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ABSTRACT 

The current work aims to understand the influence of particles on scalar transport 

in particle-laden turbulent jets using point-particle direct numerical simulations (DNS). 

Such turbulence phenomena are observed in many applications, such as aircraft and rocket 

engines (e.g., engines operating in dusty environments and when close to the surface) and 

geophysical flows (sediment-laden rivers discharging nutrients into the oceans), etc. 

This thesis looks at systematically understanding the fundamental interplay 

between (1) fluid turbulence, (2) inertial particles, and (3) scalar transport. This work 

considers a temporal jet of Reynolds number of 5000 filled with the point-particles and the 

influence of Stokes number (St). Three Stokes numbers, St = 1, 7.5, and 20, were 

considered for the current work. The simulations were solved using the NGA solver, which 

solves the Navier-Stokes, advection-diffusion, and particle transport equations.  

The statistical analysis of the mean and turbulence quantities, along with the 

Reynolds stresses, are estimated for the fluid and particle phases throughout the domain. 

The observations do not show a significant influence of St in the mean flow evolution of 

fluid, scalar, and particle phases. The scalar mixture fraction variance and the turbulent 

kinetic energy (TKE) increase slightly for the St = 1 case, compared to the particle-free 

and higher St cases, indicating that an optimal St exists for which the scalar variation 

increases. The current preliminary study establishes that the scalar variance is influenced 

by particles under the optimal particle St. Directions for future studies based on the current 

observations are presented.  
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INTRODUCTION 

1.1 – Definitions 

 Turbulence is a common phenomenon that occurs commonly in natural phenomena, 

and in engineering and industrial applications. It can be described as the unsteady, irregular, 

random, and chaotic fluid flow that is observed in the surroundings (Pope, 2000). Hinze 

(1975) describes turbulence as “An irregular flow condition in which various quantities 

show a random variation with time & space coordinates”. Although the concept of turbulent 

flows has been commonly known for a long time, the understanding of the turbulent flow, 

its quantitative analysis and estimation is still an active area of research. The main reason 

for it is the presence of the inertial term in the Navier Strokes equation which requires 

closure schemes to solve (Foias et al, 2001).  

One of the major ways in which the turbulence is generated is at the wall or by the 

flow of layers of fluids with different velocities past one another. This is called turbulent 

shear flow (JO Hinze, 1975). There are 3 major types of turbulent shear flows – (1) 

Homogenous Turbulent Shear Flow, (2) Wall-bounded Turbulent Shear Flow and (3) Free 

Turbulent Shear Flow (Atta et al., 1995). The free turbulence shear flow occurs between 

two streams of differing velocity generating velocity gradients between them with no direct 

effect of the boundaries. The free shear flows are mainly composed into three types – (1) 

Jets, (2) Wakes and (3) mixing layers (Hinze, 1975).   

  The turbulent jets are the most studied to understand the behavior of the free shear 

flows. In jets the turbulence occurs due to the mean-velocity difference between the two 



2 
 

fluid media without the interference of the boundary walls (Pope, 2000). Depending on the 

inlet type, the jets can mainly be classified into 2 types – (1) axisymmetric (or) round jets, 

and (2) planar jets. As the name suggests, the round jet is a type of jet flow in which the 

fluid enters the domain through inlet (or) nozzle area. Since the jet inlet is boundless in all 

the three directions, the jet is free to expand in all the three directions. This is different in 

comparison with planar jets. As the name suggests, planar jets have an inlet opening that 

isn’t bounded in one cross-sectional direction. Here, in these jets, the fluid comes out from 

the long length (typically the infinite) along one of the cross-sectional axes of the jet. The 

variation (or) the velocity gradient along the above discussed cross-sectional axis is very 

low (close to 0) in comparison with the gradients in other directions, making the fluid to 

freely expand in the latter directions only.   

The other method of classifying the jet flows is through the jet evolving methods 

in space and time. Here also, the jet flows are typically classified into 2 types – (1) Spatial 

jets, and (2) Temporal jets. The difference between these two types of jet is their evolution 

of velocity gradients in space and time planes. For the spatial jets, the jet evolution (or) the 

change in overall velocity is observed in the special direction(s) and being stationary in the 

temporal domain whereas for the temporal jets, the jet evolution (or) the change in overall 

velocity is observed in the temporal domain, making it independent of the spatial 

direction(s). In the temporal jets case, the jet is assumed with certain initial condition of jet 

flowing inside the domain in contrast with the spatial jet case, in which the jet is assumed 

to start from the nozzle area and make it through the other end of the domain.  The most 

common jet profile that can be possible to experiment with is the spatial jet. Hence more 
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of the past and ongoing research is done in the domain of spatial jets in comparison with 

the temporal jets.   

For the current work, we consider turbulent temporal plane jets that is laden with 

particles. There can be two types of particles flowing in the domain – (1) Passive flow of 

the particles, and (2) Inertial flow of the particles. Passive particles are the category of 

particles which don’t cause significant momentum or energy difference between 

themselves and the fluid flow. These particles typically tend to replicate the fluid flow 

properties. Whereas the inertial particles are the category of particles that cause momentum 

and energy difference between themselves and the fluid flow. These particles typically tend 

to modify the flow propagation. The main variable that determines if the particles behave 

as active (or) passive is the Stokes number, St. St is the ratio of particle response time to 

the fluid response time. If a St is low, then the particle’s response to change with the fluid 

is extremely high in comparison with the fluid response giving the particles least resistance 

to change the flow. The reverse happens at high St, making the particles give resistance to 

the fluid flow for the response. This makes the case with low St as passive particles flow 

and the case with high St as active particles flow.  

