
The Void Clustering of Lyα Emitters as a Probe of Reionization

by

Lucia Alexandra Perez

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved April 2022 by the
Graduate Supervisory Committee:

Sangeeta Malhotra, Co-Chair
Nathaniel Butler, Co-Chair

James E. Rhoads
Christopher Groppi
Evan Scannapieco

ARIZONA STATE UNIVERSITY

May 2022



ABSTRACT

The distribution of galaxies traces the structure of underlying dark matter, and

carries signatures of both the cosmology that evolved the universe as well as details of

how galaxies interact with their environment and each other. There are many ways

to measure the clustering of galaxies, each with unique strengths, uses, theoretical

background, and connection to other physical concepts. One uncommon clustering

statistic is the Void Probability Function (VPF): it simply asks, how likely is a cir-

cle/sphere of a given size to be empty in your galaxy sample? Simple and efficient to

calculate, the VPF is tied to all higher order volume-averaged correlation functions

as the 0th moment of count-in-cells, and encodes information from higher order clus-

tering that the robust two-point correlation function cannot always capture. Using

simulations of Lyman-alpha emitting galaxies across either redshift history or the

epoch of reionization, this work asks: how powerful is the VPF itself? When can

and should it be used for galaxy clustering? What unique constraints or guidelines

can it give for the pacing of reionization, in the Lyman-α Galaxies in the Epoch

of Reionization (LAGER) narrowband survey or across the Roman Space Telescope

grism? This work provides practical guidelines for creating and carrying out cluster-

ing studies using the the VPF, and motivates the use of the VPF for reionization.

The VPF of LAEs can complement LAGER constraints for the end of reionization,

and thoroughly inform the timing and pace of reionization with Roman.
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Chapter 1

INTRODUCTION

The central thesis of this work is the exploration and application of one uncommon

method of quantifying galaxy clustering: the Void Probability Function. It simply

asks: how likely is a given region to be empty in a sample? It is by definition tied to

higher order clustering correlations (White, 1979; Maurogordato and Lachieze-Rey,

1987), and at its most popular, was used to measure the clustering of very small

galaxy samples (Palunas et al., 2004; Kashikawa et al., 2006); as an additional probe

dark matter halo occupation modeling (e.g. Fry 1986; Maurogordato and Lachieze-

Rey 1987; Little and Weinberg 1994; Berlind and Weinberg 2002); and to define

low-redshift galaxies’ gravitational clustering moments (e.g. Croton et al. 2004b;

Conroy et al. 2005). In recent years, the VPF has been slowly re-gaining popularity,

particularly to study reionization.

The epoch of reionization (EoR) refers to a key transition of the universe: when

the opaque ‘fog’ of neutral hydrogen that filled the post-recombination universe since

the emission Cosmic Microwave Background was ionized by the light of very early

galaxies. Figure 1.1 summarizes the current consensus of the EoR’s place in cosmic

history. The EoR was the last significant phase transition of the universe, and has

much still not understood about it. Exactly when did it occur, and how quickly?

What objects contributed and in what way? The EoR is difficult to simulate with

how many uncertainties exist in our modeling methods for radiative transfer and

more, and requires thoughtful observations (e.g. with the 21cm transition line of

neutral hydrogen with very sensitive radio telescopes, or hunting for the rare galaxies

1



Figure 1.1: From Robertson et al. (2010): an illustration of the IGM’s transformation

through cosmic history.

in the midst of ionizing the intergalactic medium around them).

One already fruitful probe for reionization are Lyman-α Emitters (LAEs). These

are galaxies detected (often solely) by very bright emission in the Lyα line (the

spectral line moving from n = 2 orbital to the n = 1 ground state of hydrogen,

emitted during active star formation). Lyα is emitted in the UV (1216Å), meaning

that as the galaxy emission becomes redshifted due to the Hubble expansion of the

universe, Lyα from very early eras of the universe becomes visible in the optical (for

2 < z < 5) or infrared (z > 6). See Figure 1.2 for examples of some high-redshift

LAE spectra from group members. Additionally, because Lyα is the resonant line of

hydrogen, it is absorbed by almost any amount of neutral hydrogen in its vicinity.

Combine all these together–star forming galaxies emitting light perfectly tuned to

neutral hydrogen that can be observed in the infrared–leads to the use of LAEs as

probes for the EoR.

This dissertation shares one central narrative: the VPF of LAEs, with the goal

of using this clustering to learn more about the EoR. In this introduction, I will

2



Figure 1.2: Example spectra of particularly bright LAGER z = 6.9 LAEs, from

Harish et al. (2021) using the Low Resolution Imaging Spectrometer (LRIS) on the

Keck I telescope in Hawai’i.

contextualize the some popular statistics used for galaxy clustering and the VPF’s

place among them, to help inform later chapters. Finally, I will outline the Chapters

of this dissertation and what they explore about the VPF, LAEs, and constraints for

reionization.

1.1 Galaxy Clustering Statistics

Dark matter is the dominant force behind the large-scale structure of galaxies

and is a key component of cosmology. Galaxies trace the structure of dark matter,

and their distribution in space is heavily influenced by features of dark matter, as

well as signatures of how galaxies interact with their environment and each other

(e.g. Peebles 1980; and Figures 1.3 and 1.4). Though we primarily focus on using

the clustering of LAEs to constrain reionization in this dissertation, applications for

galaxy clustering are wide-reaching.

There are many ways to measure the clustering of galaxies, each with unique

strengths, uses, theoretical background, and connection to other physical concepts.

3



Figure 1.3: An example of the large-scale structure (‘the cosmic web’) created by

dark matter particles (shown as white spots on a black background). Galaxies form

from the baryons that gather in the gravitational wells created by dark matter once.

This is a thin slice through one of the 1003 h−3 cMpc3 CAMELS-SAM simulations

(Perez et al., 2022).
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Figure 1.4: An example of the measured large-scale structure of galaxies, from the

Baryon Oscillation Spectroscopic Survey (BOSS) program of Sloan Digital Sky Sur-

vey III. The left-most box covers 1000 sq. degrees in the sky and contains ∼120,000

galaxies, for ∼ 10% of the total survey. Using spectroscopically-measured red-

shifts reveals the 3D structure to approximately z < 0.8, or 7 billion years into

the past. https://www.sdss.org/press-releases/astronomers-map-a-record-breaking-1-

2-million-galaxies-to-study-the-properties-of-dark-energy/

In this section, I introduce those we will encounter throughout this work.

1.1.1 The Two-Point Correlation Function

The most common of the statistics we will encounter is the widely used two-point

correlation function (2ptCF). The 2ptCF robustly quantifies the likelihood of two

galaxies existing within a certain distance from each other compared to random, at

the cost of various types of pair counts across the data and a large random sample.

The 2ptCF comes in many flavors:

• 3D space: either real space, the true transverse comoving positions of galaxies

5



in a volume; or redshift space, where galaxies’ measured redshifts are directly

translated into comoving positions without accounting for e.g. the ‘finger of god’

effect (galaxies close together will have large random velocities relevant to each

other, leading to elongated over-dense regions in redshift maps)

• 2D angular space: a.k.a. the angular correlation function ω(θ), used for galaxies

observed in narrow redshift ranges

• 2D projected space: a.k.a. the projected correlation function ωp(r, π), which

projects galaxies across a larger redshift ranges onto two dimensions, and is

common in photometric surveys and for other specific analyses

The root of all these forms is the fundamental 2ptCF in 3D real space, ξ(r). For

a randomly selected object in a sample, ξ(r) can be defined through the probability

of finding a neighbor at a distance r in volume element δV is (Peebles, 1980a):

δP = nδV [1 + ξ(r)] (1.1)

The Fourier Transform of ξ(r) gives the power spectrum, which by definition

quantifies the large scale structure born from small fluctuations in the matter field

(as e.g. encoded within the cosmic microwave background). The power spectrum is

a crucial measurement for confirming our existing models of cosmology and galaxy

formation; for example, the ‘bump’ in the power spectrum near R ∼ 100 cMpc or

0.1 < k < 1 h Mpc−1 is known the the baryon acoustic oscillation signal, caused by

acoustic density waves in the pre-recombination universe.

Additionally, the 2ptCF acts as a power law in log-log space, which is known for

most types of galaxies to have the particular slope of -1.8 at medium to large scales.

The amplitude of the power law quantifies the amount of clustering, and yields the

correlation length, r0, defined as the scale length of clustering when ξ = 1:

6



ξ =
(r0
r

)1+δ

≈
(r0
r

)1.8
(1.2)

s

The 2ptCFs are measured in different ways, most often with an estimator such as

the Landy and Szalay (1993) estimator:

ξL-S(r) =
DD(r) − 2DR(r) + RR(r)

RR(r)
(1.3)

The 2ptCF can also be separated into a one-halo and two-halo term. The two-halo

term, quantifying the interaction between galaxies in separate halos, makes up the

well-behaved linear relationship that yields the correlation function. The one-halo

term encodes the interactions between galaxies in the same halo in a bump at smaller

distance scales. The one-halo term is especially important for theorists who attempt

to connect dark matter halo structure to the observable galaxy clustering (often under

the heading of halo occupation distribution, or HOD, modelling).

1.1.2 Count-in-Cells and the VPF

Count-in-cells (CiC) quantifies the number of galaxies within a randomly placed

cell of a given size, and theoretically includes all volume-averaged correlation func-

tions. However, it is the most computationally costly of the statistics introduced so

far: the 2ptCF counts distances within pairs, and the VPF considers only empty

spheres, while CiC must track the number of galaxies in every single sphere However,

the investment in CiC has yielded interesting results across diverse works. Uhlemann

et al. (2020) used CiC clustering to disentangle the effects of massive neutrino mass

and σ8 in the Quijote simulation suite (Villaescusa-Navarro et al., 2020).

The VPF is an uncommon clustering statistic that simply asks: how likely is a

sphere of a given size to be empty in a given galaxy sample? This contrasts the widely
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used 2ptCF, which quantifies the likelihood of two galaxies existing within a certain

distance from each other compared to a random distribution, at the cost of various

types of pair counts across the data and a large random sample (e.g. Peebles 1980b;

Landy and Szalay 1993). CiC, in turn, quantifies the number of galaxies within a

randomly placed cell of a given size and theoretically includes all higher-order n-point

clustering statistics (Peebles, 1980b), at the cost of being the most computationally

costly of the three statistics discussed. The VPF is simple and efficient to calculate,

is tied to all higher order correlation functions as the 0th moment of count-in-cells,

and encodes information from higher order clustering that the robust 2ptCF cannot

always capture (see: Perez et al. 2021; Conroy et al. 2005; White 1979).

1.1.3 Cosmic Voids?

The word ‘void’ has been used to refer to several things in astronomy, and warrants

clarification here. There are what are called cosmic voids: these are large under-dense

regions in the cosmic web that require large detailed sky surveys to map and catalog.

They are fascinating sub-structures in our universe, that can have complex shapes

(often found with interesting tessellation algorithms: e.g. Sutter et al. 2015). Cosmic

voids also contain rare and interesting galaxies (e.g. Habouzit et al., 2020), and are

being used as alternate cosmological probes (Pisani et al., 2015; Hamaus et al., 2016;

Pisani et al., 2019; Zhang et al., 2020; Kreisch et al., 2021).

On the other hand, the ‘Void’ in the VPF refers to dropped test circles or spheres

in a sample that contain no galaxies. They are imagined, randomly placed cells in a

sample, and are not considered a ‘void’ unless they have zero galaxies. (Though the

under -density probability function, considering cells with fewer than some limit of

galaxies, has been used in similar ways, e.g. Tinker et al. 2008) The VPF will sense

the presence of cosmic voids, but cannot classify or detect them specifically. In the
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realm of cosmic voids, some specialized statistical tools have been proposed, such as

the void mass function (e.g. Bayer et al. 2021).

1.2 The Chapters of this Dissertation and Their Roles

Next, I explain how each chapter of this dissertation expands on how the VPF is

used for studying the clustering of LAEs.

1.2.1 Chapter II: The Basics of the VPF & Hierarchical Scaling

Chapter II (in the literature as Perez et al. (2021)) sets the stage for how the VPF

is and should be measured. As the first project and publication I ever worked on,

much of my growth as an early career scientist lives between its lines.

In the context of this dissertation, it can be thought of as where I learned to

wield the VPF ‘hammer’, and test it out on simulated LAEs and on the uncommon

application of hierarchical scaling. This chapter measures in great detail the VPF and

2ptCF of a medium-sized set of simulations of LAEs, with a detailed discussion of

how the VPF’s errors should be quantified. The most widespread and useful result is

arguably our derived straight-forward and logical guidelines for when the VPF should

be measured, given a sample’s density, volume, and desired VPF precision. The VPF

‘hammer’, the intuition around its uncertainty, the guidelines for survey construction,

and the creativity to apply it where not always expected, are the beating heart that

carries throughout the later more complex (and perhaps more broadly interesting)

chapters.

This work also explored a fundamental difference between the 2ptCF and the

VPF/CiC: what it means for a correlation function to be volume-averaged. The

2ptCF is able to have a one-halo term precisely because it does not measure a volume-

averaged statistic: it uses the distances between every single galaxy and every single
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random point dropped among them to approximate the excess probability of a galaxy

existing at a particular distance scale. The VPF and CiC are measured instead by

counting cells with a given number of galaxies, meaning each distance scale is averaged

across the entire volume the sample encompasses. The VPF is powerful because it is

related to all (volume-averaged) higher-order correlation functions through hierarchi-

cal scaling. Galaxies appear to follow a negative binomial model for this hierarchical

scaling between the volume-averaged correlation functions. (This means, unfortu-

nately, that the VPF cannot give a shortcut to measuring ξ(r), but can measure

instead its volume average, ξ̄(r).)

1.2.2 Chapter III: Probing Reionization with the VPF of LAEs in LAGER

With the VPF ‘hammer’ prepped, and an initial familiarity with the particularities

of simulated LAEs, we shift to the core question of this dissertation: constraining

reionization with the VPF of LAEs. A paper based on the work of this Chapter has

been submitted to the Astrophysical Journal.

Several works have used the angular two-point correlation function for reionization

constraints (ACF; e.g. Ouchi et al. 2010; Santos et al. 2016), yet few have leveraged

the VPF, perhaps better suited to notice the neutral patches typical of inhomogeneous

reionization (McQuinn et al. 2007; Gangolli et al. 2021). This Chapter, and the next,

takes the VPF as it is–a slice of the full CiC, with errors and guidelines carried plainly

on its sleeve–and show how it might be used practically to constrain reionization in

either a narrowband survey at z = 6.9. This Chapter introduces a way to additionally

assess the VPF in an uncommon way: by sticking to select distance scales, in order to

most overtly distinguish different ionization fractions while also considering the where

the VPF can be measured for these simulations. We present the robust constraints

the VPF can give for reionization in a narrowband survey under this analysis, as well
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as guidelines for reionization-era survey construction.

1.2.3 Chapter IV: Constraining Reionization with the VPF of LAEs from Roman

In Chapter 4, we shift to consider the ‘next big thing’ for extragalactic science:

the launch and observation of the Nancy Grace Roman Space Telescope in the next

few years. With a mirror as sensitive as Hubble’s, a wide-field instrument capturing

200 times WFC3’s field of view, and sensitive grism and prism elements that will

observe LAEs from 6 < z < 14, Roman will answer long-lasting questions about the

sources, timing, and pacing of reionization (among so much more!).

In this work, we leverage the simulations and lessons of Chapter III, and specifi-

cally consider: what can the VPF of Roman LAEs reveal about reionization? First,

we transform the reionization-era LAE catalogs of Jensen et al. (2014) in two ways:

we project the catalogs for different types of reionization (fast vs. slow? Early vs.

late?), and then apply Roman-specific observational selections. Then, we create sub-

slices that correspond to 1, 4, or 16 deg2, and measure the VPF of these Roman-like

LAE samples. We quantify the constraints each of these areas reach, and clarify just

what the VPF and Roman are capable of learning about reionization together. A

paper based on this work has been submitted to the Astrophysical Journal.

1.2.4 Conclusion and Appendices

I conclude with brief reflections on what all this work has taught me and my

collaborators, and the future of the VPF among LAEs, reionization, and beyond.

The appendices expand on ancillary concepts, or additional explanatory figures for

VPF distributions.
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ABSTRACT

We calculate the void probability function (VPF) in simulations of Lyman-α emitters

(LAEs) across a wide redshift range (z = 3.1, 4.5, 5.7, 6.6). The VPF measures the

zero-point correlation function (i.e. places devoid of galaxies) and naturally connects

to higher order correlation functions while being computationally simple to calculate.

We explore the Poissonian and systematic errors on the VPF, specify its accuracy as a

function of average source density and the volume probed, and provide the appropri-

ate size scales to measure the VPF. At small radii the accuracy of the VPF is limited

by galaxy density, while at large radii the VPF is limited by the number of inde-

pendent volumes probed. We also offer guidelines for understanding and quantifying

the error in the VPF. We approximate the error in the VPF by using independent

sub-volumes of the catalogs, after finding that jackknife statistics underestimate the

uncertainty. We use the VPF to probe the strength of higher order correlation func-

tions by measuring and examining the hierarchical scaling between the correlation

functions using count-in-cells. The negative binomial model (NBM) has been shown

to best describe the scaling between the two point correlation function and VPF for

low-redshift galaxy observations. We further test the fit of the NBM by directly de-

riving the volume averaged two-point correlation function from the VPF and vice

versa. We find the NBM best describes the z = 3.1, 4.5, 5.7 simulated LAEs, with a

1σ deviation from the model in the z = 6.6 catalog. This suggests that LAEs show

higher order clustering terms similar to those of normal low redshift galaxies.
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2.1 Introduction

Galaxies are clustered in space according to the clustering of dark matter halos

and the bias introduced by the baryonic physics involved in galaxy formation, both

of which evolve over cosmic time (Bernardeau et al. 2002; Benson 2010; Coil 2013).

The clustering of galaxies is is commonly studied with the two-point correlation func-

tion, which describes the probability of finding a galaxy within a given distance of

another. The clustering can then be used to measure the power spectrum and con-

strain cosmological parameters. In observations, the two-point correlation function

is used to measure the correlation length, which allows the comparison of cluster-

ing across galaxy samples and how galaxy clustering traces that of the dark matter

halos. The clustering of galaxies not only depends on their relationships to their

host dark matter halos and the growth of structure under gravity, but also is related

in complicated ways to galaxy properties (like color and luminosity) and their local

environment (eg. Zehavi et al. 2002; Croton et al. 2005; Cooper et al. 2007; Skibba

et al. 2014). Additionally, the volume-averaged correlation functions can be com-

pared to perturbation theory and theoretical gravitational statistics (Peebles, 1980a),

and are measured using the statistical moments of the galaxy count-in-cells distri-

bution. While the standard two-point correlation function is commonly used in the

literature, it does not fully capture details of structure such as filaments and voids

(Maurogordato and Lachieze-Rey, 1987) and does not give information about higher

order clustering correlations.

The void probability function (VPF) is a less common clustering measurement

that describes the probability that a sphere of a given size will contain no galaxies.

Sometimes called the ‘zero-point’ correlation function (the average distance where no

galaxies exist), the VPF ties theoretically to the higher order correlation functions
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(White, 1979). The count-in-cells statistic includes the VPF and information about

several averaged correlation function moments, and appears to follow a predictable

pattern of scaling due to gravity. The VPF and two-point and higher order correlation

functions are theoretically connected through this ‘hierarchical scaling’, the idea that

the first galaxies to form trace the first structures to collapse, following the evolution

of Gaussian density fluctuations due to gravitational instabilities (Coil, 2013). In

this framework, the VPF can connect to the higher order correlation functions under

an analytic model for the scaling coefficients. The hierarchical scaling between the

count-in-cells measured VPF and volume-averaged correlation functions has been

found to follow the negative binomial model (NBM) in z < 1 galaxy surveys (e.g.,

Croton et al. 2004a; Conroy et al. 2005; Tinker et al. 2008) and in simulations (e.g.,

Andrew et al. 2013). Conroy et al. (2005) deduce and Fry and Colombi (2013) confirm

that the NBM of clustering scaling is a feature of the underlying dark matter halos.

Additionally, the VPF alone has been used to constrain cosmological parameters of

large scale structure (ex. Fry 1986; Otto et al. 1986; Maurogordato and Lachieze-Rey

1987; Fry 1988; Little and Weinberg 1994). For example, the VPF was found to be

sensitive to Halo Occupancy Distribution (HOD) models with different minimum host

masses where the two-point angular correlation function was not (Tinker et al. 2006;

Berlind and Weinberg 2002) and was able to discern the influence of galaxy assembly

bias on HOD modeling (Walsh and Tinker 2019; Beltz-Mohrmann et al. 2020).

To study the evolution of clustering across cosmic time, it is important to have a

well-defined sample of galaxies that can be imaged over various redshifts. Lyman-α

emitters (LAEs) have been observed in large numbers at redshifts 2 < z < 7 through

narrowband surveys (Rhoads et al. 2000; Taniguchi et al. 2005; Shimasaku et al. 2006;

Matthee et al. 2014; Santos et al. 2016; Zheng et al. 2016; Ouchi et al. 2018; Sobral

et al. 2018). Lyman-α is the strongest emission signature of the earliest galaxies, likely
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coming from active star formation (Partridge and Peebles 1967; Malhotra and Rhoads

2002; Atek et al. 2014). Additionally, because many LAE properties do not seem to

change significantly over time (Malhotra et al., 2012), they are excellent probes of the

evolution of large scale structure and the process of reionization, whether by exam-

ining changes to their luminosity functions or clustering signatures brought about by

neutral hydrogen attenuating the emission (Malhotra and Rhoads 2004a; Mesinger

and Furlanetto 2008; Tilvi et al. 2014). Understanding the clustering properties of

LAEs and how they have evolved improves our understanding of galaxy evolution, the

process and pace of reionization, and how galaxies are tied to their dark matter halos

and environments. To date, several works have investigated the clustering properties

of LAEs at various redshifts between z ≈ 2 − 7 with mostly the angular two-point

correlation function (e.g. Ouchi et al. 2003; Shimasaku et al. 2004; Kashikawa et al.

2006; Gawiser et al. 2007; Kovač et al. 2007; Murayama et al. 2007; Ouchi et al.

2008; Shioya et al. 2009; Ouchi et al. 2010; Guaita et al. 2010; Kusakabe et al. 2018;

Sobacchi and Mesinger 2015a; Bielby et al. 2016; Hao et al. 2018; Ouchi et al. 2018;

Khostovan et al. 2018b; Hong et al. 2019). However, only Palunas et al. (2004) (34

LAEs at z = 2.38), Kashikawa et al. (2006) (58 LAEs at z = 6.5), McQuinn et al.

(2007) (200 simulated LAEs at z=7.5 in partially neutral IGM) have used the VPF

to measure the clustering of LAEs in the literature.

As seen in this sampling of the greater field of galaxy clustering research, the

VPF has been used in applications that do not often overlap or inform each other.

