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ABSTRACT  

   

Globally, land use change is the primary driver of biodiversity loss (IPBES, 

2019). Land use change due to agricultural expansion is driving bird species to the brink 

of extinction in the Peruvian Amazon rainforest. Agriculture is one of the primary threats 

to bird species in the region, and agroforestry is being pursued in some communities as a 

potential solution to reduce agriculture's impacts on species, as agroforestry provides 

improved habitat for wildlife while also enabling livelihoods for people. Understanding 

how anthropogenic land use choices affect imperiled species is an important prerequisite 

for conservation policy and practice in the region. In this thesis, I develop a spatial model 

for quantifying expected threat abatement from shifting agricultural land use choices 

towards agroforestry. I used this model explored how agricultural land use impacts 

imperiled bird species in the Peruvian Amazon. My approach builds on the species threat 

abatement and restoration (STAR) metric to make the expected consequences of reducing 

agricultural threats spatially explicit. I then analyzed results of applying the metric to 

alternative scenarios with and without agroforestry conversion. I found that agroforestry 

could result in up to 18.68% reduction in mean bird projected population decline. I found 

that converting all terrestrial agriculture in the Peruvian Amazon to agroforestry could 

produce a benefit of up to 83% to imperiled birds in the region in terms of improvement 

in Red List status. This use of the STAR metric to model alternative scenarios presents a 

novel usage for the STAR metric and a promising approach to understand how to address 

terrestrial biodiversity challenges efficiently and effectively. 
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CHAPTER 1 

The world is losing biodiversity at an unprecedented rate as a result of land use 

choices (McCallum, 2015). One of the key drivers of this loss is habitat destruction (Caro 

et al., 2022). Megadiverse regions, in particular, are experiencing extreme pressure from 

a variety of anthropogenic activities (Fajardo et al., 2014). However, agriculture stands 

out as one of the most negatively impactful industries when it comes to promoting 

biodiversity loss and habitat destruction and degradation (Dudley & Alexander, 2017). 

Almost half of Earth’s habitable land is covered by agriculture, and this figure is 

projected to increase (Ritchie, 2013). As the human population grows and per capita 

resource consumption rises, agriculture is increasingly expanding into wildlife habitat, 

especially in megadiverse countries (Machovina et al., 2015). These factors present 

significant challenges to achieving sustainability goals set by governments. Conservation 

decision makers must therefore find ways to address shifting land use choices and the 

resultant biodiversity impacts in the most efficient and effective ways possible (Bottrill et 

al., 2008). Understanding the biodiversity outcomes of current and potential land use 

choices represents a pressing challenge in identifying effective conservation 

interventions. 

 Peru is a megadiverse country where agriculture stands out as a threat to 

biodiversity. Peru contains 13% of the Amazon rainforest and is home to over 1800 

species of birds, making it one of the most biologically diverse countries on Earth (Figure 

1; Peru Ministry of Foreign Trade and Tourism, 2020; BirdLife, 2022.). Approximately 

19% of Peru’s land area is used for agriculture, with 43% of that occurring in Peru’s 

portion of the Amazon basin as of 2018 (USAID, 2018). Current government policies and 
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economic conditions are predicted to exacerbate this issue and allow further agricultural 

expansion–and thereby deforestation–in the Peruvian Amazon (Sánchez-Cuervo et al., 

2020). 

 

Figure 1. Map of Peru with official region boundaries overlaid with the Peruvian 

Amazon. 

Agriculture in the Peruvian Amazon is dominated by pasture and plantations 

(Ravikumar et al., 2016). Slash and burn practices, coupled with clear-cutting, are 
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efficient at removing large swaths of forest, but such methods destroy habitat that birds 

depend on for survival (Palm et al., 2005). This region is also experiencing shifts in 

drivers that are likely to complicate mitigation strategies. Historically, smallholder 

farming was the dominant driver of deforestation in the Peruvian Amazon, but industrial 

agriculture is now emerging as the primary threat (Ravikumar et al., 2016). Industrial 

farming tends to prioritize production of commodity crops and products such as coffee, 

cacao, palm oil, and beef, which are then exported to wealthier countries in the Global 

North (Castro-Nunez et al., 2021; Recanati et al., 2015).  

 These challenges also present opportunities, as alternative land use choices such 

as agroforestry can help reduce the threat that agriculture poses to biodiversity (as 

summarized in the theory of change in Figure 2; Pereira & Viola, 2022; Perry et al., 

2016; Sanchez-Cuervo et al., 2020; Socolar et al., 2019). Agroforestry has emerged as a 

potential solution to habitat loss resulting from agricultural activity and presents a 

middle-ground that can sustain wildlife and humans alike (Tscharntke et al., 2014). 

Agroforestry is a form of polyculture wherein woody vegetation, such as trees and 

shrubs, are grown within cropland or pasture. Agroforestry allows cultivated agricultural 

land to host a higher diversity of vegetation and therefore animal species (Udawatta et al., 

2019).Birds, in particular, experience measurable benefits from agroforestry, as this 

management practice restores lost canopy and mimics secondary forest structure 

(Bohada‐Murillo et al., 2019). 

Agroforestry also benefits human wellbeing through crop diversification and 

improved ecosystem services (Beillouin et al., 2021). Indigenous peoples have practiced 

agroforestry in the Americas for centuries, employing it across diverse landscapes–
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including the rainforests of Amazonia–to meet their needs (Gonzalez & Kroger, 2020). In 

the Peruvian Amazon, instituting systems that emphasize shade crops, intercropping and 

alley cropping could partially restore lost canopy, providing birds with critical nesting 

and feeding resources. A variety of commodity crops grown in the Neotropics, including 

coffee and cacao, respond positively to shaded systems (Arévalo-Gardini et al., 2021; 

Hernandez-Aguilera et al., 2019). Emphasizing native vegetation, where possible, may 

improve the biodiversity benefits accrued and help restore the landscape to its former 

stable state while building value for farmers (Blare & Donovan, 2016). Consequently, 

agroforestry presents a viable alternative to current agricultural practices, as it can 

improve biodiversity outcomes without compromising human wellbeing. Thus, 

agroforestry is a promising conservation intervention for improving bird outcomes. 
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Figure 2. This theory of change lays out agroforestry as a potential pathway for 

achieving ecological and policy changes that would benefit imperiled birds in the 

Peruvian Amazon. 

 The current body of peer-reviewed literature that show favorable results for 

agroforestry initiatives emphasize stakeholder engagement, education, and government 

policy as means for achieving desirable conservation outcomes (Dumont et al., 2017; 

Hemmelgarn & Gold., 2021; Kaonga et al., 2012). However, agroforestry will not 

feasibly be implemented across the entirety of the Peruvian Amazon, so decision makers 

must find ways to quantify where its benefits are likely to be most pronounced and 

therefore which regions are the most appropriate targets for this type of action.  

 It is difficult to determine where agroforestry interventions should be 

implemented to maximize efficiency and effectiveness in terms of benefits to 

biodiversity. Until recently, decision makers lacked a standardized methodology for 

spatially modeling expected biodiversity responses to threat reduction due to specific 

land use choices. One novel means by which to achieve this is through use of the species 

threat abatement and restoration (STAR) metric, that quantifies how mitigating threats 

can reduce extinction risk for threatened species (Mair et al., 2021). Drawing on IUCN 

Red List data and area of habitat (AOH) information, the STAR metric is a useful tool 

that is scalable across species, threats and geographies and can be used in part to assist 

conservationists in spatially prioritizing biodiversity interventions (Mair et al., 2021). 

Because the STAR metric can link threats of various resolutions to a species’ Red List 

status, it allows decision makers to trace the direct impacts of specific land use choices to 

extinction risk and thus can be a useful conservation planning tool. 
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  Currently, terrestrial STAR scores can quantify the expected biodiversity benefits 

of resolving all the threats facing the species in a region, but to explore the biodiversity 

implications of agroforestry implementation compared to current agricultural land use 

trends, STAR must be modified so that it can produce predicted alternative scenarios and 

disentangle the effects of specific threats. This would entail analyzing single threat 

categories independently, making threats spatially explicit, and creating a methodology 

for modeling alternative conditions.  

Thus, to explore how current agriculture land use choices are expected to impact 

bird biodiversity in the Peruvian Amazon and how alternative agricultural practices could 

potentially improve bird conservation status, I developed a spatial modeling approach to 

apply these modifications to the STAR metric and then used the new metric to model 

scenarios that could compare expected outcomes for birds with and without agroforestry 

interventions. I then compare the scenarios to examine where implementation of 

agroforestry in the Peruvian Amazon could yield the greatest benefits to imperiled bird 

biodiversity. This approach allows the STAR metric to be used to model the expected 

benefits of conservation interventions that act on specific threats but that do not 

necessarily resolve all threats facing a species in a region and thus provides a useful 

addition to the conservation planning toolbox. Although this thesis focuses exclusively on 

birds and agricultural threats, the approach I describe can be applied across threats, 

taxonomic groups, and landscapes. 

METHODS 

I developed a spatially-explicit model to quantifying the expected biodiversity 

benefits of implementing agroforestry land use in the Peruvian Amazon in place of 
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existing agricultural use. I focused on determining how threats to birds listed as 

threatened or near threatened on the IUCN Red List can be expected to be reduced, as a 

case study. I calculated both the expected population decline and the current opportunity 

to reduce the study species’ extinction risk using the STAR metric and then compared 

these measures to the expected outcome if agroforestry were implemented everywhere 

that terrestrial agriculture occurs in the Peruvian Amazon. I did the latter through a 

modified usage of the STAR metric that allows it to be used to estimate the potential 

benefits of conservation interventions that act on specific threats but that do not 

necessarily resolve all threats facing a species in a region. This process is summarized in 

the workflow shown in Figure 3; each step is explained in the methods below. 