1.2 – Literature Review 

The earliest computational model that was developed to understand the turbulence 

and mixing phenomenon in jets was by Corrson & Kistler (1955). They have conducted 

experiments and built models to understand the mixing between the turbulent and non-

turbulent boundary layer. This means that the focus was on the boundaries of the jet and its 

mixing into the static fluid domain around the jet. From this point on, most of the research 
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started to grow in the turbulence jets along with understanding the mixing of the jet into 

the surroundings along with the fluid transport process across them.   

During the early research on the particle-laden jets, various experiments were 

undertaken like – particles in liquids and gases, drops or sprays in liquids and gases, and 

bubbles in liquids to understand the impact of particles on the fluid flow and the turbulence 

mixing between the jet and stationary domain (Parthasarathy et al., 1987). Also, the 

interaction between the solid particles with the turbulent flow was examined through the 

behavior of particles in a jet dominated by vortex ring structures (Longmire et al., 1992). 

These early models have based their simulation on the data obtained from the experiments. 

The earliest k – є models were proposed by Elghobashi (1984), in which the 

turbulence kinetic energy and its rate of dissipation were modelled along with the time-

averaged turbulent correlations. The simulation was considered for a coarser mesh grid, 

and the jet considered was the turbulent axisymmetric gaseous jet with spherical uniform-

sized solid particles. The same kind of setup was also used for experimental purposes, and 

the parameter values were estimated. It was noticed that the parameters generated from the 

k – є model, the mean flow properties, the turbulent kinetic energy, and Reynolds shear 

stress show good agreement with the experimental data. Although in this paper, the mixing 

concept wasn’t defined, it gave the motivation for future research to consider finer mesh 

for better estimations. 

From Hussain (1986), it can be said that the process of turbulence mixing takes 

origin from the large structures of the turbulence in the core flow region, giving a clearer 
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picture of how the turbulence causes the mixing of the fluids into each other. Later, the 

simulations on the turbulence jets were carried out by Silva et al. (2004) and Akhavan et 

al. (2000) to determine the properties and energy spectra of turbulent temporal jets.  

In the DNS of particle-laden spatial planar jets, it could be inferred that the Stokes 

number has a non-uniform effect on the spatial distribution of particles. It does have a 

monotonous effect on the average slip velocity, average particle kinetic energy and the 

average particle Reynolds number with non-linear scaling laws. The inter-particle relative 

velocity also takes on a profound dependence on the Stokes number (Kun Luo, 2013). The 

behavior of a two-way coupling at a very long distance from the entrance behaves the same 

as that of one-way, but when we compared both behaviors near the nozzle, the centerline 

velocity decays at a slower rate due to the forcing from the particles (F Picano, 2011).   

Simultaneous velocity and concentration measurements can be estimated through 

experiments of PIV and PLIF and can be compared with the situational results. In the work 

by Borg (2001), the RANS method for computations is used. The mean profiles that are 

simulated match well with the experimental result, but there exists the inadequacy of 

models for the turbulent mass transport based on the standard gradient diffusion concept, 

which is observed in the experimental data. Differences between the experimental and 

simulation quantities are found mainly in the cross-sectional plane of concentration 

fluctuations, for which the experiment data have a lower level. Together with lower values 

in velocity fluctuations, the turbulent mass transport data estimated through simulation 

shows a significant difference from experimental data. For better accuracy of the 

turbulence quantities, a finer model needs to be applied.  
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The processes of entrainment and mixing in free-shear flows are known to be 

characterized by a variety of scales ranging from large-scale fluctuations of the turbulent 

core to small-scale motions acting on convoluted boundaries (A Cimarelli, 2020). The most 

coherent turbulent structures take the form are quasi-streamwise vortices and high and low 

streamwise velocity streaks. The topology of these structures is analyzed by their shape 

and size in the different flow regions of the disorganized motion in turbulent free-shear 

flows and used to assess the models on turbulent mixing (A Cimarelli, 2022). 

In the turbulent planar jet, the shearing motion is stronger than the other motions, 

but many of the shear layers do not align with the mean shear direction. The enstrophy 

production in the turbulent planar jet is dominated by the interaction between the motions 

of shear and elongation. Small-scale shear layers were identified as regions with strong 

shear. The kinetic energy dissipation in the turbulent planar jet is dominated by the 

interaction between the motions of shear and elongation in the temporally evolving 

turbulent planar jets (M. Hayashi, 2021).   

A similar study was conducted by Carrasco (2023) in which the droplets were used 

in place of the particles. The computations are performed using DNS with the liquid phase 

represented as discrete particles. The physical phenomenon involved is considered to 

analyze the influence of liquid droplet evaporation & molecular mixing processes 

described by two distinct multicomponent transport models playing a crucial role in the 

plane jet development and drastically altering its characteristics before ignition and 

subsequent combustion stabilization. 
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1.3 – Current Work 

The current work focuses on understanding the scalar transport of the temporal jet 

in the fluid domain filled with the particles with varying particle characteristics. The 

simulations are like Masato Hayashi, et al (2021) but instead of passive response of the 

particles, the active particles are considered to observe the effect of particles in changing 

the fluid flow. As active particles change the fluid flow and the DNS captures the smallest 

possible effects based on the Kolmogorov length and time scales, it can estimate how the 

turbulence parameters such as centerline velocity, Turbulent Kinetic Energy and mixing of 

the jets are affected due to the particles present in the domain.   

The interactions between the particles and fluid are estimated using the Euler – 

Lagrange approach with no-slip and no-penetration boundary conditions. Also, gravity is 

ignored due to its low value when compared to that of the fluid velocities. The particle 

collision is also ignored to reduce the complexity. low particle volume fraction when 

compared to the fluid volume fraction. 
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SIMULATION DETAILS 

2.1 – Introduction 

A range of computational approaches exists for various turbulent multiphase flows 

based on the Stokes number and particle volume fraction, as shown in Fig 2.1.1. The best 

approach to solve for the point-particles smaller than the Kolmogorov scale is the Eulerian–

Lagrangian point-particle approach (or) Fully resolved approach (S Balachandar, 2010). 

