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ABSTRACT  

   

In this dissertation, a cyber-physical system called MIDAS (Managing Interacting 

Demand And Supply) has been developed, where the “supply” refers to the transportation 

infrastructure including traffic controls while the “demand” refers to its dynamic traffic 

loads. The strength of MIDAS lies in its ability to proactively control and manage mixed 

vehicular traffic, having various levels of autonomy, through traffic intersections. Using 

real-time traffic control algorithms MIDAS minimizes wait times, congestion, and travel 

times on existing roadways.  

For traffic engineers, efficient control of complicated traffic movements used at 

diamond interchanges (DI), which interface streets with freeways, is challenging for 

normal human driven vehicular traffic, let alone for communicationally-connected vehicles 

(CVs) due to stochastic demand and uncertainties. This dissertation first develops a 

proactive traffic control algorithm, MIDAS, using forward-recursion dynamic 

programming (DP), for scheduling large set of traffic movements of non-connected 

vehicles and CVs at the DIs, over a finite-time horizon. MIDAS captures measurements 

from fixed detectors and captures Lagrangian measurements from CVs, to estimate link 

travel times, arrival times and turning movements. Simulation study shows MIDAS’ 

outperforms (a) a current optimal state-of-art optimal fixed-cycle time control scheme, and 

(b) a state-of-art traffic adaptive cycle-free scheme. 

Subsequently, this dissertation addresses the challenges of improving the road 

capacity by platooning fully autonomous vehicles (AVs), resulting in smaller headways 

and greater road utilization. With the MIDAS AI (Autonomous Intersection) control, an 

effective platooning strategy is developed, and optimal release sequence of AVs is 
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determined using a new forward-recursive DP that minimizes the time-loss delays of AVs. 

MIDAS AI evaluates the DP decisions every second and communicates optimal actions to 

the AVs. 

Although MIDAS AI’s exact DP achieves optimal solution in almost real-time 

compared to other exact algorithms, it suffers from scalability. To address this challenge, 

the dissertation then develops MIDAS RAIC (Reinforced Autonomous Intersection 

Control), a deep reinforcement learning based real-time dynamic traffic control system for 

AVs at an intersection. Simulation results show the proposed deep Q-learning architecture 

trains MIDAS RAIC to learn a near-optimal policy that minimizes the total cumulative 

time loss delay and performs nearly as well as the MIDAS AI.  
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CHAPTER 1 

CONTROLLING MIXED TRAFFIC OF CONNECTED AND NON-CONNECTED 

VEHICLE TRAFFIC THROUGH A DIAMOND INTERCHANGE 

Preview of Contributions 

a) Proposed a data fusion approach to estimate link travel times of vehicles using 

vehicle GPS data and loop detector data. 

b) Proposed a rolling horizon based dynamic programming to determine a cycle-free 

optimal signal plan. 

c) Proposed a proactive traffic control architecture for diamond interchanges with 

limited internal storage capacity. 

1.1 Introduction to Traffic Signal Control  

Traffic signals are crucial for controlling the conflicts among intersecting traffic streams. 

Basically, green lights allow non-conflicting streams to proceed while the red signal lights 

stop conflicting streams. Much has been researched on optimal signal timings for a single 

isolated intersection [3][23][24][51][53]. Effectively, signal timings are described in terms 

of “phases”, where a phase is a set of green signal lights that allow vehicles to move in 

non-conflicting directions, for example North and South straight throughs while the red 

lights stop East and West traffic streams. Even a single green light, for example one that 

allows only North stream while red lights stop all others, is a valid phase. Hence a timing 

scheme for a single intersection can have many non-conflicting green phases to control it. 

Thus, basically designing a signal control scheme is to come up with a sequence of non-

conflicting phases where the signal lights corresponding to each phase have specified green 

durations that optimize a traffic performance function such as minimize total stopped delay.  
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When traffic signals were first developed and installed, signal timings were mechanically 

controlled with relays and the timings were set based on manually observed traffic over a 

period of days. The green times were “fixed” in a cyclic fashion, that is, for example, the 

durations of say four phases A, B, C, D are fixed and repeated over and over. Later, with 

implemented electric timing controllers with clocks, green-time durations could be 

provided in a “time-of-day” (TOD) fashion, since traffic streams were observed to have 

time-of day patterns, for example morning rush hours, evening rush hours, other moderate 

traffic hours, and late-night hours with light traffic. So even before the advent of 

computerized traffic signals, controlling a single intersection satisfactorily involved (a) 

developing an appropriate set of non-conflicting green phases and then (b) developing 

fixed TOD cyclic durations for these phases to address TOD patterns. In the sequel, fixed 

cycle time control, and related control schemes based on fixed cycle times, will be simply 

referred to as fixed time control as compared with cycle-free control schemes described 

below. 

With the advent of traffic sensors, specifically inductive loop detectors in the pavement, 

traffic engineers have been able to implement “actuated” traffic signal systems where some 

phase durations are time “extended” or are ended early (often referred to as “forced off” 

early), depending on the traffic detected just upstream of the signals [35][36]. Actuated 

phases with TOD signal timings have been observed to somewhat improve the performance 

of non-actuated TOD timings when the traffic patterns have more variance. Further use of 

available computational resources with a traffic control system have seen the introduction 

of traffic-responsive signal control systems e.g., SCOOT [22] where the phase timing plans 

are changed based on traffic patterns observed in the recent past, say in the last 15 mins.  
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Gartner and others [17][18][20] developed and tested the OPAC traffic-adaptive control 

scheme based on observed traffic but now the phase durations are cycle free. Here durations 

for each phase in sequence ABCD need not be equal and some phases may even be skipped 

if the corresponding traffic stream is absent or very low. The underlying engine algorithm 

for OPAC is dynamic programming [7]. In the last three decades, traffic signal schemes 

have been tested that have included prediction of traffic patterns based on observed past 

patterns and current upstream detections. Most successful are the ones that proactively set 

cycle-free signal phases, notably RHODES that was first proposed about 25 years ago, see 

e.g. [31] and recently SURTAC [42].  

Researchers and practitioners have also addressed the problem of controlling traffic 

streams on a network of intersections where vehicle departures from one signal impact the 

arriving traffic at downstream intersections. Optimally “coordinating” or “synchronizing” 

phases has been a much-studied problem [11][25][26][30][34]. Widely researched 

optimization algorithms for network of intersections (a) for TOD fixed cycles include 

TRANSYT [40], UTCS [16], TRANSYT-7F [49] and PASSER [9], (b) for traffic 

responsive fixed cycles include SCOOT [22] and SCATS [41], and (c) for cycle free 

phasing include RHODES [31] and RT-TRACS [37], In all of the above network 

approaches, each set of intersection signals are controlled by a single controller and all 

controllers are coordinated by the plans received from the underlying algorithms. In the 

paper [43] Stevanovic et. al., compared the influence of SCOOT and SCATS signal 

timings, cycle length, and offsets, etc. on the traffic performance, using VISSIM 

microsimulation. Recently, Stevanovic et. al., in a comprehensive study [4] compared fixed 

time cyclic plans that were optimized by three methods: (1) based on Highway Capacity 
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Software [27], (2) Tru-Traffic, used by some practitioners [8] and (3) VISTRO [38], a 

genetic-optimization based method available within VISSIM. They evaluated these plans 

using a calibrated simulation model of a network within Fort Lauderdale, Florida, very 

much in the vein of this paper that addresses cycle-free plans for a DI in Phoenix, AZ 

Also, related to our DP -based optimization discussed in this chapter, several offline value-

based reinforcement learning techniques like Q-learning, etc. have been studied to improve 

the coordination of intersection movements [5][6][13]. 

In many situations, a single controller directly controls a pair of closely spaced set of 

signals which normally is cheaper to install than two separate controllers. Developing a 

signal timing plan, for two closely spaced intersections, for example for a diamond 

interchange, is often a challenge for traffic engineers. The number of non-conflicting 

movements for the combined two intersections are significantly larger and so are the 

corresponding phases. Frequently, for practicality, diamond interchanges are controlled 

using TOD fixed time cyclic “3-phase” or “4-phase” signal control plans (these are 

described shortly in the next section).  

Several signal timing strategies have been developed for diamond interchanges per se. 

PASSER III [14] model is one of the earliest works for optimizing fixed signal control at 

diamond interchanges. This approach is an extension to PASSER, which determines fixed 

time signal plan based on data collected offline. Later Tian and co-researchers 

[44][45][46][52] developed signal control approaches that include both the traffic signals 

and ramp meters, still with fixed time using data collected offline. Messer and Chang 

[28][29] studied traffic actuated diamond interchanges and showed improved traffic 
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performance. Mirchandani and co-researchers [21], were among the first to develop and 

implement proactive traffic control for diamond interchanges based on the RHODES logic. 

Conducted field tests showed a significant performance improvement compared to pre-

timed signal control strategies. Later Fang and Elefteriadou [15] reported a similar DP-

approach to adaptively control a diamond interchange; but their solution approach was an 

approximation and was also not field evaluated.  

In this chapter, a dynamic programming based proactive, cycle-free traffic control model 

in a connected vehicle (CV) environment has been developed. Basically, in this scenario, 

a percentage of vehicles are assumed to be connected to the signal infrastructure through a 

communication mechanism, using wireless telephony like 4G/5G-LTE [1][12] or radio 

such as DSRC [55], so that exact locations of these vehicles is always known.  

The proposed traffic control approach, which we refer to as MIDAS (Managing Interacting 

Demands And Supplies) since it is based on the MIDAS Cyber-physical System (CPS) 

architecture developed by Mirchandani and co-researchers [32][33]. This work also 

compares MIDAS with RHODES and an optimal fixed time signal control (OFTC) and 

shows that the MIDAS indeed performs significantly better than the other two approaches 

on a real simulation of a diamond interchange in Phoenix, Arizona.    

1.2 Controlling a Diamond Interchange 

A diamond interchange (DI) consists of two closely spaced intersections with complicated 

traffic movements. DIs are equipped with a traffic controller that controls two sets of traffic 

lights for the two intersections that are within the diamond interchange. The phases at each 

of the intersections need to be synchronized to accommodate heavy traffic movements on 
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off ramps and arterial streets. A typical DI is shown in Figure 1.1, with 8 possible traffic 

movements to accommodate on-ramp, off-ramp, and arterial street traffic streams. Since it 

is assumed that right turn on red is allowed, right turn arrows are left out. 

 

Figure 1.1. Layout of a Diamond Interchange with Freeway Underpass 

Some common notations used in this chapter related to diamond interchange are defined 

in Table 1.1. 

Table 1.1. Diamond Interchange Notation to Describe Signal Timings 

Terminology Definition 

Movement (         ) Any given direction of traffic flow at an intersection is defined as a 

movement, i.e., right, through, and left movements, which are denoted by 

arrows. 
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Phase (Фi) Any phase Фi is defined as set of non-conflicting movements. All 

movements in a phase are set to green when that phase is operating. Figure 

1.2 shows an example where phase Ф3 is green. 

Signal Stage A stage is defined as a set of coordinating phases that are set to green. For 

example, Ф1 & Ф5 is a signal stage when Ф1 and Ф5 are operating. This 

terminology is in consistent with the stage in the DP that will be 

developed below. A stage can be a single phase or set of phases as in 

Figure 1.3 where signal stage Ф3 & Ф5 is green. 

(+) To make it easy to understand the traffic movements participating in a 

phase, often in this document a movement is labeled with a ‘+’ notation to 

indicate its participation in more than one phase. For example, in Figure 

1.2 through movement denoted by Ф1 + Ф2 means that this movement is 

green during both Ф1 and Ф2 phases 

Cycle length Cycle length is defined as time required for a controller to cycle through 

all the defined signal stages of the intersection. 

Split Split is the portion of time allocated to a signal stage in a cycle. This is 

terminology applies to fixed timings with fixed cycles and splits 

Offset Used in describing signal coordination on arterials using fixed signal 

cycles. Offset is the time difference between the start of cycle of two 

neighboring intersections and either expressed in seconds or percentage of 

cycle length.  

Lead-Lead Terminology used by practicing traffic engineers. In this setting, both 

arterial left-turn phases turn green before the coordinated through 

movements 
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Lag-Lag Terminology used by practicing traffic engineers. Here, both arterial left-

turn phases start after the coordinated through movements end (at the 

same time) 

Lead-Lag/Lag-

Lead 

Terminology used by practicing traffic engineers. Here, left turn on one 

direction starts before through movement and left turn on the other 

direction starts after the end of its coordinated through movement 

 A movement or phase is said to be protected if it has the right of way, 

during a signal stage. Often denoted by solid arrows in movement 

diagrams 

 A movement is said to be permissive when it yields to oncoming 

conflicting traffic movements during a signal phase. Often denoted by 

dashed arrows 

 

 

 

 

 

 

Figure 1.2. Phase Ф3 Example Shown with Movements in Bold Green. 

 

 

Ф
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Ф3 
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Figure 1.3. Signal Stage Example Shown with Concurrent Movements in Bold Green. 

1.2.1 Some Signal Plans at Diamond Interchanges used by Traffic Engineers 

Below we illustrate some common signal plans used at DIs. 

a) 3-Phase LAG-LAG: 

This signal plan shown in Figures A.1 & A.2 and Table A.1 has east-west through 

phase Ф1, arterial left turns phase Ф2, and off-ramp phase movements Ф3. Traffic 

engineers have designed this plan to serve heavy through-traffic on the arterial but 

will not service well heavy ramp traffic volumes or heavy crossroad left turn 

volumes, as these movements are affected by the limited internal storage capacity 

on the arterial between the intersections. This plan is good for two-way progression 

on the arterial when the interchange is very wide with zero-offset and for traffic 

demands that are directionally balanced and not too heavy. This is also a good plan 

for short cycle lengths. 

 

Ф6 

Ф4 

Ф3 

Ф1+ Ф 2 

Ф1 Ф2 

Ф4+ Ф5 

Ф5 
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b) 4-Phase LEAD/LAG - LAG: 

This plan (see Figures A.3 and A.4 and Table A.2) is designed to serve heavy 

through traffic on the crossroad and heavy ramp traffic (on both ramps) but will not 

service well heavy arterial left turn volumes. Again, the arterial left turn volumes 

are limited by the internal storage capacity. This plan also favors two-way 

progression on arterial and short cycle lengths. 

c) 4-Phase LEAD/LAG: 

This phase plan (see Figures A.5 and A.6 and Table A.3) is designed to serve heavy 

through traffic, heavy ramp traffic (on both ramps) and a heavy arterial left turn 

demand in one direction. The left turn in the opposite direction will store vehicles 

between the intersections. This plan also has the potential for good two-way 

progression for conditions previously described in 3-phase LAG-LAG, but this plan 

favors crossroad left movements more and reduce the green-time (split) for the 

opposing through movement. 

d) 3-Phase WITH "OVERLAPS": 

This phase (see Figures A.7 and A.8 and Table A.4) is very similar to the 3-phase 

lag-lag pattern, with the added ability to service one heavy ramp movement and 

one heavy crossroad left turn movement at any given time. This phase also can 

focus on ramp or crossroad left turn movement that may be favored based on time 

of day. Figure A.8 explains possible signal sequences of this plan, where the box 

with heavy solid lines indicates the primary sequence of signal stages and dotted 

lined box indicates possible overlap stages when needed. Basically Figure A.8 
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indicates 3 primary signal stages and two additional stages, each of which has two 

possible overlap stages. 

e) 4-Phase WITH "OVERLAPS" (TTI) PHASING: 

This phase plan (see Figures 1.4.1 and 1.4.2 and Table 1.2), proposed by Texas 

Transportation Institute [56][47][48], aims to serve heavy traffic on all four external 

approaches including the crossroad left turn movements. This is achieved by 

serving one approach at a time; for example, once a through movement is initiated 

at one intersection, it clears the traffic through the other intersection without the 

vehicles having to make a stop at the internal storage. This phase plan has some 

shortcomings associated with the concept of serving one approach at a time. Some 

added efficiency may be achieved through the early release of a through movements 

to consider the internal storage capacity utilization. Figure 1.4.2 explains the signal 

sequence of this plan, where solid arrows denote primary signal stages and dotted 

arrows denote overlap stages. This phase plan could potentially use 6 stages as 

shown in Figure 1.4.2 and Table 1.2. 

 

 

 

 

Figure 1.4.1. “4-Phase with Overlaps” Phase Movement 
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Figure 1.4.2. “4-Phase with Overlaps” Signal Scheme 
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Table 1.2. “4-Phase with Overlaps” Signal Stages 

 

 

 

 

 

 

 

 

 

 

 

1.2.2 MIDAS Signal Stages at Diamond Intersections 

The fixed signal plans discussed above address specific demand scenarios at the diamond 

interchanges, and none of these policies address managing stochastic demand. Demand 

fluctuations at the interchange corridor are inevitable and unpredictable. Implementing 

signal policies-based TOD scenarios leads to poor throughput and congestion management 

at the corridor. The proposed MIDAS concept employs flexible phases to proactively 

control all traffic movements as per demand fluctuations observed through sensors. The 6 

different signal phases shown in Figure 1.5.1 and the 9 different signal stages shown in 

Stage Green Phases 

1 Ф1  

Ф6 

2 Ф2  

Ф6 

3 Ф3  

Ф7 

4 Ф4  

Ф7 

5 Ф4  

Ф8 

6 Ф1  

Ф5 
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Table 1.3 serve all possible non-conflicting movements at the interchange. These 9 stages 

include all possible phase combinations used in the 3-phase and 4-phase conventional plans 

discussed above. Figure 1.5.2 previews the DP decision flow diagram, which will be 

described in detail in the next section. 

 

 

 

 

Figure 1.5.1. MIDAS Phase Movement 
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Figure 1.5.2. MIDAS DP Decision Process. 
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Table 1.3. MIDAS Signal Stages 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stage Green Phases 

1 Ф3  

Ф6 

2 Ф1 

Ф4 

3 Ф2  

Ф5 

4 Ф3  

Ф5 

5 Ф2  

Ф6 

6 Ф3  

Ф4 

7 Ф1  

Ф6 

8 Ф1  

Ф5 

9 Ф2  

Ф4 
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1.3 MIDAS Proactive Traffic Control Strategy 

As described in the introduction, there are several traffic signal control and strategies, some 

implemented and deployed, some prototyped and some being developed and tested, such 

as MIDAS. A good, fixed time strategy, defined later as a baseline, is OFTC (optimal fixed 

time signal control). A good proactive cycle-free control strategy that has been deployed 

and field tested is RHODES [19]. It uses upstream fixed detectors, such as inductive loops 

and traffic cameras, to predict vehicle arrivals and to set phase durations at intersections 

being controlled cycle-free. In this chapter, the performance of MIDAS, cycle-free signal 

control strategy, is evaluated and compared to OFTC and RHODES.  

1.3.1 Optimal Fixed Time Signal Control (OFTC) 

To evaluate the expected performance of any proactive traffic control algorithm via 

simulation modeling, it is useful to compare the performance metrics of interest to 

driving public against a baseline that represents a predominant strategy that traffic 

engineers use: optimal fixed cycle signal timings. To this end, we used VISSIM’s [39] 

signal control optimization procedure (described below); we will refer to it as “Optimal 

Fixed Time Signal Control” (OFTC) VISSIM simulation software performs green time 

optimization for stage-based fixed time controllers, where the sequence of stages is given. 

For each traffic load it performs numerous simulations of the entire network and finds the 

green times that minimizes total delay for that load through a search approach discussed 

below; the total green time for the stages gives the optimal fixed cycle time. For our 

OFTC plan for DI we simulated and used the stages of the 4-phase (TTI) plan since this 

TTI plan is suitable for DIs with heavy traffic loads on all approaches. We note similar 

comparisons can be used for any plan provided by the traffic engineer.  
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VISSIM’s Signal Optimization Procedure 

Starting with some initial green times, cycle time, and engineer-specified minimum green 

times, VISSIM, through simulations, first determines the average delay of all vehicles 

that have passed through the interchange on the lanes of the designated movements, using 

an automatically created evaluation procedure for each movement over the entire 

simulation run. Then the following steps are then performed to determine optimal fixed 

time signal plan. 

1. The signal phase in which the vehicles have the highest average delay is 

determined for each stage. 

2. The stage with the lowest maximum average delay is selected as the best stage. 

3. The stage with the highest maximum average delay is selected as the worst stage. 

4. One second of green time is deducted from the current best stage and one second 

of green time is added to the current worst stage. 

5. If a second can no longer be deducted from the best stage, the second-best stage is 

used. If this stage cannot be shortened because a specified minimum green time is 

reached, then the next best stage is considered, this is considered iteratively. Until 

no other stage can be shortened by one second, the optimization is terminated. 

6. The following rules are used to compare fixed time signal timing plans to procced 

with the search for finding the optimal plan. A signal plan is better than another if 

one of the following criteria is met: 

a. If the total vehicle flow through the intersection during the simulation run has 

increased by at least 25 vehicles, or by 10% if it is less than 25. 
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b. If the flow has not significantly decreased by 25 vehicles or by 10% but the 

average delay across all vehicles has decreased. 

7. If a signal program is better than the best found so far then it replaces this as the 

best. 

8. The optimization terminates with a fixed time signal timing plan is declared 

optimal when one of the following criteria is met: 

a. The identified best signal timing plan does not change in 10 simulation runs. 

b. The flow decreases by more than 25% compared to the identified best signal 

plan.  

c. The average delay increases by more than 25% compared to the identified best 

signal plan. 

More details are given in PTV-VISSIM, [39] 

1.3.2 MIDAS Underlying Architecture and Algorithms 

In any proactive traffic control system, the signal control algorithm is the key component 

in determining the optimal phase sequence and phase durations, by minimizing some user 

defined traffic performance measure, such as total delays, stops or queues at the 

intersections. Many researchers have worked towards developing proactive traffic control 

systems in the past, of which RHODES is among the better performing real time proactive 

traffic control systems that has been field tested. But like existing reactive and adaptive 

traffic control systems, RHODES uses measurement data from fixed sensors such as loop 

detectors and fixed cameras that count vehicles, referred to as Eulerian data, for prediction 

and estimation of vehicle arrivals at intersections. On the other hand, MIDAS traffic control 

uses trajectory data from GPS devices on vehicles, referred to as Lagrangian data, along 
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with Eulerian data from upstream detectors at all the approaches to predict individual 

arrival times of approaching vehicles, as well as turn movements at the intersections. These 

predictions are dynamically updated for a user defined time horizon. MIDAS traffic control 

algorithm uses these predictions to estimate the queues that are going to be formed, during 

the time horizon for each approach lane at the intersection, and the associated stopped 

delays. 

Like RHODES, MIDAS control algorithm predicts approaching traffic and estimates 

queues at the intersection based on the estimated or user defined queue discharge rates. 

From the navigation systems’ GPS data of some vehicles that are using the intersection, 

MIDAS knows the O-D paths of the approaching traffic, so MIDAS knows exact turning 

movement of these vehicles. Also, GPS data can be used in estimating travel times on lanes, 

so that MIDAS can predict arrival time at the back of queue for each individual vehicle. 

Since this work deals with mixed types of vehicles, vehicles enabled with and without GPS 

tracking, we estimate the link travel times using both Eulerian and Lagrangian 

measurements as described in the next subsection. 

1.3.2.1 Estimation and Prediction of Vehicle Arrivals at Intersections 

Assuming, without loss of generality (WLOG), that a certain proportion of participating 

traffic is enabled with GPS devices, providing location and speed of the vehicle in real-

time along with its origin and destination information. The following estimation approach 

uses both GPS data and loop detector data together to predict arrivals, turn movements and 

estimated queue lengths at the interchange (from here on model developments apply to 

either intersections or interchanges). 
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Notation: - 

𝑁𝑡
 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝑤𝑖𝑡ℎ 𝐺𝑃𝑆 𝑒𝑛𝑎𝑏𝑙𝑒𝑑, 𝑟𝑒𝑎𝑐ℎ𝑖𝑛𝑔 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 𝑡ℎ𝑒  

𝑡𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙  (𝑡 − 1, 𝑡). 