 



  8 

Figure 3. Methods workflow of the process for calculating and mapping 1) mean 

projected population decline and 2) STARt values for the relevant species. 

Study Site and Species Selection (Steps 1-2). I focus on the Amazon rainforest 

in Peru, an inland region in western Peru dominated by moist broadleaf tropical 

rainforest. This area is one of the most biologically diverse regions on earth, making it a 

critical area of concern for conservationists (IUCN, 2023). The region contains a human 

population of approximately 1.5 million, or 5% of the national population, and this 

number is projected to increase over the coming decade (ARCA, 2019; Peru National 

Institute of Statistics and Informatics, 2017). The most recent data collected by the 

Peruvian government indicates that agriculture covers approximately 50,890 square 

kilometers of the Peruvian Amazon (Figure 4; MINAM, 2018). In some regions, such as 

Ucayali, up to 40% of the population’s annual income is derived from forest and 

environmental products, demonstrating the importance of intact forests and rich 

biodiversity to the livelihoods of people living in the Peruvian Amazon. Yet agriculture 

and livestock production are also significant sources of income at 25% and 11% in 

Ucayali, respectively (Porro et al., 2015). Similar trends can be seen across the other 

regions that occur within Peru’s Amazon rainforest. This reliance on both intact and 

manipulated land creates some conflict and raises questions about alternative land uses 

that may be able to meet all of these needs (e.g. agroforestry). Although the extent of 

agriculture varies between regions, it is generally a significant land use in the study area, 

particularly in regions that occur in the western Peruvian Amazon (Table 1). 
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Figure 4. Extent of recorded agricultural areas in the Peruvian Amazon as of 2018, 

according to The Ministry of Environment of Peru (MINAM, 2018). 

Bird biodiversity is particularly rich in the Peruvian Amazon. Over 800 bird 

species reside in this region, a number of which are endemic (ARCA, 2019). Of those 

more than 800 bird species, over 130 are listed as imperiled on the IUCN Red List of 

Threatened Species, the vast majority of which are experiencing global population 

decline (Figure 5; IUCN, 2022). Some of these species have extremely patchy or 

geographically limited distributions, making them vulnerable to population fragmentation 
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as a result of habitat loss (Carrete et al., 2009). Birds can also reliably be treated as 

indicators of overall ecosystem health, making them a logical conservation focus (Roth & 

Weber, 2008). Moreover, birds and their threats are generally better documented in the 

Red List than other species groups, giving conservationists a clearer understanding of 

their threats, as well as potential solutions (Bachman et al., 2019).  

Table 1 

Regional Statistics for the Peruvian Amazon 

 

Note. This table shows Peruvian regions that occur in the Peruvian Amazon and each of 

their respective 1) human population size, 2) total land area, 3) total land area covered by 

agriculture, and 4) proportion of total land area covered by agriculture. 

 My study area provided the basis for the area of interest (AOI) extent that informs 

all calculations related to the STAR metric. The study site and the area of interest can be 

the same, but do not necessarily need to be (Mair et al., 2021). The effects of changing 
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the AOI extent are explored further below. In this thesis, the AOI will always refer to 

either the Peruvian Amazon or a subset of the Peruvian Amazon. 

 

Figure 5. Global population trends for imperiled bird species occurring in the Peruvian 

Amazon, according to the IUCN Red List of Threatened Species (2022). 

Data Collection (Steps 2-5). First, I compiled a study dataset of imperiled birds 

that reside in the Peruvian Amazon (see Appendix). Using the International Union for 

Conservation of Nature’s (IUCN) Red List of Threatened Species website, I downloaded 

a list of bird species whose ranges overlapped with the Peruvian Amazon and that were 

listed as near threatened, vulnerable, endangered, or critically endangered, which I 

collectively refer to as “imperiled” in this thesis (IUCN, 2022). My final dataset 

contained 131 bird species ranging from near threatened to critically endangered. I then 

gathered detailed information from the IUCN Red List for each species on this list, 

including Red List status, threat details, population trends, habitat and elevation 

associations, and taxonomy information. Red List threat information for each species 

0

20

40

60

80

100

120

140

Decreasing Increasing Stable Unknown

N
u
m

b
er

 o
f 

S
p

ec
ie

s

Global Population Trend



  12 

included each threat’s name, code, timing, scope and severity. There are 12 overarching 

threat categories maintained by the Red List by which species’ threats are categorized 

(see Appendix; IUCN Threats Classification Scheme Version 3.3, 2022).  For a specific 

threat affecting a species, scope refers to the “proportion of the total population affected,” 

while severity refers to the “overall declines caused by the threat” (IUCN Red List 

Classification Scheme Version 3.3, 2022).  

I then collected area of habitat (AOH) raster data for each species for use as a 

proxy for population size and to later build my raster mosaics. Area of habitat refers to 

“the habitat available to a species, that is, habitat within its range,” meaning it excludes 

unsuitable habitat and elevations within a species’ range where that species would not 

occur; it is thus a more accurate measure of species occurrence than range alone 

(Lumbierres et al., 2022a). Practically, area of habitat is spatial data, typically stored and 

manipulated as a raster. I first downloaded publicly available AOH rasters generated by 

Lumbierres et al. (2022a), which are hosted on the data publishing platform Dryad 

(Lumbierres et al., 2022b). AOH rasters were available for all the study species except 

for Hemitriccus cohnhafti, whose AOH raster file was not generated by Lumbierres et al. 

(2022b). To compensate for the missing H. cohnhafti AOH data file, I created an AOH 

raster file with a 100 meter resolution–to match the Lumbierres et al. (2022a) rasters–

using the species’ range shapefile, habitat association information, and elevation limit 

data, all recorded by BirdLife International and downloaded from the IUCN Red List 

website (BirdLife, 2017). Ecosystem types for the habitat association component were 

determined using European Space Agency land cover data (ESA, 2017). Using ArcGIS 

Pro (ESRI, Version 3.1), I then validated each species’ AOH occurrence in my AOI by 
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overlaying the AOH rasters with a shapefile of the Peruvian Amazon and confirming that 

each species’ AOH overlapped with that shapefile by at least one 100 meter pixel. 

I then calculated the proportion of the global population of each species that 

occurred within the AOI for each scenario. In order to determine the proportion of each 

species’ global population occurring within each AOI, I clipped each species’ AOH raster 

to the AOI extent. For each species, I then divided the clipped AOH area by the area of 

that species’ global AOH and used these proportions as proxies for population size when 

calculating STARt (see detailed methods below). Other spatial data collected includes the 

extent of the Peruvian Amazon, Peruvian administrative boundaries, deforestation data, 

and agricultural data, all of which I obtained from the Ministry of Environment of Peru 

(MINAM) open data portal (MINAM, 2018), with the exception of the Peruvian Amazon 

boundaries, which I obtained from the Amazon Network of Georeferenced Socio-

Environmental Information (RAISG, 2022). I performed all spatial data manipulations in 

ArcGIS Pro (ESRI, Version 3.1). 

Scenario Details and Basis for STAR Modification. To estimate the expected 

response of birds in the Peruvian Amazon to different agricultural land use scenarios, I 

calculated the 1) mean projected population decline and 2) STARt scores for three 

scenarios, each with two conditions. The former is an intermediary used to produce the 

latter, but mean projected population decline can stand as its own measure. The primary 

differences between the three scenarios are the extent of the area of interest (AOI) and the 

Red List threat information included in the calculations for mean projected population 

decline and STARt scores. In this thesis, “area of interest” (AOI) refers to the geographic 

area that bounds the spatial analysis and related calculations. It is critical to calculating 
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the proportion of a species’ AOH that occurs within the AOI, as changing the AOI extent 

will cause this proportion to adjust accordingly. The AOI and the study area are the same 

for Scenarios 1 and 2 (e.g. the Peruvian Amazon), but the AOI in Scenario 3 is restricted 

to agricultural areas in the Peruvian Amazon (Table 2). The AOI in Scenario 3 is thus a 

subset of the AOI used in Scenarios 1 and 2. This restriction of the AOI in Scenario 3 is 

critical for making the STAR metric reflect the “real world” better, as unlike the 

traditional STAR metric, it does not assume that threats are happening everywhere 

equally, but rather restricts calculation of STARt scores such that they are only spread 

across areas where the relevant threats occur. 

The second major difference is the number and type of major IUCN threat 

categories considered in the calculations. For Scenario 1, my calculations incorporated all 

recorded threat data for my study species, irrespective of the category each threat fell 

into. In other words, Scenario 1 looked at all threat impacts, rather than agriculture alone. 

Conversely, Scenarios 2 and 3 exclusively incorporate agricultural threat data and 

exclude all other threat impacts from the calculations (Table 2). For each scenario’s 

calculations, I kept the severity of all non-agricultural threats the same between the 

“Actual” and “Agroforestry” conditions for Scenario 1; Scenarios 2 and 3 exclusively 

used Red List data from agricultural threat categories, meaning all threat severity scores 

were by default reduced by 1 in their “Agroforestry” scenarios. The species list remained 

the same across all three scenarios. By calculating and mapping three separate scenarios, 

I was able to distinguish how the traditional STAR metric versus my modified usage of 

the STAR metric might yield different prioritization results (see Discussion). 
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For each scenario, I explored the difference in outcomes between two conditions. 

