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ABSTRACT

Humans cooperate at levels unseen in other species. Identifying the adaptive

mechanisms driving this unusual behavior, as well as how these mechanisms interact

to create complex cooperative patterns, remains an open question in anthropology.

One impediment to such investigations is that complete, long-term datasets of human

cooperative behaviors in small-scale societies are hard to come by; such field research

is often hindered both by humans’ long lifespans and by the difficulties of collecting

data in remote societies. In this study, I attempted to overcome these methodological

challenges by simulating individual human cooperative behaviors in a small-scale

population. Using an agent-based model tuned to population-level measurements

from a real-life marine subsistence population in the southern Philippines, I generated

dynamic daily cooperative behaviors in a hypothetical subsistence population over a

period of 1500 years and 42 overlapping generations.

Preliminary findings from the model suggest that, while the agent-based model

broadly captured a number of characteristic population-level patterns in the subsis-

tence population, it did not fully replicate nuances of the population’s observed co-

operative behaviors. In particular, statistical models of the simulated data identified

reciprocity-based and need-based cooperative behaviors but did not detect kinship-

motivated cooperation, despite the fact that kin cooperation traits evolved positively

and reciprocity cooperation traits evolved negatively over time in the agent popula-

tion. It is possible that this discrepancy reflects a complex interaction between kinship

and reciprocity in the agent-based model. On the other hand, it may also suggest

that these types of statistical models, which are frequently utilized in human cooper-

ation studies in the anthropological literature, do not reliably discriminate between

kin-based and reciprocity-based cooperation mechanisms when both exist in a popu-

lation. Even so, the completeness of the simulated data enabled use of more complex
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statistical methodologies which were able to disentangle the relative effects of coop-

erative mechanisms operating at different decision levels. By addressing remaining

pattern-matching issues, future iterations of the agent-based model may prove to be a

useful tool for validating empirical research and investigating novel hypotheses about

the evolution and maintenance of cooperative behaviors in human populations.
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Chapter 1

Although individuals in many non-human species cooperate within limited

contexts [e.g., primates (Mitani, 2006; Silk et al., 2006; Thompson, 2019), feral

horses (Cameron et al., 2009), mice (Pillay & Rymer, 2015), and honey bees (Tarpy

et al., 2004)], the magnitude and breadth of cooperative behaviors observed in hu-

man populations is a defining characteristic of our species. Understanding the evo-

lutionary and cultural mechanisms driving driving human cooperation remains a

challenging puzzle for anthropologists, not least because the long average human

lifespan (e.g., Gurven & Kaplan, 2007) makes long-term data collection over mul-

tiple consecutive generations difficult – if not impossible. While data collected in

foraging and other small-scale subsistence societies remain the gold standard for

addressing questions related to human evolution (Henrich et al., 2010; Marlowe,

2005), gathering accurate and balanced data samples in these types of populations

can also be an intractable problem for a variety of reasons, including the time-costs

of gathering sufficiently large samples, irregular availability of participants (espe-

cially in nomadic and semi-nomadic populations), and the difficulties inherent in

accessing remote study sites. Moreover, increasing market-integration of subsistence

populations means that their utility as models of “traditional” human society is di-

minishing (for a recent example, see Wiessner & Huang, 2022).

Agent-based modeling may offer a path forward for addressing these chal-

lenges. Simulating the population structures and behaviors observed in real-world

societies can yield large, complete datasets that enable both validation of exist-

ing empirical research and exploration of new theories. Additionally, the multi-

generational nature of many agent-based data samples opens up the possibility of

directly investigating the evolutionary processes underlying currently-observed be-

haviors. Nonetheless, as I will demonstrate in this analysis, simulating an existing
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population – especially a population of humans – can be a daunting task. Accu-

rately capturing the essential characteristics of a population requires both detailed

knowledge of the population being modeled and an iterative process of calibration

and analysis to identify inconsistencies between the agent-based model and the real-

world population.

Agent-Based Models: History and Use in Anthropology

“Agent-based” modeling is a method of simulating a system or population

by focusing on the characteristics and mechanisms of the individual components –

or “agents” – of that system or population (DeAngelis & Grimm, 2014). That is,

by specifying the relevant, “bottom-level” attributes of a system, such as the life-

history attributes of an individual agent and the manner in which it interacts with

its environment and/or other agents, one can generate complex, dynamic population-

level behavior (Grimm et al., 2005). Unlike traditional deterministic mathematical

modeling techniques, where simulations are constrained by the tractability of their

underlying equations, agent-based models do not necessarily require simplifying as-

sumptions (although such assumptions may be useful for implementation and in-

terpretability) and are instead primarily constrained by computing power alone. As

such, agent-based models can easily incorporate additional environmental and spa-

tial characteristics that would likely be challenging (if not impossible) to specify in

a mathematical modeling setting.

Agent-based models (ABMs) are also frequently referred to as individual-

based models (IBMs) in the literature. Originally, the two terms were used to iden-

tify distinct approaches to simulation: Those classified as “agent-based” models

focused on evolutionary processes and agent “decisions,” while those classified as

“individual-based” models mainly focused on modeling individual variation (Rails-
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back & Grimm, 2012). However, the two terms have been used interchangeably in

recent years, in response to both rapid growth of the field and convergence of mod-

eling strategies. Nonetheless, for the sake of clarity, I will use “agent-based” termi-

nology exclusively going forward.

ABM techniques were first developed in the field of ecology (DeAngelis &

Grimm, 2014), where the earliest recognized agent-based model was a “gap-phase

replacement” model describing the successions of forest canopy trees (Botkin et

al., 1972). Forest ecologists embraced these methods, and many subsequent mod-

els emerged in the next years and decades to simulate the dynamics of single- and

multi-species forests (e.g., Köhler & Huth, 1998; Rademacher et al., 2004; Shugart

Jr & West, 1977; Wissel, 1992). Use of ABM techniques in the field of animal ecol-

ogy also began to take root; some archetypal examples include fish-schooling mod-

els (Huth & Wissel, 1992) and bird-flocking models (Ballerini et al., 2008; Reynolds,

1987). More recently, ABMs have been used extensively to investigate many differ-

ent aspects of animal populations. Common examples include modeling the growth,

distribution, and competition between fisheries (e.g., Clark & Rose, 1997; D. DeAn-

gelis et al., 1993; Saul et al., 2012), simulating ungulate foraging behaviors (Turner

et al., 1993), investigating the population structure and spatial dynamics of field

voles (Topping et al., 2012), and modeling the spread of rabies between fox popula-

tions (Jeltsch et al., 1997) – though this is by no means even close to an exhaustive

list of the animal-based applications of ABMs. The impact of foraging behaviors

on individual environments themselves have also been explored, such as in Weiss

and colleagues’ (2014) simulation of the dynamics of species diversity and compe-

tition between plants in response to grazing in a simulated grassland environment.

Advanced comparative and statistical techniques have been developed for calibra-

tion and validation of ABMs across a wide range of applications [for a review, see

3



Banks & Hooten (2021)]. However, pattern-oriented modeling remains the most

commonly-implemented method for parameterizing and verifying agent-based mod-

els (Grimm et al., 2005; described more thoroughly in Chapter 2).

Within the field of anthropology, agent-based models have more recently

been adopted to study a wide range of theoretical and empirical questions. For ex-

ample, ABMs have been constructed to investigate foraging behaviors in the con-

text of optimal foraging theory (e.g., Nonaka & Holme, 2007) and multi-level selec-

tion of fitness-based cooperative traits (Pepper & Smuts, 2000). Developed ABMs

have additionally been used to characterize and investigate human migration pat-

terns, such as in Filho et al.’s (2011) model of the impact of social networks on

flows and counter-flows of human migration. Theories surrounding the evolution of

human cooperative behaviors have also been examined using ABMs: For example,

van Veelen et al. (2012) demonstrated that high levels of cooperation could evolve

through the interaction between direct reciprocity and population-structuring as-

sortment mechanisms within an ABM environment. Garćıa and colleagues (2014)

further showed that individual recognition of shared “tags” denoting cooperative in-

tent allowed for cycles of indiscriminate cooperation and defection in agent popula-

tions characterized by low assortment (e.g., low relatedness), but instead promoted

cooperation only between those agents who shared the same tag in high-assortment

populations (Garćıa et al., 2014).

The evolution of human culture has also been explored through an agent-

based lens by, for example, modeling the influence of social learning mechanisms

on the transmission and cumulative cultural evolution of task-based information

(Miu & Morgan, 2020) and investigating the role of cognition in promoting cre-

ative recombination of culturally-transmitted ideas (Gabora & Saberi, 2011). In

the sub-field of primatology, Acerbi et al. (2022) used an agent-based model to ar-
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gue that a “distributional approach to culture” (whereby behaviors that vary be-

tween populations are deemed to be cultural via the method of exclusion if no ge-

netic or environmental factors explaining their variation can be identified) cannot

be used to identify cultural inheritance in chimpanzees, since similar patterns can

arise through purely non-copying socially-mediated processes. Cumulative cultural

evolution within the the archaeological record has also been investigated by, for ex-

ample, using an agent-based approach to examine possible pathways for transmis-

sion of skills required in the production of stone projectile points (Garvey, 2018).

Patterns demonstrated in ABMs have additionally been used to justify specific an-

thropological theories such as the Grandmother Hypothesis (Kim et al., 2012), al-

though whether this particular theory is supported by real-world evidence remains

an open question (e.g., see Hill & Hurtado 1991; Kaplan et al., 2000).

It is worth noting that agent-based models are most frequently used within

anthropology to explore and test specific theories and hypotheses using hypothet-

ical agent populations. Less often have ABMs been used to simulate data from

real-world human populations for further analysis, likely because of the complex-

ity involved in accurately developing such models. However, this may be a fruitful

new method of researching the behaviors of foraging and other subsistence societies,

particularly as the frequency of these types of populations dwindles in response to

market-integration and inculturation.

Motivating Study

The current study was initially motivated by statistical challenges that I

faced while analyzing data for a previous study of cooperation in a small-scale ma-

rine subsistence society (Phelps et al., 2022). In this section, I briefly describe the

research population, challenges with collecting data, and statistical issues faced dur-
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ing the prior study. In the next section, I will discuss how the current project ad-

dresses some – though not all – of these issues.

Study Population and Empirical Data

Data used to parameterize and validate the agent-based model presented in

this study were collected between June 2015 and November 2018 and come from a

prior study of the cooperative patterns in Linao village (Phelps et al., 2022). Lo-

cated at the mouth of the Sarangani Bay in Southern Mindanao, Philippines, Linao

is a small community of formerly-nomadic marine foragers whose coastal village is

situated along a cobbled-together pier built atop mangrove and reef flats. Residents

are of primarily Sama ethnic ancestry, an ethnic group/culture which was tradition-

ally characterized by sea-faring nomadism and exploitation of reef and open-ocean

marine resources. While the Sama population living in Linao has become more

sedentary in recent years, residents are still semi-nomadic and frequently relocate

outside of the village for weeks or even months at a time. As such, only a subset of

the entire population is in residence within the village at any given time. The Linao

people still engage in marine resource exploitation as their main method of resource

production, although its form has changed slightly with the increasing sedentism of

the community. Economic activity of residents is comprised mainly of coastal and

open-ocean fishing, “gleaning” (collecting) intertidal marine resources, and collect-

ing other wild resources from the local environment, along with small, infrequent

amounts of opportunistic wage labor in the surrounding area. Linao is also char-

acterized by a high degree of daily cooperation between its residents. Cooperation

events in the form of transfers of food, resources, and other material goods between

different households (the primary economic unit) are observed many times each

day within the community. Importantly, while most individual transfers of food, re-
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sources, and other goods are small in terms of monetary value, the sheer frequency

with which these transfers occur means that the average quantity of goods received

by a household on a given day from other village households amounts to almost

two-thirds of the average daily total household income from all resource produc-

tion activities (Phelps et al., 2022). Clearly, inter-household transfers of goods are a

critical part of the economic strategy in Linao.

A total of 36 households are included in the full Linao study population and

are used in demographic calculations and descriptive analyses of population struc-

ture within this study. Specifically, Linao data utilized in this analysis include daily

records of resource transfers between individuals and households, tabulations of

daily resource production from all sources, information on village composition, and

demographic and genealogical records of all residents. Data was collected via a mix

of 24-hour recall interviews, monthly census interviews of all residents, direct obser-

vation, and other targeted interviews. Additionally, statistical models developed in

the previous Phelps et al. (2022) analysis, which were generated on a 32-household

subset for which data on transfers and resource production was more complete, are

utilized as a point of comparison for similar models built on the agent-level data

simulated in this study. Importantly, while research assistants did their best to

balance interview samples from different households during the initial study, some

households were directly interviewed more times than others [range: 3-28 interviews

per household in the model sample (Phelps et al., 2022)]. This sampling imbal-

ance was mainly due to participant availability/willingness and the intermittent

residence of many households in Linao throughout the study period.
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Statistical Challenges in Motivating Study

In an initial exploratory analysis of cooperation in Linao, Phelps et al. (2022)

modeled daily and long-term mean patterns of cooperation in Linao by using daily

inflows and outflows of all material goods (food, money, clothing, etc.) from one

household to another as a proxy for inter-household cooperation. One of the ma-

jor findings from this initial analysis was that the motivation for resource transfers

between study households appeared to be dominated by the effects of direct reci-

procity (Trivers, 1971), whereby a Household X was incentivized to give to another

Household Y that had previously given to them during the same day or in the past,

and/or might reasonably be expected to give to them again at some point in the fu-

ture. Kin selection (Hamilton, 1946) between households was a secondary motivator

of transfers during the study period, both in terms of provisioning needy relatives

in one-off interactions and in establishing reciprocal relationships with other related

households. Needs-based sharing (D. Smith et al., 2019), based on relative differ-

ences in per capita income, was also an important predictor of increased transfers of

goods between “needy” and “less needy” households (Phelps et al., 2022), although

it often functioned within the context of kin selection. Although indirect reciprocity

(whereby a focal individual or household helps someone who may not directly re-

ciprocate with them, but who might, in turn, help a third party who then helps the

focal individual/household; Alexander, 1987; Nowak & Sigmund, 2005) also likely

played a role in promoting cooperation in Linao, it was not explicitly tested in the

Phelps et al. (2022) study.

Importantly, due to the nature of the data collected in Linao (Phelps et al.,

2022), statistical analyses in the prior study were unable to provide resolution to

two major statistical challenges. One, daily measures of the transfer of goods be-
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tween community households were zero-inflated, likely as a result of both biased

cooperative assortment of community households and broad daily variation in re-

source acquisition. Two, ethnographic and statistical insights from the community

suggest that the quantity and direction of resource transfers on a given day in the

study period were likely influenced by earlier transfers in the time leading up to

the current day. However, data explicitly describing temporal correlations of re-

source transfers was not collected during the data collection. Moreover, both the

semi-nomadic nature of Linao residents and limitations of the sampling strategy

prevented accurate reconstruction of such evidence from the collected data. Below,

I will describe initial attempts to address these two statistical challenges (not dis-

cussed in Phelps et al., 2022), the failures of which motivate the current study.

Zero Inflation of Collected Data. Zero inflation within the Linao data

set can be detected by tabulating the proportions of inflows, outflows, or inflows

and outflows between household dyads that equaled zero, which equaled approx-

imately 0.77, 0.80, and 0.69, respectively, within the daily dyadic material good

transfers dataset. In particular, while most households had several recorded inflow

and outflow events per day, there were almost 500 unique household dyads possi-

ble in the household sample. Not all of these households directly interacted with

each other, of course – most only interacted with a handful of preferential part-

ners. However, on a given day, all dyads in which both households were currently

in residence within the village and at least one household was directly interviewed

were recorded to avoid biasing data. As should be plainly obvious, this resulted in

a tremendous amount of zero transfer observations within the sample. While the re-

sults of the multiple linear regression models considered in the Phelps et al. (2022)

paper made good sense from both an ethnographic and a theoretical point of view,
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it is also very likely that inclusion of so many zeros in these models resulted in

somewhat inaccurate estimates or failure to detect important effects.

In an attempt to address this challenge, I experimented with various alter-

native modeling strategies with little success (Phelps & Hill, 2021). Single-model

strategies for handling zero-inflated data typically enforce constraints on outcome

variables that are not always desirable when analyzing continuous data like the

Linao cooperative transfer data. For example, commonly-utilized mixture models

such as zero-inflated poisson regression (“ZIP” model; Lambert, 1992) and zero-

inflated negative binomial regression (“ZINB” model; Greene, 1994) only character-

ize count data, and as such cannot be used to model continuous variables. While

the properties of these two models may be useful for understanding patterns gov-

erning different observed counts of observed cooperative events, there is no ex-

tension to these models that allows for modeling the relative quantities of trans-

fers. This is a major limitation, given that variation within the quantities of dyadic

transfers is often what researchers are trying to understand.

Two-part hurdle models such as the Cragg hurdle model (Cragg, 1971), the

Heckman selection model (Heckman, 1979), and the Blundell double hurdle model

(Blundell & Meghir, 1987) all offer promising alternative solutions to this issue. In

different ways, each model in this class attempts to account for an overabundance

of zeros (or some other boundary value) by separately modeling the processes gen-

erating zero and non-zero observations. Surprisingly, these types of models are in-

frequently implemented within the anthropological literature, despite their attrac-

tive properties with respect to modeling human behaviors [but see Kasper & Mul-

der (2015)]. The Cragg hurdle model (Cragg, 1971) is particularly appealing in the

context of the Linao dyadic transfer data, since it first estimates the probability of

an observation being zero/non-zero using a probit model, and then separately mod-
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els the continuous aspect of a subset of the data which includes only the non-zero

values. In the situation where data is non-negative (as is the case with the Linao

resource transfer data), Cragg (1971) recommends using a truncated Normal regres-

sion model to characterize non-zero observations. Unfortunately, however, attempts

to utilize a Cragg hurdle model to overcome zero inflation in the Linao dataset had

various problems, including failing to converge. Unequal sample sizes within dyads,

uneven sampling of the population, and a high overall level of daily variation in

dyadic transfers likely all contributed to this issue.

Temporal Correlations in Collected Data. The second major chal-

lenge, i.e., temporal correlations between resource transfers, is equally difficult to

overcome in studies of cooperation within small-scale and semi-nomadic societies.

The notion that reciprocal cooperative behaviors between humans are temporally-

structured makes good sense, and it is additionally broadly supported by prior em-

pirical and theoretical literature from the fields of anthropology (e.g., Allen-Arave

et al., 2008; Boyd & Mathew, 2021; Gomes et al., 2009; Gurven et al., 2001; Jaeggi

& Gurven, 2013; Wedekind & Braithwaite, 2002) and econometrics (e.g., Davidson

et al., 1978; Hendry & Richard, 1983; Paraskevas et al., 2022). Panel models and

other time-series statistical modeling methodologies have often been employed to

account for the temporal correlations between non-independent observations, and

cross-lagged panel models (Kenny, 1975) are particularly attractive in the context

of daily resource transfers between individual and household dyads. However, the

difficulties of collecting appropriate data in subsistence populations (in terms of

time-costs, adequate observation controls, availability/willingness of participants,

etc.) means that substantial aggregation of data is often required in order to uti-

lize cross-lagged panel models. In turn, this can have the effect of averaging out

important short-term variation in behaviors, limiting the applicability of such mod-
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els for detecting subtle behavioral effects. This issue is further compounded when

study populations are nomadic or semi-nomadic, since observations of individuals

or households may be sparse or unevenly distributed throughout a sample period.

Since cross-lagged panel models typically cannot account for missing observations

within time periods, using these models with sparsely- or unevenly-sampled data

may require severe data reduction and/or aggregation across long time intervals.

The aforementioned issues highlight the exact problem that I faced when

attempting to reanalyze the Linao dyadic transfers data with a cross-lagged panel

model. While the resultant model broadly supported conclusions from prior analy-

ses (i.e., Phelps et al., 2022), the imbalances in household sampling resulting from

both frequent nomadic excursions and participant availability/willingness neces-

sitated aggregation of dyadic transfer data over long time spans (half-year to full

year). Additionally, because some households left the community for months at a

time and hence were not measured within all time spans, the final model only in-

cluded a small subset of the total number of households in the Linao study popu-

lation. As such, the resultant cross-lagged panel model was deemed insufficient for

investigating the overall patterns of cooperation that characterize Linao village.

Aims of This Study

In response to the statistical challenges outlined in the previous section,

this current study proposes to use an alternate method to investigate cooperation

in small-scale societies: Simulation of daily dyadic cooperation data from a hypo-

thetical subsistence population. An agent-based population dynamics modeling

approach is adopted for this purpose, and agents are (loosely) modeled to match

human life history specifications. To that end, I utilize empirical data collected in

Linao during the previous Phelps et al. (2022) study to inform agent structure and
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parameterization of the agent-based model (ABM). Furthermore, observed patterns

of population structure and statistical models of cooperative interactions in Linao

are used to evaluate emergent patterns in the agent-based model, and comparisons

of identified mechanisms driving cooperation are drawn between the ABM and the

Linao dataset. Importantly, the overarching goal of this agent-based modeling ex-

ercise is not to exactly replicate individual behaviors observed in Linao, per se, but

rather to capture overall population-level processes that drive the patterns of coop-

eration observed in the village. This strategy, in turn, will enable future exploration

of additional proposed mechanisms (e.g., culturally-defined cooperation norms) that

may serve to further stabilize – or destabilize – the unique cooperative dynamics

observed in Linao.

The remainder of this manuscript will be organized as follows: First, I will

give a qualitative summary of the overarching structure and processes of the agent-

based model, following this description with a detailed discussion of model initial-

ization, distinct steps within each iteration of the model algorithm, and the exact

mathematical and probabilistic mechanisms used to model agent life history and

cooperation dynamics. In the results section, I will briefly discuss early (failed)

attempts at the model and then describe the decisions undertaken during param-

eterization of the final version of the model. An overview of patterns and trends

observed in the final ABM will then be discussed, and I will follow this by compar-

ing key characteristic patterns observed in Linao with those generated by the ABM.

Lastly, I will utilize data generated by the ABM to develop a Cragg hurdle model,

which will explore potential mechanisms driving cooperation between agents in the

ABM.
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Chapter 2

METHODS

Qualitative Summary of Model

To facilitate interpretation of the quantitative model description laid out in

the Quantitative description of agent-based model algorithm section below, I will

first give a very brief qualitative summary of a typical “day” in the model. Steps

in the model algorithm are broadly similar from day to day, so I will focus on a de-

scription of what occurs during the first day and then draw attention to differences

on subsequent days. Figure 1 at the end of this section contains a flowchart illus-

trating the overall daily process. Importantly, only major steps in the algorithm are

defined here – smaller intermediary steps are described in more detail in the Quan-

titative description of agent-based model algorithm section.

At the start of the model, a set number of lineages are initialized, each con-

taining a set number of individual agents. Agents within each of the lineages are

related to one another (although some only very distantly), but unrelated to every-

one in other lineages. Population size is fixed at initial size, and all agents are ini-

tialized at a similarly young adult age. Right off the bat, a small number of agents

in the model may be selected to die in the first step of the day as a result of their

age-specific “baseline” mortality rate. (It is certainly grim to start the model off in

this way, but it makes for easier coding.) However, given the age of the initialized

population, death at this stage is very rare.