The VPF has spanned diverse applications, whether used to detect slight signals of

clustering for very small galaxy samples (eg. LAEs in Palunas et al. 2004; Kashikawa

et al. 2006); to test hierarchical scaling in large spectroscopic samples of low redshift

galaxies (eg. Conroy et al. 2005; Croton et al. 2004a); or as an additional constraint

for theoretical models (eg. Tinker et al. 2006; Berlind and Weinberg 2002; Walsh
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and Tinker 2019; Beltz-Mohrmann et al. 2020). In this work, we seek to clarify when

and how to best use it in some of these applications. On what distance scales is a

VPF measurement reliable? What might be the most honest way to approximate

its uncertainty? How informative is the hierarchical scaling application of the VPF

with smaller samples of galaxies? Can the VPF give information about higher-order

clustering for high redshift starburst galaxies?In local galaxies, the scaling behavior

of higher order correlation functions has helped inform the influence of the local envi-

ronment on galaxy clustering (Baugh et al., 2004), which is to be expected as galaxy

properties are influenced by their environment (eg. Croton et al. 2005) and galaxy

clustering and higher order correlation terms change with those same properties (eg.

Croton et al. 2004b; Conroy et al. 2005). Can the VPF give similar insight for smaller

samples of high redshift galaxies? Finally, how can these insights into the VPF inform

future clustering studies within these frameworks and others?

In this work, we analyze simulations of LAE-inhabited dark matter halos across a

wide redshift range (Tilvi et al., 2009) to test the limits of the VPF. We measure the

hierarchical scaling of the LAEs with count-in-cells, and test the fit by moving between

the volume-averaged two-point correlation function and VPF in both directions. Our

VPF measurements of the simulated LAE catalogs of Tilvi et al. (2009) can serve

as comparisons to future clustering studies both in their measurements and how our

uncertainty is calculated. We confirm that higher redshift LAEs are more clustered

and their hierarchical scaling follows the negative binomial model to at least z = 6.

This could indicate that, under the T09 model, Ly-α emission does not show strong

higher order clustering, though the scale of our simulations might not be enough to

detect this signal.Finally, the good agreement between the VPF and other clustering

measurements we find shows that the VPF could replace the count-in-cells method in

contexts that do not specifically probe hierarchical scaling (such as Jensen et al. 2014
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do to detect the influence of inhomogeneous reionization on the clustering of LAEs),

while carrying through more intuitive errors that reflect the properties of the galaxy

observations.

This paper is organized as follows. In §2.2, we give the relevant details of the Tilvi

et al. (2009) LAE simulations. In §2.3, we define the VPF, explore its uncertainty

and error, and offer guidelines for its use. In §2.4, we measure the volume-averaged

and standard two-point correlation function, contextualize hierarchical scaling, and

motivate the use of the negative binomial model. In §2.5, we examine the hierarchical

scaling behavior of our simulated LAEs. We measure the hierarchical scaling of our

simulated LAEs with count-in-cells to show the negative binomial model is the best

fit. We test the negative binomial model against our catalogs by deriving a VPF curve

from the volume-averaged correlation function, as did Conroy et al. 2005 (hereafter

C05) and Croton et al. 2004a (hereafter Cr04). Then, we invert the transformation

to derive the correlation function for these catalogs from their VPFs as an additional

test of the negative binomial model. We give our main conclusions and final remarks

in in §2.6.

2.2 Simulated Lyman-α Emitter Catalogs

Tilvi et al. 2009 (hereafter T09) presented a simple model of populating dark mat-

ter halos with Lyman-α emitters using large cosmological simulations. Here we briefly

summarize relevant details and results. Their model assumes that Lyα luminosity is

proportional to the star formation rate (SFR), which is directly related to the mass

accreted onto the host dark matter halo in the last 30 Myrs.

T09 generated catalogs of dark matter halos using the N -body ΛCDM cosmo-

logical simulation GADGET2 (Springel, 2005) with initial conditions from second-

order Lagrangian perturbation theory (Crocce et al. 2006; Thacker and Couchman
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2006). The simulations contained (1024)3 dark matter (DM) particles of mass 2.7 ×

107 M⊙ h−1 in a volume of (102 cMpc)3 or (73 h−1 cMpc)3. Using a friends-of-friends

halo finder (Davis et al., 1985), they tracked DM halos with at least 100 particles.

The simulation was run from z ≈ 10 to z ≈ 3 while tracking the positions and masses

of halos.

The DM halos with positive accretion rates are given a Lyman-α line luminosity

using this model with star formation rate (SFR) and star formation efficiency (SFE):

L Lyα = 1×1042 SFR

M⊙yr−1
erg s−1 ; SFR = SFE

(∆Mb

tLyα

)
= SFE

( Ωb

ΩDM

)(∆MDM

tLyα

)
(2.1)

Here, ∆Mb is the amount of baryonic mass accreted by the DM halos, and tLyα =

30 Myr is the short timescale over which this accreted mass is converted into new

stars in the model. T09 chose tLyα = 30 Myr based broadly on the ages of stars in

observed LAEs, the lifetime of OB associations, and the dynamical time that the size

of LAEs predicts (e.g. Finkelstein et al. 2007; Pirzkal et al. 2007; Finkelstein et al.

2008). The accreted baryonic mass is derived from the universal ratio of baryonic

to DM densities (Ωb, ΩDM), and the mass accreted onto a DM halo at each step

of the simulation (∆MDM). The model assumed that the escape fraction of Lyα

is 1 and that of Lyman continuum photons is 0. In observations, the Lyα escape

fraction of LAEs has been measured at about 10 to 50 percent (Nakajima et al. 2012;

Matthee et al. 2016; Sobral et al. 2018), and possibly increasing with redshift and

with complicated relationships to Lyα equivalent width (Sobral et al. 2017; Harikane

et al. 2018; Oyarzún et al. 2017; Trainor et al. 2019).
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Table 2.1: Relevant Details from Tilvi et al. (2009) for clustering measurements. The column headers stand for: redshift

(at the center of the simulation box); the Lyα line luminosity cut applied; the total number of simulated LAEs in the

catalog; the number of LAEs after the luminosity cut; the surface density of galaxies after the luminosity cut in arcmin−2

(whole volume, and two halves when cut evenly in redshift space); the volume density of galaxies after the luminosity cut

in cMpc−3; and the observations of LAEs to which the catalogs were designed to compare.

z Lcut, 1042

erg s−1

Ntotal Ncut Surface Density Σarcmin−2 Volume Den-

sity NMpc−3

Comparison observations

3.1 1.995 62,364 1,145 Whole (102 cMpc)3: 0.4029 1.079 × 10−3 Gawiser et al. (2007) &

Front 102 × 102 × 51 cMpc3: 0.1717 Khostovan et al. (2018b)

Back 102 × 102 × 51 cMpc3: 0.2312

4.5 1.673 64,868 1,211 Whole (0.75 × (102 cMpc)3): 0.5765 1.521 × 10−3 Kovač et al. (2007)

Front 102 × 102 × 51 cMpc3: 0.3842 Ouchi et al. (2003)

Back 51 × 102 × 51 cMpc3: 0.3847

5.7 3.068 79,429 539 Whole (102 cMpc)3: 0.3014 5.08 × 10−4 Ouchi et al. (2010) &

Front 102 × 102 × 51 cMpc3: 0.1197 Ouchi et al. (2008)

Back 102 × 102 × 51 cMpc3: 0.1817

6.6 3.068 79,783 355 Whole (102 cMpc)3: 0.2171 3.35 × 10−4 Ouchi et al. (2010)

Front 102 × 102 × 51 cMpc3: 0.0960

Back 102 × 102 × 51 cMpc3: 0.1211
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In the simple model of T09, LAEs fundamentally act as tracers of DM halo buildup

and the accompanying cold gas accretion. T09 apply an analytic description to pop-

ulate dark matter halos with LAEs based only on the evolution of the N -body simu-

lation. Progress from many angles has occurred in the field of LAE modeling since.

Similar studies that worked primarily with smoothed particle hydrodynamic simula-

tions and intrinsic galaxy properties include: Nagamine et al. 2010 (who also consider

the intrinsic star formation in LAEs, but do not consider dust enrichment or variance

in the intergalactic medium transmission); Dayal et al. 2009 and Dayal et al. 2010

(whose model includes in the luminosity of stellar sources, cooling of HI, dust enrich-

ment, and IGM transmission); and Kobayashi et al. 2007 and Kobayashi et al. 2010

(who apply the Mitaka semianalytical hierarchical clustering model for star formation

from Nagashima and Yoshii 2004 to account for extinction from interstellar dust and

outflow feedback). Many works have also included radiative transfer calculations, for

example to prepare for epoch of reionization by expanding how their models account

for the effect of neutral IGM on the Lyα line (McQuinn et al. 2007; Iliev et al. 2008;

Zheng et al. 2010; Dayal et al. 2011 Jensen et al. 2013; Kakiichi et al. 2016; Inoue

et al. 2018; Gangolli et al. 2021; and more.)

The simple model of T09 fits the single parameter of star formation efficiency to

find good agreement with LAE observations at redshifts 3.1, 4.5, 5.7, and 6.6. The

Lyα luminosity function of the z = 3.1 simulation is used to set the SFE by comparing

with the LF of the Gronwall et al. (2007) LAE observations at the same redshift. With

all parameters defined or derived in the model, T09 match the Lyα line luminosity

limits of surveys of LAEs at the same redshifts to test the strength their model.

They reproduce the Lyα luminosity functions, star formation rates, approximate halo

masses, and duty cycles of comparable LAE surveys and observations with a simple

adjustable parameter for all redshifts. Finally, their derived correlation lengths track
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closely with those observed for LAEs at similar redshifts. These simulations are

therefore ideal for this exploration of the VPF for LAEs at varying redshifts.

For this work, we use the output catalogs that give every LAE’s position in the

x − y − z space (between 0 and 73 h−1 cMPc) and their Lyman-α line luminosity.

For the z=4.5 catalog, we exclude the back left quadrant of x < 36 h−1 cMPc and

z > 36 h−1 cMPc (the top and bottom ‘back’ left (51 cMpc)3 sub-volumes) because

the simulation save file for this redshift was apparently truncated, omitting most DM

halos (and therefore LAEs) from this subvolume. The rest of the volume behaved

as expected, so we exclude this artificially empty region in our analysis. Accounting

for this improves the agreement of the z=4.5 simulated LAEs with the comparison

observations of Kovač et al. 2007 (hereafter K07) and Ouchi et al. 2003 (hereafter

O03), and explains the slight inflation of the z = 4.5 correlation length in T09.

When plotting our VPF measurements, we convert the transverse comoving po-

sitions to transverse comoving megaparsec (hereafter cMpc) using T09’s h = 0.716,

so that the positions range from 0 and 102 cMPc. When calculating all correlation

lengths, we revert to units of h−1 cMpc to directly compare with earlier measurements

of observed LAEs, whose angular separations were converted into physical distances

assuming h = 0.7 (from H0 ≡ 100 h km s−1 Mpc−1 = 70 km s−1 Mpc−1).

Table 2.1 provides relevant details of the catalogs for this work. Complete Table

2.1 caption/header descriptions: The column headers stand for: redshift (at the

center of the simulation box); the Lyα line luminosity cut applied to match the catalog

to the corresponding comparison observation(s); the total number of simulated LAEs

in the catalog; the number of LAEs after the luminosity cut; the surface density of

galaxies after the luminosity cut in arcmin−2, for the whole volume and two halves

when cut evenly in redshift space; the volume density of galaxies after the luminosity

cut in cMpc−3, with each side of the volume measuring 102 cMpc; and the observations
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of LAEs to which the catalogs were designed to compare. The ‘front’ is the area

with z-coordinates from 0 to 51 cMpc, and the ‘back’ is z-coordinates from 51 to

102 cMpc. The z = 4.5 catalog has had the ‘back’ left quarter removed due to a

previously undiscovered output error in the simulation.

The luminosity cuts follow the survey limits for observations that each catalog

mimicked. We confirm the corresponding Lyman-α line luminosity for the z = 4.5

K07 observation and confirm the luminosities that Ouchi et al. (2010) found for the

observations at z = 3.1, 5.7, and 6.6 by using the relevant limiting magnitude and

narrowband filter details for each observation. We also compare to the LAE sample

of Khostovan et al. (2018b) at z = 3.10 in the SA22 field using archival narrowband

imaging that closely matches the Lyα luminosity limit and volume density of our

z = 3.1 simulation catalog.

The simulated LAEs of T09 successfully recreated observed luminosity functions,

equivalent width distributions, age distributions, and duty cycles. Future Lyα surveys

can further test the Tilvi et al. (2009) model by a similar comparison of our VPF

measurements and hierarchical scaling.

2.3 Void Probability Function

2.3.1 VPF Theory and Algorithm

The Void Probability Function (VPF) is the probability that regions of a particular

radius will have no galaxies within them. It contains information about all higher

order correlations (White 1979; Maurogordato and Lachieze-Rey 1987), and is the

‘zero-point’ volume-averaged correlation function. The VPF (labeled P0 for brevity)

of a galaxy sample with mean density n is defined by the hierarchy of all p-point

reduced correlation functions wp at a given volume V :
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P0(V ) = exp
( ∞∑

p=1

(−n)p

p!

∫
...

∫
wp(x1, ..., xp) dV1...dVp

)
(2.2)

The VPF is calculated by simply counting what fraction of randomly placed test

spheres are empty as a function of radius. Our algorithm takes in galaxy locations as

point sources on an x− y (2D) plane or x− y − z (3D) volume, and for each radius

being tested, generates many random central positions within the area (that would

not have the radius overlap the boundaries), and counts how many of the test spheres

have no galaxies within the radius.

When we generate the randomly placed test spheres, we place ten thousand points

to guarantee we sample all true voids. We repeat the VPF measurement for all

radii 50 times to account for the small variance that comes when choosing random

points and guarantee that we minimize the error from not completely sampling our

volumes (hereon out the sampling error, which C05 used as the error on their VPF).

Throughout this work, we plot errors in relative logarithmic space:

Y = log10(P0) → δY ≈ 0.434 × δ(P0)

P0

(2.3)

Figure 2.1 displays the VPF calculations of our four catalogs as colored stars

(3D) or colored circles and triangles (2D, ‘front’ and ‘back’ halves). The 2D VPF is

the most easily implemented tool for observational surveys, since redshift space data

are arduous to gather and introduce additional error, while the angular positions of

objects in the sky are known with excellent precision. When there exist accurate

redshift data, the three-dimensional VPF in redshift space can be explicitly con-

nected to the correlation functions by assuming given hierarchical models (eg. C05).

§2.5 details the connection between the three-dimensional VPF and volume-averaged

three-dimensional two-point correlation function for these simulations.
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Full Figure 2.1 caption: Left: the measured 2D VPF. For the 2D VPF, we have

split our volumes into ‘front’ and ‘back’ halves (split halfway in the z direction) to

match the thickness of the 8 independent cubical sub-volumes. The circles/triangles

mark the 2D VPF of the front/back halves. The black dashed/dotted lines trace the

2D VPF of unclustered points at the same surface density of the front/back halves.

Right: the measured 3D VPF. For the 3D VPF, we have marked the theoretical radii

where the VPF can be measured based on the number densities, volume, and our

chosen precision of ±10−2. The stars are the 3D VPF of the whole (102 cMpc)3

volume (0.75 × (102 cMpc)3 for the z = 4.5 catalog), and the dashed black line is the

3D VPF of unclustered points at the same volume density. The error bars around

the black lines correspond to 3 times the sampling error. The minuscule sampling

error confirms that the size of our our galaxy samples and test sphere arrays is large

enough when compared to our full volume for a precise measurement. The shaded

colored regions correspond to 1σ standard error across the independent (51 cMpc)3

sub-volumes’ VPFs. All our catalogs’ VPFs differ significantly from their random

VPF curves, confirming that they are all clustered.

2.3.2 Verifying Our VPF algorithm

We check the accuracy of our VPF calculation with randomly distributed points.

The original equation for the VPF from White (1979) gives its exact value for a

Poisson distribution. This theoretical VPF curve of completely unclustered points

depends only on the surface or volume density of the sample. With N as the number

of galaxies sought in the volume V, and n as the mean particle density, the probability

to find N galaxies in a volume of V is:

PN(V ) =
(nV )N

N !
e−nV ; for N = 0 , P0(V ) = e−nV . (2.4)
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Figure 2.1: 2D (left) and 3D (right) VPF for the four LAE catalogs. Find complete

caption at the end of §2.3.3.
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We can rewrite this equation to use surface density Σ or volume density N and

the radius of the tested void to yield these expressions for the VPF of completely

unclustered points:

log10(P0,2D(r)) =
−Σ × (πR2)

ln(10)
(2.5)

log10(P0,3D(r)) =
−N × ((4/3)πR3)

ln(10)
(2.6)

Deviation from this VPF indicates a sample is clustered. We check our algorithm

by generating randomly placed points at the same surface or volume density of the

given catalog after the luminosity cuts; measuring their VPF; and finally comparing

the curve to the theoretical predictions. We find excellent agreement between the

theoretical curves and the measured VPF of randomly placed points, confirming our

algorithm is accurately measuring the VPF.

2.3.3 Fundamental Limits of the VPF

Multiple factors contribute to the uncertainty in clustering measurements, some

of which have been underestimated in past studies of the VPF. For the VPF, the

most fundamental factors are the size and scale of the galaxy sample.

To articulate these dominating constraints to a reliable VPF measurement, we

imagine a distribution of N galaxies in a volume of V with number density N , ran-

domly distributed and with no correlation in their positions. The smallest radius to

dependably probe the VPF is the volume inhabited by a single galaxy, or the average

distance between two galaxies:

N 4π

3
R3

min = 1 → Rmin =
3

√
1

N
3

4π
(2.7)
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The largest radius to dependably probe the VPF depends instead on the size of the

volume and the desired precision of the VPF. The VPF is a fraction often reported

as logarithms, so in order to measure log10(P0) to a given −α value and guaran-

tee the level of precision of the VPF within ±10−α, the volume must accommodate

10α independent sub-volumes of the given radius. For example, if one of these 10α

independent sub-volumes is empty, then the VPF is indeed 1/10α. Therefore, the

maximum radius to probe VPF is the radius of the independent sub-volumes that

probe the desired sensitivity in the sample volume:

V = 10α4π

3
R3

max → Rmax =
3

√
V

10α

3

4π
(2.8)

Combining these minimum and maximum radii measurements allows us to con-

strain the number of galaxies needed in a sample for the desired measurement. The

dynamic range between the radii is then:

d =
Rmax

Rmin

=
((V/10α)(3/4π))1/3

((1/N )(3/4π))1/3
→ 3

√
NV

10α
(2.9)

A specific dynamic range and VPF sensitivity will constrain a specific number

density and volume ratio, and therefore the number of galaxies for the measurement:

Ntotal = NV = d310α (2.10)

For example, with a dynamic range of 2 in radius (eg. 6 to 12 cMpc) and probing

to log10(P0) = −2, the sample must include at least 800 galaxies. To improve the

measurement of the VPF at small scales, we must increase the number density. To

improve the measurement at large scales, we must increase the volume.

These derivations rely on assuming a completely unclustered galaxy distribution,

and are therefore very conservative guidelines. When galaxy samples display clus-
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Table 2.2: Theoretical Radii VPF Limits for Our Catalogs, Assuming α=2 and

V =(102 cMpc)3 for a Perfectly Random Distribution.

z Ncut NcMpc−3 Rmin,

cMpc

d

3.1 1,145 1.079 × 10−3 6.05 2.25

4.5 1,211 1.521 × 10−3 5.39 2.53

5.7 539 5.08 × 10−4 7.78 1.75

6.6 355 3.35 × 10−4 8.94 1.52

tering, the average distance between galaxies is smaller and the limiting Rmin will

decrease. For our samples, we probe to log10(P0) = −2. All catalogs have the same

underlying (102 cMpc)3 volumes and same maximum radius of 13.63 cMpc.1 Table

2.2 shows the minimum radii and dynamic ranges of our catalogs after applying the

luminosity cuts. Based on the number of galaxies left after the luminosity cut and

the resulting number density of the sample, these are the minimum radii and largest

dynamical range of radii over which the VPF can be measured.

In Figure 2.1, we indicate these radii limits for our 3D VPFs with grey shading.

In §2.3.3, we restrict ourselves to these radii when we convert our catalog’s VPFs

into correlation functions. The luminosity cuts we used so we could directly compare

to observations decrease the number density and increase Rmin significantly. Upon

examination of Figure 2.1, the limiting radii in Table 2.2 correspond to when the

random and VPF curves diverge significantly, and when the error begins to dominate.

1Although we chose remove 25% of the volume in the z = 4.5 simulation to account for a

previously undiscovered output error, we maintain this maximum radius for consistency. This choice

makes little difference in our final result.
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Though we focus on the 3D VPF for the rest of this work, we can also derive these

radii limits for the 2D VPF using the survey area A and surface density Σ:

Σ × πR2
min = 1 → Rmin =

√
1

Σπ
(2.11)

A = 10α × πR2
max → Rmax =

√
A

π10α
(2.12)

d =
Rmax

Rmin

=

√
ΣA

10α
(2.13)

Ntotal = Σ × A = d210α (2.14)

2.3.4 Traditional Statistical Estimators for Error in the VPF

The majority of past studies utilizing the VPF have approximated the error in

their measurements by utilizing traditional methods of ‘internal’ error estimates or

creating mock catalogs and measurements (‘external’ estimates). ‘Internal’ error es-

timates cut the entire sample into smaller sections and repeat the statistical mea-

surement in different iterations. Norberg et al. (2009) give an excellent review and

assessment of internal error estimation methods for correlation function clustering

studies. They determine that the bootstrap method with oversampled sub-volumes

agrees best with their external error estimation methods (galaxy formation models

with fully known inputs). In the bootstrap method, a resampling of the data set is

made by randomly selecting some number of sub-volumes while allowing for replace-

ment and repetition.

However, conclusions for the two-point correlation function error behavior will not

exactly translate to the VPF. Past studies using the VPF observed galaxies often use
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the jackknife method, where the volume is divided into subsections, each subsection is

systematically left out the full volume for a measurement, and the mean and variance

of the final distribution is taken to approximate the mean and variance of the original.

For example, C05 exclusively use the jackknife technique to estimate their errors on

their VPF. Cr04 quote 1σ errors on their VPFs derived from the rms scatter over their

many generated mock catalogs, and verify that the error from jackknife technique is

comparable. Finally, Khostovan et al. (2018a) found that the Poisson estimate of

the correlation function’s error is very consistent with the bootstrapping errors for

samples with 102−3 galaxies.

We measure the variance with the traditional jackknife technique with the eight

sub-volumes and find it underestimates the error compared to the subsample method

we introduce in §2.3.5 by at least a factor of 2 at all scales. Yang and Saslaw (2011)

suggested that the jackknife method of C05 underestimated the true range of the

data’s variability, as subsets of the data are not identically distributed. Therefore,

we caution against relying solely on this technique to measure the error on the VPF

measurement, while recognizing that more work remains to be done studying how the

jackknife technique performs on the VPF of larger samples.

2.3.5 Approximating Error in the VPF with Independent Sub-Volumes

We choose the subsample method to quantify our error in the most ‘independent’

way possible. Like other gauges of clustering, individual measurements of the VPF

are not independent, since clustering also takes place on scales much larger than most

observations. In a practical sense, a single abnormally empty or overdense region af-

fects the entire VPF curve for the whole volume. To mimic how truly independent

measurements of the VPF within our radii limits would behave, we divide our cata-

log volumes into the largest equally sized independent subvolumes that they hold (72
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cMpc h−1 ÷ 2 = 36 cMpc h−1 or 51 cMpc per side), and use the spread in the subvol-

umes’ VPF measurements to guide the error in our whole volume’s VPF. Though such

subdivisions of galaxy data are not truly independent, this method helps illuminate

the inherent variance of the VPF at radii less than 15 Mpc.