The “Actual” condition represented the world “as is;” in other words, it used the most up 

to date Red List data to capture an approximation of threat scope and severity, as well as 

species population trends, for my study species within the AOI. I then constructed the 

“Agroforestry” condition to represent a potential situation in which all current terrestrial 

agricultural areas in the Peruvian Amazon were converted to agroforestry; in other words, 

if the severity of all agricultural threats was partially abated and reduced as a result of 

widespread agroforestry adoption, what might happen? The “Agroforestry” condition in 

each scenario used a modified methodology to calculate mean projected population 

decline and STARt scores, which is described in detail below. I kept the severity of all 

other non-agricultural threats the same between the “Actual” and “Agroforestry” 

conditions for Scenario 1; Scenarios 2 and 3 exclusively considered agricultural threats, 

meaning all threat severity scores were reduced by 1 in their “Agroforestry” scenarios. 

Finally, I calculated the difference between the “Actual” and “Agroforestry” conditions 

to produce “Achieved” STARt values, which represent the biodiversity benefit gained by 

converting agriculture to agroforestry in the AOI. 

Table 2 

Scenario Descriptions 

Scenario Area of Interest (AOI) Threats Considered 

1 Peruvian Amazon IUCN Categories 1-12 (all possible 

threats) 
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2 

Peruvian Amazon IUCN Threat Category 2 (agricultural 

threats) 

3 Agricultural areas in Peruvian 

Amazon 

IUCN Threat Category 2 (agricultural 

threats) 

Note. This table details the three scenarios calculated, with key differences between 

scenarios highlighted (with green indicating similarities between scenarios within a 

column, and red indicating differences). The study species and conditions analyzed 

remained consistent across scenarios. 

Traditional and Modified Approaches to Calculating Population Decline 

(Steps 6-8). I calculated the mean projected population decline for each species to 

represent the “Actual” condition. Using the IUCN Threat Impact Scoring System (see 

Appendix) in combination with Red List threat scope and severity scores for the study 

species, I calculated a threat impact score for each individual threat impacting each 

species using the IUCN Threat Impact Scoring System Version 1.0 (IUCN, 2022). This 

matrix translates raw, qualitative threat scope and severity information into standardized, 

numeric scores. I then translated these scores to mean projected population decline for 

each individual threat per species using a matrix developed by Hawkins et al. (2018) (see 

Appendix). This projection represents estimated average decline over 10 years or 3 

generations, whichever is longer for that species, per the Red List’s evaluation criteria. 

 I modified the mean projected population decline calculation for the 

“Agroforestry” condition to represent conversion of current agriculture to agroforestry. 

To do so, I used the same calculation process as above, but I altered agricultural threat 
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severity scores to represent an expected decrease in threat from agriculture. I elected not 

to alter the scope scores to retain the ratio between threat scopes for each species and to 

demonstrate that the extent of agricultural threats would not be changed under the 

“Agroforestry” conditions. The scientific literature has consistently demonstrated that 

agroforestry reduces population decline of species (De Benhouwer et al., 2013; Torralba 

et al., 2016), so decreasing the severity scores was most appropriate. However, because 

the bird biodiversity benefits of agroforestry are not equivalent to those of primary forest, 

I did not reduce agricultural threat severity scores to zero in the “Agroforestry” 

conditions. Instead, each species’ agricultural threat severity score obtained from the 

IUCN Threat Impact Scoring System was reduced by 1 (e.g. a “Very rapid” severity 

score of 3 would reduce to a “Rapid” score of 2). 

These calculations resulted in two mean projected population decline percentages 

for each species in each scenario: one value for the “Actual” condition and one value for 

the “Agroforestry” condition. I also calculated the difference in mean projected 

population decline across species between the “Agroforestry” and “Actual” conditions for 

each scenario, representing reduction in mean projected population decline due to the 

intervention. Calculating mean projected population decline is a critical intermediary step 

needed to use the STAR metric. However, mean percent population decline is also 

frequently used by scientists as a measure to discuss biodiversity trends. It may therefore 

be useful as a standalone metric in some instances (see Discussion for further details). 

Calculating “Actual” STARt Scores (Steps 9-10). To explore how threat 

abatement would result in expected species benefits, I calculated STARt scores for each 

species in my study using the following equation:  
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𝑇𝑡,𝑖 =  ∑ 𝑃𝑠,𝑖𝑊𝑖𝐶𝑠,𝑡

𝑁𝑠

𝑠

 

Here, STARt scores (T) were calculated for each threat (t) within the AOI (i). This was 

done by multiplying the proportion of each species’(s) population that occurs in the AOI 

(P) by its Red List category weight (W) and the relative pressure (C) of each threat 

impacting it. The proportion of a species’ global AOH that overlapped with the AOI (P) 

acted as a population size proxy. The Red List category weight was based on an equal 

steps approach–thus, near threatened equaled 100, vulnerable equaled 200, endangered 

equaled 300, and critically endangered equaled 400. Relative threat pressures were 

obtained by summing the mean projected population declines across all threats for each 

species (as calculated above), then dividing the projected population decline for the 

individual threat by that total. All relative threat pressures for each species sum to 1; 

within the equation, this means that C for each individual threat affecting a species will 

always be less than or equal to 1. Scores are summed across species to achieve a final 

STARt score for that threat (Table 3). Scores can then be summed across threats to 

achieve a total estimated STARt score for all threats within the AOI (Table 4) (Mair et 

al., 2021). 

Table 3 

Example Calculations 



  19 

 

Note. This table shows example calculations for threat severity impact score 

modification, mean projected population decline, and STARt scores (Actual, 

Agroforestry, and Achieved) for Aburria aburri. Red highlighted cells show modified 

values for the Agroforestry condition and subsequent values for reduction in mean 

projected population decline and Achieved STARt scores. 

Table 4 

Example of Calculated Values Per Threat Category 
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Note. This table shows example mean projected population decline and STARt 

calculations for agricultural threats (t) in Scenario 1, summed across all study species (s). 

Calculating “Agroforestry” STARt Scores Using the Modified STAR Metric 

(Steps 9-10). To construct the alternative “Agroforestry” land use models for each 

scenario, I used the modified mean projected population decline values based on the 

altered severity scores as described above. Additionally, I used the same STARt equation 

shown above but altered the relative threat pressure (C) component of the STARt 

calculation as follows. I divided the average population decline values for the 

“Agroforestry” conditions by the summed values from the “Actual” conditions for each 

species rather than summing the average population decline values across threats for each 

species, then dividing the individual scores by that sum to obtain relative threat pressures 

(see Appendix for example calculation). Subsequently, the relative threat pressures did 
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not necessarily sum to 1, but often summed to less than 1. This modification alters the 

total estimated STARt score summed across species and threats to reflect the expected 

effect of converting agriculture to agroforestry by reducing relevant threat severity 

scores. If this step were not taken, the final summed STARt score would be the same for 

the “Actual” and “Agroforestry” conditions because of the way threats are scaled in the 

equation. This modification allows the STAR metric to be used to model the potential 

benefits of conservation interventions that act on specific threats but that do not 

necessarily resolve all threats facing a species in a region. 

Calculating “Achieved” STARt Scores With a Modified STAR Metric (Steps 

9-10). To construct the expectations of how species benefit from agroforestry land use, I 

calculated “Achieved” STARt scores across threats, which represents the theoretical 

benefit gained by agroforestry implementation in the study system. To do this, I 

subtracted the “Agroforestry” STARt score for each individual species from that species’ 

“Actual” STARt score, in each scenario. This “Achieved” STARt measure should be 

understood as a theoretical ideal “Realised” STARt measure. “Realised” STAR scores are 

“ex-post,” or scores that represent actual gains or losses accrued by a conservation 

intervention after it has been implemented in the AOI (IBAT, 2021). In other words, 

“Realised” STAR aims to track and verify an intervention’s effects on biodiversity over 

time. “Achieved” STARt, as presented in this thesis, is essentially a theoretical prediction 

of the “Realised” STARt score that could be achieved by abating a specific threat under 

ideal conditions. Importantly, “Achieved” STARt scores are what I use to predict and 

map the areas where biodiversity would benefit the most from intervention. 
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Raster Creation and Analysis (Steps 11-12). For each scenario, I calculated the 

difference in STARt scores for each threat between the “Agroforestry” condition and the 

“Actual” condition to estimate an “Achieved” STARt score representing the benefit of 

the agroforestry implementation. All calculations and analyses were performed in 

Microsoft Excel (Version 2307), RStudio (Version 2023.06.1+524), and ArcGIS Pro 

(Version 3.1). 

 To estimate the spatially explicit distribution of expected biodiversity returns 

from different agricultural land use choices, I created rasters that applied the calculations 

described above across the AOI for each scenario. For each scenario, I generated 100 

meter resolution rasters for each of my 131 species for the following 6 measures: mean 

projected population decline for the “Actual” condition, mean projected population 

decline for the “Agroforestry” condition, reduction in mean projected population decline 

between “Actual” and “Agroforestry” conditions, STARt score for the “Actual” 

condition, STARt score for the “Agroforestry” condition, and “Achieved” STARt score. 