Within each of the initialized lineages, all agents are young adults who are

at an age where they can select a spouse and start having children. Agents are

prohibited from marrying anyone who is their first cousin or closer, so they will

typically select a spouse from another lineage. After any agents who die are re-
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moved from the population, the next step is for all eligible agents (i.e., those who

are single and at marriageable age or older) to select a spouse. Not everyone will be

paired off, since some agents may be too related to each other to marry, but most

initialized agents will marry at this step. Once two agents marry, they become a re-

productive pair and can begin producing offspring immediately. However, since the

model has a fixed number of agents at any time step, a reproductive pair can only

give birth to a new offspring agent if another agent has died. Specifically, if any

agents have died earlier that day, a replacement agent will either be “born” into the

population and assigned as a child to one of the reproductive pairs, or they will be

“recruited” into the population as an unrelated adult. In practice, however, most

replacement agents are newborns of existing agents in the population.

After agents have reproduced (or unrelated migrant agents have joined the

population), the real work of the day can begin. Each agent requires a specific

amount of resources per day (“need”), which is scaled by age and developmental

status. To satisfy this need, all agents above a certain age (i.e., above the age at

which they are fully dependent on their parents) produce a random amount of re-

sources each day, which is also scaled based on age. Depending on how many re-

sources an agent produces, they may either have a surplus of resources, in which

case they are able satisfy their own need, or a deficit of resources, in which case

they do not satisfy their own need. (Note that the probability of an agent produc-

ing exactly the amount of resources they need is next to zero.) Deficits of resources

are a problem for the agents, since those who do not have enough resources at the

end of the current day will suffer higher mortality rates at the start of the next day.

An adult agent who does not produce enough resources on their own (that is, they

are “needy”) can potentially make up the difference by soliciting a resource dona-

tion from another adult agent who has a surplus. This candidate donor agent may
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– or may not – be willing to share with the candidate recipient (the needy agent),

based on a few different factors. One, if the donor agent and the recipient agent are

sufficiently related, the donor may be motivated by kin selection (Hamilton, 1964)

to share with the recipient. Two, if the recipient agent has shared with the donor

agent in the past, then the donor agent may be motivated by direct reciprocity

(Trivers, 1971) to share with the recipient. Three, there is a small additional prob-

ability that the donor agent will share with anyone in the population, regardless of

relationship or past cooperative actions. However, the candidate donor agent may

also be motivated to keep their extra resources, as they can instead use this sur-

plus to improve their health and decrease their mortality risk to a level below their

age-specific baseline rate.

On the other hand, if a juvenile agent has a shortfall of resources (either be-

cause they didn’t produce enough or because they are too young to produce any re-

sources at all), then responsibility for supplementing these resources falls on the ju-

venile’s parents. In particular, if both parents are alive, then each is responsible for

an equal portion of the juvenile’s resource deficit. If only one parent is alive, then

the live parent is responsible for the entirety of their offspring’s deficit. On a given

day, a parent may produce enough resources to simply cover their juvenile’s short-

fall on their own. But if not, then the parent will pool their and their offspring’s

resources and redistribute according to age-specific need. The parent agent is then

responsible for securing a cooperative transfer of resources from another agent to

cover both their and their offsprings’ remaining need.

Cooperative interactions between agents are the last step of the day. Each

agent can participant in a cooperative interaction action only once per day, either

in the role of a recipient or in the role of donor (depending on their net need). Not

all agents will engage in a cooperative interaction during a specific day if there is
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an unequal amount of candidate donors and candidate recipients. Additionally,

only adult agents – or independent agents, in the case of juveniles who have lost

both their parents – can solicit cooperative assistance from other adult/independent

agents. If a needy agent fails to secure a donation from another agent, then they

are stuck with a resource deficit for that day.

After all cooperative interactions have occurred, the day is over and the next

one begins. Agents die, marry and reproduce as they are able to. Occasionally, un-

related adult agents join the population. Resources are produced by those who are

old enough, and adult/independent agents engage in cooperative interactions with

each other. Resource shortfalls at the end of each day increase the risk of mortal-

ity at the start of the next day, and resource surpluses decrease these risks. And

so it goes, until the end of the model run. The major difference between the first

day and all subsequent days is that marriages will be less frequent after the first

day, since most agents will either already be married or will be juveniles who are

too young to marry. However, as agents die and new reproductive-age agents enter

the population either by growing up or by being recruited from elsewhere, there will

still be opportunities for single adult agents to marry/remarry.

Figure 1

Flowchart Illustrating Sequence of Major Events That Occur Each Model Day
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Notation

Before I go into the details of the agent-based model, I will make note of a

few general points on notation. Time steps are denoted with the index t. Individual

agents are denoted by the indices i, j, d, and `. The notation a without a subscript

is used to make general references to age (in days/time steps) in the model, but the

notation ai,t will always be used in reference to the age of an individual agent at a

specified time t. Following current mathematical convention in Western/European

countries, the set of all natural numbers (i.e., {1, 2, 3, ...}) is indicated by the black-

board bold symbol N. Indicator functions (i.e., functions that assume a value of 1 if

some condition is met, and 0 otherwise) are used periodically throughout the main

paper and Appendices A and B, and these are denoted with the blackboard bold

symbol I. Wherever possible, I will introduce all other mathematical notation in

the context of its first usage. However, it should be noted that this model is com-

plex, involving many different parameters and underlying calculations. For refer-

ence, I have included a summary of key indices and parameters in Appendix A, as

well as a description of the variables characterizing agent structure in Appendix B.

Quantitative Description of Agent-Based Model Algorithm

In the two subsections that follow, I will first describe how the population is

initialized at time t = 1, followed by a description of the iterative algorithm that

repeats at every time-step from t = 1 to t = T (where T is the maximum possible

time-steps of the model). Individual iterations of the model may be thought of as

“days” in model time.
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Population Initialization at Time t = 1

The model environment is initialized at t = 1. K lineages are each com-

prised of Nk adults in generation 1 (gi = 1 for each agent i). Note that Nk may be

specified as either a single value, indicating that the size of all lineages are equal,

or as a vector of values, in which case the kth lineage has Nk members. Population

size is fixed throughout the duration of the model at
∑

k∈K Nk. The life-history of

agents within the population is bounded according to several user-specified param-

eters, which are fixed for the population. First, A controls the average maximum

lifespan within the population. Notably, however, this is not a maximum possible

age in the population: While an agent’s baseline mortality is set to 1 at this and

older ages, death at this age is not strictly enforced in the model. It is still possible

that an agent may decrease their mortality rate sufficiently via additional resources

to overcome mortality at this age. However, in practice, the probability of this oc-

currence is quite small. Second, δ̄m controls the age of maturity in the population,

i.e., when an agent is considered an independent adult with full resource produc-

tion capability. Third, a juvenile agent is considered to be fully-dependent on their

parents until they reach age δ̄d. Up until this age, a dependent agent cannot pro-

duce any resources by themselves and must rely on their parents for all resource

provisioning. At age δ̄d, an agent can begin to produce an age-scaled amount of

resources, which reaches full capacity at age δ̄m. (This will be described in more

detail in the next section.)

Each initialized agent is assigned a randomly-selected “age at first possi-

ble reproduction” (αi), which governs the age at which an agent can first take a

spouse and begin reproducing offspring. For convenience, the age ai,t of each agent

at initialization is set to their age at first possible reproduction, i.e. ai,t=1 = αi.
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To generate this age variable for each agent, a random value is sampled from the

raised cosine distribution (Chattamvelli & Shanmugam, 2021; Warsza & Korczyn-

ski, 2010) with mean parameter ᾱ and spread parameter sα. Since this distribu-

tion is uncommon in many areas of science and I use it frequently throughout the

model, I will briefly digress on its origins, properties, and benefits within a simula-

tion environment.

A standardized version of the raised cosine distribution was originally pro-

posed by Raab and Green (1961), but was limited only to support within the range

[−π, π]. More recently, the distribution was developed further by Warsza and Ko-

rczynski (2010) to account for non-radian support and incorporate non-standard

mean and spread parameters. Since then, multiple parameterizations of the raised

cosine distribution have been developed for various engineering applications (a help-

ful reference can be found in Chapter 7 of Chattamvelli & Shanmugam, 2021), of

which I make use of the “Raised Cosine Distribution - Type II” – hereafter, simply

“raised cosine distribution” or “RCD”.

The raised cosine distribution is a symmetric, bell-shaped distribution that

approximates the Normal distribution (Warsza & Korczynski, 2010) but has the ad-

ditional, computationally-beneficial quality of being bounded at either tail. Specif-

ically, a raised cosine distribution with mean ᾱ and spread sα has support only

within the range [ᾱ − sα, ᾱ + sα]. In practice, use of this distribution for randomly-

sampling αi values means that no truncation is required in order to keep ages at

first possible reproduction within a realistic range. That is, it is possible that αi

values sampled from a Normal distribution could be unrealistically small or large –

or even negative, which is not consistent with the range of possible age values. In

a computational setting where a Normal distribution was being used to generate

αi values, it would be necessary to address this possibility by artificially increasing
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or decreasing the offending values so that they were contained within the realistic

range. In turn, this could invalidate distributional assumptions, particularly if such

values were frequently observed (which would cause bulge points in the tails). By

instead using a raised cosine distribution to generate αi samples, this problem is

side-stepped entirely. This is both statistically and computationally advantageous,

particularly since the specified boundaries of the raised cosine distribution allow for

easy control over the distribution of possible first reproduction ages.

Importantly, the raised cosine distribution is a continuous distribution, while

ages in the model are represented in discrete time-steps. As such, a description of

the method used to generate discrete values from the raised cosine distribution is

explained below in Implementation and statistical analysis of agent-based model.

Additionally, it should be noted that the same αi distribution was used for both

females and males in the population as a simplifying assumption. In reality, how-

ever, age at first reproduction is typically a few years older for men than women in

small-scale societies (e.g., Walker et al., 2006). Moreover, individual samples of αi

may or may not be larger than δ̄m (the age of adulthood), depending on the model

arguments specified by the user. This is not unrealistic, given that many species in-

cluding humans reach reproductive age before reaching maturity (e.g., Leigh, 2001).

The sex γi of each initialized agent is assigned randomly, following a Bernoulli

distribution with probability pγ,M of being male. Each agent i also has a vector

of cooperation traits, denoted as ~wi = {ωi,B, ωi,R, ωi,K}, which control the agent’s

“willingness to cooperate” in three different contexts: ωi,B controls an agent’s “base-

line” willingness to cooperate with anyone, ωi,R controls their willingness to cooper-

ate with past reciprocity partners, and ωi,K controls their willingness to cooperate

with kin. These “traits” will be described in greater detail below, but for now, it
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is important only to note that samples of these three traits are drawn from raised

cosine distributions with means and spreads set by the user.

A measure of inbreeding is tracked throughout the model progression, us-

ing the coefficient of inbreeding developed by Sewall Wright (1922). For simplicity,

however, all initialized agents at time t = 1 are assigned a coefficient of inbreed-

ing bi equal to zero. Nonetheless, members within each of the K distinct lineages

are interrelated by definition. To randomly assign non-zero relatedness ri,j within a

lineage, a Poisson distribution and the following algorithm are used:

1. A rate parameter rexp for the exponent of the coefficient of relatedness is

constructed as rexp = [log1/2(r̄)− 1]/2, where r̄ is a parameter set by the user

to quantify mean relatedness of the entire lineage (not just the initialized

agents in generation 1 of the lineage). The base-1/2 logarithm in this calcu-

lation extracts the exponent from r̄. Then, to account for zeros in the sup-

port of the Poisson distribution, 1 is subtracted from the exponent. (This is

re-added after sampling.) Lastly, the division by 2 accounts for the require-

ment that all agents are in the same generation – hence, when no inbreeding

is present in the population, all coefficients of relatedness must be of form

(1/2)2q+1, where q ∈ N. This is also multiplied back in after sampling.

2. For lineage k ∈ {1, .., K}, relatedness calculations are “primed” by selecting

a first pair i, j of agents in the lineage. A integer value n is sampled from

the Pois(rexp) distribution, and the coefficient of relatedness between i and j

is calculated as ri,j = (1/2)2n+1.

3. Relatedness for remaining pairs within the lineage is assigned one at a time,

using the following rule: If a pair (i, j) is related at 0.5 (i.e. they are full

siblings, since they are in the same generation), then the two agents share
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the same relations to all other agents in the lineage. As result, all newly-

assigned siblings inherit the existing relations of their new sibling. Whenever

the relatedness between a new pair of agents breaks this rule, for example

because unequal relatedness to a third agent has already been assigned to

each of the i, j agents in the new pair, the relatedness of the new i, j pair is

resampled until it is less than 0.5.

4. The agent ids of all relatives of agent i at time t = 1 (i.e., the entirety of

agent i’s lineage) are assigned to agent i’s Ci parameter, which is primarily

for convenience and contains the set of all known relatives of i.

Relatedness between agents in different lineages is initialized at 0, implying

that lineages are completely unrelated at time t = 1. However, note that intermar-

riage between members of different lineages is expected as the model progresses in

time, so this distinction breaks down quickly.

All other variables used to characterize individual agents (Appendix B) vary

at a daily level, and will be described in the following section.

Model Algorithm for t ≥ 1 (Post-Initialization)

At the start of each t ≥ 1 iteration (after initialization, if t = 1), the follow-

ing steps happens in sequence.

Step 1. Mortality. At the start of each iteration t, an agent may die if

a sample from the Bern(µi,t) distribution is equal to 1. The mortality rate µi,t for

each agent is a sum of their “baseline” mortality (which comes from a user-specified

mortality table) and need-based changes to mortality ∆µi,t−1 at time t − 1. (When

t = 1, ∆µi,t−1 = 0 is assumed.) However, death is not guaranteed even when

Bern(µi,t) = 1. Instead, the number of agents who die at each iteration can only
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be as large as µ̄max. If Bern(µi,t) evaluates to 1 for more than µ̄max agents, then the

µ̄max agents with the highest mortality rates are selected to die. To keep the overall

population at a fixed size, agents who die will be replaced later on in the iteration,

either by a newborn agent “born” to adult parents or by an adult agent who is “re-

cruited” from outside of the population. If i happens to be the spouse of another

agent j, then agent j becomes single (i.e., the set Sj,t containing the index of j’s

spouse becomes an empty set). Similarly, if a dependent juvenile agent dies, then

their id variable is removed from their live parents’ sets of dependents (Di,t).

It is worth noting that the enforcement of an upper limit on mortality at

each time step is an unrealistic constraint which does not directly account for sea-

sonal or prolonged famine, environmental catastrophes, epidemics, or other exter-

nal, population-level drivers of increased mortality. However, one would expect pop-

ulation size to vary over time in response to variation in such “extrinsic mortality.”

Under such a scenario, replacement births would not likely match the number of

deaths, especially in cases where the population-level event causing increased mor-

tality impacted fertility, e.g. via nutritional deficits. However, since population size

is already held fixed in the current model, the simplifying assumption of bounded

mortality assists with maintaining population structure. In particular, if population

size is fixed but mortality numbers are not, individual fertility rates can become

unrealistically high very quickly. For example, early versions of the model with-

out fixed mortality were occasionally subject to “death spirals,” where too many

adults in the population died too quickly by random chance. As result, the remain-

ing population was comprised of too many juvenile dependents assigned to too few

parents, and adult production was not high enough to overcome this sudden influx

of non-producing “infants.” This, in turn, caused most juvenile agents to die at one

iteration, only to be reborn at the next. Adult agents also died more frequently,
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since individual adult production was often not high enough to cope with the re-

source needs of an influx of additional dependents per adult. That is, because of a

constraint imposed by the model whereby adult agents must pool resources with

their offspring when they have a combined deficit, adult agents with many newborn

(non-producing) offspring could not keep up with the resource demands. Hence,

the probability that the remaining adults would die increased, leading to additional

non-producing dependents entering the model. Functionally, this cyclical pattern

was equivalent to population collapse, and computationally, it caused the model to

crash. Imposing a constraint on maximum deaths per day avoids this issue. (From

a theoretical point of view, one might reasonably justify this mortality constraint

by considering that individuals unable to secure sufficient resources within their

local community might seek out cooperative interactions with acquaintances from

outside of the local community.)

Step 2. Marriage. Next, if agent i’s age ai,t is greater than or equal to

their age at first possible reproduction αi and they do NOT have a living spouse

(i.e. Si,t = {∅}), then they may be paired at random with another single adult j of

the opposite sex γj, who is also at least αj years of age and who has relatedness to

agent i of ri,j < 0.125. Assignment of spouses is performed by randomly selecting

one agent at a time from the subpopulation of single, reproduction-age agents, then

identifying the set of all other singletons who fit i’s requirements for a spouse. Pro-

vided that at least one agent exists who fits i’s spouse requirements, the index of

that agent is added to Si,t and both agents are removed from the pool of marriage-

able agents. On the other hand, if no agent exists that fits i’s requirements for a

spouse, then i remains single and is simply removed from the pool of marriageable

agents at time t. Then, a new agent is randomly selected from the remaining pool

of marriageable agents, and they are assigned a spouse (or not assigned a spouse)
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in the same manner as i. The process repeats until there are no agents left in the

marriageable agent pool. All agents with an assigned spouse are considered “repro-

ductive pairs,” and can being producing offspring immediately.

Step 3. Independence. An agent who is considered “independent” pro-

duces all of their own resources each day and is not dependent on either parent for

additional resources. Independent agents are also able to directly seek out cooper-

ative partners when in need of additional resources. Once independent, an agent

remains in this state for the rest of their life. Agents automatically become inde-

pendent once they reach age ai,t = δ̄m, where δ̄m is age at maturity (adulthood)

within the population. Additionally, if a juvenile agent is at age ai,t < δ̄m but they

take a spouse (that is, they are at least age αi and there is an appropriate spouse

available during Step 2), the agent also becomes independent. This second case is a

simplifying assumption that avoids coding issues associated with nested dependency

structures between grandparents, dependent parents, and offspring.

In the case that both parents of a dependent juvenile agent die in the mor-

tality step (Step 1), the juvenile agent also becomes independent, irrespective of

age. On the other hand, if only one parent of a juvenile agent dies and the other

remains alive, the juvenile agent continues to be dependent on the remaining live

parent (but not the live parent’s subsequent spouse). In the former scenario, juve-

nile agents become independent – rather than simply dying along with their par-

ents – because becoming independent allows juvenile agents a chance to survive

to adulthood. That is, independent juvenile agents can directly seek out resource

donations from candidate cooperative partners to cover their own daily resource

shortfalls. This ability to solicit extra resources is particularly beneficial for older

juvenile agents (i.e., ai,t ≥ δ̄d) who are already producing some of their own re-

sources each day and may only need a little extra help on occasion. However, inde-
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pendence is less likely to benefit juvenile agents who are too young to produce any

resources on their own, since failure to receive a donation covering their entire daily

need will substantially increase these agents’ likelihood of mortality. Hence, in most

cases, very young independent agents die soon after the death of both parents.

Step 4. Reproduction and Recruitment. For each agent that dies in

Step 1, a replacement agent is initialized so that the population remains at a fixed

size. This is done in one of two ways: Either a new juvenile agent is “born” to a

randomly-selected reproductive pair in the population with Bernoulli probability

pbirth, or an unrelated adult agent is “recruited” into the population from some-

where else with Bernoulli probability 1 − pbirth. I will describe each of these two

methods in turn.

First, suppose that n deaths are recorded in time t. Then n replacement

agents must be initialized. Suppose that nb of these replacement agents will be

born, where nb ≤ n. The following algorithm is used to assign these births to re-

productive pairs in the population: If the number of reproductive pairs is greater

than or equal to the number of births nb, then nb of these couples are randomly

sampled and assigned one new dependent each. If, on the other hand, nb is greater

than the number of reproductive pairs, then new dependent agents are distributed

equally across all couples until the remainder of unassigned births is less than the

number of couples. At this point, the remaining new dependents are assigned ran-

domly to the reproductive pairs, as before. For example, if nb is greater than the

number of couples, but less than two times the number of couples, then each couple

is assigned at least one dependent and some couples randomly get two dependents

– “twins.” (However, note that this second scenario may happen infrequently or not

at all, depending on how µ̄max is set by the user.)
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New dependents are initialized (“born”) at age ai,t = 0. The lineage ki of

the individual is assigned as the lineage of their mother and remains fixed through-

out life. (At the moment, lineage is simply a convenience variable, but it may be

used more intentionally in future versions of the model.) Newborn agents’ genera-

tion gi is taken to be 1 plus the minimum of their parents’ generations. Newborns

are randomly assigned a sex γi ∼ Bern(pγ,M), where 0 is female, 1 is male, and the

probability of being male is pγ,M . Age at first possible reproduction, αi, is drawn

randomly from the raised cosine distribution with mean ᾱ and spread sα that is

specified by the user (i.e., the same one used during model initialization). Each

of the new agent’s “willingness to cooperate” traits, ωi,B, ωi,R, and ωi,K , are indi-

vidually inherited from one parent or the other with 0.5 probability, but they are

inherited with a very small amount of introduced noise. This noise is also intro-

duced by means of a raised cosine distribution: A newborn’s trait is drawn from a

raised cosine distribution in which the mean is the value of the inherited trait and

the spread is fixed at 0.005. (The value of the distribution’s spread is fixed and was

arbitrarily selected as a small value in order to constrain the amount of trait “mu-

tation” that can occur from parent to offspring.)

A measure of inbreeding (bi) is calculated for each newborn agent, using the

coefficient of inbreeding measurement proposed by Sewall Wright (1922). Specifi-

cally, I utilize Wright’s first formulation of the coefficient, which only requires knowl-

edge of the inbreeding coefficients of an agents’ parents and the coefficient of relat-

edness (rM,F ) between the two parents. Afterwards, the coefficient of relatedness

ri,j between dependent i and every other agent j in the current population is cal-

culated. This calculation is performed via an iterative modification of the method

proposed by Sewall Wright (1922), which takes advantage of previously-calculated

relatedness pathways in the agent population. This iterative approach allows for
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the removal of all deceased agents more than a set number of generations back from

the relatedness matrix of the model, which drastically improves computational ef-

ficiency while still allowing all hereditary information to be included in relatedness

calculations (since removed agents’ pathways are captured by agents in more recent

generations).

Before I move onto describing adult agent recruitment, I will briefly digress

again: It is important to note that the coefficient of relatedness between two agents,

as formulated by Wright, only includes genetic relatedness by descent (Wright,

1922). That is, it does not account for genetic similarity – and the resultant indi-

rect fitness benefits – that might arise through evolutionary and random processes

other than common descent from a shared ancestor. For simplifying purposes, how-

ever, I only explicitly included genetic relatedness by descent in the measure ri,j

and chose to ignore any other potential sources of genetic similarity, both because

of the complexity of accounting for such similarity and because of the lack of the-

oretical development surrounding the impacts of non-descent genetic relatedness

on cooperation. Nonetheless, such processes are implicit in the cooperation traits

themselves: Two wholly unrelated agents (by Wright’s measure) may still have

highly similar cooperation traits, even though they did not arrive at this similarity

via a shared common ancestor. As a result of the way that I modeled cooperation,

such similarity will not factor into the probability that a cooperation event occurs

between two agents. Even so, it is important to acknowledge that genetic similarity

between agents (with respect to cooperation traits) may occur in the ABM through

purely non-descent processes.

To return to the matter at hand, now suppose that nr out of the n replace-

ment agents for deaths occurring in Step 1 are determined to be new recruited

agents, rather than newborns. Recruited agents are initialized in a process simi-
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lar to that used during population initialization. Specifically, they are assigned a

randomly-generated age ai,t = αi (where αi is their age at first possible reproduc-

tion), and they are initialized as independent. Sex is assigned randomly according

to the Bernoulli probability pγ,M , and the recruited agents have no spouse. A re-

cruited agent’s inbreeding coefficient bi is set to 0, and importantly, their related-

ness to all existing agents in the population (including any other agents that are

initialized concurrently) is set to zero. Their lineage ki is set to a unique number

not already included in the model. To avoid inconsistencies in generation number

between older live agents in the population and the newly-recruited agent, their

generation gi is set to the maximum generation in the currently-alive adult pop-

ulation. Lastly, each of the recruited agent’s cooperative traits are sampled from

a raised cosine distribution with mean equal to the mean value of the trait in the

current population and spread equal to the user-specified spread (sα) that is used

for initializing agents at the start of the model. This method yields recruited agent

traits that are not fully constrained by what is currently observed in the popula-

tion, but are also not wildly different than what is observed in the current popula-

tion. Recruited adult agents’ traits are selected in this manner to avoid artifically

diminishing the variance of the ABM’s current cooperative trait distributions while,

at the same time, limiting the influence of newly recruited agents’ traits on the ex-

isting trait distributions.