𝑁𝑡
′ = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝐺𝑃𝑆 𝑒𝑛𝑎𝑏𝑙𝑒𝑑, 𝑟𝑒𝑎𝑐ℎ𝑖𝑛𝑔 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 𝑡ℎ𝑒  

𝑡𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙  (𝑡 − 1, 𝑡). 

𝑇(𝑖,𝑡)
𝑢 = 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑜𝑓 𝐺𝑃𝑆 𝑒𝑛𝑎𝑏𝑙𝑒𝑑 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑖 𝑎𝑡 𝑡ℎ𝑒 𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟  

𝑎𝑛𝑑 𝑟𝑒𝑎𝑐ℎ𝑖𝑛𝑔 𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟 𝑑𝑢𝑟𝑖𝑛𝑔 𝑡ℎ𝑒 𝑡𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 (𝑡 − 1, 𝑡). 

𝑇(𝑖,𝑡)
𝑑 = 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑜𝑓 𝐺𝑃𝑆 𝑒𝑛𝑎𝑏𝑙𝑒𝑑 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑖 𝑎𝑡 𝑡ℎ𝑒 𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟 

𝑑𝑢𝑟𝑖𝑛𝑔 𝑡ℎ𝑒 𝑡𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 (𝑡 − 1, 𝑡). 

∆𝑥 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 𝑎𝑛𝑑 𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟. 

𝑣𝑡
𝑢 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑝𝑒𝑒𝑑 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑒𝑑 𝑎𝑡 𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 . 

𝑣𝑡
𝑑 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑝𝑒𝑒𝑑 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑒𝑑 𝑎𝑡 𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 . 

Travel time of vehicles from upstream to downstream, without GPS during the time 

interval (t, t+1) can be estimated according to Chen, C. [10] as shown in (1.1a) 

 
𝜃𝑡+1

̇ =
1

2
. (

∆𝑥

𝑣𝑡
𝑢 +

∆𝑥

𝑣𝑡
𝑑) 

(1.1a) 

Now the link travel time of any vehicle in the interval (t, t+1) can be estimated as shown 

in (1.1b) 
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𝜏𝑡+1̇ =

∑ (𝑇(𝑖,𝑡)
𝑑 −𝑇(𝑖,𝑡)

𝑢 )
𝑁𝑡

 

𝑖=1
+𝑁𝑡

′ .𝜃𝑡+1
̇

𝑁𝑡
 +𝑁𝑡

′                                      
(1.1b) 

Turning probabilities at the intersection are estimated using GPS data, shown in equations 

(1.2a), (1.2b) & (1.2c) 

 
𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑡𝑢𝑟𝑛𝑖𝑛𝑔 𝑙𝑒𝑓𝑡,  𝜌𝑡+1

𝑙 =
𝑁𝑡

𝑙

𝑁𝑡
 

(1.2a) 

 
𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑔𝑜𝑖𝑛𝑔 𝑡ℎ𝑟𝑜𝑢𝑔ℎ,  𝜌𝑡+1

𝑠 =
𝑁𝑡

𝑠

𝑁𝑡
 

(1.2b) 

 
𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑡𝑢𝑟𝑛𝑖𝑛𝑔 𝑟𝑖𝑔ℎ𝑡,  𝜌𝑡+1

𝑟 =
𝑁𝑡

𝑟

𝑁𝑡
 

(1.2c) 

Estimating queues at the intersection is essential for efficient proactive control and 

discharge of vehicles. MIDAS in real-time estimates the queue lengths on each lane over a 

rolling horizon using the following equation. MIDAS in real time updates the data 

structures containing the predicted arrivals and committed queues every simulation second. 

As soon as the predicted vehicle arrives at the intersection it gets committed. At any given 

time, MIDAS estimates the anticipated queues for the following time horizon using the 

committed queues, predicted arrivals and departures as shown in Figure 1.6 and eqn. (1.3). 

The queue estimation process logic sequence is illustrated in Figure 1.7 

𝑄𝑇𝑛
= 𝑄𝑇𝑛−1

+ 𝐴(𝑇𝑛,𝑇𝑛−1) − 𝐷(𝑇𝑛,𝑇𝑛−1)                                                        (1.3) 

𝑄𝑇𝑛
= 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑞𝑢𝑒𝑢𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑎𝑡 𝑡ℎ𝑒 𝑒𝑛𝑑 𝑜𝑓 𝑡𝑖𝑚𝑒 ℎ𝑜𝑟𝑖𝑧𝑜𝑛 𝑇𝑛. 

𝑄𝑇𝑛−1
= 𝑙𝑒𝑓𝑡𝑜𝑣𝑒𝑟 𝑜𝑟 𝑐𝑜𝑚𝑚𝑖𝑡𝑒𝑑 𝑞𝑢𝑒𝑢𝑒 𝑎𝑡 𝑡ℎ𝑒 𝑏𝑒𝑔𝑖𝑛𝑖𝑛𝑔 𝑜𝑓 𝑡𝑖𝑚𝑒 ℎ𝑜𝑟𝑖𝑧𝑜𝑛 𝑇𝑛. 

𝐴(𝑇𝑛,𝑇𝑛−1) = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑠 𝑑𝑢𝑟𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 ℎ𝑜𝑟𝑖𝑧𝑜𝑛 𝑇𝑛. 
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𝐷(𝑇𝑛,𝑇𝑛−1) = 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑜𝑟 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒𝑠 𝑑𝑢𝑟𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 ℎ𝑜𝑟𝑖𝑧𝑜𝑛 𝑇𝑛. 

 

 

 

 

 

 

 

 

Figure 1.6. Projection of Queue Over a Time Horizon 
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Figure 1.7. Sequence (Top to Bottom) of Snapshots for Queue Estimation Logic 
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1.3.2.2 MIDAS Control Optimization Problem 

Signal control problem can be mathematically formulated similar to machine scheduling 

problem, by treating  traffic signals at the intersection as a machine and approaching 

vehicles as jobs, using mixed integer programming (MIP) as follows. 

Parameters 

J =  set of possible movements present at the intersection. 

a ij =  arrival time of vehicle 𝑖 in movement 𝑗 at the back of the queue,  

at the intersection. 

dij =  departure time needed for vehicle 𝑖 in the movement 𝑗 to clear the  

intersection. 

fij =  free flow time needed for vehicle 𝑖 in the movement 𝑗 to clear the intersection. 

Vj =  set of vehicles in the movement 𝑗. 

Cj =  set of movements in conflict with movement 𝑗. 

Decision Variables 

rij =  scheduled release time of vehicle 𝑖 of movement 𝑗, through the intersection. 

Objective 

min
 

∑ ∑(𝑟𝑖𝑗 + 𝑑𝑖𝑗)

∀ 𝑗𝑖 ∈𝑉𝑗

− (𝑎𝑖𝑗 + 𝑓𝑖𝑗) 
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Constraints 

 𝑟𝑖𝑗 ≥ 𝑎𝑖𝑗       ∀𝑖 ∈ 𝑉𝑗, ∀𝑗 ∈ 𝐽 (1.4) 

 𝑟𝑖+1𝑗 ≥ 𝑟𝑖𝑗     ∀𝑖 ∈ 𝑉𝑗, ∀𝑗 ∈ 𝐽 (1.5) 

 𝑟𝑖′𝑗′ < 𝑟𝑖𝑗 + 𝑀. 𝑧𝑖′𝑗′𝑖𝑗      ∀𝑖′ ∈ 𝑉𝑗′ ,  ∀𝑗′ ∈ 𝐶𝑗 ,   ∀𝑖  ∈ 𝑉𝑗 ,  ∀𝑗  ∈ 𝐽 (1.6) 

 
𝑟𝑖′𝑗′ ≥ 𝑟𝑖𝑗 + 𝑑𝑖𝑗 − 𝑀. (1 − 𝑧𝑖′𝑗′𝑖𝑗)  ∀𝑖′ ∈ 𝑉𝑗′ ,  ∀𝑗′ ∈ 𝐶𝑗 ,   ∀𝑖  

∈ 𝑉𝑗 ,  ∀𝑗  ∈ 𝐽 

(1.7) 

 𝑟𝑖𝑗 ∈ 𝐼, 𝑧 ∈ 𝐵, 𝑀 𝑖𝑠 𝑎 𝑙𝑎𝑟𝑔𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 (1.8) 

The objective function above minimizes the waiting time of vehicles at the intersection. 

The first part of the objective function is the time at which vehicle i leaves intersection 

through movement j and the second part is the time it would have left the intersection if 

there was no signal control at the intersection or free flow time. Constraint (1.4) enforces 

that the release time of the vehicle from its corresponding queue should be at least equal to 

the arrival time of the vehicle at the intersection (or back of the queue). Constraint (1.5) in 

the formulation makes sure that platoons are discharged from the queue in FIFO order. 

Constraints (1.6) and (1.7) eliminate scenarios where conflicting traffic movements happen 

at the same time. Index 𝑖′ is for vehicles in conflicting movement 𝑗′. 

Using conventional solvers to solve this MIP becomes computationally tedious when 

dealing with a large networks and large numbers of vehicles and hence it will be difficult 

to obtain a solution in real-time. As shown below, MIDAS uses a DP aproach to 
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significantly speed up the computation at the expense of memory. MIDAS takes advantage 

of the fact that DP solves the sub-problems sequentially and stores results for later use, this 

technique reduces the time complexity from exponential to polynomial.  

1.3.2.3 Dynamic Programming Approach for Control Optimization 

MIDAS signal control algorithm uses DP forward recursion to minimize a user-defined 

performance measure over a finite-time horizon (that rolls forward from run to run) and, 

then uses a backward recursion to retrieve the optimal phase schedule for that time horizon. 

The signal control algorithm of MIDAS is a modification of DP algorithm developed in 

RHODES [31] but with a more efficient data structure. MIDAS signal control algorithm 

determines the optimal signal phase sequence and duration of each phase in the sequence, 

by taking signal phases (refer to Figure 1.5.1 and Table 1.3) and time horizon T as input 

parameters. Control algorithm runs DP at some time stamp ‘t’, with prescribed time horizon 

T, considering the currently estimated arrivals on all approaches of the interchange over 

the timeline t+T. The DP is formulated such that each “stage” of the DP is associated with 

a signal stage (Table 1.3) and number of time units allocated after completion of a particular 

stage is defined as DP’s “state variable”. The DP solution consists of the signal stage 

sequence and time units allocated to each signal stage over the time horizon of T time units 

as illustrated in Figure 1.8. At every DP run, the sequence of signal stages begins with the 

current signal stage green phases at the interchange, which allow for the phases of current 

signal stage to be terminated or extended based on the updated observations. 
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Figure 1.8. DP solution representation: an example of optimal phases and their durations 

over time horizon T 

DP notation: - 

𝑂 = 𝑢𝑛𝑖𝑞𝑢𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑝ℎ𝑎𝑠𝑒𝑠, 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑛𝑜𝑛 − 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑖𝑛𝑔 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑠. 

𝑇 = 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡𝑖𝑚𝑒 ℎ𝑜𝑟𝑖𝑧𝑜𝑛 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑒𝑑. 

𝑔𝑚𝑖𝑛  =  𝑚𝑖𝑛 𝑔𝑟𝑒𝑒𝑛 𝑡𝑖𝑚𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑓𝑜𝑟 𝑎 𝑝ℎ𝑎𝑠𝑒. 

𝑔𝑚𝑎𝑥  =  𝑚𝑎𝑥 𝑔𝑟𝑒𝑒𝑛 𝑡𝑖𝑚𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑓𝑜𝑟 𝑎 𝑝ℎ𝑎𝑠𝑒. 

𝑟 = 𝑟𝑒𝑑 𝑙𝑖𝑔ℎ𝑡 𝑡𝑖𝑚𝑒 𝑜𝑟 𝑐𝑙𝑒𝑎𝑟𝑎𝑛𝑐𝑒 𝑡𝑖𝑚𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑏𝑒𝑓𝑜𝑟𝑒 𝑝ℎ𝑎𝑠𝑒 𝑐ℎ𝑎𝑛𝑔𝑒. 

𝑖 =  𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑡𝑎𝑔𝑒 𝑖𝑛 𝐷𝑃 

𝑠𝑖 =  𝑠𝑡𝑎𝑡𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑑𝑒𝑛𝑜𝑡𝑖𝑛𝑔 𝑡𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑡𝑜 𝑝ℎ𝑎𝑠𝑒𝑠 𝑢𝑛𝑡𝑖𝑙 𝑡ℎ𝑒  

𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑡𝑎𝑔𝑒 𝑖 

𝑐𝑖  =  𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑑𝑒𝑛𝑜𝑡𝑖𝑛𝑔 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑢𝑛𝑖𝑡𝑠 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑡𝑜  

𝑝ℎ𝑎𝑠𝑒 𝑖  

𝐶𝑖(𝑠𝑖) =  𝑠𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑐𝑖 , 𝑔𝑖𝑣𝑒𝑛 𝑠𝑡𝑎𝑡𝑒 𝑠𝑖. 

𝑓𝑖(𝑠𝑖, 𝑐𝑖) = 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 𝑖𝑛 𝑠𝑡𝑎𝑔𝑒 𝑖, 𝑔𝑖𝑣𝑒𝑛 𝑠𝑡𝑎𝑡𝑒 𝑠𝑖 𝑎𝑛𝑑  

𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑐𝑖. 

Ф1 & Ф4 

T 

Ф3 & Ф6 Ф2 & Ф5 
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𝑧𝑖(𝑠𝑖) =  𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑡ℎ𝑎𝑡 𝑠𝑡𝑜𝑟𝑒𝑠 𝑡ℎ𝑒 𝑠𝑢𝑚 𝑜𝑓 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑠  

𝑜𝑓 𝑎𝑙𝑙 𝑠𝑡𝑎𝑔𝑒𝑠 𝑢𝑛𝑡𝑖𝑙 𝑠𝑡𝑎𝑔𝑒 𝑖 𝑔𝑖𝑣𝑒𝑛 𝑡ℎ𝑒 𝑠𝑡𝑎𝑡𝑒 𝑠𝑖. 

𝐶𝑖(𝑠𝑖) =  { 0,1,2… . 𝑇} 

𝑠𝑖 = {
𝑠𝑖−1,                            𝑖𝑓 𝑐𝑖 = 0
𝑠𝑖−1 + 𝑐𝑖 + 𝑟, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}                                                       (1.9) 

The performance index function 𝑓𝑖 is generalized to take care variety of key performance 

metrics at the intersection like delays, stops and queue lengths, etc. WLOG, we can assume 

that 𝑓𝑖(𝑠𝑖, 𝑐𝑖) > 0 for a given feasible state 𝑠𝑖 defined according to eqn. (1.9) and control 

decision 𝑐𝑖. In this chapter, for explanation purpose, we assume the performance index is 

delay, in other words, the waiting times at the intersection. The cumulative delay is the 

minimization function that minimizes the total estimated delay up to the end of the decision 

horizon for the control decision of the allocated time units to signal stages.  This objective 

can be expressed mathematically as (1.10): 

𝑧𝑖(𝑠𝑖) =  min
𝑐𝑖

 𝑓𝑖(𝑠𝑖, 𝑐𝑖) + 𝑧𝑖−1(𝑠𝑖−1)    | ∀𝑐𝑖 ∈  𝐶𝑖(𝑠𝑖)                           (1.10) 

1.3.2.4 Dealing with Limited Internal Storage Capacity at the Interchange  

One of the main challenges in setting optimal phase decisions for a diamond interchange 

is to avoid spill backs due to limited inter storage capacity between the closely spaced 

intersections. To address this challenge, MIDAS uses increasing weighted expected delays 

on lanes with limited internal storage capacity to minimize overspilling (we used 

exponentially increasing weights but could be replaced by any increasing function). Weight 
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used for the internal storage lane 𝑙 at any time t is an exponential function of queue length 

and is computed by. (1.11). 

 
𝑊(𝑙, 𝑡) = {𝑒

𝑘𝑙.𝑄𝑙
2(𝑡), 𝑖𝑓 𝑙 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑙𝑎𝑛𝑒.

1,                                                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}  

(1.11) 

𝑊(𝑙, 𝑡) = weight of internal storage lane 𝑙 at any time 𝑡.  

𝑙 = 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑙𝑎𝑛𝑒 𝑙, 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑐𝑙𝑜𝑠𝑒𝑙𝑦 𝑠𝑝𝑎𝑐𝑒𝑑 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑡ℎ𝑒  

𝑖𝑛𝑡𝑒𝑟𝑐ℎ𝑎𝑛𝑔𝑒.  

𝑄𝑙
 (𝑡) = 𝑄𝑢𝑒𝑢𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑙𝑎𝑛𝑒 𝑙  

   𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡. 

𝑘𝑙 = 𝑎 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑓𝑜𝑟 𝑙𝑎𝑛𝑒 𝑙 (𝑑𝑖𝑠𝑐𝑢𝑠𝑠𝑒𝑑 𝑏𝑒𝑙𝑜𝑤). 

So, the performance index function can be re-written as shown is eqn. (1.12) 

 𝑓𝑖(𝑠𝑖, 𝑐𝑖) = ∑ 𝑊(𝑙, 𝑠𝑖)∀𝑙 ∈ 𝐿𝑖́
.  𝑑𝑙(𝑠𝑖, 𝑐𝑖)                                               (1.12) 

𝐿𝑖 = 𝑠𝑒𝑡 𝑜𝑓 𝑙𝑎𝑛𝑒 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑠 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑑𝑢𝑟𝑖𝑛𝑔 𝑝ℎ𝑎𝑠𝑒 𝑖 

𝑑𝑙(𝑠𝑖, 𝑐𝑖) = 𝑡𝑜𝑡𝑎𝑙 𝑑𝑒𝑙𝑎𝑦 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝑜𝑛 𝑙𝑎𝑛𝑒 𝑙  
  , 𝑔𝑖𝑣𝑒𝑛 𝑠𝑡𝑎𝑡𝑒 𝑠𝑖 𝑎𝑛𝑑 control  

decision 𝑐𝑖. 
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Figure 1.9. The lane weight vs queue length for I-17/19th Ave., Phoenix, AZ interchange  

Multiplicative constant 𝑘𝑙 in the expression can be fine-tuned based on the internal storage 

lane capacity and geometry of the diamond interchange. In the example of I-17/19th Ave., 

Phoenix, AZ interchange 𝑘𝑙value was set to 0.01 for all internal storage lanes based on 

simulation analysis, and the lane weights varied with queue length as shown in Figure 1.9. 

1.4 Evaluation and Results 

To evaluate the efficiency of MIDAS control, a freeway diamond interchange (at I-17/19th 

AVE., Phoenix) was simulated using VISSIM, a microscopic multi-modal traffic flow 

simulation platform, as shown in Figure 1.10. Simulated network layout was calibrated 

with the help of Arizona Department of Transportation [2].  

MIDAS control is designed to minimize any user defined objective/metric. In this 

evaluation we used the objective of minimizing total delay of vehicles that arrive at the 

interchange from the off-ramps and arterial streets. In the evaluation experiments, MIDAS 

algorithm controlled the simulated interchange in VISSIM, via the Microsoft COM 
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interface [54]. Vehicle delay was measured as the additional time required to pass through 

the controlled diamond interchange due to the waiting times in queues.  The performance 

of MIDAS signal control was evaluated by running multiple simulation runs with various 

traffic loads. All these loads were kept low enough so that there was sufficient capacity for 

the traffic loads without excessive spillover and the results simply focus on the delays due 

to management of traffic signal controls. After the end of each simulation run VISSIM 

reports simulation statistics collected during the run. A set of key performance results for 

the network simulated (see Figure 1.10) and the DI are given. in Table 1.4 and 1.5 

` 

Figure 1.10. I-17/19th AVE., Phoenix Diamond Interchange in VISSISM 
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Table 1.4. Network Level Performance 

Control TrafficLoad(v/h) DelayAvg(s) TotalDelay(s) TotalTravelTime(s) 

MIDAS 4900 13.25 66235.87 414791 

RHODES 4900 14.5 72472.17 421109 

OFTC 4900 32.05 160218.47 467528 

 

Table 1.5. Interchange Level Performance 

Control TrafficLoad(v/h) DelayAvg(s) StopsAvg TotalStops AvgQLEN 

MIDAS 4900 11.5 0.68 3337 2.47 

RHODES 4900 12.96 0.81 3964 2.75 

OFTC 4900 25.74 1.01 5002 18.23 

 

In the above tables, the performance metrics are.  

• DelayAvg: Average of all vehicles delays due to waiting times in queues. 

• TotalDelay: Sum of all vehicle delays in network, in seconds. 

• StopsAvg: Average number of stops made by a vehicle at the interchange. 

• AvgQLEN: Average queue length at the stop lines of the interchange. 

• TotalTravelTimes: Sum of travel times of all vehicles in the network, in seconds. 

In this simulation-based evaluation we assumed MIDAS to control at 100% market 

penetration of connected vehicles, meaning that every vehicle participating in the 

simulation is assumed to be equipped with GPS device and communicates with MIDAS 
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controllers. With GPS data MIDAS knows with certainty the turning movement of each 

vehicle at the interchange. Evaluations of MIDAS control with varying market penetrations 

are given in a later section. 

We use the following notation for computing performance metrics. using eqn. 1.13.  

𝑁 = 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝑖𝑛 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 

𝑡𝑖
𝑓

= 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 𝑜𝑓 𝐺𝑃𝑆 𝑒𝑛𝑎𝑏𝑙𝑒𝑑 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑖 𝑓𝑟𝑜𝑚 𝑖𝑡𝑠 𝑜𝑟𝑔𝑖𝑛 𝑡𝑜 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛  

𝑢𝑛𝑑𝑒𝑟 𝑓𝑟𝑒𝑒 𝑓𝑙𝑜𝑤. 

𝑡𝑖
𝑐 = 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 𝑜𝑓 𝐺𝑃𝑆 𝑒𝑛𝑎𝑏𝑙𝑒𝑑 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑖 𝑓𝑟𝑜𝑚 𝑖𝑡𝑠 𝑜𝑟𝑔𝑖𝑛 𝑡𝑜 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛  

𝑢𝑛𝑑𝑒𝑟 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦. 

𝑠𝑖 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑜𝑝𝑠 𝑚𝑎𝑑𝑒 𝑏𝑦 𝐺𝑃𝑆 𝑒𝑛𝑎𝑏𝑙𝑒𝑑 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑖 𝑏𝑒𝑓𝑜𝑟𝑒 𝑟𝑒𝑎𝑐ℎ𝑖𝑛𝑔 𝑖𝑡𝑠  

𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 

𝑇 = 𝑡𝑜𝑡𝑎𝑙 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑖𝑛 𝑠𝑒𝑐𝑠 

𝑄𝑡
𝑙 = 𝑞𝑢𝑒𝑢𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑙𝑎𝑛𝑒 𝑙 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡. 

1.4.1 Average Delay 

Average delay is a key performance metric used in traffic science to evaluate traffic control 

systems. Since many DIs in US implement pre-timed signal controls with fixed phase 

sequences like 3-phase or 4-phase plans, it would be legitimate to compare the average 

MIDAS’ delays (eqn. (1.13)) for the network shown in Figure 1.10 with optimal fixed time 

control for the DI. Figure 1.11 below compares the delays of MIDAS with RHODES and 
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OFTC for different traffic loads, using VISSIM simulations. MIDAS control shows a 

significant reduction in total delays when compared to the other two control strategies. 

