
Unearthing Hidden Bugs: Harnessing Fuzzing With

Dynamic Patching in FlakJack

by

Gokulkrishna Praveen Menon

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved June 2023 by the
Graduate Supervisory Committee:

Tiffany Bao, Co-Chair
Yan Shoshitaishvili, Co-Chair

Adam Doupe

ARIZONA STATE UNIVERSITY

August 2023

©2023 Gokulkrishna Praveen Menon

All Rights Reserved

ABSTRACT

This thesis presents a study on the fuzzing of Linux binaries to find occluded

bugs. Fuzzing is a widely-used technique for identifying software bugs. Despite

their effectiveness, state-of-the-art fuzzers suffer from limitations in efficiency and

effectiveness. Fuzzers based on random mutations are fast but struggle to generate

high-quality inputs. In contrast, fuzzers based on symbolic execution produce quality

inputs but lack execution speed. This paper proposes FlakJack, a novel hybrid fuzzer

that patches the binary on the go to detect occluded bugs guarded by surface bugs.

To dynamically overcome the challenge of patching binaries, the paper introduces

multiple patching strategies based on the type of bug detected. The performance of

FlakJack was evaluated on ten widely-used real-world binaries and one chaff dataset

binary. The results indicate that many bugs found recently were already present in

previous versions but were occluded by surface bugs. FlakJack’s approach improved

the bug-finding ability by patching surface bugs that usually guard occluded bugs,

significantly reducing patching cycles. Despite its unbalanced approach compared

to other coverage-guided fuzzers, FlakJack is fast, lightweight, and robust. False-

Positives can be filtered out quickly, and the approach is practical in other parts of

the target. The paper shows that the FlakJack approach can significantly improve

fuzzing performance without relying on complex strategies.

i

ACKNOWLEDGMENTS

I want to express my deepest gratitude to my parents and sister for their unwavering

support, love, and encouragement throughout my academic journey. Their belief in

me has been a constant source of strength and motivation. I would also like to thank

my dearest friends and family for their invaluable help and support. They have been

my pillars of strength during difficult times.

I am deeply grateful to my thesis advisor, Dr. Tiffany Bao, for her guidance,

mentorship, and inspiration to pursue research in Automated Bug Discovery. Dr.

Bao’s profound knowledge and expertise have shaped my research and academic career.

I would also like to sincerely thank all other members of my thesis committee for their

valuable insights and suggestions that helped me improve my work.

Finally, I am deeply grateful to all the lab members for the stimulating and

enriching research environment that they have created, which has played a crucial

role in shaping my academic and professional pursuits.

ii

TABLE OF CONTENTS

Page

LIST OF TABLES . v

LIST OF FIGURES . vi

CHAPTER

1 INTRODUCTION . 1

2 BACKGROUND . 5

2.1 Fuzzing . 5

2.2 Coverage-based Fuzzers . 6

2.3 Binary Patching . 8

2.4 Occluded bugs . 9

3 DESIGN . 11

3.1 Overview . 11

3.2 Control-Flow Graph . 12

3.3 Crash Triaging . 13

3.3.1 Record and Replay . 14

3.3.2 Precision Extractor . 15

3.3.3 Rational Extractor . 16

3.4 Dynamic Patching . 17

3.5 Dependency Exploration . 22

3.6 Implementation . 24

4 EVALUATION . 25

4.1 ABLATION STUDY . 25

4.1.1 Real-World Binaries . 26

5 LIMITATION . 28

iii

CHAPTER Page

6 DISCUSSION & CONCLUSION . 30

6.1 Discussion . 30

6.2 Conclusion . 32

REFERENCES . 33

APPENDIX

A EXPERIMENT RESULTS . 37

B RAW CODE LISTING . 39

C PATCH CODE INSERTED FOR DIFFERENT CRASHES 41

iv

LIST OF TABLES

Table Page

1. Case Study on Tiffcp . 38

2. Occluded Bugs Found by Flakjack with Each Technique Enabled and Disabled 38

v

LIST OF FIGURES

Figure Page

1. Occluded Bugs Along With the Surface Bug . 4

2. Overview of Flakjack System . 11

3. Implementation of Crash Triaging Component . 23

4. Case Study on Tiffcp . 27

vi

Chapter 1

INTRODUCTION

Despite efforts to increase software resilience to security vulnerabilities, most

software remains vulnerable to attacks. While numerous mitigation methods are in use

today, thousands of security vulnerabilities have been discovered in the last 15 years

Vulnerability distribution of CVE security vulnerabilities by type 2022, with memory

corruption and control flow hijacking accounting for one-third of the vulnerabilities

reported Vulnerabilities by type 2022. Discovering and fixing security vulnerabilities

promptly is critical, which can cause substantial financial losses Finance software bug

causes $217m in investor losses 2011. Given how the software continues to grow in

size and complexity, code reviews and static analysis tends to be ineffective in fixing

the security vulnerabilities A brief introduction to fuzzing and why it’s an important

tool for developers 2020. There is a need to automate this process. Dynamic analysis

systems, for example, “fuzzers,” monitor the native execution of an application to

identify vulnerabilities. Fuzzing uncovers How fuzzing can make your open-source

project more secure and reliable 2022 software programming errors that otherwise

failed to be detected through manual analysis.

Security researchers have been actively designing new fuzzing techniques Liu et

al. 2021 Chen and Chen 2018 Godefroid, Levin, Molnar, et al. 2008 Hsu et al. 2018

Peng, Shoshitaishvili, and Payer 2018. Prior work has focused on many aspects of the

fuzzing process from seed processing J. Wang et al. 2017 Herrera et al. 2021 Chen

et al. 2020, input mutation J. Wang et al. 2019 Lyu et al. 2019 Lyu et al. 2022 Chen

and Chen 2018 Zhao et al. 2022 to directed fuzzing Canakci et al. 2021 T. Wang

1

et al. 2010 Ganesh, Leek, and Rinard 2009 Zhu et al. 2020. While these techniques

successfully discover security vulnerabilities, most fuzzers stop at a crashing bug

restricting the bug-finding ability of the fuzzer. Unless an alternative execution path

is found, the bug, a surface bug, blocks the fuzzer from exercising the code deeper in

the program resulting in the exploration of the same path triggering the same bug.

For instance, a surface bug can cause the program that is being fuzzed to crash, which

halts execution, preventing the fuzzer from exploring any of the code below the surface

bug. Unless an alternative solution to find the root cause of the crashes is developed,

the fuzzer treats all crashes generated from the root cause as unique.

Although finding crashes are good, potentially a surface bug, a crash prevents the

fuzzer from progressing by limiting the input generation. The fuzzers take different

paths to reach the crashing instruction resulting in duplicates. For instance, a buffer

overflow of eight bytes can trigger 256 unique crashes.

Even though existing simultaneously as a surface bug, occluded bugs (bugs guarded

by surface bugs), as shown in 1, are unreachable until the surface bug is patched

as a part of the security development lifecycle. Thus, the occluded bugs may go

unfixed for years after discovering the surface bug. For example, consider Android’s

stagefright vulnerability Stagefright bug 2016, which existed from Android 2.2 to 5.1

in the multimedia framework library. The bug was discovered in 2015 by Joshua

Drake, even though existed since 2010, by running American Fuzzy Lop (AFL) using

a manual approach of fuzz-crash-analyze-patch (FCAP).