Some of the common methods of the Eulerian–Lagrangian approach are – (1) Reynolds 

Averaged Navier-Stokes (RANS), (2) Large Eddy Simulation (LES), and (3) Direct 

Numerical Simulation (DNS).  

 

(Fig 2.1.1 – Different approaches to multiphase turbulent flow (S Balachandar, 2010)) 

The RANS is the turbulent flow approach where the flow quantities are 

decomposed into their time-averaged and fluctuating components to solve the Navier-

Stokes Equations (Durbin, 2001). The LES also solves the Navier-Stokes equation without 
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approximations but models the smallest length scales. Out of the three, the highest fidelity 

method to get the resolved physics of the turbulent flows is through the DNS, as it intends 

to solve the unsteady, three-dimensional Navier-Stokes equation directly without any 

approximations other than discretization to the smallest length and time scales (Jean M, 

2000). Although the DNS solves for the resolved scales, it is computationally expensive 

due to the comparatively large grid resolutions required in comparison with the other two 

models. From Fig 2.1.2, it can be inferred that the DNS resolves the flow in all the smallest 

possible length and time scales. Still, for it to compute successfully, it requires state-of-

the-art computational facilities that can provide enough logical processors to simulate the 

flow within the optimal duration. 

 

(Fig 2.1.2 – Common methods used in turbulence simulations (Pierre Sagaut, 2013)) 

Hence in this current work, the simulations are solved using the DNS method. Apart 

from the DNS method, the point-particle approximation is considered. The main reason for 

considering the point-particle approximation is that the particle diameter is less than the 
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grid size. Also, the particle diameter is used to calculate the particle mass density to 

maintain a constant St. As the particle diameter is less than grid length & isn’t used in any 

of the governing equations, the point-particle approximation is valid for the DNS. 

2.2 – Governing Equations 

The flow equations that govern the particle-laden turbulent jet flows are the Navier-

Stokes equation of incompressible flows for determining the fluid velocity, the scalar 

transport equation for determining the scalar concentration and the particle transport 

equation for determining particle location and velocity throughout the domain. As the 

current work is focused on the fluids at room temperature and low volume fraction of the 

particles, the temperature component doesn’t have any impact on the flow (or) scalar 

concentration in the domain. Hence it can be ignored in the momentum and transport 

equations. The two-way coupling is maintained at the particle-fluid interface for the 

momentum exchange to take place between them. The effective equations for the fluid 

current work are (Peter J Ireland, 2017): 

Continuity Equation: 

𝜕(1 − ∅)𝜌𝑓

𝜕𝑡
+ ∇. (1 − ∅)𝜌𝑓𝑢𝑓⃗⃗⃗⃗ = 0 

Momentum Equation: 

𝜕(1 − ∅)𝜌𝑓𝑢𝑓⃗⃗⃗⃗ 

𝜕𝑡
+ ∇. ((1 − ∅)𝜌𝑓𝑢𝑓⃗⃗⃗⃗  ⨂𝑢𝑓⃗⃗⃗⃗ )

= −∇p + μ∇2uf⃗⃗  ⃗ + ∇. 𝑹𝜇 + (1 − ∅)𝜌𝑓𝑔 − 𝐹𝑝
𝑖𝑛𝑡𝑒𝑟⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 
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Scalar Transport Equation: 

𝜕𝜌𝑍

𝜕𝑡
+ ∇. (𝜌 𝑢⃗⃗⃗  𝑍) = ∇. (𝜌𝐷𝑧∇𝑍) 

Where 𝜌𝑓 is the fluid density, 𝑢𝑓⃗⃗⃗⃗  fluid velocity, ∅ particles volume fraction, 𝑝 is the 

pressure, 𝐹𝑝
𝑖𝑛𝑡𝑒𝑟⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ is the interphase coupling force, 𝑔  is the gravitational acceleration and 𝑹𝜇 

is the tensor that arises from filtering the fluid stress tensor given as 𝑹𝜇 = 𝜇[(∇𝑢𝑓⃗⃗⃗⃗ )
𝑇
−

2

3
(∇. 𝑢𝑓⃗⃗⃗⃗ )𝑰], where 𝑰 is an identity tensor (Peter J Ireland, 2017) and 𝑍 is the scalar 

concentration and 𝐷𝑧 is the diffusivity (O Desjardins, 2013). The particles phase is treated 

in the Lagrangian frame where every particle is traced. The dynamics of the particles can 

be calculated using the Newton’s second law of motion: 

Particles Transport Equation: 

𝑚𝑝

𝜕𝑢𝑝⃗⃗ ⃗⃗ 

𝜕𝑡
= F𝑝

inter⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + 𝐹𝑝
𝑐𝑜𝑙⃗⃗ ⃗⃗⃗⃗ ⃗⃗ + 𝑚𝑝𝑔  

Where 𝑢𝑝⃗⃗ ⃗⃗  is the particle velocity, F𝑝
inter⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   is the force acting on the particle from Surrounding 

fluid, 𝐹𝑝
𝑐𝑜𝑙⃗⃗ ⃗⃗⃗⃗ ⃗⃗  is the force due to the collision between the particles. The particles rotation and 

collision are avoided to reduce the complexity in the simulation. The intercoupling force 

can be approximated to the drag force due to the uniform flow when the diameter of the 

particle is less than the flow resolving scale.  The drag force can be obtained through many 

classical models. In the current work the drag model of Tenneti et al. (2011) is employed, 

that is derived from the particle-resolved DNS. The expression for the drag is given as:  
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𝑓𝑖
𝑑𝑟𝑎𝑔

