lower accuracy scores on the DCA generated dataset is due to the difference in
population group membership (binder vs. nonbinder) of the two datasets. Their ability to
predict thrombin binding ability from sequences close in sequence space is subpar due to
their overfitting to the aptamer sequence space.

The performance of all DNN models on predicting thrombin binding ability from se
quence alone was poor. DNN (L, R, B) models tend to generate a notable amount of false
positives and false negatives, while (GL, GR, GB) models generate false positives almost
exclusively on the RBM generated dataset. Overall, using the last round of selection for our
dataset exclusively (L, R, B) or for just the good binders (GL, GR, GB) did not allow accurate
prediction of thrombin binding ability from any of the DNN models.

B.4.5 Traditional ML Training Specifics

Three traditional models: a single tree, a random forest, and a gradientboosted forest
were used to classify the experimental dataset as binders or nonbinders. The training and
validation datasets used were the same as those used for the deep learning models. The
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scikitlearn python library implementations of each of the three models were used in this
work.

B.4.6 Traditional ML Results

Our traditional ML techniques’ performance was measured by the same metrics as for
our DNN models, namely the accuracy on the RBM generated sequences, the accuracy on
the DCA generated sequences, and the F1 mean of both datasets shown in Table 26.

Traditional (L, R, B) models very rarely predicted a nonbinder correctly in our RBM gen
erated dataset, instead predicting almost every sequence to be a binder. Their validation
set accuracy never crossed 30%. Similar to our DNN models, the accuracy on the validation
sets of the (GL, GR, GB) models was significantly better than (L, R, B) models due to the dif
ference in sequence space of the bad binders. Traditional (GL, GR, GB) models suffered from
the same issue of an overabundance of false positives including the single tree models which
had the best performance of any machine learning model besides the RBM. The GR single
tree achieved an accuracy of 85.2% (23/27) on the RBM generated dataset and an accuracy
of 81.3% on the DCA generated dataset. Despite the high accuracy, these models suffer from
the same overfitting that the DNN (GL, GR, GB) models where binders are overpredicted
significantly. The small difference in single tree models GR and GB illustrate how decreas
ing the amount of false positives by one in the RBM generated set has the effect of predicting
almost 20% less binders in the DCA generated dataset. This ability to overestimate binders
is especially apparent in the confusion matrices of the random forest (GL, GR, GB) models
Fig. 63. The random forest on average performed worse than the single tree, performing as
well as most DNN models. This is in stark contrast to our gradient boosted classification
tree which performed poorly on every dataset no matter the hyperparameters tried.

B.4.7 Additional ML Results

The main results for the DNNmodels and traditional ML models referenced in the main
text are shown in Table 25 and Table 26 respectively. Fig. 60 shows the AUC, several binary
performance metrics, and the performance diagram for the VAE Long ASHA model in (ac)
respectively, for the six training data sets. Additional ML results in the form of confusion
matrices of each model’s performance on the RBMgenerated sequence dataset are included
in Figs. 62, 61 and 63.
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Model Validation Acc. RBM Acc. DCA Acc. F1 mean
AHSA Resnet Long

L 0.792 0.333 0.750 0.428
R 0.711 0.296 0.562 0.469
B 0.751 0.444 0.625 0.578
GL 0.999 0.778 0.375 0.718
GR 0.999 0.889 0.562 0.790
GB 0.998 0.778 0.438 0.729

Bayes Resnet Long
L* 0.304 0.741 0.312 0.697
R* 0.281 0.704 0.312 0.683
B* 0.280 0.741 0.312 0.697

AHSA Resnet Short
L 0.758 0.333 0.688 0.463
R 0.789 0.407 0.750 0.586
B 0.767 0.407 0.875 0.617
GL 0.998 0.778 0.438 0.729
GR 0.999 0.778 0.438 0.729
GB 0.999 0.852 0.562 0.777

Bayes Resnet Short
L* 0.384 0.741 0.312 0.697
R 0.796 0.444 0.688 0.528
B 0.758 0.333 0.625 0.470