Without using the FCAP approach, there can be a long delay between discovering

a surface bug and the occluded bugs lurking behind it. Patching bugs enables the

attacker to find occluded bugs which otherwise would have gone undetected. The

delay between developing the security fix from reporting the bug to releasing the fix

2

on the repository is significant. This delay between reporting a bug and patching

Portswigger 2022 further risks occluded bugs going unnoticed, leaving the users with

vulnerable software. Furthermore, finding occluded bugs will significantly reduce the

security lifecycle.

Manual FCAP is slow due to the time to triage a crash and develop a patch for

it. Subsequently, for every crash found, manual analysis, triaging, and patching take

time, especially when the program has multiple bugs. Due to this, finding occluded

bugs are challenging. To speed up this process, we propose an automated way to do

FCAP, FlakJack.

Developing a patch for a crash found is hard as the root cause needs to be

determined on what led to the crash and insert the patch at the crashing instruction

address. The binary must then be recompiled with the patch for the next fuzzing cycle.

This manual FCAP can take a significant amount of time. We thus created FlakJack,

a novel vulnerability excavation system designed to find occluded bugs. We developed

multiple dynamic patching strategies that bypass surface bugs without altering the

control flow, thus opening up the paths behind surface bugs and increasing the fuzzer’s

code coverage. Although FlakJack relies on fuzzing, FlakJack’s dynamic patching

is orthogonal to prior research; thus, FlakJack incorporates many state-of-the-art

analysis techniques Stephens et al. 2016 and can be used widely.

In this paper, we describe the design of FlakJack and evaluate its performance

on real-world binaries by discovering 85 vulnerabilities in three binutils binaries, 31

vulnerabilities in libtiff, 1 vulnerability in tcpreplay, and 2 in gpac. In addition, we

show the effectiveness of FlakJack by performing a historical longitudinal analysis

using FlakJack on older software versions. In the evaluation, we show that FlakJack

3

Figure 1. Occluded Bugs Along With the Surface Bug

dynamically patches surface bugs and discovers occluded bugs without the developer’s

official patch and with minimal false positives.

In summary, we make the following contributions:

• We propose a new automated method to improve the effectiveness of the coverage-

guided fuzzer by using dynamic patching to enable the discovery of occluded

bugs in real-world binaries.

• We designed and implemented a framework, FlakJack, to demonstrate this

approach.

• We demonstrate the effectiveness of FlakJack by enabling and disabling each of

the patching techniques in real-world binaries.

4

Chapter 2

BACKGROUND

2.1 Fuzzing

Fuzzing is the automated testing of vulnerabilities in software by feeding in

randomly generated inputs to a program. Although fuzzing was introduced to test

UNIX utilities UNIX 2020, fuzzing has evolved to become a standard practice in the

security testing of applications. The basic premise of fuzz testing is to provide invalid,

unexpected inputs into a system, a target binary, to identify failures.

The general workflow of a fuzzer involves several steps. First, a fuzzer requires

a set of seeds, which it uses to construct a queue of test cases. The fuzzer selects a

seed from the queue, randomly mutates, and inputs the generated test cases into the

target program. This process repeats several times, and the fuzzer adds any exciting

test cases that trigger new behavior into the input queue. The fuzzer then continues

the process of generating inputs and testing.

One of the significant aspects of fuzzing is the ability to detect crashes. Once an

input crashes the binary, the fuzzer uses the feedback to mutate the input and discover

new paths. This process continues until the process’s termination or the resource’s

exhaustion.

One of the most important driving factors of fuzzing is the seed used to generate

test cases. A good seed corpus can significantly improve the efficiency and effectiveness

of the fuzzing process. Seed inputs are from various sources, generated with prior

5

knowledge of the system, manually crafted inputs, or even previously generated test

cases.

The next critical step in fuzzing is the mutational strategy for generating inputs.

Different mutation strategies can be used based on the type of input generated,

tested, and the behavior of the target program. For instance, mutational strategies

are sufficient for testing integer inputs such as bit-flipping, whereas a more complex

strategy is required for testing inputs such as file formats.

A fuzzer is evaluated based on the performance. Fuzzers that are slow usually take

time to generate inputs which may not be able to generate suitable test cases within

a specific time, whereas a fuzzer that can generate inputs much faster may not be

able to generate inputs for complex cases.

2.2 Coverage-based Fuzzers

Although mutation-based fuzzers and dictionaries speed up the discovery of new

paths in the binary, the aforementioned logic cannot solve complex constraints. To

address the limitation, researchers tweaked the fuzzers to leverage coverage information

as feedback to guide the fuzzing process. Since the aforementioned techniques are

efficient and effective in accurately tracking the execution paths, and a fuzzer cannot

find a vulnerability in a not-covered execution path, improving the coverage of the

execution path is reasonable to enhance the fuzzing performance.

Several works employ adaptive strategies to improve coverage-based fuzzing. For

instance, EcoFuzz Yue et al. 2020 focuses on adaptively adjusting the execution

frequency of each seed test case on different programs. They deploy the Markov chain

model and adversarial multi-armed bandit model to evaluate the potential of each

6

test case to trigger unique branching behaviors. After this, they allocate more time

to mutate the promising test cases and vice versa. EMS Lyu et al. 2022 utilizes a

Probablisitc byte orientation model to learn and reuse the efficient mutation strategies

from the intra- and inter-trial fuzzing history with a fast execution speed that triggers

unique paths and improves the mutation strategy. Other research in coverage-based

fuzzing has been integrating mutation-based fuzzing with constraint-solving techniques,

e.g., concolic execution Stephens et al. 2016. Such techniques utilize prior fuzzing

history to identify unique inputs and solve path constraints. After tracing the inputs,

the concolic execution utilizes the constraint-solving engine to identify the inputs

that would force execution down new paths. On the other hand, Angora employs a

gradient descent algorithm and several data tracking and analysis techniques to solve

path constraints faster than concolic execution.

Maximizing bug discovery is a key subject of interest as it can gauge software

robustness and also the effectiveness of the system. All these techniques find tons of

crashes potentially terming as “unique” based on the crash addresses, although the root

cause for these crashes can be the same bug. Fuzzer can spend more time generating

inputs to explore the same state space as more unique crashes are found. All bugs

crash at a particular program location. These crash sites, the address stored in the

instruction pointer during the crash, serve as a bug identifier. Unfortunately, these

crash sites are imprecise and can lead to bug misclassification (e.g., for use-after-free

bugs, objects may be arbitrarily reused, triggering a broad set of “unique” crashes).

Hence, crash sites both under and over-estimate bug counts. This leaves little incentive

to triage crashes leaving it to maintainers to filter and fix bugs. With more crashes

being reported, more time is spent on triaging the crashes and pruning duplicate bug

reports, leaving maintainers with less time to fix bugs to improve the quality of the

7

software. For e.g., a buffer overflow of 8 bytes can generate 256 unique crashes. All

these crashes are found to act as guards for the other potential bugs that are sitting

behind them, which are missed out. Our approach tries to circumvent this by patching

out the crashes.

Large fuzzing infrastructures ClusterFuzz 2023 Announcing OSS-Fuzz: Continous

fuzzing for open source software. 2020, which run around the clock and automatically

submit crash reports exacerbate this issue. For instance, as of February 2023, there

are at least 1070 open bugs, with the oldest dating back to July 2020 Syzbot 2023.

Solutions to these problems rely largely on the community to provide actionable

analysis on their reports to filter out redundancies and duplicates Xu et al. 2017.