To create these, I used the AOH rasters from Lumbierres et al. (2022), clipped to each 

scenario’s respective AOI extent, as baseline rasters. The pixels representing a species’ 

AOH all originally held a value of one, while pixels outside the AOH boundaries held a 

value of zero. I changed all pixels with “zero” values to “No Data” so that I would be 

able to differentiate between values of zero that I purposefully calculated from those that 

Lumbierres et al. (2022) originally used to classify their rasters. All values of one were 

changed to reflect the reclassifications described in detail below. In total, I created 131 

rasters for each of the 6 listed measures within each of the three scenarios, for a total of 

18 sets of 131 reclassified species AOH rasters (or 2,358 reclassified AOH rasters in 
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total). In this case, “reclassifying” a raster means changing its pixel values and refers to 

the software command I used. 

  To create the three raster sets in each scenario representing mean projected 

population decline measures, I reclassified each species’ baseline AOH raster three times. 

I used each species’ respective mean projected population decline value across threats to 

reclassify the rasters. For the “Actual” condition’s raster, I used the mean projected 

population decline value I previously calculated for the species under that condition. 

Subsequently, each pixel value that previously was 1 in the AOH was set to be equal to 

the overall mean projected population decline percentage for the species under the 

“Actual” condition. I then performed the same process for each species using the 

“Agroforestry” condition and its respective average population decline percentages, 

generating my second set of rasters. Finally, I performed the same process for each 

species, this time using the reduction in mean projected population decline from the 

“Actual” to the “Agroforestry” condition that I calculated for each species. In total, this 

made 9 sets of 131 rasters, with 3 sets for each scenario. 

 To create the three raster sets in each scenario representing each STARt measure, 

I again reclassified each species’ baseline AOH raster three times. Unlike the population 

decline rasters, I did not make the raster values equivalent to each species’ total estimated 

STARt score. Instead, I individually divided each species’ total “Actual,” “Agroforestry,” 

and “Achieved” STARt scores by the number of pixels from its AOH raster that 

overlapped with the AOI. For instance, a total estimated STARt score of 400 for a species 

whose AOH overlaps with the AOI by 100 pixels would result in pixel values of 4. This 

accounted for the size of a species AOH in how it is weighted in raster creation for 
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STARt scores. In other words, it weighted species with restricted ranges more heavily 

than those with expansive ranges. For the “Actual” condition’s raster, I used this 

calculated pixel value for each species to reclassify each species’ baseline raster. This 

step, following from Mair et al. (2021), reflects the size of each species AOH in the 

STARt raster values and is particularly important for depicting the relative weight 

endemic species contribute to STARt scores. For the second set of rasters in each 

scenario, I performed the same process for each species under the “Agroforestry” 

condition using that species’ “Agroforestry” STARt scores. Finally, I performed the same 

process for each species, this time using the “Achieved” STARt scores for each species to 

produce my third set of rasters in each scenario. In total, this made 9 sets of 131 rasters, 

with 3 sets for each scenario. 

I then mosaiced the reclassified AOH rasters for each scenario condition across 

131 species to produce six final rasters for each scenario. The mosaic function in ArcGIS 

Pro (Version 3.1) merges rasters and performs calculations on overlapping pixels to 

produce a single, final raster. For the sets of rasters reclassified using mean projected 

population decline, I used the “Mean” function to mosaic each set of rasters to produce a 

spatially explicit estimate of the mean population decline across the 131 bird species at 

the 100m resolution. For the sets of rasters reclassified using STARt scores, I used the 

“Sum” function to mosaic each set of rasters and produce a spatially explicit estimate of 

the total expected opportunity for threat reduction available for the 131 bird species (e.g. 

STARt scores) at a 100 meter resolution. Within these rasters, the STARt value varies 

from pixel to pixel based on which species’ AOH files overlap. This last, crucial step 
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produced 18 final rasters–6 for each scenario, to reflect the 6 measures described above–

which are key deliverables for this study. 

These rasters resulted in detailed, interactive TIFF files that could be summarized 

and compared to one another to understand how the study system and its bird biodiversity 

would be expected to fare if agroforestry was or was not widely present. I used them to 

explore the regions where agroforestry would be expected to yield the greatest benefit to 

threatened and near threatened birds in the Peruvian Amazon. To do so, I overlaid the 

first-level country subdivision administrative boundaries of Peru over 1) the reduction in 

mean projected population decline raster and 2) the achieved STARt raster for each 

scenario. I then used zonal statistics in ArcGIS Pro to calculate the 1) mean reduction in 

mean projected population decline and 2) sum Achieved STARt value for each 

administrative region for each scenario. I also used zonal statistics to calculate total 

STARt values per region for the “Actual” and “Agroforestry” conditions in each 

scenario. Finally, to calculate the benefit of converting agriculture to agroforestry in each 

region, I divided the “Achieved” STARt value for each region by its “Actual” STARt 

value, then converted this decimal to a percentage. This percentage can be used to 

understand the benefit of agroforestry to my study species, as it is less arbitrary and more 

intuitive than Achieved STARt values.  

I then ranked the administrative regions based on which would yield the highest 

benefits to biodiversity if agroforestry were to be implemented on a mass scale. The 

regions that occur in the Peruvian Amazon are ranked such that higher rankings indicate 

greater biodiversity benefits based on the relevant metric (e.g. projected population 

decline or STAR). All seventeen regions that occur in the Peruvian Amazon were ranked 
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in Scenarios 1 and 2; Apurimac is excluded from the Scenario 3 rankings, as agricultural 

areas have not been officially recorded there by The Ministry of Environment of Peru. I 

explored how rankings differed by condition and scenario, to understand how 

modifications to the STAR metric will affect its output. 

Finally, using the total STARt scores that I calculated for each threat and each 

species in Scenario 1’s Actual condition, I ranked each threat category and each species 

based on how much they contributed to the total STARt score for that condition. I then 

graphically displayed these ranks to explore how much benefit addressing each threat and 

each species would yield, based on the current, “real world” data hosted by the IUCN 

Red List. 

RESULTS 

Contribution of Individual Threats and Species to STARt Scores. In the 

Peruvian Amazon, some threats stand out as particularly egregious for the imperiled birds 

in my study. The most severe threat to these species was agriculture, according to their 

IUCN RedList assessments (Figure 6). In particular, agro-industry farming of annual and 

perennial non-timber crops and agro-industry livestock farming and ranching were the 

two most significant threats, although smallholder impacts were by no means negligible.  
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Figure 6. Relative contribution of threats to total estimated STARt score for “Actual” 

condition in Scenario 1, representing the current real world situation according to the 

STAR metric. 

 Some species contributed relatively more to the total estimated STARt score in 

my study region. In other words, certain species–due to restricted AOH extent or Red List 

status (e.g. risk of extinction), or both–contribute relatively more to the total estimated 

STARt scores produced in each scenario. This ranking reflects the data for the Actual 

condition in Scenario 1, which uses up-to-date, unmodified Red List data, thus 

representing the “real world” as it currently is. In particular, the endemic, critically 

endangered species Cinclodes palliatus, Synallaxis maranonica, and Pauxi koepckeae 
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contribute the most to the total estimated STARt score (Figure 7). Notably, these species 

are all threatened by agriculture. This demonstrates how species that are more imperiled 

or that are endemic within the AOI are weighted more heavily when using the STAR 

metric. 

 

Figure 7. Relative contribution of species to total estimated STARt score for the 

“Actual” condition in Scenario 1, representing the current real world situation according 

to the STAR metric and the most up to date IUCN Red List data for my study species. 

Scenario 1 Results. In this scenario, my AOI was the Peruvian Amazon and I 

incorporated threat data for my study species from all twelve of the IUCN’s major threat 

categories into my analysis. The Actual condition for this scenario represents the STAR 
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metric in its traditional, unmodified form. The mean projected population decline range 

for imperiled Peruvian Amazon bird species was 7.76%, with a range of 1.25% to 

20.01%, according to my “Actual” condition calculations. Implementation of agroforestry 

would reduce this mean to 4.32%, with a range of 0.01% to 14.67%, according to my 

“Agroforestry” condition calculations. The expected reduction in mean projected 

population decline for the studied birds was 3.44%, ranging from 0% to 11.15%, with 

variation in where the benefits occur. In some areas–particularly the northwestern 

Amazon–as high as an 11.15% reduction in mean projected population decline across 

threatened bird species was estimated to be achieved through agroforestry (Figure 8). 

 

Figure 8. From left to right, mean projected population decline for 1) Actual condition, 

2) Agroforestry condition, and 3) reduction from Actual to Agroforestry condition in 

Scenario 1. 

In my maps of the STAR metric, a higher value indicated a greater potential for 

benefit to biodiversity if threats were abated. In the Actual condition, the maximum pixel 

STARt value was 0.85, again occurring in the northwestern portion of the region, though 

high STARt values were present in the entire western half of the region. The STARt 
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scores in the Agroforestry condition were much lower, with a maximum STARt value of 

only 0.28. These values represented the theoretical remaining contribution of threats to 

species status after agroforestry implementation in the region. The Achieved STARt 

values (difference between the Actual to Agroforestry condition)–which in some areas 

was as high as 0.57–suggest the benefit conferred by agroforestry (Figure 9). These 

scores are only meaningful when compared to one another, both within and across 

conditions. Though these values may appear small, this is only because the rasters have a 

very fine resolution of 100 meters. Aggregating the rasters to a coarser resolution would 

yield higher values per pixel, but would not change the total estimated STARt scores 

calculated for each condition. 