In Figure 2.1, we shade the subsample error around the VPFs of the ‘halves’

(2D) and the whole volume (3D) in the corresponding colors. For this method, we

divide our simulated catalogs into eight non-overlapping independent sub-volumes of

(51 cMpc)3. (The z = 4.5 catalog ends up with six non-overlapping independent

sub-volumes, due to the apparent output error in the back left corner that was not

discovered until this work.) We measure the VPF ten times for each of the sub-

volumes with 5000 randomly dropped test voids every time. For an approximation of

the error of the whole volumes’ VPF at each radius, we measure the standard error

in the population mean (the standard deviation of the 80 VPF measurements across

all sub-volumes and iterations divided by the square root of 8):

1σ standard error =
STD(P0,subvols)√

Nsubvols

→

√
|P0,i − P̄0|2

√
8

(2.15)

2.4 Hierarchical Scaling and the Correlation Functions

2.4.1 Measured Two-Point Correlation Functions & Correlation Lengths

The two-point correlation function measures the excess probability of finding a

galaxy at a given separation r from another, relative to a random Poisson distribution

(Peebles 1980a; Coil 2013):

dP = n[1 + ξ(r)]dV, (2.16)

where n is the mean number density of the sample. The two-point correlation
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function is measured in three dimensions in comoving space, and yields the power

spectrum with a Fourier Transform (see Peebles 1980a for a thorough text on large

scale structure). We use the three dimensional form of the two-point correlation

function estimator from Landy and Szalay (1993), where the data and randomly

distributed point catalogs are the same size:

ξL-S(r) =
DD(r) − 2DR(r) + RR(r)

RR(r)
(2.17)

The two-point correlation function of galaxy samples is known to mostly follow

a power law with a slope of 1+δ, with the long-used value of δ=0.77 ± .006 from

Peebles (1975) and Totsuji and Kihara (1969). The amplitude of the power law gives

the correlation length r0, which is defined as the scale length of clustering for a given

galaxy sample when ξ = 1. The correlation length is often expressed in terms of

h−1 cMpc to facilitate comparison between observations with different cosmological

assumptions. A larger correlation length value roughly indicates more clustering. To

calculate the best fit correlation length for each catalog, we fit this power law on the

log10(r) (h−1 cMpc) vs. log10(ξL-S(r)) plot for the two-point correlation function:

ξ =
(r0
r

)1+δ

≈
(r0
r

)1.8
(2.18)

T09 previously calculated the two-point correlation functions and measured cor-

relation lengths for their simulated LAEs, but to maintain transparency and account

for small differences in luminosity cuts in our analysis, we repeat the measurements

here. We verify the accuracy of the calculation and correlation length fit by finding

great agreement with T09’s correlation lengths for the z = 3.1, 5.7, 6.6 catalogs. Due

to the previously undetected output error in the z = 4.5 catalog in T09, we ignore

the affected corner and measure the clustering the rest of the volume. We compare
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directly to the observed LAEs of K07 and O03 and find much better agreement with

their correlation length measurements.

First, we calculate each catalog’s ‘data-data’ distance counts (DD(r)): for each

data point, we measure three-dimensional distance d =
√

x2 + y2 + z2 to every other

data point and organized each distance into the corresponding radius bin. Then, for

the DR and RR terms, we generate random points in the same way as the VPF

random circles were (but here, matching the number of galaxies). For each random

point, we compare distance to other random points (creating the RR(r) array) and

to the data points (creating the DR(r) array). We repeat the DR and RR tallying

process with 1000 different random point sets, as to eventually have 1000 unique

ξL-S(r) measurements for each catalog.

In Figure 2.2, we plot the median ξL-S across all 1000 repetitions with traditional

Poisson errors: ∆ξ = (1 + ξ)/
√
DD. This is an irreducible error in the correlation

function. As Khostovan et al. (2018a) found for their emission line galaxy samples,

the Poisson error is consistent with the computationally expensive bootstrapping

technique for galaxy samples between 102 and 103. Additionally, we plot the volume-

averaged two-point correlation function ξ̄ we measure in §2.5.1 using count-in-cells in

colored circles, along with the Poisson error. The transition to the volume-averaged

two-point correlation function from the traditional form (eg. Landy and Szalay 1993)

increases the amplitude of the power law by approximately log10(3/(2−β) (regardless

of the volume scale, if assuming an ideal power law of slope 1 + β).2 Because the

two-point correlation function is not an ideal power law and drops off at the smallest

and largest scales, the ξ̄ measurement from CiC will approximate a power law with

a less drastic amplitude increase. CiC was shown to be consistent with the volume

2For those curious about moving from ξ̄2 to the standard ξ2, see the derivation in Yang and

Saslaw (2011).
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average of the Landy and Szalay (1993) estimator by Szapudi (1998), and we confirm

this in our LAEs.

To best approximate the value and error on the correlation lengths for the samples,

we fit each of the 1000 individual ξL-S curves to a power law3 with a fixed slope of

1+δ=1.8 and choose the median value of the resulting distribution (Figure 2.3). We

add the distribution’s 1σ standard deviation in quadrature to the median error out

of the least squares fitting algorithm covariance matrix to get our final correlation

length 1σ error. In Figure 2.2, the color shaded regions and the values listed in the

legends correspond to the median r0 ± 3σ h−1 cMpc. The newest correlation lengths,

whose 3σ range is shown as shaded regions and described in the legend of Figure 2.2,

agree very well with the T09 calculations and/or those of comparison observations.

The new and previous correlation length measurements for z = 3.1, 5.7, 6.6 agree

within all 1σ errors. For the z = 4.5 catalog, the previously undetected empty back

corner created a discrepancy between the T09 correlation length and those which K07

and O03 measured in observed LAEs. The new correlation length measurements for

z = 4.5 agree within all 1σ errors with the O03 and K07 measurements.

Complete Figure 2.2 caption: The spatial 3D two-point correlation function

of the LAE catalogs and their best power law fits. We calculate the standard two

point correlation function with the Landy and Szalay (1993) estimator 1000 times

with new random catalogs, and measure the correlation length of each iteration. We

use a least-square method that minimizes the difference between the measured ξL-S(r)

and the one predicted from the power law in Equation 2.18, assuming a fixed slope

of 1+δ=1.8. The darker colored triangles indicate the mean ξL-S value across the

1000 iterations at each radius. The error bars on the colored triangles are the 1σ

logarithmic space Poisson error, ∆ξ = (1 + ξ)/
√
DD.

3We use scipy.optimize.leastsq (Jones et al., 01 )
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Figure 2.2: The spatial 3D two-point correlation function of the LAE catalogs and

their best power law fits. The darker colored triangles indicate the mean ξL-S value

across the 1000 iterations at each radius. The error bars on the colored triangles are

the 1σ logarithmic space Poisson error, ∆ξ = (1 + ξ)/
√
DD.
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The black dash-dot line marks the best-fit correlation length and error from Tilvi

et al. (2009) for the z = 3.1, 5.7, 6.6 catalogs, which agree within 1σ errors with our

new correlation length measurements. The z = 4.5 LAE catalog had an output error

undiscovered in T09 that led to excess clustering signals, so we ignore the affected

regions when measuring the clustering. We find great agreement within 1σ errors

with the correlation length of observed LAEs at z = 4.5 from K07 and O03. The

final 1σ errors in our correlation lengths come from adding in quadrature the median

fitting error across the 1000 calculated correlation lengths and one standard deviation

in the correlation length distribution (Figure 2.3). The colored shaded regions and

legend entries are the ±3σ region about the median r0 h
−1 cMpc. The lighter colored

circles are the count-in-cells measured volume-averaged two-point correlation function

ξ̄CiC(r), which are used for the VPF transformations later in this work. The higher

amplitude is expected with volume-averaged correlation functions, and the pattern of

higher clustering at higher redshifts remains.

2.4.2 Hierarchical Scaling and Higher-Order Clustering Moments

Different galaxy distributions can have identical two-point correlation functions

but unique VPFs that include additional information from higher order correlation

functions (Maurogordato and Lachieze-Rey 1987; White 1979). In the framework of

hierarchical scaling, one assumes that all the volume averaged correlation functions

are hierarchically related to the volume-averaged two-point correlation function (ξ̄2)

via the hierarchical Ansatz :

ξ̄p = Sp ξ̄ p−1
2 , p ≥ 3; where ξ̄p(R) =

∫
ξp(r)dVR∫

dVR

. (2.19)

This Ansatz allows one to transform the VPF of White (1979), now expressing it

as a sum of all the higher order volume-averaged correlation functions, their scaling
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coefficients, and the average number of galaxies in a tested volume of radius R, N̄(r):

P0(r) = exp

(
∞∑
p=1

−N̄(r)p

p!
ξ̄p(r)

)
→ P0(r) = exp

(
∞∑
p=1

−N̄(r)p

p!
Sp ξ̄p−1

2 (r)

)
.

(2.20)

One can derive the Sp scaling coefficients by assuming a phenomenological model

of hierarchical gravitational clustering (Poisson, Gaussian, negative binomial, thermo-

dynamic, etc.). Then, one is able to connect all the correlation functions to the VPF

with just the Sp coefficients. This applies only when both are three dimensional and

while in redshift space (Kaiser 1987; Ryden and Melott 1996). These phenomenolog-

ical models predict specific strengths for all the correlation functions, and deviations

from these predictions when compared to measured void statistics or higher order

correlation functions are used to explore the underlying physics of clustering (eg. Fry

et al. 1989).

The hierarchical scaling models can connect the VPF to the volume-averaged two-

point correlation function and higher-order correlation functions. The reduced void

probability function scales the VPF by the average number of galaxies in cells of a

given size:

χ(r) =
− ln(P0(r))

N̄(r)
. (2.21)

Measurements of ξ̄, χ, and N̄ can be used to determine which hierarchical scaling

model best describes how the clustering of galaxies occurs. Different hierarchical scal-

ing models provide different solutions to the cosmological many-body problem with

varying physical justifications, and determining which best describe galaxy cluster-

ing can probe the fundamental physics behind the formation and evolution of large

scale structure (eg. Saslaw and Fang 1996). In Appendix A we summarize all the
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models against which we test our simulated LAE catalogs. We focus on the negative

binomial model when further testing how the VPF transforms back and forth from

count-in-cells.

2.4.3 The Negative Binomial Model for Hierarchical Scaling

The negative binomial model (NBM) for the hierarchical equations that govern

gravitational clustering has been found to be the best fitting model for z < 1 galaxy

samples with complete spectroscopic redshift coverage (C05; Cr04; Maurogordato

and Lachieze-Rey 1987; Gaztanaga and Yokoyama 1993; Tinker et al. 2008; Bel et al.

2016; Yang and Saslaw 2011; Hurtado-Gil et al. 2017; among several others) and in

simulations (Andrew et al. 2013). The negative binomial model predicts a reduced

VPF (χ) from the volume-averaged two-point correlation function (ξ̄2) and the average

number of galaxies in a cell (N̄):

χneg. bin. =
ln(1 + N̄ ξ̄2)

N̄ ξ̄2
(2.22)

The NBM can be derived through many methods and has been used to statistically

describe phenomena across many fields of science. It is also known as the modified

Bose-Einstein distribution (see Fry and Colombi 2013 for a succinct derivation in that

context). The NBM was first used a cosmological context by Carruthers and Duong-

van (1983) and derived for clustering analysis by Elizalde and Gaztanaga (1992). In

this reworking, the probability of a galaxy appearing in a given cell depends on the

number of galaxies that already exist within it, and is correlated to a uniform Poisson

distribution. Or as Cr04 summarizes it, the NBM describes the probability of having

a given number of ‘successes’ (finding a galaxy) after a certain number of ‘failures’

(voids), and probability of a failure (P0) depends on the density of a sample and how

clustered it is (N̄ ξ̄2). The NBM was also derived with thermodynamic arguments
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by Sheth (1995) in the framework of Saslaw and Hamilton (1984), and shown to

be a special case of the hyper geometric model of Mekjian (2007). Most recently,

Gaztanaga and Yokoyama (1993) rederived the model by considering a sample divided

into equal and independent cells and tying the cells’ occupation probability to ξ̄.

Although it is an robust description of many galaxy samples, the NBM is ar-

guably not physically motivated. Fry and Colombi (2013) argue that “there is no

fundamental reason that galaxies follow the negative binomial scaling curve, but that

this follows from typical galaxy parameters” like bias and number density. Some au-

thors find it justified (Carruthers and Duong-van 1983; Elizalde and Gaztanaga 1992;

Betancort-Rijo 2000). Saslaw and Fang (1996) argued the NBM violates the second

law of thermodynamics while still being the best fit to their data. Yang and Saslaw

(2011) confirmed that their SDSS sample was consistent with both the NBM and

quasi-equilibrium model, and preferred the quasi-equilibrium model for its physical

explanation. Additionally, Yang and Saslaw (2011) found that the large cosmic vari-

ance and underestimated error from jackknife errors could explain why the negative

binomial function best fit a very similar sample in C05. Later, Hurtado-Gil et al.

(2017) confirmed that the NBM outperformed the quasi-equilibrium and other mod-

els in a blind fit of the SDSS galaxies after careful consideration of incompleteness

and noise in the sample.

2.5 Fitting and Testing the NBM for LAEs

2.5.1 Fitting Count-In-Cells to the NBM

Traditionally, the reduced VPF (χ) and volume-averaged correlation functions

(ξ̄p) are measured using the count-in-cells method. For CiC, one drops many random

test spheres of a given size and counts the number of galaxies within each. The VPF
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Figure 2.4: The reduced VPF, χ = − log(P0)/N̄ , as a function of N̄ ξ̄ for several

hierarchical scaling models and our catalogs of simulated LAEs. For errors, we assume

that N̄ has no uncertainty, and we transfer the errors on the 3D VPF and ξL-S

to log(χ) and log(N̄ ξ̄) respectively. The y-errors are the 1σ VPF subsample error

(the shaded regions in the right side of Figure 1), and the x-errors are 3 times the

∆ξ = (1 + ξL-S)/
√
DD errors (the error bars in Figure 2) scaled to log10(ξ̄). For a

completely unclustered Poisson sample, χ = 1 everywhere.
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can be measured with CiC by isolating the empty test spheres. The volume-averaged

two-point correlation function, ξ̄2, is the reduced second moment of the probability

distribution of the galaxies’ CiC, or the variance in the number of galaxies across all

test spheres i of a given size:

ξ̄2 =
(Ni − N̄)2 − N̄

N̄2
(2.23)

As with ξ̄2, the higher order terms ξ̄p are the reduced p’th order moments, and CiC

is often used to measure the scaling coefficients Sp between the correlation functions

(Croton et al. 2004a; Wolk et al. 2013; among many others). CiC has also been used

to help constrain cosmological models in simulations and observations (Wang et al.

2019; Uhlemann et al. 2020; Wen et al. 2020; Repp and Szapudi 2020.) CiC is a

versatile probe for the underlying causes of the hierarchical features that we see in

large scale structure, and is also often used in other broader applications of clustering

(eg. Adelberger et al. 1998; Mesinger and Furlanetto 2008; Jensen et al. 2014). As we

continue this analysis, we consider how we can leverage what we have learned about

the VPF’s uncertainty and reliability when using CiC.

To calculate our CiC, we drop at least 500,000 test spheres at every radius, utilizing

the same random placement as we used for the simple VPF and the Landy and Szalay

(1993) ξ measurements. We confirm that the CiC algorithm gives identical VPF

values to our previous measurement when counting empty cells, and therefore should

give accurate N̄ and ξ̄ measurements as well. Additionally, we calculate the value of

ξ̄ at the largest radii we measured and found this integral constraint negligibly small.

The more traditional application of hierarchical scaling models has been to use

CiC to plot N̄ ξ̄ against the reduced VPF χ and determine what model of hierarchical

scaling best fits the galaxy samples, as in C05 and Cr04. In Figure 2.4, we plot

log10(N̄ ξ̄) vs. χ for our catalogs and the predicted relationships from several popular
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models, compiled in Appendix A from Fry and Colombi 2013, C05, and Cr04. We

assume zero uncertainty in N̄ , translate the 1σ subsample-method VPF errors to

χ(r), and translate the 3σ ∆ξL-S errors to log10(N̄ ξ̄). By transferring our subsample

method error estimation for the VPF into the reduced VPF, we can better inform

the uncertainty of CiC, which might be underestimated by jackknife sampling (Yang

and Saslaw, 2011).

In agreement with the work in Cr04, C05, Andrew et al. 2013, Hurtado-Gil et al.

2017, and many others, we find the NBM is the best fit model of hierarchical scaling

for the z = 3.1, 4.5, 5.7 simulated LAEs. These catalogs’ 1σ errors on χ, though, would

not discount the geometric model or the gravitational quasi-equilibrium model (which

is preferred over the NBM for its physical motivation in Yang and Saslaw 2011). The

z = 6.6 catalog might be more consistent with the thermodynamic model, which

treats galaxy clustering by analogy to statistical mechanics (Saslaw and Hamilton

1984; Fry 1986), but its large 1σ VPF errors do not discount the negative binomial

or gravitational quasi-equilibrium models.

Complete Figure 2.4 caption: The reduced VPF, χ = − log(P0)/N̄ , as a

function of N̄ ξ̄ for several hierarchical scaling models and our catalogs of simulated

LAEs. The negative binomial model is the best fit for the z = 3.1, 4.5, 5.7 catalogs,

as expected, though the quasi-equilibrium model is not ruled out. The z = 6.6

catalog is perhaps most consistent with the thermodynamic model, but the large 1σ

errors from the VPF subsample analysis for this smaller sample do not discount the

negative binomial model or quasi-equilibrium model as the best fit. For errors, we

assume that N̄ has no uncertainty, and we transfer the errors on the 3D VPF and

ξL-S to log(χ) and log(N̄ ξ̄) respectively. The y-errors are the 1σ VPF subsample error

(the shaded regions in the right side of Figure 1), and the x-errors are 3 times the

∆ξ = (1 + ξL-S)/
√
DD errors (the error bars in Figure 2) scaled to log10(ξ̄). For a
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completely unclustered Poisson sample, χ = 1 everywhere. The consistency of the

z=3.1, 4.5, and 5.7 catalogs with the negative binomial model supports the hypothesis

that LAEs also follow the negative binomial model. The deviation of the LAEs at

z=6.6 from the NBM and its significance requires larger simulations for confirmation

at a significant level.

2.5.2 Testing Our VPF with the NBM and ξ̄CiC

To further test how well the negative binomial model fits our simulated LAEs, we

use it to move between the VPF and volume-averaged two-point correlation function

of our simulated LAEs. We first start with the CiC-measured ξ̄, use the NBM to

predict a VPF, and compare to the measured VPF as a test of the model fit. We

combine the definitions of the reduced VPF and the NBM in Equations 2.21 and

2.22 to yield the following form of the model, which we can solve with various root-

seeking algorithms at each radius.4 This transformation allows us to derive a volume

averaged two-point correlation function from the VPF of the T09 simulated LAEs,

or vice versa:

0 = P0 (1 + N̄ ξ̄2)
1/ξ̄2 − 1 (2.24)

In their work, C05 measured the VPF, ξ̄, and N̄ with CiC. To further separate

the VPF from the CiC and two-point correlation function, we approximate N̄(r) (and

therefore χ) by assuming homogeneous distribution at the same number density of

the catalogs:

4We use scipy.optimize.root and the Levenberg-Marquardt sub-module (Jones et al., 01 ) for its

stability, and verify the answers with manual evaluations. We also remove abnormally large values

generated at numerically unstable regions, and limit ourselves to |ξ̄VPF| < 3.
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Figure 2.5: Comparing the measured 3D VPF Vs. the VPF derived from the NBM

using the measured Count-in-Cells. The dark colored stars are the measured 3D VPF,

and the shaded colored regions indicate the 1σ standard error across the independent

(51 cMpc)3 sub-volumes’ VPFs. The dark colored circles are the VPF measured with

the CiC. The colored squares (diamonds) are the derived VPF using ξ̄CiC and N̄CiC

(N̄approx). The grey shading around the ξ̄CiC & N̄CiC squares comes from carrying

±1σ = ∆ξ = (1 + ξL-S)/
√
DD errors through the negative binomial model.
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N̄approx(r) ≈ N 4

3
πR3 → χ(r) ≈ − ln(P0(r))

N (4/3)πR3
. (2.25)

We note that our shortcut to the reduced VPF is reminiscent of the normalized

VPF value explored by Maurogordato and Lachieze-Rey (1987), in which n is the

number volume density and V is any given volume:

χM-L,1987 =
ln(P0)

nV
(2.26)

We find that this N̄approx is significantly similar to the true measured value of N̄CiC,

and our final results are not affected by this choice. This similarity is to be expected,

as both attempt to measure an average of galaxies in a given volume, though N̄approx

and N̄CiC might diverge in situations where the shape of the one-point count-in-cells

distribution is very skewed (as in some of the cosmological Quijote simulations tested

in Uhlemann et al. 2020 using the probability density function of the entire matter

field). For us, the only notable difference between N̄approx and N̄CiC is in the z = 4.5

catalog, where using N̄approx raises log10(ξ̄VPF) by about the width of the 1σ VPF

errors in Figure 2.5.

First, we follow the typical application of the hierarchical scaling models to derive a

VPF from the CiC measurements and then compare to the measured VPF in Figure

2.5. We assume a NBM to transform the volume averaged two-point correlation

function into a VPF, the more traditional use of hierarchical scaling as seen in C05

and Cr04. We compare how well the volume averaged form from CiC (ξ̄CiC) recreates

the VPF under the NBM, with either the true measured average number of galaxies

from CiC (N̄CiC) or an approximation from number density (N̄approx). As Figure 2.4

predicted, using all CiC measurements for ξ̄ and N̄ reproduces the VPF exactly for

the z = 3.1, 4.5, 5.7 catalogs. We verify that the shortcut of using N̄approx over N̄CiC
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does not influence the final conclusions. The deviation of the CiC values from the

NBM in z = 6.6 lie at the edge large 1σ errors about the VPF measurement, nearly

overlapping with the transformed 1σ ∆ξL-S errors about the NBM-predicted VPF.

Complete Figure 2.5 caption: Comparing the measured 3D VPF vs. the VPF

derived from the negative binomial model using the measured count-in-cells volume

averaged two-point correlation function. The dark colored stars are the measured 3D

VPF of each volume, and the shaded colored regions indicate the 1σ standard er-

ror across the independent (51 cMpc)3 sub-volumes’ VPFs. The dark colored circles

are the VPF measured with the CiC, and the excellent match with our independent

measurement confirms our algorithm is correct. The colored squares (diamonds) are

the derived VPF using ξ̄CiC and N̄CiC (N̄approx). Our final results do not change

with our choice for z = 3.1, 5.7, 6.6, and very slightly change for z = 4.5, indicating

that approximating N̄ from the number density is is a valid shortcut to measuring

it with CiC. The grey shading around the ξ̄CiC & N̄CiC squares comes from carrying

±1σ = ∆ξ = (1 + ξ)/
√
DD errors from ξL-S through the negative binomial model.

The black dashed lines indicate the predicted VPF for the simulations were they

completely randomly distributed. The maximum and minimum radii are theoreti-

cally derived from the simulations’ number densities, volumes, and our chosen VPF

precision of ±10−2. As Figures 2.4 and 2.6 also show, the negative binomial model

transformations using the CiC agree excellently with the observed clustering signals

for z = 3.1, 4.5, 5.7. The z=6.6 LAEs deviate from the negative binomial model

predictions, lying just past the 1σ error bounds of the measurements.