RHODES, as shown before, has better delay times than OFTC at low loads, but it tends to 

increase at a faster rate than MIDAS, when the traffic load increases. 

 
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑒𝑙𝑎𝑦 =

∑ (𝑡𝑖
𝑐 − 𝑡𝑖

𝑓
)𝑁

𝑖=1

𝑁
 

(1.13) 

 

 

Figure 1.11 Comparison of Average. Delays vs Traffic Load for Different Signal Control 

Strategies 

1.4.2 Average Stops  

The average number of stops (eqn. (1.14)) is another important performance metrics that 

traffic engineers are interested in decreasing, which is the average number of times a 

vehicle had to stop due to the traffic congestion and traffic signals in the network. Figure 

1.12 compares stops due to MIDAS with other traffic control strategies for different traffic 

loads. Observe that MIDAS performs better with respect to stops when compared to 

RHODES and OFTC. 
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𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑡𝑜𝑝𝑠 =

∑ 𝑠𝑖
𝑁
𝑖=1

𝑁
 

(1.14) 

 

Figure 1.12. Comparison of Average Number of Stops vs Traffic Load for Different 

Signal Control Strategies. 

1.4.3 Average Queue Length 

Traffic engineers also try to come up with traffic policies to decrease the queues formed at 

the DIs due to limited capacity between the signals. Based on the VISSIM simulations for 

different traffic loads, a comparison of average queue lengths (eqn. (1.15)) due to MIDAS, 

RHODES, and OFTC are shown in Figure 1.13. Again, MIDAS outperforms the other two 

traffic strategies. RHODES performed as well at low traffic loads, but queue lengths tend 

to increase at a higher rate than when the load increases. 

 
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑄𝑙𝑒𝑛𝑔𝑡ℎ =

∑ ∑ 𝑄𝑡
𝑙

𝑙∈𝐿
𝑇
𝑡=1

|𝐿|. 𝑇
 

(1.15) 
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Figure 1.13. Comparison of Average Queue Length vs Traffic Load for Different Signal 

Control Policies 

1.4.4 Market Penetration 

We evaluated the performance of MIDAS for different market penetration rates of the 

connected vehicles, which is described as the percentage of vehicles that are GPS enabled 

and provide their routes to the MIDAS system. Our study shows that MIDAS delays 

decrease when market penetration increases, as would be expected (see Figure 1.14). Also, 

as would be expected, when market penetration is very low then these benefits are similar 

to RHODES (compare Figure 1.14 and Figure 1.11 for load 6800 v/h). 
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Figure 1.14. MIDAS Performance Graph for Different Market Penetration Rates for 

Traffic Load 6800 v/h 
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CHAPTER 2 

PROACTIVE TRAFFIC CONTROL AND PLATOON MANAGEMENT OF 

AUTONOMOUS VEHICLES THROUGH AN UNSIGNALIZED INTERSECTION 

Preview of Contributions 

a) Proposed an unsignalized intersection control logic for fully autonomous vehicles 

without a need for traffic signal lights. 

b) Proposed an effective platoon management logic for AVs. 

c) Proposed an efficient dynamic programming algorithm that determines the 

optimal discharge sequence of platoons/ AVs through an unsignalized 

intersection. 

d) Demonstrated the benefits of platooning AVs using CACC through simulation 

study. 

2.1 Introduction to Autonomous Intersection Control and Management 

Artificial intelligence (AI) has been shaping the future of numerous industries like aviation, 

healthcare, manufacturing, and transportation. Transportation problems are inherently 

complex problems to solve as the system behavior is complicated to model according to a 

predictable pattern. The complexity of the system arises from underlying uncertainties like 

traffic demand, capacity, human errors, and accidents, controlling different driver agents 

with conflicting objectives. In such an unpredictable environment, AI helps to predict 

appropriate actions or decisions using observed data, predictive and prescriptive models to 

promote safe, efficient, and reliable transportation. Among the plethora of intelligent 

automotive technologies developed so far, AI implementation in today's cars is notably 

preeminent. Today's cars are equipped with AI-driven smart technologies like driver 
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assistance system, collision avoidance, high-tech cruise controls, and night vision 

enhancements, etc. 

Soon, traffic on the roads will partially become fully autonomous and it's inevitable. Before 

we get into the literature of autonomous intersection control and management it is 

important to understand different driving technologies associated with autonomous 

driving.  

Autonomous driving autonomy is a state in which an agent acts independently making 

self-decisions. An Autonomous vehicle can make driving decisions independently to 

maximize its own objective. Autonomous driving itself doesn't improve the traffic 

congestion intrinsically until it adopts the cooperative driving strategy. 

Automated driving enables automatic driving capabilities without human intervention. 

According to SAE there are 6 different levels of automation and are defined based on the 

automation features executed by the automation system. 

Level 0 doesn't exhibit any automation capabilities. Human acts as the master of the control, 

with the human driver responsible for all aspects of driving like steering, pedaling, 

monitoring surrounding, navigating, and maneuvering through the traffic, etc. 

Level 1 vehicles have automatic throttling and braking system. Some cars at this level 

obtain information about the environment, provide lane assistance and self-parking. But 

the human driver always has the main control of the vehicle. 
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Level 2 vehicles can handle steering, throttling, braking, and automatic lane changing 

capabilities. It includes driver assistance technologies with adaptive cruise control models 

using LIDAR or RADAR. 

Level 3 automation responds in accordance with the surrounding environments, changes 

lanes and provides conditional assistance without human intervention. But the human 

driver still is required to take control when necessary. 

Level 4 automation enables cars to drive by themselves without the need for a human to 

intervene. Although a human driver is present, his actions remain passive with the vehicle 

able to take over complete control. 

Level 5 automated vehicles don't require human control at all and are fully automated 

without the need for pedals or a steering wheel and only contains passenger seating. 

Connected driving involves information exchange between automated vehicles, non-

automated vehicles, and infrastructure installed on the road network. Although connected 

technology provides the potential opportunity to improve the traffic situation, the 

information can be misused for individual objectives. 

Cooperative driving lets the individual vehicles cooperate with each other by sharing 

information through Inter-vehicular communication (IVC) and employ microscopic 

driving actions in accordance with optimizing system objective. Platooning is a cooperative 

driving strategy that improves capacity utilization, safety, and reliability of traffic 

movement. Autonomous vehicles (AV) equipped with IVC technology are capable of 

driving in platoons using vehicle-to-vehicle communication (V2V), at very close distances 
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safely and efficiently. Platooning improves utilization of road capacity, fuel economy, and 

throughput at the intersections significantly. 

Even with fully autonomous vehicular traffic there is a need for safe and efficient 

intersection management strategy. Traditionally traffic lights are used as a solution to 

intersection management (IM) of human driven vehicles. However, the advancements in 

autonomous driving [64] and communication technology [74][75][76] has motivated 

researchers to extensively investigate autonomous intersection management (AIM) 

strategies. Google’s Waymo has made fully autonomous driving a reality by commercially 

introducing public self-driving ride-hailing service to commuters in Phoenix, AZ [63]. The 

early research on intersection management for fully connected and autonomous vehicular 

traffic in the literature is based on multiagent systems approach [77] which is a subfield of 

artificial intelligence. In this research authors used a reservation-based intersection control 

mechanism that schedules space and time for vehicles to move through the intersection 

based on FIFO and eliminates the need for conventional traffic lights or stop signs but it 

neither proactively optimize the flow through the intersection nor platoon the AVs for 

better delays or capacity utilization. Later some MILP based strategies [78][79][80][81] 

were investigated to determine the release order and optimal speeds for the fixed-path 

vehicles. In this chapter a real-time DP proactively optimizes the release sequence of AVs 

and communicates the decisions to a conflict zone based unsignalized intersection control 

that efficiently controls the approaching AV traffic using V2I communication and 

schedules a safe passage through the intersection for the AVs with conflicting movements. 
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2.2 MIDAS AI System Architecture and Development 

2.2.1 MIDAS AI System Overview 

MIDAS AI stands for managing interacting demand and supply through both centralized 

and decentralized cloud computing architecture. MIDAS AI is a three-layered architecture 

that efficiently controls and safely manages the movements of autonomous vehicular (AV) 

platoons through a network of automated unsignalized (traffic lights free) intersections 

controlled through MIDAS-AISCU and connected via cloud computing infrastructure, in 

real time.  The very top layer of the architecture (MIDAS-NLC) shown in Figure 2.1 is 

responsible for managing and scoping network level characteristics. The middle layer 

(MIDAS-PSMS) effectively communicates with the AV platoons traversing through the 

network to efficiently manage the formation of platoons based on the origin and destination 

of AVs, link properties and traffic dynamics and the last layer is called MIDAS-AISCU. 

AISCU proactively optimizes the departure schedule of AV platoons by minimizing their 

delays using a forward-recursion dynamic programming problem with a rolling horizon 

and future state estimation equations (see 2.2.3.2) and safely controls the platoon 

movements through an automated intersection that is free from conventional signal lights. 

NLC stands for network level curator as it captures the network level information about 

dynamically varying traffic characteristics like link flows, link travel times and wait-times 

at the intersection nodes in the network. It also captures the slow varying characteristics of 

physical road network like the link or lane closures, and speed limits, etc. NLC provides 

critical information to both PSMS and AISCU during several centralized and localized 

decision epochs to minimize overall delays in the network. The transmitted information is 
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exchanged to other layers of the system through connector modules as shown in Figure 2.2. 

The primary goal of this chapter is to highlight the model development and algorithmic 

implementation behind PSMS and AISCU layers of MIDAS-AI system.  

 

Figure 2.1 MIDAS-AI System Architecture 
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Figure 2.2 MIDAS-AI System Concept of Operations 

 

MIDAS 

AI 
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PSMS stands for platoon scoping and management system. Efficient platooning of AVs 

based on individual AV origin & destination (OD) information is crucial in improving road 

capacity utilization and system wide objectives and PSMS system achieves this by 

predicting mesoscopic characteristics of the network that includes platoon flow prediction 

on links. PSMS uses efficient platooning logic and data structure to integrate and 

disintegrate the AV platoons on the network links. The concept of operations for PSMS is 

shown in Figure 2.3 

 

Figure 2.3 PSMS Concepts of Operation 
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AISCU stands for autonomous intersection scheduling and control unit. The AISCU 

system is responsible for control and management of AV platoons approaching an 

intersection. It proactively schedules the transit of platoons/AVs and controls the safe 

passage through the intersection. AISCU solves a forward recursive Dynamic 

Programming (DP) with rolling horizon approach, using forward state estimation 

equations, to schedule AV platoons/AVs movements through the intersection, such that the 

total time-loss delays due to the conflict movements at the intersection are minimized. The 

AISCU is a stand-alone system located at each unsignalized intersection, always connected 

to MIDAS network through V2I communication protocol and can act independently for 

safer and reliable passage of fleets of AVs through the intersection in real time, without the 

need for conventional traffic signal lights. AISCU receives AV engine control information 

like engine variables, vehicle speed, maximum acceleration, etc., in real-time and 

implements control decisions upon assessing the conflicts for each individual AV/platoon 

when it reaches the control decision point (refer section 2.2.3.3).  

The concept of operations is shown in Figure 2.4. The mathematical formulations and DP 

algorithm are further investigated in the later sections. 
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Figure 2.4 AISCU Concept of Operations 

2.2.2 Platoon Scoping and Management System 

Coordinating vehicles to travel closely by maintaining only the minimum required safety 

distances, improves the road capacity utilization by greater margins [65]. A fleet of vehicles 

propagating closely together for certain time in a road network is called a platoon. To 

achieve and maintain an optimal platoon formation, constant evaluation of minimum safety 
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distance or minimum time headway between leading and following vehicle is required [66], 

which depends on the individual vehicle dynamics.  In this section a brief introduction to 

car following models and advancements in vehicle control and safety systems are 

discussed. Later in this section, the MIDAS platooning strategy to manage autonomous 

vehicle platoon formation is introduced and the underlying car following model simulation 

architecture is also discussed. 

2.2.2.1 Leader-Follower Behavior 

In general vehicles travel at desired speeds on a congestion-free or free flow road link. But 

in congestion a vehicle tends to follow the preceding vehicle, maintaining a safe distance 

by adjusting the speed along its trajectory. This kind of behavior is called a leader-follower 

behavior. According to simplified car following model [57], the time-space trajectory of 

follower vehicle is essentially the same as the leader vehicle except for a translation in 

space and in time as shown in Figure 2.5 below.  

 

Figure 2.5 Newell Car Following Model 
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There were several car-following models developed in the literature for human-driven 

vehicular traffic. The very first car following models were proposed by Pipes & Chandler 

[57], Some other known models are Gazis-Herman-Rothery model [58], Helly [59], Gipps 

[60], Wiedemann [61], Krauss [62], and the intelligent driver model [68]. Even with the 

discovery and implementation of sophisticated car-following models it is highly 

challenging to accurately model and predict the uncertainty involved in human-driven 

vehicular traffic. This challenge can be addressed with the help of V2V communication 

protocol in case of fully autonomous vehicular traffic that can precisely model the driving 

behavior of AVs in the event of car following by exchanging the engine control parameters 

wirelessly between the neighboring vehicles, explained in detailed in the next sections. 

2.2.2.2 Autonomous Car Following Model 

With the development of advanced driver-assistance (ADA) systems like cruise control, 

lane detection and collision avoidance systems, driving has become more reliable and safer. 

For driver safety and comfort ADA developed an adaptive cruise control (ACC) system. 

ACC uses sensors like RADAR, LIDAR, and video cameras to detect the movement of the 

preceding car and adjusts its speed to maintain a safe distance. ACC enables a safer and 

reliable car following behavior, also improves the utilization of road capacity due to shorter 

inter-vehicular gap. Several researchers analyzed the impact of ACC on traffic flow using 

simulation studies [84][85][86]. 

The further improvement of longitudinal and lateral control systems leads to the 

development of vehicle to vehicle (V2V) communication in cars with self-driving 

capability. A vehicle equipped with V2V or inter vehicular communication (IVC) uses 
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dedicated short-range communication (DSRC), a wireless protocol to exchange 

information with other IVC enabled vehicles [87][88]. Cooperative adaptive cruise control 

is an extension of ACC, uses V2V communication as a feedback loop to obtain the speed, 

acceleration, position, and other engine variables from the preceding vehicle to adjust its 

speed and gap accordingly.  

Platooning of SDVs is made possible using CACC car following architecture. CACC 

exhibits better string stability over ACC, as string stability is a measure of disturbances 

amplifying while the vehicle is propagating downstream through the platoon. CACC is 

capable of exchanging messages several times a second, leads to accurate estimation of 

traffic flow. On the other hand, ACC amplifies the measurements in the upstream direction 

due to braking and acceleration of vehicles in the platoon, leading to poor string stability 

[89]. In the past several researchers have developed longitudinal control models enabling 

cooperative driving capability for vehicles with onboard IVC technology, achieving high 

string stability [82][89][95][96][97]. Researchers have also studied the impact of CACC 

longitudinal control on the traffic flow characteristics in [90]-[94]. Most of the research 

efforts made so far had been focused towards developing a string stable longitudinal control 

for traffic with IVC communication and understanding the benefits of such automated 

driving on highway capacity and flows. But there is need for developing platooning 

strategies to determine optimal joining and unjoining decisions based on the ODs and the 

objective to minimize delays at the intersections in a road network. In this chapter an 

efficient platooning strategy has been developed to control and manage platooning of AVs 

through an unsignalized autonomous intersection. 
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2.2.2.3 MIDAS Platooning Strategy 

With the advent of AVs, it is very critical to study and understand the consequences of 

platooning on traffic flow and road capacity utilization. Unfortunately, there isn’t much 

research study available related to the impact of platooning on capacity utilization and 

intersection delays. In this dissertation we develop a platooning strategy to proactively 

control and manage AV platoons in a traffic network, in real-time and perform simulation 

studies to understand time loss, throughput, and travel times, etc. 

At every decision epoch (usually when the vehicle enters an intersection corridor), MIDAS 

can calculate the estimated trajectories of agents (AVs) upstream, arriving at the 

intersection by calculating shortest paths based on estimated traffic flow in the network. 

Once the trajectory information of the arriving AVs is updated MIDAS platooning model 

encourages an AV to join a platoon with maximum overlap time in the updated platoon 

trajectory, subject to maximum platoon length and posted link speeds etc. Similarly, an AV 

unjoins a platoon when it doesn’t have any matching arc in the updated platoon trajectory, 

like shown in Figure 2.6 
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Figure 2.6 MIDAS Platooning Strategy 

𝑢𝑖𝑗
𝑡 = 𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝐴𝑉 𝑜𝑟 𝑝𝑙𝑎𝑡𝑜𝑜𝑛 𝑖 𝑖𝑛 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑗 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡. 

𝑝𝑜𝑠𝑖𝑗
𝑡 = 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝐴𝑉 𝑜𝑟 𝑝𝑙𝑎𝑡𝑜𝑜𝑛 𝑖 𝑖𝑛 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑗 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 𝑓𝑟𝑜𝑚 𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚  

𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛. 

𝐴𝑖𝑗
𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑎𝑙𝑙𝑜𝑤𝑒𝑑 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝐴𝑉 𝑜𝑟 𝑝𝑙𝑎𝑡𝑜𝑜𝑛 𝑖 𝑖𝑛 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡. 

𝑙𝑗
 = 𝑎𝑙𝑙𝑜𝑤𝑒𝑑 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑝𝑙𝑎𝑡𝑜𝑜𝑛 𝑜𝑛 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑗; 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝑖𝑛 𝑎 𝑝𝑙𝑎𝑡𝑜𝑜𝑛 

𝑝𝑖𝑗
𝑡 = 𝑏𝑒𝑠𝑡 𝑝𝑎𝑡ℎ 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑 𝑓𝑜𝑟 𝐴𝑉 𝑜𝑟 𝑝𝑙𝑎𝑡𝑜𝑜𝑛 𝑖 𝑖𝑛 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑗 𝑡𝑜 𝑖𝑡′𝑠  

𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡. 

𝑃𝑖
𝑡 = 𝑠𝑒𝑡 𝑜𝑓 𝑝𝑙𝑎𝑡𝑜𝑜𝑛𝑠 𝑝𝑎𝑡ℎ𝑠 𝑡ℎ𝑎𝑡 ℎ𝑎𝑠 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 𝑤𝑖𝑡ℎ 𝑝𝑖𝑗

𝑡   

𝑔𝑖𝑗
𝑎𝑣𝑔

= 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑔𝑎𝑝 𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛𝑒𝑑 𝑏𝑦 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝑖𝑛 𝑝𝑙𝑎𝑡𝑜𝑜𝑛 𝑖 𝑖𝑛  

𝑡 = 𝑡  

𝑡 = 𝑡′ 
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𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑗. 

𝑇(𝑖,𝑖−1)𝑗
𝑡 = 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑖 𝑡𝑜 𝑗𝑜𝑖𝑛 𝑝𝑙𝑎𝑡𝑜𝑜𝑛 𝑖 − 1 𝑖𝑛 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑗  

𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡. 

𝜏𝑖𝑗
𝑡 = 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 max  𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑝𝑙𝑎𝑡𝑜𝑜𝑛 𝑖 𝑖𝑛 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑗 𝑡𝑜 𝑟𝑒𝑎𝑐ℎ 𝑡ℎ𝑒  

𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡. 

 

𝑇(𝑖,𝑖−1)𝑗
𝑡 =

−(𝑢𝑖−1𝑗
𝑡 − 𝑢𝑖𝑗

𝑡 ) ± √(𝑢𝑖−1𝑗
𝑡 − 𝑢𝑖𝑗

𝑡 )
 

2
− 2 ∗ 𝐴𝑖𝑗

𝑚𝑎𝑥 ∗ (𝑝𝑜𝑠𝑖𝑗
𝑡 − 𝑝𝑜𝑠𝑖−1𝑗

𝑡 − 𝑔𝑖𝑗
𝑎𝑣𝑔

)

𝐴𝑖𝑗
𝑚𝑎𝑥               (2.1) 

𝜏𝑖−1𝑗
𝑡 =

𝑝𝑜𝑠𝑖−1𝑗
𝑡

𝑢𝑖−1𝑗
𝑡                       (2.2) 
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MIDAS continuously evaluates the best path for each vehicle to its destination at 
every epoch (usually when the vehicle enters an intersection corridor) and 
determines the set of platoons ahead of vehicle with overlapping trajectories. 
Assuming MIDAS provides an estimated path 𝑝𝑖𝑗

𝑡  to travel for vehicle i in movement j 

at time t. 

Step 1: Given 𝑢𝑖𝑗
𝑡 , 𝑝𝑖𝑗

𝑡 , 𝑃𝑖
𝑡 , 𝑙𝑗 , 𝐴𝑖𝑗

𝑚𝑎𝑥 , 𝑔𝑖𝑗
𝑎𝑣𝑔

 

for each (𝑝𝜖𝑃𝑖
𝑡 , 𝑝𝑖𝑗

𝑡 ) pair: 

calculate the estimated overlap path-time duration Ƭ = 𝑡′ − 𝑡 for the 
path pairs, for example as shown in Fig 2.6 vehicle joins platoon at 𝑡 =

𝑡 and disjoins at    𝑡 = 𝑡′  

Step 2: sort set 𝑃𝑖
𝑡  by T by descending order. 

Step 3: for each (𝑝𝜖𝑃𝑖
𝑡 , 𝑝𝑖𝑗

𝑡 ) pair: 

 If  |𝑝| + 1 ≤  𝑙𝑗
 

: 

  Estimate 𝑇(𝑖,𝑖−1)𝑗
𝑡  𝑎𝑛𝑑 𝜏𝑖−1𝑗

𝑡  using equation (2.1) & (2.2) 

  If  𝑇(𝑖,𝑖−1)𝑗
𝑡 < 𝜏𝑖−1𝑗

𝑡 : 

   Go to Step 4 

  Else:  

   Continue  

 Else: 

  Continue. 

Step 4: accelerate vehicle 𝑖 to join platoon 𝑝 

Step 5: Terminate 

 

Algorithm 2.1. MIDAS Platooning Strategy for Autonomous Vehicular Traffic 
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2.2.3 MIDAS Autonomous Intersection Scheduling and Control Unit (AISCU) 

2.2.3.1  Autonomous Intersection Control Problem Formulation 

Efficient platoon movement at the intersection contributes to less time loss, higher 

throughputs, and minimization of overall travel times of traffic in the network. Unlike fixed 

time or reactive control, MIDAS- AISCU proactively optimizes platoon scheduling at the 

intersection. Autonomous intersection control optimization is similar to a job scheduling 

problem with platoons as jobs and intersection movements as machines. Hence this 

problem is formulated as integer linear programming (ILP) as below. 

Parameters: - 

𝐽 =  𝑠𝑒𝑡 𝑜𝑓 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑠 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑎𝑡 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛. 

𝑎 𝑖𝑗 =  𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑝𝑙𝑎𝑡𝑜𝑜𝑛 𝑖 𝑖𝑛 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑗 𝑎𝑡 𝑡ℎ𝑒 𝑏𝑎𝑐𝑘 𝑜𝑓 𝑡ℎ𝑒  

𝑞𝑢𝑒𝑢𝑒, 𝑎𝑡 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛. 

𝑑𝑖𝑗 =  𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 𝑡𝑖𝑚𝑒 𝑛𝑒𝑒𝑑𝑒𝑑 𝑓𝑜𝑟 𝑝𝑙𝑎𝑡𝑜𝑜𝑛 𝑖 𝑖𝑛 𝑡ℎ𝑒 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑗 𝑡𝑜 𝑐𝑙𝑒𝑎𝑟 𝑡ℎ𝑒 𝑖 

𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛. 