𝑚𝑝
=

1

𝜏𝑝
(𝑢𝑓,𝑎𝑣𝑔 − 𝑢𝑝)𝐹(𝜀𝑓 , 𝑅𝑒𝑝) 

where 𝜏𝑝 is the particle response time, 𝐹(: , : ) is the dimensionless drag force coefficient,  

𝜀𝑓 is localized volume fraction of the fluid and 𝑅𝑒𝑝 is the particle Reynolds number. The 

final expression for the dimensionless drag coefficient is as follows: 

𝐹(𝜀𝑓 , 𝑅𝑒𝑝) =
(1 + 0.15𝑅𝑒𝑝

0.687)

𝜀𝑓
2 + 𝜀𝑓𝐹1(𝜀𝑓) + 𝜀𝑓𝐹2(𝜀𝑓 , 𝑅𝑒𝑝) 

𝑅𝑒𝑝 =
𝜀𝑓𝜌𝑓|𝑢𝑓 − 𝑢𝑝|𝑑𝑝

𝜇
; 𝐹1(𝜀𝑓) =

5.81(1 − 𝜀𝑓)

𝜀𝑓
3 +

0.48(1 − 𝜀𝑓)
1
3 

𝜀𝑓
4 ; 

 𝐹2(𝜀𝑓 . 𝑅𝑒𝑝) = (1 − 𝜀𝑓)
3
𝑅𝑒𝑝 (0.95 +

0.61(1 − 𝜀𝑓)
3
 

𝜀𝑓
2 ) 

In this current work, the above defined equations are used for solving the particle-

laden jet simulations. The simulations are non-dimensionalised before solving the 

equations. The spatial non-dimensionalisation is done through the jet slot width, ℎ = 1. 

The time and the mass non-dimensionalisation are done through the fluid viscosity and 

density respectively (𝜇𝑓 , 𝜌𝑓 = 1).  

There are many dimensionless quantities that characteristic properties of the fluid 

flow. In this current work, some of the commonly used dimensionless quantities that are 

used in the simulation calculations are Reynolds Number (𝑅𝑒𝑓), Schmidt Number (𝑆𝑐𝑓) 

and Stokes Number (𝑆𝑡). Reynolds number is defined as the ratio between the inertial and 

viscous forces. Schmidt number is defined as ratio of the momentum diffusivity to the mass 
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diffusivity. Stokes Number is defined as the ratio of characteristic time of the particle to 

the characteristic time to flow. Based on the above definitions, equating them into the 

fundamental fluid and the particle-related properties with non-dimensionalisation 

(ℎ, 𝜇𝑓 , 𝜌𝑓 = 1) leads to:  

𝑅𝑒𝑦𝑛𝑜𝑙𝑑𝑠 𝑁𝑢𝑚𝑏𝑒𝑟, 𝑅𝑒𝑓 = 𝑢𝑗𝑒𝑡;  

 𝑆𝑐ℎ𝑚𝑖𝑑𝑡 𝑁𝑢𝑚𝑏𝑒𝑟, 𝑆𝑐𝑓 = 1; 

𝑆𝑡𝑜𝑘𝑒𝑠 𝑁𝑢𝑚𝑏𝑒𝑟, 𝑆𝑡 =

(
𝜌𝑝𝑑𝑝

2

18 )

𝑡𝑑
 . 

Where 𝑢𝑗𝑒𝑡 is the velocity of the jet, 𝜌𝑝 is the density of the particles, 𝑑𝑝 is the diameter of 

the particles, 𝑡𝑑 is the fluid response time which is the Kolmogorov time scale.  

2.3 – Solver Algorithm 

For the current work, the NGA solver developed by O Desjardins and G Blanquart 

(2005) runs the DNS simulations. NGA solve is one of the efficient and capable software 

used to solve LES and DNS simulations for low-Mach number Navier-Stokes, Scalar and 

particle transport equations on structured meshes. The numerical methods used in the NGA 

can be implemented in parallel computational mode using message passing interface (MPI) 

significantly reducing the simulation time (J Capecelatro, 2013). The solver uses stagnation 

meshing for the velocities to avoid the problem with aliasing. Also, during the recent times, 

it is noticed that the second order finite difference schemes on the stagnation meshes 

conserves the kinetic energy discretely ensuring its robustness along with a good method 
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to simulate the turbulence (Harlow and Welch, 1965).  The discretizational schemes for 

solving the equations used in the NGA solver are proposed by O Desjardins (2008 & 2013).  

The flow of the NGA solver is as follows. Initially, the momentum equation is 

predicted by using the Adam-Bashforth method in determining the pre-final velocity of the 

fluid. The predicted fluid velocity is calculated to determine the final particle positions and 

velocities by solving the particle transport equation using the second-order Runge-Kutta 

scheme. Once the particle parameters are estimated, drag model formulation is used in 

estimating the interphase terms along with the finalized volume fraction and density in all 

the grids. The next parameters that are solved are the Scalars. In the current work, the 

scalars that are estimated is only the scalar concentration evaluated in-terms of mixture 

fraction. This scalar is solved from the scalar transport equation using third order WENO 

scheme due to the high stability of the computational models (J Capecelatro, 2013). Finally, 

the velocity of the fluid is accurately computed by using the second-order Crank-Nicolson 

scheme for overall momentum equations. The above process is applied for the simulation 

in which the pressure gradient is very low. For significant pressure gradient, the fluid 

velocities are recomputed at the boundary or the edges by solving the continuity equation, 

that is transformed as the Poisson equation (O Desjardins, 2008). The pressure Poisson 

equation is solved using the combination of energy spectral, Krylov and multi-grid-based 

method as proposed by Y Morinishi, et al. (1998) to enforce the continuity condition. This 

cycle flow is repeated by advancing the time step, till the time reaches the target value. 
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2.4 – Meshing & Grid Parameters 

For smaller Reynolds numbers the viscous forces are more significant than the 

advection forces. As a result, the flow fluctuations are gradually reduced making the 

turbulence to eventually die down over time. Whereas for large Reynolds numbers, the 

advection forces are greater in magnitude relative to the viscous force, resulting in the 

laminar (or) jet flow instability.  As these flow instabilities grow larger, continuous 

generation of turbulence occurs. This generation produces the large-scale eddies, which are 

in-turn unstable and break down and cause smaller eddies. This cascading process goes on 

till the scale at which the viscosity is stronger enough to hold the fluid from causes further 

breakup of eddies. This smallest scale under which the breakup of eddies mostly doesn’t 

occur is called the Kolmogorov scale (Davidson, 2004).  