AHSA VAE Long
L 0.828 0.333 0.812 0.416
R 0.837 0.333 0.625 0.492
B 0.819 0.333 0.875 0.510
GL 1.000 0.815 0.562 0.766
GR 1.000 0.778 0.500 0.741
GB 1.000 0.778 0.562 0.754

Bayes VAE Long
L 0.804 0.307 0.688 0.401
R 0.838 0.407 0.688 0.505
B 0.829 0.296 0.750 0.450

AHSA VAE Short
L 0.757 0.296 0.688 0.365
R 0.789 0.481 0.875 0.623
B 0.776 0.407 0.812 0.574
GL 1.000 0.741 0.562 0.739
GR 1.000 0.889 0.688 0.822
GB 1.000 0.889 0.562 0.790

Bayes VAE Short
L 0.804 0.333 0.562 0.360
R 0.803 0.370 0.812 0.542
B 0.801 0.407 0.875 0.581

PBT Siamese
L 0.687 0.458 0.662 0.300
R 0.598 0.491 0.600 0.391
B 0.643 0.467 0.508 0.314

Table 25. Accuracy Scores for all models trained on the Left Arm (L), Right Arm (R) Both
Arms (B), Generated Left Arm (GL), Generated Right Arm (GR) or Generated Both Arms
(GB) datasets. Models with a star(*) were optimized to minimize the validation set loss.
Validation sets were taken as 10% of the training data, while the experimental datasets
consisted of the 27 RBM generated sequences and the 16 DCA generated sequences.
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Figure 60. AUC (panel (a)), performance metrics (panel (b)), performance diagram (panel
(c)) showing CSI for the VAE Long ASHA model.
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Model Validation Acc. RBM Acc. DCA Acc. F1 Mean
Single Tree

L 0.116 0.778 0.313 0.708
R 0.122 0.697 0.313 0.741
B 0.114 0.778 0.375 0.718
GL 0.999 0.704 0.813 0.764
GR 0.999 0.852 0.813 0.832
GB 0.885 0.889 0.625 0.781

Random Forest
L 0.242 0.630 0.438 0.665
R 0.270 0.630 0.313 0.651
B 0.294 0.630 0.313 0.651
GL 0.950 0.741 0.375 0.684
GR 0.942 0.778 0.375 0.695
GB 0.939 0.778 0.438 0.706

Gradient Boosted Forest
L 0.098 0.741 0.313 0.697
R 0.097 0.741 0.313 0.697
B 0.099 0.741 0.313 0.697
GL 0.091 0.741 0.313 0.697
GR 0.091 0.741 0.313 0.697
GB 0.167 0.741 0.313 0.697

Table 26. Accuracy Scores for single tree, random forest and gradient boosted forest trained
on the Left (L), Right (R), Both (B), Generated Left Arm (GL), Generated Right Arm (GR)
or Generated Both Arms (GB) datasets. Validation sets were taken as 20% of the training
data, while the experimental dataset consisted of the 27 RBM generated sequences and the
16 DCA generated sequences.

218



L R B

(A)

(B)

(C)

(D)

(E)

Figure 61. Confusion Matrices of trained lossminimized or accuracy maximized bayesian
optimized hyperparameters on RBM generated dataset, (A) Long Resnet, (B) Short Resnet,
(C) Short VAE, (D) Long VAE, and Population based training of Siamese Network (E). Pre
dicted Label (0) nonbinder or (1) binder is shown on the xaxis with the true label being the
yaxis.
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Figure 62. Confusion Matrices of accuracy maximized ASHA scheduler for hyperparameter
optimization using deep learning models: Long Resnet (A), Short Resnet(B), Long VAE (C)
and Short VAE (D) on the RBM generated dataset. Predicted Label (0) nonbinder or (1)
binder is shown on the xaxis with the true label being the yaxis.