𝑓𝑖𝑗 =  𝑓𝑟𝑒𝑒 𝑓𝑙𝑜𝑤 𝑡𝑖𝑚𝑒 𝑛𝑒𝑒𝑑𝑒𝑑 𝑓𝑜𝑟 𝑝𝑙𝑎𝑡𝑜𝑜𝑛 𝑖 𝑖𝑛 𝑡ℎ𝑒 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑗 𝑡𝑜 𝑐𝑙𝑒𝑎𝑟 𝑡ℎ𝑒  

𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛. 

𝑃𝑗 =  𝑠𝑒𝑡 𝑜𝑓 𝑝𝑙𝑎𝑡𝑜𝑜𝑛𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑗. 

𝐶 𝑗
′ =  𝑠𝑒𝑡 𝑜𝑓 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡 𝑤𝑖𝑡ℎ 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑗. 
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Decision Variables: - 

𝑟𝑖𝑗 =  𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 𝑟𝑒𝑙𝑒𝑎𝑠𝑒 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑝𝑙𝑎𝑡𝑜𝑜𝑛 𝑖 𝑜𝑓 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑗, 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑡ℎ𝑒  

𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛. 

Objective 

min
 

∑ ∑(𝑟𝑖𝑗 + 𝑑𝑖𝑗)

∀ 𝑗𝑖 ∈𝑃𝑗

− (𝑎𝑖𝑗 + 𝑓𝑖𝑗) 

Constraints 

 𝑟𝑖𝑗 ≥ 𝑎𝑖𝑗        ∀𝑖 ∈ 𝑃𝑗 , ∀𝑗 ∈ 𝐽 (2.3) 

 
𝑟𝑖+1𝑗 ≥ 𝑟𝑖𝑗     ∀𝑖 ∈ 𝑃𝑗 , ∀𝑗 ∈ 𝐽 

 
(2.4) 

 𝑟𝑖′𝑗′ < 𝑟𝑖𝑗 + 𝑀. 𝑧𝑖𝑗𝑖′𝑗′      ∀𝑖′ ∈ 𝑃𝑗′ , ∀𝑗′ ∈ 𝐶𝑗
′, ∀𝑖  ∈ 𝑃𝑗 , ∀𝑗  ∈ 𝐽 (2.5) 

 
𝑟𝑖′𝑗′ ≥ 𝑟𝑖𝑗 + 𝑑𝑖𝑗 − 𝑀. (1 − 𝑧𝑖𝑗𝑖′𝑗′)     ∀𝑖′ ∈ 𝑃𝑗′ , ∀𝑗′ ∈ 𝐶𝑗

′, ∀𝑖  

∈ 𝑃𝑗 , ∀𝑗  ∈ 𝐽 
(2.6) 

   

 𝑟𝑖𝑗 ∈ 𝐼+, 𝒛 ∈ 𝑩, 𝑀 𝑖𝑠 𝑎 𝑙𝑎𝑟𝑔𝑒 +  𝑖𝑛𝑡𝑒𝑔𝑒𝑟 (2.7) 
 

The objective function minimizes the time loss of platoons at the intersection proactively. 

The first part of the objective function is the time at which platoon i leaves intersection 

through movement j and the second part is the time it would’ve left the intersection if there 

wasn’t any delay (traveling at free flow speed with no time loss). Constraint (2.3) enforces 

that the release time of the platoon from its corresponding queue should be at least equal 

to the arrival time of the platoon at the intersection (or back of the queue). Constraint (2.4) 

in the formulation makes sure that platoons are released from the queue in FIFO order. 
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Constraints (2.5) & (2.6) take care of the scenarios where conflicting platoon movements 

happening at the same time. Constraint (2.7) defines the variable types. 

2.2.3.2 Dynamic Programming Approach for Scheduling AV Departures 

The dynamic programming (DP) approach discussed in chapter 1 controls connected 

vehicular traffic efficiently by determine sequence of phases and duration of green time 

units allotted to each phase by minimizing the delays at the intersection. But the concept 

of traffic lights and green time units become obsolete in the era of completely autonomous 

vehicular traffic. In this chapter a signal free traffic control system is introduced to control 

the autonomous vehicular movements through the intersection. A new DP approach is 

developed to determine the optimal sequence of AVs to release from the intersection by 

minimizing the time loss of vehicles due to propagated congestion upstream from 

intersection stop delays. It is assumed that all the AVs are connected to AISCU in real-

time and share their engine parameters. At every second AISCU receives the state of the 

intersection corridor that includes the position, speed, and other engine parameters of every 

individual vehicle in the intersection corridor and DP stage and states are estimated. 

AISCU also communicates the control decisions with the AVs in real-time and without 

loss of generality (WLOG) it is assumed that 100% of the vehicles obey the control 

decisions transmitted by AISCU. The traffic lights free autonomous intersection control 

(IC) logic of MIDAS AISCU is responsible for safe and efficient vehicle movements at the 

intersection. AISCU seamlessly implements MIDAS DP decisions in real-time by 

performing series of safety checks, more details in the section 2.2.3.3.  
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The following section introduces the MIDAS DP model methodology and the underlying 

algorithmic construct. In the beginning of this section, DP model notation is defined and 

followed by the equations to estimate the system state variables. For the sake of brevity 

and DP illustration, we assume a simple intersection setting with 4-legs with through and 

left-turn movements.  

DP Notation: -  

𝑵 is set of stages in DP or Number of vehicles at the intersection corridor at the 

beginning of DP.  

𝒂𝒋 is an action (to release the next feasible AV) from the movement j. 

𝑪𝒋 is set of complementary movements associated with movement j that doesn’t conflict 

with action 𝒂𝒋. 

𝒔𝒏 is a state in the current stage. It is number of vehicles released from each approach at 

the intersection by the end of the stage n. Example (W: 2, E: 5, N: 0, S: 3) 

𝒔𝒏−𝟏
′  is the state in previous stage n-1 from where you get to 𝒔𝒏 by taking an action 𝒂𝒋 

𝑽(𝒔𝒏) is value of being in the state 𝒔𝒏 

𝑨𝝅(𝒔𝒏) is a decision function that determines the optimal action to take in the state 𝒔𝒏 

𝑳(𝒔𝒏, 𝒂𝒋)
  is the total loss time associated with an action 𝒂𝒋, in the state 𝒔𝒏 

𝑉(𝑠𝑛) = 𝑚𝑖𝑛
𝑎𝑗

( 𝐿(𝑠𝑛, 𝑎𝑗) + 𝑉(𝑠𝑛−1
′ ))               (2.8) 

𝐴𝜋(𝑠𝑛) = arg𝑚𝑖𝑛
𝑎𝑗

( 𝐿(𝑠𝑛, 𝑎𝑗) + 𝑉(𝑠𝑛−1
′ ))      (2.9) 
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Figure 2.7. DP Solution with Release Sequence of Vehicles Approaching the Intersection. 

MIDAS DP is scheduled to run every second by capturing the dynamics of the intersection 

corridor to determine the optimal sequence of AVs/Platoon releases and a typical DP 

decision sequence is shown in Figure 2.7. As per Bellman’s principle of optimality [67] 

the optimal value of being in a state can be expressed using (2.8). The horizon length of 

DP is defined as the number of AVs/Platoons present in the intersection corridor at the 

beginning of each DP run. DP consists of sequence of stages and a stage in DP is defined 

as the number of vehicles released by the end of that stage with number of vehicles released 

from each movement bound as a state in the considered stage. An action in each state in 

this DP formulation is a decision to release an AV/ platoon from one of the movement 

bounds. For every DP state transition, there will be an update to MIDAS system state 

variables like speed, position of AVs. The update to the variables is made for each AV 

using iterative kinematic estimation equations as proposed below. 

𝑢𝑗 = 𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑛 𝑡ℎ𝑒 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑗, 𝑎𝑡 𝑡ℎ𝑒  
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𝑏𝑒𝑔𝑖𝑛𝑖𝑛𝑔 𝑜𝑓 𝑠𝑡𝑎𝑔𝑒 𝑛.   

𝑉𝑗
𝑚𝑎𝑥 = 𝑚𝑎𝑥 𝑙𝑖𝑛𝑘 𝑠𝑝𝑒𝑒𝑑 𝑎𝑙𝑙𝑜𝑤𝑒𝑑 𝑜𝑛 𝑡ℎ𝑒 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑗 𝑜𝑟 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑠𝑝𝑒𝑒𝑑. 

𝐴𝑖𝑗
𝑓𝑟𝑒𝑒

= 𝑓𝑟𝑒𝑒 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑔𝑖𝑣𝑒𝑛 𝑡𝑜 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑖 𝑖𝑛 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑗. 

𝐵𝑖𝑗
𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑑𝑒𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑔𝑖𝑣𝑒𝑛 𝑡𝑜 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑖 𝑖𝑛 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑗. 

𝐴𝑖𝑗
𝑡 = 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑖 𝑖𝑛 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑗. 

𝑡𝑗 = 𝑏𝑙𝑜𝑐𝑘 𝑡𝑖𝑚𝑒,max  𝑡𝑖𝑚𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑡𝑜 𝑐𝑙𝑒𝑎𝑟 𝑜𝑓𝑓 𝑡ℎ𝑒 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛  

𝑜𝑛 𝑡ℎ𝑒 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑗 

𝑑𝑗 = 𝑠𝑎𝑓𝑒𝑡𝑦 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑛 𝑡ℎ𝑒  

𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑗 𝑡𝑜 𝑡𝑟𝑎𝑣𝑒𝑙 𝑏𝑒𝑓𝑜𝑟𝑒 𝑎𝑛 𝐴𝑉 𝑓𝑟𝑜𝑚 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑖𝑛𝑔 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑖𝑠 𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑, 𝑡𝑜  

𝑐𝑙𝑒𝑎𝑟 𝑜𝑓𝑓 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛. 

𝑑_𝑝𝑜𝑡𝑖𝑗
𝑡 = 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑟𝑎𝑣𝑒𝑙𝑙𝑒𝑑 𝑏𝑦 𝐴𝑉 𝑖 𝑖𝑛 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑗 𝑑𝑢𝑟𝑖𝑛𝑔 𝑡 𝑎𝑛𝑑 𝑡 + 1 

𝑢𝑝𝑜𝑡𝑖𝑗
𝑡 = 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝐴𝑉 𝑖 𝑖𝑛 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑗 𝑑𝑢𝑟𝑖𝑛𝑔 𝑡 𝑎𝑛𝑑 𝑡 + 1 

𝑛𝑖𝑗
𝑡 = 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑝𝑙𝑎𝑡𝑜𝑜𝑛;  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝑉𝑠 𝑖𝑛 𝑝𝑙𝑎𝑡𝑜𝑜𝑛 𝑖 𝑖𝑛 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑗 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 

𝑥𝑖𝑗
𝑡 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝐴𝑉 𝑖 𝑎𝑛𝑑 𝐴𝑉 𝑖 − 1 𝑜𝑛 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑗 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡. 

Besides the proposal of autonomous intersection control and management, one of the major 

contributions in this chapter is to study the impact on vehicle throughput and delays at the 

intersection by platooning AV traffic through cooperative driving strategy, using IVC 

technology. To achieve these two different autonomous driving strategies are tested using 

a brand-new DP algorithm proposed in algorithm 2.2. 
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1) AV traffic with disabled IVC technology but assumed to have enabled continuous V2I 

communication. 

2) AV traffic with both IVC and V2I communications enabled and is assumed to obey the 

MIDAS platooning strategy 100% of the time. 

𝑥𝑖𝑗
𝑡 = {

𝑝𝑜𝑠𝑖𝑗
𝑡        𝑖𝑓 𝑖 = 0,

𝑝𝑜𝑠𝑖𝑗
𝑡 − 𝑝𝑜𝑠𝑖−1𝑗

𝑡 ,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}    (2.10) 

State estimation for AV traffic in case of disabled IVC and an effective platooning 

strategy  

In this scenario MIDAS DP assumes that AVs have disabled the onboard IVC 

communication and are not able to adopt CACC car following behavior and hence follows 

an improved version of intelligent driver model (IDM) [68] for longitudinal dynamics like 

acceleration or deceleration etc. The original IDM model formulates the acceleration or 

deceleration of a following vehicle as a function of current speed, desired speed (max 

allowed speed on the link), actual distance and desired safe distance between the follower 

vehicle and leading vehicle as shown in (2.11). The downside of the original IDM is that 

when AV travels at speeds close to the desired speed of the link model overestimates large 

safe distance and vehicles tend to disperse at such speeds. To overcome this problem 

Treiber and Kesting [69] proposed an improved IDM model that estimates the dynamics 

of vehicles at even desired link speed as defined in (2.13) - (2.16). 

𝜏 = 𝑠𝑎𝑓𝑒 𝑡𝑖𝑚𝑒 𝑔𝑎𝑝  

𝑥∗(𝑢𝑖𝑗
𝑡 , ∇𝑢𝑖𝑗

𝑡 ) = 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝐴𝑉 𝑖 𝑎𝑛𝑑 𝐴𝑉 𝑖 − 1 𝑜𝑛 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑗  
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𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡. 

𝑥0 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑏𝑢𝑚𝑝𝑒𝑟 𝑡𝑜 𝑏𝑢𝑚𝑝𝑒𝑟 𝑔𝑎𝑝 𝑛𝑒𝑒𝑑𝑒𝑑 

𝛿 = 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

𝐴𝑖𝑗
𝑡+1 = 𝐴𝑖𝑗

𝑚𝑎𝑥 [1 − (
𝑢𝑖𝑗

𝑡

𝑉𝑗
𝑚𝑎𝑥)

𝛿

− (
𝑥∗(𝑢𝑖𝑗

𝑡 ,∇𝑢𝑖𝑗
𝑡 )

𝑥𝑖𝑗
𝑡 )

2

]       (2.11) 

𝑥∗(𝑢𝑖𝑗
𝑡 , ∇𝑢𝑖𝑗

𝑡 ) =

{
 
 

 
 

(𝑢0𝑗
𝑡 )2

2√𝐴0𝑗
𝑚𝑎𝑥𝐵0𝑗

𝑚𝑎𝑥 
     𝑖𝑓 𝑖 = 0,

𝑥0 + max
 

(0, 𝑢𝑖𝑗
𝑡 ∗ 𝜏 + 

𝑢𝑖𝑗
𝑡 ∇𝑢𝑖𝑗

𝑡

2√𝐴𝑖𝑗
𝑚𝑎𝑥𝐵𝑖𝑗

𝑚𝑎𝑥 
), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒      

}
 
 

 
 

  (2.12) 

𝐴𝑖𝑗
𝑓𝑟𝑒𝑒

=

{
  
 

  
 𝐴𝑖𝑗

𝑚𝑎𝑥 [1 − (
𝑢𝑖𝑗

𝑡

𝑉𝑗
𝑚𝑎𝑥)

𝛿

]     𝑖𝑓  𝑢𝑖𝑗
𝑡 ≤ 𝑉𝑗

𝑚𝑎𝑥

−𝐵𝑖𝑗
𝑚𝑎𝑥 [1 − (

𝑉𝑗
𝑚𝑎𝑥

𝑢𝑖𝑗
𝑡 )

𝐴𝑖𝑗
𝑚𝑎𝑥𝛿

𝐵𝑖𝑗
𝑚𝑎𝑥

]      𝑖𝑓  𝑢𝑖𝑗
𝑡 > 𝑉𝑗

𝑚𝑎𝑥

}
  
 

  
 

     (2.13) 

𝐴𝑗
𝑓𝑟𝑒𝑒

= 𝐴𝑖𝑗
𝑓𝑟𝑒𝑒

| 𝑖 = 0 & 𝑢𝑖𝑗
𝑡 = 𝑢𝑗                            (2.14) 

𝐴𝑖𝑗
𝑡 |𝑢𝑖𝑗

𝑡 ≤𝑉𝑗
𝑚𝑎𝑥 =

{
 

 𝐴𝑖𝑗
𝑚𝑎𝑥(1 − 𝑧2)   𝑧 =

𝑥∗(𝑢𝑖𝑗
𝑡 ,∇𝑢𝑖𝑗

𝑡 )

𝑥𝑖𝑗
𝑡 ≥ 1,

𝐴𝑖𝑗
𝑓𝑟𝑒𝑒 (1 − 𝑧

2𝐴𝑚𝑎𝑥
𝑖𝑗

/𝐴𝑓𝑟𝑒𝑒
𝑖𝑗

)    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒}
 

 
        (2.15)     

𝐴𝑖𝑗
𝑡 |𝑢𝑖𝑗

𝑡 >𝑉𝑗
𝑚𝑎𝑥 = {

𝐴𝑖𝑗
𝑓𝑟𝑒𝑒

+ 𝐴𝑖𝑗
𝑚𝑎𝑥(1 − 𝑧2)   𝑧 =

𝑥∗(𝑢𝑖𝑗
𝑡 , ∇𝑢𝑖𝑗

𝑡 )

𝑥𝑖𝑗
𝑡 ≥ 1,

𝐴𝑖𝑗
𝑓𝑟𝑒𝑒

                                                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}    (2.16) 

𝑡𝑗 =
−𝑢𝑗 ± √𝑢𝑗

2 − 2 ∗ 𝐴𝑗
𝑓𝑟𝑒𝑒

∗ 𝑑𝑗

𝐴𝑗
𝑓𝑟𝑒𝑒

           (2.17) 



  63 

𝑢_𝑝𝑜𝑡𝑖𝑗
𝑡+1 = 𝑢𝑖𝑗

𝑡 + 𝐴𝑖𝑗
𝑓𝑟𝑒𝑒

            (2.18) 

𝑑𝑝𝑜𝑡𝑖𝑗

𝑡+1 = 𝑢𝑖𝑗
𝑡 +

𝐴𝑖𝑗
𝑓𝑟𝑒𝑒

2
              (2.19) 

𝑢𝑖𝑗
𝑡+1 =

{
 

 
𝑢_𝑝𝑜𝑡𝑖𝑗

𝑡+1 𝑖𝑓 𝑖 = 0, 𝐴𝜋(𝑠𝑛) = 𝑎𝑗′ 𝑎𝑛𝑑 𝐴𝜋(𝑠𝑛+1) = 𝑎𝑗: 𝑗 ∈ 𝐶𝑗′  

𝑢𝑖𝑗
𝑡 + 𝐴𝑖𝑗

𝑡 |𝑢𝑖𝑗
𝑡 ≤𝑉𝑗

𝑚𝑎𝑥  𝑖𝑓 𝑢𝑖𝑗
𝑡 ≤ 𝑉𝑗

𝑚𝑎𝑥  

𝑢𝑖𝑗
𝑡 + 𝐴𝑖𝑗

𝑡 |𝑢𝑖𝑗
𝑡 >𝑉𝑗

𝑚𝑎𝑥 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 }
 

 
       (2.20)  

𝑝𝑜𝑠𝑖𝑗
𝑡+1 =

{
  
 

  
 
𝑝𝑜𝑠𝑖𝑗

𝑡 − 𝑑𝑝𝑜𝑡𝑖𝑗

𝑡+1 𝑖𝑓 𝑖 = 0, 𝐴𝜋(𝑠𝑛) = 𝑎𝑗′  𝑎𝑛𝑑 𝐴𝜋(𝑠𝑛+1) = 𝑎𝑗: 𝑗 ∈ 𝐶𝑗′

𝑝𝑜𝑠𝑖𝑗
𝑡 + 𝑢𝑖𝑗

𝑡 +
𝐴𝑖𝑗

𝑡 |𝑢𝑖𝑗
𝑡 ≤𝑉𝑗

𝑚𝑎𝑥  

2
   𝑖𝑓 𝑢𝑖𝑗

𝑡 ≤ 𝑉𝑗
𝑚𝑎𝑥

𝑝𝑜𝑠𝑖𝑗
𝑡 + 𝑢𝑖𝑗

𝑡 +
𝐴𝑖𝑗

𝑡 |𝑢𝑖𝑗
𝑡 >𝑉𝑗

𝑚𝑎𝑥  

2
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. }

  
 

  
 

     (2.21) 

State estimation for AV traffic in case of enabled IVC and an effective platooning strategy 

𝑡𝑠𝑔 = 𝑖𝑛𝑡𝑒𝑟 𝑠𝑡𝑟𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑔𝑎𝑝 𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛𝑒𝑑 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝐴𝑉𝑠 𝑤𝑖𝑡ℎ 𝑖𝑛 𝑎 𝑝𝑙𝑎𝑡𝑜𝑜𝑛 

𝑡𝑑𝑔 = 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑡𝑖𝑚𝑒 𝑔𝑎𝑝 𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛𝑒𝑑 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝐴𝑉𝑠 𝑢𝑛𝑑𝑒𝑟 𝐴𝐶𝐶 𝑚𝑜𝑑𝑒 

𝑘1 = 𝑔𝑎𝑖𝑛 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑓𝑜𝑟 𝑠𝑝𝑒𝑒𝑑 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑙𝑖𝑛𝑘 𝑓𝑟𝑒𝑒 𝑓𝑙𝑜𝑤 𝑠𝑝𝑒𝑒𝑑 𝑎𝑛𝑑  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝐴𝑉 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑝𝑒𝑒𝑑 

𝑘2 = 𝑔𝑎𝑖𝑛 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑓𝑜𝑟 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝐴𝑉 𝑎𝑛𝑑  

𝑝𝑟𝑒𝑐𝑒𝑑𝑖𝑛𝑔 𝐴𝑉 

𝑘3 = 𝑔𝑎𝑖𝑛 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑓𝑜𝑟 𝑠𝑝𝑒𝑒𝑑 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝐴𝑉 𝑎𝑛𝑑 𝑝𝑟𝑒𝑐𝑒𝑑𝑖𝑛𝑔 𝐴𝑉 

𝑘𝑝, 𝑘𝑑 = 𝑔𝑎𝑖𝑛 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 𝑓𝑜𝑟 𝑎𝑑𝑗𝑢𝑠𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑔𝑎𝑝 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝐴𝑉 𝑎𝑛𝑑  

𝑝𝑟𝑒𝑐𝑒𝑑𝑖𝑛𝑔 𝐴𝑉 
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𝑒𝑖𝑗
𝑡 = 𝑡𝑖𝑚𝑒 𝑔𝑎𝑝 𝑒𝑟𝑟𝑜𝑟 𝑓𝑜𝑟 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑖 𝑖𝑛 𝑚𝑜𝑣𝑒𝑚𝑛𝑡 𝑗 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 

In this scenario MIDAS DP assumes that AVs have enabled the onboard IVC 

communication and are able to adopt CACC car following behavior that supports the 

formation of AV platoons controlled by MIDAS platooning strategy. The cooperative 

driving strategy adopted by the AV traffic in this scenario is based on the CACC car 

following model described in [82] [83]. It is assumed that an AV under this driving strategy 

would be capable of driving in 3 different modes as per the conditional logic defined in 

Figure 2.8. 

1. Speed regulation mode 

In this driving mode controller recommends the subject AV to attain the free flow 

link speed with an acceleration defined in (2.22) when the gap between the subject 

AV and the preceding AV is greater than the on-board sensor detection range which 

is usually set as a maximum threshold distance value of 100 meters. 

𝐴𝑖𝑗
𝑡 = min

 
(𝐴𝑖𝑗

𝑚𝑎𝑥,  𝑘1(𝑉𝑗
𝑚𝑎𝑥 − 𝑢𝑖𝑗

𝑡−1))      (2.22) 

2. Gap regulation mode 

In this driving mode controller recommends the subject AV to maintain a safe 

distance and follow the preceding AV using the on-board sensors and ACC mode 

acceleration described in (2.23) when the preceding AV is in the detection range. 