Step 5. Gross Daily Need. The next measure that is calculated is an

agent’s “gross” level of need at the particular time t. Given an agent i’s age ai,t,

their age-specific daily gross resource need is the amount of resources that they re-

quire on a specific day before discounting by any individual resource production or

provisioning from others. Using the base level of daily need at birth η̄∅, the adult

level of daily need η̄m (which is constant for all adults in the population), and the
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age at adulthood δ̄m, an individual i’s age-specific gross need at time t is calculated

as

η̄ai,t = η̄(ai,t | η̄∅, η̄m, δ̄m) = η̄∅ +
η̄m − η̄∅
δ̄m

y, (1)

for y = min{ai,t, δ̄m}. The value of η̄ai,t represents the age-specific amount of re-

sources that an agent i requires at time t in order to have a mortality rate at time

t+ 1 that is no greater than their age-specific baseline value.

Step 6. Gross Daily Resource Production. On a given day t, each

agent in the community who is at least age δ̄d (i.e. they are no longer fully depen-

dent on their parents) will also produce an age-scaled, random amount of resources.

The amount of resources that an agent produces may be less than or greater than

their own daily age-specific need (η̄ai,t ; see Step 5 above), indicating a daily deficit

or a daily surplus in resources, respectively. If an agent i is an independent agent

and generates a surplus of resources, they will direct some or all of this surplus to

supplementing their and and their dependents’ needs. Production ρi,t for agent i

on day t is generated by scaling random draws from the Beta(αρ, βρ) distribution,

where αρ > 1 and βρ > 1. (If the two shape parameters are less than or equal to

1, the mode of the Beta(αρ, βρ) does not have a closed form. αρ = 2 and βρ = 2.5

are good options for values.) To determine the age-specific scaling factor, an age-

specific distributional mode
∼
ρai,t for agent i must first be calculated:

∼
ρai,t =

∼
ρ(ai,t |

∼
ρm, δ̄d, δ̄m) =


0, if ai,t < δ̄d
∼
ρm

δ̄m − δ̄d
(ai,t − δ̄d), if δ̄d ≤ ai,t ≤ δ̄m

∼
ρm, if ai,t > δ̄m.

(2)

In Equation 2 above,
∼
ρm is the population mode of adult-aged resource pro-

duction. If an agent has not yet reached the population age of maturity (δ̄m) but
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is no longer fully dependent on their parents (ai,t ≥ δ̄d), then their mode is lin-

early scaled by age. This implies that agents between the ages of δ̄d and δ̄m ran-

domly produce a daily quantity of resources which is sampled from an age-specific

Beta distribution with mode
∼
ρai,t (described below), where production reaches an

adult level with mode
∼
ρ{ai,t≥δ̄m} =

∼
ρm when an agent reaches the age of matu-

rity/adulthood, δ̄m. On the other hand, if an agent is fully dependent on their par-

ents (i.e. ai,t < δ̄d), then their resource production mode is zero and they are unable

to produce any resources.

To further understand the Beta distribution governing daily resource pro-

duction, first observe that µρ = αρ/(αρ + βρ) is the mean of the Beta(αρ, βρ) dis-

tribution, while mρ = (αρ − 1)/(αρ + βρ − 2) is its mode (for αρ, βρ > 1). Then,

for a scaling factor sρ,ai,t =
∼
ρai,t/mρ and a random draw y ∼ Beta(αρ, βρ), the daily

random production of agent i at time t can be calculated as:

ρi,t = ρ(
∼
ρai,t | t, αρ, βρ) = sρ,ai,t · y =

∼
ρai,t
mρ

y. (3)

That is, the random component of each agent’s daily resource production is

first sampled from the Beta(αρ, βρ) distribution. Then, since this random draw is

bounded between 0 and 1, it is scaled up or down to correspond with the agent’s

age-specific mode of production. (Incidentally, the age-specific mean scaled value of

production is then given by ρ̄ai,t = sρ,ai,t · µρ. For αρ = 2 and βρ = 2.5, for example,

ρ̄ai,t will be approximately ρ̄ai,t/
∼
ρai,t ≈ 1.11 times

∼
ρai,t .)

One last thing to mention is that the above process implies that long-term

economic inequality will not develop within the ABM. That is, because resource

production is randomly-generated and surpluses do not carry over from one day to

the next, no agent in the population can become resource-wealthy or resource-poor.
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Step 7. Initial Resource Calculations. After calculating age-specific

daily need and production for all agents, the ABM next calculates each agent’s

daily “net need.” This is the amount of an agent’s age-specific daily gross need that

is not covered by their individual resource production for that day, and it may be

positive (indicating a net deficit in resources) or negative (indicating a net surplus

in resources). If an agent’s net need is positive, meaning that they have not pro-

duced enough resources to cover their daily need, then they will need to receive an

amount of resources equivalent to their net need from another agent in order to sat-

isfy their gross daily need on that day. However, only independent/adult agents in

the population can engage in cooperative events with other agents. As result, par-

ent agents are responsible for at least half of their dependents’ net needs. To illus-

trate, suppose that agent i has dependents d ∈ Di,t at time t. In the case where the

other parent of agent i’s dependents is alive at time t, agent i’s net need is calcu-

lated as

ηi,t = η̄ai,t − ρi,t +
1

2

∑
d∈Di,t

(η̄ad,t − ρd,t); (4)

that is, agent i’s net need is their gross need minus their own resource produc-

tion (individual net need), plus half of their dependents’ net needs. However, if the

other parent of a dependent is not alive, than agent i is responsible for the entirety

of that dependent agent’s net need. Thus, defining pdi,t as the proportion of depen-

dent d’s net need that adult agent i is responsible for at time t, Equation 4 can be

generalized as

ηi,t = η̄ai,t − ρi,t +
∑
d∈Di,t

pdi,t · (η̄ad,t − ρd,t). (5)
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Equation 5 accounts for cases where the other parents of some or all of agent

i’s dependents are deceased, leaving agent i responsible for all of these dependents’

net needs. (Also, note that if an agent has no dependents, the summation term

above becomes zero and the agent is simply responsible for their own net need.)

It bears repeating that dependents do not independently engage in coopera-

tive transfers with other agents in the population. Since dependents don’t produce

any resources until age δ̄d, and only produce an age-scaled amount after that, they

must receive all supplemental provisioning solely from their parents. Then, when a

juvenile agent has two live parents, each parent is responsible for half of their de-

pendents’ daily net need. However, parents do not automatically pool resources

with each other. It is possible that the parents of a dependent agent will be paired

together during the cooperative step (outlined below) – in which case a transfer

of resources from one parent to the other could, in fact, occur – but, since this re-

quires that the two parent agents are randomly paired to cooperate and are willing

to cooperate, the probability of this occurrance is typically quite low. While some-

what unrealistic, given that most human small-scale subsistence populations have

a sexual division of labor whereby one parent is responsible for more than half of

their spouse’s and offsprings’ material provisioning, this decision simplifies the cal-

culations below considerably. It may be partially justified through the existence of

domain- and sex-specific resource provisioning of offspring that differs between par-

ents, e.g., where one parent provides hunted goods and the other provides foraged

goods (e.g., Gurven & Hill, 2009; Hill & Hurtado, 2009; Kaplan et al., 2000).

Step 8. Cooperative Transfers. Once the net need has been calculated

for each adult/independent agent, adult/independent agents with a net deficit may

solicit resource donations from other adult/independent agents with a net surplus.

Adult and independent agents, as the only cooperatively-engaged members of the
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population, are classified as “recipients” if their net need ηi,t is greater than 0 (in-

dicating a deficit) or as “donors” if their net need ηi,t ≤ 0 (indicating a surplus).

Note that the probability of exactly ηi,t = 0 is infinitesimally small, so how an agent

is classified in this situation is not of particular concern.

The cooperative step that occurs during each iteration of the model pro-

ceeds as thus: First, general calculations are performed for both donors and re-

cipients to determine the changes to net need and mortality that would occur if a

cooperative transfer of resources was not successful. Then, donors and recipients

are randomly-paired, and the success of a potential cooperative event between each

donor/recipient pair is evaluated. A general outline of the initial mortality calcula-

tions for recipients and donors is described below in Steps 8.1 and 8.2, followed by

a description of how cooperative transfer probabilities are calculated and evaluated

in Step 8.3.

Step 8.1. Initial Calculations for Recipients. If an adult agent j’s

net need is positive, then this indicates that they and their dependents have a re-

maining resource deficit after accounting for their daily production. That is, adult

agent j and their offspring have jointly produced less resources than adult agent

j requires to satisfy their own daily need and the proportion of their dependents’s

daily need that they are responsible for. Agent j may supplement their dependents’

net need with their own production via resource pooling, and/or they may receive a

resource transfer from another individual in the population to cover some or all of

their daily shortfall.

If adult agent j is a recipient and receives no resource assistance from an-

other adult agent, then they will pool resources produced by themselves and any

dependents, which will then be distributed back to j and their dependents as weighted

shares of their total resources. Resource distribution weights can be defined as
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•
wj,t =

η̄aj,t

η̄aj,t +
∑

dj∈Dj,t

pdj ,t · η̄adj,t
for adults, and (6)

•
wdj ,t =

pdj ,t · η̄adj,t
η̄aj,t +

∑
djinDj,t

pdj ,t · η̄adj,t
for dependents, (7)

where pdj ,t is the proportion of each dependent’s need that agent j is responsible

for. Then, given these weights (and assuming no additional resources are trans-

ferred to j), each of j and their dependents dj ∈ Dj,t would receive a share of the

pooled resources equal to

•
ρx,t =

(
ρj,t +

∑
dj∈Dj,t

pdj ,t · ρdj ,t
)
•
wx,t for x ∈ {j,Dj,t}. (8)

It follows that if agent j receives no resource transfers from other adult agents

in the population, then the change in proportional need for j and their offspring dj

after redistributing the pooled resources would be

∆ηj,t =
η̄aj,t −

•
ρj,t

η̄aj,t
for agent j, and (9)

∆ηdj ,t =
pdj ,t · η̄adj,t −

•
ρdj ,t

η̄adj,t
for each of their dependents. (10)

Now, for recipients, ∆η in Equations 9 and 10 above corresponds to the pro-

portional resource shortfall that j and their offspring experience at time t. If one

were to assume that mortality and need had a 1:1 linear relationship in this popu-

lation – that is, if the proportional shortfall in an agent’s daily resource production

resulted in an equivalent proportional increase in that agent’s daily mortality rate

at the start of the next time step – then ∆η would simply be an agent’s increase in
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mortality at time t + 1 over their baseline mortality rate. However, initial model

tests demonstrated that this assumption is problematic for two reasons:

1. Assuming a 1:1 mortality cost as result of a daily resource shortfall is un-

realistically severe, leading to premature adult population crashes. It may

be noted that, at least in human populations, a 50% resource shortfall on

a single day will not produce a 50% increase in mortality during that day.

Instead, humans can survive for a number of days with inadequate or even

zero resources. Hence, it is necessary to scale the impact of daily resource

shortfalls on daily mortality rates such that they are more in line with ob-

served outcomes, or else cooperative behaviors within the population will

not have a sufficient chance to evolve before the population crashes.

2. The assumption of a linear relationship between resources and mortality (no

matter the slope) does not account for the diminishing benefits of extra re-

sources as an individual ages. Evidence from life history theory suggests

that, once an individual reaches an advanced age, their body will repair it-

self less effectively and their mortality rate will increase quickly (Williams

et al., 2006). Importantly, changes to mortality during this period of so-

matic decline are not driven by resource shortfalls, but rather by the body

breaking down. Thus, while higher levels of mortality during this time pe-

riod can certainly be affected by the availability of resources, it is not pos-

sible to fully overcome age-related mortality via increased resource access.

As result, the relative benefit of holding onto extra resources (as opposed to

sharing them with younger, related individuals) should diminish as an indi-

vidual ages. There is a substantial body of ethnographic evidence suggest-

ing that this is typical behavior in humans, at least for females (Hawkes &
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Coxworth, 2013; Sear & Mace, 2008). Applying the above argument to this

model, it should be expected that older donor agents will be more willing

to share their extra resources with younger relatives, since keeping these re-

sources should do the older agent little good. However, a direct implication

of assuming a linear relationship between resources and mortality is that

surplus resources can fully overcome mortality, even during old age. Simply

put, an older agent under this scenario would be highly motivated to chan-

nel their surplus resources into overcoming their high mortality rate. As a

result, an older agent would never share with younger relatives, because the

benefit (in terms of reduction to mortality) that the elder agent would gain

from keeping the resources would always outweigh the benefit that a younger

relative would gain from receiving them. To overcome this issue, the rela-

tionship between resources and mortality must be non-linear and incorporate

diminishing returns as age (and mortality) increase.

Addressing the above concerns in this ABM, resource shortfalls (as well as

resource surpluses; see next section) are applied to an agent’s mortality rate on the

logit scale. The relative effect of resource shortfalls on mortality are further scaled

by kµ to allow for finer control over the impact of resources on mortality. The re-

sult of this logit calculation is then transformed back to the probability scale, after

which the actual change in an agent’s mortality rate is calculated as the difference

between the updated rate and the agent’s original, “baseline” mortality rate. Since

an agent’s mortality is evaluated at the start of each time iteration (i.e. well before

the resource/need calculations and the cooperative step), an increase in mortality

as result of resource shortfalls at time t impacts an agent’s chance of dying at the

start of time t+ 1.
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To express the change in mortality mathematically, recall that an agent’s

age-specific “baseline” mortality at time t + 1 is µ̄aj,t+1
. Then, assuming momen-

tarily that no cooperative help is received from other adult agents at time t, the

change to mortality at time t+ 1 for agent j and their offspring dj ∈ Dj,t is

∆µx,t =
1

1 + exp
{
−
[
logit(µ̄ax,t+1) + kµ∆ηx,t

]} − µ̄ax,t+1 for x ∈ {j,Dj,t}. (11)

If, after the cooperative step below, agent j has indeed received no resources

from another agent to cover this shortfall, then the mortality rate of agent j is sim-

ply the sum of their mortality rate change at time t and their baseline mortality

rate at time t+ 1, i.e.

µj,t+1 = µ̄aj,t+1
+ ∆µj,t =

1

1 + exp
{
−
[
logit(µ̄aj,t+1

) + kµ∆ηj,t
]} . (12)

The mortality rate of agent j’s offspring is similarly calculated, but also fac-

tors in the change to mortality brought about by the other parent when applicable.

On the other hand, if agent j does receive some quantity of resources ρC,j,t

during a cooperative interaction with another adult agent, then the change in mor-

tality for agent j and their offspring will be modified accordingly. This, in turn, will

affect their final mortality rates at the start of time t + 1. This is discussed further

in Steps 8.3 and 9 below.

Step 8.2. Initial Calculations for Donors. Suppose that agent i is

some other adult agent in the population. If ηi,t < 0, it means that an adult agent

i and their dependents have generated enough resources to cover their basic daily

needs. However, recall that there is a “baseline” level of age-specific mortality, µ̄ai,t ,

which still exists even after an agent meets its daily needs. If agent i has a daily
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surplus at time t (indicated as ηi,t < 0), they may choose to invest some or all of

these surplus resources in discounting their and their dependents’ base mortality

rate (µ̄ai,t+t
) at time t+ 1. Alternatively, agent i may choose to give some/all of this

away to some other recipient agent who is experiencing a net shortfall in resources

at time t.

To calculate the potential amount that agent i may invest in discounting

their and their dependents’ mortality at time t + 1, I will temporarily assume that

mortality and resources are linearly related. (This assumption will be modified be-

low, in line with the previous section’s argument for a non-linear relationship be-

tween mortality and resources.) Under this temporary assumption, first observe

that survival at any given age (denoted s = 1− µ) and need at that age are linearly

dependent on one another. That is, a change from s0 = 0 to s1 = 1 − µ̄ax,t+1 (where

µ̄ax,t+1 is the agent’s baseline mortality rate at time t + 1) happens when some in-

dividual x’s available resources at time t increase from 0 to η̄ax,t (their age-specific

need). Therefore, for any agent x in the model, the rate of change of survival with

respect to resources is

dsx,t
dηx,t

=
1− µ̄ax,t+1

η̄ax,t
. (13)

Inverting this relationship, it follows that the rate of change of resources

with respect to survival is

dηx,t
dsx,t

=
η̄ax,t

1− µ̄ax,t+1

. (14)

With this in mind, the amount of resources required to increase survival by

some specific amount s is

40



∼
ρx,t =

dηx,t
dsx,t

s =
η̄ax,t

1− µ̄ax,t+1

s. (15)

Specifically, in order to increase an agent’s survival at time t + 1 from 1 −

µ̄ax,t+1 to 1 under this linear assumption (i.e., decrease mortality from µ̄ax,t+1 to 0),

the target change in survival is s = µ̄ax,t+1 . To accomplish this change, the extra

resources needed per individual x at time t are

∼
ρx,t =

η̄ax,t
1− µ̄ax,t+1

µ̄ax,t+1 . (16)

Thus, under the temporary assumption of a linear relationship between re-

sources and mortality, the extra resources that a candidate donor i needs at time

t + 1 in order to ensure perfect survival of themselves – as well as half or all of

the increase in their offsprings’ survival to 1 (depending on whether other parent

is alive) – is:

•
ρi,t =

∼
ρi,t +

∑
di∈Di,t

pdi,t ·
∼
ρdi,t. (17)

where pdi,t is the amount of a dependent d’s need that agent i is responsible for

(discussed in Step 8.1 above).

Equations 16 and 17 can be used to generate weights used in determining

how agent i should apportion the surplus resources available to themselves and

their dependents. Specifically,

•
wi,t =

∼
ρi,t
•
ρi,t

for adult i, and (18)

•
wdi,t =

pdi,t ·
∼
ρdi,t

•
ρi,t

for dependents di ∈ Di,t. (19)
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If i does not share resources with another agent at time t, then they will

redistribute their surplus resources (i.e., the absolute value of their net need, ηi,t,

which is negative and includes their dependents’ net need) back to themselves and

their dependents according to the weights defined above in Equations 18 and 19.

That is, agent i will receive (−ηi,t)
•
wi,t resources, and their dependents will receive

(−ηi,t)
•
wdi,t resources. This, in turn, implies that agent i’s change in proportional

need at time t+ 1 (assuming no sharing) is

∆ηi,t = ηi,t
•
wi,t

dsi,t
dηi,t

= ηi,t
•
wi,t

1− µ̄ai,t+1

η̄ai,t
. (20)

The change in i’s dependents’ resources at time t + 1, as brought about by

i’s surplus resources (and not including the other parent’s contribution when appli-

cable), is then

∆ηdi,t = ηi,t
•
wdi,t

dsdi,t
dηdi,t

= ηi,t
•
wdi,t

1− µ̄adi,t+1

pdi,t · η̄adi,t
for di ∈ Di,t. (21)

By substituting the definitions of
•
w and

∼
ρ (Equations 18/19 and Equation

16, respectively) into the two definitions of ∆η (Equations 20 and 21), it can be

shown that they both reduce to the following:

∆ηx,t =
ηi,t
•
ρi,t
· µ̄ax,t+1 for x ∈ {i,Di,t}. (22)

That is, since
∼
ρi,t (the total resources required to reduce to zero both agent

i’s mortality and the portion of their dependents’ mortality that they are respon-

sible for) is already scaled by the baseline mortality rate of agent i and their off-

spring, it is sufficient to weight i’s redistribution of the actual surplus resources
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available to them (−ηi,t) by µ̄ax,t+1/
∼
ρi,t. Then, the agents’ change in proportional

need is simply the negative of the redistributed resources. Importantly, observe that

the above changes in proportional need will both be negative, since ηi,t < 0 for

donors (corresponding to a surplus in resources). It is also important to note that

∆ηx,t is not, strictly speaking, a true change in proportion – it can be smaller than

−1. However, in keeping with the language of the previous section, I will continue to

refer to it as thus.

As with the net need of recipients, ∆η should not be used as a direct mor-

tality change here due to the issues resulting from assuming a linear relationship

between resources and mortality. Instead, the change in mortality resulting from

the net surplus of i and their dependents, when they do not share resources with

any recipient agent, can be calculated as

∆µx,t =
1

1 + exp
{
−
[
logit(µ̄ax,t+1) + kµ∆ηx,t

]} − µ̄ax,t+1 for x ∈ {i,Di,t}. (23)

Thus, if agent i does not cooperatively share at time t, their mortality rate

at time t+ 1 is

µi,t+1 = µ̄ai,t+1
+ ∆µi,t =

1

1 + exp
{
−
[
logit(µ̄ai,t+1

) + kµ∆ηi,t
]} . (24)

Again, the mortality rate of agent i’s offspring is similar, but may addition-

ally include the change in mortality brought about by the other parent’s contribu-

tion (if the other parent is alive).

Alternatively, since i is a donor, they may be randomly paired with a recip-

ient adult j who has a need deficit. If i does indeed share some positive quantity of

resources with j, then the change in mortality for themselves and their offspring is
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updated accordingly to reflect i’s decrease in available surplus resources. See Steps

8.3 and 9 below for more details.

Step 8.3. Cooperative Interaction. Assume that adult agent i is a

donor, and adult agent j is a recipient. Suppose that recipient agent j has a net

need deficit of ηj,t at time t, and recall that donor agent i has an inherited coop-

eration trait vector ~ωi = {ωi,B, ωi,R, ωi,K}, where ωi,B is i’s baseline willingness to

cooperate with anyone in the population, ωi,R is their willingness to cooperate with

past reciprocity partners, and ωi,K is their willingness to cooperate with kin. These

three traits will be incorporated into a log-odds (logit) probability characterizing

donor i’s willingness to transfer resources to recipient j. (More on this in just a mo-

ment.)

First, suppose that agent j is related to agent i in some way, and suppose

that i is evaluating whether to give some ρC,j,t > 0 amount of resources to j at

time t. The benefits and costs of this potential cooperative event can be quantified

in terms of how the mortality of the involved agents and their dependents at time

t + 1 would change if this transfer of ρC,j,t resources actually occurred. If recipient

agent j does indeed receive ρC,j,t resources from agent i, then the updated mortality

rate at time t + 1 for agent j and their dependents Dj,t can be calculated on the

logit scale as

∆µC,x,t =
1

1 + exp
{
−
[
logit(µ̄ax,t+1) + kµ(∆ηx,t − ρC,j,t

•
wx,t/η̄ax,t)

]} , (25)

where x ∈ {j,Dj,t}. Specifically, the additional resources ρC,j,t are incorporated into

the new mortality rates of agent j and their dependents as ρC,j,t
•
wx,t/η̄ax,t , which

represents the change (i.e., decrease) in j and their dependents’ proportional need

that would result from the additional resources, weighted by the proportion of each
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agent’s daily need that agent j is responsible for. (See Step 8.1 for a discussion of

recipient weights and change in proportional need.) Hence, under this scenario, the

potential benefit bj,t ≥ 0 that agent j would gain if they were to receive ρC,j,t re-

sources from agent i would be the sum of their and their dependents’ decrease in

mortality at time t + 1 as a result of these additional resources. That is, agent j’s

potential benefit would be the increased survival for themselves and their depen-

dents when an additional amount of their daily net need is met at time t. Using

Equations 12 and 25, this may be formalized as

bj,i =
∑

x∈{j,Dj,t}

(µx,t+1 −∆µC,x,t)

=
∑

x∈{j,Dj,t}

[
(µ̄ax,t+1 + ∆µx,t)−∆µC,x,t

]
. (26)

Recall that µx,t+1 = µ̄ax,t+1 + ∆µx,t for x ∈ {j,Dj,t} represents the mor-

tality rates of agent j and their dependents at time t + 1 if no additional resources

are transferred to j and they remain at their original net deficit, as calculated in

Equation 12. If the cooperative event between agents i and j fails and nothing is

transferred to agent j (ρC,j,t = 0), then ∆µC,x,t in Equation 25 simply reduces to

the definition of (µ̄ax,t+1 + ∆µx,t) in Equation 12. In this case, bj,i = 0, indicating

that agent j receives no benefit from their cooperative interaction with agent i.