This Kolmogorov scale has 2 components – (1) Kolmogorov length scale and (2) 

Kolmogorov time scale. Both scales estimates vary with the turbulent flows and their 

dimensionality of the shear propagation as they relate to the turbulent kinetic energy 

dissipation rate. The general equations of these scales are: (SB Pope, 2000) 

𝐾𝑜𝑙𝑚𝑜𝑔𝑜𝑟𝑜𝑣 𝑙𝑒𝑛𝑔𝑡ℎ 𝑠𝑐𝑎𝑙𝑒, 𝜂𝑑~(
𝜈3

𝜖
)

1
4

; 𝐾𝑜𝑙𝑚𝑜𝑔𝑜𝑟𝑜𝑣 𝑡𝑖𝑚𝑒 𝑠𝑐𝑎𝑙𝑒, 𝑡𝑑~(
𝜈

𝜖
)

1
2
 

For the turbulent jets, the estimates for Kolmogorov length scales were generated in the 

past by (Antonia, 1979) are as follows, which need to be resolved by the discretization for 

DNS implementations: 
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𝑟𝑜𝑢𝑛𝑑 𝑗𝑒𝑡𝑠 ∶
𝜂

𝑑
= (48𝑅𝑒𝑓

3)
−
1
4  (

𝑥

𝑑
) ;  𝑝𝑙𝑎𝑛𝑎𝑟 𝑗𝑒𝑡𝑠 ∶

𝜂

𝑑
= 0.94 𝑅𝑒

𝑓

−
3
4  (

𝑥

𝑑
)

5
8
  

2.5 – Initial & Boundary Conditions 

For the initial condition in temporal jets, the jet propagation direction is filled with 

the jet flow & its velocity in the jet width domain which can be written as: 

𝑢 = 𝑢𝑗𝑒𝑡 ∗ (1 + 𝑛 (𝑅{0,1} − 0.5)), |𝑦| < (
ℎ

2
) 

 This helps in generation of uniform jet velocity throughout the jet width in the 

propagation direction. Noise, 𝑛 is also added so that the jet attains the turbulent state faster 

than the non-noise case by faster build-up of the eddies due to velocity gradients of the jet 

with the surroundings. Coming to the boundary conditions, the entire domain is taken as 

the periodic in three directions i.e., mass exiting out with certain velocity enters the domain 

again with the same speed on the opposite end. 
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SIMULATION INPUTS 

From BK Revill (1992), a jet will be laminar if 𝑅𝑒𝑓  <  100 and it will be turbulent 

if 𝑅𝑒𝑓  >  2000. Also, a turbulent jet flow can be divided into two distinct regions – (1) 

flow development region, and (2) fully developed region. The flow development region is 

inversely proportional to the 𝑅𝑒𝑓. This implies that the smaller domains can be considered 

for the larger 𝑅𝑒𝑓.  So, for this work the uniform temporal slot jet with 𝑅𝑒𝑓 = 5000 coming 

out from slot width of ℎ with particles at rest and domain dimensions of 10ℎ ×  5ℎ ×  2.5ℎ 

is considered for the simulation. The jet velocity has a 10% noise component added on top 

of the mean value. 

To understand the turbulence phenomenon and capture the smallest eddies possible, 

the grid size is estimated based on the Kolmogorov length and time scales. It is considered 

at 95% of Kolmogorov scale at 10ℎ and at the initial velocity conditions of one eddy 

turnover times implying its effective value to be 6.60e-03. This grid scale causes the 

domain to be divided into 1516 ×  758 ×  379 uniform grids in each direction. The time 

step is maintained in such a way that it is less than the minimum of Kolmogorov time scale 

and the eddy turnover time (𝑡𝑒 =
ℎ

𝑢𝑓
) to capture the smallest eddies possible during the 

simulation. The minimum eddy turnover time and the Kolmogorov time scale turns out to 

be 1.32e-06 and hence the timestep of 1.25e-06 is considered for all the different cases of 

the simulations to capture the smallest eddies possible. The simulations are run till 60𝑡𝑒, 

to understand the decay of the scalar concentration and velocity of the jet to the fluid 

domain filled with particles of different configurations in each case. 
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The particles are allocated in the domain of 9.8ℎ ×  4.8ℎ ×  2.3ℎ, giving clearance 

of 0.1ℎ from the domain faces to prevent the solution blow-up during the start. The two-

way coupling is used in the simulation to understand the effect of particles on the jet.  

This set of same configurations is considered for 4 cases of different 𝑆𝑡 by changing 

the particle density. The particle diameter is taken as half of the grid size. Also, the particles 

volume fraction is changed such that the effective particles mass to the fluid mass will be 

unity (i.e., mass fraction, 𝜙𝑚 = 1). Based on the above set of inputs, the configurations for 

the different DNS cases are shown in the below table: 

Sim  

No 

Stokes 

No 

Particles 

Diameter 

Particles 

Density 

Particle  

Vol. Frac. 

Particle 

Mass Frac. 