𝐴𝑖𝑗
𝑡 = min

 
(𝐴𝑖𝑗

𝑚𝑎𝑥 ,  𝑘2(𝑥𝑖𝑗
𝑡 − 𝑡𝑑𝑔𝑢𝑖𝑗

𝑡−1) + 𝑘3(𝑢𝑖−1𝑗
𝑡−1 − 𝑢𝑖𝑗

𝑡−1))     (2.23) 
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3. Follower gap regulation mode 

In this driving mode controller recommends the subject AV to maintain a constant 

in-string gap with the preceding AV in the platoon using the CACC mode speed 

and acceleration described in (2.24-2.27) 

𝑢𝑖𝑗
𝑡 = 𝑢𝑖𝑗

𝑡−1 + 𝑘𝑝𝑒𝑖𝑗
𝑡 + 𝑘𝑑𝑒̇𝑖𝑗

𝑡        (2.24) 

𝐴𝑖𝑗
𝑡 = 𝑢𝑖𝑗

𝑡 − 𝑢𝑖𝑗
𝑡−1                          (2.25) 

𝑒𝑖𝑗
𝑡 = 𝑥𝑖𝑗

𝑡 − 𝑡𝑠𝑔𝑢𝑖𝑗
𝑡−1                      (2.26) 

𝑒̇𝑖𝑗
𝑡 = 𝑢𝑖−1𝑗

𝑡−1 − 𝑢𝑖𝑗
𝑡−1 − 𝑡𝑠𝑔𝐴𝑖𝑗

𝑡−1    (2.27) 

In this scenario, the free flow acceleration of an AV 𝐴𝑖𝑗
𝑓𝑟𝑒𝑒

 is estimated using same speed 

regulation mode equation (2.22) 

𝑢𝑖𝑗
𝑡+1 = {

𝑢_𝑝𝑜𝑡𝑖𝑗
𝑡+1 𝑖𝑓 𝑖 = 0, 𝐴𝜋(𝑠𝑛) = 𝑎𝑗′ 𝑎𝑛𝑑 𝐴𝜋(𝑠𝑛+1) = 𝑎𝑗: 𝑗 ∈ 𝐶𝑗′  

𝑢𝑖𝑗
𝑡 + 𝐴𝑖𝑗

𝑡 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

}       (2.28)  

𝑝𝑜𝑠𝑖𝑗
𝑡+1 =

{
 

 
𝑝𝑜𝑠𝑖𝑗

𝑡 − 𝑑𝑝𝑜𝑡𝑖𝑗

𝑡+1 𝑖𝑓 𝑖 = 0, 𝐴𝜋(𝑠𝑛) = 𝑎𝑗′  𝑎𝑛𝑑 𝐴𝜋(𝑠𝑛+1) = 𝑎𝑗: 𝑗 ∈ 𝐶𝑗′

𝑝𝑜𝑠𝑖𝑗
𝑡 + 𝑢𝑖𝑗

𝑡 +
 𝐴𝑖𝑗

𝑡

2
,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 }
 

 
     (2.29) 

𝐿(𝑠𝑛, 𝑎𝑗) = ∑∑∑(1 −
𝑢𝑖𝑗

𝑡

𝑉𝑚𝑎𝑥
𝑗

) ∗ 𝑛𝑖𝑗
𝑡

∀𝑖∀𝑗

𝑡𝑗

𝑡=1

      (2.30) 
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Figure 2.8. Car Following Model Activation Logic for AVs. 
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Step 1:  

         # Capture the MIDAS system state from SIMULATION environment and  

         initialize variable and parameters. 

𝑆0 =  𝑁𝑊 , 𝑁𝐸 , 𝑁𝑁 , 𝑁𝑆  

𝑁 = 𝑁𝑊 + 𝑁𝐸 + 𝑁𝑁 + 𝑁𝑆  

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝐷𝑃 𝑠𝑡𝑎𝑔𝑒 𝑛 = 1 

Step 2: 

        # Generate all DP states possible in the current stage. Example stage n=1  

        has following states.  

𝑆𝑡𝑎𝑡𝑒𝑠(𝑛 = 1) =  1,0,0,0 ,  0,1,0,0 ,  0,0,1,0 ,  0,0,0,1  

Step 3:  

        for state 𝑠𝑛  in 𝑆𝑡𝑎𝑡𝑒𝑠(𝑛):  

        𝑎) 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑉(𝑠𝑛) = 𝑚𝑖𝑛
𝑎𝑗

( 𝐿(𝑠𝑛 , 𝑎𝑗 ) + 𝑉(𝑠𝑛−1
′ )), 𝑤ℎ𝑒𝑟𝑒 𝐴𝜋(𝑠𝑛+1) = 𝑎𝑗 ′ : 𝑗′ ∈ 𝐶𝑗  

        𝑏) 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑉(𝑠𝑛) = 𝑚𝑖𝑛
𝑎𝑗

( 𝐿′(𝑠𝑛 , 𝑎𝑗 ) + 𝑉(𝑠𝑛−1
′ )), 𝑤ℎ𝑒𝑟𝑒 𝐴𝜋(𝑠𝑛+1) = 𝑎𝑗 ′ : 𝑗′ ∉ 𝐶𝑗  

        𝑐) 𝑑𝑒𝑙𝑎𝑦 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑎 𝑔𝑖𝑣𝑒𝑛 𝑠𝑡𝑎𝑡𝑒 𝑎𝑛𝑑 𝑎𝑛 𝑎𝑐𝑡𝑖𝑜𝑛, 𝐿(𝑠𝑛 , 𝑎𝑗 ) 𝑖𝑠 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 

             𝑢𝑠𝑖𝑛𝑔 (2.30) 

        𝑑) 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝐷𝑃 𝑠𝑡𝑎𝑡𝑒 𝑎𝑠 𝑠ℎ𝑜𝑤𝑛 𝑏𝑒𝑙𝑜𝑤 
𝑠𝑛−1
′ = 𝑀(𝑠𝑛 , 𝑎𝑗 ) 

𝑀(𝑠𝑛 , 𝑎𝑗 ) =  𝑠𝑛 ∶  𝑠𝑛
𝑗

= 𝑠𝑛
𝑗
− 1 

        𝑒) 𝑖𝑓 𝑝𝑙𝑎𝑡𝑜𝑜𝑛𝑖𝑛𝑔 𝑖𝑠 𝑂𝑁: 

                        𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑀𝐼𝐷𝐴𝑆 𝑠𝑦𝑠𝑡𝑒𝑚 𝑠𝑡𝑎𝑡𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑢𝑠𝑖𝑛𝑔 𝑒𝑞𝑛 (2.22) − (2.29) 

             𝑒𝑙𝑠𝑒: 

                        𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑀𝐼𝐷𝐴𝑆 𝑠𝑦𝑠𝑡𝑒𝑚 𝑠𝑡𝑎𝑡𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑢𝑠𝑖𝑛𝑔 𝑒𝑞𝑛 (2.11) − (2.21) 

Step 4:  

𝒏 = 𝒏 + 1, 𝒈𝒐 𝒕𝒐 Step 1 𝒊𝒇 𝒏 < 𝑵 𝒆𝒍𝒔𝒆 𝒈𝒐 𝒕𝒐 𝑺𝒕𝒆𝒑 5 
Step 5:  

         𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑒 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑜𝑓 𝑟𝑒𝑙𝑒𝑎𝑠𝑒 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑓𝑜𝑟 𝑡ℎ𝑒 𝐴𝑉𝑠 𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡ℎ𝑒  

         𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑎𝑡 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 𝑢𝑠𝑖𝑛𝑔 𝑟𝑒𝑐𝑢𝑟𝑠𝑖𝑜𝑛. 

  

Algorithm 2.2. MIDAS DP Logic to Determine Optimal AV/Platoon Release Sequence. 

2.2.3.3 Unsignalized Intersection Control Logic for Autonomous Vehicular Traffic 

MIDAS AI uses a signal free intersection control strategy that evaluates DP decisions 

calculated every sec. To ensure safe traffic movements at the intersection we define control 

points for AVs, upstream. Control point distance for a given AV is defined as the distance 

needed for the vehicle to decelerate safely to make a stop at the stop line of the intersection. 
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Control point distance of a vehicle is determined based on the current speed, location and 

the max deceleration allowed for the vehicle.  

𝑢𝑖𝑗
𝑡 = 𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝐴𝑉 𝑖 𝑖𝑛 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑗 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 

𝑝𝑜𝑠𝑖𝑗
𝑡 = 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝐴𝑉 𝑖 𝑖𝑛 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑗 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 𝑓𝑟𝑜𝑚 𝑠𝑡𝑜𝑝 𝑙𝑖𝑛𝑒. 

𝐴𝑖𝑗
𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

𝑚

𝑠2
 𝑔𝑖𝑣𝑒𝑛 𝑡𝑜 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑖 𝑖𝑛 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑗. 

𝐵𝑖𝑗
𝑎𝑣𝑔

= 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑒𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛
𝑚

𝑠2
𝑓𝑜𝑟 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑖 𝑖𝑛 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑗. 

𝑅 
𝑡 = 𝑠𝑒𝑡 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝑐𝑙𝑒𝑎𝑟𝑖𝑛𝑔 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑟 𝑔𝑖𝑣𝑒𝑛 𝑐𝑙𝑒𝑎𝑟𝑎𝑛𝑐𝑒 𝑑𝑢𝑟𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑡. 

𝐷 
𝑡 = 𝑟𝑒𝑙𝑒𝑎𝑠𝑒 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑 𝑏𝑦 𝐷𝑃 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡. 

𝑑𝑖𝑗
𝑡 = 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑝𝑜𝑖𝑛𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑓𝑜𝑟 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑖 𝑖𝑛 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑗 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒  

𝑠𝑡𝑜𝑝 𝑙𝑖𝑛𝑒, 𝑡𝑜 𝑐𝑜𝑚𝑒 𝑡𝑜 𝑎 𝑠𝑡𝑜𝑝. 

𝜏𝑖𝑗
𝑡 = min  𝑡𝑖𝑚𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑓𝑜𝑟 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑖 𝑖𝑛 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑗 𝑡𝑜 𝑟𝑒𝑎𝑐ℎ 𝑡ℎ𝑒 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡 𝑧𝑜𝑛𝑒. 

𝑑𝑖𝑗
𝑡 = 

(𝑢𝑖𝑗
𝑡 )2

2𝐵
𝑖𝑗
𝑎𝑣𝑔 + ∑ 𝑛𝑖𝑗

𝑡𝑖−1
𝑖=0                                                  (2.31) 

𝜏𝑖𝑗
𝑡 =

−𝑢𝑖𝑗
𝑡 ± √(𝑢𝑖𝑗

𝑡 )2 − 2 ∗ 𝐴𝑖𝑗
𝑚𝑎𝑥 ∗ 𝑝𝑜𝑠𝑖𝑗

𝑡

𝐴𝑖𝑗
𝑚𝑎𝑥                  (2.32) 
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Figure 2.9 Unsignalized Intersection Control Logic for Autonomous Vehicles. 
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Step1: 𝐺𝑖𝑣𝑒𝑛 𝑡ℎ𝑒 𝐷𝑃 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑟𝑒𝑙𝑒𝑎𝑠𝑒 𝑑𝑒𝑐𝑖𝑠𝑜𝑛 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝐷𝑡  

            → 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑠𝑒𝑞 = 0 

            → 𝑠𝑒𝑡 𝑠𝑙𝑜𝑤_𝑑𝑜𝑤𝑛_𝑓𝑙𝑎𝑔 =  𝐹𝑎𝑙𝑠𝑒 

            → 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑡ℎ𝑒 𝑏𝑙𝑜𝑐𝑘 𝑡𝑖𝑚𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑡𝑖𝑗  ∀ 𝑣𝑖𝑗 ∈ 𝑅𝑡𝑢𝑠𝑖𝑛𝑔 𝑒𝑞𝑛 (2.17) 

Step2: 𝑓𝑜𝑟 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑣𝑖𝑗 ← 𝐷𝑡(𝑠𝑒𝑞) 

  → 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑡ℎ𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑝𝑜𝑖𝑛𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑑𝑖𝑗
𝑡  𝑓𝑜𝑟 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑣𝑖𝑗  𝑢𝑠𝑖𝑛𝑔 𝑒𝑞𝑛 (2.31) 

               → 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝜏𝑖𝑗
𝑡  𝑡ℎ𝑒 𝑡𝑖𝑚𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑡𝑜 𝑟𝑒𝑎𝑐ℎ 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡 𝑧𝑜𝑛𝑒 𝑓𝑜𝑟 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑣𝑖𝑗  𝑢𝑠𝑖𝑛𝑔  

                    𝑒𝑞𝑛 (2.32) 

           𝑖𝑓: 𝑠𝑙𝑜𝑤_𝑑𝑜𝑤𝑛_𝑓𝑙𝑎𝑔 𝑖𝑠 𝑇𝑟𝑢𝑒 

               → 𝑔𝑜 𝑡𝑜 𝑠𝑡𝑒𝑝4 

Step3: 𝑖𝑓: 𝑝𝑜𝑠𝑖𝑗
𝑡 ≤ 𝑑𝑖𝑗

𝑡   

                                  𝑖𝑓: 𝜏𝑖𝑗
𝑡 > 𝑡𝑖𝑗 ′  ∀ 𝑣𝑖𝑗 ′ ∈ 𝑅𝑡  𝑎𝑛𝑑 𝑗′ ∉ 𝐶𝑗   

                                      → 𝑔𝑖𝑣𝑒 𝑐𝑙𝑒𝑎𝑟𝑎𝑛𝑐𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑣𝑖𝑗  𝑎𝑛𝑑 𝑎𝑑𝑑 𝑣𝑖𝑗  𝑡𝑜 𝑅𝑡  

                                      → 𝑎𝑙𝑠𝑜 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑡ℎ𝑒 𝑏𝑙𝑜𝑐𝑘 𝑡𝑖𝑚𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑡𝑖𝑗  𝑢𝑠𝑖𝑛𝑔 𝑒𝑞𝑛 (2.17) 

                                       → 𝑔𝑜 𝑡𝑜 𝑠𝑡𝑒𝑝2 

                                  𝑒𝑙𝑠𝑒:  

                                      → 𝑠𝑙𝑜𝑤 𝑑𝑜𝑤𝑛 𝑡ℎ𝑒 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑣𝑖𝑗  

                                      → 𝑠𝑒𝑡 𝑠𝑙𝑜𝑤_𝑑𝑜𝑤𝑛_𝑓𝑙𝑎𝑔 = 𝑇𝑟𝑢𝑒 

            𝑒𝑙𝑠𝑒: 𝑔𝑜 𝑡𝑜 𝑠𝑡𝑒𝑝5. 

Step4: 𝑖𝑓: 𝑝𝑜𝑠𝑖𝑗
𝑡 ≤ 𝑑𝑖𝑗

𝑡  

                 → 𝑠𝑙𝑜𝑤 𝑑𝑜𝑤𝑛 𝑡ℎ𝑒 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑣𝑖𝑗   

Step5: 𝑖𝑓 𝑒𝑛𝑑 𝑜𝑓 𝑠𝑒𝑞 𝑡ℎ𝑒𝑛 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒  

            𝑒𝑙𝑠𝑒: 𝑠𝑒𝑞 ← 𝑠𝑒𝑞 + 1 

                    → 𝑔𝑜 𝑡𝑜 𝑠𝑡𝑒𝑝2 
 

Algorithm 2.3. Unsignalized (Traffic-Lights-Free) Intersection Control Logic for AV Traffic 
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Figure 2.10. Autonomous Intersection Control &Management of Unsignalized 

Intersection  

2.3 MIDAS AI Simulation Framework 

To evaluate the MIDAS proactive autonomous intersection control logic, in the real world 

we require a complete cyber-physical infrastructure with signal-free intersection corridor 

that supports V2X communication capabilities within the participating AV traffic. To 

overcome this challenge, we implemented MIDAS AI in an open-source vehicular network 

simulation framework that combines a microscopic simulator called SUMO [71], a 

network simulator called VEINS [72] and a cooperative driving framework called PLEXE 

[73]. VEINS stands for vehicles in network simulation and this simulation framework is 

developed over OMNET++, an event-based network simulation.  
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Each simulation in VEINS triggers the network simulator (OMNET++) and the 

microscopic road traffic simulator (SUMO) in parallel. 

 

Figure 2.11. Vehicular Communication Architecture 

Veins extends the OMNeT++ network simulator by providing a complete vehicular 

communication stack based on IEEE 802.11p [70], together with a way of modeling 

realistic node mobility based on the road traffic simulator SUMO as shown in Figure 2.11. 

For this it couples the network and the mobility simulator by creating a network node in 

OMNeT++ for each vehicle travelling in SUMO. Veins replicate the real-time movement 

of a vehicle in SUMO simulation in the corresponding OMNeT++ node by updating the 

mobility model. The communication between the OMNET++ and SUMO is done through 

TRACI interface. By using this interface, Veins queries SUMO about current “traffic” 

status (e.g., number of vehicles, their position and speed, etc.), and it can modify the traffic 

dynamics, route, speed, or its acceleration. PLEXE further extends the interaction through 

the TraCI interface to fetch vehicles’ data from SUMO to be sent to other cars, and to be 

used by the platooning protocols and MIDAS application. The data received by vehicles in 

Veins are fed to the CACC enabled AVs simulating in SUMO via PLEXE as shown in 
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Figure 2.12, such that the platooning decisions of AVs can be controlled and managed by 

MIDAS platooning logic. 

As shown in Figure 2.13 MIDAS communicates the platooning decisions through PLEXE 

module and simultaneously implements the DP control decisions along with the safe 

unsignalized intersection control of conflicting vehicle movements through the intersection 

via TRACI interface. 

 

Figure 2.12. PLEXE Configuration 

 

Figure 2.13. MIDAS Simulation Architecture 



  74 

2.4 Simulation Results 

MIDAS AI is implemented using the simulation architecture explained in Figure 2.13. An 

isolated unsignalized (traffic lights free) intersection control for autonomous vehicular 

traffic is implemented using SUMO microscopic traffic simulator and MIDAS AV 

intersection logic described in algorithm 2.3. MIDAS platooning strategy explained in 

algorithm 2.1 is evaluated using several simulations with varying AV traffic loads and 

compared to scenarios without any platooning strategy in place. The simulated AV traffic 

follows improved IDM driving control in the absence of MIDAS platooning strategy and 

a CACC based longitudinal and lateral control in the presence of MIDAS platooning 

strategy respectively as described in section 2.2.3.2. The parameter values used in the 

simulation for both the driving control modes are defined in Tables 2.1 & 2.2 respectively. 

The simulation study shows that MIDAS platooning has improved the autonomous 

intersection throughput by 8-10% and time-loss delays by 12-15%. Figures 2.14 & 2.15 

show the performance of MIDAS AI for a traffic load of 5400 vehicles per hour.  

Table 2.1. Improved Intelligent Driver Model Control Parameters (No Platooning 

Scenario) 

Parameter Value 

Desired speed  𝑉𝑗
𝑚𝑎𝑥 20 m/s 

Safe time gap  𝜏 1.0 s 

Minimum gap 𝑥0 2 m 

Acceleration exponent 𝛿 4 

Maximum acceleration 𝐴 
𝑚𝑎𝑥 0.8 m/s2 

Maximum comfortable deceleration 𝐵 
𝑚𝑎𝑥 2 m/s2 
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Table 2.2. Cooperative Adaptive Cruise Control Model Parameters (Platooning Scenario) 

 

 

Parameter Value 

Free flow speed difference gain   𝑘1 0.4 s-1 

Position difference gain  𝑘2 0.23 s-2 

Position difference gain  𝑘3 0.07 s-1 

Desired time gap of ACC mode 𝑡𝑑𝑔 31.1% - 2.2 s 

18.5% - 1.6 s 

50.4% - 1.1 s 

Inter-platoon constant time gap 𝑡𝑠𝑔 57% - 0.6 s 

24% - 0.7 s 

7% - 0.9 s 

12% - 1.1 s 

Gain for adjusting time gap  𝑘𝑝 0.45 s-1 

Gain for adjusting time gap 𝑘𝑑 0.0125 

Maximum acceleration 𝐴 
𝑚𝑎𝑥 0.8 m/s2 

Maximum comfortable deceleration 𝐵 
𝑚𝑎𝑥 2 m/s2 

Minimum average gap maintained in a platoon 𝑔 
𝑎𝑣𝑔 2 m 

Maximum allowed platoon string length 𝑙 10 
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Figure 2.14. MIDAS AI Throughput Performance with & without Platooning Strategy. 

 

 

 

 

 

 

 

Figure 2.15 MIDAS AI Time-Loss Delay Performance with & without Platooning 

Strategy. 
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CHAPTER 3 

REAL-TIME PROACTIVE TRAFFIC CONTROL OF AUTONOMOUS VEHICLES 

THROUGH UNSIGNALIZED INTERSECTION USING DEEP REINFORCEMENT 

LEARNING 

Preview of Contributions 

a) Proposed a real-time proactive traffic control for autonomous vehicles at an 

unsignalized intersection using deep reinforcement learning. 

b) Proposed an effective representation of traffic state information for autonomous 

vehicles. 

c) Proposed a deep Q learning architecture using multiple stacks of convolutional 

neural networks and fully connected layers to estimate Q value function. Also 

implemented experience replay and target Q network techniques for improved 

training stability and convergence. 

3.1 Introduction to Traffic Signal Control at Intersection Using Reinforcement 

Learning 

Artificial intelligence (AI) is defined as the ability of machines to replicate human 

intelligence in recognizing patterns and making intelligent decisions in problem-solving 

environments. AI is an interdisciplinary field that combines concepts from mathematics, 

statistics, computer science and cognitive science to solve complex problems. AI has been 

used in a wide range of applications for solving problems in industry and academia. Some 

of the well-known applications are recommendations in ecommerce to provide 

personalized shopping experience for customers, developing voice-based assistants using 
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natural language processing, fraud detection for credit card transactions, facial recognition, 

automation using robotics in manufacturing, sophisticated medical devices in healthcare 

and very recently object detection and autopilot enhancements in automotive industry, etc. 

According to Statista by 2025, the revenue generated by AI applications is expected to 

reach 126 billion dollars [98] and customers interacting with AI applications would reach 

95% [99]. AI is essentially a powerhouse with important sub fields like supervised machine 

learning, unsupervised machine learning and reinforcement learning. Both machine 

learning and reinforcement learning share a common sub field called deep learning as 

shown in figure (3.1).  

There have been some significant early efforts [100][101][102] in applying reinforcement 

learning concepts towards developing an adaptive traffic control system. But these models 

suffer lack of ability to adapt dynamically to complex traffic situations since the features 

used to represent the system state were simple traffic metrics like vehicle queue lengths, 

average throughput of vehicles and average waiting times at the intersection, which are 

abstractions of real traffic information i.e speed and vehicle position.  For example, vehicle 

queue lengths as a state ignores useful upstream vehicle information which is crucial for 

proactive traffic control at the intersection and leads to learning suboptimal signal plans. 

Also due to the limitation of computing power, most of the work was validated using 

abstract simulation models which lack real-world traffic behavior. In the last decade with 

the advancements in high-performance computing and development of complex traffic 

microsimulation models have encouraged researchers to study the implementation of 

supervised learning techniques in developing better traffic control policies than 

conventional fixed time traffic signal controls. In [103] authors trained a neural network 
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(NN) with a large set of generated traffic scenarios that were solved for optimal green times 

using dynamic programming. Control policies trained for specific traffic scenarios don’t 

adapt well during new traffic situations arise in real-world on a day-to-day basis and require 

a lot of training data to train such models offline. Similarly, authors in [104] trained a fuzzy 

NN model to estimate the optimal signal plans for network of intersections. With ever 

changing traffic conditions and driving technologies there is a need for enhanced traffic 

control models and [105][106] provides a comprehensive review of self-adaptive traffic 

control systems and applications of reinforcement learning algorithms in controlling traffic 

dynamically. Later researchers [107][108][109] have developed and implemented deep 

reinforcement learning algorithms to achieve human-level control for computers (or 

agents) in competing with humans, by combining concepts from deep learning and 

reinforcement learning.  