2.5.3 Deriving ξ̄ from the VPF with the NBM

Past studies like those of C05, Cr04, and Andrew et al. (2013) measured two point

and higher order correlation functions, derived the VPF assuming given models for
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the hierarchical scaling, and then compared against measured VPF to compare the

models. Our work here builds off their key results–the strength of the NBM to predict

the VPF of low-redshift galaxies–and inverts this pattern in our simulations of high-

redshift LAEs as an additional test of the NBM. We begin from a measured VPF,

assume the NBM to derive a correlation function, and then compare to the measured

CiC correlation function. This serves as an extra step to test the NBM, the behavior

of CiC for different samples, and the shortcut of using a density-approximated N̄approx

over the directly CiC-measured N̄CiC. We find that deviations from NBM, especially

in the z = 6.6 catalog, appear more obvious when moving from the VPF into ξ̄ than

in the opposite direction, thanks to the transformation into straight lines in log-log

space.

We solve the NBM in Equation 2.24 for ξ̄VPF in Figure 2.6 given our measured

VPF P0 and either N̄CiC or N̄approx. We compare the derived ξ̄VPF (colored stars and

crosses, depending on the choice of N̄) and the CiC-measured ξ̄CiC. We show the

ranges corresponding to the power law fits to the ξ̄VPF from the VPF ±1σ subsample

uncertainties, which straddle the best-fit power law for our central ξ̄VPF values. Figure

2.6 agrees with Figures 2.4 and 2.5: the z = 3.1, 4.5, 5.7 catalogs show excellent

consistency with the NBM, as their ξ̄VPF are exactly consistent with ξ̄CiC. The unique

behavior of the z = 6.6 catalog might be clarified here, showing the discrepancy from

the NBM in Figure 2.4 centers around the LAEs’ ξ̄CiC not behaving as the NBM

predicts. This might be due to the fact that the z = 6.6 catalog is the smallest and

most clustered, perhaps indicating that higher clustering amplitudes might make our

approximation for N̄ become invalid earlier and create larger deviations from the true

hierarchical scaling description. The reasons for the different behavior of the z=6.6

LAE catalog require larger samples and larger simulations to confirm and understand.

We leave that for future work.
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Figure 2.6: We assume a negative binomial model to transform the VPF into a

volume-averaged two-point correlation function, and compare ξ̄VPF to the directly

measured ξ̄CiC. The black squares are ξ̄CiC calculated using Equation 2.23. The col-

ored stars (crosses) are the derived ξ̄VPF from the central 3D VPF of the simulations,

using the CiC-measured (density-approximated) N̄ . The colored shaded regions cor-

respond the power law fits to the ξ̄VPF from the VPF ±1σ subsample uncertainties.
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We again confirm that three of the four catalogs show great agreement with the

NBM and the last good agreement with the quasi-equilibrium model (the next best-

fitting hierarchical scaling model), agreeing with many low-redshift galaxy observa-

tions. Therefore, we show that the approximating the average number of galaxies

in a cell N̄ using number density and assuming the NBM allows us to accurately

recreate the CiC volume-averaged two-point correlation function only using the VPF.

Additionally, our ξ̄VPF carry through the intuitive errors that we derived in §2.3.3,

and avoid the possibly underestimated errors often given to CiC measurements (Yang

and Saslaw, 2011).

Complete Figure 2.6 caption: Comparing the directly measured ξ̄CiC vs. the

ξ̄VPF from transforming the VPF using the negative binomial model. The black

squares are ξ̄CiC calculated using Equation 2.23. The colored stars (crosses) are the

derived ξ̄VPF from the central 3D VPF of the simulations, using the CiC-measured

(density-approximated) N̄ . The colored shaded regions correspond the power law

fits to the ξ̄VPF from the VPF ±1σ subsample uncertainties, and straddle the best-

fit power law for our central ξ̄VPF values. We calculate ξ̄VPF within the theoretical

radii derived and discussed in §2.3.3 (grey regions), based on the catalogs’ number

densities, volumes, and our chosen precision of ±10−2. The pattern of clustering

between the catalogs translates through ξ̄VPF. — The ξ̄VPF matches the ξ̄CiC very

well for the z = 3.1, 4.5, 5.7 catalogs, confirming the negative binomial is the best

fitting scaling model for those catalogs. The z = 6.6 catalog ξ̄VPF and ξ̄CiC appear

to disagree here (perhaps due to this catalog’s size and strong clustering), though

Figure 2.4 and the 1σ VPF bounds suggest this deviation from the negative binomial

model might not be statistically significant. The choice of N̄ makes little difference

to measuring ξ̄ with ξ̄VPF, meaning that the number density approximation with the

VPF can serve as a shortcut to measuring CiC for large samples.
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2.6 Conclusion

The Void Probability Function is an underutilized measure of clustering that inher-

ently involves the higher order correlation functions (White 1979; Maurogordato and

Lachieze-Rey 1987). It contains additional information about large scale structure

and higher order clustering that the two-point correlation function cannot discern.

When it has been used, the VPF has been able to fit low-redshift galaxy observations

to a negative binomial model for the hierarchical gravitational clustering moments

(eg. Croton et al. 2004a; Conroy et al. 2005). For many years, the VPF was treated

as a uniquely capable measurement of clustering for very small galaxy samples (Palu-

nas et al. 2004; Kashikawa et al. 2006), and as a powerful probe for dark matter halo

occupation modeling (Fry 1986; Maurogordato and Lachieze-Rey 1987; Little and

Weinberg 1994; Berlind and Weinberg 2002). In this work, we attempt to determine

and test the limits of what the VPF is capable, utilize it to probe higher-order clus-

tering in LAEs, and offer ways it can inform clustering analyses with count-in-cells

and the two-point correlation function.

We measure the 2D and 3D void probability function of four simulated catalogs

of Lyman-α emitters at redshifts 3.1, 4.5, 5.7, and 6.6 from the work of Tilvi et al.

(2009). We offer general guidelines for understanding and quantifying the uncertainty

in the VPF. We present suggested limits to when the VPF can be effectively studied,

depending on the number density of the sample, the volume of the survey, and the

minimum VPF value to be studied. We choose the independent subsample method

to approximate the error in the VPF after finding that jackknife sampling under-

states the uncertainty of the VPF. We divide each volume into the eight independent

cubes of (51 cMpc)3 and measure the VPF on each sub-volume and the standard

error across them as a 1σ error on the VPF. These simulated LAE catalogs and our
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VPF measurements can serve as external ‘correct’ error estimators for observations

of LAEs.

Next, we measure the standard Landy and Szalay (1993) and volume averaged

Count-in-Cells two-point correlation functions for the catalogs. We re-affirm the

z = 3.1, 5.7, 6.6 and improve the z = 4.5 correlation lengths measured in T09, and

explore the transformation between ξ and ξ̄ for our catalogs. Then, we compare

how different models of hierarchical scaling between the volume-averaged correla-

tion functions compare to the catalogs’ measured N̄CiC, ξ̄CiC, and VPF. We find the

z = 3.1, 4.5, 5.7 catalogs are best fit by the negative binomial model, though the un-

certainties on the VPF do not rule out the quasi-equilibrium model. We find that

the z = 6.6 might be better fit by the thermodynamic or quasi-equilibrium models,

though the uncertainties on our VPF values do not discount the negative binomial

model.

We further explore how the negative binomial model fits our simulated LAEs by

transforming ξ̄CiC into a VPF, and then the VPF into a ξ̄VPF. We confirm that ap-

proximating N̄ with the number density rather than using the measured N̄CiC does

not change our final results. We find all four catalogs’ ξ̄CiC predict accurate VPF

values with the negative binomial model (within both the 1σ VPF and 1σ ∆ξ errors).

We find that the z = 3.1, 4.5, 5.7 catalogs’ VPFs derive very accurate ξ̄VPF with the

NBM, while the z = 6.6 VPF yields a lower-than-expected ξ̄VPF (though still within

our uncertainties). The deviation of the NBM at our highest redshift might perhaps

explained by the fact that z = 6.6 is our sparsest and most clustered catalog. This

behavior requires larger simulations to fully understand. These results indicate that

high-redshift starburst galaxies like LAEs in the T09 model show large-scale clus-

tering behavior similar to that of local galaxies, also following the negative binomial

model. This suggests the LAEs likely do not have excessive clustering in higher-order
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correlation terms, though the size of our simulations do not let us decisively rule out

the presence of higher-order clustering nor identify additional redshift dependence.

Our guidelines of when the VPF is best used offer greater use beyond improv-

ing future clustering analyses in moderately sized samples. In this age of growing

astronomical data, there are many problems that would respond positively to fast

and intuitive tools with well-explored uncertainties. We have shown, as expected,

that the VPF conserves the same core qualitative conclusion of the standard Landy

and Szalay (1993) two-point correlation function through the NBM transformation:

the clustering of LAEs increases with redshift. This overlap allows us to consider

which clustering applications might prefer the brevity of calculating the VPF and its

inherent connection to higher-order clustering. For example, the upcoming Nancy

Grace Roman Space Telescope (previously known as WFIRST) will observe many

thousands of LAEs during the Epoch of Reionization (z > 6). Due to the resonant

properties of the Lyα line in neutral hydrogen, the prevalence and clustering of LAEs

is able to track the amount of neutral hydrogen and its distribution around them (eg.

McQuinn et al. 2007; Jensen et al. 2013; Zheng et al. 2016; Kakiichi et al. 2016; Ouchi

et al. 2018). Samples in more neutral IGM will be more clustered, both because their

emission is more attenuated at higher neutral fractions, but also because LAEs are

more likely to be observed in regions that have already been ionized (eg. Furlanetto

et al. 2006). For this application, the VPF might be a useful tool (Gangolli et al.

2021, Perez et al. in prep)–it easily compares clustering between samples of the same

density, is more efficient to calculate than CiC, and has intuitive limits that can help

guide the planning of observations.
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ABSTRACT

We probe what constraints for the global ionized hydrogen fraction the Void Prob-

ability Function (VPF) clustering can give for the Lyman-Alpha Galaxies in the Epoch

of Reionization (LAGER) narrowband survey as a function of area. Neutral hydrogen

acts like a fog for Lyman-alpha emission, and measuring the drop in the luminosity

function of Lyman-α emitters (LAEs) has been used to constrain the ionization frac-

tion in narrowband surveys. However, the clustering of LAEs is independent from

the luminosity function’s inherent evolution, and can offer additional constraints for

reionization under different models. The VPF measures how likely a given circle is

to be empty. It is a volume-averaged clustering statistic that traces the behavior of

higher order correlations, and its simplicity offers helpful frameworks for planning

surveys.

Using the Jensen et al. (2014) simulations of LAEs within various amount of ion-

ized intergalactic medium, we predict the behavior of the VPF in one (301x150.5x30

Mpc3), four (5.44×106 Mpc3), or eight (1.1×107 Mpc3) fields of LAGER imaging.

We examine the VPF at 5 and 13 arcminutes, corresponding to the minimum scale

implied by the LAE density and the separation of the 2D VPF from random, and the

maximum scale from the 8-field 15.5 deg2 LAGER area. We find that even a single

DECam field of LAGER (2-3 deg2) could discriminate between mostly neutral vs.

ionized. Additionally, we find four fields allows the distinction between 30, 50, and

95 percent ionized; and that eight fields could even distinguish between 30, 50, 73,

and 95 percent ionized.
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3.1 Introduction

Lyman-α emitters (LAEs) are unique galaxies whose properties make them excel-

lent probes of various phenomena at high redshift. High-redshift LAEs can be selected

using narrowband imaging in the optical and infrared, and are particularly suited to

study the epoch of reionization (EoR). The EoR was a key era and final phase change

of the universe where the opaque ‘fog’ of early neutral hydrogen was ionized by the

earliest galaxies. By leveraging the strong emission in the resonant Ly-α line, the

observed properties and distribution of z > 6 LAEs can be used to understand the

extent of neutral hydrogen around them and the process and pacing of reionization

(Miralda-Escudé 1998; Rhoads and Malhotra 2001; Hu et al. 2002; Furlanetto et al.

2006; Mesinger and Furlanetto 2008; McQuinn et al. 2007).

LAEs sensitively inscribe the presence of neutral hydrogen around them as it

attenuates their brightness and luminosity function (e.g. Haiman and Spaans 1999;

Santos 2004; Furlanetto et al. 2004), and the extent of ionized hydrogen as it reveals

clusters of LAEs (e.g. Hu et al. 2021; Sobral et al. 2015; and others). Much work

has been done to constrain and understand reionization using the evolution of the

Lyα luminosity function (LF) across redshift history (e.g. Ajiki et al. 2003; Ouchi

et al. 2003; Hu et al. 2004; Malhotra and Rhoads 2004b; Ouchi et al. 2010; Santos

et al. 2016; Ouchi et al. 2018; Morales et al. 2021). McQuinn et al. (2007) modeled

the expected suppression of the Lyα LF across many neutral fractions for the global

IGM, contributing to constraints of neutral hydrogen fraction to between 0.2-0.4

at z ∼ 7 (seen in other LAE surveys, e.g. Konno et al. 2018). Similar modeling

from Santos (2004) contributed to similar constraints in Ouchi et al. (2010). Some

works have found no evidence of attenuation in the z > 6 Lyα LF in their analysis

(Malhotra and Rhoads 2004b; Tilvi et al. 2010); while some analyses have measured
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an attenuation in the LFs or LAE number densities within 5.7 < z < 7 (Kashikawa

et al. 2006; Iye et al. 2006; Ouchi et al. 2010; Kashikawa et al. 2011; Konno et al.

2014, 2018).

The Lyman-Alpha Galaxies in the Epoch of Reionization (LAGER) survey is the

largest narrowband survey yet of LAEs during reionization, on track to cover ∼24 deg2

and better constrain the timing and morphology of reionization. The survey utilizes

a unique/specially made/proprietary N964 narrowband filter centered at 9642Å with

a filter FWHM of 92Å (Zheng et al., 2019) that exploits the 3 deg2 field of view of

the Dark Energy Camera (DECam) instrument mounted on the Blanco 4m telescope

at Cerro Tololo International Observatory. LAGER has to date observed 195 z=6.9

LAEs across four fields and 10.19 deg2 (Zheng et al. 2017; Hu et al. 2019; Wold et al.

2021), making it the largest survey of LAEs near z∼7 to date with four additional

fields still to be analyzed or imaged. With a high rate of spectroscopic confirmation

of LAEs (Hu et al. 2017; Yang et al. 2019; Harish et al. submitted) and a survey

volume at least twice as large as others used in Lyα LF analyses (Wold et al., 2021),

LAGER is a powerful and efficient survey of Lyα during reionization. So far, the

LAGER Lyα luminosity functions and their evolution are consistent with a nearly

completely ionized universe at z=6.9 (Hu et al. 2019; Wold et al. 2021).

Neutral fraction constraints from studies of the Lyα LF can show tension with the

measurements of the IGM temperature (which indicate a mostly ionized medium at

z ∼ 6, e.g. Fan et al. 2006) and measurements of the Lyα line profile (e.g. Ouchi et al.

2010 rule out a fully neutral universe at z = 6.6 with the model of Haiman and Cen

2005). However, the Lyα LF analyses come with the caveat that the LF suppression

might be explained by the evolution of the halo mass function (Dijkstra et al., 2007),

cosmic variance, details of the chosen model, or changes in when galaxies show strong

Lyα emission (e.g. Ota et al. 2008; Stark et al. 2010; Pentericci et al. 2011; Ono et al.
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2012; Schenker et al. 2012; Endsley et al. 2021). A way to break these tensions and

degeneracy is with the clustering of LAEs during the epoch of reionization, which

offers an additional way to constrain reionization that can circumvent possible galaxy

evolution (McQuinn et al., 2007) and is independent from the evolution of the intrinsic

LF.

In this work, we focus on what constraints for reionization the Void Probability

Function (VPF) might give for the growing collection of z = 6.9 narrowband selected

LAEs from LAGER. Specifically, we seek to quantify what precision on the constraints

of reionization the LAGER survey may find with clustering, as a function of imaged

area. The VPF is a statistical measure of clustering that simply asks: how likely is

a circle or sphere of a given size to be empty in the sample? It is also the zero-point

volume-averaged correlation function, and is measured by counting how many cells of

a given size are empty, often alongside count-in-cells. As the 0th moment of count-in-

cells, it carries the signature of higher-order correlation functions beyond two-points,

and its simplicity can be leveraged to guide the number density and volume of surveys

(Perez et al., 2021). Kashikawa et al. (2006), McQuinn et al. (2007), and Gangolli

et al. (2021) have examined the ability of the VPF to constrain reionization for various

generations of Subaru LAE observations at z = 6.6 and z = 5.7. Here, we focus on the

constraints and survey guidelines that the VPF can give for the uniquely large and

growing LAGER survey of LAEs at z = 6.9 in tandem with the LAGER luminosity

function analysis.

This paper is organized as follows. In §3.2, we describe our use of the Jensen

et al. (2014) simulations of LAEs within different IGM fractions of neutral hydrogen

to predict the VPF of LAGER LAEs. In §3.3, we introduce the use of clustering to

constrain the fraction of neutral hydrogen during the epoch of reionization, and moti-

vate the focus on the Void Probability Function for the LAGER narrowband survey.
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In §3.4, we ask and answer: how distinguishable are the different ionization fractions

using the VPF for narrowband-detected LAGER LAEs, as a function of survey area?

In particular, we leverage the large simulation volume at various ionization fractions

to measure the VPF in mock LAE slices that mimic a single LAGER field, the four

currently imaged, and the eight in the full survey plan. Our work and conclusions

are summarized in §3.5.

3.2 Simulations and Methodology

3.2.1 The Jensen et al. (2014) Simulations of LAEs During Reionization

To obtain the ionization fraction and the Lyα luminosities of galaxies, we make

use of the simulations of Jensen et al. 2014 who modeled LAEs during the epoch of

reionization (expanding upon Jensen et al. 2013). The simulations exist at the specific

mass-averaged ionized hydrogen fractions in the IGM of ⟨xi⟩m = {0.30, 0.50, 0.58, 0.73,

0.83, 0.92, 0.95}, and for our applications, give each LAE’s transmitted Lyα luminos-

ity. The strength of this model is its combination of a large volume, ensuring a

statistically sound sample of galaxies, and high-resolution radiative transfer. For ex-

ample, we find the cosmic variance across the entire Jensen et al. (2014) volumes is

less than 4% after all selections using the Trenti and Stiavelli (2008) cosmic variance

calculator 1. Here we briefly summarize the model, and direct readers to those works

for full details.

The large-scale structure of the Universe was modeled using a 165 billion particle

N -body simulation of a (602x607x600) Mpc3 volume. Halos were populated with

galaxies to match the UV Lyman-break and Lyα luminosity functions of Ouchi et al.

(2010). Each galaxy was modelled as emitting an intrinsic, halo mass-dependent,

1https://www.ph.unimelb.edu.au/∼mtrenti/cvc/CosmicVariance.html
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double-peaked Lyα spectrum. The intrinsic Lyα luminosity that emerges from a given

LAE at 1.5rvir was randomly drawn from a lognormal distribution with a standard

deviation of σ = 0.4 dex and a mean proportional to the host dark matter halo’s mass.

Details of the unique ”Gaussian-minus-Gaussian” line shape recipe used to generate

the double-peaked spectra can be found in Jensen et al. (2013). Subsequently, the

individual Lyα spectra were modified to account for scattering in the IGM, using the

radiative transfer (RT) code IGMtransfer (Laursen, 2011). The RT code calculates

the transmission across the Lyα line through the circum- and intergalactic medium,

on the basis of the much higher-resolution, hydrodynamic, cosmological simulations

of Laursen et al. (2011). The wavelength-dependent transmission is defined as the

median value of sightlines in all directions, of all galaxies in the simulation. Sightlines

began at a distance of 1.5 virial radii from the center of a given galaxy, at which

distance most of the Lyα photons have experienced their last scattering into the

line of sight, after which they are only scattered out of the line of sight (Laursen

et al., 2011). The resulting direction-dependent transmitted Lyα luminosities are the

selection criteria for our LAEs.

Next, we highlight these and other assumptions that Jensen et al. (2014) made

in their single simulated reionization history. When simulating the radiative trans-

fer of ionizing radiation out of galaxies, each source from the N-body simulation

was given a flux proportional to its mass. Therefore, the photoionization rate of

each source (Eq. 1 in Jensen et al. 2013) depends on assumptions for the initial

mass function, star formation efficiency, and escape fraction of the galaxies. Ad-

ditionally, Jensen et al. (2013) assume that only galaxies took part in reionization,

and that small sources with Mh < 109M⊙ were suppressed once the IGM around

them was more than 10% ionized (a.k.a. self-regulation). This model therefore gen-

erated inside-out reionization, where the first regions to be ionized are those that
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have the most galaxies and are the highest mass (confirmed by the higher mass-

averaged ionization fractions than volume-averaged at a given redshift). The Jensen

et al. (2013) and Jensen et al. (2014) simulations did not include the effects of gas

clumping and Lyman limit systems, and give the disclaimer that they may have over-

estimated the redshift when reionization ended. They also assumed that the true

topology of reionization would be consistent with their model (citing Friedrich et al.

2011 and Iliev et al. 2012), and therefore analyzed and shared their simulations with

mass-averaged ionization fractions rather than volume-averaged. The mass-averaged

ionization fractions correspond approximately to volume-averaged ionized hydrogen

fractions of ⟨xi⟩v = {0.22, 0.40, 0.485, 0.66, 0.78, 0.89, 0.93}, according to Fig. 2 of

Jensen et al. (2013).

Various observations were used to fine tune and calibrate the assumptions made

when creating these simulations. To study the volume at a particular ionization

fraction, they selected whatever redshift corresponds to the sought fraction and scale

the dark matter halo masses so that the intrinsic luminosity function of the volume

still matched the observed Lyα LF at z = 5.7 (Ouchi et al., 2010). The simulation

is by default scaled to z = 6.5, which allows our analysis for LAGER at z = 6.9.

The rest equivalent width (EW) distribution followed a lognormal EW distribution

supported by lower redshift observations (e.g. Reddy and Steidel 2009, as it was

not well-known at z=6.5). Galaxies are randomly assigned EWs with no correlation

to Lyα luminosity. The EW distribution and assignment was found to be consistent

with (Stark et al. 2010; Jiang et al. 2013; Hayes et al. 2014; Zheng et al. 2014). Jensen

et al. (2013) and Jensen et al. (2014) took the z=5.7 Lyα luminosity function of Ouchi

et al. (2010) as true, and match the mass-to-light ratio of their luminosity to it.

With regards to LAE clustering, Jensen et al. (2013) first ran smaller simulations

with this model, and compared their analyses of the simulated LAEs to: the observed

62



Lyα luminosity functions of Ouchi et al. (2010) and Kashikawa et al. (2011); measured

decreases in the observed LAE fraction; and the 3D and 2D two-point correlation

functions of observed LAEs (measured ξ(r) and its projection into w(θ); Ouchi et al.

2010), all as a function of ⟨xi⟩m. With expanded simulations, Jensen et al. (2014)

showed that CiC could tell apart ionization fractions and probe the unique signal

of inhomogeneous reionization on the clustering of LAEs (McQuinn et al., 2007).

We add the VPF to the repertoire of clustering statistics used on these simulations,

alongside the rest of the work we present.