L R B GL GR GB
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Figure 63. ConfusionMatrices of traditional machine learningmodels: Single Tree, Random
Forest and Gradient Boosted Forest on the RBM generated dataset. Predicted Label (0)
nonbinder or (1) binder is shown on the xaxis with the true label being the yaxis.
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B.5 Direct Coupling Analysis

Direct Coupling Analysis (DCA) is a method of analysis originally used for contact pre
diction in proteins from sequence alignments of homologues. The basis of this method is
that the homologue alignments have the same general native state to carry out their func
tion. Despite their differences in sequence, all homologues will have similar interdomain
contacts. To maintain these contacts, detrimental single site mutations must be offset by
compensatorymutations in other parts of the sequence. DCA is amaximumentropymethod,
where the model parameters are fixed so that the one and twopoint correlations along the
sequences are fixed to those observed in the training homologuesequence aligment. The
sequence probability is given in Eq. (B.9) and is dependent on the learned single position
parameters (h) and pairwise interactions (Jij) of the multiple sequence alignment.

P (σ) =
1

Z
exp

 L∑
i=1

hi(σi) +
∑

1≤i<j≤L

Jij(σi, σj)

. (B.9)

Similar to the protein case, we applied DCA on our aligned DNA aptamer dataset to approx
imate the aptamer sequence space with the learned single site and pairwise correlations.
Sequences unobserved in the original dataset were generated from the learned parameters
and tested experimentally.

B.5.1 DCA Training

The training set used for DCA analysis was a subset (90%) of sequences with copy num
ber > 1 from the 8th round of selection. Rather than separate the arms of each nanotile,
the DCA model was trained with on 40 nt long sequences containing both arms. The nor
malization constant Z is difficult to calculate, so we use psuedolikelihood maximzation DCA
(plmDCA) [271] to obtain local fields (hi) and pairwise coupling (Jij) for the model, given the
aligned aptamer dataset. Monte Carlo sampling was applied across a range of temperatures
and mutation steps to sample from the learned parameters. In total 2*109 sequences were
sampled, and from those 16 sequences shown in Table 27 were selected for experimental
validation of the model.

B.5.2 DCA Sequence Selection

From the generated sequences, we wanted to find not only novel binders but also verify
the learned model parameters. Sequences are scored according to the sum of their single
position and pairwise parameters. A sequence’s higher score indicates it is more likely to
bind while a lower score indicates it is less to bind. Predicted binders (sequences d1, d2,
d3, d4, d5, d11, d12, d13) were selected from the MCgenerated sequences by having the
highest score while being at least 3 mutations away from anything observed in the entirety
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Label Sequence Score Binder Prediction Experimental result
d1 AGGGTAGGTGTGGGGTATGC 86.92 B NB
d2 AGGGTAGATGTGTAGGATGC 87.86 B NB
d3 AGGGATGATGGTTGGTAGGC 84.76 B NB
d4 AGGGATGATGTGGATTAGGC 86.03 B NB
d5 AGGGTGGGAGCGGGGGACGC 75.01 B NB
d6 CGGGTAGGTGTGGATTATGC 77.59 B NB
d7 GTAGGACGGGTAGGGCGGTC 67.57 NB NB
d8 GGGGGTTGGGCGGGATGGGC 72.15 B NB
d9 GCGGGTTGGGCAGGATCAGC 44.58 NB NB
d10 AGGGATGATGTGTGGTAGGC N/A Cntrl Cntrl
d11 GTAGGATGGGTGGGGTGGGA 86.46 B B
d12 GTAGGATGGGTAGGGTGGTA 84.76 B B
d13 CTAGGTTGGGTAGGGTGGTG 75.01 B B
d14 CTAGCATGGGTAGGGTGGTG 77.59 B B
d15 GTAGCATGGGTAGGGTGGTC 65.57 NB NB
d16 TTGGGTGGTGTAGGTTGGCG 72.15 B B
d17 TTGGGTGGTGCAGGTTCGCG 44.58 NB NB
d18 CTAGGATGGGTAGGGTGGTG N/A Cntrl Cntrl

Table 27. Result of thrombin binding assays with all DCAgenerated sequences and se
quences of exosite I control d18 and exosite II control d10. B indicates a binder while NB
indicates a nonbinder.

of the 8th round of sequencing data. Two predicted nonbinders (d6, d14) were selected for
having the lowest score within 2 mutations of the dataset. Rationally designed binders (d7,
d8, d9, d15, d16, d17) were generated by randomly selecting a good and bad binder from
the original dataset and altering them to either have the highest or lowest score possible
by exhaustively calculating the entire sequence space within 3 mutations and finding the
variant with the highest or lowest score. Model parameters used to generate all sequences
are shown in Fig. 64.