Until recently there hasn’t been much research applying deep reinforcement learning in 

developing adaptive traffic control systems. Notably authors [110] have implemented 

better state space representation called DTSE by discretizing road segments into fixed 

length cells to precisely capture the position and speed of vehicles into a matrix. Also, 

authors have used deep learning architecture to obtain Q value function by training layers 

of convolutional neural networks. Later [111] improved the training stability of the deep Q 

network (DQN) proposed in [110] by implementing experience replay mechanism. 

Although the improved state space representation helps DQN to learn high dimensional 

features that can predict Q value function better than implementations which use abstract 

representation of traffic state, it is challenging to obtain accurate position and speed 

information of human-driven vehicular traffic in conventional setting to gain the merits of 
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DTSE representation. Later authors [112] implemented a modified DTSE representation to 

speed up the training process of DQN. Authors discretized cells of varying lengths where 

cells closer to intersection are shorter compared to the cells that are farther, assuming the 

dispersion is higher for upstream traffic. But finding an optimal cell length without 

compromising on the useful state information is difficult and traffic situations with 

congested upstream lead to DQN learning suboptimal traffic signal policies. Authors in 

[113] have used real image snapshots of intersection corridor at every agent time step as 

state input to train layers of convolutional neural networks. But obtaining image snapshots 

of the intersection corridor and processing in real-time is highly challenging in real-world 

and image-based state representation models require historical image stack to impute the 

speed of the vehicles during current iteration. The rectangular snapshots of intersection 

corridor also include pixels of non-road structures which do not contribute to the model 

training and increase training complexity. In [114] researchers used image like 

representation of state space evading the need for real image, but model training still suffers 

from overloaded state space due to the inclusion of unnecessary information.  
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Figure 3.1. Artificial Intelligence Sub Fields and Conceptual Overlap 

All the above discussed research work from the literature, related to the implementation of 

deep reinforcement learning concepts in the development of adaptive traffic control, is 

majorly focused towards controlling human-driven traffic and obtaining the sophisticated 

state information as mentioned in theory is difficult in real-world. In this dissertation, a 

novel adaptive traffic control system called MIDAS RAIC has been proposed to efficiently 

control autonomous vehicular traffic through an unsignalized intersection in real-time 

using deep reinforcement learning (DRL). A multi-convolutional neural network followed 

by a fully connected architecture with experience replay mechanism is used to train the 

MIDAS RAIC agent in estimating the deep Q network (DQN). To improve the training 

stability of the agent, a target Q network with soft parameter updates has been 

implemented. MIDAS RAIC uses DTSE approach to represent the vehicles position, speed, 

and clearance request status matrices along with the movement’s clearance status at the 
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intersection as the state of the agent. A more detailed model formulation is presented in 

section 3.1.  

3.2 A Comprehensive Overview of Key Concepts in Reinforcement Learning 

3.2.1 Markov Decision Process Framework 

Typically, in a reinforcement learning process, an agent who is a learner and decision 

maker is surrounded by an environment and interacts with it, takes actions from available 

action space. The environment, in return, rewards the agent for its actions and transitions 

to a new state based on the action taken by the agent. The agent then learns to differentiate 

good decisions from bad ones based on the reward value it receives. The agent-

environment interaction loop is shown in figure (3.2). Reinforcement learning is 

undeniably the best choice for solving sequential decision-making problems like 

controlling dynamic traffic. 

𝑺 = 𝑠𝑡𝑎𝑡𝑒 𝑠𝑝𝑎𝑐𝑒;  𝑠𝑒𝑡 𝑜𝑓 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑠𝑡𝑎𝑡𝑒𝑠 𝑎𝑛 𝑎𝑔𝑒𝑛𝑡 𝑐𝑎𝑛 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ𝑖𝑛 𝑎𝑛 𝑒 

𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡. 

𝑼 = 𝑎𝑐𝑡𝑖𝑜𝑛 𝑠𝑝𝑎𝑐𝑒;  𝑠𝑒𝑡 𝑜𝑓 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑎𝑛 𝑎𝑔𝑒𝑛𝑡 𝑐𝑎𝑛 𝑡𝑎𝑘𝑒 𝑤𝑖𝑡ℎ𝑖𝑛 𝑎𝑛  

𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡. 

𝑹 = 𝑅𝑒𝑤𝑎𝑟𝑑 𝑠𝑝𝑎𝑐𝑒 𝑤ℎ𝑒𝑟𝑒 𝑅𝑡+1 𝑖𝑠 𝑎 𝑟𝑒𝑤𝑎𝑟𝑑 𝑒𝑎𝑟𝑛𝑒𝑑 𝑏𝑦 𝑎𝑔𝑒𝑛𝑡 𝑓𝑜𝑟 𝑡𝑎𝑘𝑖𝑛𝑔 𝑎𝑐𝑡𝑖𝑜𝑛 𝑢𝑡  

𝑖𝑛 𝑠𝑡𝑎𝑡𝑒 𝑠𝑡+1. 

𝑻 = 𝑡𝑟𝑎𝑛𝑠𝑖𝑠𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑠𝑝𝑎𝑐𝑒 𝑡ℎ𝑎𝑡 𝑑𝑒𝑓𝑖𝑛𝑒𝑠 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑡𝑜 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚  

𝑠𝑡𝑎𝑡𝑒 𝑡𝑜 𝑠𝑡𝑎𝑡𝑒. 

𝜋 = 𝑎𝑐𝑡𝑖𝑜𝑛 𝑝𝑜𝑙𝑖𝑐𝑦 
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𝜋(𝑢|𝑠) = 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑎𝑔𝑒𝑛𝑡 𝑡𝑎𝑘𝑖𝑛𝑔 𝑎𝑛 𝑎𝑐𝑡𝑖𝑜𝑛 𝑢 𝑖𝑛 𝑠𝑡𝑎𝑡𝑒 𝑠. 

𝛾 = 𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 

𝒫𝑠𝑠′
𝑢 = 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑎𝑔𝑒𝑛𝑡 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑖𝑛𝑔 𝑡𝑜 𝑡ℎ𝑒 𝑠𝑡𝑎𝑡𝑒 𝑠′𝑓𝑟𝑜𝑚 𝑠 𝑏𝑦 𝑡𝑎𝑘𝑖𝑛𝑔 𝑎𝑛  

𝑎𝑐𝑡𝑖𝑜𝑛 𝑢. 

 

Figure 3.2. Basic Reinforcement Learning Feedback Loop 

Reinforcement learning process tries to maximize the total reward received by the agent 

over a long run. To solve a sequential decision-making problem using RL, one needs to 

formulate the problem as Markov decision process (MDP) which follows the Markov 

property defined below. 

Markov Property is defined as a memory less property of the system dynamics. It states 

that the future transitions of the system/ environment depend only on the current state of 

the system and don’t depend on the states in the past. Mathematically shown in (3.1) 

𝑃 𝑆𝑡+1|𝑆𝑡 = 𝑃 𝑆𝑡+1|𝑆1, 𝑆2, 𝑆3, … , 𝑆𝑡                              (3.1) 

The overall goal of the agent is to learn an optimal action policy 𝜋∗ by maximizing the 

total cumulative reward over a long run. Given 𝑅𝑡 is the reward received by the agent at 

time 𝑡, the total return 𝐺𝑡received by the agent over time 𝑇 is defined as 
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𝐺𝑡 = 𝑅𝑡+1 + 𝑅𝑡+2 + 𝑅𝑡+3 + ⋯+ 𝑅𝑇                             (3.2) 

In reinforcement learning rewards received after a long time may not be as important as 

the reward received immediately. So, the equation (3.2) above is modified to incorporate 

a discount factor 0 < 𝛾 ≤ 1 such that each reward received into the future is discounted 

by this factor as shown in equation (3.3). 

𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 + ⋯ = ∑ 𝛾𝑘𝑅𝑡+𝑘+1

∞

𝑘=0

     (3.3) 

And an action policy 𝜋 is defined as a probability distribution over action space and guides 

agent’s choice of action at any given state, also mathematically denoted as 

𝜋(𝑢|𝑠) = 𝑃 𝑈𝑡 = 𝑢|𝑆𝑡 = 𝑠                                             (3.4) 

State-value function in MDP is defined as the expected return received by the agent starting 

from the given state 𝑠 under an action policy 𝜋 denoted by 𝑉𝜋(𝑠) and expressed as  

𝑉𝜋(𝑠) = 𝔼𝜋 𝐺𝑡|𝑆𝑡 = 𝑠 = 𝔼𝜋 [∑ 𝛾𝑘𝑅𝑡+𝑘+1

∞

𝑘=0

|𝑆𝑡 = 𝑠] ∀𝑠 ∈ 𝑺      (3.5) 

and now the optimal policy 𝜋∗ is expressed as 

𝜋∗ = arg max
𝜋

𝑉𝜋(𝑠) ∀𝑠 ∈ 𝑺                              (3.6) 

State-action-value function in MDP is defined as the expected return received by the agent 

from state 𝑠 by taking an action 𝑢 and then following an action policy 𝜋 thereafter. It is 

also known as Q value function and denoted by 𝑄𝜋(𝑠, 𝑢) 
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𝑄𝜋(𝑠, 𝑢) = 𝔼𝜋 𝐺𝑡|𝑆𝑡 = 𝑠, 𝑈𝑡 = 𝑢 = 𝔼𝜋 [∑ 𝛾𝑘𝑅𝑡+𝑘+1

∞

𝑘=0

|𝑆𝑡 = 𝑠, 𝑈𝑡 = 𝑢] ∀𝑠 ∈ 𝑺, 𝑢 ∈ 𝑼     (3.7) 

 As per the Bellman’s expectation equation [115][7], the state-value and action value 

equations above can be rewritten as follows 

𝑉𝜋(𝑠) = ∑ 𝜋(𝑢|𝑠) (𝑅𝑠
𝑢 + 𝛾 ∑ 𝒫𝑠𝑠′

𝑢 𝑉𝜋(𝑠′)

𝑠′∈𝑺

)

𝑢∈𝑼

              (3.8) 

𝑄𝜋(𝑠, 𝑢) = 𝑅𝑠
𝑢 + 𝛾 ∑ 𝒫𝑠𝑠′

𝑢 ∑ 𝜋(𝑢′|𝑠′)

𝑢′∈𝑼𝑠′∈𝑺

𝑄𝜋(𝑠′, 𝑢′)            (3.9) 

Similarly, the optimal state-value function and state-action value function are expressed 

using Bellman’s optimality [67] as follows 

𝑉∗(𝑠) = max
𝑢

(𝑅𝑠
𝑢 + 𝛾 ∑ 𝒫𝑠𝑠′

𝑢 𝑉∗(𝑠
′)

𝑠′∈𝑺

)                 (3.10) 

𝑄∗(𝑠, 𝑢) = 𝑅𝑠
𝑢 + 𝛾 ∑ 𝒫𝑠𝑠′

𝑢

𝑠′∈𝑺

max
𝑢′

𝑄∗(𝑠′, 𝑢′)              (3.11) 

Where 𝑅𝑠
𝑢 = 𝔼 𝑅𝑡+1|𝑆𝑡 = 𝑠, 𝑈𝑡 = 𝑢 . 

3.2.2 Model-Based Reinforcement Learning 

In model-based learning it is assumed that we know the transition probabilities of an agent. 

In model-based learning agent learns an optimal policy using 3 different paradigms in 

dynamic programming (DP). DP solves a complex problem by breaking it into smaller 

subproblems recursively by storing the solutions of the subproblem. 
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3.2.2.1 Policy Evaluation 

In policy evaluation agent learns the state value function for a given arbitrary policy 𝜋. It 

starts with an initial guess of value function for all the states 𝑠 ∈ 𝑺 and iteratively applies 

Bellman state value equation (3.8) to update the value function of the states until the 

maximum difference between the value functions of two consecutive iterations is smaller 

than some small positive delta. Policy evaluation is combined with policy improvement to 

obtain the optimal policy. 

3.2.2.2 Policy Iteration 

In policy iteration agent learns an optimal policy by iteratively evaluating a policy 𝜋 and 

improving the policy using the Bellman optimality equation (3.10) until previous and 

current policies are the same. It starts with a random policy and evaluates the policy from 

the previous iteration using the process described in section 2.2.1. 

3.2.2.3 Value Iteration 

In value iteration agent learns an optimal policy by iteratively updating the value functions 

of all the states 𝑠 ∈ 𝑺 using the Bellman optimality equation (3.11) until the maximum 

difference between the value functions of consecutive iterations is smaller than a small 

positive constant. It starts by initializing 𝑉(𝑠) = 0 ∀𝑠 ∈ 𝑺.  

3.2.3 Model-Free Reinforcement learning 

In the model-free reinforcement leaning we don’t assume the transition probabilities of the 

agent. In other words, agents learn an optimal policy by learning the consequences of its 

actions through experiences. In many real-world problems, it is difficult to gather 

knowledge or define the transition probabilities for the model. In such situations, 
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undoubtedly model-free reinforcement learning shines through. Model free RL can be 

either a policy-based or value-based learning algorithm. Value-based algorithms find 

optimal state action value and then determine the optimal action policy from it. Policy-

based algorithms don’t require optimal value rather they directly learn the best policy. 

These algorithms use simple look up table updates or a more generalized function 

approximator. 

a) Online Policy In online policy like SARSA [117] agent takes an action 𝑢 from state 

𝑠 using 𝜀 − 𝑔𝑟𝑒𝑒𝑑𝑦 policy and transitions to a new state 𝑠′. It then updates the 

state-action value function 𝑄(𝑠, 𝑢) using the difference with the target Q function 

which is calculated by taking an action 𝑢′ following the same current policy as 𝑢. 

The Q value updates are done using the following equation. 

𝑄(𝑠, 𝑢) = 𝑄(𝑠, 𝑢) + 𝛼 𝑅𝑠
𝑢 + 𝛾𝑄(𝑠′, 𝑢′) − 𝑄(𝑠, 𝑢)               (3.12) 

b) Offline Policy In offline policy like Q-learning [118] agent takes an action 𝑢 from 

state 𝑠 using 𝜀 − 𝑔𝑟𝑒𝑒𝑑𝑦 policy and transitions to a new state 𝑠′. It then updates 

the state-action value function 𝑄(𝑠, 𝑢) using the difference with the target Q 

function which is calculated by taking a greedy action 𝑢′. The overview of the Q-

learning algorithm is shown in (3.3) and the Q value updates are done using the 

following equation. 

𝑄(𝑠, 𝑢) = 𝑄(𝑠, 𝑢) + 𝛼 [𝑅𝑠
𝑢 + 𝛾 max

𝑢′
𝑄(𝑠′, 𝑢′) − 𝑄(𝑠, 𝑢)]            (3.13) 

 



  88 

 

Figure 3.3. Q-Learning Algorithm Overview 

As the number of states grows infinitely like in case of traffic control problem, updating 

Q values using look up tables become intractable. In this dissertation we use a deep Q 

neural network-based function approximator to estimate the state-action values. Detailed 

discussion on the DQN architecture and RL problem formulation is presented in the 

following sections. 

3.3 MIDAS RAIC System Architecture 

3.3.1 Proposed System Model and Deep-RL Problem Formulation 

Notation: - 

𝑍𝑗
𝑡 = 𝑠𝑒𝑡 𝑜𝑓 𝐴𝑉𝑠 𝑖𝑛 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑗 𝑎𝑡 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 𝑡  𝑟𝑒𝑞𝑢𝑖𝑟𝑖𝑛𝑔 𝑜𝑟 𝑤𝑎𝑖𝑡𝑖𝑛𝑔  

𝑡𝑜 ℎ𝑎𝑣𝑒 𝑎 𝑐𝑙𝑒𝑎𝑟𝑎𝑛𝑐𝑒 

𝐻𝑡 = 𝑜𝑟𝑑𝑒𝑟𝑒𝑑 𝑙𝑖𝑠𝑡 𝑜𝑓 𝐴𝑉𝑠 𝑡ℎ𝑎𝑡 𝑤𝑒𝑟𝑒 𝑔𝑖𝑣𝑒𝑛 𝑐𝑙𝑒𝑎𝑟𝑎𝑛𝑐𝑒 𝑏𝑦 𝑎𝑔𝑒𝑛𝑡 𝑎𝑡 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛  

𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 𝑡  

𝐺𝑡 = 𝑜𝑟𝑑𝑒𝑟𝑒𝑑 𝑙𝑖𝑠𝑡 𝑜𝑓 𝐴𝑉𝑠 𝑤𝑖𝑡ℎ 𝑐𝑙𝑒𝑎𝑟𝑎𝑛𝑐𝑒 𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑒𝑑 𝑏𝑦 𝑀𝐼𝐷𝐴𝑆 𝑅𝐴𝐼𝐶  
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𝑜𝑟 𝑐𝑙𝑒𝑎𝑟𝑖𝑛𝑔 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑎𝑡 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 𝑡 

𝑠𝑑𝑖𝑗
𝑡 = 𝑠𝑎𝑓𝑒𝑡𝑦 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑓𝑜𝑟 𝑡ℎ𝑒 𝐴𝑉 𝑖 𝑖𝑛 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑗 𝑡𝑜 𝑡𝑟𝑎𝑣𝑒𝑙 𝑏𝑒𝑓𝑜𝑟𝑒 𝑎𝑛  

𝐴𝑉 𝑓𝑟𝑜𝑚 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑖𝑛𝑔 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑖𝑠 𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑, 𝑡𝑜 𝑐𝑙𝑒𝑎𝑟 𝑜𝑓𝑓 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛. 

𝒯𝑖𝑗
𝑡 = min  𝑡𝑖𝑚𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑓𝑜𝑟 𝐴𝑉 𝑖 𝑖𝑛 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑗 𝑡𝑜 𝑟𝑒𝑎𝑐ℎ 𝑡ℎ𝑒 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡 𝑧𝑜𝑛𝑒. 

𝑡𝑖𝑗 = 𝑏𝑙𝑜𝑐𝑘 𝑡𝑖𝑚𝑒,max  𝑡𝑖𝑚𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑡𝑜 𝑐𝑙𝑒𝑎𝑟 𝑜𝑓𝑓 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝐴𝑉 𝑖 𝑖𝑛  

𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑗 

𝐿𝜏 = 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑡𝑖𝑚𝑒 𝑙𝑜𝑠𝑠 𝑑𝑒𝑙𝑎𝑦 𝑜𝑓 𝑎𝑙𝑙 𝐴𝑉𝑠 𝑒𝑥𝑖𝑠𝑡𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑟𝑟𝑖𝑑𝑜𝑟  

𝑢𝑛𝑡𝑖𝑙 𝑡ℎ𝑒 𝑎𝑔𝑒𝑛𝑡 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 𝜏 

𝐿𝑖𝑗
𝜏 = 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑡𝑖𝑚𝑒 𝑙𝑜𝑠𝑠 𝑑𝑒𝑙𝑎𝑦 𝑜𝑓 𝐴𝑉 𝑖 𝑖𝑛 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑗 𝑢𝑛𝑡𝑖𝑙 𝑡ℎ𝑒 𝑎𝑔𝑒𝑛𝑡 𝑡𝑖𝑚𝑒  

𝑠𝑡𝑒𝑝 𝜏 

𝑣𝑆𝑡𝑎𝑡𝑢𝑠 = 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑡ℎ𝑎𝑡 𝑡𝑟𝑎𝑐𝑘𝑠 𝑡ℎ𝑒 𝑠𝑡𝑎𝑡𝑢𝑠 𝑜𝑓 𝑎𝑛 𝐴𝑉 𝑎𝑛𝑑 𝑖𝑡 𝑡𝑎𝑘𝑒𝑠  

𝑣𝑎𝑙𝑢𝑒𝑠 (0: 𝑓𝑟𝑒𝑒, 1: 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑 𝑐𝑙𝑒𝑎𝑟𝑎𝑛𝑐𝑒, 2: 𝑔𝑟𝑎𝑛𝑡𝑒𝑑 𝑐𝑙𝑒𝑎𝑟𝑎𝑛𝑐𝑒) 

𝑑𝑖𝑗
𝑡 = 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑝𝑜𝑖𝑛𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛;min  𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑛𝑒𝑒𝑑 𝑓𝑜𝑟  

𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑖 𝑖𝑛 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑗 𝑡𝑜 𝑠𝑎𝑓𝑒𝑙𝑦 𝑑𝑒𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑒 𝑡𝑜 𝑎 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑠𝑡𝑜𝑝.  

𝑛𝑖𝑗
𝑡 = 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑝𝑙𝑎𝑡𝑜𝑜𝑛;  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝑉𝑠 𝑖𝑛 𝑝𝑙𝑎𝑡𝑜𝑜𝑛 𝑖 𝑖𝑛 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑗 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 

𝑣𝑖𝑗
𝑡 = 𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑖 𝑖𝑛 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑗 𝑎𝑡 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑡 

𝑣𝑗
𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑠𝑝𝑒𝑒𝑑 𝑎𝑙𝑙𝑜𝑤𝑒𝑑 𝑜𝑛 𝑡ℎ𝑒 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑗 

𝑎𝑖𝑗
𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑖 𝑖𝑛 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑗 
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𝑏𝑖𝑗
𝑎𝑣𝑔

= 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑟 𝑐𝑜𝑚𝑓𝑜𝑟𝑡𝑎𝑏𝑙𝑒 𝑑𝑒𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑖 𝑖𝑛 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑗  

𝑝𝑖𝑗
𝑡 = 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑖 𝑖𝑛 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑗 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑡 

𝑓𝑖𝑗
𝜏 = 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑 𝑐𝑙𝑒𝑎𝑟𝑎𝑛𝑐𝑒 𝑠𝑡𝑎𝑡𝑢𝑠 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑖 𝑖𝑛 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑗 𝑎𝑡 𝑎𝑔𝑒𝑛𝑡 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 𝜏 

𝑠𝑡 = 𝑠𝑡𝑎𝑡𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 

𝑢𝜏 = 𝑎𝑐𝑡𝑖𝑜𝑛 𝑡𝑎𝑘𝑒𝑛 𝑏𝑦 𝑎𝑔𝑒𝑛𝑡 𝑎𝑡 𝑎𝑔𝑒𝑛𝑡 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 𝜏 

𝑅𝜏 = 𝑟𝑒𝑤𝑎𝑟𝑑 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑎𝑔𝑒𝑛𝑡 𝑎𝑡 𝑡ℎ𝑒 𝑎𝑔𝑒𝑛𝑡 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 𝜏 

𝐿𝜏 = 𝑐𝑢𝑚𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑡𝑖𝑚𝑒 𝑙𝑜𝑠𝑠 𝑜𝑓 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑢𝑛𝑡𝑖𝑙 𝑎𝑔𝑒𝑛𝑡  

𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 𝜏 

Agent’s Environment: The RL environment is defined as a dynamic system that is 

controlled using a learned agent by maximizing a long-term reward metric. An RL agent 

lives within the environment and interacts with it by performing some actions but can’t 

influence the governing rules of the environment. Agent’s environment transitions to a new 

state every time the agent performs an action and sends the agent to the new state. 

Environment rewards the agent with a value which acts as feedback to the agent whether 

the action taken was good or bad. The high-level agent-environment relation is described 

in Figure 3.1. In MIDAS RAIC an unsignalized intersection with fully autonomous 

vehicular traffic is considered as the environment and is simulated in SUMO microscopic 

traffic simulator with MIDAS AI intersection control logic. 