Throughout this work, we use transmitted Lyα luminosity in the z-direction in

any place we refer to the luminosities of the simulated LAEs. We use the astropy2

cosmology package under a Planck 2013 flat ΛCDM cosmology, with ΩM,0=0.307,

Ωb,0=0.0483, H0=67.8 km (Mpc s)−1. The original simulations were run with a flat Λ

cold dark matter consistent with the 9 year Wilkinson Microwave Anisotropy Probe

model with (Ωm, Ωb, h, n, σ8) = (0.27, 0.044, 0.7, 0.96, 0.8), WMAP results (Hinshaw

et al., 2013), and we note this difference in cosmology creates a negligible > 0.5%

change in the surface densities and radii we list.

3.2.2 Creating Mock LAGER LAE Volumes for VPF Predictions

As the LAGER collaboration prepares for the clustering analysis of our LAEs and

expands observations to more fields, we consider: what additional and complementary

constraints can the VPF give for the global ionization fraction during the epoch of

reionization? In this section, we parse up the (∼ 600 cMpc)3 volume of Jensen et al.

(2014) into subslices that mimic the breadth of the LAGER at z = 6.9, to prepare

to create predictions for the 2D VPF clustering of the narrowband-selected LAEs of

2https://www.astropy.org : a community-developed core Python package for astronomy (Astropy

Collaboration et al., 2013, 2018).
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Table 3.1: Our Use of the Jensen et al. (2014) Simulations of LAEs in Reionization

for the LAGER VPF Tests.

⟨xi⟩m ⟨xi⟩v Ntotal Nselected Volume Density

NMpc−3

Surface Density

Σamin−2

4-field LAGER ... 195 2.86 ×10−5 4.74 ×10−3

0.30 0.22 978,687 2,461 1.12 ×10−5 2.20 ×10−3

0.50 0.40 1,632,805 3,649 1.66 ×10−5 3.26 ×10−3

0.73 0.66 2,301,037 6,378 2.91 ×10−5 5.7 ×10−3

0.95 0.93 3,052,695 6,814 3.11 ×10−5 6.09 ×10−3

LAGER.

First, we tune our LAE selection to match what LAGER has observed in the

published 195 z = 6.9 LAEs utilized in the 4-field LAGER luminosity function (Wold

et al., 2021) with an average limiting luminosity of log10LLyα > 42.7 erg s−1 and

equivalent width (EW) threshold of EWLyα ≳ 10Å. For such narrow imaging (ap-

proximately 30 cMpc for the LAGER narrowband), the flux-limited observations of

LAEs mimics a line luminosity cut that would create a volume-limited sample. LAEs

are known to have a possible duty cycle, meaning not all galaxies capable of emit-

ting Lyα will be observed in the line. We therefore apply a duty cycle of 12.5% to

the Jensen et al. (2014) simulations, following Kovač et al. (2007), and find excel-

lent agreement between the observed LAE number density in the current 4 fields of

LAGER (Wold et al., 2021) and the ⟨xi⟩m = 0.73 simulation (closest to the derived

limit of ⟨xi,LAGER⟩ > 0.67). We also confirm the simulations show great consistency

with the observed number and surface densities of LAEs across the current 4 fields

of LAGER, NLAGER = 2.86 × 10−5 Mpc−3 and ΣLAGER = 4.74 × 10−3 arcmin−2.
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Figure 3.1: A Schematic Showing How the Jensen et al. (2014) Simulations Are

Sliced To Explore How Reionization Constraints Change with Area Using the VPF

in LAGER.

The number densities of the simulated LAEs range from 1.12 × 10−5 (30% ionized)

to 3.11 × 10−5 (95% ionized) Mpc−3. Table 3.1 details the number and densities of

LAEs in the different simulations we use after the our selection.

Complete Table 3.1 caption: The mass-averaged ionized hydrogen fraction

in the IGM of each simulation is ⟨xi⟩m; the corresponding volume-averaged ionized

hydrogen fraction in the IGM (from Figure 2 of Jensen et al. 2013) is ⟨xi⟩v; Ntotal

is the total number of LAEs in each simulation before any selection; and Nselected is

the number of LAEs after the LAGER luminosity cut of log10(Lcut)=42.7 erg s−1.

Wold et al. (2021) conservatively conclude, based on their analysis of the 4-field

LAGER luminosity function with 195 LAEs, that at z=6.9 the neutral hydrogen

fraction ⟨xHI⟩m < 0.33, or in the formalism of the Jensen et al. (2014) simulations,

⟨xi,LAGER⟩m > 0.67. The volume density is calculated with the entire (602x607x600)
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Mpc3 simulation, and the surface density is averaged across the 20 narrowband-thin

‘slices’ of (602x607x30) Mpc3.

We now briefly summarize the observations LAGER has already completed and

analyzed to motivate our slicing and sampling of the Jensen et al. (2014) simulations.

Wold et al. (2021) detect their z = 6.9 LAEs in a total area of 10.19 deg2 across the

WIDE12 (3.24 deg2), GAMA15A (2.91 deg2), COSMOS (1.90 deg2), and CDFS (2.14

deg2) fields, or a total effective area of 7.6 deg2. At z = 6.9, a cube face of (601x607

cMpc)2 of the Jensen et al. (2014) simulations covers an area of 15.5 deg2, allowing us

to predict what the full 8 fields of LAGER may image if the same effective areas stand

for future fields. We clarify here that although each DECam image observes 3.3 deg2,

each field in the Wold et al. (2021) LAE z = 6.9 luminosity function analysis averages

2.55 deg2 due to a combination of bright foreground stars, limited ancillary data for

LAE selection, and gaps from not dithering the detector in very early stages of the

LAGER observations. We choose here to conservatively assume the future LAGER

fields will cover at least similar effective areas, corresponding to the (301x150.5x30)

cMpc3 or ∼2 deg2 slices. Finally, we emphasize that this work with the VPF and

the Jensen et al. (2014) simulations is an independent assessment of the precision

LAGER may find in its reionization constraints using clustering. This work was done

independently to the work of Wold et al. (2021), had mostly taken shape before their

work was completed, and is at its core agnostic to their results. We include their

results here for context, observational grounding for part of the experiment set up,

and to demonstrate that the predicted area coverage of LAGER was indeed met by

the team’s observations.

Figure 3.1 illustrates how we slice the Jensen et al. (2014) simulations for these

LAGER tests. To get a sense of what the ‘true’ 2D VPF would be for the LAEs at this

redshift and under the given ionization fraction, we create 20 slices of (602x607x30

66



cMpc)3. To test what ionization fractions one, four, or eight sampled LAGER fields

might probe with the VPF, we create 160 independent slices of (300x150x30) Mpc3,

corresponding to the average effective area of one LAGER imaging according to the

4 field analysis of Wold et al. (2021), and the approximate distance covered by the

N964 filter. Once creating these small slices, we test what constraints the VPF of

LAGER will be able to give for reionization for a single DECam imaging, the 4 fields

that have been imaged and processed as of the writing of this work, and the total 8

fields planned for LAGER. Our choice of slices also incorporates the effects of cosmic

variance on the VPF: in applying the cosmic variance calculator of Trenti and Stiavelli

(2008) to the individual DECam-field-sized slices slices, we find a total fractional error

of ∼ 24 − 30%, which is encompassed in the range of LAE counts we measure in the

slices.

Complete Figure 3.1 caption: A schematic showing how we slice the Jensen

et al. (2014) simulations in order to explore how the precision of reionization con-

straints changes with area using the VPF in LAGER. To approximate the ‘true’ 2D

VPF value for the LAEs, we create 20 full-face slices of (601x607x30 cMpc)3. This

area corresponds to what the 8 currently planned fields of LAGER would likely cover

for z=6.9 LAEs, were they all connected. This approach allows us to average over

cosmic variance within the scale of the simulations, as well as include the signal of

any large voids what might be split by the RA and Dec partitions we chose. To test

what LAGER will measure in individual fields and surveys of different sizes, we create

160 subslices of (300x150.5x30 cMpc)3. This corresponds to the approximate mean

effective area across a single LAGER field (∼ 2 deg2), as observed and analyzed in

Wold et al. (2021). In Sections 3.4, we randomly sample one, four, or eight subslices

to predict the behavior and reionization constraints of the VPF once it is measured

in the LAGER LAEs.
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3.3 Constraining Reionization with the Void Probability Function

3.3.1 The Void Probability Function as a Probe

Neutral hydrogen acts like a fog for Lyman-α emission, meaning that LAEs during

the epoch of reionization inscribe the amount and distribution of neutral hydrogen in

the nearby IGM. The effect of reionization on LAEs can be subtle and measuring it

quite model-dependent, so constraining this effect in various ways allows for stronger

scientific consensus. Different clustering tools probe different aspects of galaxies’

large scale structure and vary in performance at different scales. Several studies

have been done with the angular correlation function (ACF) of narrowband-selected

LAEs during reionization (Ouchi et al. 2010; Sobacchi and Mesinger 2015b; Ouchi

et al. 2018; Gangolli et al. 2021) to constraint reionization with LAEs. However,

small samples sizes, the resulting Poisson noise in the ACF, and the requirement of

several distance scales to derive a correlation length can lead to significant levels of

uncertainty in this vital constraint on reionization.

As the field gathers and awaits larger samples of observed LAEs during reioniza-

tion to more finely measure the clustering signals caused by inhomogeneous reion-

ization, these effects have been mostly explored in simulated LAEs. Jensen et al.

(2013) explored the two-point correlation function in their early simulations, and

later showed that count-in-cells showed a difference between ionization fractions un-

der a single number density cut in Jensen et al. (2014). Recently, Gangolli et al.

(2021) compared how several statistics, including the two-dimensional VPF, are able

to constrain late reionization models and probe the effect of cosmic variance in mock

LAE surveys made to mimic a SILVERRUSH-like survey at z = 5.7 and 6.6 (Ouchi

et al. 2018; Konno et al. 2018). They found that the VPF is more sensitive than the

angular correlation function when testing very late-stage ionization models under a
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simple χ2 analysis, even when incorporating high contamination fractions.

The Void Probability Function (VPF) can complement the ACF analysis by ana-

lyzing the volume-averaged clustering instead, and the guidelines of Perez et al. (2021)

can help refine the scales of surveys and their analyses, as well as probe uncertainties

in different ways. The VPF measures the probability of a given region being devoid

of galaxies. It can also be thought of as a volume-averaged zero-point correlation

function, and can connect to higher order correlation functions under hierarchical

scaling frameworks. The VPF often complements count-in-cells (CiC) analyses, espe-

cially those that study the underlying physics behind hierarchical scaling (e.g. Conroy

et al. 2005). Like CiC, the VPF is known theoretically for a given number density N :

PN = ((NV )N/N !) exp(NV ), where N = 0 for the VPF so P0 = VPF = exp(NV ).

The VPF can also give meaningful results at few distance scales, rather than the

several the correlation function requires to confidently measure a power law.

The VPF is faster to calculate per-capita than CiC, as it only focuses on cells

with zero galaxies, and as is motivated in Perez et al. (2021), has more intuitive

errors and limits than CiC. Perez et al. (2021) also contend that for applications

that do not require a correlation length (with the standard two-point correlation

function) or an analysis of hierarchical scaling (with count-in-cells)–such as detecting

an excess of LAE clustering due to inhomogeneous reionization–the speedy VPF and

its intuitive bounds and errors might be a preferable option. In this work predicting

what constraints for reionization LAGER may give with the VPF, we use both self-

written algorithms developed in Perez et al. (2021) as well as the incredibly fast

k-nearest neighbor method introduced in Banerjee and Abel (2020) to measure the

VPF.
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3.3.2 When Can We Trust a VPF Measurement?

A key goal of this work is to use the VPF to understand what precision in reioniza-

tion constraints the narrowband survey of LAGER will be able to find as a function of

area. Perez et al. (2021) derived conservative guidelines for when a VPF measurement

is reliable, as well as minimum requirements of survey sizes to meet these guidelines.

We apply these guidelines to the case of the LAGER survey below, and examine the

VPF and its ability to to constrain the ionization fraction in detail in §3.4. Addition-

ally, future reionization studies can use these guidelines and our analysis as a starting

point to prepare for LAE surveys that will measure clustering.

A minimum radius for the VPF is simply the average distance between two random

points, and relies on the density of the sample. Any smaller empty test spheres

may not be true voids in the sample, but perhaps consequences of resolution. The

maximum radius in this framework depends on the entire survey volume and the

desired precision of the VPF. In order to measure log10(P0) to a given −α value and

guarantee the level of precision of the VPF within ±10−α, the survey volume must be

able to contain 10α independent sub-volumes of the given radius. By considering the

survey size and density, we can derive the number of galaxies needed for to measure

the VPF to a given precision across a given dynamic range d. For the 2D VPF, these

guidelines use survey area A and surface density Σ:

Rmin =

√
1

Σπ
; Rmax =

√
A

π10α
; d =

Rmax

Rmin

=

√
ΣA

10α
; Ntotal = Σ × A = d210α

(3.1)

The observed number density of LAEs is 2.86 × 10−5 Mpc−3 across the first 4

LAGER fields (Wold et al., 2021), where each DECam field images about 3.3 deg2

and the effective areas the LAEs cover is about 2.5 deg2 per field. Once converted
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to a surface density of 17.1 LAEs deg−2, this yields a conservative minimum radius

of approximately 8.2 arcminutes. For a single LAGER field of approximately 2.55

deg2, the maximum radius to measure to log10(P0) = −1.5 is 9.5 arcminutes. For

the four-field effective area of 10.2 deg2, the maximum radius to measure to the more

precise log10(P0) = −2 is 11 arcminutes. Finally, for the full-face simulation area

of 15.5 deg2, the maximum radius to measure to log10(P0) = −2 is 13.3 arcminutes.

Based on the VPF measurements in Figures 3.2-3.4 (described completely in and

3.4), values of α2D > −1.5 for the VPF easily encompass the large differences across

ionized fractions and remain within our recommended guidelines.

However, we can additionally leverage our results in this work to refine the min-

imum VPF radius in a more practical way. For example, one could say that the

minimum radius to measure the VPF is when the measurement is statistically dis-

tinct from the VPF of an unclustered distribution. For example, the 2D VPF of the

full-face slices in Figure 3.2 begin to lie at least 3σ away from the Poisson curve near

at least 2 arcminutes (if using the standard error pictured in Figure 2) or more real-

istically near 5 arcminutes (if instead using just the standard deviation). Therefore,

we can update our conservative lower radius limit of the full 8-field LAGER (equal

in area to one of the 20 slices) VPF measurement to be 5 arcminutes.

Complete Figure 3.2 caption: The 2D VPF of LAGER-like simulation slices of

Jensen et al. (2014) at (30, 50, 73, 95) percent ionized hydrogen fractions in (purple,

blue, yellow, red) respectively. We assume a Lyα luminosity cut of log10LLyα >

42.7 erg s−1, corresponding to the approximate limiting line flux of the observed

LAGER LAEs. The (602x607x600) Mpc3 simulations have been divided into 20

slices of (602x607x30) Mpc3, corresponding to the approximate depth of the LAGER

narrowband at zLyα ∼ 6.9 and effective area projected for the 8 planned LAGER fields.

With these large slices, we can approximate the ‘true’ 2D VPF for the simulated
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LAEs at each ionization fraction (by covering large enough areas to minimize cosmic

variance), and later compare to the 2D VPF we measure with LAGER DECam-sized

subslices of these simulations. We plot the mean 2D VPF across the 20 slices as

colored circles and shade the 3σ standard error (3 standard deviation divided by the

square root of the number of samples). Different ionization fractions show varying

number densities and very different VPFs, both from the effect of decreasing neutral

fractions and also evolution in the host dark matter halos and galaxies themselves

over cosmic history.

3.4 Constraining Global Neutral Fractions with the VPF from LAGER

In this section, we ask and answer: what area is needed to make precise constraints

on reionization for the LAGER survey with LAE clustering? Specifically, how distin-

guishable are the different ionization fractions using the VPF for narrowband-detected

volume limited samples as a function of survey volume? To do this, we use the con-

servative guidelines of Perez et al. (2021) to identify which radii will give trustworthy

VPF measurements, and focus upon the behavior of the VPF at the smallest and

largest trusted scales for when we pick and sample one, four, or eight LAGER-like

fields.

As discussed in §3.3, the clustering of LAEs is affected in its extent and distribu-

tion by reionization. Instigating a single luminosity cut across all ionization fraction

volumes mimics how narrowband-detected LAEs at different redshifts and neutral

fractions show a clear drop in their number density and increase in their cluster-

ing. This closely complements analyses of the Lyα luminosity function as it evolves

through the epoch of reionization, and will offer a constraint of the neutral fraction

of the IGM under the same effect with different models and simulations, and utilizing

the same data with very little modification.
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Figure 3.2: The 2D VPF of LAGER-like Simulation Slices of Jensen et al. (2014) at (30, 50, 73, 95) Percent Ionized

Hydrogen Fractions.
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Figure 3.3: The distribution of the 2D VPF measured at 5.2 arcmin (13.23 Mpc)

for: all 160 individual DECam-sized subslices (left), the average when randomly

choosing four subslices (center) four hundred times, and the average when choosing

eight subslices (right) two hundred times. The solid lines are the 2D VPF of the

full-face volumes for the given ionization fraction in Figure 3.2, and serve as our

approximation of the ‘true’ VPF value at this radius. The 3σ standard error from of

the full-face 2D VPF are the colored shaded regions enclosed with thin black dotted

lines. The VPFs at this radius for completely unclustered Poisson distribution at the

relevant surface densities (averaged across the 20 whole-face slices) are approximately

{-0.08, -0.13, -0.23} for {0.30, 0.50, 0.73/0.95}.

Figure 3.4: Like Figure 3.3, but at the maximum radius of 12.68 arcmin (32.27 cMpc).
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Table 3.2: Details of the VPF Distributions in Figures 3.3 and 3.4. Once cutting up the Jensen et al. (2014) simulations

into 160 LAGER DECam-sized slices of (301x150.5x30) Mpc3, we measure VPF at the minimum and maximum scale

for LAGER across all individual slices, and then when randomly picking and averaging four or eight slices. We find the

distributions are well described by Gaussian functions, and we list the mean log10VPF value and full width at half max

for each distribution. We also calculate the approximate overlap between the simulations’ curves for each sampling.

Histogram selection Rmin = 5.2 arcmin Rmax = 12.7 arcmin

Sample size ⟨xi⟩m Peak

VPF

FWHM % overlap Peak

VPF

FWHM % overlap

All 160 single slices 0.30 -0.064 0.22 18% 0.30-0.95 -0.34 0.13 40% 0.30-0.95

... 0.95 -0.18 0.039 ... -0.87 0.19 ...

Pick 4, 400 times 0.30 -0.066 0.013 0% 0.30-0.95 -0.33 0.057 0% 0.30-0.95

... 0.50 -0.094 0.013 72% 0.30-0.50 -0.46 0.07 74% 0.30-0.50

... 0.95 -0.177 0.018 3% 0.50-0.95 -0.85 0.102 6% 0.50-0.95

Pick 8, 200 times 0.30 -0.068 0.0075 0% 0.30-0.73 -0.34 0.04 0% 0.30-0.73

... 0.50 -0.095 0.01 19% 0.30-0.50 -0.45 0.05 54% 0.30-0.50

... 0.73 -0.16 0.012 0% 0.50-0.73 -0.74 0.06 0% 0.50-0.73

... 0.95 -0.18 0.013 80% 0.73-0.95 -0.86 0.07 80% 0.73-0.95
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As derived in §3.3.2, a single DECam field of 3.3 deg2 at the observed LAE surface

density of 4.74×10−3 arcmin−2 will yield the conservative minimum and maximum

radii limits of about 8 and 10 arcminutes (respectively). In recognizing that real

galaxies will be clustered enough to be statistically distinct from random at smaller

radii, we choose to focus on the 2D VPF measured at R = 5.2 arcminutes. At this

radius, the mean VPF value of the 20 full-face slices is at least 3 standard devia-

tions away from the predicted value for a random distribution for all the simulations.

In comoving units, this corresponds to 13.3 cMpc, within our 25 radii spaced loga-

rithmically between 5 and 35 Mpc. To contrast this, we examine the VPF at 12.68

arcminutes (32.27 cMpc), near the largest radius that our conservative guidelines sug-

gest for the fully planned 8 LAGER fields (assuming a similar yield of effective area

as seen in Wold et al. 2021, approximately 15.5 deg2).

In Figure 3.2, we show the 2D VPF under a single luminosity cut for the 20

whole-face slices of (602x607x30) cMpc3. This mimics the ‘true’ value and inherent

variance of the 2D VPF for narrowband-selected LAEs at z = 6.9, given the simula-

tion assumptions and models. The colored circles are the mean VPF across the 20

slices, the shading is the 3σ standard error (where 1σ standard error is one standard

deviation divided by the square root of the number of slices), and the dashed lines are

the theoretical 2D VPF for an unclustered distribution at the surface density of the

given simulation. Each ionization fraction simulation is strongly clustered compared

to its random curve; and promisingly for our analysis, each ionization fraction’s 2D

VPF curves is statistically distinct from the others. As we will find when examining

the spread of the 2D VPF across individual DECam-sized slices, the large separations

allows for us to constrain mostly ionized vs. mostly neutral given the Jensen et al.

(2014) model assumptions with the four currently observed LAGER fields.

To probe how survey area affects the constraints that LAGER might give for
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reionization using the 2D VPF of LAEs, we leverage the size of the Jensen et al. (2014)

simulations to examine the behavior of the 2D VPF across 160 subslices similar to

individual DECam imagings. In Figures 3.3 and 3.4, we plot the measured 2D VPFs

under one Lyα luminosity cut (essentially one flux limit in our narrowband).The

leftmost subplot shows the distribution of 2D VPFs for all 160 (300x150x30) Mpc3

individual subslices (left); the center shows the distribution when we randomly ”pick

4” subslices and average them four hundred times; and the left shows the distribution

when we randomly ”pick 8” subslices and average them two hundred times. The ”pick

4” and ”pick 8” strategy mimics how the LAGER team will approach the clustering

measurements of the four current and eight total planned fields. In Table 3.2, we list

for Figures 3.3 and 3.4 the approximate central log10VPF value of each distribution,

the full width at half maximum, and approximate percent overlap of each simulation’s

distribution with its neighbors’.

Complete Figure 3.4 caption: What constraints on ionization fraction can

the VPF give for various survey areas of LAGER, at a small VPF scale? We plot

the distribution of the 2D VPF measured at 5.2 arcmin (13.23 Mpc) for: all 160

individual DECam-sized subslices (left), the average when randomly choosing four

subslices (center) four hundred times, and the average when choosing eight subslices

(right) two hundred times. Sampling more subslices will lead to averages that are more

narrowly distributed around the true average value. The solid lines are the 2D VPF

of the full-face volumes for the given ionization fraction in Figure 3.2, and serve as our

approximation of the ‘true’ VPF value at this radius. The 3σ standard error from of

the full-face 2D VPF are the colored shaded regions enclosed with thin black dotted

lines. The VPFs at this radius for completely unclustered Poisson distribution at the

relevant surface densities (averaged across the 20 whole-face slices) are approximately

{-0.08, -0.13, -0.23} for {0.30, 0.50, 0.73/0.95}. The left panel shows that a single
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LAGER field could constrain between 30% or 95% ionized universe; the center shows

that four averaged fields might additionally distinguish 50% ionized around -0.15<

log10P0 < -0.1; and the right shows that eight averaged fields more clearly distinguish

50% ionized, and may in rare cases also separate 73% from 95% ionized fraction where

-0.16 < log10P0 < -0.12.