B.5.3 DCA Gel Shift Assay

Sequences generated using the plmDCAmodel were tested experimentally for their abil
ity to bind Thrombin. Binding sequences formed a clear protein / stemloop band. Sequences
were tested the sameway as done for the RBMgenerated sequences in themain text. Fig. 65
shows the experimental results of a gel shift assay for the plmDCA generated sequences.

222



Figure 64. Single position (H) and pairwise correlations (Jij) learned by the plmDCA model
and used in both sampling and sequence selection.

Figure 65. Thrombin binding assay of DCA generated sequences. Lane 1 has the stem loop
alone, whereas lane 2 has the same stem loop exposed to thrombin. Binding sequences are
indicated by a high visible band in lane 2.
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B.5.4 DCA Binding Site Assay

Thrombin binding sequences generated via plmDCA (d11, d12, d13, d14, d16) were tested
against known binders 5’ 6FAM labeled ThA and ThD to determine their binding site as
described in the main text. Table 28 contains the results and Fig. 65 shows the gel results.

Label Sequence Binding Site
d11 GTAGGATGGGTGGGGTGGGA exosite I
d12 GTAGGATGGGTAGGGTGGTA exosite I
d13 CTAGGTTGGGTAGGGTGGTG exosite I
d14 CTAGCATGGGTAGGGTGGTG exosite I
d16 TTGGGTGGTGTAGGTTGGCG exosite I

Table 28. Exosite prediction of DCA sequences that bound thrombin from our gel shift as
says.

Figure 66. Binding site assay using the same method discussed in the main text. Lane 1
is the result of the preincubated strand exposed to exositeII binder ThA and lane 2 is the
preincubated strand exposed to exositeI binder ThD.