Environment State Space: Efficient state space representation plays the major role in 

determining how well a RL agent learns complex patterns to operate in a dynamic 

environment.  The state representation problem in RL is similar to feature engineering or 
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feature selection process in supervised or unsupervised machine learning. The goal of 

identifying the right feature space and extracting the high-dimensional information of 

environment is to strike a balance between the learning time required for the agent and its 

ability to learn complex traffic patterns. There were several state representations for traffic 

control problems using RL, considered in the literature. However, all the representations 

were abstraction of raw traffic data and ignore useful traffic information leading to 

suboptimal traffic control. For example, considering vehicle queue lengths at the 

intersection as state information would limit the agent’s ability to take actions based only 

on the current vehicle queues formed at the intersection, ignoring information about 

upstream traffic approaching the intersection. Similarly average vehicle delays and wait 

times are abstraction of historical traffic data and fail to represent the real-time dynamics 

of traffic at the intersection corridor.  Later some researchers attempted to impute the state 

space information using image processing and CNN architecture. Although image 

representation provides high density spatial information of vehicles and guarantees better 

agent performance compared to the abstract representations, not all pixels in the image are 

relevant to traffic state representation as the image pixels also include side roads, buildings 

and other varying noisy data that is irrelevant to making traffic control decisions. Also, 

image representation-based RL methodologies require historical image stacking for CNNs 

to impute the vehicles speed based on sequential observations, which increases the training 

time of the agent significantly. In this chapter an efficient state space representation of raw 

traffic data like precise AV position and speed, AV clearance status (denoting if AV has 

arrived its control point or waiting for clearance decision) and information about current 

clearing movements at the intersection. 
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The state space is represented using positional matrix 𝑷, normalized speed matrix 𝑽, 

requested clearance status matrix 𝑭 of all vehicles present in the intersection corridor along 

with a Boolean vector 𝑴𝒔𝒕𝒂𝒕𝒖𝒔 representing the current clearing vehicle movements at the 

intersection. The spatial representation of AVs at the intersection is inspired from the 

discrete traffic state encoding [DTSE] described in [110]. In [110] authors implemented 

DTSE for human-driven traffic where extracting precise spatial information of vehicles is 

highly challenging and expensive. W.L.O.G, in this chapter it is assumed that traffic 

approaching the intersection controlled by MIDAS RAIC is 100% fully autonomous. Each 

approaching lane of length 𝑙 at the intersection is discretized into cells of length 𝑐. The 

positional information of AVs on east-west bound is encoded in the matrix 𝑷𝐸, where a 

value 1 is set to a cell entry in 𝑷𝐸 if a vehicle is present in that cell, otherwise 0. Similarly 

normalized speed of AVs on east-west bound using max link speed 𝑉𝐸
𝑚𝑎𝑥are registered in 

the corresponding entries of matrix 𝑽𝐸. Also, an entry in matrix 𝑭𝐸 is set to 1 if the vehicle 

in the corresponding cell is given a clearance already, otherwise 0. The positional and speed 

information of vehicles on all bounds are given by 𝑷 and 𝑽 as shown in (3.15) and (3.16) 

respectively. At every agent time-step MIDAS RAIC extracts the current state information 

of the intersection using the logic described in algorithm (3.1) and a demonstration is 

shown in (3.18) -(3.21) for the intersection snapshot shown in figure (3.4) 

𝑷 = [

𝑷𝐸

𝑷𝑁

𝑷𝑊

𝑷𝑆

]                         (3.15) 
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𝑽 = [

𝑽𝐸

𝑽𝑁

𝑽𝑊

𝑽𝑆

]                         (3.16) 

 

𝑭 = [

𝑭𝐸

𝑭𝑁

𝑭𝑊

𝑭𝑆

]                         (3.17) 

 

 

Figure 3.4. Illustration of Vehicles State Representation for a 4-Legged Unsignalized 

Intersection 
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𝑷 = [

0 0 1 1 0 1
0 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0

]                        (3.18) 

 

𝑽 = [

0 0 0.75 0.9 0 1
0 0 0.5 0 0 0

0 0.5 0 0.95 0 0
0 0 0.25 0 0.75 0

]                 (3.19) 

 

𝑭 = [

0 0 1 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

]                            (3.20) 

 

𝑴𝒔𝒕𝒂𝒕𝒖𝒔 =  1 0                                  (3.21) 

𝑑𝑖𝑗
𝑡 = 

(𝑣𝑖𝑗
𝑡 )2

2𝑏
𝑖𝑗
𝑎𝑣𝑔 + ∑ 𝑛𝑖𝑗

𝑡𝑖−1
𝑖=0                       (3.22) 

𝒯 
 

𝑖𝑗
𝑡 =

−𝑣𝑖𝑗
𝑡 ± √(𝑣𝑖𝑗

𝑡 )2 − 2 ∗ 𝑎𝑖𝑗
𝑚𝑎𝑥 ∗ 𝑝𝑖𝑗

𝑡

𝑎𝑖𝑗
𝑚𝑎𝑥                  (3.23) 

𝑡𝑖𝑗 =
𝑠𝑑𝑖𝑗

𝑡

𝑣𝑖𝑗
𝑡           (3.24) 

𝑓𝑖𝑗
𝜏 = {

1  𝑖𝑓 𝑣𝑆𝑡𝑎𝑡𝑢𝑠(𝑣𝑒ℎ(𝑖, 𝑗)) = 1 𝑜𝑟 𝑝𝑖𝑗
𝑚(𝜏)

≤ 𝑑𝑖𝑗
𝑚(𝜏)

 𝑜𝑟 𝑣𝑖𝑗
𝑚(𝜏)

< 0.5

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}          (3.25) 
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Figure 3.5. Unsignalized Intersection Control Logic for Autonomous Vehicles 
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𝐺𝑒𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛, 𝑠𝑝𝑒𝑒𝑑, 𝑎𝑛𝑑 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛, 𝑒𝑡𝑐. 𝑜𝑓 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝑡ℎ𝑎𝑡 𝑟𝑒𝑞𝑢𝑖𝑟𝑒  
𝑐𝑙𝑒𝑎𝑟𝑎𝑛𝑐𝑒 𝑎𝑡 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑑𝑒𝑛𝑜𝑡𝑒𝑑 𝑏𝑦 𝑍𝑗

𝑡  𝑢𝑠𝑖𝑛𝑔 𝑆𝑈𝑀𝑂 𝑇𝑟𝑎𝑐𝑖 𝐴𝑃𝐼 𝑎𝑡 𝑎𝑔𝑒𝑛𝑡 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 𝜏 

𝑜𝑟 𝑠𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑡𝑒𝑝 𝑚(𝜏).  

Step1: 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑷, 𝑽, 𝑭 𝑚𝑎𝑡𝑟𝑖𝑐𝑒𝑠 𝑡𝑜 𝑎𝑙𝑙 𝑧𝑒𝑟𝑜𝑠. 

Step2: 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑚𝑜𝑣𝑒𝑚𝑛𝑡 𝑗 ∈ 𝑱: 

                   𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑣𝑒ℎ(𝑖, 𝑗) ∈ 𝑍𝑗
𝑡 : 

                         → 𝑠𝑒𝑡 𝑒𝑛𝑡𝑟𝑦  
𝑝𝑖𝑗

𝑚(𝜏)

𝑐
  𝑖𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 𝑷𝑗  𝑡𝑜 1 

                         → 𝑠𝑒𝑡 𝑒𝑛𝑡𝑟𝑦  
𝑝𝑖𝑗

𝑚(𝜏)

𝑐
  𝑖𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 𝑽𝑗  𝑡𝑜

𝑣𝑖𝑗
𝑚(𝜏)

𝑣𝑗
𝑚𝑎𝑥  

                         → 𝑢𝑠𝑖𝑛𝑔 𝑒𝑞𝑛𝑠 (3.22) 𝑎𝑛𝑑 (3.25)𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑓𝑖𝑗
𝜏  𝑣𝑎𝑙𝑢𝑒  

                         → 𝑠𝑒𝑡 𝑒𝑛𝑡𝑟𝑦  
𝑝𝑖𝑗

𝑚(𝜏)

𝑐
  𝑖𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 𝑭𝑗  𝑡𝑜 𝑓𝑖𝑗

𝑡  

                         → 𝑢𝑝𝑑𝑎𝑡𝑒 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑠𝑡𝑎𝑡𝑢𝑠: 𝑣𝑆𝑡𝑎𝑡𝑢𝑠(𝑣𝑒ℎ(𝑖, 𝑗)) ← 𝑓𝑖𝑗
𝑡   

Step3: 𝑐𝑎𝑙𝑙 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑡𝑜 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑐𝑙𝑒𝑎𝑟𝑖𝑛𝑔 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 

             → 𝑴𝒔𝒕𝒂𝒕𝒖𝒔 = {
 1 0    𝑖𝑓 𝑐𝑙𝑒𝑎𝑟𝑖𝑛𝑔 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 𝑎𝑟𝑒 𝑓𝑟𝑜𝑚 𝑒𝑎𝑠𝑡 𝑎𝑛𝑑 𝑤𝑒𝑠𝑡 𝑏𝑜𝑢𝑛𝑑𝑠

 0 1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
} 

 

Algorithm 3.1. Autonomous Vehicular Traffic State Information Extraction at Agent-step τ 

 

 

Figure 3.6.a. Illustration of 4-legged Unsignalized Intersection 
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Agent Action Space: At every agent time-step (also called action step), agent takes an action 

by observing the state of the defined traffic intersection environment. It is important to note 

the difference in agent time-step and traffic simulation time-step (simply called time-step 

or time). At any given agent time-step, for a simple 4-leg unsignalized intersection 

considered in this chapter as shown in figure (3.6.a), agent has 6 different choices to choose 

from 

a) Give clearance to the first vehicle on the east-west bound that has requested 

clearance. 

b) Give clearance to the first vehicle on west-east bound that has requested clearance. 

c) Give clearance to the first vehicles on both east-west and west-east bounds that 

have requested clearance. 

d) Give clearance to the first vehicle on the north-south bound that has requested 

clearance. 

e) Give clearance to the first vehicle on the south-north bound that has requested 

clearance. 

f) Give clearance to the first vehicles on both north-south and south-north bounds that 

have requested clearance. 

Agent chooses an action by following an ε-greedy policy as illustrated in Figure 3.6.b. At 

every agent action step with a probability ε agent randomly gives clearance to the first 

vehicle in any movement bound and with a probability 1-ε agent greedily selects the action 

that leads to maximum value of being in the current state.  
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Figure 3.6.b. Agent’s ε-greedy Policy. 

A vehicle is said to have requested clearance if the vehicle has reached its control decision 

point, or its speed has been reduced below a threshold as defined in (3.22). This agent 

action representation explores the solution space more efficiently than action space 

representations used in literature [110][111]. Simple two-dimensional action space 

representation of vehicle movements from east to west or west to east and north to south 

or south to north isn’t flexible in allowing a conflicting vehicle movement between two 

complementary vehicle movements. Also note that in certain states not all actions listed 

above are available to agent to choose from, as some actions are invalid to take. For 

example, as per our action space representation an agent can only give clearance to the first 
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AV in a certain movement only if there are any AVs in that movement with a requested 

clearance status as it’s too early for AVs upstream to have clearance. In such action steps 

there is a possibility of agent taking invalid actions due exploitation or epsilon-greedy 

exploration criteria (see section 3.2 for more details). Later in this chapter an invalid action 

masking strategy is implemented to prevent the agent from taking unavailable actions in 

any given state.  

The elapsed traffic simulation time between consecutive state transition is defined as the 

length of agent time-step. As mentioned before the length of agent time-step varies with 

state and action pair and the agent is notified of beginning of new agent time-step using the 

procedure illustrated in Figure 3.6.c and corresponding pseudo-code is described in 

algorithm (3.2) 

 

Figure 3.6.c. Illustration of new agent action step 
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Step1: → 𝑔𝑒𝑡  𝐺𝑡  𝑎𝑛𝑑 𝑍𝑗
𝑡  𝑓𝑜𝑟 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 𝑡 

            → 𝑔𝑒𝑡 𝑣𝑆𝑡𝑎𝑡𝑢𝑠(𝑣𝑒ℎ(𝑖, 𝑗)) ∀ 𝑣𝑒ℎ(𝑖, 𝑗) ∈ 𝑍𝑗
𝑡 , ∀𝑗 ∈ 𝑱 

Step2: 𝑖𝑓 𝜏 = 0 𝑎𝑛𝑑 ∃𝑗∈ 𝑱, 𝑣𝑒ℎ(𝑖, 𝑗) ∈ 𝑍𝑗
𝑡 | 𝑣𝑆𝑡𝑎𝑡𝑢𝑠(𝑣𝑒ℎ(𝑖, 𝑗)) = 1 ∶ 

                   → 𝑟𝑒𝑡𝑢𝑟𝑛 𝑇𝑅𝑈𝐸 
            𝑒𝑙𝑠𝑒: 
                  → 𝑔𝑒𝑡 𝑙𝑎𝑡𝑒𝑠𝑡 𝑎𝑔𝑒𝑛𝑡 𝑎𝑐𝑡𝑖𝑜𝑛 𝑢𝜏  𝑎𝑡 𝑎𝑔𝑒𝑛𝑡 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 𝜏 𝑜𝑟 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛  
                       𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 𝑡 = 𝑚(𝜏) 

Step3: 𝑖𝑓 ∀𝑣𝑒ℎ(𝑖, 𝑗) ∈ 𝑢𝜏| 𝑣𝑒ℎ(𝑖, 𝑗) ∈ 𝐺𝑡𝑎𝑛𝑑 ∃𝑗∈ 𝑱, 𝑣𝑒ℎ(𝑖, 𝑗) ∈ 𝑍𝑗
𝑡 | 𝑣𝑆𝑡𝑎𝑡𝑢𝑠(𝑣𝑒ℎ(𝑖, 𝑗)) = 1  

                  → 𝑟𝑒𝑡𝑢𝑟𝑛 𝑇𝑅𝑈𝐸 

Step4:  → 𝑟𝑒𝑡𝑢𝑟𝑛 𝐹𝐴𝐿𝑆𝐸 

 

Algorithm 3.2. Evaluation of the Start of New Agent Time Step 

 

Agent Reward: In RL an agent is encouraged or discouraged from taking certain actions by 

rewarding the agent with a positive or negative value. A good action taken by an agent is 

rewarded with a positive value and a bad action is rewarded with a negative value. Hence 

an agent is trained to maximize the total cumulative reward over a long run. At every agent 

time-step the agent observes the current traffic state of the intersection environment and 

takes an action that transitions the agent to a new state. A reward is feedback given to the 

agent to understand the consequences of its past actions and improve them in the future. 

So, defining an efficient reward function is crucial for the learning process of an agent. In 

literature several different reward functions have been implemented, for example, change 

in queue lengths, waiting times, etc. To calculate some of these rewards it requires some 

infrastructural assumptions for human-driven traffic scenarios like sensors and pointed 

cameras; also, they don’t optimize overall traffic congestion. In this chapter the goal of the 

agent is to minimize the total cumulative time loss delay due to the movement conflicts at 

an unsignalized autonomous intersection. To achieve such an objective, a change in the 
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cumulative time-loss delay at consecutive agent time-steps is defined as the reward 

function of the agent. The reward function is shown in equation (3.27) where 𝐿𝜏 and 𝐿𝜏−1 

are total cumulative time-loss delay which is sum of cumulative time-loss delay of all the 

AVs present until agent time-step 𝜏 and 𝜏 − 1 respectively. Cumulative time-loss delay 𝐿𝑖𝑗
𝜏  

of an AV 𝑖 in movement 𝑗 at agent time step 𝜏 is defined in equation (3.29). Note an agent 

time-step 𝜏 can be easily mapped to simulation time-step 𝑡 when needed and for 

convenience the mapping is denoted as (3.26). 

𝑡 = 𝑚(𝜏)                      (3.26) 

𝑅𝜏 = 𝐿𝜏−1 − 𝐿𝜏        (3.27) 

𝐿𝜏 = ∑ ∑ 𝐿𝑖𝑗
𝜏

 

∀𝑖∈(𝑍𝑗
𝑚(𝜏)

∪𝑢𝜏−1)

 

∀𝑗

                (3.28) 

𝐿𝑖𝑗
𝜏 = {𝐿𝑖𝑗

𝜏−1 + ∑ 1 −
𝑣𝑖𝑗

𝑡

𝑣𝑗
𝑚𝑎𝑥

𝑚(𝜏)

𝑡=𝑚(𝜏−1)

 

 

}            (3.29) 

Transition function: The state transition of agent environment from state 𝑠𝑡 to state 𝑠𝑡+1is 

implemented through a modified version of unsignalized autonomous intersection control 

(IC) logic originally developed in chapter 2 as shown in algorithm (3.3), which translates 

into microscopic AV movements simulated via SUMO, and triggered in response to an 

agent’s action 𝑢𝑡. 
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Step1: 𝐺𝑖𝑣𝑒𝑛 𝑡ℎ𝑒 𝑢𝑝𝑑𝑎𝑡𝑒𝑑 𝐻𝑡 , 𝐺𝑡 , 𝑍𝑗
𝑡  ∀𝑗 ∈ 𝑱 𝑎𝑡 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑡 

            → 𝑠𝑒𝑡 𝑠𝑙𝑜𝑤_𝑑𝑜𝑤𝑛_𝑓𝑙𝑎𝑔 =  𝐹𝑎𝑙𝑠𝑒 

            → 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑡ℎ𝑒 𝑏𝑙𝑜𝑐𝑘 𝑡𝑖𝑚𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑡𝑖𝑗  ∀ 𝑣𝑒ℎ(𝑖, 𝑗) ∈ 𝐺𝑡𝑢𝑠𝑖𝑛𝑔 𝑒𝑞𝑛 (3.24) 

Step2: 𝑓𝑜𝑟 𝑣𝑒ℎ(𝑖, 𝑗)  ∈  𝐺𝑡 : 
                  𝑖𝑓 𝑠𝑑𝑖𝑗

𝑡 ≤ 0: 

                       → 𝑟𝑒𝑚𝑜𝑣𝑒 𝑣𝑒ℎ(𝑖, 𝑗) 𝑓𝑟𝑜𝑚 𝐺𝑡   

Step3: 𝑓𝑜𝑟 𝑣𝑒ℎ(𝑖, 𝑗)  ∈  𝐻𝑡 : 

                  𝑖𝑓 𝑠𝑙𝑜𝑤_𝑑𝑜𝑤𝑛_𝑓𝑙𝑎𝑔 = 𝑇𝑟𝑢𝑒:             
                        → 𝑠𝑙𝑜𝑤 𝑑𝑜𝑤𝑛 𝑡ℎ𝑒 𝑣𝑒ℎ(𝑖, 𝑗) 

                   𝑒𝑙𝑠𝑒: 
                         → 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝒯𝑖𝑗

𝑡  𝑢𝑠𝑖𝑛𝑔 𝑒𝑞𝑛 (3.23) 

                         𝑖𝑓 |𝐺𝑡 | = 0 𝑜𝑟 𝒯𝑖𝑗
𝑡 > 𝑡𝑖 ′ 𝑗 ′  ∀ 𝑣𝑒ℎ(𝑖′ , 𝑗′)  ∈ 𝐺𝑡 : 

                              → 𝑔𝑖𝑣𝑒 𝑐𝑙𝑒𝑎𝑟𝑎𝑛𝑐𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑣𝑒ℎ(𝑖, 𝑗)  

                              → 𝑎𝑑𝑑 𝑣𝑒ℎ(𝑖, 𝑗) 𝑡𝑜 𝐺𝑡  

                              → 𝑢𝑝𝑑𝑎𝑡𝑒 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑠𝑡𝑎𝑡𝑢𝑠: 𝑣𝑆𝑡𝑎𝑡𝑢𝑠(𝑣𝑒ℎ(𝑖, 𝑗)) ← 2 

                              → 𝑟𝑒𝑚𝑜𝑣𝑒 𝑣𝑒ℎ(𝑖, 𝑗) 𝑓𝑟𝑜𝑚 𝐻𝑡  
                              → 𝑎𝑙𝑠𝑜 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑡ℎ𝑒 𝑏𝑙𝑜𝑐𝑘 𝑡𝑖𝑚𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑡𝑖𝑗  
                         𝑒𝑙𝑠𝑒:  
                              → 𝑠𝑒𝑡 𝑠𝑙𝑜𝑤_𝑑𝑜𝑤𝑛_𝑓𝑙𝑎𝑔 = 𝑇𝑟𝑢𝑒 
                              → 𝑠𝑙𝑜𝑤 𝑑𝑜𝑤𝑛 𝑡ℎ𝑒 𝑣𝑒ℎ(𝑖, 𝑗) 

Step5: 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑗 ∈ 𝑱: 

             𝑓𝑜𝑟 𝑣𝑒ℎ(𝑖, 𝑗)  ∈ 𝑍𝑗
𝑡 : 

                  𝑖𝑓 𝑝𝑖𝑗
𝑡 ≤ 𝑑𝑖𝑗

𝑡 :  

                       → 𝑠𝑙𝑜𝑤 𝑑𝑜𝑤𝑛 𝑡ℎ𝑒 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑣𝑖𝑗   

                       → 𝑢𝑝𝑑𝑎𝑡𝑒 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑠𝑡𝑎𝑡𝑢𝑠: 𝑣𝑆𝑡𝑎𝑡𝑢𝑠(𝑣𝑒ℎ(𝑖, 𝑗)) ← 1 
 

Algorithm 3.3. Unsignalized (Traffic-Lights-Free) Intersection Control Logic for AV 

Traffic 
 

3.3.2 DQN Algorithm for Controlling Unsignalized Autonomous Intersection 

Notation: - 

𝐵 = 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑎𝑚𝑝𝑙𝑒 𝑏𝑎𝑡𝑐ℎ 

 𝜃 = 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑄 𝑛𝑒𝑡𝑤𝑜𝑟𝑘  
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𝜃′ = 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑡𝑎𝑟𝑔𝑒𝑡 𝑄 𝑛𝑒𝑡𝑤𝑜𝑟𝑘  

𝐿(𝜃) = 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑒𝑟𝑟𝑜𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑔𝑒𝑛𝑡 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑓𝑜𝑟 𝐷𝑄𝑁 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝜃  

𝑠𝑡
𝑘 = 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 𝑠𝑡𝑎𝑡𝑒 𝑖𝑛 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑎𝑚𝑝𝑙𝑒 𝑘 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 

𝑢𝑡
𝑘 = 𝑎𝑐𝑡𝑖𝑜𝑛 𝑡𝑎𝑘𝑒𝑛 𝑏𝑦 𝑎𝑔𝑒𝑛𝑡 𝑖𝑛 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑎𝑚𝑝𝑙𝑒 𝑘 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 

𝑅𝑡
𝑘 = 𝑟𝑒𝑤𝑎𝑟𝑑 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑏𝑦 𝑎𝑔𝑒𝑛𝑡 𝑖𝑛 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑎𝑚𝑝𝑙𝑒 𝑘 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 

𝑄(𝑠𝑡
𝑘, 𝑢𝑡

𝑘; 𝜃) = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑄 𝑣𝑎𝑙𝑢𝑒 𝑓𝑜𝑟 𝑠𝑡𝑎𝑡𝑒 𝑠𝑡
𝑘, 𝑎𝑐𝑡𝑖𝑜𝑛 𝑢𝑡

𝑘 𝑢𝑠𝑖𝑛𝑔 𝐷𝑄𝑁 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝜃 

In this dissertation, an off-policy based reinforcement-learning technique called Q-learning 

is implemented. Q-learning uses temporal-difference to estimate 𝑄∗(𝑠, 𝑎), which is the 

expected value of cumulative discounted reward that can be earned by choosing action 𝑎 

while in state 𝑠 and then taking actions according to the optimal policy. In temporal 

difference learning agent learns the Q-values by interacting with the environment through 

episodes with no prior knowledge of environment. Maintaining a Q-table with all possible 

state action pairs and updating the values in the table as the agent explores according to a 

greedy 𝜀 policy is a naïve approach to Q-learning. As the number of state and action pairs 

increase Q-table approach becomes computationally intractable to build a table. In the case 

of traffic control problem defined in section 3.1, even though the number of possible 

actions is finite, the state space is infinite due to the random information arriving every 

second. To overcome the curse of dimensionality of Q-table approach that is limited to 

deterministic number of state-action pairs, in this research a Q-function with a parameter 

𝜃 is learned by the agent by training a deep neural network (DNN) using episodes of 



  104 

training data. The learned Q-function maps the state to Q-values of all actions that can be 

taken from that state.  