On the other hand, if j does actually receive ρC,j,t resources from i, this de-

creases j’s mortality towards their baseline age-specific mortality. However, since

ρC,j,t can be no larger than the minimum of recipient j’s net need and donor i’s

available surplus, j’s mortality as a recipient will not decrease below their baseline

mortality. As for j’s dependents, if the other parent of a dependent dj is still alive,

then the maximum decrease in dj’s mortality rate will be halfway between the de-

pendent’s original mortality (with a net need and no cooperative assistance) and
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their baseline, age-specific mortality. However, if dj’s other parent is deceased, then

dj’s mortality can decrease down to their baseline mortality as result of the ρC,j,t

resources transferred to their live parent, agent j.

Now, in order for agent i to provide j with some amount of resources at time

t, they must pay a cost in terms of reduced survivorship for themselves and their

own dependent offspring. This cost will depend on how much surplus resources

i has available (i.e., ηi,t, translated into a change in mortality for themselves and

their offspring), the size of the decrease in this surplus (ρC,j,t) as result of trans-

ferring these resources to j, and the final mortality rates for themselves and their

dependent offspring at time t + 1 if they choose not to cooperate. Put simply, the

cost that i pays for giving ρC,j,t resources to j is the sum of the increases in their

and their dependents’ mortality rates at time t + 1 as result of the loss of the ρC,j,t

surplus resources, relative to the mortality rates they would have if they kept these

resources. If agent i does decide to give ρC,j,t to agent j, then the mortality rates at

time t+ 1 of agent i and their dependents Di,t will be updated as follows:

∆µC,y,t =
1

1 + exp
{
−
[
logit(µ̄ay,t+1) + kµ(∆ηy,t + ρC,j,tµ̄ay,t+1/

•
ρi,t)

]} , (27)

where y ∈ {i,Di,t}. In Equation 27 above, the loss of these ρC,j,t resources is in-

corporated as ρC,j,tµ̄ay,t+1/
•
ρi,t, which equals the weighted increase in proportional

need that i and their dependents experience from not having access to these addi-

tional resources. Since this increases the mortality rate of i and their dependents,

this increase in proportional net need is added to ∆ηx,t rather than subtracted from

it (as compared to Equation 25). Then, the mortality cost that agent i would incur

if they decided to help agent j at time t would equal the sum of their and their
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dependents’ resulting increases in mortality at time t + 1. This may be expressed

using Equations 24 and 27 as

ci,t =
∑

y∈{i,Di,t}

(∆µC,y,t − µy,t+1)

=
∑

y∈{i,Di,t}

[
∆µC,y,t − (µ̄ay,t+1 + ∆µy,t)

]
. (28)

In the equation above, µy,t+1 = µ̄ay,t+1 + ∆µy,t for y ∈ {i,Di,t} represents the

mortality rate of i and their dependents if i does not cooperate with j (Equation

24). Note that this will be smaller than ∆µC,y,t (Equation 27); hence, µy,t+1 is sub-

tracted from ∆µC,y,t so that ci,t will always be a positive quantity. It is worth not-

ing, however, that this cost may be extremely close to zero if i’s remaining surplus

far outweighs the amount that they can transfer to j. Since the change in mortality

is calculated on the logit scale, small decreases in otherwise huge resource surpluses

have little effect on overall mortality rates.

Now, the above benefits and costs factor into i’s willingness to help a related

agent j. The cost ci,t and benefit bj,t resulting from i donating to j enhances coop-

eration in the model via the mechanism of kin selection, as first proposed by Hamil-

ton (1964). Specifically, Hamilton theorized that natural selection should favor be-

havior in which a donor pays a cost c to provide a benefit b to a recipient, provided

that the relatedness between the two individuals (r) – relative to the average relat-

edness within the population as a whole (r̄) – satisfies the inequality (r − r̄)b > c.

This prediction has consistently held up across a wide range of species, from pri-

mates to social insects (Allen-Arave et al., 2008; Mitani, 2006; Queller, 2000; Sey-

farth & Cheney, 2012), and is a foundational component of life history theory.

Within the current model, kin selection is weighted by an agent’s inherited

“willingness to cooperate with kin” trait, ωi,K . That is, the probability of coopera-
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tion via kin selection is evaluated by ωi,K [(ri,j − r̄)bj,t − ci,t], with ωi,K moderating

the strength of an individual agent’s tendency toward cooperating with their kin.

In this way, it is possible for kin selection to evolve in the population under certain

circumstances, provided that agents with lower ωi,K traits die out and are replaced

with agents with larger ωi,K traits. Furthermore, since this term is incorporated ad-

ditively into the logit probability of cooperation, it will interact with other forms

of cooperation in the model to produce the final probability of cooperation (see be-

low).

As an illustrative example of how kin selection operates in this model, sup-

pose that average relatedness in the population at time t is r̄ = 0.0625. In this time

step, i is selected as a donor and j is selected as a recipient for a potential coopera-

tive event. Agent i’s inherited “willingness to cooperate with kin” trait is ωi,K = 2,

suggesting that they have a relatively strong preference for cooperating with kin.

For simplicity, assume that neither agent has a positive coefficient of inbreeding;

then, as siblings, the coefficient of relatedness between the hypothetical i and j is

ri,j = 0.5. Since ri,t > r̄, it follows that kin selection will favor cooperation between

i and j as long as the benefit to j is sufficiently larger than the cost to i. With this

in mind, suppose that the benefit that j would gain from receiving some quantity

ρC,j,t > 0 from i is bj,t = 2, while the cost incurred by i for giving this amount to

j is ci,t = 0.5. Then, ωi,K [(ri,j − r̄)bj,t − ci,t] will evaluate to 0.75. Given that this

effect is applied on the logit scale, this will positively impact the final probability of

cooperation between i and j. On the other hand, if j’s potential benefit is smaller –

say, bj,t = 0.5 – then ωi,K [(ri,j − r̄)bj,t − ci,t] = −0.5625. This will negatively impact

the final probability of cooperation between i and j.

In a third scenario, agent i may instead be randomly selected as a candidate

donor to some unrelated individual, or to an individual who’s relatedness to i is
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less than the mean relatedness of the population at time t. In this case, ri,t − r̄

would be a negative value, which would heavily discount the benefit to j relative to

the cost of i. This would result in (ri,j − r̄)bj,t < ci,t, yielding a negative value of

(ri,j − r̄)bj,t− ci,t. Hence, ωi,K [(ri,j − r̄)bj,t− ci,t] < 0, decreasing the final probability

of cooperation. Importantly, it is not possible to overcome ri,t− r̄ < 0 in this model.

Since ci,t is calculated as the difference between i and their offspring’s mortality

rates when i keeps all surplus resources and their mortality rates when i gives away

a portion of their resources – and because this change is evaluated on the logit scale

– ci,t will always be positive.

Two additional mechanisms the model can increase the likelihood of coop-

eration, even when relatedness between a cooperative pair is very low. First, the

model incorporates a measure of reciprocity [also called “reciprocal altruism” in the

literature; Trivers (1971)], whereby agents may preferentially help other agents who

can be reasonably expected to help them in return sometime in the future. Reci-

procity is also frequently measured in terms of past interactions, since memory of

these past interactions may inform discrimination between those likely to help and

those likely to defect in the future. Within the context of this model, a donor agent

i may be motivated to help a recipient agent j if i’s ωi,R trait (their inherited will-

ingness to cooperate with reciprocity partners) is large and if j has typically helped

them in the past. That is, their willingness to cooperate with past reciprocity part-

ners (ωi,R) is scaled by a historical record Hi,j,t of past interactions between i and j

where i was the recipient and j was the donor. This historical record is iteratively

calculated as

Hi,j,t = Ii,j,t−1 + kHHi,j,t−1, (29)
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where kH ∈ [0, 1] is a fixed decay parameter that controls how far back i effectively

“remembers” their past reciprocity history with j (with greater kH corresponding

to a longer “memory”). Ii,j,t−1 , the other component of Hi,j,t, is a simple pseudo-

indicator function that describes the interaction between i and j at time t − 1 as

follows:

Ii,j,t−1 =



0, if i, j do not interact at time t− 1, or if i is the donor;

−1, if i, j interact at time t− 1 with i as recipient, but j

gives nothing to i;

1, if i, j interact at time t− 1 with i as recipient, and j

gives some positive amount to i.

(30)

Reciprocity is again incorporated into the logit probability of cooperation as

an additive effect, i.e., ωi,RHi,j,t. In the case where Hi,j,t = 0, this means that i and

j have never interacted before with i as the recipient. Hence, ωi,RHi,j,t will evaluate

to 0, and i’s willingness to cooperate with past reciprocity partners (ωi,R) will not

impact the probability of the current cooperative event in either direction. If, how-

ever, Hi,j,t is positive, this indicates that j has given to i more frequently and/or

more recently than they have chosen not to give to i. Provided that ωi,R is posi-

tive, values of Hi,j,t greater than 1 will increase i’s willingness to cooperate with j

above ωi,R, while values between 0 and 1 will result in a positive effect between 0

and ωi,R. Conversely, if Hi,j,t is negative, this indicates that j has more frequently

and/or more recently chosen not to give to i in past time steps. In evolutionary

game theory terms, i would consider j to be a “defector” in this case. Given a pos-

itive value of i’s ωi,R trait, a negative Hi,j,t will decrease i’s willingness to cooperate

with j in time t. Updating of Hi,j,t to Hi,j,t+1 and Hj,i,t to Hj,i,t+1 occurs during the

last step of each iteration t, after the cooperative event (or lack thereof) between i

and j occurs. (See Step 9 of this section for more details.)
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Lastly, in addition to kin selection and reciprocity traits, each agent in the

population has an inherited “baseline willingness to cooperate with anyone” (ωi,B)

trait. Suppose that agent i is randomly paired with any agent j in the population.

Even if j’s relatedness to i and their interaction history with i are not sufficient

for kin selection or reciprocity to positively influence the outcome of the coopera-

tive event, agent i may still be willing to help such an agent j if they have a suf-

ficiently large ωi,B trait. This trait is treated as an intercept in the logit probabil-

ity of agent i’s decision to cooperate, and it applies to anyone in the population

– not just strangers and unrelated agents. Hence, in the (rare) hypothetical case

where there is no interaction history (ωi,RHi,j,t = 0) and kin selection is ineffectual

(ωi,K [(ri,j − r̄)bj,t − ci,t] = 0), the probability that i gives to j is simply logit−1(ωi,B)

= 1/(1 + exp{−ωi,B}).

With all of the above in mind, the probability pC,i,j,t that i will give some

amount of resources to j at time t in terms of its logit (log-odds) probability can be

expressed as:

logit(pC,i,j,t) = ln

(
pC,i,j,t

1− pC,i,j,t

)
= ωi,B + ωi,RHi,j,t + ωi,K [(ri,j − r̄t)bj,t − ci,t)] , (31)

where the ωi,? values are agent i’s willingness to cooperate traits, ri,j is the

coefficient of relatedness (by decent) for i and j, and r̄t is the average relatedness in

the population at time t. Using a log-odds specification of pC,i,j,t allows for agents

to combine different sources of cooperation probability, while maintaining pC,i,j,t ∈

[0, 1].

To operationalize the above for each candidate cooperative i, j pair, a recip-

ient j and donor i will be randomly selected from the pools of donors and recip-
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ients. Each candidate recipient/donor agent is paired at most once with another

donor/recipient agent, and some recipient/donors may not be paired with another

agent if there are insufficient donors/recipient agents remaining by the time they

are randomly selected. While this scenario may be somewhat unrealistic, as individ-

uals in the real world would likely seek out multiple other cooperative partners if

an initial candidate donor failed to provision them (or provision them adequately),

the assumption of single donor-recipient pairings was adopted in this model for sim-

plification purposes. Nonetheless, allowing agents to seek out additional cooperative

partners at each time step is likely important for fully characterizing human coop-

erative behaviors, and this addition will be pursued in future updates to this model.

Once a donor i is randomly paired with a recipient j, their probability of

cooperating (as well as the calculations that this probability is dependent on) will

be computed. The outcome of probability pC,i,j,t is evaluated with Bern[pC(i, j, t)].

Then, depending on the success (Bern[pC(i, j, t)] = 1) or failure (Bern[pC(i, j, t)] =

0) of the cooperative event, agent i may share some positive quantity ρC,j,t of re-

sources with j. Specificially, this quantity will equal the minimum of j’s net need

and the absolute value of i’s net need, and thus agent i will never give away more

than they need to maintain their baseline mortality at t + 1 (as well as the propor-

tion of their dependents’ baseline mortality that they are responsible for).

Importantly, if i does indeed share with j, i and j’s changes to mortality (as

well as those of their offspring, if applicable) must be updated to reflect changes

in resource access. Else, if i does not share with j, the mortality changes will re-

main as previously calculated. Lastly, the two history functions of i and j at time

t + 1 (i.e. Hi,j,t+1 and Hj,i,t+1) will be updated in accordance with the outcome of

the cooperative event. (More details on this updating process can be found in the

next subsection, Step 9.) The two agents i and j will then be removed from the
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pools of candidate donors and recipients, and a new donor/recipient pair will be

selected and evaluated for cooperation. The cycle will repeat until all remaining

donors and/or recipients have been exhausted.

Step 9. Final Mortality and History Calculations. If no cooperative

event occurs between a donor/recipient pair i and j at time t, then the change in

mortality for i, j, and their dependents remains as initially calculated in Steps 8.1

and 8.2 above (see Equations 11 and 23). However, if a cooperative event does oc-

cur between i and j at time t, then the calculations for change in proportional need

and change in mortality must be updated to reflect the increase/loss in resources as

result of the event.

To describe the updated calculations for change in proportional need and

mortality as result of a cooperative event, suppose that a donor agent i gives a re-

cipient agent j some positive quantity of resources. Denote ρC,j,t > 0 as the re-

sources that j receives from i, and denote ρC,i,t = −ρC,j,t < 0 as i’s corresponding

loss of available resources. The sole difference between the calculations without a

cooperative transfer and those after a cooperative transfer is the change in avail-

able resources, which affects the calculation of ∆η for each agent involved. Hence,

recalculation of ∆η will be described first.

Since recipient j pools the resources that they and their dependents pro-

duce and then redistributes these resources among themselves and their dependents

according to need, the pool of resources that j has available to redistribute is in-

creased by ρC,j,t. Hence, the updated quantity of resources that they and their off-

spring receive is

•
ρx,t,upd =

(
ρC,j,t + ρj,t +

∑
dj∈Dj,t

pdj ,t · ρdj ,t
)
•
wx,t for x ∈ {j,Dj,t}. (32)
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The change in proportional need (∆η) of recipient j and their dependents

can then be recalculated with these updated redistributed resources, using exactly

the same calculation as in Step 8.1:

∆ηj,t =
η̄aj,t −

•
ρj,t,upd

η̄aj,t
for agent j, and (33)

∆ηdj ,t =
pdj ,t · η̄adj,t −

•
ρdj ,t,upd

η̄adj,t
for each dependent dj ∈ Dj,t. (34)

On the other hand, a decrease in resources following a cooperative transfer

affects donor i’s net surplus (i.e. their net need, ηi,t) and the way that this is re-

distributed to themselves and their dependents. Recall that, as a surplus, ηi,t < 0.

Then, for a ρC,i,t < 0 loss in available resources as result of giving to recipient j,

donor i’s net need/surplus can be updated as

ηi,t,upd = ηi,t − ρC,i,t, (35)

where ηi,t on the right-hand side of the equation is i’s original, pre-cooperative

transfer amount of net need. Using this updated value of net need, the change in

proportional need of agent i and their dependents is simply

∆ηx,t,upd =
ηi,t,upd
∼
ρi,t

· µ̄ax,t+1 for x ∈ {i,Di,t}. (36)

Then, the final change in mortality for recipient j, donor i, and their respec-

tive offspring can be recalculated exactly as before in Equations 11 and 23. That is,

for x ∈ {i,Di,t, j,Dj,t}, change in mortality is

∆µx,t,upd =
1

1 + exp {−[logit(µ̄ax,t+1) + kµ∆ηx,t,upd]}
− µ̄ax,t+1 . (37)
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Final mortality for any independent/adult agent at time t + 1, regardless

of whether they engaged in a cooperative event at time t, is calculated exactly the

same. First, given some adult agent i with a final change in mortality ∆µi,t at time

t, their mortality rate at the start of time t+ 1 is

µi,t+1 = µ̄ai,t + ∆µi,t. (38)

Similarly, for any dependent d in the population with parents i and j, the

dependent’s mortality rate at time t+ 1 is

µd,t+1 = µ̄ad,t + ∆µdi,t + ∆µdj ,t, (39)

where ∆µdi,t is the change in mortality brought about by parent i and ∆µdj ,t is the

change in mortality brought about by parent j. (If one of i or j is deceased, then

the corresponding ∆µ = 0. Recall that at least one parent of d must be alive in or-

der for d to be considered a dependent.) Note that, since change in mortality ∆µi,t

is always calculated on the logit scale, there is no need to forcibly bound µi,t+1 be-

tween 0 and 1 for independent/adult agents – it will always fall within this range.

However, because dependents with two live parents have two sources of change to

their mortality rates, it is possible that a dependent’s final calculated mortality rate

for time t + 1 will be outside of the [0, 1] range. However, note that this can only

occur in the case where both parents are donors. Nonetheless, the ABM truncates

as necessary in this case so that probability remains within the 0 to 1 range. (This

is primarily for computational purposes, and does not affect the overall outcome of

the calculations.)

Once the cooperative transaction (or lack thereof) is over, the collection of

partner history functions Hi,j,t must also be updated for all recipient i, donor j

55



pairs in the population (regardless of whether they interact or not). To update a

Hi,j,t to time t + 1, it is first necessary to assign a value of 1, 0, or −1 to the interac-

tion Ii,j,t at time t in the manner of Equation 30. Then, the corresponding history

function is updated for time t+ 1 as:

Hi,j,t+1 = Ii,j,t + kHHi,j,t, (40)

where kH is as defined in Step 8.3. Importantly, for any given pair i and j, both

Hi,j,t+1 and Hj,i,t+1 must be updated; while i and j can only ever be one of donor or

recipient at a specific time t, both directions of the interaction must be recorded.

Lastly, change in mortality must be calculated for all agents who do not en-

gage in a cooperative event at time t. These calculations performed according to

whether an agent’s net need is positive or negative, using exactly the same calcula-

tions as performed for donors/recipients who do not engage in cooperative transfers

(Steps 8.1 and 8.2). That is, if an adult agent `’s net need is positive (indicating a

shortfall), then their and their dependents’ change in mortality is calculated as if

they were a recipient agent, using the method outlined in Step 8.1. Alternatively, if

an adult agent `’s net need is negative (indicating a surplus), then their and their

dependents’ change in mortality is calculated according to Step 8.2. All interaction

functions I`,j,t and Ij,`,t involving agent ` are assigned a value of 0 (indicating no in-

teraction), and the corresponding history functions are updated accordingly. The

interaction and history functions of all dependents are updated in the same way,

since as dependents they do not directly interact with other agents yet.

Step 10. Advance to Next Day (Iteration). After Steps 1 through 9

above are complete, t is incremented and the ABM starts back at Step 1. For the

coded model, additional optimization tasks such as periodically writing outdated

data to file also occur at this time.
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Model Selection, Parameterization, and Validation

Initial, iterative development of the agent-based model was performed us-

ing a pattern-oriented modeling approach (Grimm et al., 2005). For clarity, I will

briefly describe this modeling strategy. Early forms of the pattern-oriented method-

ology were informally developed within the ecological modeling literature, and it

was later formalized and further developed by Grimm and colleagues in a series

of papers and books (Grimm et al., 2005; Grimm & Railsback, 2006, 2012; Rails-

back & Grimm, 2012; Topping et al., 2012). The method utilizes a “bottom-up”

approach, in which characteristic patterns within multiple levels of a real-life sys-

tem are used to inform development, parameterization, and discrimination between

agent-based models used to model the real-life system (Grimm et al., 2005; Rails-

back & Grimm, 2012).

I initially began model development by hypothesizing which population-level

and individual-level patterns were critical to characterizing the observed systems

within Linao. Identified population-level patterns that informed model design and

development included population size, age structure, interrelatedness, mortality

rates, and overall cooperative patterns. Individual-level patterns used for this pur-

pose included age-timing of critical lifestage events, i.e., length of period of full de-

pendency on parent, length of juvenile period, timing of resource production skill

acquisition, age at maturity, age at first reproduction, and age at death. Addition-

ally, mechanisms that were associated with cooperative transfers during the prior

analysis of Linao dyadic transfer data (Phelps et al., 2022) were used as building-

blocks for constructing cooperative functionality in the ABM. Wherever possible,

calibration of parameter values for the agent-based model was directly informed by

relevant observational measurements made within Linao village. In cases where this
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was not possible, I instead based parameter selection on published estimates from

the human behavioral ecology literature. In a few specific cases, estimates were also

scaled to reflect unit choices made during design of the model. (For example, while

energetic need and resource production are typically defined in the literature with

respect to kCals required/produced, I chose to define these variables in dimension-

less units ranging from 0 to around 40. However, this was just a matter of conve-

nience/interpretability, and the model could just as easily be reformulated to take

kCal estimates instead.)

Discrimination between early versions of the ABM was performed iteratively

by examining the aforementioned patterns in the ABM and discarding or modify-

ing those models that did not replicate observed patterns at least reasonably well.

Verification of the final model (as well as identification of remaining pattern mis-

matches) was performed via direct descriptive and statistical comparisons with the

empirical data from Linao. A brief discussion of early model attempts (which were

falsified via pattern-matching) is provided in the first section of the results (Chap-

ter 3), and exact parameterization of the final ABM is discussed in the second sec-

tion of the results. Verification of the final model against Linao data is described in

the third and fourth sections of the results, Overview of Final Agent-Based Model

and Comparison between final agent-based model and field data from Linao.

Implementation and Statistical Analysis of Agent-Based Model

All agent-based models, statistical analysis, and visualization were performed

in the R statistical software, version 4.2.1. In addition to base R functionality, uti-

lized packages critical to this analysis include data.table [v.1.14.2], dplyr [v.1.0.10],

fda [v.6.0.5], ggplot2 [v.3.3.6], ggpubr [v.0.4.0], and truncreg [v.0.2-5]. (In the

preceding list, package version numbers are indicated in brackets.)
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The ABM itself was coded directly in R, using a functional approach. Nested

functions were written for various agent- and environment-level processes, and the

final model algorithm was constructed inside an overarching function. This function

took user-supplied starting parameters (see Appendix A), and ran autonomously

once initialized. The model wrote out data every 25 iterations to either *.csv or

*.Rds files. I performed checks of the data every 2500 iterations, in which I calcu-

lated various descriptive statistics in order to monitor population structure, related-

ness, and cooperation. The model function returned its current state to the global

environment at the end of a pre-specified number of iterations (T ). Models could

then be resumed from current state data using a secondary process, which contin-

ued the same ABM algorithm. Implementation was structured in this way to fa-

cilitate data generation via batched runs, avoiding the need for time-intensive “all

in one go” runs of the model. Additionally, this strategy enabled continued data

generation from the existing final model at any time, which will allow for further

investigation of the current model’s evolving cooperation dynamics in future.