2.3 Binary Patching

Dynamic patching is a technique to modify a binary program while preserving

its existing functionality. This approach involves the use of dynamic rewriting tools,

such as Ramblr R. Wang et al. 2017, Pin Pin - A Dynamic Binary Instrumentation

Tool 2020, and DynamoRIO Bruening 2004, to transform a binary program on the

fly. These tools work by intercepting the execution of a program and rewriting its

instructions to alter its behavior.

Some fuzzers, such as Flayer Drewry and Ormandy 2007 and TaintFuzz Bekrar

et al. 2012, attempt to patch hard checks to make fuzzing easier by generating valid

inputs that can bypass checks. This approach involves modifying certain program

sections, such as checksums, to bypass security checks and facilitate input generation.

However, this method can have unintended consequences, such as triggering false

positives or altering the program’s intended functionality.

8

In contrast, our approach focuses on patching only the crash instructions to make

input generation more effective. When a crash is detected during the fuzzing process,

we pause the execution and insert a patch at the location of the crashing instruction.

This patch modifies the program behavior to prevent the crash from occurring, allowing

the fuzzing process to continue without losing the generated inputs and executions.

By patching only the crash instructions, we avoid modifying other program parts

that could result in unintended consequences. This approach allows us to target specific

vulnerabilities without compromising the program’s functionality. Additionally, by

preserving the generated inputs and executions, we can continue the fuzzing process

from the point of failure, allowing us to explore new paths and identify additional

vulnerabilities.

2.4 Occluded bugs

We formally define surface bugs and occluded bugs and illustrate them with an

example before discussing how to discover occluded bugs. Let E denote the entry

point of the program.

Surface bug: A bug B at line L is a surface bug if no bugs are present in all

possible execution paths from E to L.

Occluded bug: A bug B2 at line L2 is an occluded bug if, in all possible execution

paths from E, there exists a line L with a bug B such that L is executed before L2.

Occluded bugs can be classified into two types: partially and fully occluded.

Partially occluded bug: A bug B at line L is a partially occluded bug if there

exists at least one execution path P1 from E to L where B is a surface bug with a

different execution path P2 from E to L where B is an occluded bug.

9

Fully occluded bug: A bug B at line L is a fully occluded bug if there exists no

execution path from E to L where B is a surface bug.

We now illustrate surface and occluded bugs with the example in listing B.1. For

simplicity, we assume no bugs are present in any code executed before function. There

are 3 bugs in listing B.1: a division by zero floating point exception at line 6, a null

pointer dereference at line 9 and a stack-based buffer overflow at line 12. The division

by zero exception at line 6 is a surface bug since there are no execution paths from

the entry point of the program to line 6 with any bugs in them. The null pointer

dereference at line 9 is a fully occluded bug since the division by zero exception at

line 6 is present on all execution paths from entry point of the program through line 9.

The stack-based buffer overflow at line 12 is a partially occluded bug. If the condition

at line 4 is true, line 6 will be executed. Thus the division by zero error could be

triggered before execution reaches line 12 and so the stack-based buffer overflow is

occluded in this execution path. On the other hand, if the condition is false, line 12 is

executed directly and thus it is a surface bug in this execution path.

10

Chapter 3

DESIGN

In this section, we show the framework, as shown in 2 of FlakJack and then present
the design of the proposed patching techniques deployed in FlakJack.

3.1 Overview

FlakJack utilizes angr to generate the target binary’s Control-Flow Graph (CFG).

This CFG is then used to apply patches to the binary. Next, FlakJack starts to fuzz

the target binary using the provided test cases. When the fuzzer identifies a crashing

input, FlakJack pauses fuzzing and proceeds with crash triaging to determine the

crash type.

Once the crash type is determined, FlakJack combines various techniques to

identify the patch that needs to be applied. The determined patch is applied to the

target binary to generate a patched binary, with which the fuzzing process resumes.

This Fuzz-Crash-Analyze-Patch approach allows FlakJack to continuously identify

Figure 2. Overview of Flakjack System

11

and patch vulnerabilities within the target binary during fuzzing, resulting in finding

deeper bugs.

Using angr to generate the CFG of the target binary is crucial in enabling FlakJack

to identify potential patches. The CFG provides a comprehensive view of the binary’s

control flow, making it easier for FlakJack to analyze possible patches. Additionally,

merging multiple techniques to identify the necessary patches is beneficial, increasing

the likelihood of identifying the most effective solution.

3.2 Control-Flow Graph

The patching component of FlakJack requires a Control-Flow Graph (CFG) of the

target binary to apply patches for any crashes that may occur effectively. This CFG

determines the appropriate patch to apply by extracting the crashing instruction and

corresponding registers for every crash. The CFG is also used to recreate the crashing

instruction, which is then recreated in the patch that is ultimately applied. However,

generating a CFG to apply patches for each crash can be time-consuming when many

crashes are detected.

To address this issue, FlakJack has implemented a strategy to minimize the

overhead associated with CFG generation. Specifically, FlakJack generates a CFG

only after every tenth applied patch. This approach effectively reduces the time

required to generate CFGs for patch application, allowing for efficient target binary

patching. The selection of 10 as the arbitrarily set value for generating CFGs after

every tenth patch balances between optimizing patch application time and ensuring

that sufficient information is available to identify and apply the necessary patches

accurately.

12

The use of CFGs in patching binary vulnerabilities is a common approach, as they

provide a clear and concise representation of the target binary’s control flow. By

leveraging the CFG, FlakJack can identify and apply patches to specific instructions

that are associated with crashes. The process of generating a CFG can be resource-

intensive, however, so FlakJack’s approach of generating CFGs after every tenth patch

can be highly effective.

3.3 Crash Triaging

To determine the type of crash that has occurred, FlakJack employs various

techniques. This section will provide a detailed account of the Crash Triaging process

that FlakJack uses to identify the valid address of a crash.

To patch the crash, FlakJack requires the exact location of the crash, which is the

instruction address. To accomplish this task, FlakJack uses the Crash Triaging process,

which begins by creating a core dump. The core dump is generated by running the

target binary against the crashing input generated by the fuzzer. Although the core

dump identifies a crashing instruction, it is often not the source of the crash.

For instance, when a stack overflow occurs, the core dump will identify an address

within the__stack_check_fail function, which is at the end of the function. Conse-

quently, to identify the actual location of the crash, it is necessary to trace the calling

function and determine the address of the instruction that led to the crash.

Using the core dump, FlakJack extracts the reported address of the crash. If

the crashing instruction points to an unmapped memory region of the target binary,

FlakJack employs the record-replay process to determine the actual location of the

crash. In contrast, if the crashing instruction occurs in a mapped memory region of

13

the target binary, FlakJack passes the input that crashes the target binary and the

target binary to the Precision Extractor component to refine further the instruction

that led to the crash.

The record-replay process involves re-executing the target binary with the same

input that caused the crash. However, RR instruments the binary during this re-

execution to log all the memory accesses during the execution. The recorded trace is

then replayed to identify the instruction that caused the crash.

On the other hand, Precision Extractor extracts features of interest from a pro-

gram’s execution. It does so by analyzing the execution trace of the program and

identifying the instructions that led to the crash. Precision Extractor is used when

the crashing instruction points to a mapped memory region of the target binary. In

this case, Precision Extractor can quickly narrow down the instruction that led to the

crash.

Once the valid location of the crash has been identified, FlakJack can determine

the type of crash. The type of crash is determined by examining the system state

when the crash occurred. The system state includes the contents of the CPU registers,

the call stack, and the heap. By analyzing the system state, FlakJack can determine

the root cause of the crash.