The DQN architecture used in MIDAS RAIC has two neural networks, the Q network 

which predicts the Q-values of actions for a given state and the target network which is 

identical to the Q network and predicts the target Q value and a component to train Q 

network called experience replay. The high-level overview of the implemented DQN 

architecture is shown in figure (3.9). The experience reply component interacts with the 

environment to generate experience data samples to train the Q network by storing the 

experiences in a replay buffer M, which replaces oldest experiences with newer experience 

when it reaches its capacity. As shown in figure (3.7) & (3.8) experience replay selects a 

random action using 𝜀-greedy approach from the current agent state and forwards the action 

to MIDAS autonomous & unsignalized IC for validation and implementation as described 

in algorithm (3.3) and moves to next state while receiving a reward. Experience replay 

saves this experience as a training data sample in the replay memory M. After every 

experience MIDAS RAIC randomly samples a mini batch 𝐵 of training data from replay 

memory buffer M so that the training data contains a diverse mix of old and new data 

samples for a stable training of the Q network. This batch of training samples are fed to 

both the Q network and target network. The Q network takes the current state and action 

taken from a training sample and predicts the Q value for the experience. Similarly target 

network takes the next state from the training sample to predict the best Q value out of all 

actions possible in that state and we call this as target Q value for the considered 

experience.  
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The objective of MIDAS RAIC DQN is to minimize the total estimated error in the training 

batch B, denoted by 𝐿(𝜃) and expressed as shown in equation (3.30) by optimizing the Q 

network weights denoted by parameter 𝜃. The loss function 𝐿(𝜃) is represented as the sum 

of squared error of the target Q value and predicted Q value of all samples in the training 

batch. MIDAS RAIC DQN uses RMSprop [116] to update the network parameters, which 

is a stochastic gradient-based optimization technique that uses an adaptive learning rate 

that is normalized using a moving average of squared gradients. Similarly, the target Q 

network parameters 𝜃′are updated every iteration using a soft update method shown in 

(3.31). 

MIDAS RAIC DQN architecture uses 3 convolutional neural networks with 2 

convolutional layers (CNN), 2 fully connected layers (FC) and 1 output layer. As shown 

in figure (3.9) input positional matrix 𝑷 is fed to a stacked sub-network where the first 

convolution layer convolves the input with 1 zero-padding, with 16 filters of size 4 × 4 

and with stride 2. The convolution process of the first layer uses a rectifier linear unit 

(ReLU) activation function. The second layer convolves the first layer output with 32 filters 

of size 2 × 2, with stride 1 and applies ReLU. The normalized speed matrix 𝑽, and 

requested clearance status matrix 𝑭 are fed to 2nd and 3rd subnetworks respectively for 

convolution using similar 2-layer structure and hyperparameters but different filter 

weights. The outputs from 2nd layer of the 3 subnetworks are flattened and concatenated 

with the Boolean vector 𝑴𝒔𝒕𝒂𝒕𝒖𝒔 representing the status of current clearing movements at 

the intersection, into a single input vector that is fed to a fully connected layer with 128 

neurons and with ReLU activation function followed by another fully connected layer with 

64 neurons and with ReLU activation function followed by the final fully connected output 



  106 

layer that outputs the Q values of all possible actions from the input state as shown in figure 

(3.9).  

𝐿(𝜃) = ∑ ((𝑅𝑡+1
𝑘 + 𝛾 max

𝑢𝑡+1
𝑘

𝑄(𝑠𝑡+1
𝑘 , 𝑢𝑡+1

𝑘 ; 𝜃′)) − (𝑄(𝑠𝑡
𝑘, 𝑢𝑡

𝑘; 𝜃)))

2

∀𝑘 ∈𝐵

             (3.30) 

 

𝜃′ = 𝛼𝜃′ + (1 − 𝛼)𝜃                        (3.31) 

 

 

Figure 3.7. Illustration of The Training Procedure for MIDAS RAIC 

 

Figure 3.8. Illustration of Training with Experience Replay for MIDAS RAIC  

Predicted Q 

value 

Target Q 

value 
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Figure 3.9. MIDAS RAIC DQN Architecture Overview 

3.4 MIDAS RAIC System Simulation and Evaluation 

MIDAS RAIC DQN is trained for 1200 episodes, where an episode is defined for a length 

of 4500 simulation seconds in SUMO. At the end of every episode SUMO simulation is 

reset and at the beginning of every episode a new state is initialized by restarting the SUMO 

simulation which runs for another 4500 seconds. The complete DQN training algorithm is 

summarized in the pseudo-code (3.4). Agent takes several action steps during an episode 

and at every agent action step, agent takes an action using the 𝜀 − 𝑔𝑟𝑒𝑒𝑑𝑦 approach and 

receives a reward by transitioning to a new state. At the end of every agent action step 

MIDAS RAIC records the agent’s experience and adds it into the memory buffer for 

training the DQN network. The replay memory buffer is finite in space with |𝑀|𝑚𝑖𝑛 =
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10000, |𝑀|𝑚𝑎𝑥 = 100000. With the 𝜀 − 𝑔𝑟𝑒𝑒𝑑𝑦 approach agent tends to explore less and 

exploit more as training progresses through the episodes. 

The MIDAS RAIC agent is trained on a simple 4-leg unsignalized intersection shown in 

figure (3.6.a) and simulated using SUMO traffic simulator. During every episode of DQN 

training MIDAS RAIC simulates intersection corridor with a traffic load of 4800 vehicles 

per hour for 4500 simulation seconds in SUMO. The detailed traffic distribution by 

approach is shown in table (3.1) and the corresponding training parameters are shown in 

table (3.2). 

Table 3.1. Distribution of Traffic on Intersection Approaches. 

Traffic Approach Veh/hr 

East to West 1200 

North to South 900 

West to East 1800 

South to North 900 

 

Table 3.2. Description of MIDAS RAIC DQN Training Parameters. 

Parameter Value 

Total training episodes 𝑁 1200 

Episode length 𝑇 4500 s 

Discount factor 𝛾 0.95 

RMSprop learning parameter 𝛿 0.0002 

Target network update parameter 𝛼 0.001 

Min replay memory size |𝑀| 
𝑚𝑖𝑛 10000 

Min replay memory size |𝑀| 
𝑚𝑎𝑥 100000 

Mini-batch training size |𝐵| 32 

Cell length 𝑐 5 meters 
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Step1: → 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝐷𝑄𝑁 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑤𝑖𝑡ℎ 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝜃 
            → 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑡𝑎𝑟𝑔𝑒𝑡 𝐷𝑄𝑁 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑤𝑖𝑡ℎ 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝜃 ′  
            → 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑔𝑟𝑒𝑒𝑑𝑦 𝑝𝑜𝑙𝑖𝑐𝑦 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝜖;  𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝛾;  𝑡𝑎𝑟𝑔𝑒𝑡 𝑛𝑒𝑡𝑤𝑜𝑟𝑘  
                 𝑠𝑜𝑓𝑡 𝑢𝑝𝑑𝑎𝑡𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝛼;  𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑠 𝑁;  𝑒𝑝𝑖𝑠𝑜𝑑𝑒 𝑙𝑒𝑛𝑔𝑡ℎ  
                 𝑇 = 4500 𝑠𝑒𝑐𝑠; 𝑟𝑒𝑝𝑙𝑎𝑦 𝑚𝑒𝑚𝑜𝑟𝑦 𝑀, |𝑀|𝑚𝑖𝑛 , |𝑀|𝑚𝑎𝑥 ;  
                 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑚𝑖𝑛𝑖 𝑏𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒 |𝐵|, 𝑅𝑀𝑆𝑝𝑟𝑜𝑝 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 𝛿 
            → 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 = 1 
Step2: → 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑡 = 1 
            → 𝑠𝑡𝑎𝑟𝑡 𝑆𝑈𝑀𝑂 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑢𝑛𝑠𝑖𝑔𝑛𝑎𝑙𝑖𝑧𝑒𝑑 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 
            → 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑎𝑔𝑒𝑛𝑡 𝑎𝑐𝑡𝑖𝑜𝑛 𝑠𝑡𝑒𝑝 𝜏 = 0 
Step3: 𝑖𝑓 𝑛𝑒𝑤 𝑎𝑔𝑒𝑛𝑡 𝑎𝑐𝑡𝑖𝑜𝑛 𝑠𝑡𝑒𝑝 𝑏𝑒𝑔𝑖𝑛𝑠;  𝑠𝑡𝑎𝑟𝑡(𝑢𝑡+1)(𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒 𝑢𝑠𝑖𝑛𝑔 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 (3.2)): 
                → 𝜏 = 𝜏 + 1 
                → 𝑎𝑔𝑒𝑛𝑡 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑠 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑡𝑎𝑡𝑒 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑠𝜏  𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑢𝑠𝑖𝑛𝑔 
                     𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 (3.1) 
                → 𝑎𝑔𝑒𝑛𝑡 𝑡𝑎𝑘𝑒𝑠 𝑎𝑐𝑡𝑖𝑜𝑛 𝑢𝜏 = 𝑎𝑟𝑔 max

𝑢∈𝑈
𝑄(𝑠𝜏 , 𝑢; 𝜃)𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝜖 𝑎𝑛𝑑  

                     𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑡𝑎𝑘𝑒𝑠 𝑎𝑛 𝑎𝑐𝑡𝑖𝑜𝑛 𝑢𝜏 ∈ 𝑈 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜖 
                → ∀𝑣𝑒ℎ(𝑖, 𝑗) ∈ 𝑢𝜏  𝑎𝑑𝑑 𝑣𝑒ℎ(𝑖, 𝑗) 𝑡𝑜 𝐻𝑡  

Step4: 𝑖𝑓 𝑡 = 𝑒𝑛𝑑(𝑢𝜏): 

                → 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑟𝑒𝑤𝑎𝑟𝑑 𝑅𝜏+1 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑏𝑦 𝑎𝑔𝑒𝑛𝑡 𝑢𝑠𝑖𝑛𝑔 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (3.27).  
                → 𝑜𝑏𝑠𝑒𝑟𝑣𝑒 𝑛𝑒𝑤 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑒𝑑 𝑠𝑡𝑎𝑡𝑒 𝑠𝜏+1 

                → 𝑝𝑟𝑒𝑝𝑎𝑟𝑒 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑎𝑚𝑝𝑙𝑒 𝑢𝑠𝑖𝑛𝑔 𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 (𝑠𝜏 , 𝑢𝜏 , 𝑅𝜏+1 , 𝑠𝜏+1)  
                𝑖𝑓 |𝑀| < |𝑀|𝑚𝑎𝑥 : 
                   → 𝑎𝑑𝑑 𝑛𝑒𝑤 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑎𝑚𝑝𝑙𝑒 𝑡𝑜 𝑟𝑒𝑝𝑙𝑎𝑦 𝑚𝑒𝑚𝑜𝑟𝑦 𝑀 
                𝑒𝑠𝑙𝑒: 
                   → 𝑑𝑒𝑙𝑒𝑡𝑒 𝑜𝑙𝑑𝑒𝑠𝑡 𝑠𝑎𝑚𝑝𝑙𝑒 𝑓𝑟𝑜𝑚 𝑟𝑒𝑝𝑙𝑎𝑦 𝑚𝑒𝑚𝑜𝑟𝑦 𝑀 
                   → 𝑎𝑑𝑑 𝑛𝑒𝑤 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑎𝑚𝑝𝑙𝑒 𝑡𝑜 𝑟𝑒𝑝𝑙𝑎𝑦 𝑚𝑒𝑚𝑜𝑟𝑦 𝑀 
                𝑖𝑓 |𝑀| > |𝑀|𝑚𝑖𝑛 :  
                   → 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑠𝑎𝑚𝑝𝑙𝑒 𝑚𝑖𝑛𝑖 𝑏𝑎𝑡𝑐ℎ 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑑𝑎𝑡𝑎 𝑓𝑟𝑜𝑚 𝑀 𝑡𝑜 𝑡𝑟𝑎𝑖𝑛 𝐷𝑄𝑁 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 
                   → 𝑢𝑝𝑑𝑎𝑡𝑒 𝐷𝑄𝑁 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝜃 𝑢𝑠𝑖𝑛𝑔 𝑅𝑀𝑆𝑝𝑟𝑜𝑝 𝑎𝑛𝑑 𝑡𝑎𝑟𝑔𝑒𝑡 𝐷𝑄𝑁  

                        𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝜃 ′𝑢𝑠𝑖𝑛𝑔 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (3.31)  

Step5: → 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑡𝑜 𝑛𝑒𝑤 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 𝑡 = 𝑡 + 1 𝑢𝑠𝑖𝑛𝑔 𝑢𝑛𝑠𝑖𝑔𝑛𝑎𝑙𝑖𝑧𝑒𝑑  
                 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑙𝑜𝑔𝑖𝑐 (3.3) 

Step6: 𝑖𝑓 𝑡 < 𝑇: 
                → 𝑡 = 𝑡 + 1 
                → 𝑔𝑜 𝑡𝑜 𝑠𝑡𝑒𝑝3 
Step7: 𝑖𝑓 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 < 𝑁: 

                → 𝜖 = 1 −
𝑒𝑝𝑖𝑠𝑜𝑑𝑒

𝑁
 

                → 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 = 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 + 1 
                → 𝑔𝑜 𝑡𝑜 𝑠𝑡𝑒𝑝2 
            𝑒𝑙𝑠𝑒:  
                → 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒 

Algorithm 3.4. MIDAS RAIC DQN Agent Training 
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The objective of MIDAS RAIC is to maximize the total cumulative reward received by the 

agent, where the reward is defined as change in cumulative time loss delay.  MIDAS RAIC 

training performance can be seen in figure (3.10), which shows the average reward received 

by the agent during an episode. As the training progresses forward the variance in the 

average reward received by the agent decreases with episodes and converges to an optimal 

action policy. Similarly, the performance of MIDAS RAIC agent with respect to the 

average time loss delay of vehicles during the training period can be seen in the figure 

(3.11). In the initial stages of the training the variance in average reward received by the 

agent is high due to the agent’s tendency to explore more by taking actions randomly as 

per the 𝜀 − 𝑔𝑟𝑒𝑒𝑑𝑦 policy leading to lot of delays. Later as the training progresses agent 

gets better with learning the Q value function and begins to exploit more. The improved 

agent’s performance to the end suggests that the agent’s rate of exploration has been 

decreased and the training has converged to a good action-policy.  

Trained MIDAS RAIC system performance has been tested against exact DP based 

autonomous intersection control system proposed in chapter 2. i.e MIDAS AI. Comparison 

study in figure (3.12) and table 3.3. shows that MIDAS RAIC performed as good as the 

MIDAS AI. The average time loss delay for trained MIDAS RAIC is within the 5-10% of 

the average time loss delay achieved by MIDAS AI. Also, table 3.4. shows that MIDAS 

RAIC performance is real time and preferred to MIDAS AI since the real time benefits 

wear out with increasing traffic load. 
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Figure 3.10. Training Performance of MIDAS RAIC in Earning Average Reward. 

 

Figure 3.11. Training Performance of MIDAS RAIC in Minimizing Avg. Time Loss 

Delay of Vehicles. 



  112 

 

 

Figure 3.12. Comparison of Average Time Loss Delay in MIDAS RAIC and MIDAS AI. 

Table 3.3. Performance Comparison Between MIDAS RAIC and MIDAS AI. 

Control Policy Time-Loss Delay (mean)(secs) Time-Loss Delay (std)(secs) 

MIDAS-AI 35.7 10.9 

MIDAS-RAIC 39.25 8.27 
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Table 3.4 Run Time Comparison Between MIDAS RAIC and MIDAS AI 

Traffic Flow (vehs/hr) MIDAS-AI (solve time) MIDAS-RAIC-trained (prediction time) 

3600 <1s <0.1s 

4800 <1s <0.1s 

5400 1-3 s <0.1s 

5900 1-4s <0.1s 

6800 1-5s <0.1s 
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CHAPTER 4 

CONCLUSIONS AND FUTURE RESEARCH 

4.1 Dissertation Contributions and Conclusions 

In summary, this dissertation work develops a cyber-physical system called MIDAS, for 

real-time proactive traffic control and management of mixed fleet of vehicles with various 

levels of autonomy. The main contributions of this dissertation work are development and 

implementation of MIDAS framework in three different vehicular traffic environments. 1) 

Optimal control of mixed traffic of connected and non-connected vehicles through two 

closely spaced intersections formally known as diamond interchange, in human-driven 

environment 2) Optimal control of fully autonomous vehicular traffic and their platoon 

management through an unsignalized intersection 3) Real-time proactive control of full 

autonomous vehicles through an intersection using deep reinforcement learning 

techniques.  

Chapter 1 of this dissertation introduces a new proactive traffic control system MIDAS to 

manage the movements of mixed traffic that consists of GPS-enabled connected vehicles 

and non-connected human driven vehicles, in almost real-time. MIDAS uses a forward 

recursive dynamic programming approach to set durations of green times in a cycle-free 

scheme for controlling potentially highly fluctuating demands, as one may expect at 

diamond interchanges with complicated traffic movements. MIDAS has been implemented 

in C++ and was evaluated using a calibrated VISSIM microsimulation model of a DI (on 

I-17/19th Ave., Phoenix, AZ). The evaluation showed that MIDAS outperforms OFTC and 

RHODES signal control strategies for common evaluation metrics: average queue delays, 

average queue lengths and vehicle stops. Further analysis showed that when market 
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penetration rates of GPS-enabled connected vehicles increase and more such vehicles are 

managed by MIDAS then benefits improve, as would be expected. This study was partially 

supported by the National Science Foundation (NSF) Award 166367. The views and 

conclusions contained in this dissertation work are those of the authors and not NSF.  

Later in chapter 2 of this dissertation, a new proactive autonomous intersection control and 

management system has been developed. Unlike conventional traffic lights system to 

control human-driven traffic movements at the intersection, a new unsignalized (traffic-

lights-free) traffic movement control has been implemented to control completely 

autonomous vehicular traffic safely and efficiently using IVC & V2I communication, 

without a need for conventional traffic lights. An effective platooning strategy has been 

introduced to command AVs to join or unjoin platoons to improve road capacity utilization 

and throughput at the intersection. Finally, a new dynamic programming-based sequence 

optimization algorithm has been formulated to determine the optimal release sequence of 

approaching AV/platoon traffic through the intersection by minimizing the total time-loss 

delays due to the conflicts at the intersection. MIDAS AI system performance has been 

studied by implementing the V2X communication network in simulation using SUMO 

microscopic traffic simulator, VEINS and PLEXE platooning protocol. Simulation study 

shows that MIDAS platooning strategy has significantly improved the throughput and 

time-loss delays of AVs through an unsignalized autonomous intersection.  

Finally in chapter 3, a new architecture for dynamically controlling autonomous vehicular 

traffic in real-time by learning an optimal AV clearance policy using deep reinforcement 

learning concepts and unsignalized autonomous intersection control called MIDAS RAIC 
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is developed and the performance is tested with respect to time loss delay in simulation 

using SUMO micro-simulator. MIDAS RAIC uses efficient state space representation of 

unsignalized autonomous intersection corridor which proved to be effective in training the 

agent. MIDAS RAIC also uses effective techniques in deep reinforcement learning like 

experience replay and additional target Q network for achieving stable training and 

improving training convergence. Simulation results showed that the agent has learned a 

good action-policy by minimizing the total cumulative time-loss delays. By the end of the 

training, agent has significantly reduced the time loss delays of the autonomous vehicles 

approaching the unsignalized intersection and learned the Q value function. Results show 

that trained MIDAS RAIC agent performed as good as the DP based autonomous 

intersection control system, MIDAS AI. The trained agent can be deployed into real world 

traffic networks for achieving a real-time adaptive and dynamic traffic control solution for 

autonomous vehicular traffic. The proposed MIDAS RAIC architecture is generalized 

enough to control and manage autonomous vehicular platoons. 

4.2 Future Research 

The underlying assumption in chapter 2 and 3 is that the respective proposed MIDAS 

implementations control a homogenous traffic environment with fully autonomous 

vehicles. But the transformation of human driven traffic to completely autonomous traffic 

is only possible by going through a phase where human driven vehicles and autonomous 

vehicles share the infrastructural capacity of road network. So, the direction for future 

research is to develop a proactive traffic control and platoon management system for 

heterogenous traffic environment, considering the co-existence of both human-driven and 
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autonomous vehicular traffic. The future research should consider two different traffic flow 

and infrastructural designs to accommodate heterogenous traffic environment as follows. 

a) Designated lanes for autonomous vehicles 

In this proposed design, see Figure B.1, an upstream link has designated lanes for 

autonomous vehicles. As developed in chapter 2 of this dissertation, a platooning model 

needs to be implemented to manage and control autonomous vehicles on these 

designated lanes. Similarly, a hybrid traffic signal control optimization model is 

required at the intersection to schedule the arrivals and departures of heterogenous 

traffic safely and efficiently. 

b) Competing behavior of heterogenous traffic with lane sharing 

In this proposed design see Figure B.1 there aren’t any designated lanes for autonomous 

vehicles and there exists a competing behavior among the heterogenous traffic. The 

erratic lane changing behavior, speed and car following behavior of human driven 

vehicles introduce stochasticity into the traffic control and management of 

heterogenous traffic. In such design, a probabilistic platooning model needs to be 

developed to manage and control the heterogenous mixture of vehicles by providing 

recommendations to human driven connected vehicles in the network. Also, an optimal 

signal control optimization methodology is required to control such flow of 

heterogenous traffic through the intersections. 
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COMMON SIGNAL PHASES USED BY TRAFFIC ENGINEERS AT DIAMOND 

INTERCHANGES 
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Figure A.1. “3-Phase Lag-Lag” Phase Movements 

 

 

Figure A.2. “3-Phase Lag-Lag” Signal Plan 

 

Table A.1. “3-Phase Lag-Lag” Signal Stages Used in DP. 
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Figure A.3. “4-Phase Lead/Lag - Lag” Phase Movement 

 

Figure A.4. “4-Phase Lead/Lag – Lag” Signal Scheme 

 

Table A.2. “4-phase Lead/Lag – Lag” Signal Stages Used in DP 

Stage Green Phases 

1 Ф1  

2 Ф2 
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Figure A.5. “4-Phase Lead/Lag” Phase Movement 

 

 

 

 

                      Figure A.6. “4-Phase Lead/Lag” Signal Scheme 

 

Table A.3. “4-Phase Lead/Lag – Lag” Signal Stages Used in DP. 
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1 Ф1  
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3 Ф3 
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Ф1+ Ф2 

 

Ф4 
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Ф1+ Ф2+ Ф4 

 

 Ф4 

 

1 1 2 2 3 3 4 4 
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 Figure A.7.  “3-Phase with Overlaps” Phase Movement 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.8. “3-Phase with Overlaps” Signal Scheme 
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Table A.4. “3-Phase with Overlaps” Signal Stages 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stage Green Phases 

1 Ф1  

Ф5 

2 Ф1  

Ф6 

3 Ф2  

Ф6 

4 Ф2  

Ф5 

5 Ф3  

Ф8 

6 Ф4  

Ф7 

7 Ф4  

Ф8 
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APPENDIX B 

ROAD DESIGNS TO CONSIDER FOR HETEROGENOUS TRAFFIC 

ENVIRONMENTS 
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Figure B.1 Road Designs for Heterogenous Vehicular Traffic Environments 