No. of  

Particles 

1 0 - - - - 0 

2 1 3.30e-03 74 1.60e-02 1 ~91.42 million 

3 7.5 3.30e-03 555 2.25e-03 1 ~12.85 million 

4 20 3.30e-03 1480 7.85e-04 1 ~4.45 million 

 

(Table 3.6.1 – Configurations of the DNS simulations for different St) 

Each of the above-mentioned simulations had requested 512 CPU cores of high 

computational performance. These nodes are typically called parallel nodes in the Agave 

cluster and are with the configuration of Intel® Xeon® Processor E5-2680 v4. To achieve 

the results up to 60𝑡𝑒, the simulations are run approximately for 5 days.  
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RESULTS & DISCUSSIONS 

4.1 – Simulation Analysis 

 The approaches used are – (1) qualitative analysis and (2) statistical analysis. In 

qualitative analysis, the cross-stream flows of different 𝑆𝑡 are compared with each other at 

different eddy turnover times (𝑡𝑒). The other analysis carried out is statistical analysis. The 

statistical analysis is carried out in 2 planes – (1) streamwise – normal (𝑥 − 𝑦) plane, and 

(2) streamwise – parallel (𝑥 − 𝑧) plane.  Although 193 datasets were generated when the 

simulations for each case ran for 60𝑡𝑒, the analysis is capped to 35𝑡𝑒, corresponding to 112 

datasets for better analysis and comparison of turbulence with different 𝑆𝑡, without 

considering the impact of periodic boundary conditions. 

4.2 – Qualitative Analysis in Streamwise-Normal Plane 

The streamwise-normal plane is considered for the qualitative differentiation and 

analysis of different 𝑆𝑡 cases. The slice of 0.01h is considered for the analysis which is a 

good representation of the particle and fluid properties in two dimensions. The scalar and 

the velocity plots in the streamwise-normal plane at various times (0𝑡𝑒, 8𝑡𝑒, 16𝑡𝑒, 24𝑡𝑒, 

32𝑡𝑒) for all the 𝑆𝑡 (0, 1, 7.5, 20) are in Fig 4.2.1 & 4.2.2 respectively.  

From Fig 4.2.1 & 4.2.2, the jet spreading in cross-plane direction was 

comparatively less for higher 𝑆𝑡. This is due to particles acting as the obstruction for the 

jet to expand in cross-plane direction. Due to the jet velocity in cross-plane direction to be 

low, the particles in higher St provide higher resistance and further reduce the cross-stream 

jet velocity eventually reducing the spread of jet in streamwise-normal direction. 
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4.3 – Statistical Analysis in Streamwise-Parallel Plane 

 The centerline data (y=0) is considered for further analysis of the fluid and particles 

flow. The mean statistics for the mixture fraction of the jet is shown in Fig 4.3.1. There is 

no significant difference in the mean mixture fraction decay over time for different St. The 

theoretical final value of the mixture fraction decay over long 𝑡𝑒 time can be computed as 

0.2. From figure 4.3.1, evidence of decay approaching the value of 0.2 for the long stable 

𝑡𝑒. When the decay data is fit to the exponential curve fitting of the form  

𝑦 − 𝑦0 =
𝑎

𝑥−𝑥0
, the virtual origin for the decay is ~2.02𝑡𝑒 . 

 

(Fig 4.3.1 – Mean of Mixture fraction over time for various 𝑆𝑡) 

Unlike mean, the variance yields distinct difference between various 𝑆𝑡. The 

variance plots for the mixture fraction of the jet for different 𝑆𝑡 are shown in Fig 4.3.2. The 
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maximum variance in the scalar mixture fraction is noticed at time ~10𝑡𝑒. Beyond that 

time, the variance decreases and converges to a value. Also, it can be observed that variance 

of 𝑆𝑡 = 0 is low and then is increased till 𝑆𝑡 = 1 and then decreased for the remaining higher 

order 𝑆𝑡. This could be inferred that the scalar mixture fraction variance increases till 𝑆𝑡 = 

1, compared to the particle-free and higher 𝑆𝑡, indicating that an optimal 𝑆𝑡 exists for which 

the scalar variation is maximum. Here, the variance isn’t converging due to the finite 

domain effects.  

 

(Fig 4.3.2 – Variance of Mixture fraction over time for various 𝑆𝑡) 

The streamwise jet velocities (𝑢𝑓) for different 𝑆𝑡 are analyzed and plotted in figure 

4.3.3. All cases are initialized at the same fluid velocity. However, the particles are 

initialized at rest, and thus momentum transfer occurs between the fluid and particle media. 
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This results in an observable shift during the start for particle-laden jets in comparison with 

particle-free jet. The asymptotic velocity of the fluid medium after reaching the equilibrium 

with particle state is referred henceforth as called asymptotic jet velocity (𝑢𝑓,𝑎) for each 

𝑆𝑡, which is used to normalize the velocities. Just like in the scalar concentration case, no 

significant difference for the jet mean streamwise velocity (𝑢𝑓) for different 𝑆𝑡 over time 

are observed at the centerline. 

 

(Fig 4.3.3 – Spanwise velocities of the jet fluid for various St) 

The plots for the variance for the jet velocity, 𝑢′2, 𝑣′2 and 𝑤′2 in each direction are 

given in Fig 4.3.4. The turbulence kinetic energy (𝑇𝐾𝐸𝑓) is plotted based on the values of 

self-variance and is plotted in Fig 4.3.5.  
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(Fig 4.3.4 – Variance of the jet velocity in (a) Streamwise, (b) Cross-stream, and (c) 

Spanwise directions, for various St over time) 

From Fig 4.3.4, the particle-free case shows significantly different signs in 

comparison with the different particle-laden cases. The particle-free flow is significantly 

less due to the reason that the asymptotic velocity of the particle-free case is more when 

compared to that of the particle-laden case. This makes the denominator of the non-

dimensionalised variances and TKE to be significantly more leading to their overall lesser 

value. In most of the conditions, the peak is observed at ~12𝑡𝑒, beyond which the variance 

values tend to converge just like in the case of scalar mixture fraction. 