3.3.1 Record and Replay

When an overflow overwrites the instruction pointer, automatically identifying

the address of the instruction that led to the crash is difficult. To solve this problem,

FlakJack utilizes Record and Replay (RR), a tool developed by Mozilla Mozilla:Record

14

and Replay 2021 that enables the recording and debugging of program execution

failures.

RR records all non-deterministic inputs, such as signals, timer interrupts, and

file I/O, during program execution. When the recorded execution is replayed, RR

simulates the inputs in the same order and timing as the original execution. This

ensures that the replayed execution follows the same execution path as the original

execution. During the replayed execution, RR also monitors the program’s memory

accesses and system calls. If the program makes any non-deterministic system calls,

RR blocks the call and simulates the system call’s return value based on the recorded

input.

FlakJack leverages RR to record the execution of the target binary with the

crashing input. The recorded execution is then replayed until the point of the crash.

The execution is then replayed in reverse to identify the instruction that overwrote the

instruction pointer during the crash. This enables FlakJack to pinpoint the instruction

address that caused the overwrite, which is then passed on to the patching component

for further action.

3.3.2 Precision Extractor

The Crash Triaging component retrieves the address of the instruction that led to

the crash, and further analysis is conducted using the Precision Extractor component.

This analysis can be challenging, as the address may point inside a library function,

necessitating further analysis that requires the invocation of the rational extractor.

The Precision Extractor component is designed to identify and extract the relevant

information from the crash report, which can help identify the crash’s root cause.

15

The component uses various techniques, including debugging, to gather information

about the crash. This information is then analyzed to determine the specific cause of

the crash. In cases where the address points inside a library function, the rational

extractor is invoked to analyze the crash further.

3.3.3 Rational Extractor

Crashes can occur due to various reasons, including the passing of corrupt ar-

guments in library function calls. However, patching library functions can result in

unintended consequences, as multiple functions can make multiple calls to these func-

tions, triggering the patch at any call and causing unwanted behavior. Additionally,

128-bit registers in the crashing instruction can further complicate patching inside

library functions. Therefore, to avoid tampering with library functions, a rational

extractor is used.

The rational extractor component extracts and analyzes the relevant code that

led to the crash. When a crash occurs inside a library function, call the rational

extractor invokes gdb to run the target software along with the crashing input. This

allows for the call stack to be determined, providing the address of the library call

from the parent function. However, in some cases, the backtrace may be corrupted,

resulting in the inability to retrieve the parent function’s address. In such instances,

this component generates a trace of the execution using qemu, which provides a log

file containing the trace of the blocks executed until the crash instruction.

By leveraging qemu logging, the target binary is run against the input generated

by the fuzzer, and the log file obtained from the qemu logging is analyzed to determine

the execution trace until the crashing instruction. The trace obtained from the gdb

16

backtrace, along with the qemu trace, is then used to determine the address of the

instruction right before the call to the library function. This address is passed on

to the patching component of FlakJack. This prevents unintended consequences of

patching inside the library function and ensures that the stability and reliability of

the software system are maintained.

3.4 Dynamic Patching

Determining the patch for a crash found by FlakJack in the target binary is

determined by this component. This component begins by identifying the type of

crash by using multiple methods since several causes exist. Applying a single generic

patch for all crashes triggered is not ideal and can affect the program semantics.

Upon obtaining the address of the crashing instruction, the component proceeds

to apply patches. However, as mentioned earlier, it is not feasible to apply a generic

patch, as various factors can trigger crashes, and applying a generic patch may affect

the behavior and control flow of the target binary. We have developed several patching

strategies that fix specific crashes to address this problem. These patching strategies

enable the fuzzer to bypass the problematic code and allow the target binary to

continue executing without affecting the program’s semantics.

FlakJack has developed five distinct patching strategies to address different types

of crashes. By using multiple patching strategies, we can ensure that the fuzzer can

handle various crashes that may occur during the fuzzing process. The patching

strategies enable to facilitate the continued execution of the target binary.

Following are the different types of patching strategies deployed by FlakJack.

• Reckon patch: The Reckon Patch addresses the issue of floating-point exceptions

17

that arise when a program attempts to perform an impossible operation with

a floating-point number, such as dividing by zero. When the target program

crashes, FlakJack identifies the operation that caused the crash using the control

flow graph (CFG) generated before fuzzing. Once the cause of the crash is

determined, the Reckon Patch applies to the instruction that led to the crash.

The Reckon Patch behaves in such a way that it activates only when a particular

register value is corrupt. It rewrites the crashing instruction and replaces it

with an assembly that first compares the register value against 0. If the value is

not 0, the execution of the program remains the same. However, if the operand

register value is 0, the patch replaces the value of the register with a value stored

in memory that holds 8 bytes from the input. The Bridgehead Patch performs

this memory storage. The Bridgehead Patch works in tandem with the Reckon

Patch to enable the replacement of a corrupt value at the crashing instruction.

It is designed to provide input only when the program is in a specific state. In

this case, the Bridgehead Patch provides input when the register value is 0. By

rewriting the crashing instruction and inserting additional code into the program,

these patches allow the program to continue running even when an impossible

operation with a floating-point number occurs. Consider the disassembly of an

x86-64 binary at the crashing instruction as listing B.3. In this case, r8 with

zero will lead to a crash halting the execution of the target program. FlakJack

rewrites the crashing instruction and replaces it with the assembly as on listing

C.2. The patch essentially behaves in such a way that it is activated only when

the value of the register is corrupt. Initially, as in line 1, r8 is compared against

0, and if the value of the register is not 0, then execute the original instruction.

On the other hand, if the value of the operand register is 0, the value of the

18

register is replaced with a value from memory, which stores 8 bytes from the

input.

• Legion patch: The Legion Patch is a technique deployed by FlakJack in situations

where an instruction involving multiple registers or arithmetic operations results

in memory addresses that leads to a crash when the memory address points

to an unmapped memory region. When such an event occurs, the patch must

verify whether the values of the registers lie within the mapped memory area.

The patch is activated by FlakJack to assess the values of registers involved in

an arithmetic operation, confirming whether the resulting value resides within

the mapped memory range. If the value of the result falls outside the mapped

memory region, the patch replaces the value of the register with the address of a

newly created page holding 8 bytes of input. FlakJack has developed the patch

to address the issue of execution halting due to a segmentation fault caused

by accessing an invalid memory address. For example, consider the scenario in

Listing B.2, where the value of register r12 holds the result of an arithmetic

operation between registers rdx and rcx. If the result of the operation points

to an unmapped memory region, the instruction causes a segmentation fault,

halting the execution of the target binary. To mitigate such an occurrence, the

Legion Patch follows a specific algorithm. Initially, the value of the register rdx

is compared to the lower and upper mapped memory region. During execution,

if the patch detects a corrupted value in the register, the patch replaces it with

the address of the new page. The exact process is used to check the value of

the other register, rcx. The Bridgehead patch, further explained later, stores 8

bytes for every patch inserted from the input at the beginning of a newly created

page. The Legion Patch’s primary objective is to ensure that the arithmetic

19

operation executed does not result in invalid memory access that could cause

the program’s termination. As a result, the patch verifies the registers’ values

and replaces any corrupted value with the address of a newly created page.

The algorithm used in the patch is critical in maintaining the integrity of the

program’s execution and preventing unnecessary termination.