B.5.5 DCA Results

The weak pairwise correlations seen in the top right corner of the pairwise correlation
matrix (Jij) confirm the lack of correlation between the two arms of each nanotile. The
plmDCA method did see limited success in generating novel binders (d11, d12, d13, d16)
from the right loop sequences but no success in generating binding left loop sequences (d1,
d2, d3, d4, d5) (Fig. 66).
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We tried also to train a DCA using the same algorithm we used for the RBM models to
obtain the model parameters, i.e. the persistent contrastive divergence algorithm. Moreover,
building on the results obtained with our RBM models, we decided to use all the available
sequences to train the BMmodel, neglecting the counts. Then we compared, for the obtained
DCAmodel trained with singleloop sequences at round 8, the loglikelihood assigned by the
DCA with the one assigned by an RBM trained on the same data. The resulting plot is
given in Suppl. Fig. 67, and this test gave a very good linear correlation between the log
likleihoods of the two models (slope of the linear fit: 1.09; R2 score: 0.97), suggesting that
the DCA model trained with persistent contrastive divergence has superior generalization
capabilities with respect to plmDCA models. This result is compatible with what observed
in [272].
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Figure 67. Loglikelihood of all unique singleloop aptamers observed at round 6, as com
puted by a DCA and an RBM model trained through persistent contrastive divergence. The
corresponding linear fit resulted in a slope of 1.09 and an R2 of 0.97.
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B.6 Additional supplementary figures and tables
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Figure 68. Evolution of counts of the 10 left (panel a) and right (panel b) aptamers with
largest number of counts at round 8. Counts have been rescaled by a factor so that the total
number of counts in each round is constant.
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Figure 69. Loglikelihood computed with the RBMSC model and with the RBMLC model
(trained on left singleloop sequences at round 8, see B.3) in panel a or RBMRC model
(trained on right singleloop sequences at round 8, see B.3) in panel b for the singleloop
sequences observed at round 8. The slope and the R2 values of the linear fit are respectively
0.96 and 0.98 for panel a, and 1.05 and 0.97 for panel b. Panel c: loglikelihood computed
with the RBMDC model for the doubleloop sequences observed at round 5, compared with
the sum of the loglikelihood obtained by using RBMLC to score the left loop and RBMRC
to score the right loop. The slope and the R2 value of the linear fit are, respectively, 0.99
and 0.99.
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Figure 70. Left side: histograms of loglikelihoods of left (blue) and right (orange) loops
computed with RBMSU (panel a) or RBMSC (panel c) for sequences observed in round 8
(unique in panel a, with their counts in panel b), together with that of 5 ·105 random uniform
sequences (light green); the black line is the 99quantile of the light green histogram, and
parasite sequences are defined as those which have lower loglikelihood than the black line,
while at the same time the other loop of the 40nt aptamer has loglikelihood larger than the
threshold. Right side: loglikelihood of the RBM trained after excluding parasite sequences
at round 8 (RBMNPU for panel b, RBMNPC for panel d) versus that of the RBMSU (panel
b) or RBMSC (panel d) model. A linear fit for the points at the righthand side of the black
line (which is the same of panels a for panel b, and of panel c for panel d) gives a slope of 1.0
and a R2 of 0.92 for panel b, and a slope of 1.0 and a R2 of 0.96 for panel d. For points at the
lefthand side of the black line the slope is 2.6 with an R2 of 0.79 for panel b, and the slope
is 2.0 with an R2 of 0.33 for panel d.
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Figure 71. Panel a: Frobenius norms obtained for each weight of RBMDC computed using
only the first 20 visible units (Lnorm in the x axis) or the last 20 visible units (Rnorm in
the y axis).
Panel b: RBMDCL and RBMDCR are two RBMs with 20 visible units used to score left
and right loops. RBMDCL (RBMDCR) is obtained from RBMDC by using only its first
(last) 20 visible units and their fields, and the hidden units with Lnorm > Rnorm (Rnorm
> Lnorm) with their potentials, ignoring their interactions with the last (first) 20 visible
units. In this panel, we compare, for each unique doubleloop sequence observed at round
5, the loglikelihood of the RBMDC model with the sum of the loglikelihoods obtained by
using RBMDCL to score the left loop and RBMDCR to score the right loop. The slope of
the linear fit is 0.99 and the R2 score is > 0.99.
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Figure 72. Panel a: probability density function of the counts observed for the double ap
tamers in each round. Notice the log scale on the y axis. Panel b: for each pair of consecutive
rounds, we plot here the logarithm of the ratio of counts of the sequences present in both
rounds (left) and the corresponding histogram (right), against the loglikelihood of the se
quence computed with the RBMDC model.
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Figure 73. Panel a: Frobenius norms of the weights for RBMDC. The logos corresponding