Importantly, while most probabilistic and statistical calculations were imple-

mented via provided functions within base R or the packages mentioned above, the

raised cosine distribution has not yet been implemented in any R packages that I

could find. To utilize this distribution, I instead constructed functions to calculate

measurements of its cumulative density function and to sample from it. In particu-

lar, to facilitate easier sampling, I created functions which binned probability esti-

mates over very tiny ranges which were characterized by their midpoints, and then

used the base R function sample() to generate random samples of the midpoints.

In the specific case of sampling from daily age distributions (which are discrete by

default, given that they are represented with respect to iterations of the model),

I calculated a binned range of probabilities of form [a − 0.5, a + 0.5) for each age
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a. Samples were then selected from the range of possible ages, using the vector of

probabilities assigned to each age.

Functional data objects were created and managed using the fda package.

Descriptive data aggregations were performed using base R, dplyr, and data.table

functionality, while exploratory and statistical visualizations were created primar-

ily with the ggplot2 and ggpubr packages. Where appropriate, simple statistical

tests were performed to evaluate descriptive statistics. In particular, to avoid as-

suming a distribution, non-parametric Mann-Whitney-Wilcoxon tests (also known

as Wilcoxon rank-sum tests) were used to compare age distributions between the

model and the empirical data collected in Linao. Significance of these tests was as-

sessed at α = 0.05. On the other hand, comparison between the Linao mortality

function and a mortality function estimated from the simulated data was made via

simple visual inspection, since more than one functional estimate per group is re-

quired in order to perform a conventional functional permutation test (Kokoszka &

Reimherr, 2017).

Four different types of regression models were used in this analysis: Sim-

ple linear regression, multiple linear regression, probit generalized multiple linear

regression link, and truncated Normal generalized multiple linear regression. The

probit and truncated Normal models were specifically used as components of Cragg

two-part hurdle models (Cragg, 1971). Ordinary simple and multiple linear regres-

sion models were fit using the base R function lm(), and the probit model was fit

using glm(). Truncated Normal models were fit using the truncreg() function

from the package of the same name (Croissant & Zeileis, 2018; for implementa-

tion of truncated Normal models in R, the help file for the truncreg function and

the Truncated Regression |R Data Analysis Examples (n.d.) reference was also

useful). All explanatory variables were standardized to permit cross-comparison
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of effect sizes, although the outcome variables were left unstandardized. The type

of test used to assess coefficient significance in models varied depending on model

form. For simple and multiple linear regression models (hereafter MLR models),

conventional t-tests were used. In probit GMLR models, a Wald Normal approx-

imation test was used, yielding a z-statistic. Finally, an approximated t-test was

also used to assess significance in the truncated Normal GMLR models. To avoid

issues with multiple testing, the significance of model coefficients was assessed via

p-values controlled by an overall family-wise error rate of α = 0.05 with the Bon-

ferroni correction (Dunn, 1961; VanderWeele & Mathur, 2019). That is, for g re-

gressors, the individual significance level used to evaluate each coefficient would be

αg = α/g = 0.05/g. While the Bonferroni correction is often criticized as overly-

conservative, I believe that the limited number of explanatory variables that I con-

sidered – combined with the larger-than-typical sample size that the ABM yielded

– provides sufficient justification for using the Bonferroni correction here. In par-

ticular, given that each of the models in the main text include between 34153 and

58880 observations, p-values in the neighborhood of α (that is, not significant at

αg) might have been relatively easy to achieve via sheer sample size alone, necessi-

tating a family-wise error correction.

Overall model fits for the MLR models were assessed via standard Wherry/

McNemar adjusted R2 statistics (hereafter, adjusted R2), which are implemented

by default in R for ordinary least squares models. For the probit GMLR models,

a McKelvey & Zavoina pseudo-R2 was calculated to give a measure of model fit

(McKelvey & Zavoina, 1975; Veall & Zimmermann, 1994), although, importantly,

this measurement is only approximately comparable to regular OLS R2 estimates.

It appears that no formalized assessment of model fit has been developed for trun-

cated Normal regression models yet, so an estimate of fit based on correlations be-
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tween outcome and predicted values was developed following the process recom-

mended in Truncated Regression |R Data Analysis Examples (n.d.).

Code files for the agent-based model and all statistical analyses are available

from the author (myself) upon request.

Ethics

Permission to use previously-collected empirical data from Linao in this

study was granted by members of the Linao research team. Research design, inter-

view protocols, and all observational and interview-based data collection methods

used to conduct the Linao study were approved by the Arizona State University In-

stitutional Research Board, IRB# STUDY00001593. Linao community leaders, in

consultation with all village residents, granted the original study’s research team

permission to collect data in Linao. All interview participants provided informed

consent before interviews took place, and interview participants were compensated

with interview fees (varying at a pre-agreed-upon hourly rate) at the conclusion of

each interview. Additionally, the Linao research team provided frequent donations

to the community, e.g., large food donations for annual religious celebrations, mate-

rials for community building projects, payment of most medical expenses during the

study period, and payment of other incidental expenses as needed.
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Chapter 3

RESULTS

Development of Final Agent-Based Model via Iterative
Pattern-Matching

Multiple early versions of the agent-based model were developed with vary-

ing degrees of success. In the earliest attempts, the ABM typically ran well for a

short period of time, but then drifted into regions of the modeling environment

which proved terminal (i.e., the model crashed for one reason or another). Later

attempts were somewhat more successful (they didn’t crash), but didn’t fully repli-

cate important characteristic patterns. I will not describe every modeling attempt

made here, as many of these early versions overlap with respect to the problems

that occurred. Instead, I will classify early attempts into a few sequential stages,

and I will describe the broad strokes of model development and falsification within

each of these stages.

1. Stage 1 was characterized by (supposed) population stability for the first

year or so, followed by a sudden “death spiral” and subsequent crash of the

ABM. In this first stage, the level of daily resource production that could

be achieved by agents was too low, relative to daily need, resulting in daily

shortfalls for much of the population. More importantly, the maximum num-

ber of deaths per iteration was not constrained in any way, and changes in

mortality were linearly related to resource shortfalls. As result, both juve-

nile and adult agents died far too frequently, only to be replaced by fully-

dependent juvenile offspring. Ultimately, the population consisted of only

one pair of reproductive adults with a huge amount of offspring for whom

they could not generate enough resources. As soon as one of the two adults
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died (which occurred within an iteration or two), the model crashed. This

ABM clearly did not replicate observed patterns of human resource produc-

tion, reproduction, and mortality, so it was quickly discarded.

2. In Stage 2 of model development, constraints on mortality were implemented

in the model. Specifically, change in mortality was reformulated as a logit-

change (instead of a linear change), which dampened the daily impact of re-

source shortfalls on mortality. This change also served to limit the impact of

additional resources when baseline mortality was already very low (in which

case agents are already protected from mortality risks) or very high (e.g.,

at end of life, where extra resources should not be able to overcome species-

level senescence patterns, and hence agents should not be overly motivated

to hang onto their surpluses). Instead, extra resources were most beneficial

to agents with moderate levels of mortality risk. As an extra layer of pro-

tection against death spirals, I also constrained the maximum number of

agents who could die per day so that the model could not randomly drift

into terminal spaces. Lastly, a better ratio of resource production to need

was introduced to ensure that a fair number of agents could produce re-

source surpluses each day. Despite these improvements, the model performed

quite well for about 300 years and then also abruptly crashed. Inspection of

the underlying data revealed that, while the population age-structure as a

whole was reasonable, adult agents in the population had become too highly

related to one another over time. Once this occurred, the number of repro-

ductive pairs in the population shrank quickly, since agents were restricted

from selecting spouses who were first cousins or closer (i.e., ri,j ≥ 0.125). Re-

maining reproductive pairs had increasingly high juvenile dependency rates,
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resulting in larger resource shortfalls and subsequent deaths. Shortly be-

fore crashing, the model only included one remaining reproductive pair with

over 35 juvenile offspring; it crashed as soon as one of the two parents died,

since newborn agents could no longer be assigned to a reproductive pair.

Given that the relatedness pattern observed in the last years of this stage of

the model was not at all representative of relatedness within Linao or other

small-scale societies, it was also quickly falsified.

3. To combat issues with over-relatedness in the agent population, I introduced

a mechanism in Stage 3 that occasionally replaced deceased agents with “re-

cruited” adult agents who were totally unrelated to all members of the cur-

rent population, rather than with additional newborn agents. This did an

excellent job of controlling adult relatedness within the population, resulting

in adult agents marrying at normal rates again. Initially, however, the coop-

erative traits of recruited agents were randomly-generated using the mean

and spread observed in the current agent population. This caused rapid ar-

tificial decreases in the variance within cooperative traits, which inhibited

evolutionary processes and resulted in premature stabilization of traits at

various levels. I also noticed that mortality rates were still a bit too high

(due to misspecification of parameters), which had the effect of amplifying

the speed with which trait distributions shrank toward their means. Hence,

while this model was a vast improvement over previous versions, it was also

falsified for failing to capture the expected level of variance within coopera-

tive traits.

In the final model (Stage 4), I improved the specification of mortality pa-

rameters and generated cooperative traits for recruited agents using the fixed spread
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of cooperative traits (~sω) that was initially provided to the model. These two changes

stabilized mortality to within reasonable levels (improving the overall age distribu-

tion of the population in the process) and allowed cooperative traits to evolve more

realistically. Hence, this ABM was provisionally accepted. However, as I will de-

scribe below, this final ABM did not entirely meet the standards imposed by my

choice of characteristic patterns.

Parameter Specification of Final Agent-Based Model

Table 1 lists all scalar and vector parameter values selected for the final

agent-based model. A total of ty = 25 iterations per year were simulated. The

model was run for T = 37,500 iterations (1,500 years, in model time), split into five

consecutive batches of between 2,500 and 10,000 iterations each (100-400 years).

Six separate lineages (K) were initialized, each of which contained Nk = 25 inter-

related agents, for a total of 150 live agents per time step.

Ages at first possible reproduction were randomly-sampled from a raised co-

sine distribution with mean ᾱy = 18 years of age and spread sα,y = 3 years of age

(Table 1), meaning that individual agents could begin to marry and reproduce as

early as 15 years of age and as late as 21 years of age, depending on their assign-

ment of αi. This is broadly consistent with female age at first reproduction in many

forager and subsistence populations (Walker et al., 2006), including Linao village

(Phelps et al., 2022), though males in these populations typically had their first

child in their early 20s. Agents in the starting population were initialized at their

age of first possible reproduction (αi). I also assumed a lack of sex bias in the pop-

ulation, i.e., that any agent in the population (born or recruited) had a pγ,M = 0.5

of being male. This assumption is not totally consistent with data from Linao, as

a male-favored sex bias within the population as a whole has been observed in re-
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cent years (Phelps & Hill, 2021). However, this bias may be due, at least in part, to

in-migration of adult males and out-migration of adult females as a result of mar-

riages. In any case, since the observed sex bias in Linao remains an open question

and migration out of the agent-based population was not modeled, I chose to as-

sume a sex-balanced population in the final agent-based model.

Table 1

Parameter Specification of the Final ABM

Parameter Specified Value Description

T 37,500 Total number of iterations in the model

ty 25 Number of days (iterations) per year

K 6 Number of distinct lineages initialized

Nk 25 Number of agents per initialized lineage

r̄ (1/2)3 Mean ri,j between lineage members at initialization

Ay 90 Age at which baseline mortality rate equals 1

δ̄m,y 18 Age at maturity, i.e. when agent is an adult

δ̄d,y 4 Age up to which agent is fully-dependent on parents

ᾱy 18 Mean age at first possible reproduction

sα,y 3 Spread of age at first possible reproduction

pbirth 0.95 Probability of birth (vs. recruited adult)

pγ,M 0.5 Probability that a new agent is male

µ̄max 1 Maximum number of agents that can die per iteration

η̄m 10 Mean daily gross need of adults

η̄∅ 2 Mean daily gross need of agents at birth

αρ 2.5 First shape parameter of resource production Beta distr.

βρ 3.5 Second shape parameter of resource production Beta distr.
∼
ρm 15 Mode of adult-aged resource production

~ω {−2.2, 2, 2} Vector of mean cooperative traits ({ω̄B, ω̄R, ω̄K})
~sω {0.4, 1, 1} Vector of cooperative trait spreads ({sω,B, sω,R, sω,K})
kµ 0.7 Weight of resources on mortality rate

kH 0.8 Decay of influence of past cooperative interactions

Note. All time-based parameters (e.g., age) are given in years to facilitate
interpretation of the values.
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The mean relatedness parameter at model initialization was r̄ = 0.125, cor-

responding to relatedness at the level of first cousins. In the initialized population

of the final agent-based model, however, the mean relatedness of agent-pairs within

lineages ranged between approximately 0.135 and 0.196. This is due to both ran-

dom sampling of ri,j values and to the constraints imposed as result of building a

consistent relatedness matrix in which full siblings were all equally-related to other

relatives, and was expected. (See Quantitative description of agent-based model al-

gorithm for an explanation of the relatedness assignment algorithm.) Once agents

started pairing off and reproducing, the probability that a replacement agent was

born (versus recruited as an adult) was pbirth = 0.95, implying that unrelated adult

agents were recruited into the population to replace deceased agents approximately

5% of the time. Agents who were born into the population stopped being fully-

dependent on their parents at age δ̄d,y = 4, at which point they started produc-

ing an age-scaled amount of resources on a daily basis. This is relatively consistent

with Linao data, in which children as young as five years old were observed collect-

ing intertidal foods (Phelps et al., 2022); assuming that this resource production

started at age four in the model accounted for the “ramp-up” period in which ju-

venile agents produced very little. The age at which agents were considered to be

adults was δ̄m,y = 18, following convention in most recent anthropological literature.

The functional data object of baseline mortality (Mortfd) was generated us-

ing mortality estimates from an ongoing demography project in Linao (Phelps &

Hill, 2021). Only mortality estimates within the range of ages between 0 and 80

years old were used to build the function, since mortality estimates in higher age

ranges were calculated with very small samples. (Few Linao residents in recent his-

tory have survived past 80.) However, because a few people in Linao did live into

their late 80s and the oldest recorded age was 92, I set the age at which baseline
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mortality equals 1 to Ay = 90 years old. Mortality rate estimates between 80

and 90 were interpolated. To smooth the final mortality curve, B-spline bases of

order 4 were fit to the raw mortality data, using a penalized smoothing approach

(Kokoszka & Reimherr, 2017) with smoothing parameter λ = 105.7. Figure 2 shows

the final result of this functional data process. The final mortality function fits the

raw data fairly well, only deviating substantially in regions where raw mortality

rate estimates were based on smaller sample sizes or shifted quickly (indicating

possible inaccuracies in the raw data). Notable is the low rate of mortality during

childhood and most adult ages – this appears to be true in Linao, but is unusual

among other studied subsistence populations (e.g., Gurven & Kaplan, 2007). In

fact, only 0 to 4.17 deaths per 150 people per year were recorded in Linao over all

years in which accurate historical population data exists. It is unknown why this is

the case, since Linao residents have only had access to modern medical care in re-

cent decades (Phelps et al., 2022). It could be that some quality of the lifeway in

Linao is protective against pathogens, or that cooperation between Linao individ-

uals reduces overall mortality rates to levels much lower than what is observed in

other small-scale societies. Given this uncertainty, I decided to set the maximum

number of agents allowed to die per day at µ̄max = 1, meaning that up to 25 agents

can die per year in the model. While this might result in higher agent mortality

than what is observed in Linao, I felt that relaxing the constraints on mortality

rates was appropriate in the context of such uncertainty.

No measure of age-specific caloric intake has yet been developed within Linao,

so I estimated daily need parameters based on data from other forager societies.

Gross resource need per day of adult agents was set at η̄m = 10, while the minimum

gross resource need per day for agents at birth (that is, ai,t = 0 for a newborn agent

i) was set to η̄∅ = 2. Although scaled to unit measurements, the difference between
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Figure 2

Fitted Versus Raw Mortality Curves From Linao

Note. Black dotted line is the raw mortality rate data from Linao. Red line is the
fitted mortality function provided to the agent-based model (Mortfd).

η̄m = 10 and η̄∅ = 2 loosely reflects differences in caloric intake between new-

borns and adults in Ache and Ju/’hoansi populations (Gurven & Walker, 2006).

Given that adults in human populations frequently produce substantial daily re-

source surpluses beyond what is required for individual energy intake requirements

– but the magnitude of these surpluses across populations vary based on economic

mode, local ecology and other factors (e.g., Kraft et al., 2021) – I set the mode of

adult daily resource production at 1.5 times daily adult need, i.e.,
∼
ρm = 15. The

shape parameters of the Beta distribution underlying random sampling of daily re-

source production quantities were set at αρ = 2.5 and βρ = 3.5. The density of this

distribution, scaled up to adult resource production values, is shown in Figure 3.
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Figure 3

Density of Beta Distribution Controlling Daily Adult Resource Production

Note. Density (y-axis) is generated via a Beta(αρ, βρ) distribution with αρ = 2.5
and βρ = 3.5. Daily production quantities (x-axis) are scaled up to the ranges
observed in the model. Blue dashed line indicates daily adult gross need (η̄m = 10),
red dashed line indicates daily adult mode of resource production (

∼
ρm = 15), and

gray dashed line indicates the mean daily adult resource production (ρ̄m ≈ 16.67).

In particular, the selected parameters produce a positively-skewed, left-

leaning resource production distribution in which a substantial proportion of the

overall probability is centered at or below daily adult gross need (Figure 3, blue

dashed line). Adult agents can produce sizable resource surpluses at times, although

surpluses in excess of 30 are rare. However, since most adults in the population

have multiple dependent offspring whose needs they are (at least partially) respon-

sible for, even daily production values well in excess of 15 (the mode) may not cover

the summed net daily needs of an adult and their children. Hence, a production

distribution of this shape still necessitates frequent cooperation between adult agents

in the population in order to meet daily resource demands. That being said, the

relative impact of resource deficits/surpluses on the logit-scaled change to an agent’s
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mortality rate was set at kµ = 0.7. This parameter was chosen arbitrarily to reflect

the fact that the impact of resource deficits on immediate daily mortality rates is

not particularly strong – although physiologically harmful, humans can survive for

a number of days without food.

Figure 4 illustrates the densities of the initial raised cosine distributions for

each of the three “willingness to cooperate” traits. I assumed that baseline cooper-

ation in the agent population was initially quite low and less variable, with a distri-

butional mean of ω̄B = −2.2 and and a distributional spread of sω,B = 0.4. When

holding the other two traits fixed at 0, the mean of the baseline cooperation dis-

tribution (at initialization) is equivalent to an approximate 10% chance of sharing

resources with anyone. The distribution of baseline cooperative traits was initial-

ized in this way to reflect the fact that there is no evidence to suggest that Linao

residents share resources intensively with strangers: Most cooperation appears to

be motivated primarily by reciprocity and kinship (Phelps et al., 2022). Since both

reciprocity and kinship are important motivators of transfers in Linao, I initialized

both trait’s distributions with a mean of ω̄R = ω̄K = 2, reflecting a tendency to co-

operate with other agents who are reciprocity partners or kin. However, in an effort

to not initially bias the model too much in favor of these types of cooperation, I se-

lected larger spreads (sω,R = sω,K = 1) for both traits. When newborn agents inher-

ited traits directly from one of their parents, a small amount of raised-cosine noise

not exceeding ±0.005 was added to the inherited value of the trait. The tight con-

straints on the amount of introduced noise prevented too much shift in traits from

parents to their offspring, preserving meaningful heritability (and hence, evolution)

of traits over time in the population. Lastly, I selected a history decay parameter of

kH = 0.8 for the model, which suggests that while reciprocity history is important

to agents, it is not always remembered or perfectly accounted for.
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Figure 4

Initialized Densities of Each of the Three Cooperative Traits, ωB, ωR, and ωK

Note. Baseline willingness to cooperate with anyone (ωB) has a raised cosine
distribution with mean ω̄B = −2.2 and spread sω,B = 0.4 (support in range
[−2.6, −1.8]). Willingness to cooperate with reciprocal partners (ωR) and kin (ωK)
are identically-distributed according to raised cosine distributions with mean
ω̄R = ω̄K = 2 and spread sω,R = sω,K = 1 (support in range [1,3]). Reciprocity and
kinship are plotted together, since they have identical distributions.

Overview of Final Agent-Based Model

To introduce the results of the final agent-based model, I will begin by dis-

cussing population-level temporal trends in the simulated data. As mentioned in

the previous section, the model was run for 1,500 years (37,500 time steps), corre-

sponding to 42 overlapping generations of individual agents. As such, inspection of

the data at a daily level – or even at a yearly level – is difficult, due to the time-

density of the sample. To make sense of the trends occurring over time in the sim-

ulated data, I will instead report overall population statistics aggregated by decade

(10 model years) in this section. Additionally, I will report age-related trends in

years of age, rather than days of age, since the former is more interpretable.
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Figure 5 shows population structure measurements of the model at each

decade. In this figure, a brief period of population instability was detected for some

measures within the first 5-10 decades of the model run (Figure 5a-c). This insta-

bility is particularly apparent in the higher variation of adult mean and maximum

age in the first few decades of the model (Figure 5a, blue line; Figure 5b), as well

as in the lower mean and maximum number of dependents per adult in the first 10

decades (Figure 5c). This was likely a result of the agent population being entirely

adults at initialization, since the model needed a “burn-in” period to settle into a

population structure/dynamic more typical of small-scale societies. Investigation of

yearly-level aggregations of the same metrics (not shown) corroborate this obser-

vation: The model took around 100 years in order for overall population structure

to stabilize into the patterns of variation seen in later decades. With this in mind,

data from the first 10 decades (100 years) will not be reported in further investiga-

tions of the model.

Mean age of adult agents (age ai,t ≥ 18 years old) within a decade typi-

cally hovered around 28 to 33 years of age (Figure 5a), and this trend was stable

across most decades. Similarly, mean age of juvenile agents (age ai,t < 18 years old)

ranged between approximate 7 and 8.5 years old. Mean age of all agents observed

in the population during a decade was generally between 18 and 20 years of age

(Figure 5a), although observations as low as 16.3 and as high as 20.8 mean years

of age were observed and reflect periods in which the age-structure of the popula-

tion was more variable via purely random processes. The maximum age observed

within each decade ranged between 53 and 73 years of age (Figure 5b; mean across

decades ≈ 61 years old), suggesting that the high mortality risks imposed by the

model at advanced ages made survival of old agents (≥ 55-60 years old) rare.
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Figure 5

Trends in Age, Dependency Load, and Mortality by Decade

Note. In all plots, red lines include entire population, blue lines include only adult
agents (≥ 18 years of age), and orange lines include only juvenile agents (< 18
years of age). (a) Mean age of group per decade; (b) Maximum age observed in
population per decade; (c) Mean dependents (solid line) and maximum dependents
(dashed line) of adults per decade; (d) Number of deaths observed per decade.
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At any one time within a decade, the average number of juvenile dependents

assigned to an adult agent (the parent) hovered between 1 and 1.5 individuals (Fig-

ure 5c). Within each decade, juvenile dependency load ranged from 0 offspring to

between 5 and 11 offspring. The mean of the maximum across decades was ≈ 6.8

juvenile offspring, which is relatively consistent with completed female interbirth

interval estimates of about 3 years in many foraging populations (e.g., Hill & Hur-

tado, 1996). That is, three years between births in which offspring survive implies

that a human female can have around 6 juvenile offspring at any time (not counting

additional offspring resulting from twin births, etc.). Additionally, males can have

higher dependency loads resulting from multiple consecutive or concurrent female

partners, which may help to justify higher juvenile dependency observations within

the model. (Importantly, however, constraints on female reproduction were not

included in this model, so high dependency load estimates are observed for both

males and females in the agent population.)