• Colony patch: The Colony Patch is a patch used by FlakJack to address crashes

that involve the value of a register at the crashing instruction to control the

program execution within the same function. To determine whether the register’s

value is used in compare or test instructions, FlakJack leverages angr to conduct

a symbolic exploration. This process involves assigning a symbolic value to the

source register in the crashing instruction and analyzing the register’s use in

subsequent instructions. If the analysis reveals that the register’s value controls

the program’s flow, the Colony Patch is applied. The patch ensures the target

binary can continue executing by taking multiple paths in the compare or test

instruction. To ensure this, the patch replaces the crashing instruction with a

div operation that randomizes the value of the register when it is corrupted.

The value used for the div operation is obtained from the input stored at the

beginning using the Bridgehead patch. This approach ensures that the patch

effectively mitigates the crash and enables the fuzzer to continue testing the

target binary.

• Fountainhead patch: The Fountainhead Patch is a technique employed by Flak-

Jack to address crashes within library functions, typically caused by corrupted

arguments passed to the function. In such cases, FlakJack utilizes multiple

techniques to identify the address of the call to the library function. The Foun-

tainhead Patch is inserted before the call to the library function to ensure that

20

the arguments passed to the function are not corrupted. To accomplish this,

the Fountainhead Patch replaces the value of any corrupted argument with the

address of the page newly created by the Bridgehead Patch. This approach

ensures that the library function is executed with valid arguments and avoids

crashes caused by corrupted arguments. One key advantage of the Fountainhead

Patch is that it is inserted before the library function calls. Applying a patch this

way is essential because many crashing instructions inside library functions can

have 128-bit registers (xmm) for which patching is not feasible. Patching these

registers can have unintended consequences for every library call in the target

binary. By inserting the patch before the function call, FlakJack avoids the need

to patch the registers, instead assuming that the culprit is one of the arguments

and focusing the patch accordingly. For example, consider a case where the

source address in a memcpy call is corrupted and points to an invalid memory

region. The Fountainhead Patch overwrites the corrupted source address with

the new page address that holds the value from the input fed by the fuzzer.

This patch ensures that the library function can execute with valid arguments

and avoids crashes caused by corrupted arguments. Also, the Fountainhead

Patch is only invoked when the argument values are corrupted, thereby avoiding

any crashes caused by such corruption. This approach mitigates crashes within

library functions and enables FlakJack to continue testing the target binary

with minimal interruptions.

• Bridgehead patch: The Bridgehead patch used by FlakJack is the crucial patch

compared to other patches. This patch has two functionalities, unlike other

patches. First, the patch adds a new page with a static address to the target

binary. Secondly, the patch inserts a code block at the entry point of the target

21

binary as shown in listing C.1. For a patch, as mentioned earlier, to be applied,

FlakJack invokes the Bridgehead patch, along with other patches. For instance,

if two patches are applied, one Colony and one Fountainhead patch, the value

of n as shown in C.1 will be 2. In that case, the code block inserted at the entry

point copies the first 16 bytes of the input to the new page. The address of the

new page is static (0x700000), and hence FlakJack can determine the address of

the bytes stored from the input in order and for corresponding patches. In the

example, the first patch applied is the Colony patch; hence, the first 8 bytes,

from 0x700000 to 0x700007, in the new page will always be used for the same

patch when required; that is when the crashing instruction requires the input

value. Similarly, the next 8 bytes, from 0x700008 to 0x700010, are reserved

for the Fountainhead patch. If the patch requires an address to be moved into

the register to continue the execution without crashing, the address of the new

page created replaces the corrupt value of the register. The new page created

is 0x1000 in size and can hold inputs for approximately 512 crashes for the

target, ensuring that FlakJack can handle many crashes. This patch acts as

the foundation for all the aforementioned patching techniques, as it glues them

together by helping other patches to utilize the values stored in new pages to

prevent crashes.

3.5 Dependency Exploration

FlakJack uses Symbolic exploration leveraged from angr. Before fuzzing starts,

FlakJack creates a static Control Flow Graph(CFG), which uses static analysis to

generate a CFG, which is then used for the patching component of FlakJack. CFG

22

Figure 3. Implementation of Crash Triaging Component

recovery performs a static control flow and functional recovery. Starting with the

entry point, the basic blocks are lifted to VEX IR, and subsequently, all exits are

collected. In the event of a function call, the destination block is considered the start

of a new function. FlakJack requires all this information to determine what patch

needs to be applied and extract registers at crashing instruction. We also modified

Patcherex to take in a pre-generated CFG while loading a binary into it. We only

generate the CFG once at the beginning to reduce the overhead for CFG creation for

every run after patching the binary.

When a crash input is found, FlakJack does symbolic exploration to find any

dependencies of the destination register on any future compare, call or test instructions

to determine which patch to be applied, limited to the current function. A dependency

patch is inserted at the crashing instruction if any such dependencies are found. A

blank state is created at the crash’s address, leaving most data uninitialized. The

exploration is limited to only the current function, where the crashing instruction

deals with the state explosion problem, mainly a bottleneck for symbolic exploration.

23

3.6 Implementation

We leverage angr to generate the CFG of the target binary. Once a patch is applied,

new blocks are added for which the CFG differs from the unpatched target binary.

Since CFG generation takes time, we generate a new CFG after every 10th patch is

applied, wherein 10 is an arbitrarily fixed number. We use Patcherex Patcherex 2022

to apply patches to the target binary when a crash is found. Here, we use AFLplusplus

Fioraldi et al. 2020 as the base fuzzer on which FlakJack is implemented to fuzz the

target. FlakJack relies on rr to replay the execution to fetch the address, which leads to

the crash of the target, and pwntools CTF framework and exploit development library

2022 along with qemu A generic and open source machine emulator and virtualizer

2023 and gdb GDB: The GNU Project Debugger 2022 to extract the instruction

address from the core dump. FlakJack also exposes Python APIs so users can easily

extend the dynamic patching to other fuzzers. The current implementation of FlakJack

supports 32-bit and 64-bit Linux binaries and will be open-sourced.

24

Chapter 4

EVALUATION

In this section, we evaluate the fuzzing performance of FlakJack following the

guidelines in Klees et al. 2018. To determine FlakJack’s bug-finding effectiveness,

we evaluated seven real-world binaries. We also show the robustness of FlakJack by

adding patching onto the existing fuzzer, AFLplusplus, to improve the code coverage.

In this section, we are looking to evaluate the following research questions.

• Does an Occluded bug exist? If so, does dynamic patching enable the fuzzer to

find occluded bugs?

• How effective are each of the patching techniques?

The experiments were run on docker containers in which each container runs

Debian 10 and is equipped with an Intel Xeon processor and 251 GB of memory.

4.1 ABLATION STUDY

This experiment shows the impact of different patching techniques on the overall

effectiveness of FlakJack. The study’s primary objective was to contrast each patching

technique’s contributions by selectively deactivating or activating them, thereby

facilitating a comprehensive evaluation of their impact.

To conduct the ablation study, each patching technique incorporated within the

FlakJack system was systematically disabled one at a time while maintaining the

integrity of the remaining components. The experiments were run by modifying the

configuration settings of FlakJack to exclude specific patching techniques. Using

25

this methodology, the study aimed to isolate the effects of each patching technique,

permitting a focused assessment of their respective contributions to the overall FCAP

process.

Throughout the ablation study, experiments were run on ten real-world binaries.