 

Figure 9. Total estimated STARt scores for imperiled birds in the Peruvian Amazon 

representing, from left to right, 1) the Actual condition, 2) the Agroforestry condition, 

and 3) Achieved STARt scores in Scenario 1. 

Scenario 2 Results. For Scenario 2, my AOI was the Peruvian Amazon and I 

only incorporated threat data for the IUCN’s agriculture threat category into my analysis. 

The Actual condition in this scenario again represents the STAR metric in its traditional 
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form, with the exception that this scenario exclusively considers agricultural threats and 

is therefore “disaggregated” in a way that Scenario 1 is not. The mean projected 

population decline range for imperiled Peruvian Amazon bird species was 7.76%, with a 

range of 1.25% to 19.96%, according to my “Actual” condition calculations. 

Implementation of agroforestry would reduce the mean to 4.32%, with a range of 0.09% 

to 14.67%, according to my “Agroforestry” condition calculations. The expected 

reduction in mean projected population decline for the studied birds was 3.44%, ranging 

from 0% to 11.15%, with variation in where the benefits occur. In some areas–

particularly the northwestern Amazon–as high as an 11.15% reduction in mean projected 

population decline across threatened bird species was estimated to be achieved through 

agroforestry (Figure 11). 

 

Figure 10. From left to right, mean projected population decline for 1) Actual condition, 

2) Agroforestry condition, and 3) reduction from Actual to Agroforestry condition in 

Scenario 2. 

In the Actual condition, the maximum STARt value was 1.14, again occurring in 

the northwestern portion of the region, though high STARt values were present in the 
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entire western half of the region. The STARt scores in the Agroforestry condition were 

much lower, with a maximum STARt value of only 0.007. These values represented the 

theoretical remaining contribution of threats to species status after agroforestry 

implementation in the region. The reduction in total estimated STARt values from the 

Actual to Agroforestry condition is again as high as 0.57 in some areas (Figure 11). The 

“Achieved” STAR values are consistent across Scenarios 1 and 2. The major difference 

lies in the total estimated STARt score map and the remaining STARt map, which 

represents what threats are “leftover” after agroforestry implementation and must still be 

resolved. 

 

Figure 11. Total estimated STARt scores for imperiled birds in the Peruvian Amazon 

representing, from left to right, 1) the Actual condition, 2) the Agroforestry condition, 

and 3) Achieved STARt scores in Scenario 2. 

Scenario 3 Results. For Scenario 3, my AOI was recorded agricultural areas in 

the Peruvian Amazon and I only incorporated threat data for the IUCN’s agriculture 

threat category into my analysis. Importantly, the AOI in this scenario is modified such 

that it only considers the extent of recorded agricultural areas, which is a modification 
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from the original STAR metric. The mean projected population decline range for 

imperiled Peruvian Amazon bird species was 7.36%, with a range of 0% to 27.28%, 

according to my “Actual” condition calculations. Implementation of agroforestry would 

reduce the mean to 1.69%, with a range of 0% to 14.67%, according to my 

“Agroforestry” condition calculations. The expected reduction in mean projected 

population decline for the studied birds was 5.65%, with a range from 0% to 18.68%, 

with variation in where the benefits occur. As high as an 11.15% reduction in mean 

projected population decline across imperiled bird species was estimated to be achieved 

through agroforestry (Figure 12). 

 

Figure 12. From left to right, mean projected population decline for 1) Actual condition, 

2) Agroforestry condition, and 3) reduction from Actual to Agroforestry condition in 

Scenario 3. 

In the Actual condition, the maximum STARt value per pixel was 1.7, again 

occurring in the northwestern portion of the region, though high STARt values were 

present in the entire western half of the region. The STARt scores in the Agroforestry 

condition were much lower, with a maximum STARt value per pixel of only 1.01. These 
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values represented the theoretical remaining contribution of threats to species status after 

agroforestry implementation in the region. The reduction in total estimated STARt values 

from the Actual to Agroforestry condition is as high as 0.85 in some pixels (Figure 13). 

 

Figure 13. Total estimated STARt scores for imperiled birds in the Peruvian Amazon 

representing, from left to right, 1) the Actual condition, 2) the Agroforestry condition, 

and 3) Achieved STARt scores in Scenario 3. 

Region Prioritization Results. Based on the mapped Achieved STARt results for 

all three scenarios, the greatest opportunity for threatened bird biodiversity protection 

appears to be in the western portion of the Peruvian Amazon, followed by the southern 

portion of the area. Three particular “hotspots” are identifiable in Scenarios 1 and 2: 1) 

around the border between Amazonas and San Martin, 2) bisecting Huanuco, Pasco, and 

Junin, and 3) along the southwestern border of Madre de Dios. Scenario 3 only exhibits 

high STARt scores around the first two of the listed “hotspots.” The first two spots 

notably occur in areas where extensive agriculture has been documented by the Peruvian 

government. The third spot in Madre de Dios does not significantly overlap with recorded 

agricultural land, so when the AOI is restricted to the extent of agricultural activity–as 
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was done in Scenario 3–it no longer presents as an area that would accrue meaningful 

potential benefit from agroforestry implementation. 

The final region rankings indicate which regions in the Peruvian Amazon would 

benefit the most from agroforestry implementation (Table 5). The rankings are different 

based on the metric used, meaning that using mean projected population decline to rank 

the regions yields a different order than using achieved STARt score. Moreover, for each 

metric, rankings differ between scenarios.  

 Ranking the regions based on mean reduction in mean projected population 

decline yields fairly variable results between scenarios, with Ayacucho, Apurimac, and 

Cajamarca emerging as the top ranked regions for Scenarios 1, 2, and 3, respectively. 

Some regions, such as San Martin, Ucayali, Pasco, and Cajamarca consistently occur in 

the top half of the rankings across scenarios. 

 Ranking the regions based on sum Achieved STARt score yields more consistent 

results across scenarios, with Amazonas emerging as the most consistently top ranked 

region for all three scenarios. Notably, the rankings for Scenarios 1 and 2 are the same. 

The ranking for Scenario 3 differs, but some regions consistently rank in the top 50% 

across scenarios, including Cajamarca, Junin, San Martin, Huanuco, and Pasco. Others 

consistently occur in the bottom 50%, including Apurimac, Lambayeque, and 

Huancavelica. 

Table 5 

Region Prioritization Rankings 
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Note. This table shows my ranking of priority regions for each scenario. 

 To better understand the benefits represented by “Achieved” STARt, I calculated 

the benefit percentage that “Achieved” STARt represents for each scenario. A higher 

percentage indicates a higher magnitude change from the total “Actual” STARt value 

across regions to the “Agroforestry” STARt value across regions. In other words, a 

higher benefit percentage a greater benefit from converting to agroforestry. 

Table 6 

Benefit of Agroforestry, Represented as Percentage 
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Note. This table shows the benefit of moving from the “Actual” to “Agroforestry” 

condition for each scenario, expressed as a percentage and highlighted in green. This 

percentage is obtained by dividing the “Achieved” STARt score by the “Actual” STARt 

score for each scenario. 

 When mapped spatially, sum achieved STARt score rankings for Scenario 3 

demonstrate that the greatest benefit to bird biodiversity from agroforestry 

implementation can be achieved in the western Peruvian Amazon, particularly Amazonas 

and Cajamarca (Figure 14). Considerable bird biodiversity benefits would also be gained 

through interventions that promote agroforestry in in Junin, San Martin, Huanuco, and 

Pasco. The final map in Figure 14 makes the results shown in Figure 13 more digestible 

by demonstrating which regions have the highest collective STARt scores. 
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Figure 14. Spatial ranking of regions by priority, using the “Achieved” STARt values for 

Scenario 3. 

DISCUSSION 

Benefit of Agroforestry to Imperiled Birds in the Peruvian Amazon. My 

results demonstrate where agroforestry is likely to yield the greatest benefit to imperiled 

bird biodiversity in the Peruvian Amazon. My results not only show where the greatest 



  39 

biodiversity benefits from agroforestry implementation can be expected, but also 

elucidate differences in those expected benefits from place to place. This standardization–

for both mean projected population decline and STARt scores–means regions can 

meaningfully be compared to one another during analysis. From a decision making 

perspective, this standardization is critical. Although I present my final results at a 

regional scale, the underlying data rasters can just as easily be analyzed using smaller 

administrative scales (e.g. at the province or district level), based on the needs of decision 

makers. 

Amazonas consistently stands out as the region that would produce the most bird 

conservation benefit if agroforestry was promoted, which logically follows when 

population and land use trends are considered. The key characteristics that cause 

Amazonas to stand out are its agriculture patterns and number of highly imperiled 

species. A relatively high proportion of Amazonas’ land in the Amazon is also covered 

by agriculture–almost 10%–meaning there is more opportunity to abate this threat (Table 

1; MINAM, 2018). Finally, Amazonas contains one of the four critically endangered 

endemic bird species included in this thesis’ dataset (Synallaxis maranonica). 

Additionally, regions in the western Peruvian Amazon, like Amazonas, generally have 

larger human populations and greater human population density, which is likely 

contributing to the scale and intensity of agriculture occurring in these areas (INEI, 

2017). In combination, these factors cause Amazonas to rank highly in potential benefit 

to imperiled birds from agroforestry implementation. Other regions that rank in the top 

50%–such as Cajamarca, San Martin, and Junin–display similar trends across these 
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categories. Collectively, these regions all occur in the western Peruvian Amazon, which 

is closer to major population centers than the eastern Peruvian Amazon. 