Mortality rates remained fairly stable for both adults and juveniles over the

course of the model, with deaths averaging around 124 individuals per decade (Fig-

ure 5d). Notably, however, this estimate is higher than would be expected in a sta-

ble population of this size. Higher-than-expected mortality rates were primarily

driven by juvenile mortality, and inspection of the raw data suggests that deaths

in this age category were frequently young offspring of adult agents who were “re-

cruited” into the population. Since the parent (the adult recruit) was unrelated to

anyone in the population by design, negative kin selection effects typically inhib-

ited cooperative transfers from other agents in the population, and the resulting

mortality increases from this lack of cooperation most strongly affected juvenile off-

spring of the unrelated adult. Some of the increased mortality was also due to ag-

ing adults in the population, which can be explained by the sharp increase in base-
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line mortality at advancing ages (Figure 2). The overall mortality pattern observed

here may also be driven to an extent by the manner in which mortality was calcu-

lated. Specifically, using a logit function to derive changes to mortality means that

additional resources had a diminishing effect on very high or very low baseline mor-

tality rates, which could bias the model in favor of ages at which baseline mortality

rates were very low (Figure 2: age-specific mortality rates between 5 and 45 years

of age vs. other ages).

Additional metrics related to population structure and cooperation are given

in Figure 6. Note that an unstable burn-in period of approximately 100 years was

again detected, particularly within average relatedness and cooperation history

(Figures 6a and 6b), so I will again restrict my discussion to decade 11 and higher.

Mean relatedness between live agent pairs within a decade ranged between

approximately r̄ = 0.03 and r̄ = 0.05 (Figure 6a), which is relatively consistent

with an observed mean pairwise relatedness of approximately r = 0.035 in Linao

during the study period. This is somewhat lower than what would be expected in

a closed population and reflects the periodic recruitment of unrelated adult agents

into the ABM population. (The offspring of these adult recruits would have lower-

than-average relatedness to the rest of the agent population as well.) Moderate

variation in this trend with respect to time is evident (e.g., mean relatedness in

decades 50 to 70 vs. decades 75 to 100), suggesting that random shifts in popula-

tion structure occurred at various points throughout the model run. However, when

running a standardized simple linear regression model of mean pairwise relatedness

by decade, the correlation between decade number and mean pairwise relatedness

was quite low (Appendix C, Table C1: βdecade ≈ 0.01650). Importantly, note that

while this coefficient estimate was not significant, I do not report p-values here be-

cause they may be meaningless in the context of simulated data.
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Figure 6

Trends in Relatedness, Cooperation History, and Proportion of Successful
Cooperative Events by Decade

Note. All subplots include entire population recorded within decade. (a) Mean
pairwise relatedness of all agents alive during decade; (b) Mean pairwise history of
all live agent pairs during decade; (c) Minimum and maximum pairwise history of
all live agent pairs during decade (band), with mean denoted as red line for
reference; (d) Proportion of all cooperative events in which a transfer of resources
successfully occurred.
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Cooperative history between agents was similarly stable (Figures 6b and

6c), with a pairwise mean ranging between −0.0050 and −0.0034. As reflected in

Figure 6c, these shifts were minimal within the overall range of pairwise coopera-

tive history values observed (range of minimum by decade: [−2.5259, −1.8000]; range

of maximum by decade: [1.0038, 1.8000]), and mean pairwise cooperative history

and decade were only very weakly correlated (Appendix C, Table C2: βdecade ≈

0.11512).

On the other hand, the proportion of cooperative events that resulted in a

successful transfer of resources trended slightly negatively over time (Figure 6d)

and was weakly to moderately correlated with decade (Appendix C, Table C3:

βdecade ≈ −0.32822). To investigate this further, I also examined changes in the

distributions of the three cooperative traits (Figure 7). Due to the complexity of

separating overlapping generations by decade, I chose instead to calculated the

mean of each of the three cooperation traits within each generation of agents ob-

served. Interestingly, both the average of the baseline willingness to cooperate trait

(ωB) and the average of the willingness to cooperate with reciprocity partners trait

(ωR) trended downward over successive generations. The correlation between gen-

eration and baseline cooperation was moderately negative (Appendix D, Table D1:

βgen ≈ −0.66889), but only represented an approximate decrease of a little less than

0.01 in the overall baseline probability of cooperation from generation 1 to gener-

ation 42 (Figure 7). The correlation between mean willingness to cooperate with

reciprocity partners and generation number was quite a bit stronger (Appendix D,

Table D2: βgen ≈ −0.91615), and more importantly, it represented a much larger

shift in overall population behavior. According to the average behavior of agents’

reciprocity trait, selection did not strongly favor cooperation with past reciprocity

partners in this model.
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Figure 7

Evolution of “Willingness to Cooperate” Traits Over Agent Generations

Note. Dots indicate mean values within each generation. Black lines are simple
linear regressions of mean trait value per generation (outcome) by generation
number. Gray bands around regression lines are 95% confidence intervals.

In contrast, the mean of the willingness to cooperate with kin trait (ωK)

broadly increased with respect to agent generation, though it was only weakly to

moderately correlated with generation number (Appendix D, Table D3: βgen ≈

0.41315). It is worth noting that there is a lot of noise in this trait’s progression,

so estimates should not be interpretted too closely. Overall, however, it appears

that the model’s selection mechanism favored cooperation between kin, resulting

in increases in the magnitude of this trait over time. Of particular interest is the

higher variability among mean estimates of the kin cooperation trait, relative to the

other two traits. In fact, the valley in mean ωK at generation 20 and the peak at

generation 26 correspond with the dip in mean relatedness at around decade 65 and

the peak and subsequent stabilization in mean relatedness from decades 80 to 100,
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respectively (Figure 6a). This suggests that changes in overall population compo-

sition due to random processes, as evinced by the noted decreases and increases in

mean population relatedness, may have had a strong influence on the direction of

selection for kin cooperation.

Finally, it is worth mentioning that trends in the final agent-based model’s

cooperation traits were notably different than corresponding trends found in an

early version of the model in which unrelated agents were not recruited. (See Stage

2 of model development in Development of final agent-based model via iterative

pattern-matching.) The early version of the model had much higher population re-

latedness (mean pairwise relatedness in excess of r̄ = 0.2), and interestingly, this

resulted in a somewhat different cooperation dynamic. Specifically, baseline and

reciprocal cooperation appeared to be favored in the early model, while kin coop-

eration was disfavored (Appendix E). While these results are only suggestive, as

the model was not run for very long before it crashed, the underlying implication

may be that high levels of interrelatedness create a situation in which it is often

less beneficial for a donor to cooperate with kin than non-kin. Unfortunately, the

high relatedness of agents within this model was also its downfall, as is described in

Stage 2 of model development (Development of final agent-based model via iterative

pattern-matching section).

Comparison Between Final Agent-Based Model and Linao Field Data

I now turn to a comparison between characteristic patterns observed in the

empirical data from Linao village and corresponding patterns in the agent-based

model data. To simplify comparison, remaining analyses will be constructed from a

100-year subset of the full 1,500 year dataset – specifically, years 901 to 1,000. This

subset was selected because it was a particularly stable period in the final ABM
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with respect to mean pairwise agent relatedness (Figure 6a) and average number of

dependents per adult agent (Figure 5c).

I will begin with a comparison between the age-structured population dis-

tributions of the 100-year subset and the residents in Linao village. Note that I am

omitting historical Linao data from this comparison, due to the fact that the his-

torical data predominantly only includes information about ancestors of current

Linao residents and may not be representative of the population as a whole at each

time period. Since the complete data on current/recent Linao residents covers only

about 3.5 years, I split the 100-year agent subset into consecutive 4-year subsam-

ples and estimated an overall population age structure by first tabulating the count

of observations at each age within each 4-year subsample, then averaging these age-

specific counts across the 4-year subsamples. This method was adopted (instead

of simply summing across the entire 100-year sample) to avoid multiplicative over-

inflation of estimates at lower ages as result of the larger number of observations

within these age ranges. Importantly, the mean age of agents in the 4-year estima-

tion sample coincided closely with the overall mean age of the agent population in

the full 100-year subset (mean age ≈ 18.50 in the 4-year mean sample vs. mean

age ≈ 18.46 in the 100-year subset). The result of this estimation process is shown

in Figure 8a, and Figure 8b shows the corresponding observed age structure of the

Linao sample. Ages are binned into 5-year categories to facilitate observation of

the underlying trends. The age-patterns of the two distributions are broadly con-

sistent across most age categories, although the mean age in observed in Linao dur-

ing the sample period was approximately 21.50, and a Mann-Whitney-Wilcoxon

test comparing the age structures of the two distributions approached significance

at α = 0.05 (estimated location shift: θ̂ ≈ 2; MWW test statistic: W = 23438;

p ≈ 0.05272 > α = 0.05).
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Figure 8

Comparison Between Mean Population Age Structure in Agent-Based Model and
Population Age Structure in Linao

Note. (a) Average age structure of the ABM population over consecutive 4-year
subsets of data between year 901 and year 1000. (b) Age structure of Linao village
over 3.5 years of observation. In both plots, age is binned into 5-year categories to
facilitate observation of underlying trend.

Notably, the major difference between the two age distributions (Figure 8)

comes from the fact that the estimated distribution of agent ages in Figure 8a has

an excess of young juveniles (mean age less than 5 years old). Specifically, there are

almost double the amount of young juveniles in the estimated agent sample as com-

pared to the Linao sample. This is evident in the difference between the sample size

of the estimated agent age structure (221 agents) and the sample size of the empir-

ical Linao sample (191 residents). Inspection of the underlying data suggests that

the estimated count of young juvenile agents was inflated by increased mortality

rates of juvenile agents between 0 and 2 years of age, relative to those observed in

the current Linao population. That is, while the Linao mortality curve included a

large number of infant deaths, many of these were historical records predating the

current sample period. In contrast, recent years in Linao have seen far fewer in-
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fant deaths, likely due in part to increased access to modern medical care. However,

since the agent-based model was informed by the long-term mortality curve from

Linao, juvenile mortality rates were likewise higher. Thus, since most deaths in the

model were immediately compensated by a birth (with probability pbirth = 0.95),

counts of young juvenile agents in the simulated population became inflated beyond

what is observed in the current Linao population. These juvenile agents were, in

turn, at an increased risk of mortality due to resource shortfalls, compounding the

problem and resulting in rates of juvenile mortality even higher than those observed

in the historical Linao record.

With this hypothesis in mind, I ran a second version of the Mann-Whitney-

Wilcoxon test in which infant deaths at ages below 1 year were excluded (Appendix

F). A threshold at age 1 – rather than age 2 – was chosen out of an abundance of

caution, and only 17 juvenile agents were excluded from the estimated age sample.

Even so, this version of the test was unambiguously non-significant (estimated lo-

cation shift: θ̂ ≈ 1; MWW test statistic: W = 20302; p ≈ 0.46985 > α = 0.05),

suggesting that it was, in fact, the increased infant mortality rate in the model that

drove observed differences in age structure between the agent sample and the Linao

sample. Indeed, a comparison between the estimated agent mortality function and

the Linao mortality function suggests that infant mortality was almost three times

higher in the agent population (Figure 9). Also notable is the increased mortal-

ity in the agent population after around age 40: While this explains the slightly

steeper fall-off in ages in the agent population (Figure 8a), the similarity of over-

all population age structure between the agent population and the current Linao

population (Figure 8) may also indicate that recent Linao mortality estimates in

advanced ages are closer to the estimated agent mortality curve than they are to

the historical mortality function (Figure 8b vs. Figure 2).
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Figure 9

Comparison of Estimated Agent Mortality Function and Linao Mortality Function

Note. Solid red line is an estimated mortality function for the agent population
observed between years 901 and 1000. Blue dotted line is the fitted mortality
function from Linao, which was provided to the agent-based model (i.e., Mortfd).

The last characteristic pattern that I investigated was a comparison between

the mechanisms driving cooperation in the agent-based model and the mechanisms

driving cooperation in Linao. To make this comparison, I used the 100-year subset

of agent data (years 901 to 1,000) to build daily and long-term mean dyadic models

of cooperative resource inflows that were similar to those examined by Phelps et al.

(2022) in the earlier Linao study.

In the model used by Phelps et al. (2022) to characterize daily inflows of re-

sources from one household in a dyad to another, cooperation within unique house-

hold “dyads” was modeled with a multiple linear regression (MLR) model. In par-

ticular, the MLR model sought to explain daily cooperative resource transfers re-
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ceived by a specific focal “Household X” from another specific “Household Y.”

Dyads including 32 of the 36 total households in the study population were ex-

amined, although not all household-dyads were considered on each interview day

due to the challenges with data collection described in Chapter 1 (Statistical Chal-

lenges in Motivating Study). The independent variables considered to explain daily

dyadic inflows of resources included: 1) The household-level coefficient of related-

ness; 2) the difference in ages of the two households; 3) the difference in per capita

resource production income between the two households (a proxy for relative need);

4) spatial proximity of the two households’ physical houses; 5) outflow of resources

from Household X to Household Y on the same day (a measure consistent with

daily reciprocity); 6) mean outflow of resources from Household X to Household

Y over the sample period (a measure of long-term reciprocity); and 7) the inter-

action between household-level relatedness and difference in incomes, which was a

proxy for need-based kin selection effects. The model also included a control for the

mean daily inflow of resources received by Household X over the study period to

eliminate the effect of households who simply received more in general from others.

[Complete descriptions of the original variable calculations for the Linao dataset

can be found in Phelps et al. (2022).]

In order to implement a similar model for daily dyadic resource inflows be-

tween agent dyads, I had to make a few minor modifications to the model struc-

ture. First of all, agents are not combined into full “households” in the agent-based

model, since each member of a reproductive pair independently sought resources

from or provided resources to other agents. (Moreover, it was possible in the ABM

for an agent with a net deficit resource value to be randomly paired to cooperate

with their spouse if that spouse had a net surplus in resources – although the prob-

ability of this occurrence was quite low.) However, adult agents with offspring may
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be considered “pseudo-households,” since the adult agents were responsible for at

least half of the net needs of their offspring and engaged in cooperative interactions

on their offsprings’ behalf. Under this definition, independent agents with no cur-

rent offspring would be considered singleton “pseudo-households.”

Another important modification was motivated by differences in the way

that reciprocity was calculated in the Linao dataset versus how it was modeled in

the agent-based model. Households dyads observed in the empirical study could –

and frequently did – transfer resources in both directions on a given day (Phelps

et al., 2022). Typically, these parallel transfers were made across different curren-

cies (e.g., one household giving fish and the other giving rice), satisfying different

forms of need for each of the two households in a dyad on a particular day. How-

ever, only one type of currency (unspecified “resources”) was included in the agent-

based model, and agents always had either a deficit or a surplus in this currency.

The result was that two-way cooperative transfers between agent dyads could never

be observed on the same day. To get around this, I utilized the cooperation history

variable (i.e., Hj,i,t) between a donor j and a recipient i on a given day t as a mea-

sure of reciprocity. Recall that Hj,i,t is a measure of past cooperation interactions

in which i was the donor and j was the recipient. Hence, when modeling resource

inflows where j is the donor and i is the recipient, Hj,i,t corresponds to the recip-

rocal effect of past outflows from i to j. Additionally, while Hj,i,t captures past in-

teractions between cooperative pairs, it varies on a daily scale as new cooperative

interactions (or absence of cooperative interactions) between an (j, i) dyad are in-

corporated. This implies that Hj,i,t captures a measure of both daily and long-term

reciprocity between an agent pair. With this in mind, I was able to replace both

the daily and long-term mean reciprocity effects in the Linao model with the daily

measure of Hj,i,t from the agent-based model.
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Since the difference in resource production income in the Linao model was

intended as a proxy for relative need between households in a dyad, I chose to cal-

culate it explicitly as the difference in net need between recipient agent i and donor

agent j for this model (a direct measure of relative need). I also included a mea-

sure of the difference in dependency loads between agent j (the focal recipient)

and agent j (the donor) to account for the per capita scaling of relative need in the

original Linao model (Phelps et al., 2022). Equivalent versions of all other variables

from the Linao model were included in the model of daily inflows between agent

dyads, apart from the distance between households’ physical houses. Since spatial

distance between agents was not incorporated into the agent-based model and did

not influence cooperative interactions between agents in any way, I was not able

to measure this effect and excluded it entirely from the dyadic agent inflow model.

(However, in the Linao model, spatial proximity was never an important predictor

with respect to its relative effect size anyway. Thus, I believe that its exclusion here

is reasonable.) Finally, only independent agents were included in the model, since

dependent juvenile agents were not permitted to seek resources from another agent

on their own in the model. Similarly, daily observations of independent agents who

were not paired with another agent for a cooperative transfer on that day were also

omitted, since the agent in question was not part of a dyad on that day. Both of

these omissions are consistent with the daily dyadic inflow model in the previous

study (Phelps et al., 2022).

In keeping with the methods used in the Phelps et al. (2022) study, I con-

structed the final model of daily dyadic inflows of resources between agents as a

MLR model. A total of 58,880 observations of cooperative inflow transfers between

agents over the period from year 901 to year 1,000 were included in the model, and

all explanatory variables were standardized to permit cross-comparison of effect
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sizes. Significance of regressor coefficients was assessed using conventional t-tests,

and a Bonferroni-corrected significance level of αg=8 = 0.05/8 = 0.00625 was

used as the threshold for significance. Importantly, p-values may not be meaning-

ful in the context of statistical models of simulated data, since the dataset is com-

plete and significance of weak effects can easily be achieved simply by increasing

the sample size. Hence, while I will use p-values to guide identification of significant

parameters with relatively larger effect sizes, care must be taken to not interpret

p-values too closely. Additionally, since the mean daily inflow received by a focal

agent was used as a control variable, I will not directly interpret its results. (It is

not wholly clear what this control variable represents in either this model or the

previous Linao model. It may be measuring “generosity,” overall willingness to co-

operate with anyone, or something else.)

Table 2 presents the results of this first model. The effect size control vari-

able (Mean Daily Inflow to i) was the largest out of all significant explanatory vari-

ables (estimate ≈ 0.101, t ≈ 22.262, p < 0.000005 < 0.00625 = αg=8), suggest-

ing that some unknown agent-level process may be occurring. After discounting

the control effect, only the effects of reciprocity (Hj,i,t) and mean differential need

(Mean Diff Need, i − j) remained as significant predictors of increased daily inflow

(Hj,i,t: estimate ≈ 0.022, t ≈ 4.745, p < 0.000005 < 0.00625 = αg=8; Mean Diff

Need, i − j: estimate ≈ 0.042, t ≈ 8.970, p < 0.000005 < 0.00625 = αg=8). That is,

increases in the value of the reciprocity history Hj,i,t, which indicate increased suc-

cess of past outflows from the focal agent i to the other agent j, had a positive im-

pact on the amount of resources that j transferred to i during a given event. This

is the relationship between resource inflows and past cooperative history that is ex-

pected by reciprocity theory (Trivers, 1971). Similarly, positive long-term mean dif-

ferences between the recipient i’s need and the donor j’s need (indicating that i is
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“needier”) were associated with increases in the amount of resources given to i from

j each day. This accords with the expectations of need-based altruism theories (D.

Smith et al., 2019). Importantly, however, no kin-related effects were detected in ei-

ther the direct measurement of relatedness between agents (ri,j: estimate ≈ −0.001,

t ≈ −0.283, p ≈ 0.77708 > 0.00625 = αg=8) or in the need-based kin selection term

(i.e., the interaction term ri,j× Mean Diff Need, i−j: estimate ≈ −0.002, t ≈ −0.518,

p ≈ 0.60415 > 0.00625 = αg=8. Although one should refrain from interpreting a lack

of evidence as support for a null hypothesis, it is still worth noting that if this de-

tected pattern is true (and not a Type-II error), then it suggests that more highly

inter-related agent dyads did not transfer more resources to each other. This is in

direct contrast with kin selection theory (Hamilton, 1964). Additionally, if true,

Table 2

MLR Model of Daily Dyadic Resource Inflows From Agent j to Agent i

Response Variable: Daily Dyadic Inflow, j to i (ρC,i,j,t)

Effect (Standardized) Estimate Est. SE t-Stat Pr(> |t|)
(Intercept) 0.26803 0.0045 59.203 < 0.00001

Mean Daily Inflow to i 0.10139 0.0046 22.262 < 0.00001

ri,j −0.00128 0.0045 −0.283 0.77708

Hj,i,t 0.02157 0.0045 4.745 < 0.00001

Mean Diff Need, i− j 0.04161 0.0046 8.970 < 0.00001

Diff Dependency Load, i− j 0.01127 0.0060 1.880 0.06007

Diff Age, j − i −0.01087 0.0061 −1.786 0.07408

ri,j× Mean Diff Need, i− j −0.00242 0.0047 −0.518 0.60415

Observations = 58880; DF = 58872

Residual SE ≈ 1.098

Multiple R2 ≈ 0.011; Adjusted R2 ≈ 0.011

Note. Diff = Differential; SE = Standard Error; DF = Degrees of Freedom. All
independent effects are standardized, and response variable is unstandardized.
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it is not clear why kin cooperation traits still evolved positively over time in the

agent-based model (Figure 7).

Overall, the results of this first statistical model (Table 2) are somewhat dif-

ferent than what was detected in the Linao study. In particular, reciprocity on both

the daily and long-term scale was the largest significant predictor of daily dyadic

resource inflows in Linao village, while kinship, relative need, and the interaction

between the two effects (kin selection) played smaller secondary – but nonetheless

important – roles in driving cooperation (Phelps et al., 2022). Notably, however,

the model of daily resource inflows between agent dyads (Table 2) had an extremely

small adjusted R2 (≈ 0.011). Since some of the day-to-day variation in the ABM

may be due to random noise introduced via numerous probabilistic calculations, I

followed Phelps et al. (2022) in developing a second, long-term mean version of the

dyadic inflow model. The structure of this second model (Table 3) is the same as in

the daily model (Table 2), except that all daily measurements were averaged within

agent dyads.