The impact of turning off each patching technique was analyzed regarding FlakJack’s

efficacy in identifying and patching vulnerabilities. The outcomes of these experiments

were recorded and summarized in Table A.

By comparing the results obtained from experiments conducted with the enabled

and disabled patches, the experiment aimed to derive insights into each patching

technique’s strengths and weaknesses. The metrics considered for evaluation included

vulnerability detection and the discovery of occluded bugs. This analysis enabled a

comprehensive understanding of the impact of each patching technique on FlakJack’s

effectiveness in identifying and mitigating software vulnerabilities.

4.1.1 Real-World Binaries

This study aimed to evaluate the effectiveness of FlakJack in detecting previously

unknown occluded and partially occluded bugs in real-world binaries, specifically, the

binary tiffcp, version 4.0.0, released in 2011 and continued until the latest version,

4.5. The results were analyzed and are presented in Table 1 and figure 4. The study

employed a case study approach where FlakJack was used to fuzz the binary tiffcp.

During the study, several occluded and partially occluded bugs were discovered in

the earlier binary tiffcp. Of particular interest was the discovery of a bug in version

4.0.2 that remained present in the latest version but was previously unknown to

developers. A surface bug concealed this occluded bug, making it difficult to detect

26

Figure 4. Case Study on Tiffcp

using conventional fuzzing techniques. However, Flakjack’s patching strategy enabled

the discovery of the occluded bug.

FlakJack’s success in detecting the occluded bug high- lights the effectiveness

of its patching strategy in uncovering previously unknown bugs. This approach

can potentially assist developers in improving their software’s overall security and

reliability. Additionally, the discovery of multiple occluded and partially occluded

bugs in the earlier versions of tiffcp demonstrates the need for more sophisticated

fuzzing techniques that can detect such bugs.

27

Chapter 5

LIMITATION

Flakjack is a dynamic binary analysis tool that applies patches to binaries to miti-

gate crashes. However, in specific scenarios, Flakjack may encounter some limitations

discussed in this section.

Firstly, in some cases, the root-cause identification of Flakjack may fail, resulting

in an imprecise patch applied at a different location than required. This imprecision

can affect the behavior of the target binary. Additionally, when fetching the crash

instruction address is difficult, such as when a corrupted backtrace is encountered,

Flakjack may be unable to apply patches. If Flakjack cannot obtain the crashing

address, the crashing input is discarded from the fuzzing history and is stored at a

separate location. Secondly, Flakjack rewrites the crashing instruction while applying

patches. However, rewriting instructions that contain certain operations, such as

movaps and movups, is currently not supported by Patcherex. Therefore, crashes that

involve these operations are usually not patched. Thirdly, when applying patches

using Patcherex, a limitation exists where the new patch will not be applied if less

than five bytes are available in the same basic block. Fourthly, while applying the

Reckon patch, there is a slight chance that the value being restored from the newly

created page is zero, which leads to a crash inside the patch. Although the probability

of such an event is very low, it can result in a false positive. Lastly, when an arithmetic

operation of registers at the site of a Legion patch results in a crash, Flakjack reports

it as a true positive when it is a false positive. This is an ongoing problem, and

28

automated techniques are currently insufficient to address it. Modifying the patch to

check the registers’ addresses during each execution may be a potential solution.

Moreover, Patcherex takes approximately 0.1 to 0.3 seconds to apply a patch

in a target binary. When the number of patches is significant, FlakJack loses time

generating a patched binary to resume fuzzing. While this can be an edgy case, the

overhead for applying patches still exists, which we believe is an engineering problem

that can be solved in the future.

29

Chapter 6

DISCUSSION & CONCLUSION

6.1 Discussion

FlakJack is a dynamic binary analysis tool that applies patches to binaries to

mitigate crashes. However, in specific scenarios, FlakJack may encounter some

limitations discussed in this section.

One issue is that root-cause identification in FlakJack may fail. This could result

in an incorrect patch being applied or a patch being applied at an incorrect location.

This could result in false positive crashes being generated in future fuzzing iterations.

Additionally, if FlakJack cannot determine the crash instruction’s address for various

reasons (eg: the call backtrace is corrupted), FlakJack may be unable to apply patches.

If FlakJack cannot obtain the crashing address, the crashing input is discarded from

the fuzzing history and is stored at a separate location. Secondly, FlakJack relies

on Patcherex for applying patches. However, Patcherex does not support the entire

machine instruction set. Therefore, crashes that involve these operations are usually

not patched. Thirdly, when applying patches using Patcherex, a limitation exists

where the new patch will not be applied if less than five bytes are available in the

same basic block. Fourthly, while applying the Reckon patch, there is a slight chance

that the value being restored from the newly created page is zero, which leads to a

false positive crash inside the patch. Lastly, when an arithmetic operation of registers

at the site of a Legion patch results in a crash, FlakJack reports it as a true positive

when it is a false positive. This is an ongoing problem, and automated techniques

30

are currently insufficient to address it. Modifying the patch to check the registers’

addresses during each execution may be a potential solution. Moreover, Patcherex

takes approximately 0.1 to 0.3 seconds to apply a patch in a target binary. When the

number of patches is significant, FlakJack loses time generating a patched binary to

resume fuzzing. While this can be an edge case, the overhead for applying patches still

exists, which we believe is an engineering problem that can be solved in the future.

31

6.2 Conclusion

This thesis presented and evaluated methods based on patching to improve fuzzing.

The results demonstrate that patching out surface bugs that typically guard deep-

lying occluded bugs can significantly improve bug-finding ability and reduce patching

cycles. Although our approach is not as well-balanced as other fuzzing techniques,

we believe it upholds the core strengths of coverage-guided fuzzer: fast, lightweight,

and robust. Despite the possibility of false positives resulting from patches, they can

be quickly filtered out, making our approach practical and applicable in other parts

of the target. The work presented in this paper highlights the potential to improve

fuzzing performance without the need for complex strategies significantly.

32

REFERENCES

A brief introduction to fuzzing and why it’s an important tool for developers. 2020.
https://www.microsoft.com/en-us/research/blog/a-brief - introduction- to-
fuzzing-and-why-its-\an-important-tool-for-developers/.

A generic and open source machine emulator and virtualizer. 2023. https://www.
qemu.org.

Announcing OSS-Fuzz: Continous fuzzing for open source software. 2020. https :
//security.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.
html.

Bekrar, Sofia, Chaouki Bekrar, Roland Groz, and Laurent Mounier. 2012. “A taint
based approach for smart fuzzing.” In 2012 IEEE Fifth International Conference
on Software Testing, Verification and Validation, 818–825. IEEE.

Bruening, Derek. 2004. “Efficient, transparent, and comprehensive runtime code
manipulation.”

Canakci, Sadullah, Leila Delshadtehrani, Furkan Eris, Michael Bedford Taylor, Manuel
Egele, and Ajay Joshi. 2021. “DirectFuzz: Automated Test Generation for RTL
Designs using Directed Graybox Fuzzing.” In 2021 58th ACM/IEEE Design
Automation Conference (DAC), 529–534. https://doi.org/10.1109/DAC18074.
2021.9586289.

Chen, Peng, and Hao Chen. 2018. “Angora: Efficient fuzzing by principled search.” In
2018 IEEE Symposium on Security and Privacy (SP), 711–725. IEEE.