Complete Figure 3.3 caption: Like Figure 3.3, but measured at the maxi-

mum radius of 12.68 arcmin (32.27 cMpc). The VPFs at this radius for completely

unclustered Poisson distribution at the relevant surface densities (averaged across the

20 whole-face slices) are approximately {-0.5, -0.75, -1.25, -1.3} for {0.30, 0.50, 0.73,

0.95}, and shown in colored dotted lines. The 3σ standard error from of the full-face

2D VPF are the colored shaded regions enclosed with thin black dotted lines. Like

Figure 3.3, these distributions show that the VPF measured at large scales can also

constrain whether an individual LAGER field is more likely to be 30% or 95% ionized,

and in some cases statistically distinguish a 50% ionization fraction under this model

as well. Individual VPF measurements become less correlated the more separated

they are in distance, allowing a verification of constraints at small distance scales.

Complete Table 3.2 caption: Details of the VPF distributions in Figures 3.3

and 3.4. Once cutting up the Jensen et al. (2014) simulations into 160 LAGER

DECam-sized slices of (301x150.5x30) Mpc3, we measure VPF at the minimum and

maximum scale for LAGER across all individual slices, and then when randomly

picking and averaging four or eight slices. We find the distributions are well described

by Gaussian functions, and we list the mean log10VPF value and full width at half

max for each distribution. We also calculate the approximate overlap between the

simulations’ curves for each sampling, finding what percentage of a given simulation’s

VPF are measured at the same value in any another simulation, and accounting for

variations due to binning and the sampling.
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When assessing the distribution of the 2D VPF for individual subslices, the 30%

and 95% simulations are quite distinct. As seen in Figure 3.3 and quantified in Table

3.2, the simulations overlap at their only tails around log10P0 ≈ −0.13. LAEs in a

given LAGER field are more likely to be mostly ionized if their log10P0 is measured to

be less than -0.13, and mostly neutral if their log10P0 is greater than -0.13. When we

randomly sample and average four fields (aka. ”pick 4”), the center panels of Figures

3.3 and 3.4 show how the 30 and 95 % ionized fraction simulations completely separate

with no overlap, allowing one to confidently determine that the z = 6.9 universe is

consistent with being either almost entirely ionized or mostly neutral with the VPF

of four LAGER fields. Additionally, the 50% simulation fills much of the gap between

them, even allowing one to tell apart 30 vs. 50% ionized fractions near log10P0 = −0.1

(−0.5 in Figure 3.4). With eight fields sampled (aka. ”pick 8”), as pictured on the

right side of Figure 3.3, the distributions will become narrower and allow more specific

ionization fraction measurements by the Jensen et al. (2013) models, differentiating

even 73% and 95% ionized fractions for rare samplings. For example, near log10VPF=-

0.14 in Figure 3.3 or log10VPF=-0.6 in Figure 3.4, the 95% distribution nearly never

samples but the 73% distribution often does.

In Figure 3.4, we examine the VPF distributions at 12.68 arcmin (32.27 cMpc),

the largest distance scale our covered area allows us to measure. This corresponds

to the 13 arcminutes allowed by the projected 15.5 deg2 for the full 8 fields planned

for LAGER for a VPF sensitivity of log10(P0) = −α = −2. The correlations between

individual VPF measurements will decrease the more separated they are in distance

scales, and VPF measurements are least correlated at small scales and most correlated

at the largest scales (Gangolli et al. 2021 and Gangolli, private communication).

This allows us to confirm the constraint on the ionized hydrogen fraction with the

VPF from the smallest distance scale, while minimizing the correlation between the
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clustering measurements.

As with the measurement at our smallest distance scale, at this largest distance

scale, the separation between 30% and 95% ionized is significant with even a single

DECam field. The 30% and 95% ionized simulations can be further distinguished

from 50% with 4 fields, and in rare cases also 73% ionized with all 8 planned fields of

LAGER. We stress again that we have somewhat pessimistically assumed the next 4

fields imaged by LAGER will cover the same effective area of the completed 4 fields. If

the 4 fields currently undergoing imaging and analysis all have effective areas of more

than 3 deg2 (as did WIDE12), the increase in both the number of LAEs detected and

covered area will mean the VPF can be measured more precisely to larger dynamic

range, with clearer understanding of cosmic variance, and further constrain the IGM

ionization fraction at z = 6.9.

Finally, let us further focus on the possibility of constraining between the most

ionized fractions, relevant to various studies attempting to constrain late stage reion-

ization. As mentioned before, we find that the 8 planned fields of LAGER will rarely

distinguish 73% from 95% ionized. This comes from examining the third panels of

Figures 3.3 and 3.4: the 73% from 95% distributions overlap significantly (as Table

3.2 notes pessimistically, about 80% of these distributions overlap in any amount).

Therefore, the 8-field VPF measurement would need to lie at the far edges of either

distribution (i.e. be a particularly clustered 73% value, or particularly unclustered

95% value). We do see that the full uninterrupted ‘full-face’ ∼24 deg2 measurement

of the VPF separates the 73% and 95% distributions to 3σ, leading to the question:

how many DECam fields’ worth of imagining are needed to reach a similarly nar-

row distribution? As Figures 3.3 and 3.4 show, 8 fields is not too far from that yet;

therefore, perhaps 12 fields of LAGER, for approximately 30 deg2, could further dis-

tinguish 73 and 95 % ionized. This agrees with Gangolli et al. (2021)’s analysis with
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the z = 5.7 LAE VPF in e.g. Figure 6, where the VPF “1σ dipersion from cosmic

variance in the VPF (assumed) a futuristic... SILVERRUSH-like survey with roughly

double the size” (approximately 40 deg2). If this is true, the VPF of a larger LAGER

survey would further refine Wold et al. (2021)’s constraint of ⟨xi,LAGER⟩ > 0.67 or

⟨xHI, LAGER⟩ < 0.33.

3.5 Summary and Conclusions

We leverage the uncommon VPF statistic to quantify how precise constraints on

reionization from clustering in the Lyman-α Galaxies in the Epoch of Reionization

(LAGER) narrowband survey may be. Specifically, we probe how distinguishable

different ionization fractions are when using the VPF for narrowband-detected volume

limited samples as a function of survey volume. We use the simulations of LAEs

throughout reionization from Jensen et al. (2014), and leverage the large (600 Mpc)3

volumes to statistically probe what the VPF of LAGER might measure for one, four,

or eight DECam imagings of LAEs at z = 6.9. We apply a Lyα line luminosity cut

of log10LLyα > 42.7 erg s−1, as measured in the observed LAEs of Wold et al. (2021).

Finally, we create volumes of LAEs within an IGM whose hydrogen is 30, 50, 73, or

95% ionized, slicing each to the width that the LAGER N964 filter spans at z = 6.9,

approximately 30 cMpc.

We measure the VPF on the 20 whole-face (602x607x30) Mpc3 slices as the ‘true’

VPF with minimal cosmic variance, given the Jensen et al. (2013) models and the

LAGER flux detection limits, in Figure 3.2. We then create slices of (301x150.5x30)

Mpc3 to serve as samples of what a single DECam imaging might measure, based

on the effective areas across the four fully-imaged LAGER fields analyzed in Wold

et al. (2021). To understand what constraints for reionization the cumulative LAGER

survey might give with the VPF, we randomly sample four (eight) subslices four (two)
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hundred times, creating distributions of what the VPF measurement might look like

for the four already analyzed LAGER fields and with the additional four fields in

progress (Table 3.2). We examine the VPF distributions near the smallest distance

scale given the observed LAE surface density (near 5 arcmin), and the maximum

radius implied by the full 8 field LAGER effective area (near 13.5 arcmin).

We note that all the Jensen et al. (2014) simulations’ morphology for reionization

comes from the single ionization scenario that was simulated, and that the shapes of

neutral and ionized regions will change with other assumptions for the sources and

sinks of Lyα emission. Our results are model-dependent upon the single scenario run,

and offer an additional comparison to models used for other Lyα studies. Additionally,

the large size of the simulations allows us to answer how much volume is needed to

constrain ionization fraction using the VPF, especially for the unique geometry of

LAGER. Future work, for example, will extend this type of analysis to determining

what constraints on models for the pacing of ionization the Roman Space Telescope

will be able to give for deep and wide surveys of LAEs between 7.2 < z < 14 (Perez

et al., in prep).

Under the Jensen et al. (2013) models and with the Jensen et al. (2014) simula-

tions, we find that even a single DECam field might be able to discriminate between

mostly neutral or mostly ionized based on the VPF distributions in Figures 3.3 and

3.4. Sampling and averaging four fields allows the distinction between 30, 50, and 95

percent ionized, and utilizing eight might even further distinguish between 73 and 95

percent ionized. An expanded LAGER survey of ten or more fields, with 30+ deg2

would confidently distinguish 73 and 95 percent ionized, and perhaps better refine

Wold et al. (2021)’s constraint of ⟨xi,LAGER⟩ > 0.67 or ⟨xHI, LAGER⟩ < 0.33. Finally, as

proposed in McQuinn et al. (2007), the VPF of a fully ionized sample under the same

luminosity selection (e.g. narrowband LAEs at z=5.7 or below) can be compared to
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the VPF of the LAGER z = 6.9 LAEs to further constrain reionization with Jensen

et al. (2013) model. Future work in the LAGER collaboration will examine the VPF

and other clustering statistics across the LAEs of all completed and ongoing fields,

and be informed by the precision and constraints predicted by our work.
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ABSTRACT

We use large simulations of Lyman-Alpha Emitters with different fractions of

ionized intergalactic medium to quantify the clustering of Lyα emitters as measured

by the Void Probability function (VPF), and how it evolves under different ionization

scenarios. We quantify how well we might be able to distinguish between these

scenarios with a deep spectroscopic survey using the future Nancy Grace Roman

Space Telescope. Since Roman will be able to do blind spectroscopic surveys of

Lyα emitters continuously between 7 < z < 12 to sensitivities of at least 10−17 erg

sec−1 over wide field of view, we will measure the epoch of reionization as well as

the pace of ionization of the intergalactic medium (IGM). We compare deep Roman

surveys covering roughly 1, 4 and 16 deg2, and constraints on reionization the VPF

may find. A survey of 1 deg2 would distinguish between very late reionization and

early reionization to 3σ near z = 7.7 with the VPF. The VPF of a 4 deg2 survey

can distinguish between slow vs. fast, and early vs. late, reionization at > 3 − 4σ at

several redshifts between 7 < z < 9. However, a survey of 13-16 deg2 would allow the

VPF to give several robust constraints (> 5 − 8σ) across the epoch of reionization,

and would yield a detailed history of the reionization of the IGM and its effect on

Lyman-α Emitter clustering.
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4.1 Introduction

The epoch of reionization (EoR) is the era when the earliest galaxies ionized the

ultraviolet-opaque ‘fog’ of neutral hydrogen that filled the early universe. Reionization

history is still not well constrained, as various probes have led to different conclusions

about its timing, pace, and sources (McQuinn, 2016). Lyman-α emitters (LAEs),

which are star-forming galaxies that strongly emit in the Lyα line, offer practical

probes of the reionization process. Detecting LAEs by their line emission enables

surveys of otherwise faint galaxies across a wide redshift range. Because the Lyα line

is resonantly scattered, it is easily attenuated by any amount of neutral hydrogen, and

its visibility is highly sensitive to the ionization state of intergalactic gas throughout

the reionization process (as predicted by Miralda-Escudé 1998; Haiman and Spaans

1999).

A common method of constraining reionization with LAEs uses the Lyα luminosity

function (LF; first implemented by Malhotra and Rhoads 2004b; e.g. Ouchi et al. 2010;

Santos et al. 2016; Ouchi et al. 2018; Morales et al. 2021). This works by comparing

the observed Lyα LF to that expected in a fully ionized medium (commonly based

on the observed LF at a redshift where reionization is believed to be complete, e.g.

z = 5.7, Ajiki et al. 2003; Ouchi et al. 2003; Hu et al. 2004).

LAE LF studies have reached various constraints for reionization. Some report

suppression of the LAE LF over (part of) the range 5.7 < z < 7, with inferred neutral

fractions of order 20–40 percent (McQuinn et al. 2007; Kashikawa et al. 2006; Iye et al.

2006; Ouchi et al. 2010; Kashikawa et al. 2011; Konno et al. 2014, 2018), while others

report upper bounds on neutral IGM (Malhotra and Rhoads 2004b, 2006), including

some bounds that are tight enough (< 20–30 percent at z = 7) to challenge some of

the suggested detections of neutral gas (Wold et al. 2022). LF suppression can have
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causes beyond a partially reionized IGM, such as cosmic variance, the evolution of the

halo mass function (Dijkstra et al., 2007), and evolution in various factors that affect

which galaxies strongly emit Lyα (e.g. Ota et al. 2008; Stark et al. 2010; Pentericci

et al. 2011; Ono et al. 2012; Schenker et al. 2012; Endsley et al. 2021).

The clustering of EoR LAEs is independent from the evolution of their intrinsic

LF, and provides an additional method of constraining reionization to help resolve

these tensions (McQuinn et al., 2007). Most constraints have used the angular two-

point correlation function (Ouchi et al. 2010; Sobacchi and Mesinger 2015b; Ouchi

et al. 2018; Gangolli et al. 2021) or related statistics (e.g. count-in-cells in Jensen et al.

2014). In this work, we focus on the Void Probability Function, a less common choice

for EoR LAEs (Kashikawa et al. 2006; McQuinn et al. 2007) but one that may offer

more sensitivity than the angular correlation function under some models (Gangolli

et al., 2021). The VPF measures clustering by measuring how likely a circle or sphere

of a given size is to be empty in a galaxy sample. As the 0th moment of count-in-cells,

or zero-point volume-averaged correlation function, it carries the signature of higher

order correlation functions. Its simplicity can be used to derive guidelines for the

required density and volume of surveys (Perez et al., 2021).

In Perez et al. (2022a, submitted; henceforth Paper 1), we quantified what con-

straints the VPF could yield for reionization when applied to large-area narrowband

searches for LAEs, such as the Lyman-Alpha Galaxies in the Epoch of Reionization

(LAGER) narrowband survey. LAGER detects z = 6.9 LAEs using a narrowband

filter centered at 9642Å with FWHM=92Å (corresponding to approximately 30 cMpc

at z = 6.9), mounted on the 3.3 deg2 field-of-view DECam on Cerro Tololo’s 4-meter

Blanco Telescope. So far, LAGER has yielded initial constraints of ⟨xi⟩v > 0.67 with

its four-field LF (Wold et al. 2022, building off Hu et al. 2019), and has the obser-

vation and analysis of another four fields in progress. Using the Jensen et al. (2014)
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simulations, Paper 1 predicts possible constraints for various iterations of LAGER

with the VPF. We identify how well 1, 4, or 8 LAGER DECam fields distinguish

different ionization fractions with the VPF, and lay out a framework and case for

using the two-dimensional VPF together with the Jensen et al. (2014) simulations to

constrain the ionized hydrogen fraction implied by LAE clustering.

While narrowband surveys like LAGER (Zheng et al. 2017; Hu et al. 2019, 2021;

Wold et al. 2022) and SILVERRUSH (Ouchi et al. 2018; Konno et al. 2018) have

been constraining the end of reionization with LAEs, the higher redshift EoR has

been much more difficult to study on a large scale with LAEs. Ground-based infrared

surveys are increasingly impractical at redshifts beyond z = 6.9 (where reionization

is thought to be mostly complete), both due to atmospheric OH emission creating

prohibitively bright sky foreground at most wavelengths, and a steep drop in silicon

detector response at 1µm that restricts searches to instruments with comparatively

small fields of view. Despite these challenges, focused ground-based searches for Lyα

at z = 7.7 and beyond (Tilvi et al. 2020; Oesch et al. 2015; Zitrin et al. 2015) have

yielded detections of Lyα emitters.

The Roman Space Telescope, NASA’s next flagship mission set to launch in the

mid-to-late 2020’s, is an infrared telescope with a 2.4 meter Hubble-sized mirror, and

a wide-field instrument with a 0.281 deg2 field of view (200 times that of Hubble’s

WFC3-IR). Roman’s wide-field instrument will have a slitless grism that is capable

of capturing Lyα at 7.2 < z < 14, as well as a lower-dispersion prism that will reach

Lyα at lower redshifts (z > 6). Roman can carry out surveys of reionization-era LAE

clustering that will notably refine our understanding of the EoR, giving definitive

constraints for how and when reionization occurred.

In this work, we adapt our framework from Paper 1 to make predictions for LAE

clustering observations with Roman. We quantify how Roman will constrain the tim-
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ing and pace of reionization given its wide field, sensitivity, and continuous redshift

coverage by combining three ingredients: a model for reionization in a ∼ (600cMpc)3

box that includes galaxy formation and radiative transfer of Lyα (Jensen et al., 2014);

a set of reionization history models that we use to map between redshift and simulated

neutral fraction; and instrumental sensitivity predictions based on detailed simula-

tions of Roman grism data sets (Wold et al, in prep). We then calculate the expected

VPF and its expected uncertainties for surveys covering ∼ 1, ∼ 4, and ∼ 16 square

degrees, at each of five neutral fractions (⟨xi⟩v = {0.22, 0.40, 0.485, 0.66, 0.93}), in

each of three reionization scenarios (gradual; rapid and early; rapid and late). We

thereby address how large a clustering survey must be to distinguish between models

for reionization history.

This paper is laid out as follows. In §4.2, we describe the theory and simulations

that support this work: the Jensen et al. (2014) simulations of LAEs through reion-

ization in §4.2.1; the models for reionization we compare in §4.2.2; our application of

the Wold et al. (in prep) Roman-Lyα grism simulations in §4.2.3; how we create mock

Roman LAE surveys from the above in §4.2.4; and finally, how we apply the VPF for

reionization constraints in §4.2.5. In §4.3, we explore how the VPF evolves through-

out the reionization history of the universe with different survey constructions, and

how precisely Roman will be able to make out the epoch and pace of reionization.

We focus on an ambitious 13-16 deg2 survey in §4.3.1; smaller 1 and 4 deg2 surveys

in §4.3.2; and a focused z ∼ 7.75 model comparison for the entire VPF(R) curve

in §4.3.3. Appendix B shows in detail our VPF measurements. We conclude and

summarize our results in §4.4.
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4.2 Simulations and Methods

4.2.1 Large Simulations of LAEs in Partially Reionized IGM

For samples of LAEs at various ionization fractions, we use the Jensen et al.

(2014, J14) simulations of LAEs, which include radiative transfer through various

amounts of ionized intergalactic medium (IGM). The simulations exist for discrete

volume ionized fractions of {22, 40, 48.5, 66, 78, 89, and 93} percent, corresponding

to mass ionized hydrogen fractions of {30, 50, 58, 73, 83, 92, and 95} percent. We

direct readers to Paper 1 for a more complete description of the J14 simulations and

their properties for contexts similar to this work, but review relevant details for their

assumptions for reionization (explained fully in Jensen et al. 2013).

The underlying reionization model of the J14 simulations can be summarized

as an inside-out reionization history that began somewhat early and progressed at a

moderate pace. They incorporated self-regulation as galaxies take part in reionization,

turning off small sources of ionizing radiation once the IGM passed 10% ionization.

The LAE catalogs at the highest ionization fractions (⟨xi⟩v > 0.6) are consistent with

the luminosity function of z = 5.7 LAEs (Ouchi et al., 2010). The simulations model

evolution of the halo mass function and galaxy luminosity function along with the

IGM neutral fraction, so that differences in the galaxy population between different

neutral fractions are automatically included in our analysis. Moreover, the intrinsic

evolution of Lyα galaxies should be modest during the rapid phases of reionization.

For example, ∆z = 0.5 only corresponds to 65 Myr at z = 7.

Later in this work, we will redshift the LAE catalogs to reflect the redshifts differ-

ent models for the EoR predict for each ionized IGM fraction (i.e. slow/fast, early/late

reionization), and then consider what Roman will observe in the context of the VPF

of LAEs. We will primarily focus on the ⟨xi⟩v={22, 40, 48.5, 66, 93} percent ion-
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ized simulations. Most of these fractions are predicted to exist at redshifts where

the Roman grism will observe Lyα under the models of reionization that we analyze.

The most ionized volume is in particular a useful baseline of clustering, and can be

compared to ground-based surveys as well as future studies with the Roman prism

that will detect Lyα to z > 6.

4.2.2 Models for Reionization

We focus on a representative sample of models for the reionization history of the

universe to guide our projections for Roman. Figure 4.1 shows the redshift vs. volume-

averaged fraction of ionized hydrogen in the IGM, according to the reionization models

of Finkelstein et al. (2019, F19), Naidu et al. (2020, N20), and Yung et al. (2020, Y20)

(respectively, blue, red, and green). Figure 4.1 shows the discrete ionization fractions

of the J14 simulations as dashed horizontal lines ranging from most neutral (purple)

to most ionized (red).

These models sample a range of reionization histories, driven by different assump-

tions about the production of ionizing photons. These models are tuned to reproduce

existing constraints for reionization, such as: measurements of the IGM temperature

that indicate a mostly ionized IGM at z ∼ 6 (e.g. Fan et al. 2006); analyses of mea-

sured Lyα line profiles that rule out a fully neutral universe at z = 6.6 (Haiman and

Cen 2005; Ouchi et al. 2010; Rhoads et al. 2013); quasar Gunn and Peterson (1965)

trough studies that find a fully ionized universe by z = 5 − 6 (e.g. Fan et al. 2006;

McGreer et al. 2015); and measurements of the average Thomson scattering optical

depth with cosmic microwave background (CMB) anisotropies (e.g. Dunkley et al.

2009; Planck Collaboration et al. 2016) that support higher-redshift extended reion-

ization (z > 7−8). These models also focus on galaxies as the likeliest and dominant

sources of reionization (e.g. Robertson et al. 2013), supported by the rarity of quasars
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Figure 4.1: The predicted volume-averaged ionized hydrogen fraction by redshift

according to several models of reionization: Finkelstein et al. (2019, F19) (blue),

Yung et al. (2020, Y20) (green), and Naidu et al. (2020, N20) (red). We identify at

which redshift the models (solid lines) predict the ionization fractions simulated by

Jensen et al. (2014, J14) (dotted horizontal lines). The grey shaded region indicates

the redshift (and relevant model information) the Roman grism cannot observe for

Lyα.
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beyond z > 6 and constraints on helium reionization (e.g. Madau and Haardt 2015).

Next, we briefly describe the models for reionization that this work will compare.

F19 present a semi-empirical model of reionization whose core is a physically-

motivated halo mass-dependent parametrization of escape fractions. In their model,

the faintest galaxies in the UV collectively dominate the ionizing emissivity, leading

to a reionization history that starts very early (80% volume-ionized at z ∼ 7) and

progresses at a smooth pace. They also model an AGN contribution to the end of

reionization, making up one third of the budget at z = 6, and predict a flat star

formation rate density at z > 8.

Y20 use end-to-end semi-analytic models with the goal of modeling in fine de-

tail all ionizing sources. They use physically motivated relationships between dark

matter halo formation histories and galaxy properties (including synthetic spectral

energy distributions) to connect galaxy formation physics to the large-scale reioniza-

tion history. They combine the Santa Cruz semi-analytic model for galaxy formation

(Somerville and Primack 1999; Somerville et al. 2008, 2015) with an analytic reion-

ization model (Madau et al. 1999, similar to that in Naidu et al. 2020), and have only

the escape fraction as a free parameter.

N20 create and apply an empirical model to explore what objects carried out the

bulk of ionization. Focusing specifically on ionizing photon escape fractions, their

model ties the escape fraction to the star formation surface density (as motivated

by recent samples of Lyman continuum leakers). Their model implies that rare very

massive and UV bright galaxies (‘oligarchs’) account for the vast majority of the

reionization budget.