to the 3 weights with largest Frobenius norm are given in Fig. 22ac. Panel b: Frobenius
norms of theweights for RBMSC. The logos corresponding to theweight with the 2nd largest
Frobenius norm and the one with the 7th largest Frobenius norm are given in Fig. 22ef.
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Figure 74. Panel a: fields of RBMSU. The largest field (in norm) corresponds to position
17 (gray box), which is the one that in Fig. 78 determines the binding exosite. Panel b:
sum of the norms of each weight of RBMSU, at fixed sequence position. The largest sum
corresponds again to position 17 (gray box).
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Figure 75. Average loglikelihoods computed with 16 RBMs trained with different choices of
hidden unit numbers and weight regularization on the single aptamers obtained from the 8
th round. The scale on the yaxis is kept constant across the different subplots to highlight
how the difference in average loglikelihoods are much smaller than the difference between
the loglikelihood of training (and test) data and that of random sequences. The green circle
at 0.001 regularization strength correspond to the RBM used in the paper (RBMSU).
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Figure 76. Panel a: Loglikelihoods (computed with RBMSU) versus log number of counts
for the unique singleloop sequences observed at round 8. ThA (counts: 10132, loglikelihood:
19.8) and ThD (counts: 8853, loglikelihood: 13.9) are highlighted with circles. Panels b,
c: Loglikelihoods computed with RBMSC (for panel b) or RBMSU (for panel c) versus log
number of counts for the 1000 unique singleloop sequences observed at round 8 with highest
number of counts.
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Figure 77. Comparison of the loglikelihoods computed with RBMSC trained at different
rounds (named RBMSC5, RBMSC6, RBMSC7 and RBMSC8 if trained respectively on
sequences observed in round 5, 6, 7, 8). Plots on the diagonal are the distribution of the
loglikelihoods of each RBM. The sequences used to prepare each histogram are the full set
of sequences observed in round 5, 6, 7, or 8 (discarding counts). In eachnon diagonal plot,
the slopem and the coefficient of determination r2 for the linear fit are given.
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Figure 78. RBMSU (panel a) or RBMSC (panel b) loglikelihood versus distance from ThA
for sequences p1 to p6 in Table 4. Different mutations are represented with different line
styles: dotted lines for mutations involving position 5 (mutating A into T when going from
ThA to r9), dashed lines for mutations involving position 8 (mutating A into G when going
from ThA to r9), and solid lines for mutations involving position 17 (mutating A into T when
going from ThA to r9).
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Figure 79. Panel a: Histogram of the loglikelihoods of all unique aptamers observed in the
last round (blue line) and of uniformly random sequences (orange line), computed with RBM
SC trained on singleloop sequences from round 8, keeping information about the counts.
Inset: AUC computed on the sequences generated by the RBMSU model (panel c). Panel b:
Vertical lines locate the loglikelihoods of sequences experimentally validated to be binders
(green) or non binders (red). Sequences taken from a preliminary set described in Suppl. Ta
ble 27. Results allows us to determine the binding/non binding threshold, shown with the
black dashed line. Panel c: same as panel b for sequences designed with the RBMSUmodel,
as described in Sec. 4.3.6 (see Table 4).
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Figure 80. Relationship between logenrichment and loglikelihoods of singleloop aptamers.
Panels a, c show the histograms of loglikelihoods at each round, as computed by RBMSU6
(panel a) and RBMSC6 (panel c). Panels b, d show the scatter plot of logenrichment of
each bin in the left panels, and the corresponding loglikelihood. In the inset, the slope of
each linear fit appearing in the main plot is compared with the same quantity estimated as
a Fisher’s ratio (see Sec. 4.3.3). The dashed black line is the x = y line.
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Figure 81. Local field learned by the RBMDC6 used in Fig. 20 (panel a), compared with the
conservation logo of the full dataset at round 6 (panel b).
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Label counts round 8 Dist1 Dist3 Dist10 Dist100
r1 3 0 0 1 1
r2 3 0 0 1 1
r3 0 1 1 1 1
r4 0 1 1 2 2
r5 0 1 1 2 2
r6 242 0 0 0 0
r7 341 0 0 0 0
r8 11 0 0 0 1
r9 9 0 0 1 2
r10 0 1 2 2 3
r11 0 2 2 2 4
r12 0 1 2 3 3
r13 0 2 2 3 5
r14 0 2 2 2 5
r15 0 2 2 2 4
r16 0 1 2 2 3
r17 0 1 2 3 4
r18 528 0 0 0 0
r19 139 0 0 0 0
r20 10 0 0 0 1
r21 8 0 0 1 2
r22 0 2 2 2 2
r23 0 1 1 2 4
r24 0 1 1 1 3
r25 0 1 1 2 3
r26 0 1 3 3 4
r27 0 1 1 1 3

Table 29. For each sequence generated from RBMSU trained on unique loop sequences
observed in the last round, we provide here the distance from the closest singleloop aptamer
observed at round 8 (column Dist1, 382094 sequences) and the number of counts of each
sequence at round 8. Since a good binder is expected to be found close to a sequence with
many counts, we also provide in the other columns (Dist3, Dist10, Dist100) the distance to
the closest singleloop aptamer with at least, respectively, 3, 10 or 100 counts in round 8
(respectively 74785, 22332, and 1177 sequences).
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