 From a decision making perspective, these results can help conservationists, 

policy makers, and other critical stakeholders direct their efforts towards targeted 

interventions in the top-ranked regions. Conservationists and local communities can also 

point to these results to justify investment in Peruvian Amazon communities, particularly 

through sustainable agriculture initiatives. The prioritization rankings do not indicate that 

action should not be taken in regions that rank lower (e.g. Lambayeque, Madre de Dios), 

but that these regions are currently experiencing less severe and immediate threats to 

imperiled bird biodiversity due to agriculture.  The raster that depicts Actual STARt 

scores in Scenario 1 shows that imperiled bird biodiversity in Madre de Dios would 

meaningfully benefit from conservation action (Figure 9). However, Achieved STARt 

scores for Scenario 1 show limited benefit in this region as a result of agroforestry 

implementation. Meaningful threats to biodiversity are present in Madre de Dios and 

other regions ranked lower in my results (Table 5, Figure 14), but they are not 

agricultural in nature and are thus not ones that can be resolved through agroforestry. 

In light of limited resources for abating agriculture-related threats are limited, 

they would likely best be spent in the regions identified in the west (e.g. Amazonas) 

(Figure 14). However, the complexity of this system cannot be ignored. Although I have 

identified regions that should be prioritized for agroforestry implementation in this thesis, 

conservationists must understand that all of these regions are interconnected and highly 

dependent on one another. Bird biodiversity in Amazonas affects bird biodiversity in La 

Libertad, and vice versa. Ultimately, effective conservation planning means 
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implementing solutions at multiple scales and acknowledging the complexity and 

coupling of the systems within which we work. 

Mechanisms Behind Scenario Prioritization Outcomes. Across scenarios, the 

benefit of converting agricultural land to agroforestry across regions was as high as 83% 

(Table 6). The benefit percentages were 41% for Scenario 1, 78% for Scenario 2, and 

83% for Scenario 3. The value for Scenario 1 is much lower than the others because the 

total estimated STARt score for the “Actual” condition included STARt calculations for 

all threats, whereas the “Achieved” STARt score only represented change to agricultural 

threats. However, in Scenarios 2 and 3, only agricultural threat data was used. These 

results emphasize why using the STAR metric to analyze individual, disaggregated 

threats can be useful. Additionally, representing the overall benefit as a percentage, rather 

than an arbitrary “Achieved” STARt score, may help decision makers better understand 

and interpret the results I have presented. 

The differences in prioritization rankings for the regions is a result of the different 

calculation mechanisms shown in the Methods. These differences offer important insight 

into how the metrics chosen by conservationists can affect conservation decision making. 

Whether conservation decision makers use projected population decline or STARt scores 

to plan their interventions depends on their goals. Mean projected population decline may 

offer an acceptable understanding of biodiversity loss in the region, particularly if 

conservationists are concerned exclusively with population decline, irrespective of 

endemism and Red List status. In some decision making scenarios, this level of analysis 

may be sufficient or even desired. However, when relying exclusively on projected 

population decline as a metric, the lack of consideration for population proportions in the 
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AOI and Red List status of species could be deficiencies in many decision making 

situations for conservationists. 

The traditional usage of the STAR metric, and my associated rankings, overcomes 

these deficiencies by accounting for endemism and species threat status. My modified 

usage of the STAR metric goes further by considering threats independently and 

restricting the AOI to the spatial extent of the threat (e.g. agriculture). The traditional 

STAR metric allows conservation decision makers to consider how imperiled species are 

within a given area in their intervention planning calculus, which is critical if those 

decision makers are not only concerned with overall population decline, but with 

directing resources towards species that are the most imperiled. My modified version of 

the STAR metric goes further by restricting the metric’s analysis to areas where the threat 

is actually occurring. For decision making purposes, this is critical, as it ensures that 

regions where agricultural threats actually occur are weighted more heavily in the region 

rankings than those where agriculture is sparse. 

Ultimately, the rankings for Achieved STARt scores in Scenario 3 are likely to be 

better than that of Scenarios 1 and 2 for decision making purposes, as the spatial analysis 

allows more precision and accuracy with regards to the extent of agricultural threats. 

Although the region rankings do not meaningfully vary between Scenarios 1 and 2, the 

rasters for Scenario 2 would be more helpful than those of Scenario 1 for decision 

making regarding agroforestry implementation, as they exclusively convey information 

about agricultural threats. However, Scenario 2 lacks the specificity in terms of threat 

extent and presence that Scenario 3 incorporates. Scenario 1 results would be most 

helpful to decision makers who are interested in the broader threats at play in the 
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Peruvian Amazon and would like to know how broad threat categories interact within the 

system. Of the rankings shown, the Scenario 3 ranking (and the associated rasters) offer 

the best visualization of potential bird biodiversity benefits from agroforestry in the 

Peruvian Amazon, as Scenario 3 incorporates spatially explicit threat information. 

Therefore, Scenario 3 likely offers the most useful results for the intended goals of this 

thesis. 

Implications of Modified STAR Metric Usage. The results of this study show 

how the STAR metric can be modified to make threats spatially explicit and to model 

possible alternative scenarios. Although this analysis focused exclusively on the benefits 

of changing agricultural practices to benefit biodiversity–and modifying the STAR metric 

accordingly–the same methodology can be applied to other spatially explicit threats 

impacting species within and beyond the Peruvian Amazon. Ultimately, were all threats 

impacting threatened species within a given AOI made spatially explicit, the STAR 

metric would likely yield different yet more meaningful results, at least from a decision 

making perspective. The methodology outlined in this paper should be applied to other 

threats, taxons, and geographical contexts to refine it and confirm its usefulness. 

Moreover, on-the-ground ecological experiments could be carried out in the study region 

to verify my predictions and catalog the differences between the expected benefits I 

calculated for Achieved STARt, versus the real, post biodiversity benefits–measured as 

Realised STARt–that agroforestry would bring. 

Overall, this analysis reinforces the utility of the STAR metric as a tool for 

conservation decision making. Broadly, this thesis also demonstrates how the level of 

spatial analysis (e.g. scale and extent) and the metrics chosen by conservation decision 
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makers can affect research outputs and, subsequently, decision making and intervention 

outcomes. This is a well documented principle in landscape ecology that should be 

accounted for in conservation planning processes.  

Obstacles to Uptake and Solutions. Although this analysis reinforces the 

potential benefits of agroforestry, government policies and perverse incentives likely 

stand in the way of voluntary widespread adoption of agroforestry in the Amazon 

(Pokorny et al., 2021). The Peruvian government may consider subsidization of 

sustainable agricultural practices to incentivize uptake and meet sustainability goals 

(Rode et al., 2023). However, such reworking of national agricultural policies risks being 

a politically arduous and slow process. In the absence of government subsidization, 

NGOs and private entities have the opportunity to fill this niche. Some pilot initiatives to 

promote agroforestry in the Amazon are underway, including Conservation 

International’s Amazon Business Alliance, which seeks to promote green growth in the 

Peruvian Amazon and Amazonia more broadly (Conservation International, n.d.). 

However, the capacity and authority of non-governmental organizations is limited, 

preventing them from making the sweeping systemic changes necessary to prevent 

widespread bird biodiversity loss and ecological collapse in Peru’s Amazon rainforest. 

Outlining an evidence-based logic model for imperiled bird conservation in the 

Peruvian Amazon can help make conservation planning more efficient and effective and 

can demonstrate where my analysis using the STAR metric should be viewed in this 

region’s broader conservation decision making context (Figure 15). Notice that the 

coupling of wildlife and human wellbeing become apparent when long-term outcomes 

are the focus: win-win solutions that protect wildlife while enhancing human wellbeing 
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exist, but sufficient resources must be allocated by governing bodies to achieve these 

outcomes. If left unaddressed, biodiversity loss and habitat destruction will continue to 

degrade the ecosystem services upon which Amazonian communities depend. 

Considering how integral nature is to livelihoods in the Peruvian Amazon, the continual 

deforestation occurring in this region due to agriculture not only threatens wildlife, but in 

the long-term could have severe consequences for local communities. 
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Figure 15. Logic Model for Peruvian Amazon Bird Conservation Through Agroforestry. 

This logic model outlines the practical process needed to achieve the conservation 

outcomes outlined in the theory of change shown in Figure 3. 

Despite these sociopolitical and economic barriers, conservation decision makers 

have the ability to uptake the STAR metric and the modifications I have presented here in 

their decision making and intervention planning processes. The results of analyses like 

the one presented here can bolster conservationists’ arguments in favor of more 

biodiversity conscious, nature positive policies. My analysis, including the rasters I 

produced for each scenario, can create clarity for conservationists, policymakers, and 

other stakeholders on where agroforestry would be most likely to benefit bird biodiversity 

in the Peruvian Amazon. Moreover, my results can provide justification for investment in 

agroforestry and related community initiatives, particularly in the regions that ranked 

highest for mean achieved STARt scores as a result of agroforestry implementation 

(Figure 28). 