From Fig 4.3.5, the 𝑇𝐾𝐸𝑓 peak is observed comparatively at later time for 𝑆𝑡 = 1 

in-comparison with the other St. Also, the 𝑇𝐾𝐸𝑓 is significantly more for 𝑆𝑡 =  1 than 
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other implying that the optimal value occurs at 𝑆𝑡 =  1 rather than at lower & higher 𝑆𝑡. 

But there isn’t significant difference between different 𝑆𝑡 after certain time. This implies 

that after certain time, the 𝑇𝐾𝐸𝑓 profiles would be same. The 𝑇𝐾𝐸𝑓 converges to the value 

of 0.02𝑢𝑓,𝑎
2  and begins to converge once time goes beyond 12𝑡𝑒. 

 

(Fig 4.3.5 – Turbulent Kinetic Energy of the jet (𝑇𝐾𝐸𝑓) for various St over time) 

The particles spanwise velocities are analyzed and are plotted in Figure 4.3.6 and 

is observed that the velocities of the particles for 𝑆𝑡 = 1 case attains the jet velocity faster 

than the 𝑆𝑡 = 20 case. Although it attains velocity faster, it also loses velocity faster in 

comparison with that of the latter case. Ultimately the particle velocities converge to the 

same value as that of the final jet velocity after long times (t ~ 35𝑡𝑒). 
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(Fig 4.3.6 – Spanwise velocities of the particles for various St over time) 

The plots for the variance for the particle in each direction are given in Fig 4.3.7. 

The turbulence kinetic energy for the particles (𝑇𝐾𝐸𝑝) is plotted based on the values of 

self-variance and is plotted in Fig 4.3.8. 

From Fig 4.3.8 irrespective of the velocity direction, the larger 𝑆𝑡 𝑇𝐾𝐸𝑝 is less 

when compared to the smaller 𝑆𝑡 one. This same is reflected in the 𝑇𝐾𝐸𝑝 plot as it is the 

sum of the variance in all the directions. From the 𝑇𝐾𝐸𝑝 plot in Fig 4.3.8, the transfer of 

energy in-between the fluid and particles for lower Stokes number is significantly faster 

when compared to that of the larger ones. This implies that the peak is attained quickly and 

closer to the time when the 𝑇𝐾𝐸𝑓 peak attains maximum value. It also indicates that it can 



29 
 

freely absorb and give away energy to the fluid domain. For larger 𝑆𝑡, the peak might not 

be noticed as it takes huge particle response time for the energy to transfer from fluid. 
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(Fig 4.3.7 – Variance of the particle velocity in (a) Streamwise, (b) Cross-stream, and (c) 

Spanwise directions, for different St over time) 

 
(Fig 4.3.8 – Turbulent Kinetic Energy of particles (𝑇𝐾𝐸𝑝) for various St over time) 
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4.4 – Statistical Analysis in Streamwise-Normal Plane 

Like the streamwise-parallel plane analysis, the mean and the variance statistics of 

various fluid and particles properties are analyzed for the re-constructed streamwise-

normal data (z=0) for deeper understanding of the fluid and particles flow. Here, the half-

width profiles are considered due to the symmetricity in the cross-stream. The mean 

statistics for the mixture fraction of the jet in the cross-stream direction 𝑆𝑡 is shown in the 

Fig 4.4.1.  
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(Fig 4.4.1 – Mean of Mixture fraction over time for  

(a) No Particles, (b) St = 1, (c) St = 7.5 and (d) St = 20) 

Initially for the lower 𝑡𝑒, no significant difference between various 𝑆𝑡 are observed. 

As the 𝑡𝑒 increases, the difference between the profiles of mixture fraction grows and 

becomes significance among themselves and the other 𝑆𝑡 cases. Although the differences 

start to grow, the maximum value is always achieved at the center of the jet half-width 

irrespective of 𝑆𝑡. From the Fig 4.4.1, the mixture fraction spread along the cross-stream 

decreases with increase in the 𝑆𝑡.  

Unlike the mean statistics of the mixture fraction where the mean stays at the center 

of the cross-stream width, the variance yields a difference result. These variance plots along 

the jet cross-stream half width for different 𝑆𝑡 are shown in Fig 4.4.2.  
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(Fig 4.4.2 – Variance of Mixture fraction over time for  

(a) No Particles, (b) St = 1, (c) St = 7.5 and (d) St = 20) 
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From Fig 4.4.2, the maximum variance in the scalar mixture fraction to be getting 

shifted from edge of the jet width to away from it as 𝑡 progresses. The peak value of the 

variance decreases and the variance curve from the domain center to the peak is shifted 

downwards with increase in 𝑆𝑡. Also, the slop of the variance curve from peak to the 

domain boundaries is depicted by the 𝑆𝑡 and decreases with increase in 𝑆𝑡. 

After the mixture fraction, the streamwise jet velocities (𝑢𝑓) for different 𝑆𝑡 are 

analyzed and plotted in Fig 4.4.3. For various 𝑆𝑡, there is no significant change in the cross-

stream velocity profile, but there is an observable difference in comparison of the particle-

laden case with particle-free case. It is observed that the fluid in the quiescent domain is 

also accelerated to a certain velocity (~15% of the jet velocity). This reason for this 

difference is attributed to the pressure solving term in the particle-transport equation. The 

pressure term in the particle transport equation is significant during the earlier time-steps, 

that causes the particles in the non-jet domain to move. This in turn causes the fluid in the 

non-jet domain to move with this smaller amount of velocity until the jet dissipates itself 

into the region. This trend is also observed in streamwise variances and TKE. 