The results of the long-term dyadic inflow model are broadly similar to those

observed in the daily dyadic inflow model, with one notable exception: Long-term

mean cooperation history was no longer significant at αg=8 = 0.00625, and its esti-

mated effect size was somewhat reduced (Mean Hj,i,t: estimate ≈ 0.013, t ≈ 2.487,

p ≈ 0.01288 > 0.00625 = αg=8). This directly conflicts with the results of the long-

term mean dyadic inflow model calculated with the Linao data, in which reciprocity

was the main driver of resource inflows at both the daily and long-term mean scale

(Phelps et al., 2022). However, the decrease in efficacy of long-term reciprocity

within the agent dyadic inflow model may reflect an issue with averaging the Hj,i,t

variable over longer time spans. That is, since Hj,i,t values were roughly centered

around zero, averaging over the long-term might have the effect of pulling estimates
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Table 3

MLR Model of Long-Term Mean Dyadic Inflows From Agent j to Agent i

Response Variable: Mean Daily Dyadic Inflow, j to i (Mean ρC,i,j,t)

Effect (Standardized) Estimate Est. SE t-Stat Pr(> |t|)
(Intercept) 0.26803 0.0045 59.203 < 0.00001

Mean Daily Inflow to i 0.10139 0.0046 22.262 < 0.00001

ri,j −0.00128 0.0045 −0.283 0.77708

Mean Hj,i,t 0.02157 0.0045 4.745 < 0.00001

Mean Diff Need, i− j 0.04161 0.0046 8.970 < 0.00001

Mean Diff Dependency Load, i− j 0.01127 0.0060 1.880 0.06007

Mean Diff Age, j − i −0.01087 0.0061 −1.786 0.07408

ri,j× Mean Diff Need, i− j −0.00242 0.0047 −0.518 0.60415

Observations = 34153; DF = 34145

Residual SE ≈ 1.098

Multiple R2 ≈ 0.016; Adjusted R2 ≈ 0.016

Note. Diff = Differential; SE = Standard Error; DF = Degrees of Freedom. All
independent effects are standardized, and response variable is unstandardized.

closer to a mean of zero and reducing overall spread of the measurement. Measur-

ing cooperation history in terms of actual transferred resource amounts, rather than

in terms of event indicators, may be a future solution to this issue. Nonetheless,

the adjusted R2 of the long-term mean model was still pitiful (Table 3: adjusted

R2 ≈ 0.016).

Additional Statistical Analysis of Final Agent-Based Model

In the previous section, I statistically modeled the effects driving resource

inflows between agent dyads and compared these models to existing models of dyadic

transfers between households in Linao village. While the effects of history and dif-

ferential need that were detected in the two agent inflow models corresponded rea-
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sonably well with effects observed in Linao (Phelps et al., 2022), the daily agent

inflow model did not detect an effect of kinship (Table 2). This contrasts with the

Linao models, where kinship was a small but important predictor of increased daily

inflows (Phelps et al., 2022), and with the positive evolution of the “willingness to

cooperate” traits (ωB) that was observed in the ABM. Additionally, both models

developed for the agent-based dataset characterized very little of the overall varia-

tion in agent cooperative behaviors. The very low adjusted R2 values estimated for

both the daily and long-term mean models of dyadic resource inflows suggest that

there are other forces driving the lion’s share of the variation observed in agent re-

source transfer patterns. As mentioned previously, random noise may be at least

partially to blame for this lack of model fit, since both resource production and

the final evaluation of whether or not a donor gave to a recipient were randomly-

sampled from probability distributions. However, massive zero inflation was also

detected in this model [moreso even than in the dyadic inflow model developed in

Phelps et al. (2022)]. Issues with estimation resulting from this zero inflation may

have inhibited accurate detection of effects, which might offer a partial explanation

for the high degree of unexplained variance in both models (Tables 2 and 3). In

this final section of the analysis, I will briefly describe the zero-inflation observed in

the agent data and then develop models to address this issue.

Using the 100-year dataset from the previous section, I first sought to char-

acterize the degree of zero-inflation present in the agent data. A quick inspection

of all possible cooperative events (that is, observations in which a needy agent was

paired with an agent who had a surplus of resources) revealed that only about 9.1%

of all possible cooperative events were “successful,” i.e.,resulting in a transfer of

resources. This implies that almost 91% of all possible transfers failed and zero

resources were transferred. [For comparison, zero transfers were observed in ap-
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proximately 69.4% of all potential transfer events recorded in Linao (Phelps et al.,

2022).] This is obviously problematic, since such drastic zero inflation almost cer-

tainly prevents accurate identification and estimation of model effects.

On a hunch, I next investigated the distribution of the quantity of resources

transferred during non-zero inflow events in the agent dataset. As suspected, Fig-

ure 10 demonstrates that this distribution (when omitting observations of zeros) is

highly non-Normal. Instead, the distribution of dyadic resource inflows more closely

approximates a truncated Normal distribution with a boundary at zero. This makes

sense, given that most transfers were of small quantities and a recipient agent could

not receive a quantity of resources less than zero. (The same holds true in the way

that inflows and outflows were defined in the Linao data, since inflows and outflows

of resources were measured separately and were frequently small in value.)

Figure 10

Histograms of Daily and Long-Term Mean Resource Outflows, Excluding
Zero-Inflow Observations

Note. Binwidths equal 0.25 resource units in both plots. (a) Daily non-zero
resource inflows. (b) Long-term mean non-zero resource inflows.
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With the zero-inflation and non-Normality of the agent inflow data in mind,

I reformulated the daily dyadic inflow model from the last section as a Cragg hur-

dle model (Cragg, 1971). Although his model was initially developed to study con-

sumer spending patterns with respect to infrequently-purchased goods, Cragg’s

eponymous two-part model anticipates the issues inherent in measuring dyadic

transfers of subsistence resources across a population. Cragg’s solution was to first

model the probability that a transfer was non-zero versus zero (typically using a

probit model); then, the magnitude of non-zero observations which cleared that

first “hurdle” (not being zero) were regressed in a second, nested model according

to the distributional properties of the non-zero observations. He proposed a trun-

cated Normal regression for cases where the non-zero amounts clustered near the

zero threshold, a strategy which I adopted here. Importantly, since the quantity of

zero and non-zero observations are modeled separately in this formulation, each of

the two hurdle submodels can include the same explanatory variables (or different

ones), the effects of which are estimated separately within each submodel.

The anthropological theory surrounding cooperative transfers does not nec-

essarily discriminate between mechanisms driving larger transfer amounts and mech-

anisms driving “any transfer at all,” so I chose to include all of the regressors con-

sidered previously in both parts of the hurdle model of dyadic agent inflows. Re-

sults of the daily version of this model are in Table 4. Since the two parts of the

model were estimated separately, I chose to use a Bonferroni correction of 1/g =

1/8 to the family-wise error rate for significance assessment in each model.

For the probit part of the model (Table 4a), only reciprocity between a focal

agent i and another agent j was associated with increased probability of a non-zero

inflow from agent j to agent i, apart from the control variable (Table 4a, Hj,i,t: esti-

mate ≈ 0.060, z ≈ 6.610, p < 0.000005 < 0.00625 = αg=8). In fact, when ignoring
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Table 4

Cragg Hurdle Model of Daily Dyadic Inflows From Agent j to Agent i

(a) Probit GLRM

Response Variable: Probability of Non-Zero Daily Dyadic Inflow (I{ρC,i,j,t > 0})
Effect (Standardized) Estimate Est. SE z-Stat Pr(> |z|)

(Intercept) −1.34628 0.0073 −183.483 < 0.00001

Mean Daily Inflow to i 0.10604 0.0070 15.131 < 0.00001

ri,j 0.00104 0.0073 0.143 0.88641

Hj,i,t 0.05979 0.0090 6.610 < 0.00001

Mean Diff Need, i− j −0.00751 0.0074 −1.010 0.31270

Diff Dependency Load, i− j −0.01185 0.0096 −1.234 0.21717

Diff Age, j − i −0.01309 0.0098 −1.339 0.18048

ri,j× Mean Diff Need, i− j −0.00433 0.0075 −0.578 0.56307

Observations = 58880; DF = 58872; Dispersion = 1

Null Deviance ≈ 35815; Residual Deviance ≈ 35538

McKelvey & Zavoina Pseudo-R2 ≈ 0.015

(b) Truncated Normal GLRM

Response Variable: Non-Zero Daily Dyadic Inflow (ρC,i,j,t, where ρC,i,j,t > 0)

Effect (Standardized) Estimate Est. SE t-Stat Pr(> |t|)
(Intercept) −0.51469 0.2589 −1.988 0.04681

Mean Daily Inflow to i 0.87918 0.0691 12.721 < 0.00001

ri,j −0.01578 0.0897 −0.176 0.86028

Hj,i,t 0.02247 0.1102 0.204 0.83840

Mean Diff Need, i− j 1.21087 0.0936 12.938 < 0.00001

Diff Dependency Load, i− j 0.59282 0.1157 5.125 < 0.00001

Diff Age, j − i −0.16239 0.1152 −1.409 0.15872

ri,j× Mean Diff Need, i− j 0.00846 0.0881 0.096 0.92347

σ 3.74694 0.1014 36.941 < 0.00001

Observations = 5340; DF = 5331

Correlation Estimate of Explained Variance ≈ 0.087

Note. Diff = Differential; SE = Standard Error; DF = Degrees of Freedom. The σ
parameter is equivalent to an OLS estimate of residual standard error. All
independent effects are standardized, and response variable is unstandardized.
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the control variable, the estimated effect size of Hj,i,t was the largest of any ex-

planatory variable in the model, significant or non-significant. This contrasts with

the MLR model of daily dyadic agent inflows developed in the last section, in which

differential need between an agent pair was a stronger predictor than cooperation

history (Table 2). Interestingly, no such effect for Hj,i,t was detected in the trun-

cated Normal model (Table 4b, Hj,i,t: estimate ≈ 0.022, t ≈ 0.204, p ≈ 0.83840 >

0.00625 = αg=8). Instead, differences in both need and dependency loads were the

primary (significant) drivers of increased daily dyadic inflows within the truncated

Normal model (Mean Diff Need, i− j: estimate ≈ 1.211, t ≈ 12.938, p < 0.000005 <

0.00625 = αg=8; Diff Dependency Load, i − j: estimate ≈ 0.593, t ≈ 5.125,

p < 0.000005 < 0.00625 = αg=8). Differential need had the larger effect size of

the two (almost double that of differential dependency load), but in both cases this

suggests that recipient agents who had higher resource deficits and numbers of off-

spring typically received more resources on a given day. Additionally, the effect size

estimated for relative need in the truncated Normal model was around three times

the size of the corresponding effect size estimated in the MLR model, and no signif-

icant effect was detected for differential dependency load in the MLR model (Table

2). Assuming that the estimates in the truncated Normal model are more accurate,

this implies that modeling zeros in the data separately from non-zero values facili-

tates more nuanced detection of effects.

Results were mostly similar in the long-term mean version of the dyadic in-

flow hurdle model (Table 5). In the probit portion of the model, long-term mean

history was the sole significant regressor (Mean Hj,i,t: estimate ≈ 0.040, z ≈ 4.140,

p ≈ 0.00003 < 0.00625 = αg=8) out of all non-control variables. Notably, this ef-

fect was not detected in the long-term mean GLM model (Table 3), at least not at

significance level αg=8 = 0.00625. Interestingly, there was also a small effect for
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Table 5

Cragg Hurdle Model of Long-Term Mean Dyadic Inflows From Agent j to Agent i

(a) Probit GLRM

Response Variable: Probability of Non-Zero Mean Dyadic Inflow (I{ρC,i,j,t > 0})
Effect (Standardized) Estimate Est. SE z-Stat Pr(> |z|)

(Intercept) −1.05513 0.0084 −125.658 < 0.00001

Mean Daily Inflow to i 0.12109 0.0081 14.862 < 0.00001

ri,j 0.00528 0.0083 0.638 0.52365

Mean Hj,i,t 0.03977 0.0096 4.140 0.00003

Mean Diff Need, i− j 0.01297 0.0085 1.522 0.12794

Mean Diff Dependency Load, i− j 0.01163 0.0116 1.003 0.31595

Mean Diff Age, j − i 0.02617 0.0118 2.226 0.026025

ri,j× Mean Diff Need, i− j −0.00424 0.0085 −0.500 0.61690

Observations = 34153; DF = 34145; Dispersion = 1

Null Deviance ≈ 28598; Residual Deviance ≈ 28354

McKelvey & Zavoina Pseudo-R2 ≈ 0.016

(b) Truncated Normal GLRM

Response Variable: Non-Zero Mean Dyadic Inflow (ρC,i,j,t, where ρC,i,j,t > 0)

Effect (Standardized) Estimate Est. SE t-Stat Pr(> |t|)
(Intercept) −17.73181 3.6782 −4.821 < 0.00001

Mean Daily Inflow to i 2.14875 0.3077 6.984 < 0.00001

ri,j −0.19400 0.3264 −0.594 0.55232

Mean Hj,i,t 0.09121 0.4337 0.210 0.83344

Mean Diff Need, i− j 3.64006 0.6363 5.720 < 0.00001

Mean Diff Dependency Load, i− j 0.69342 0.4290 1.617 0.10599

Mean Diff Age, j − i −2.28563 0.5530 −4.134 0.00004

ri,j× Mean Diff Need, i− j 0.17142 0.3195 0.537 0.59159

σ 5.95051 0.5266 11.299 < 0.00001

Observations = 5044; DF = 5035

Correlation Estimate of Explained Variance ≈ 0.071

Note. Diff = Differential; SE = Standard Error; DF = Degrees of Freedom. The σ
parameter is equivalent to an OLS estimate of residual standard error. All
independent effects are standardized, and response variable is unstandardized.
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difference in agent ages (donor j minus recipient i), though it was not significant

at the Bonferroni-controlled error rate (Table 5a, Mean Diff Age, j − i: estimate

≈ 0.026, z ≈ 2.226, p ≈ 0.02600 > 0.00625 = αg=8). However, differential age was

a significant effect in the long-term mean truncated Normal model (Table 5b, Mean

Diff Age, j − i: estimate ≈ −2.286, t ≈ −4.133, p ≈ 0.00004 < 0.00625 = αg=8).

This suggests that donors who were older relative to recipients typically gave the

recipient less over the long-term. This effect may be driven by increased depen-

dency loads in older ages, although why that effect was not detected is not clear.

Regardless, differential need was again a strong positive predictor of increased in-

flows from j to i (Table 5b, Mean Diff Need, i − j: estimate ≈ 3.640, t ≈ 5.72,

p < 0.000005 < 0.00625 = αg=8), implying that recipients who were more needy

than donors, on average, received more from those donors over time.

Lastly, while the Cragg models appeared to improve overall coefficient es-

timation, these hurdle still explained relatively little of the overall variance in the

inflow data. In the daily dyadic inflow hurdle model, the estimated McKelvey-

Zavoina Pseudo-R2 for the probit part was only 0.015. The correlation estima-

tion of explained variance in the truncated Normal portion of the daily model was

higher at approximately 0.087, but it is important to stress that this is a linear ap-

proximation only and should not be interpreted too closely. (The long-term mean

version of the hurdle model yielded similar values, at 0.016 and 0.071, respectively.)

Nevertheless, it does appear that adoption of the Cragg hurdle model method al-

lowed for disentanglement of effects working at different scales, which may prove

useful for understanding the nuances surrounding cooperative behaviors.
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Chapter 4

DISCUSSION

Broadly speaking, the agent-based model that I present in this paper is some-

what effective in capturing the general patterns which characterize human popula-

tion structure and cooperative interactions. However, when compared directly with

data from the Linao population, there were some important differences with respect

to both age-structure and mortality rate. Specifically, more juvenile agents were

present in the ABM population relative to the current Linao population (Figure 8),

and the mortality risk for each of these juvenile agents was higher (Figure 9). Like-

wise, mortality rates for elderly agents were also higher than what is observed in

Linao, resulting in a slightly steeper drop-off in population counts at advanced ages.

This resulted in distinct differences between the ABM’s expected age distribution

and the age distribution observed in Linao.

Despite these differences in population structure, statistical models of re-

source inflows between agent dyads appeared to be reasonably consistent with simi-

lar models describing dyadic resource inflows in Linao (Phelps et al., 2022), at least

with respect to detecting effects for reciprocity and needs-based assistance. In both

the multiple linear regression models (Tables 2 and 3) and Cragg hurdle models

(Tables 4 and 5), reciprocity and differential need were demonstrated to be strongly

associated with increased inflows of resources from one agent to another, although

the relative strengths of these effects varied between model type. In particular, by

utilizing a Cragg hurdle model to disentangle effects predicting the magnitude of

a non-zero transfer versus whether a transfer occurred at all, I demonstrated that

while reciprocal history between agent dyads strongly influenced the probability of

an inflow transfer at both the daily and long-term scale (Tables 4a and 5a), it was
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not associated with increases in the specific quantity of resources transferred during

a successful cooperative event (Tables 4b and 5b). Instead, the quantity of non-zero

transfers was best predicted by differential levels of need between the recipient and

donor agent in a dyadic transaction (Tables 4b and 5b). This suggests that reci-

procity may have been operating primarily as a partner selection mechanism in the

agent-based model, where it informed initial decisions of whether to cooperate at

all but did not influence how much was given once initial cooperative intent was

established. This is a notable observation, with potentially broad implications for

understanding how reciprocal cooperation functions. As more complete empirical

datasets are collected, it will be interesting to examine whether this pattern also

holds true in Linao village and in other subsistence populations.

However, one major difference between the statistical models of dyadic in-

flow between agents and dyadic inflow between Linao households is that kinship

was not detected as a significant predictor of increased inflow in any of the agent

models (Tables 2 through 5), despite being a small but significant predictor of Linao

inflow transfers (Phelps et al., 2022). This is especially puzzling, given that selec-

tion within the agent-based model appeared to be favoring increased kin coopera-

tion, as was evident in progressive increases in the population mean of the ωK trait

over generations (Figure 7 and surrounding text). Conversely, while the “willing-

ness to cooperate with reciprocity partners” trait (ωR) evolved negatively as the

simulation progressed, it showed up as a strong, significant positive predictor of

dyadic resource inflows between agents in all statistical models of agent inflows.

It is not totally clear why this discrepancy between agents’ cooperative traits

and statistically-detected behavior occurred, but one possible hypothesis is that

kinship could be “priming” reciprocity in the ABM by initially influencing which

preferential partners an agent should begin reciprocal interactions with, and is thus
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not independently detectable in statistical models. If so, this could be consistent

with both the Phelps et al. (2022) analysis and other recent studies of dyadic co-

operation in subsistence populations (Allen-Arave et al., 2008; Gurven et al., 2001;

Thomas et al., 2018) which suggest that reciprocity and kinship positively corre-

late in small-scale societies. Under this hypothesis, however, one would not expect

the effect of kinship to simply disappear from the model, since it would be impor-

tant for initiating first interactions between agent dyads. Indeed, an independent

effect for kinship typically showed up in the models utilized in the aforementioned

studies, even if the relative effect size of kinship was much smaller than that of the

utilized reciprocity variable(s). The implication of this is that a hypothesis suggest-

ing that the priming effect of kinship on reciprocity are inhibiting detection of kin-

ship effects may not sufficiently explain why statistical models of the agent-based

data were unable to detect an effect for kinship. Instead, this discrepancy raises the

question of whether multiple linear regression and other related models can reli-

ably detect the true effects of kinship on cooperation, particularly in the presence

of reciprocity effects. This is a major concern, given that these sorts of models have

been used frequently in past studies of cooperation. An inability to statistically dis-

entangle and detect kinship effects could result in undue emphasis being placed on

reciprocity as an important motivator of cooperation, as well as potentially false

claims that reciprocity is a more important cooperation mechanism than kinship.

It is, nonetheless, worth mentioning that there remain some important sta-

tistical limitations in this analysis that may have impeded accurate detection and

estimation of effects, including that of kinship. While I addressed the substantial

zero-inflation issue that was detected in the agent-based dataset, I did not address

the possibility of temporal correlations using a cross-lagged panel model. It is possi-

ble that expanding the current statistical modeling strategy to account for temporal
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correlations between dyads might assist with detection of subtle effects. However,

such a model might again require considerable data reduction, given that different

dyads were sampled different numbers of times due to random cooperative part-

ner assignment within the agent-based model, and zero-inflation in the agent data

would still need to be accounted for. Additionally, it is likely that the observations

within particular agent dyads are themselves non-independent (this is certainly true

within the household dyads in Linao), which might further compound issues with

detection and estimation. I did not address this issue by implementing a random or

fixed effect for dyad in the current analysis, mainly due to the nature of the current

simulated data: Since cooperative agent dyads were randomly-assigned at each iter-

ation of the model, some agents only interacted with each other once, which could

cause issues with estimation of dyad-level effects. However, improvements to the

cooperative mechanisms in the model (discussed below) may alleviate these sta-

tistical challenges, as may adopting a network analysis modeling strategy. In any

case, future work using alternative statistical models will be required to validate

the current statistical results and to determine whether there is truly cause to be

concerned about the efficacy of more commonly-utilized statistical modeling ap-

proaches.

As alluded, there are also some limitations in the way that the current agent-

based model was implemented that may have affected its ability to capture nuances

of daily cooperative behaviors occurring in Linao. Firstly, adult agents in the ABM

were not able to directly discriminate between different candidate partners because

agent interactions were randomly assigned each day. As such, data from the ABM

did not – and cannot – capture any sort of strong assortment over time: Agents

randomly interacted with each other, so while they preferentially chose to cooperate

with specific partners (e.g., past reciprocity partners) over others when given the
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opportunity, they did not increasingly restrict their interactions to only preferred

partners. This is reflected in the low percentage of successful cooperative events

in the agent-based model (between 8-10% on average; see Figure 6) which resulted

from frequent random interactions with less-preferred candidate partners. On the

other hand, ethnographic and statistical evidence from Linao suggests that resi-

dents interact more often with a specific set of preferred partners than with other,

less-preferred individuals in the community (Phelps et al., 2022).

Secondly, individuals in the agent-based model were only able to interact

with one candidate cooperative partner per day, and these interactions were unidi-

rectional (i.e., an agent could only be a donor or a recipient during a cooperative

event on a given day). This is in direct contrast to cooperative patterns observed

in Linao, in which individuals frequently both receive goods from and give goods

to multiple different people on a given day (Phelps et al., 2022). By not allowing

agents to interact with multiple different cooperative partners on a given day, the

ABM may be artificially decreasing observed rates of cooperation in the agent pop-

ulation. Thirdly, parent agents did not jointly pool their resources with each other

and their offspring, meaning that each parent could only provision and/or solicit

up to half of the daily net needs of their offspring. This is not realistic, given that

resources are typically pooled within full households in small-scale societies (which

are typically comprised of both parents and all offspring, at minimum). This incon-

sistency with real-world human populations might have contributed to increased

mortality rates, particularly for young juveniles and older adults who are already

at an increased mortality risk. Fourth, no measure of affinal relationship between

agents was included in the ABM. That is, although a donor might be related to the

spouse of a candidate recipient, this did not factor into kinship-based decisions on

whether or not to help the recipient. This is an important limitation in the con-
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text of modeling human populations, given that there exists a plethora of evidence

suggesting that humans’ recognition of affines and other “fictive kin” can mediate

interactions and promote cooperation with these individuals (e.g., Alvard, 2011;

Nimmo, 2001; Thomas et al., 2018; Tonkinson, 1991). For example, Linao individ-

uals often justified transfers of goods based on their affinal relationship with the

recipient (Phelps et al., 2022).

Moreover, ethnographic evidence suggests that there may be additional adap-

tive mechanisms and cultural norms driving the complex cooperation patterns ob-

served in Linao (although there is not yet sufficient quantitative data to test these

hypotheses). For example, Linao residents have strong opinions about the quali-

ties of households that they believe to be giving and receiving the most (Phelps et

al., 2022), suggesting that reputation may be an integral part of cooperative part-

ner choice in Linao. Additionally, there is some limited evidence suggesting that

Linao residents preferentially cooperate with distant kin in ways not predicted by

kin selection theory, implying that additional cultural norms may be prescribing

increased cooperative efforts in these scenarios. Thus, in order to more accurately

replicate the cooperative patterns that characterize the Linao community, it will be

necessary to carefully consider additional mechanisms that may be promoting or

hindering cooperation within the village.
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Chapter 5

CONCLUSION

In this paper, I described preliminary results from an agent-based model

simulating the dynamic cooperative behaviors in a hypothetical subsistence popu-

lation, which was informed by observations from Linao village in the Philippines.