Chen, Yaohui, Mansour Ahmadi, Boyu Wang, Long Lu, et al. 2020. “{MEUZZ}:
Smart Seed Scheduling for Hybrid Fuzzing.” In 23rd International Symposium on
Research in Attacks, Intrusions and Defenses (RAID 2020), 77–92.

ClusterFuzz. 2023. https://google.github.io/clusterfuzz/.

CTF framework and exploit development library. 2022. https://github.com/Gallopsled/
pwntools.

Drewry, Will, and Tavis Ormandy. 2007. “Flayer: Exposing application internals.”

Finance software bug causes $217m in investor losses. 2011. https://www.theregister.
com/2011/09/22/software_bug_fine/.

33

https://www.microsoft.com/en-us/research/blog/a-brief-introduction-to-fuzzing-and-why-its-\an-important-tool-for-developers/
https://www.microsoft.com/en-us/research/blog/a-brief-introduction-to-fuzzing-and-why-its-\an-important-tool-for-developers/
https://www.qemu.org
https://www.qemu.org
https://security.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html
https://security.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html
https://security.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html
https://doi.org/10.1109/DAC18074.2021.9586289
https://doi.org/10.1109/DAC18074.2021.9586289
https://google.github.io/clusterfuzz/
https://github.com/Gallopsled/pwntools
https://github.com/Gallopsled/pwntools
https://www.theregister.com/2011/09/22/software_bug_fine/
https://www.theregister.com/2011/09/22/software_bug_fine/

Fioraldi, Andrea, Dominik Maier, Heiko Eißfeldt, and Marc Heuse. 2020. “AFL++:
Combining incremental steps of fuzzing research.” In 14th {USENIX} Workshop
on Offensive Technologies ({WOOT} 20).

Ganesh, Vijay, Tim Leek, and Martin Rinard. 2009. “Taint-based directed whitebox
fuzzing.” In 2009 IEEE 31st International Conference on Software Engineering,
474–484. IEEE.

GDB: The GNU Project Debugger. 2022. https://www.sourceware.org/gdb/.

Godefroid, Patrice, Michael Y Levin, David A Molnar, et al. 2008. “Automated
whitebox fuzz testing.” In NDSS, 8:151–166.

Herrera, Adrian, Hendra Gunadi, Shane Magrath, Michael Norrish, Mathias Payer, and
Antony L Hosking. 2021. “Seed selection for successful fuzzing.” In Proceedings
of the 30th ACM SIGSOFT International Symposium on Software Testing and
Analysis, 230–243.

How fuzzing can make your open-source project more secure and reliable. 2022. https:
//developer.ibm.com/blogs/how-fuzzing-can-make-your-\open-source-project-
more-secure-and-reliable/.

Hsu, Chin-Chia, Che-Yu Wu, Hsu-Chun Hsiao, and Shih-Kun Huang. 2018. “Instrim:
Lightweight instrumentation for coverage-guided fuzzing.” In Symposium on
Network and Distributed System Security (NDSS), Workshop on Binary Analysis
Research.

Klees, George, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018.
“Evaluating fuzz testing.” In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, 2123–2138.

Liu, Yuwei, Yanhao Wang, Purui Su, Yuanping Yu, and Xiangkun Jia. 2021. “In-
struGuard: Find and Fix Instrumentation Errors for Coverage-based Greybox
Fuzzing.” In 2021 36th IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE), 568–580. https://doi.org/10.1109/ASE51524.2021.
9678671.

Lyu, Chenyang, Shouling Ji, Chao Zhang, Yuwei Li, Wei-Han Lee, Yu Song, and
Raheem Beyah. 2019. “{MOPT}: Optimized mutation scheduling for fuzzers.” In
28th USENIX Security Symposium (USENIX Security 19), 1949–1966.

Lyu, Chenyang, Shouling Ji, Xuhong Zhang, Hong Liang, Binbin Zhao, Kangjie Lu,
and Raheem Beyah. 2022. “EMS: History-Driven Mutation for Coverage-based

34

https://www.sourceware.org/gdb/
https://developer.ibm.com/blogs/how-fuzzing-can-make-your-\open-source-project-more-secure-and-reliable/
https://developer.ibm.com/blogs/how-fuzzing-can-make-your-\open-source-project-more-secure-and-reliable/
https://developer.ibm.com/blogs/how-fuzzing-can-make-your-\open-source-project-more-secure-and-reliable/
https://doi.org/10.1109/ASE51524.2021.9678671
https://doi.org/10.1109/ASE51524.2021.9678671

Fuzzing.” In 29th Annual Network and Distributed System Security Symposium.
https://dx. doi. org/10.14722/ndss.

Mozilla:Record and Replay. 2021. https://github.com/rr-debugger/rr.

Patcherex. 2022. https://github.com/angr/patcherex.

Peng, Hui, Yan Shoshitaishvili, and Mathias Payer. 2018. “T-Fuzz: fuzzing by program
transformation.” In 2018 IEEE Symposium on Security and Privacy (SP), 697–
710. IEEE.

Pin - A Dynamic Binary Instrumentation Tool. 2020. https://software.intel.com/
content/www/us/en/develop/articles/pin-a-dynamic-binary-instrumentation-
tool.html.

Portswigger. 2022. Weaknesses in open source patch process. https://portswigger.net/
daily-swig/lagging-behind-new-study-highlights-weaknesses-in-\open-source-
patch-process.

Stagefright bug. 2016. https://en.wikipedia.org/wiki/Stagefright_(bug).

Stephens, Nick, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,
Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna.
2016. “Driller: Augmenting Fuzzing Through Selective Symbolic Execution.” In
NDSS, 16:1–16. 2016.

Syzbot. 2023. https://syzkaller.appspot.com/upstream.

UNIX. 2020. https://dl.acm.org/doi/pdf/10.1145/96267.96279.

Vulnerabilities by type. 2022. https : / /www . cvedetails . com/vulnerabilities - by -
types.php.

Vulnerability distribution of CVE security vulnerabilities by type. 2022. https://www.
cvedetails.com/browse-by-date.php.

Wang, Junjie, Bihuan Chen, Lei Wei, and Yang Liu. 2017. “Skyfire: Data-driven seed
generation for fuzzing.” In 2017 IEEE Symposium on Security and Privacy (SP),
579–594. IEEE.

. 2019. “Superion: Grammar-aware greybox fuzzing.” In 2019 IEEE/ACM 41st
International Conference on Software Engineering (ICSE), 724–735. IEEE.

35

https://github.com/rr-debugger/rr
https://github.com/angr/patcherex
https://software.intel.com/content/www/us/en/develop/articles/pin-a-dynamic-binary-instrumentation-tool.html
https://software.intel.com/content/www/us/en/develop/articles/pin-a-dynamic-binary-instrumentation-tool.html
https://software.intel.com/content/www/us/en/develop/articles/pin-a-dynamic-binary-instrumentation-tool.html
https://portswigger.net/daily-swig/lagging-behind-new-study-highlights-weaknesses-in-\open-source-patch-process
https://portswigger.net/daily-swig/lagging-behind-new-study-highlights-weaknesses-in-\open-source-patch-process
https://portswigger.net/daily-swig/lagging-behind-new-study-highlights-weaknesses-in-\open-source-patch-process
https://en.wikipedia.org/wiki/Stagefright_(bug)
https://syzkaller.appspot.com/upstream
https://dl.acm.org/doi/pdf/10.1145/96267.96279
https://www.cvedetails.com/vulnerabilities-by-types.php
https://www.cvedetails.com/vulnerabilities-by-types.php
https://www.cvedetails.com/browse-by-date.php
https://www.cvedetails.com/browse-by-date.php

Wang, Ruoyu, Yan Shoshitaishvili, Antonio Bianchi, Aravind Machiry, John Grosen,
Paul Grosen, Christopher Kruegel, and Giovanni Vigna. 2017. “Ramblr: Making
Reassembly Great Again.” In NDSS.