Limitations. Some limitations are inherent to the STAR metric, and those 

limitations are reflected in this thesis. First, the STAR metric uses area of habitat (AoH) 

as a proxy for population. As a proxy, this is more precise than a species’ range, as it 

accounts for elevation limits, habitat associations, and land cover; however, it fails to 

account for population density and may be less precise for migratory species' whose 

nesting, breeding, and resident AOH extents significantly differ. The STAR metric also 

traditionally has a habitat restoration component, STARr, which can be used to measure 

the potential benefit of habitat restoration to species within the AOI. However, for the 

purpose of this analysis, I did not calculate STARr scores, as I was primarily concerned 
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with determining the potential threat abatement benefit of converting agriculture to 

agroforestry within the AOI. 

Practical application of agroforestry as a conservation measure would also require 

that species and threat presences are verified within the AoI. A species does not 

necessarily have individuals occupying its entire AOH, nor are its threats distributed 

uniformly across that range. In some cases, particularly where illegal land use practices 

are occurring, the full extent of a threat may not be officially recorded or understood. 

Finally, some data involved with this analysis is up to 10 years old (e.g. IUCN Red List 

species assessments), meaning that incorporating more up-to-date data may change the 

case study results slightly. Models, though extremely helpful in research, planning, and 

decision making contexts, are ultimately simplified approximations of the real world. 

They should be used appropriately as tools, but must be accompanied by other data, 

knowledge, and expertise when making decisions in complex systems.  

 

CONCLUSION 

 The Amazon rainforest is a unique landscape that hosts considerable biodiversity 

and provides invaluable ecosystem services. The Peruvian Amazon provides an 

illuminating regional case study due to its high rate of deforestation, enmeshment 

between people and wildlife, and projected human population growth. Agroforestry 

presents one alternative for achieving landscape sustainability while meeting the needs of 

people, but obstacles to implementation exist. Because the Amazon spans multiple 

countries, broader governance challenges persist. Ultimately, recovering bird populations 

in Peru’s Amazon rainforest–and restoring biodiversity in the broader Amazonian 
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landscape–will probably require targeted investment, cooperation between stakeholders, 

and careful evidence-based conservation planning. This process can be assisted and 

supported by the STAR metric and the modifications to it laid out in this thesis, which is 

in itself critical to quantifying return on investment for biodiversity. 
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Scientific Name Red List 

Status 

Population 

Trend 

Year 

Assessment 

Published 

Assessment 

Scope 

Aburria aburri Near 

Threatened 

Decreasing 2016 Global 

Accipiter poliogaster Near 

Threatened 

Decreasing 2022 Global 

Agamia agami Vulnerable Unknown 2016 Global 

Aglaeactis aliciae Vulnerable Decreasing 2020 Global 

Aglaeactis castelnaudii Near 

Threatened 

Decreasing 2017 Global 

Agriornis albicauda Vulnerable Decreasing 2021 Global 

Ampelornis griseiceps Vulnerable Decreasing 2016 Global 

Anairetes alpinus Endangered Decreasing 2016 Global 

Andigena hypoglauca Near 

Threatened 

Decreasing 2016 Global 

Ara militaris Vulnerable Decreasing 2020 Global 

Arremon castaneiceps Near 

Threatened 

Decreasing 2018 Global 

Asthenes urubambensis Near 

Threatened 

Decreasing 2021 Global 

Atlapetes melanopsis Near 

Threatened 

Decreasing 2021 Global 

Atlapetes terborghi Near 

Threatened 

Stable 2022 Global 

Aulacorhynchus huallagae Endangered Decreasing 2019 Global 
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Buteogallus solitarius Near 

Threatened 

Decreasing 2020 Global 

Cacicus koepckeae Near 

Threatened 

Decreasing 2020 Global 

Campylopterus 

villaviscensio 

Near 

Threatened 

Decreasing 2016 Global 

Capito fitzpatricki Near 

Threatened 

Stable 2020 Global 

Capito wallacei Vulnerable Stable 2016 Global 

Chaetocercus bombus Near 

Threatened 

Decreasing 2021 Global 

Chaetura pelagica Vulnerable Decreasing 2018 Global 

Cichlopsis peruviana Near 

Threatened 

Decreasing 2017 Global 

Cinclodes aricomae Critically 

Endangered 

Decreasing 2018 Global 

Cinclodes palliatus Critically 

Endangered 

Decreasing 2021 Global 

Cnemathraupis 

aureodorsalis 

Endangered Decreasing 2016 Global 

Cnipodectes superrufus Vulnerable Increasing 2017 Global 

Conirostrum bicolor Near 

Threatened 

Decreasing 2018 Global 

Conirostrum binghami Near 

Threatened 

Decreasing 2021 Global 

Conirostrum margaritae Vulnerable Decreasing 2018 Global 

Conopias cinchoneti Vulnerable Stable 2017 Global 
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Contopus cooperi Near 

Threatened 

Decreasing 2017 Global 

Coryphaspiza melanotis Vulnerable Decreasing 2018 Global 

Cranioleuca berlepschi Near 

Threatened 

Decreasing 2022 Global 

Crax globulosa Endangered Decreasing 2016 Global 

Cyanolyca viridicyanus Near 

Threatened 

Decreasing 2016 Global 

Deconychura pallida Near 

Threatened 

Decreasing 2016 Global 

Dendroplex kienerii Near 

Threatened 

Decreasing 2017 Global 

Doliornis sclateri Vulnerable Decreasing 2016 Global 

Drymotoxeres pucheranii Near 

Threatened 

Decreasing 2017 Global 

Dysithamnus occidentalis Near 

Threatened 

Decreasing 2022 Global 

Eubucco glaucogularis Near 

Threatened 

Decreasing 2021 Global 

Euchrepomis sharpei Endangered Decreasing 2016 Global 

Falco deiroleucus Near 

Threatened 

Decreasing 2016 Global 

Formicarius rufifrons Near 

Threatened 

Decreasing 2016 Global 

Forpus xanthops Vulnerable Stable 2021 Global 

Gallinago imperialis Near 

Threatened 

Decreasing 2016 Global 
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Gallinago nobilis Near 

Threatened 

Decreasing 2016 Global 

Grallaria ridgelyi Endangered Decreasing 2021 Global 

Grallaricula ochraceifrons Vulnerable Decreasing 2022 Global 

Grallaricula peruviana Near 

Threatened 

Decreasing 2022 Global 

Harpia harpyja Vulnerable Decreasing 2021 Global 

Heliangelus regalis Near 

Threatened 

Decreasing 2022 Global 

Hemitriccus cohnhafti Near 

Threatened 

Decreasing 2017 Global 

Hemitriccus rufigularis Near 

Threatened 

Decreasing 2017 Global 

Herpsilochmus axillaris Vulnerable Decreasing 2016 Global 

Herpsilochmus 

motacilloides 

Near 

Threatened 

Decreasing 2016 Global 

Herpsilochmus parkeri Vulnerable Decreasing 2022 Global 

Incaspiza watkinsi Vulnerable Decreasing 2022 Global 

Kleinothraupis parodii Near 

Threatened 

Decreasing 2017 Global 

Laniisoma buckleyi Near 

Threatened 

Decreasing 2016 Global 

Lathrotriccus griseipectus Vulnerable Decreasing 2016 Global 

Leptasthenura xenothorax Endangered Decreasing 2016 Global 

Leptopogon taczanowskii Near 

Threatened 

Decreasing 2016 Global 
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Leptotila ochraceiventris Vulnerable Decreasing 2020 Global 

Lipaugus uropygialis Vulnerable Decreasing 2021 Global 

Loddigesia mirabilis Endangered Decreasing 2016 Global 

Megascops marshalli Near 

Threatened 

Stable 2016 Global 

Microspingus alticola Endangered Decreasing 2016 Global 

Mitu tuberosum Near 

Threatened 

Decreasing 2021 Global 

Morphnus guianensis Near 

Threatened 

Decreasing 2017 Global 

Myrmoborus lugubris Vulnerable Decreasing 2016 Global 

Myrmoborus melanurus Vulnerable Decreasing 2016 Global 

Myrmoderus eowilsoni Near 

Threatened 

Decreasing 2020 Global 

Neochen jubata Near 

Threatened 

Decreasing 2016 Global 

Neomorphus geoffroyi Vulnerable Decreasing 2021 Global 

Nephelomyias lintoni Near 

Threatened 

Decreasing 2016 Global 

Nothoprocta taczanowskii Vulnerable Decreasing 2018 Global 

Pachyramphus spodiurus Vulnerable Decreasing 2019 Global 

Patagioenas oenops Near 

Threatened 

Decreasing 2022 Global 

Pauxi koepckeae Critically 

Endangered 

Decreasing 2018 Global 
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Penelope barbata Near 

Threatened 

Decreasing 2019 Global 

Percnostola arenarum Vulnerable Decreasing 2018 Global 

Phacellodomus dorsalis Near 

Threatened 

Decreasing 2020 Global 

Phaethornis koepckeae Near 

Threatened 

Decreasing 2016 Global 

Phegornis mitchellii Near 

Threatened 

Decreasing 2016 Global 

Phyllomyias weedeni Vulnerable Decreasing 2016 Global 

Phylloscartes gualaquizae Near 

Threatened 

Decreasing 2016 Global 

Picumnus steindachneri Endangered Decreasing 2016 Global 

Pipile grayi Near 

Threatened 

Decreasing 2021 Global 

Pithys castaneus Near 

Threatened 

Decreasing 2018 Global 

Podiceps juninensis Near 

Threatened 

Decreasing 2020 Global 

Poecilotriccus luluae Endangered Decreasing 2016 Global 

Poospiza rubecula Endangered Decreasing 2017 Global 

Primolius couloni Vulnerable Decreasing 2021 Global 

Psittacara frontatus Near 

Threatened 

Decreasing 2021 Global 

Psophia leucoptera Near 

Threatened 

Decreasing 2016 Global 

Pyrrhura albipectus Vulnerable Decreasing 2021 Global 
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Ramphastos ambiguus Near 