When comparing these models purely on the reionization history they predict in

Figure 4.1, N20 and Y20 follow a similar pattern: reionization starts very slowly

and ramps up quickly after z < 8. N20 stands out among many reionization models
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for how late and rapidly it occurs. F19 also stands out by presenting a reionization

history that began earlier than z > 11 and evolved slowly and steadily. In the context

of LAE observations with Roman, a universe that F19 describes will find many more

LAEs at higher redshifts, as the IGM has more ionized gaps that allow the photons

through. On the opposite side, N20 would predict very few LAEs at z > 7 and

a mostly neutral IGM. Roman will hugely inform our understanding of reionization,

with its large field-of-view and vast redshift coverage beyond the low-redshift universe

where ground based observations have not found definitive constraints between these

models.

4.2.3 Roman Grism Lyα Sensitivity

The final ingredient needed is Roman’s expected sensitivity to Lyα across its broad

redshift range. Here, we leverage some of the core results of Wold et al. (in prep).

That work carries out detailed simulations of the LAE identification in Roman grism

data, and quantifies the expected completeness of LAE samples across a range of

luminosity and redshift. For this work, we use the results of their deepest simulation:

25 position angles at 10 kiloseconds each, for a total of 70 hours of exposure.

Wold et al. (in prep) test four bins for redshift completeness at z=7.5, 8.5, 9.5, and

10.5 for the Roman grism. They insert LAEs with known line flux and measured their

recovered fraction. They have quantified what flux and Lyα line luminosity limits

correspond to 50% completeness for various key redshifts. For z = {7.5, 8.5, 9.5, 10.5},

the limiting fluxes are {1.4e-17, 8.3e-18, 7.5e-18, 6.9e-18} erg s−1 cm−2, or Lyα line

luminosities {9.1e+42, 7.4e+42, 8.6e+42, 9.9e+42} erg s−1 respectively. The com-

pleteness functions approximate step functions, and we treat them as so in this work.

We show the redshift-dependent flux limits that we derive from Wold et al. (in

prep) in Figure 4.2. Roman reaches significantly deeper limiting fluxes at the highest
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Figure 4.2: The redshift-dependent flux limits we use, as informed by the detailed

Roman Lyα simulations of Wold et al. (in prep). The thresholds for applying each

flux are indicated by the blocks of shaded color (shallowest at the lower redshifts in

indigo, to the deepest high redshift observations in orange). Circles show the fluxes

where 50% completeness of LAEs was directly simulated for a deep imaging; stars are

our interpolations for in-between redshifts. We treat the completeness behavior as a

step-function. The fluxes applied to each redshift-reionization scenario are listed in

Table 4.1.
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Figure 4.3: A schematic showing how we slice the J14 simulations to explore the

constraints on reionization the Roman Space Telescope may find with the VPF. De-

pending on the redshift studied, the full face of the (601x607x600) cMpc3 volume cor-

responds to approximately 14-16 deg2. For our exploration of how the VPF evolves

by redshift under different models for the reionization history of the universe, we test

three survey areas with Roman: the full face ∼ 16 deg2, quarter-face ∼ 4 deg2, and

sixteenth-face ∼ 1 deg2. We assume a survey covering ∆z=0.2, which yields between

7 to 14 even slices in the simulations. Table 4.1 detail each redshift-reionization sce-

nario’s slice depth and approximate LAE surface density.
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redshifts for Lyα. The Roman grism sensitivity rises from its blue edge (1 µm,

corresponding to z = 7.2 for Lyα) towards redder wavelengths. Balancing this effect

against the rising luminosity distance, the Lyα luminosity limits are most sensitive

near z = 8.5. Finally, we choose to apply a ceiling sensitivity of 1.4e-17 erg s−1 cm−2

for all redshifts under z < 7.7. For z < 7.2, the Roman prism can be used instead of

the grism. Our assumption of a fixed flux limit at z < 7.7 is conservative, since the

prism has higher throughput than the grism at ∼ 1µm.

4.2.4 Projections for Roman VPF Measurements

We have described which discrete J14 ionization fraction simulations will likely be

observed by Roman; when the models of reionization predict each; and the expected

sensitivity of Roman to Lyα across its redshift range. We combine all these together

to extract slices from the J14 simulations corresponding to the clustering analysis that

Roman surveys will enable. In particular, we consider narrow slices (for a 2D VPF

clustering analysis) and three different survey constructions: ∼ 1 deg2, ∼ 4 deg2, or

∼ 16 deg2.

Figure 4.3 illustrates how we slice up the J14 volumes. We assume focused studies

of depth of ∆z ≈ 0.2, and create equally sized slices across the 600 cMpc volume

depth. Depending on the redshift that a given ionization model predicts an ionization

fraction, there can be between 14 slices × 43 cMpc/slice (e.g. F19 predicting ⟨xi⟩v =

0.22 at z = 10.8) to 7 slices × 86 cMpc/slice (e.g. F19 predicting ⟨xi⟩v = 0.93 at

z = 5.95) in the z-direction. The columns under ‘Slice×Depth’ in Table 4.1 detail

this for each redshift-ionization scenario.

Now armed with mock ∆z ≈ 0.2 slices of the J14 simulations for each reionization

model and redshift scenario, we apply a redshift-dependent flux limit (Figure 4.2,

§4.2.3) to the LAEs in each slice. The simulated LAEs of J14 come with transmitted
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Lyα luminosities. In order to apply the Roman-specific flux limit from Figure 4.2

to a given LAE, we translate the given flux limit to a luminosity cut based on the

LAE’s position within the slice. In each J14 full-face slice, we imagine the center

Z-position is at the given redshift of focus, with ∆z± 0.1 as the back and front edges

of the slice. We associate the relative comoving position of a LAE in the slice to a

luminosity cut, and apply given the flux limit for the central redshift in Figure 4.2

to generate a flux-limited samples for 2D clustering. We average the number of the

LAEs that pass their redshift-position flux cut across all full-face slices, and divide by

the area implied for 602×607 cMpc2 at the central redshift. This yields the surface

density “Σ, LAEs deg−2” column in Table 4.1, ranging from a few dozen to a few

hundred deg−2. These are the LAE surface densities expected under the Wold et

al. (in prep) sensitivity predictions and nuances of the J14 simulations across all our

redshift-reionization scenarios.

Next, we consider the X and Y dimensions of our mock LAE samples. At the red-

shifts examined, the full-face of the (602×607) cMpc2 J14 simulations cover between

13-16 deg2. We split each slice into exact quarters (301×303.5 cMpc2) or sixteenths

(150.5×151.75 cMpc2) to examine slices of approximately 4 deg2 or 1 deg2, respec-

tively. This maximizes the number of completely independent mock LAE samples

we are able to create, and covers a broad range of possible survey areas. Later, we

will use all the independent ∆z = 0.2 slices to explore the variability in the VPF as

a function of survey area. Figure 4.3 displays our handling of the J14 simulations,

with the additional illustration of what the default Roman grism will observe: an

area of 0.281 deg2 simultaneously covering 7.2 < z < 14. Though we are artificially

creating slices of ∆z = 0.2 about specific redshifts, in truth Roman will be able to

access LAEs across the bulk of reionization history. Table 4.1 summarizes the re-

sults of transforming each model into a redshift-reionization scenario for clustering
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measurements.

4.2.5 The Void Probability Function for Reionization

The Void Probability Function (VPF) is a measurement of clustering that quan-

tifies how likely a region of a given size is to be empty within the sample. Or, if

one drops a certain number of circles of some R, how many are empty? It is the

zero-eth moment of count-in-cells, focusing only on the cells with no galaxies, and

therefore carries the signature of higher order volume-averaged clustering statistics

(White 1979). Perez et al. (2021) applied an analysis of the hierarchical scaling be-

tween the VPF and higher order correlation functions (see also Conroy et al. 2005),

comparing the VPF-derived volume averaged two-point correlation function and stan-

dard Landy and Szalay (1993) correlation function for simulated 3.1 < z < 6.6 LAEs.

They also derived theoretical descriptions for minimum and maximum distance scale

guidelines for the VPF that we use in this work.

The VPF has also been leveraged specifically for reionization constraints. Kashikawa

et al. (2006) and McQuinn et al. (2007) examined the ability of the VPF to constrain

reionization for Subaru LAE observations at z = 6.6. More recently, Gangolli et al.

(2021) explored the constraining power of the VPF and other clustering statistics for

SILVERRUSH LAEs at z = 5.7. In Paper 1, we used the VPF to quantify what

constraints on reionization the LAGER narrowband survey will be able to make at

z = 6.9 with one, four, or eight fields’ worth of imaging.
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Table 4.1: Details for mock Roman observations given the Finkelstein et al. (2019, F19), Yung et al. (2020, Y20), and

Naidu et al. (2020, N20) models for reionization, generated from to the Jensen et al. (2014, J14) volumes. For a given ⟨xi⟩v

simulation, we list: the redshift each model predicts the ionized fraction; the number and depth of slices corresponding to

∆z = 0.2 depth; the flux limit applied at the redshift in log10 erg sec−1; the corresponding limiting Lyα line luminosity in

a slice; and the average surface density in deg−2 for one full-face slice.

⟨xi⟩v Slice Center z Slices×Depth, cMpc Lim. Flux, log10 erg s−1 Lim. log10LLyα Σ, LAEs deg−2

Model: F19 Y20 N20 F19 Y20 N20 F19 Y20 N20 F19 Y20 N20 F19 Y20 N20

0.22 10.8 8.75 7.6 14x43 12x50 10x60 -17.2 -17.08 -16.9 43.04 42.91 42.98 29 52 43

0.40 9.65 8.0 7.1 13x45 10x60 9x67 -17.2 -17.04 -16.9 42.92 42.88 42.91 66 103 85

0.485 9.1 7.75 6.9 12x50 10x60 8x75 -17.1 -17.0 -16.9 42.93 42.89 42.88 104 148 160

0.66 7.85 7.3 6.65 10x60 9x67 8x75 -17.0 -16.9 -16.9 42.88 42.97 42.85 162 133 211

0.93 5.95 6.85 6.3 7x86 8x75 8x75 -16.9 -16.9 -16.9 42.73 42.9 42.79 381 200 273
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We measure the VPF using the k-nearest neighbors algorithm introduced in Baner-

jee and Abel (2020), which is notably faster than other methods. In a given slice,

the transverse comoving positions of LAEs that passed the flux cut are normalized

to cover e.g. x = 0 − 301, y = 0 − 303.5, and z = 0 − 60 cMpc for a ∼ 4 deg2 slice

at z = 9. For each of several radii between 5 and 50 cMpc, we drop 100,000 random

points in a slice to measure the VPF. We repeat this process 5 times to minimize sam-

pling error, and use the average across the five samplings as the measured VPF of a

given slice. When we later explore the VPF behavior of a given redshift-reionization

scenario as a function of area, we will compare the mean and standard deviation of

the VPF across all ∆z = 0.2 slices of a particular area.

For a focused statistical analysis, in this work we will primarily discuss the VPF

at R ∼ 12 cMpc. R ∼ 12 cMpc roughly corresponds to expected scale of ionized

bubbles during reionization for the redshifts we examine. The smallest visible bubbles

in the Lyα distribution are ones that will results in a Gunn and Peterson (1965)

line center optical depth of τ ≈ 1, and which are therefore large enough to allow

sufficient transmission of Lyα (see Rhoads and Malhotra 2001; Rhoads 2007). The

characteristic radius of these bubbles comes out to 1.2 physical megaparsec, or:

Rbubble, cMpc = 1.2 pMpc × (1 + z). (4.1)

The VPF is a volume-averaged clustering statistic, which in practice means that

general trends are consistent between nearby distance scales. In §4.3.3, however, we

study the VPF across all radii for the models near z = 7.75.

4.3 Redshift Evolution of the VPF Across Reionization

We now examine the evolution of the VPF across reionization history that Roman

will observe, and identify what constraints on reionization models the VPF may yield.
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Figure 4.4: VPF(z) for a Roman field covering 14-16 deg2 at 11.86 cMpc. The colors

indicate the model of reionization: N20 (red), F19 (blue), and Y20 (green). The

shapes of the points indicate which J14 volume was used for the VPF measurement:

⟨xi⟩v = 93 (plus sign, left-most), 66 (star), 48.5 (square), 40 (triangle), or 22 (circle,

right-most) percent ionized. Error bars correspond to the 1σ standard deviation

of the VPF across all full face ∼ 14 − 16 deg2 and ∆z = 0.2 slices created for each

simulation-reionization model pairing. The detailed VPF distributions can be studied

in the Appendix.
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We focus on three representative models of reionization: the very early and slow F19

model, the quick yet middle-of-the-road Y20 model, and the very late and very fast

N20 model. The complete histograms for each model’s redshift-reionization scenario

VPF are shown at full scale in the Appendix B Figures 1 - 3. We ask: how well can

Roman distinguish these reionization histories with the VPF using surveys of ∼ 1 vs.

∼ 4 vs. 13–16 deg2?

4.3.1 Constraints from a 14-16 deg2 Roman Survey

We first examine the results of the most ambitious survey we probe, for nar-

row slices encompassing 13-16 deg2 of Roman spectroscopic observations. Figure 4.4

shows the VPF(z) at R ∼ 12 cMpc for each redshift-reionization scenario, using

several independent full-face (602x607) cMpc2 slices from each simulation. The 3

representative models of reionization are indicated by different colors: N20 (red), F19

(blue), and Y20 (green). The shape of each symbol indicates which J14 simulation

was sliced up for the VPF measurement: 22, 40, 48.5, 66, or 93 percent ionized (with

markers circle, triangle, square, star, and plus, respectively). The error bars are the

1σ standard deviation across the 7-14 full-face slices’ VPFs at the given radius (some

of which are smaller than the symbol sizes).

These VPF(z) curves follow some trends: more neutral and higher-redshift slices

have higher void probabilities (i.e. their log10(VPF) is closer to 0, meaning they have

more empty dropped circles). This is not unsurprising, as lower density samples

implicitly have more and larger voids. However, the pattern of the VPF also in-

corporates the predicted reionization histories, which Roman will be able to observe

simultaneously across redshift history.

This largest explored survey area creates many opportunities for clear constraints

on the timing and pace of reionization. First, we see the VPF is clearly different
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between different ionization fractions at the same redshift (as seen in Paper 1, and

further explored for z = 7.75 in §4.3.3). With this survey area, the VPF of all

models’ redshift-reionization scenarios are completely separated by at least 1.5σ (e.g.

F19 and Y20 near z = 7.8), with most separated by > 4σ from the nearest scenario of

another model. For example, the Y20 (⟨xi⟩v=0.93) and the N20 (⟨xi⟩v=0.485) VPF

measurements at z = 7.8 are distinguishable to 5σ, allowing Roman to decidedly

constrain between a very late vs. somewhat early reionization. Past z = 8, where the

Roman grism reaches peak sensitivity, the F19 (⟨xi⟩v=0.66) and Y20 (⟨xi⟩v=0.485)

may be separated enough for distinguishing constraints of 3σ with a survey of ∼

14 deg2; therefore clarifying if reionization started very early or somewhat early.

Additionally, the very late and fast N20 (⟨xi⟩v=0.22) history can be distinguished

from the earlier start of Y20 (⟨xi⟩v=0.40, 0.485) or F19 (⟨xi⟩v=0.66) to > 8σ near

z = 7.75. Finally, if the pacing and timing predicted by the F19 and Y20 VPF(z)

hold near z ∼ 9, the Roman may distinguish the two reionization histories to more

than 4σ with the VPF.

Taken together, these results show that by combining any 2 to 3 redshifts, we are

able to distinguish any pair of reionization histories with the VPF. More broadly,

this VPF test will only be unable to distinguish two reionization models if they yield

functionally identical reionization histories. Therefore, measurements of the Lyα VPF

throughout the Roman grism can definitively identify which of the probed models best

describes the reionization history of the universe.

4.3.2 Constraints from 4 and 1 deg2 Roman Surveys

A LAE survey of 13-16 deg2 with Roman would yield excellent > 5σ constraints

at several redshifts, and decisively rule in or our key features of reionization history.

Might we reach similar constraints with smaller surveys? We repeat the process of
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Figure 4.5: Like Figure 4.4, but instead for slices of ∼ 4 deg2 created for each

simulation-reionization model pairing (at least 4×7 slices, each with a redshift depth

of ∆z = 0.2).
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Figure 4.6: Like Figures 4.4 and 4.5, but instead for slices of approximately 1 deg2

(one sixteenth of the face of the Jensen et al. 2014 simulations; at least 16×7 total

slices). Error bars are the 1σ standard deviation across all slices’ VPF.
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Figure 4.5 using instead the ∼ 4 deg2 and ∼ 1 deg2 slices.

The primary effect of the smaller area is decreased precision in the VPF from

Poisson noise and larger variance across slices. However, we find the VPF across

the ∼ 4 deg2 slices can still reach multiple constraints for the epoch and pace of

reionization, to between 2.5-8σ across 6.8 < z < 9. First, the Y20 (⟨xi⟩v=0.93) and

the N20 (⟨xi⟩v=0.485) VPF measurements at z ∼ 6.8 are distinguishable to about

2.5σ. This would identify a very late reionization at redshifts accessible with the

Roman prism and ground-based surveys (consistent with our results in Paper 1 for

LAGER). Additionally, near z = 7.5 − 8 the F19 (⟨xi⟩v=0.66) and N20 (⟨xi⟩v=0.22)

scenarios could be distinguished to 3σ apart, independently constraining early vs. late

and slow vs. fast reionization. Notably, more constraints for the timing of reionization

are distinguishable to 6 − 8σ near z = 7.75 between the N20 (⟨xi⟩v=0.22) and Y20

(⟨xi⟩v=0.40, 0.485) models. However, we note these constraints are within the redshift

range where the sensitivity of the grism changes rapidly, so LAE selection must be

done carefully to leverage this survey area. Finally, the F19 (⟨xi⟩v=0.485) and Y20

(⟨xi⟩v=0.22) scenarios at z ∼ 9 may be at least 3− 4σ apart if the apparent patterns

hold beyond where the discrete fractions of the J14 simulations reach.

Is it possible to make constraints with an even smaller survey? Figure 4.6 repeats

our process for the ∼ 1 deg2 slices at R = 11.86 cMpc. The reduced area puts some

of our earlier constraints out of reach, as fewer galaxies introduce more uncertainty to

the VPF and makes fractions more difficult to distinguish. This scarcity of LAEs can

still be a useful constraint: for example, an early investment of a few weeks of Roman

observing time to cover 1 deg2 may find fewer than 50 LAEs deg−2 at z > 8 (i.e.

a low surface density consistent with the more neutral ionization fractions), which

would provide some support for the later reionization models. However, there are

still strong constraints the VPF of LAEs will yield for the timing of reionization. The
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N20 (⟨xi⟩v=0.22) and Y20 (⟨xi⟩v=0.40, 0.485) histories near z = 7.75 are still distin-

guishable to 3 − 4σ. Additionally, the F19 (near ⟨xi⟩v=0.485) and Y20 (⟨xi⟩v=0.22)

scenarios at z ∼ 9 could perhaps be distinguished to more than 2σ apart, if the

apparent trend of we see in the VPF(z) is true.

4.3.3 Example Focused Constraints near 7.6 < z < 7.9

As we have explored, a constraint between very late vs. early reionization can be

made near 7.6 < z < 7.9 with all the survey areas we explore. Though we have so far

focused on the behavior of the VPF at R ∼ 12 cMpc, we measure the VPF between

5 < R < 50 cMpc. How do the complete VPF curves behave for each of these distinct

ionization predictions near 7.6 < z < 7.9?

Figure 4.7 compares the complete VPF(R) measurements for the three models in

this narrow redshift window: F19 predicting ⟨xi⟩v=0.66 near z = 7.85; Y20 predicting

⟨xi⟩v=0.485 near z = 7.7; and N20 predicting ⟨xi⟩v <0.22 near z = 7.6. The dashed

colored lines indicate the mean VPF across all the independent ∆z = 0.2 slices of a

given area. The colored shaded regions indicate the (log-space) errors corresponding

to the 1σ standard deviation across the slices. The drop-off of the colored shading

indicates where most slices start to find VPF=0. We also show as grey shading the

maximum distance scale to measure the VPF for each survey area we probe (Perez

et al., 2021, given a precision to log10(VPF)> −1.5). We note that for the full-face

14-16 deg2 surveys, the blue F19 and green Y20 1σ shadings begin to overlap only at

R > 15 cMpc; and, that for the 4 deg2 surveys, the mean Y20 VPF values are similar

to the upper 1σ bound of the F20 shading at nearly all distances. Since N20 predicts

such a late and swift reionization, we assume the ionization fraction will be no higher

than 22% near z = 7.75, and that therefore the VPF measured for ⟨xi⟩v=0.22 near

z = 7.6 is a good approximation. Though the Roman grism becomes more sensitive
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past z > 7.7, we assume that this effect would be offset by a much more neutral IGM

in the N20 model.

Much like Paper 1 showed for LAGER at z = 6.9, we find this single redshift can

yield useful constraints on reionization even with smaller surveys. We find similar

results for z ∼ 7.7: increasing the area of the survey yields VPF measurements

that more accurately reflect the ‘true’ VPF value of the sample with lower variance.

We note that this work improves the VPF’s precision by increasing the continuous

covered area of a single imaging, rather than combining several independent smaller

imagings of the sky as in Paper 1 with LAGER. With a ∼ 1 deg2 survey, N20 can be

well-distinguished from the Y20/F19 scenarios (> 3σ), effectively ruling in or out a

very late reionization history. Increasing to ∼ 4 deg2 improves the constraint notably

(> 6σ) and also expands the distance scales that allow this constraint (to R < 30

cMpc). However, the Y20/F19 models cannot be distinguished until analyzing ∼ 15

deg2 (∼ 1.5σ at R < 15 cMpc).

Finally, we remind readers that we have focused the scope of this analysis for two

key reasons: first, we are limited to the ionized fractions of the existing J14 simula-

tions; and second, we focus on the representative reionization models of F19, Y20, and

N20, and where in cosmic history they predict each of the discrete fractions. Once

actually observing with Roman, we will find completely independent measurements

of the VPF at more redshifts than we are able to probe under this analysis. As we

have done in Paper 1 for LAGER, the exercise of this sub-section can be done at any

redshift to constrain which J14 ionization fraction simulation’s clustering may best

describe the VPF as measured in a deep Roman LAE survey. Therefore, the overall

evolution of the VPF across 7.5 < z < 10.5 will help confidently constrain the pacing

of our universe’s reionization history.
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Figure 4.7: The complete VPF curves for the three ionization fractions–⟨xi⟩v=0.22, 0.485, 0.66–predicted near z ∼ 7.75

by the three models (N20, A20, F19 in red, green, blue respectively). The colored sharing are the 1σ standard deviation

across all independent ∆z = 0.2 slices of the given area. Grey shading indicates the approximate distance scales where

the given survey area cannot measure the VPF (assuming α = 1.5, and that all models exist at z = 7.75 for simplicity).
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4.4 Conclusion

This work explores the constraints the Roman Space Telescope will find for the

timing and pacing of reionization using the clustering of LAEs. We use the Void Prob-

ability Function (VPF), which asks how many randomly dropped spheres are empty,

is tied to all higher order correlation functions, and is a simple clustering statistic to

implement and guide survey construction. We focus on three representative models

for reionization: Finkelstein et al. (2019, very early and slow reionization), Yung et al.