Wang, Tielei, Tao Wei, Guofei Gu, and Wei Zou. 2010. “TaintScope: A checksum-aware
directed fuzzing tool for automatic software vulnerability detection.” In 2010
IEEE Symposium on Security and Privacy, 497–512. IEEE.

Xu, Jun, Dongliang Mu, Xinyu Xing, Peng Liu, Ping Chen, and Bing Mao. 2017.
“Postmortem Program Analysis with Hardware-Enhanced Post-Crash Artifacts.”
In USENIX Security Symposium, 17–32.

Yue, Tai, Pengfei Wang, Yong Tang, Enze Wang, Bo Yu, Kai Lu, and Xu Zhou.
2020. “{EcoFuzz}: Adaptive {Energy-Saving} Greybox Fuzzing as a Variant of
the Adversarial {Multi-Armed} Bandit.” In 29th USENIX Security Symposium
(USENIX Security 20), 2307–2324.

Zhao, Xiaoqi, Haipeng Qu, Jianliang Xu, Shuo Li, and Gai-Ge Wang. 2022. “AMSFuzz:
An adaptive mutation schedule for fuzzing.” Expert Systems with Applications
208:118162.

Zhu, Xiaogang, Shigang Liu, Xian Li, Sheng Wen, Jun Zhang, Camtepe Seyit, and
Yang Xiang. 2020. “Defuzz: Deep learning guided directed fuzzing.” arXiv preprint
arXiv:2010.12149.

36

APPENDIX A

EXPERIMENT RESULTS

37

Table 1. Case Study on Tiffcp
Version Partially Occluded Bugs Fully Occluded Bugs Zero Days

4.0.0 1 3 0
4.0.1 1 1 0
4.0.2 1 1 1
4.0.3 1 2 1
4.0.4 1 3 1
4.0.5 1 0 0
4.0.6 1 1 1
4.0.7 2 3 0
4.0.8 1 1 0
4.0.9 1 0 0
4.0.10 1 1 1
4.1 2 1 0
4.2 1 1 0
4.3 1 0 0
4.4 0 0 0
4.5 0 0 0

Program Colony Fountainhead Legion Reckon
Enable Disable Enable Disable Enable Disable Enable Disable

readelf 1 2 1 4 2 1 1 2
objdump 3 9 2 11 2 6 2 3

nm 7 14 2 17 2 13 9 11
tiffcp 6 14 9 6 6 14 3 7
size 2 2 3 9 2 7 1 4

tcpreplay 1 1 1 1 1 1 1 1
gpac 3 2 2 2 2 1 2 1
tiffset 1 1 1 1 1 1 1 1
tiff2pdf 1 1 1 1 1 1 1 1
tiffinfo 0 0 0 0 0 0 0 0

Table 2. Occluded Bugs Found by Flakjack with Each Technique Enabled and
Disabled

38

APPENDIX B

RAW CODE LISTING

39

Listing B.1. Example code showcasing surface, partially occluded & fully occluded
bugs
int f unc t i on (int command) {

int num1 , num2 , num3 , ret_val ;
char bu f f e r [1 0 2 4] ;
i f (command & 3 == 3) {

scan f ("%d␣%d" , &num1 , &num2) ;
num3 = num1 / num2 ; // Surface bug (#6)
i f (num3 < 4) {

addr = g_addr_table ∗ (num3 − num2 + 1) ;
ret_val = ∗addr ; // Fu l l y occ luded bug (#9)

}
}
ge t s (bu f f e r) ; // Pa r t i a l l y occ luded bug (#12)
i f (strncmp (bu f f e r , "admin" , 5) == 0) {

ret_val = 1 ;
}
return ret_val ;

}

Listing B.2. Instruction Involving Multiple Registers
mov r12 , [rdx+rcx ∗3]

Listing B.3. R8d Having 0 Causes SIGFPE
; rcx i s s e t to 0
movsxd rdx , edx
mov r8d , rcx
div r8d

40

APPENDIX C

PATCH CODE INSERTED FOR DIFFERENT CRASHES

41

Listing C.1. Patch Code for Bridgehead Patch
; address o f the new page where input
; b y t e s are s t o r ed
mov r13 , {page_addr}
; counter va lue i s s e t to determine
; the memory l o c a t i o n o f the input s t o r ed
mov r14 , { counter ∗ 8}
mov r13 , 0x07000300 ; address o f from the new page
mov [0 x07000220] , r14
add r14 , 4
l 0 :

mov BYTE [r13] , 0
add r13 , 1
sub r14 , 1
cmp r14 , 0
jne l 0

xor r13 , r13

; g e t f i r s t argument
; which i s the f i l e name
; where we have to read n by t e s
xor r14 , r14
add r14 , 10h
add r14 , counter ∗8
add rsp , r14
pop r d i

; open the f i l e
mov rax , 2
mov r s i , 0
syscal l
mov [0 x07000200] , rax

; re−i n i t i a t e s t a c k to o r i g i n a l s t r u c t u r e
xor r14 , r14
add r14 , 0x18
add r14 , counter ∗8
sub rsp , r14

; r e s e t every r e g i s t e r
xor rdx , rdx

42

xor r s i , r s i
xor rd i , r d i
xor r14 , r14
xor r13 , r13
xor rax , rax
xor r11 , r11

43

Listing C.2. Patch Inserted for SIGFPE Reckon Patch
cmp r8d , 0
j l e l a b e l 1
div r8d
jmp end
l ab e l 1 :

; va lue i s r e t a ined from the
; newly crea t ed page address
; where c e r t a i n by t e s o f
; input are s t o r ed
mov r8d , page_addr
div r8d

end :
nop

44

Listing C.3. Patch Code for Camouflage Patch
cmp source_reg , mapped_mem_region
j l e sec1
cmp source_reg , mapped_mem_region
jge sec1
o r i g i n a l_ i n s t r u c t i o n
jmp end_patch
sec1 :

cmp source_reg , mapped_mem_region
j l e sec2
cmp source_reg , mapped_mem_region
jge sec2
o r i g i n a l_ i n s t r u c t i o n
jmp end_patch

sec2 :
push rdx
push rcx
push r s i
; counter va lue i s s e t to determine
; the memory l o c a t i o n o f the input s t o r ed
mov rcx , counter
cmp rcx , mapped_mem_region
j l zero_check
mov rcx , −1
; address o f the newly crea t ed page
mov r s i , counter_addr
mov r s i , rcx
jmp normal_path

zero_check :
cmp rcx , 0
je r e s e t

r e s e t :
mov rcx ,−1
mov r s i , counter_addr
mov r s i , rcx

normal_path :
mov rdx , address
mov r s i , [counter_addr]
add r s i , 1

45

	Table of Contents
	List of Tables
	List of Figures
	Chapter
	1 INTRODUCTION
	2 BACKGROUND
	3 DESIGN
	4 EVALUATION
	5 LIMITATION
	6 DISCUSSION & CONCLUSION

	References
	Appendix
	A EXPERIMENT RESULTS
	B RAW CODE LISTING
	C PATCH CODE INSERTED FOR DIFFERENT CRASHES