Threatened 

Decreasing 2016 Global 

Sclerurus albigularis Near 

Threatened 

Stable 2016 Global 

Scytalopus gettyae Near 

Threatened 

Stable 2021 Global 

Scytalopus unicolor Near 

Threatened 

Decreasing 2022 Global 

Sericossypha albocristata Vulnerable Decreasing 2018 Global 

Setophaga cerulea Near 

Threatened 

Decreasing 2021 Global 

Setophaga striata Near 

Threatened 

Decreasing 2018 Global 

Spizaetus isidori Endangered Decreasing 2016 Global 

Spizaetus ornatus Near 

Threatened 

Decreasing 2022 Global 

Synallaxis courseni Vulnerable Stable 2016 Global 

Synallaxis hypochondriaca Near 

Threatened 

Decreasing 2021 Global 

Synallaxis maranonica Critically 

Endangered 

Decreasing 2018 Global 

Syndactyla ruficollis Vulnerable Decreasing 2016 Global 

Syndactyla ucayalae Near 

Threatened 

Decreasing 2016 Global 

Tangara argyrofenges Vulnerable Decreasing 2018 Global 

Tangara 

meyerdeschauenseei 

Near 

Threatened 

Increasing 2018 Global 
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Taphrolesbia griseiventris Endangered Decreasing 2020 Global 

Tephrophilus wetmorei Vulnerable Decreasing 2018 Global 

Thamnophilus 

cryptoleucus 

Near 

Threatened 

Decreasing 2016 Global 

Thamnophilus praecox Near 

Threatened 

Decreasing 2017 Global 

Thamnophilus shumbae Vulnerable Decreasing 2020 Global 

Thamnophilus 

tenuepunctatus 

Vulnerable Decreasing 2016 Global 

Theristicus branickii Near 

Threatened 

Decreasing 2017 Global 

Tinamus guttatus Near 

Threatened 

Decreasing 2019 Global 

Tinamus osgoodi Vulnerable Decreasing 2019 Global 

Tinamus tao Vulnerable Decreasing 2019 Global 

Touit stictopterus Near 

Threatened 

Decreasing 2021 Global 

Vultur gryphus Vulnerable Decreasing 2020 Global 

Wetmorethraupis 

sterrhopteron 

Vulnerable Decreasing 2016 Global 

Xenerpestes singularis Near 

Threatened 

Decreasing 2016 Global 

Xenoglaux loweryi Vulnerable Stable 2020 Global 

Zaratornis stresemanni Vulnerable Decreasing 2016 Global 

Zimmerius cinereicapilla Vulnerable Decreasing 2016 Global 
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Note. The data from this table was derived from the IUCN Red List’s online data portal 

(2022).
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APPENDIX B 

IUCN THREATS CLASSIFICATION SCHEME (VERSION 3.3) 
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1 Residential & commercial development 

1.1 Housing & urban areas 

1.2 Commercial & industrial areas 

1.3 Tourism & recreation areas 

2 Agriculture & aquaculture 

2.1 Annual & perennial non-timber crops 

2.1.1 Shifting agriculture 

2.1.2 Small-holder farming 

2.1.3 Agro-industry farming 

2.1.4 Scale Unknown/Unrecorded 

2.2 Wood & pulp plantations 

2.2.1 Small-holder plantations 

2.2.2 Agro-industry plantations 

2.2.3 Scale Unknown/Unrecorded 

2.3 Livestock farming & ranching 

2.3.1 Nomadic grazing 

2.3.2 Small-holder grazing, ranching or farming 

2.3.3 Agro-industry grazing, ranching or farming 

2.3.4 Scale Unknown/Unrecorded 

2.4 Marine & freshwater aquaculture 

2.4.1 Subsistence/artisanal aquaculture 

2.4.2 Industrial aquaculture 

2.4.3 Scale Unknown/Unrecorded 

3 Energy production & mining 

3.1 Oil & gas drilling 

3.2 Mining & quarrying 

3.3 Renewable energy  

4 Transportation & service corridors 

4.1 Roads & railroads 

4.2 Utility & service lines 

4.3 Shipping lanes 

4.4 Flight paths 

5 Biological resource use 

5.1 Hunting & collecting terrestrial animals 

5.1.1 Intentional use (species being assessed is the target) 
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5.1.2 Unintentional effects (species being assessed is not the target) 

5.1.3 Persecution/control 

5.1.4 Motivation Unknown/Unrecorded 

5.2 Gathering terrestrial plants 

5.2.1 Intentional use (species being assessed is the target) 

5.2.2 Unintentional effects (species being assessed is not the target) 

5.2.3 Persecution/control 

5.2.4 Motivation Unknown/Unrecorded 

5.3 Logging & wood harvesting 

5.3.1 Intentional use: subsistence/small scale (species being assessed is the 

target [harvest] 

5.3.2 Intentional use: large scale (species being assessed is the 

target)[harvest] 

5.3.3 Unintentional effects: subsistence/small scale (species being 

assessed is not the target)[harvest] 

5.3.4 Unintentional effects: large scale (species being assessed is not the 

target)[harvest] 

5.3.5 Motivation Unknown/Unrecorded 

5.4 Fishing & harvesting aquatic resources 

5.4.1 Intentional use: subsistence/small scale (species being assessed is the 

target)[harvest] 

5.4.2 Intentional use: large scale (species being assessed is the 

target)[harvest] 

5.4.3 Unintentional effects: subsistence/small scale (species being 

assessed is not the target)[harvest] 

5.4.4 Unintentional effects: large scale (species being assessed is not the 

target)[harvest] 

5.4.5 Persecution/control 

5.4.6 Motivation Unknown/Unrecorded 

6 Human intrusions & disturbance 

6.1 Recreational activities 

6.2 War, civil unrest & military exercises 

6.3 Work & other activities 

7 Natural system modifications 

7.1 Fire & fire suppression 

7.1.1 Increase in fire frequency/intensity 

7.1.2 Suppression in fire frequency/intensity 

7.1.3 Trend Unknown/Unrecorded 

7.2 Dams & water management/use 

7.2.1 Abstraction of surface water (domestic use) 

7.2.2 Abstraction of surface water (commercial use) 

7.2.3 Abstraction of surface water (agricultural use) 

7.2.4 Abstraction of surface water (unknown use) 

7.2.5 Abstraction of ground water (domestic use) 
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7.2.6 Abstraction of ground water (commercial use) 

7.2.7 Abstraction of ground water (agricultural use) 

7.2.8 Abstraction of ground water (unknown use) 

7.2.9 Small dams 

7.2.10 Large dams 

7.2.11 Dams (size unknown) 

7.3 Other ecosystem modifications 

8 Invasive & other problematic species, genes & diseases 

8.1 Invasive non-native/alien species/diseases 

8.1.1 Unspecified species 

8.1.2 Named species 

8.2 Problematic native species/diseases 

8.2.1 Unspecified species 

8.2.2 Named species 

8.3 Introduced genetic material 

8.4 Problematic species/diseases of unknown origin 

8.4.1 Unspecified species 

8.4.2 Named species 

8.5 Viral/prion-induced diseases 

8.5.1 Unspecified "species" (disease) 

8.5.2 Named "species" (disease) 

8.6 Diseases of unknown cause  

9 Pollution 

9.1 Domestic & urban waste water 

9.1.1 Sewage 

9.1.2 Run-off 

9.1.3 Type Unknown/Unrecorded 

9.2 Industrial & military effluents 

9.2.1 Oil spills 

9.2.2 Seepage from mining 

9.2.3 Type Unknown/Unrecorded 

9.3 Agricultural & forestry effluents 

9.3.1 Nutrient loads 

9.3.2 Soil erosion, sedimentation 

9.3.3 Herbicides & pesticides 

9.3.4 Type Unknown/Unrecorded 

9.4 Garbage & solid waste 

9.5 Air-borne pollutants 

9.5.1 Acid rain 

9.5.2 Smog 

9.5.3 Ozone 

9.5.4 Type Unknown/Unrecorded 

9.6 Excess energy 

9.6.1 Light pollution 
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9.6.2 Thermal pollution 

9.6.3 Noise pollution 

9.6.4 Type Unknown/Unrecorded 

10 Geological events 

10.1 Volcanoes 

10.2 Earthquakes/tsunamis 

10.3 Avalanches/landslides 

11 Climate change & severe weather 

11.1 Habitat shifting & alteration 

11.2 Droughts 

11.3 Temperature extremes 

11.4 Storms & flooding 

11.5 Other impacts 

12 Other options 

12.1 Other threat 

 

Note. This scheme was produced by the IUCN (2022). 
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APPENDIX C 

IUCN THREAT IMPACT SCORING SYSTEM (VERSION 1.0) 
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Note. This figure was produced by the IUCN (2022). 
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APPENDIX D 

MEAN PROJECTED POPULATION DECLINE MATRIX 
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Note. This figure is based on the work of Hawkins et al. (2018). 