(2020, early and quick reionization), and Naidu et al. (2020, late and fast reioniza-

tion). We use the (602× 607× 600) cMpc3 simulations of LAEs through reionization

of Jensen et al. (2014), at discrete ionized IGM fractions between 0.22 < ⟨xi⟩v < 0.93.

Informed by small and high-resolution simulations for Roman’s grism responsiveness

to Lyα (Wold et al. in prep), we create projections for LAEs as observed by Roman

throughout reionization.

We mimic the three models’ reionization histories by projecting each J14 simula-

tion to the redshifts where each model predicts the given volume-averaged ionization

fraction. We create mock Roman LAE surveys of ∆z = 0.2 that cover: 14-16 deg2 (the

full face of the simulation), ∼ 4 deg2 (quarter face of the simulation), or ∼ 1 deg2 (one

sixteenth of the simulation face). We measure the VPF and answer: what constraints

on the pacing and timing of reionization might Roman find with the clustering of

LAEs, as a function of survey area?

We find that a ∼ 1 deg2 survey can constrain between very late vs. early reioniza-

tion near z = 7.7 to > 3σ, and perhaps also between very early and slow vs. quick and

late reionization near z ∼ 9 to > 2σ. By investing in 4 deg2, the VPF of LAEs is able

to distinguish: early vs. late reionization 3σ between 7.5 < z < 8 and z ∼ 9; and slow

vs. fast reionization 3σ at z ∼ 8. Additionally, if the ramp-up of the grism sensitivity
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is considered, early and slow vs. fast and late reionization may be distinguished to

6σ or more near z = 7.5 − 8. Finally, we find a 13-16 deg2 area would give VPF

measurements that would essentially trace out a precise reionization history of the

universe, and determine with great confidence (> 4 − 5σ) the most accurate model

describing the timing and pacing of reionization.
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Chapter 5

SUMMARY & OUTLOOK

I conclude this dissertation by summarizing our findings, and considering the

future of the VPF and galaxy clustering. Detailed and complete summaries are given

at the end of each Chapter.

In Chapter II, we applied the VPF to large simulations of Lyman-α emitters at

z = {3.1, 4.5, 5.7, 6.6} (Tilvi et al., 2009), and examined the behavior of the VPF and

the volume-averaged correlation function ξ̄ under hierarchical scaling. We confirmed

these LAEs are best fit by the negative binomial model (that also best describes

this behavior in low-redshift galaxies), and probed how transforming the VPF into ξ̄

(rather than how it is often done in reverse) informs these fits. Our results suggest that

LAEs in the Tilvi et al. (2009) model may show large-scale higher clustering similar

to that of low-redshift galaxies, and that larger simulations are needed to confirm this

behavior. Additionally, we created general guidelines for when to measure the VPF,

which we used in later Chapters to inform clustering surveys based off projected LAE

surface densities and the amount of measured clustering.

In Chapter III, we shifted to assessing the core motivation of this dissertation:

constraining reionization with the (VPF) clustering of LAEs. Using (602×607×600)

cMpc3 large simulations of LAEs throughout reionization Jensen et al. (2014), we

first focus specifically on informing future VPF analyses for the LAEs observed in

the LAGER narrowband survey. We slice up and apply selections to the simulations

to closely mimic LAGER LAE observations, yielding several hundred slices that can

give us a sense of what a single LAGER DECam imaging may measure. We statisti-

cally probe what the VPF of LAGER might measure for one, four, or eight DECam
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imagings of LAEs at z = 6.9: how well do each of these areas tell apart the ionized

fractions of each volume? Our results suggest that even a single DECam field might

be able to discriminate between mostly neutral or mostly ionized with the VPF. We

also find that using four fields allows the distinction between 30, 50, and 95 percent

(mass-averaged) ionized fraction, and the eight planned LAGER fields might even

further distinguish between 73 and 95 percent ionized.

In Chapter IV, we expand our analysis to yield practical projections of how Roman

may constrain reionization with the VPF of LAEs. We transform the Jensen et al.

(2014) simulations to study different reionization histories: starting very early and

occurring slowly (like Finkelstein et al. 2019), starting early and occurring somewhat

quickly (like Yung et al. 2020), or starting very late and finishing very quickly (like

Naidu et al. 2020). We apply selections to reflect how Roman will observe LAEs (Wold

et al. 2022b, in prep), and create slices to reflect 2D clustering surveys of ∆z = 0.2

and approximately 1, 4, or 16 deg2. We identify that a 1 deg2 survey will yield crucial

initial constraints on an early vs. very late reionization to > 3σ at z ∼ 7.7, and

also perhaps distinguish very early and slow vs. quick and late reionization to > 2σ

near z ∼ 9. Investing in larger areas expands the accessible constraints and their

robustness. We project a 4 deg2 survey will be able to distinguish early vs. very

late and slow vs. fast reionization to at least 3σ with several separate LAE samples.

Finally, we show an ambitious 13-16 deg2 survey will yield numerous robust > 5σ

constraints on the epoch and timing of reionization, and create a cohesive narrative

for the EoR. We note these constraints are limited by the discrete ionization fractions

we are able to study, the redshifts we are able to assess, and the complexities and

caveats of all the models for reionization we compile.

As one may have noticed in the literature referenced throughout, the VPF is in a

bit of a renaissance. We are not the only ones actively applying the VPF to reioniza-
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tion in the last decade and a half (Gangolli et al., 2021); folks are using it for better

constraints on halo occupation (Walsh and Tinker, 2019); and recent computational

innovations have featured its calculation (e.g. Banerjee and Abel 2020’s kNN method,

and Sinha and Garrison 2020 grouping all CiC calculations under the VPF). It would

not be inaccurate to say I am happily attempting to lead this renaissance–as we move

into the era of big data and precision cosmology, we should use every tool at our

disposal, especially when it is as simple to implement and quietly profound as the

VPF.

I will finish here by discussing what still needs to occur to maximize the knowledge

we gain about the EoR with the VPF. Clearly, measuring the VPF of the observed

LAGER LAEs is a goal of the near future. However, we also need robust measure-

ments of the VPF of observed LAEs at lower redshifts. Getting a large enough sample

of LAEs in a completely ionized IGM (but still high redshift enough to minimize inher-

ent halo evolution) will be a crucial baseline for confirming the amount of clustering

amplified by reionization. We also need larger areas and more LAEs. As alluded

to in Chapters III and IV and their cited literature, another crucial constraint for

the process of reionization requires more difficult galaxy selections. If we are able to

create observed LAE samples at different redshifts/ionization fractions that are large

enough to down-sample to a single number density, we will be able to quantify the

additional clustering caused by inside-out reionization. This would be an exciting and

unique constraint, that is finally within reach as Roman nears launch and operations.
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O. Le Fèvre, D. Maccagni, K. Ma lek, F. Marulli, H. J. McCracken, L. Paioro,
M. Polletta, A. Pollo, H. Schlagenhaufer, M. Scodeggio, L. A. M. Tasca, R. To-
jeiro, D. Vergani, A. Zanichelli, A. Burden, A. Marchetti, Y. Mellier, R. C. Nichol,
J. A. Peacock, W. J. Percival, S. Phleps and M. Wolk, “The VIMOS Public Extra-
galactic Redshift Survey (VIPERS). On the recovery of the count-in-cell probability
distribution function”, A&A,588, A51 (2016).

Beltz-Mohrmann, G. D., A. A. Berlind and A. O. Szewciw, “Testing the accuracy
of halo occupation distribution modelling using hydrodynamic simulations”, MN-
RAS,491, 4, 5771–5788 (2020).

Benson, A. J., “Galaxy formation theory”, Phys. Rep.,495, 33–86 (2010).

Berlind, A. A. and D. H. Weinberg, “The Halo Occupation Distribution: Toward an
Empirical Determination of the Relation between Galaxies and Mass”, ApJ,575,
587–616 (2002).

117
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L. F. Barrientos, J. González-López, L. A. Perez, A. A. Khostovan, L. Infante,
C. Jiang, C. Moya-Sierralta, J. Pharo, F. Valdes and H. Yang, “New spectroscopic
confirmations of Lyman-α emitters at z ∼ 7 from the LAGER survey”, arXiv e-
prints p. arXiv:2111.01173 (2021).
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H. Dole, S. Donzelli, O. Doré, M. Douspis, A. Ducout, J. Dunkley, X. Dupac, G. Efs-
tathiou, F. Elsner, T. A. Enßlin, H. K. Eriksen, M. Farhang, J. Fergusson, F. Finelli,
O. Forni, M. Frailis, A. A. Fraisse, E. Franceschi, A. Frejsel, S. Galeotta, S. Galli,
K. Ganga, C. Gauthier, M. Gerbino, T. Ghosh, M. Giard, Y. Giraud-Héraud,
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A PAPER I: HIERARCHICAL SCALING MODELS

As published with Paper I, Perez et al. (2021).
We summarize the various models of hierarchical scaling between the volume-

averaged correlation functions that we test for our simulated LAE catalogs. We
discuss the negative binomial model in great detail in §2.4.3. The bulk of this list
and the functional forms of the models come from C05, Cr04, and Fry and Colombi
(2013). The order of these models follows the order of their curves in Figure 2.4, from
top to bottom.

Thermodynamic & Gravitational Quasi-Equilibrium Models

(The naming schemes for these models have evolved over time, and what we call
the QEM is referred to as the thermodynamic model in several places. We identify
the QEM as Fry and Colombi 2013 do, and call the final form of the model that Fry
1986 derives the thermodynamic model.)

The thermodynamic (black dash-dot curve) and the so-called gravitational quasi-
equilibrium (black crosses) in 2.4 are both derived from the same occupation proba-
bility distribution of Saslaw and Hamilton (1984). They developed a thermodynamic
theory of the properties of gravitational clustering that yields this occupation distri-
bution (Fry, 1986):

PN =
N̄(1 − b)

N !
[n̄(1 − b) + Nb]N−1 exp(−N̄(1 − b) −Nb). (1)

A thorough explanation of the derivation of the two models can be found in Fry
(1986), which we summarize here. The “quasi-equilibrium” model (black crosses in
Figure 2.4) comes from approximation discrete realization of a continuous background
number density:

χQEM = (1 + N̄ ξ̄)−1/2 (2)

One can then apply a continuum limit to process the PN distribution into a dis-
cretized continuum for large N̄ :

NN−2QN = (2N − 3)!!, K = ξ̄−1[1 − (1 − 2N̄ ξ̄)1/2], (3)

which gives the form of the “thermodynamic” model we plot as a black dash-dot
curve in 2.4:

χthermo =
(

(1 + 2N̄ ξ̄)1/2 − 1
)
/N̄ ξ̄ (4)

Ahmad et al. (2002) derived the thermodynamic model from statistical mechan-
ics, imagining that galaxy clustering evolves through a sequence of quasi-equilibrium
states and supplying fundamental justification for the model. Sheth (1998) derived
a model that yields the same Sp scaling coefficients as the thermodynamic model,
but by instead approaching the evolution of the dark matter halo mass function as
an extension of the excusion set model. Fry (1985) details that the thermodynamic
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model is only valid in large volumes (once N̄ ξ̄ has converged), and expresses concern
at how such large scales could have become thermodynamically relaxed over age of
universe. (Given that at the redshifts of our simulated LAEs, the universe was 800
million to 2.1 billion years old, this concern remains.)

Geometric Model

This model begins with an occupancy probability distribution pn ∝ pn, and is
a specialized case of the hyper-geometric model of Mekjian (2007), the Hamilton
(1988) model, and alternate form of the model in Alimi et al. (1990). The geometric
hierarchical model takes the form:

χgeom = 1/(1 +
1

2
N̄ ξ̄) (5)

Minimal Model

The minimal model can be derived by taking the moments of galaxy counts in a
hierarchical Poisson model, in which galaxies form in randomly places clusters of Nc

galaxies and N̄ ξ̄ ≫ 1 (Fry, 1988). This model is another limiting case of the Mekjian
(2007) model. The minimal Poisson model has all scaling coefficients Sp = 1 for all
p, and takes the form:

χmin =
(

1 − exp(−N̄ ξ̄)
)
/N̄ ξ̄ (6)
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B PAPER III: CONSTRAINING REIONIZATION WITH ROMAN

Detailed VPF Distributions

What do the distributions of the VPF across all the independent ∆z = 0.2 slices
look like for each redshift-reionization scenario? We compare the distribution of the
VPF measurements across: the ‘full-face’ slices of approximately 13-16 deg2 (top row),
the few dozen slices of approximately 4 deg2 (middle row), and the several dozen slices
of approximately 1 deg2 (bottom row) in Figures 1 - 3. Columns indicate the J14
volume analyzed in the scenario, with the most neutral to the left and increasing in
ionization fraction. Each figure shows, in a solid line whose color corresponds to the
⟨xi⟩v value of the simulation (e.g. in Figure 4.1, the mean of the VPF across the
several full-face slices). The histograms for the 4 deg2 and 1 deg2 slices also show the
1σ standard deviation across the full face slices. Increasing the survey area steeply
narrows the distribution of sampled slices about what is likely the true VPF value.

The histograms are not normalized, and we use (5, 15, 20) default-Matplotlib
bins for the (∼ 16, ∼ 4, ∼ 1) deg2 slices. We also remind readers that each slices’
VPF measurement is the average across 5 calculations of the VPF with the Banerjee
and Abel (2020) k-NN method. Though not shown here, all valid distributions are
clustered compared to random (e.g. Paper 1 Figures). Finally, a quirk of the VPF is
that the spread of a distribution is related to its central value: more clustered VPFs
(closer to zero) also have narrower distributions.
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Figure 1: Focused distributions of the VPF measured at R = 11.86 cMpc for the Finkelstein et al. (2019) redshift-
reionization scenarios; the columns are the J14 simulation volume (left: ⟨xi⟩v=0.22, in increasing order until right:
⟨xi⟩=0.93). The rows are for the Roman survey area probed: full-face 13-16 deg2 (top), ∼ 4 deg2 (middle), ∼ 1 deg2

(bottom). The solid lines in all figures indicate the mean VPF across the full-face slices; the semi-transparent shading in
the ∼ 4 deg2 and ∼ 1 deg2 histograms are the 1σ standard deviation measured on the full-face distributions.
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Figure 2: Like Figure 1, but for Yung et al. (2020).
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Figure 3: Like Figure 1, but for Naidu et al. (2020).
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Lucia Pere] <lapere]5@asu.edu>

IMPOR7AN7: PHUPLVVLRQ WR SXW RXU 2021 LAE 9PF SDSHU LQ P\ GLVVHUWDWLRQ? 
3 PHVVDJHV

Lucia Pere] <ODSHUH]5@DVX.HGX> FUL, ASU 22, 2022 DW 1:28 3M
7R: 6DQJHHWD MDOKRWUD <VDQJHHWD.PDOKRWUD@DVX.HGX>, JDPHV 5KRDGV <JDPHV.5KRDGV@DVX.HGX>

Hi SangeeWa and JameV,
AV SDUW RI WKH 3KD SURFHVV, A68 UHTXLUHV ZULWWHQ SHUPLVVLRQ WR XVH SXEOLVKHG SDSHUV LQ GLVVHUWDWLRQV (DWWDFKHG LV WKH SROLF\).  
Can I haYe \oXU SeUmiVVion Wo SXW oXU SaSeUɾ"9RLG 3UREDELOLW\ FXQFWLRQ RI 6LPXODWHG 6XUYH\V RI HLJK-UHGVKLIW L\Į EPLWWHUV" (3HUH], MDOKRWUD, 5KRDGV, &
7LOYL; 7KH AVWURSK\VLFDO JRXUQDO, 9ROXPH 906, IVVXH 1, LG.58; JDQXDU\ 2021)ɾin m\ diVVeUWaWion? A UeVSonVe Wo WhiV email iV SlenW\.
Thank \oX Vo mXch! We'Ue doing iW!!!!
BeVW,
LXcia

--  
LXcia A. PeUe]
School foU EaUWh and SSace E[SloUaWion
PhD ReciSieQW, AVWUoSh\VicV

polic\-on-using-preYiousl\-published-Zork.pdf 
133K

Sangeeta Malhotra <6DQJHHWD.MDOKRWUD@DVX.HGX> FUL, ASU 22, 2022 DW 2:05 3M
7R: LXFLD 3HUH] <ODSHUH]5@DVX.HGX>

<RX KDYH P\ SHUPLVVLRQ WR XVH WKLV SDSHU DV D FKDSWHU RI \RXU WKHVLV.

 

6DQJHHWD

[QXRWed We[W hiddeQ]

James Rhoads <JDPHV.5KRDGV@DVX.HGX> FUL, ASU 22, 2022 DW 3:15 3M
7R: LXFLD 3HUH] <ODSHUH]5@DVX.HGX>
CF: 6DQJHHWD MDOKRWUD <6DQJHHWD.MDOKRWUD@DVX.HGX>

HL LXFLD.

<RX KDYH P\ SHUPLVVLRQ WR XVH WKH SDSHU \RX PHQWLRQHG DV SDUW RI \RXH 3KD WKHVLV. 

5HJDUGV, JDPHV 5KRDGV
[QXRWed We[W hiddeQ]

Figure 4: Permission for Paper I, from S. Malhotra and J.E. Rhoads.

C CO-AUTHOR APPROVALS FOR PUBLISHED WORKS

Written, express permission from all co-authors for published, submitted, and
to-be-submitted works presented in Lucia A. Perez’s dissertation.
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LXcia PeUe] <laSeUe]5@aVX.edX>

IMPORTANT: PHUPLVVLRQ WR SXW RXU LAE VPF SaSHU LQ P\ GLVVHUWaWLRQ? 

V. TilYi <tilvi@asu.edu> Wed, Mar 23, 2022 at 12:53 PM
To: Lucia Perez <laperez5@asu.edu>

Hi Lucia,

Great news !

Yes, for sure you have my permission for this.

Cheers,
Tilvi

On Mar 23, 2022, at 8:25 PM, Lucia Perez <laperez5@asu.edu> wrote:

Hi TiOYi!
I hRSe \RX'Ye beeQ ZeOO! I'P FINALLY geWWiQg eYeU\WhiQg Uead\ WR defeQd aQd gUadXaWe! CXUUeQWO\ VcUaPbOiQg WR fiQiVh XS VRPe ZRUN,
cRPSiOe P\ diVVeUWaWiRQ, aQd VchedXOe Whe defeQVe. AV \RX Pa\ be faPiOiaU ZiWh fURP ZRUNiQg ZiWh a bXQch Rf XV WhURXghRXW Whe OaVW feZ
\eaUV, ASU ZaQWV ZUiWWeQ SeUPiVViRQ WR XVe SXbOiVhed SaSeUV iQ diVVeUWaWiRQV (aWWached iV Whe SROic\).ɾ
CaQ I haYe \RXU SeUPiVViRQ WR SXW RXU SaSeU"Void Probability Function of Simulated Surveys of High-redshift Lyα Emitters" (Perez, Malhotra,
Rhoads, & Tilvi; The Astrophysical Journal, Volume 906, Issue 1, id.58; January 2021)ɾiQ P\ diVVeUWaWiRQ? A UeVSRQVe WR WhiV ePaiO iV SOeQW\.
ThaQN \RX VR PXch! I'OO aOVR VhaUe aQ iQYiWaWiRQɾWR P\ defeQVe RQce iW'V VchedXOed, aQd ZRXOd ORYe fRU \RX WR PaNe iW if Whe WiPe]RQeV ZRUN
RXW.
BeVW,
LXcia

--  
LXcia A. PeUe]
SchRRO fRU EaUWh aQd SSace E[SORUaWiRQ
PhD CaQdidaWe, AVWURSh\VicV
<policy-on-using-previously-published-work.pdf>

Figure 5: Permission for Paper I (Chapter 2), from V. Tilvi.
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LXcia PeUe] <lapeUe]5@aVX.edX>

IMPORTANT: PHUPLVVLRQ WR SXW RXU LAE VPF SaSHU LQ P\ GLVVHUWaWLRQ? 

PeWeU LaXUVen <SHOa@QbL.NX.GN> WHG, MaU 23, 2022 aW 11:29 AM
TR: LXcLa PHUH] <OaSHUH]5@aVX.HGX>

HL LXcLa,

TKaW VRXQGV JUHaW! AQG \HV, RI cRXUVH \RX KaYH P\ SHUPLVVLRQ :)

I MXVW KaG a ORRN aW WKH PaQXVcULSW, aQG I WKLQN HYHU\WKLQJ ORRNV VSOHQGLG. I'G YHU\ PXcK OLNH WR MRLQ \RXU GLVVHUWaWLRQ, bXW \HV, GHSHQGLQJ RQ ZKaW WLPH \RX
GHIHQG LW PLJKW bH a bLW OaWH IRU PH. LHW PH NQRZ ZKHQ \RX NQRZ :)

AOO WKH bHVW,
PHWHU 

OQ 23 MaU 2022, aW 16.07, LXcLa PHUH] <OaSHUH]5@aVX.HGX> ZURWH:

HL PHWHU!
HRSH \RX'YH bHHQ ZHOO! I'P FINALLY JHWWLQJ HYHU\WKLQJ UHaG\ WR GHIHQG aQG JUaGXaWH! CXUUHQWO\ VcUaPbOLQJ WR ILQLVK XS VRPH ZRUN, cRPSLOH
P\ GLVVHUWaWLRQ, aQG VcKHGXOH WKH GHIHQVH.ɾI KaYH VRPHWKLQJ WR aVN RI \RX, aQG a IHZ XSGaWHV.
OQ WKH VPF-LAGER SaSHU: I'YH JRWWHQ WKH VHcRQG-URXQG UHIHUHH UHVSRQVH cRPSOHWHO\ GRQH aQG I'P TXLWH VXUH LW ZLOO bH accHSWHG, WKRXJK I'P
cXUUHQWO\ ZaLWLQJ IRU SaQJHHWa WR VHWWOH VRPH LAGER-VSHcLILc cROOabRUaWLRQ TXHVWLRQV bHIRUH UHVXbPLWWLQJ. II \RX'UH cXULRXV, KHUH'V WKH
OYHUOHaI WKaW ZLOO bH VHQW LQ:ɾKWWSV://ZZZ.RYHUOHaI.cRP/UHaG/JSJKNGWV]]UM
M\ bLJ aVN: AUL]RQa SWaWH aOORZV LWV PKD VWXGHQWV WR XVH WR XVH SXbOLVKHG SaSHUV LQ GLVVHUWaWLRQV aV ORQJ aV ZH KaYH ZULWWHQ SHUPLVVLRQ
(aWWacKHG LV WKH SROLc\). CaQ I KaYH \RXU SHUPLVVLRQ WR SXW RXU PaQXVcULSW LQ P\ GLVVHUWaWLRQ aV LWV RZQ cKaSWHU? A UHVSRQVH WR WKLV HPaLO LV
SOHQW\.
TKaQN \RX VR PXcK! I'OO aOVR VKaUH aQ LQYLWaWLRQɾWR P\ GHIHQVH RQcH LW'V VcKHGXOHG, aQG ZRXOG ORYH IRU \RX WR PaNH LW LI WKH WLPH]RQHV ZRUN
RXW.
BHVW,
LXcLa
--  
LXcLa A. PHUH]
ScKRRO IRU EaUWK aQG SSacH E[SORUaWLRQ
PKD CaQGLGaWH, AVWURSK\VLcV
<SROLc\-RQ-XVLQJ-SUHYLRXVO\-SXbOLVKHG-ZRUN.SGI>

Figure 6: Permission for Current Draft of Paper II (Chapter III), from P. Laursen.
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