Despite some current limitations, this ABM was moderately successful in simu-

lating realistic patterns of population structure and cooperative tendencies, and

I statistically demonstrated that several of these patterns were broadly similar to

what is observed in Linao. Even so, there are still many opportunities for improve-

ment in the model. Modifications to the way in which mortality rates are imple-

mented at each stage of an agent’s life may assist with stabilizing population age

structures and allowing agents to survive to older ages, while allowing agents and

their spouses and offspring to function as “agent households” may facilitate more

direct comparisons with human populations. Incorporating multiple daily attempts

for needy agents to secure extra resources (as well as two-way interactions between

agent dyads) may also improve the realism of daily cooperative interactions. Addi-

tionally, giving agents more “free will” with respect to partner choice could allow

for complex patterns of assortment to emerge from the model, as are generally ex-

pected in small-scale human populations (K. M. Smith et al., 2018). However, it is

critical to determine statistical modeling strategies that are more effective for the

type of dyadic data that the ABM produces, since inappropriate modeling choices

may inhibit accurate detection of mechanisms driving cooperation, resulting in false

conclusions about the relative importance of specific cooperative mechanisms within

the simulated environment.
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There are a number of additional cooperative mechanisms that might be in-

cluded in future iterations of the agent-based model. In particular, explicitly model-

ing cooperation between affines and between distant kin via cultural norms and/or

indirect reciprocity effects could improve the model’s ability to replicate the com-

plex cooperation dynamics observed in Linao. Adding a reputational component

to donors’ evaluations of candidate recipients might also improve realism by pro-

viding another pathway for agents to select cooperative partners. It will certainly

also be important to avoid over-complicating the model to the point where it be-

comes cumbersome, but employing calibration methodologies such as Approximate

Bayesian Computation (Banks & Hooten, 2021; van der Vaart et al., 2016) to eval-

uate competing models against real-world data may provide a useful way forward

as model complexity increases. Nevertheless, incorporating some or all of these

changes should serve to improve structural realism with respect to cooperative pat-

terns, allowing this agent-based model to become a “virtual laboratory” (Railsback

& Grimm, 2012) within which I can validate existing empirical research and explore

new theories concerning the evolution and maintenance of human cooperation.
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APPENDIX A

LIST AND DESCRIPTION OF PARAMETERS AND INDICES USED IN
AGENT-BASED MODEL
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The following is a list of the various population- and environment-level pa-
rameters and components used in the model, accompanied by brief descriptions of
each element. Said list is for the purpose of general reference, and additional de-
tails can also be found in the function code file (provided upon request). This list is
broken into three sections: A short list of the various indexes used throughout the
paper; a list of all of the parameters specified during model initialization; and a list
of all the major variables calculated and used internally by the model. Importantly,
intermediary variables (such as those used within multi-step calculations) are not
included in the list below. Definitions of such variables can be found in the main
text (Chapter 3, Quantitative description of agent-based model algorithm).

List A1.

General Indexing Notation Used in Model Specification

t := current model time-step (in days), where t ∈ {1, ..., T}
i := unique index for agent/individual, with i ∈ N
k := unique index for each lineage, with k ∈ {1, ..., K}
a := a general, population-level index of age in days, where a ∈ {1, ..., A}

The following are parameters set by the user when initializing the simulation
function. Some functional parameters were specified with default arguments, which
are noted in the list below.

List A2.

Population- and Environment-Level Parameters Set by User

T := Max possible time-steps (days) in simulation, with t ∈ {1, ..., T} indi-
cating the current model time-step. Required that T ∈ N. The speci-
fied value of T should be sufficiently large as to permit the desired min-
imum number of overlapping generations (i.e., it is recommended that
T ≥ A× number of desired generations).

ty := Time-steps per year. Must be set s.t. ty ∈ N. It is practical to set ty
such that T mod ty = 0, but this is not required.

K := Number of lineages (sub-populations) at initialization. Required that
K ∈ N.

Nk := Initial population size of the kth lineage, where k ∈ {1, ..., K}. Spec-
ified either as a single integer value, or as a numeric vector of length
K, where Nk ∈ N for all k ∈ {1, ..., K}. Can be constant (if specify-
ing a single value) or variable across lineages (if specifying a length-K
vector).
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r̄ := Mean coefficient of relatedness between all members within a lineage at
initialization. (Relatedness between individuals in different lineages will
be initialized at 0.) Used as a starting point for generating relatedness
between agents in the same lineage; however, note that the actual mean
relatedness of initialized lineages may be somewhat different, due to
random sampling and the constraints necessarily imposed by the pro-
cess of building a consistent relatedness network within the lineage. See
Methods (Chapter 2) for more details. Required that r̄ ∈ (0, 1/2], and
recommended that r̄ be specified as (1/2)n for some n ∈ N. Default is
(1/2)3 = 0.125.

Ay := Maximum age, in years, that is included in the calculation of the base-
line mortality function (Mortfd; see below). Required that Ay ∈ N.
At this age and older, the baseline mortality rate of agents is set to 1.
(Note that this is not an enforced maximum age in the population; see
Chapter 2, Methods for more details.)

δ̄m,y := Age (in years) at which an agent is considered an “adult” and has full
resource production capability. Fixed for population. Required that
0 ≤ δ̄d,y ≤ δ̄m,y ≤ Ay, and recommended that δm,y is significantly less
than Ay (as fits the life history of the population being modeled). To
simplify code within the agent-based model function, it is also required
that δ̄m,y ∈ N.

δ̄d,y := Age (in years) up to which individual is fully dependent on their par-
ents, with no resource production capability. Individuals with age
greater than or equal to δd,y will have at least minimal age-specific re-
source production capability. Required that 0 ≤ δ̄d,y ≤ δ̄m,y ≤ Ay: If
δ̄d,y = 0, juvenile agents will be able to produce an age-scaled amount
of resources starting on the day that they are born, while if δ̄d,y = δ̄m,y,
an individual will be fully dependent on their parents (i.e. no individ-
ual production) until they are an adult. (See calculation of ρ̄a in next
section below for more details.) Also required that δ̄d,y ∈ N for coding
purposes. Fixed for population.

ᾱy := Population-level mean age (in years) of first possible reproduction, i.e.,
age at which an individual is first able to select a reproductive mate
with whom they have a non-zero probability of reproducing. Required
that ᾱy ∈ [δ̄d,y, Ay], and recommended that ᾱy << Ay. Can be less
than or greater than δ̄m,y, as befitting the life history of the population
being modeled. This parameter is the mean/median/mode of a raised
cosine distribution of individual age at first possible reproduction (in
years), and is used in conjunction with sα,y below to randomly-generate
individual values of this threshold age for all agents in the population.
Consulting life history data for the population being modeled is sug-
gested, as it will inform the combined selection of sα,y and ᾱy. For ad-
ditional details, see the description of αi sampling in Chapter 2.
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sα,y := Spread (in years) around mean of individual age of first possible re-
production (ᾱy), assuming a raised cosine distribution. Required
that sα,y ∈ R+ (a positive real number). It is also highly recom-
mended that this parameter be set such that the entire support of
the raised cosine distribution of age of first possible reproduction (i.e.,
[ᾱy− sα,y, ᾱy + sα,y]) lies within [δ̄d, Ay). While the model will not break
if this recommendation is not followed, setting sα,y in this way will
avoid aberrant model behaviors such as fully-dependent juvenile agents
who are already able to marry/reproduce (but are not able to produce
any resources) and adults agents who can never marry/reproduce. Con-
sulting life history data for the population being modeled is suggested,
as it will inform the combined selection of sα,y and ᾱy. For additional
details, see the description of αi sampling in Methods (Chapter 2).

pbirth := Bernoulli probability that a replacement agent is “born” versus “re-
cruited”. Born agents are assigned as juvenile dependents of a live re-
productive pair of agents (the “parents”), while recruited agents are
newly-initialized adult agents who are unrelated to all current agents
in the population. Required that pbirth ∈ [0, 1], and recommended that
pbirth be set as a small probability, e.g., pbirth ≤ 0.1.

pγ,M := Bernoulli probability of being male at birth, with 1 − pγ,M := proba-
bility of being female at birth. Each agent’s sex at birth will be deter-
mined by a sample from the Bern(pγ,M) distribution, where an outcome
of 0=female and an outcome of 1=male. Setting this value to some-
thing other than 0.5 will artificially change the expected sex ratio in
the population. If sex ratio effects are not of interest, the default value
is pγ,M = 0.5, which will yield a population with an approximately bal-
anced sex ratio. Required that pγ,M ∈ (0, 1), but note that it is possible
that the population will crash for pγ,M set near boundaries (due to lack
of reproductive adults of one sex or the other). Fixed for population.

Mortfd := An fd object containing the “functional data object” fit of an age-
specific “baseline” mortality table, as returned by the provided con-
venience function mort_table_fun(). Note that this function gener-
ates an fd object via the fda package in R, and that the age-specific
mortality rate for each possible age is calculated on the daily scale
([0, A]), not the yearly scale. (This is all performed within the function
mort_table_fun(), so the user need not make the conversion them-
selves.) Within the model function itself, “baseline” age-specific mor-
tality rates are extracted from Mortfd for each agent at each time step,
using the eval.fd() function from the fda package. Fixed for popula-
tion.
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µ̄max := Max number of agents who can die at each timestep. Required that
µ̄max ∈ N such that 0 < µ̄max <

∑
kNk. Recommended that this be set

to a value that is consistent with the mortality data used to generate
Mortfd. Fixed for population.

η̄m := Mean daily gross need of adults in population, before discounting by
any production or provisioning from others. Required that η̄m ≥ 0.
Note that, for simplicity, it is assumed that need does not decline
in later adult ages. (This may be modified in future versions of the
ABM.) Fixed for population.

η̄∅ := Mean daily gross need of population agents at age 0, i.e. minimum
daily resources needed by individuals at birth, before discounting by
any production or provisioning from others. Required that 0 ≤ η̄∅ ≤
ηm, and recommended that 0 < η̄∅ < ηm. Fixed for population.

αρ, βρ := Parameters given to control the shape of a Beta(αρ, βρ) distribution
used for generating random daily production of resources. Required
that αρ, βρ > 1; default values are αρ = 2 and βρ = 2.5, although these
must be fine-tuned alongside the ρ̄m parameter below to produce the
desired population resource abundance/scarcity. See Methods (specif-
ically Step 5. Gross Daily Need) for more details on this calculation
and how it is adjusted to reflect age-specific production rates. Fixed for
population.

∼
ρm := The mode of daily adult resource production in population, which is

used to scale the Beta(αρ, βρ) distribution used for generating random
daily production of resources by an age-specific amount. Required that
ρ̄m > η̄m. Recommended that ρ̄m be larger than η̄m in order to prevent
premature population crashes, particularly if the initial ”willingness
to cooperate” parameters (see ω̄ below) are set to lower values. See
Methods (specifically Step 5. Gross Daily Need) for more details on
this calculation and how it is adjusted to reflect age-specific production
rates. Fixed for population.

~ω := A vector {ω̄B, ω̄R, ω̄K} of population means at initialization for the
three heritable cooperative traits: ω̄B is the baseline willingness to
cooperate with anyone in the population, ω̄R is willingness to cooper-
ate with reciprocity partners, and ω̄K is willingness to cooperate with
kin. Values must be specified in the order above. Additionally, all three
traits are on the log-odds scale – so, while no firm requirement is made
about their values, it is recommended that ~ω be specified such that
−3 ≤ ω̄∗ − sω∗ < ω̄∗ + sω∗ ≤ 3 for ∗ = B,R,K and spread vector
~sω (described below). Values in ~ω are used in conjunction with their
corresponding values in ~sω to sample initialized agent traits from raised
cosine distributions. (After initialization, traits are inherited with a
small amount of noise from one parent.)
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~sω := A vector {sωB
, sωR

, sωK
} of the distribution spreads around the popula-

tion means of the three heritable traits in ω̄. Must be specified in the
given order. See ω̄ above for more details.

kµ := A weight parameter which controls the impact of resources on mortal-
ity rate (on the logit scale). Required that kµ ≥ 0, and recommended
that kµ > 0. Default is kµ = 1. See Step 8. Cooperative Transfers sub-
section of the Methods section for more details.

kH := A decay parameter controlling the influence of past cooperative inter-
actions (relative to a current cooperative interaction) in the calculation
of an agent-pair’s ”cooperative history” value (Hi,j,t). This parameter
can be thought of as how well a prospective donor agent i remembers
a candidate recipient j’s past cooperative actions towards i. (That is,
how well i remembers past decisions by j to either help or deny help
to i.) Smaller values of k reduce the importance of past actions on the
current Hi,j,t calculation, while larger values increase the importance of
past actions. For more information, see the Step 8. Cooperative Trans-
fers subsection of the Methods section. Required that k ∈ [0, 1], but
note that k = 0 implies no memory (i.e., no reciprocity), while k = 1
implies perfect memory. Fixed for population.

The following are internally-computed by the model function. Most are pa-
rameters that are simply converted to the age-in-days scale; however, the last three
are age-specific calculations derived from the user-specified variables.

List A3.

Population- and Environment-Level Internal Parameters/Variables Derived From
User-Specified Parameters

A := Maximum age, in days, that is included in the calculation of the base-
line mortality function (Mortfd). Computed internally as A = Ayty,
with a ∈ {1, ..., A} used as a general, population-level index of age in
days.

δ̄m := Age, in days, at which individual is considered an adult with full re-
source production capability. Computed internally as δ̄m = δ̄m,yty.

δ̄d := Age, in days, up to which individual is considered fully dependent on
their parents, with no resource production capability. Computed inter-
nally as δ̄d = δ̄d,yty.

ᾱ := Population-level mean age, in days, of first possible reproduction. Com-
puted internally as ᾱ = ᾱyty.
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sα := Spread around population-level mean age (in days) of first possible re-
production. Computed internally as sα = sα,yty.

µ̄a := Age-specific ”baseline” mortality rate, i.e. mortality rate at age a (in
days), when agent’s needs are fully met with no surplus. This value is
fixed for all members of the population at each age a. When specified
in reference to a particular agent i with age ai,t at time t, this is de-
noted as µ̄ai,t . The value of µ̄a for each possible age a is extracted from
the Mortfd functional data object provided by the user.

∼
ρa := Age-specific mode of daily production, i.e. the mode of the distribution

of production per day per individual of age a. In reference to a partic-

ular agent i with age ai,t at time t, it is denoted as
∼
ρai,t . Computed as

follows:

∼
ρai,t =

∼
ρ(ai,t | ρ̄m, δ̄d, δ̄m) =


0, if ai,t < δ̄d
ρ̄m

δ̄m − δ̄d
(ai,t − δ̄d), if δ̄d ≤ ai,t ≤ δ̄m

ρ̄m, if ai,t > δ̄m.

See Step 6. Gross Daily Resource Production in the Methods section
for more details on this calculation.

η̄a := Age-specific level of ”gross need,” i.e. population average need per day
per individual as a function of age a, calculated before discounting by
any individual production or provisioning from others. When referenc-
ing the particular value of an agent i with age ai,t at time t, it is de-
noted as η̄ai,t . Computed as follows:

η̄ai,t = η̄(ai,t | η̄∅, η̄m, δ̄m) = η̄∅ +
η̄m − η̄∅
δ̄m

y, for y = min{ai,t, δ̄m}.
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APPENDIX B

LIST OF VARIABLES DEFINING STRUCTURE OF EACH AGENT
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At time t ∈ 1 : T , agent Ii,t with unique identifier i and lineage k ∈ 1 : K
is characterized by the following set of variables. Convenience variables (i.e., those
used in the code but not important to the overall model) are denoted in red and
are not described in the main text.

Ii,t =



ki := lineage (k) of individual, inherited from mother

gi := generation number (minimum of parents’ generation

numbers plus 1)

γi := sex of individual (female = 0; male = 1)

αi := age at first possible reproduction

~ωi := vector of willingness to cooperate with others, inherited

from parents

bi := coefficient of imbreeding of agent i

ri,j := coefficient of relatedness to each agent j, where j 6= i

Mi := index of i’s mother

Fi := index of i’s father

Ri := set of indexes of all known relatives of i

ai,t := age at time t

Iµ,i,t := indicator of whether agent i is alive(=0) or dead(=1)

after mortality step at time t

Iµ,MF,i,t := indicator of whether at least one of agent i’s parents is

alive(=0), or if both parents are dead(=1)

Iindep,i,t := indicator of whether agent i is a juvenile dependent(=0)

of another agent or independent(=1) at time t

Si,t := index of i’s current spouse, if they exist; else, empty set

Di,t := set of indexes of dependent juvenile offspring at time t,

if they exist; else, empty set

ρi,t := individual resource production at time t

ηi,t := net need at time t (including dependent needs, if any)

Ci,t := index of agent i’s cooperative partner at time t, if one

has been randomly assigned

ρC,i,t := amount transferred between i and Ci,t at time t

∆µi,t := change in mortality at time t+ 1 due to unmet need at

time t

Hi,j,t := j’s history of cooperative assistance given to i at time t,

as recalled by agent i
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APPENDIX C

SIMPLE LINEAR REGRESSION MODELS OF AVERAGE
RELATEDNESS, COOPERATIVE HISTORY, AND PROPORTION

OF SUCCESSFUL COOPERATIVE EVENTS BY DECADE
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The following are ordinary simple linear regression models that examine pos-
sible time trends in population mean relatedness, mean history, and proportion of
cooperative interactions. Data is aggregated at the decade level and shown in Fig-
ure 6, main text. Regressors and outcomes are standardized so that Pearson cor-
relations between the two can be inferred directly from parameter estimates. Note
that p-values are given only for reference, and should not be closely interpreted due
to the nature of the simulated data.

Table C1

Simple Linear Regression of Mean Pairwise Relatedness by Decade

Response Variable: Mean ri,j Within Decade

Effect Estimate Est. SE t-Stat Pr(> |t|)
(Intercept) < 0.00001 0.0819 < 0.001 > 0.99999

Decade 0.01650 0.0822 0.201 0.84116

Observations = 150; DF = 148

Residual SE ≈ 1.003

Multiple R2 < 0.001; Adjusted R2 ≈ −0.006

Note. SE = Standard Error; DF = Degrees of Freedom.

Table C2

Simple Linear Regression of Mean Pairwise Cooperative History by Decade

Response Variable: Mean Hi,j Within Decade

Effect Estimate Est. SE t-Stat Pr(> |t|)
(Intercept) > −0.00001 0.0814 < 0.001 > 0.99999

Decade 0.11512 0.0817 1.410 0.16069

Observations = 150; DF = 148

Residual SE ≈ 0.998

Multiple R2 ≈ 0.013; Adjusted R2 ≈ 0.007

Note. SE = Standard Error; DF = Degrees of Freedom.
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Table C3

Simple Linear Regression of Proportion of Cooperative Events That Were
Successful (Resources Transferred) by Decade

Response Variable: Proportion Successful Events Within Decade

Effect Estimate Est. SE t-Stat Pr(> |t|)
(Intercept) < 0.00001 0.0774 < 0.001 > 0.99999

Decade −0.32822 0.0776 −4.227 0.00004

Observations = 150; DF = 148

Residual SE ≈ 0.948

Multiple R2 ≈ 0.108; Adjusted R2 ≈ 0.102

Note. SE = Standard Error; DF = Degrees of Freedom.
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APPENDIX D

SIMPLE LINEAR REGRESSION MODELS OF WILLINGNESS TO
COOPERATE BY AGENT GENERATION
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The following are ordinary simple linear regression models that examine pos-
sible generational trends in the three cooperation traits. Mean estimates of the
three traits are aggregated within generations and shown in Figure 7, main text.
Regressors and outcomes are standardized so that Pearson correlations between the
two can be inferred directly from parameter estimates. Note that p-values are given
only for reference, and should not be closely interpreted due to the nature of the
simulated data.

Table D1

Simple Linear Regression of Mean Baseline Willingness to Cooperate (ω̄B) by
Agent Generation

Response Variable: ω̄B Within Generation

Effect Estimate Est. SE t-Stat Pr(> |t|)
(Intercept) < 0.00001 0.1161 < 0.001 > 0.99999

Generation Number −0.66889 0.1175 −5.691 < 0.00001

Observations = 42; DF = 40

Residual SE ≈ 0.753

Multiple R2 ≈ 0.447; Adjusted R2 ≈ 0.434

Note. SE = Standard Error; DF = Degrees of Freedom.

Table D2

Simple Linear Regression of Mean Willingness to Cooperate With Reciprocity
Partners (ω̄R) by Agent Generation

Response Variable: ω̄R Within Generation

Effect Estimate Est. SE t-Stat Pr(> |t|)
(Intercept) > −0.00001 0.0626 < 0.001 > 0.99999

Generation Number −0.91615 0.0634 −14.456 < 0.00001

Observations = 42; DF = 40

Residual SE ≈ 0.406

Multiple R2 ≈ 0.839; Adjusted R2 ≈ 0.835

Note. SE = Standard Error; DF = Degrees of Freedom.
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Table D3

Simple Linear Regression of Mean Willingness to Cooperate With Kin (ω̄K) by
Agent Generation

Response Variable: ω̄K Within Generation

Effect Estimate Est. SE t-Stat Pr(> |t|)
(Intercept) > −0.00001 0.1423 < 0.001 > 0.99999

Generation Number 0.41315 0.1440 2.869 0.00654

Observations = 42; DF = 40

Residual SE ≈ 0.922

Multiple R2 ≈ 0.171; Adjusted R2 ≈ 0.150

Note. SE = Standard Error; DF = Degrees of Freedom.
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APPENDIX E

COOPERATION TRAITS IN EARLY VERSION OF ABM WHERE
ADULT AGENTS WERE NOT RECRUITED
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Cooperation traits by generation for an early version of the model, in which
unrelated adult agents were not recruited into the model. This model had a higher-
overall pairwise relatedness between agents (r̄ > 0.2).

Figure E1

Evolution of “Willingness to Cooperate” Traits Over Agent Generations in Early
Version of ABM

Note. Dots indicate mean values within each generation. Black lines are simple
linear regressions of mean trait value per generation (outcome) by generation
number. Gray bands around regression lines are 95% confidence intervals.
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APPENDIX F

REPLICATION OF POPULATION AGE DISTRIBUTION COMPARISON,
OMITTING INFANT AGENT DEATHS
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The following is a replication of Figure 8 and its associated Mann-Whitney-
Wilcoxon test in the main text. In the following figure and test, agents who die at
less than one year of age are omitted from the average agent age distribution to
determine if these infant agent deaths are driving the statistically-significant dif-
ferences in population age distribution detected in the main text. A total of 17 ju-
venile agents are omitted from the average agent age distribution, which raises the
mean age of estimated agent population to approximately 20.4 years old. See the
Comparison between final agent-based model and field data from Linao section of
Chapter 3 (Results) for additional details.

Figure F1

Comparison Between Mean Population Age Structure in Agent-Based Model and
Population Age Structure in Linao, Excluding Agent Deaths at Ages Below One
Year

Note. (a) Average age structure of the ABM population over consecutive 4-year
subsets of data between year 901 and year 1000, when excluding agents who die at
age ai,t < 1 year old. (b) Age structure of Linao village over 3.5 years of
observation. In both plots, age is binned into 5-year categories to facilitate
observation of underlying trend.
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Table F1

Mann-Whitney-Wilcoxon Test Comparing Linao Age Distribution With
Distribution of Estimated Agent Population Ages When Omitting Infant Agent
Deaths

H0: true location shift θ is equal to zero

Ha: true location shift θ is not equal to zero

Estimated Location Shift (θ̂) 95% Confidence Interval W -Stat Pr(> |W |)
0.99995 (−1.99995, 3.99998) 20302 0.46985

Note. Test performed using a Normal approximation.
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