The variances of streamwise, crosswise and spanwise velocities are plotted in Fig 

4.4.4, 4.4.5, and 4.4.6 respectively. The streamwise velocity variance doesn’t converge at 

the edge due to the above effect and generates a local peak at around jet velocity half-width 

and local minima at nearly 1.75 times of jet velocity half-width. This is not the case for 

particle free case which has only one maximum that is at jet velocity half-width. Also, from 

Fig 4.4.4., the turbulence along the streamwise velocity decreases with increase in the 𝑆𝑡. 
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(Fig 4.4.3 – Spanwise velocities of the jet fluid for  

(a) No Particles, (b) St = 1, (c) St = 7.5 and (d) St = 20) 
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(Fig 4.4.4 – Variance of the jet velocity in Streamwise direction for  

(a) No Particles, (b) St = 1, (c) St = 7.5 and (d) St = 20) 
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From Fig 4.4.5 and 4.4.6, the cross-stream and span-wise velocity variances for the 

particle-laden case shows the same convergence of the particle-free case. In-case of the 

cross-stream wise velocity variance, the maximum occurs at the center-plane irrespective 

of the 𝑆𝑡. Where as in-case of span-wise velocity variance, the maximum occurs at the jet 

velocity half-width which is at the same spot of that of the stream-wise velocity variance 

plots in Fig 4.4.4 without considering the pressure affects.  

For the cross-stream turbulence fluctuations trends, from Fig 4.4.5, the turbulence 

fluctuations variances are comparatively more with 𝑆𝑡 =  1 rather than at lower and higher 

𝑆𝑡. For the spanwise turbulence variance, from Fig 4.4.6, the variance for particle free case 

is very low when compared to that of the particle-laden case but there is no significant 

difference that can be observed from different St. 
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(Fig 4.4.5 – Variance of the jet velocity in Cross-stream direction for  

(a) No Particles, (b) St = 1, (c) St = 7.5 and (d) St = 20) 
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(Fig 4.4.6 – Variance of the jet velocity in Span-wise direction for  

(a) No Particles, (b) St = 1, (c) St = 7.5 and (d) St = 20) 

The above variances are appropriately added to estimate the 𝑇𝐾𝐸𝑓 for different 𝑆𝑡 

and are plotted in Fig 4.4.7. The 𝑇𝐾𝐸𝑓 values at the near boundary domain region for 

particle-laden case are not converging to 0 as that of the particle-free case. This is because 

of the pressure term as discussed during the jet velocity profile at Fig 4.4.3. Apart from this 

non-convergence, there is only a maxima peak observed in all the cases. This peak exists 

closer to the jet velocity half-width. The trend of 𝑇𝐾𝐸𝑓 between different St for streamwise-

normal case matches with that of the streamwise-parallel one. This could be inferred that 

the 𝑇𝐾𝐸𝑓 profile and value at certain location increases till 𝑆𝑡 = 1, compared to the particle-

free and higher 𝑆𝑡, indicating that an optimal 𝑆𝑡 exists for which the scalar variation is 

maximum at any instant of time. 
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(Fig 4.4.7 – Turbulent Kinetic Energy of the jet (𝑇𝐾𝐸𝑓) for  

(a) No Particles, (b) St = 1, (c) St = 7.5 and (d) St = 20) 
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Unlike the streamwise-parallel plane case where the covariance terms are zero, in 

the streamwise-normal plane one of the co-variance terms (𝑢𝑓
′𝑣𝑓

′ ) is non-zero. The plot for 

the Reynolds shear stress, 𝑅𝑢𝑣 is plotted in Fig 4.4.8.  
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(Fig 4.4.8 – Co-variance (𝑢𝑓

′𝑣𝑓
′ ) of the fluid for  

(a) No Particles, (b) St = 1, (c) St = 7.5 and (d) St = 20) 
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From Fig 4.4.8, the peak of the co-variance also occurs near to the edge of the jet 

half-width which is similar in-comparison with the 𝑇𝐾𝐸𝑓. The co-variance plot converges 

to 0 at smaller time but it diverges for the larger time for particle-laden case hinting at the 

pressure term issue. When the Fig 4.4.8 plots are analyzed for a certain time and certain 

location, the same trend of the 𝑇𝐾𝐸𝑓 in Fig 4.4.7 can be noticed. The noticed trend is that 

the co-variance value for 𝑆𝑡 =  1 is more at a fixed time and location in-comparison with 

lower and higher 𝑆𝑡. This suggests that 𝑆𝑡 =  1 is an optimal solution where the turbulence 

occurs significantly higher resulting in better mixing when compared to other St.  

Hence when streamwise parallel (or) streamwise normal plane is considered, the 

variance of mixture fraction, 𝑇𝐾𝐸𝑓 and Reynolds stresses are comparatively higher around 

𝑆𝑡 =  1 when compared to other 𝑆𝑡 that are away from 𝑆𝑡 =  1. This implies that for 𝑆𝑡 =

 1 effective exchange of turbulence between the particles and fluid occurs causing more 

scalar variance and ultimately effective mixing. 

4.5 – Qualitative Analysis of Particles Clustering 

After the qualitative analysis of the fluid flow and statistical analysis along various 

planes, the qualitative analysis of the particles is studied to understand the clustering effect 

of the particles in the domain. A single layered particle plots are generated for both 𝑆𝑡 =

 1 and 𝑆𝑡 =  20 and are overlayed on (1) Velocity and (2) Mixture fraction plots at ~14𝑡𝑒 

respectively, as shown from Fig 4.5.1 to Fig 4.5.4. From Fig 4.5.1 and 4.5.2, the particles 

can be observed to be passively moving with 𝑆𝑡 =  1 whereas particles are not moving in 

phase with the fluid for 𝑆𝑡 =  20. 
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(Fig 4.5.1 – Single layered particle plot overlayed on fluid velocity for St = 1) 
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(Fig 4.5.2 – Single layered particle plot overlayed on fluid velocity for St = 20) 
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(Fig 4.5.3 – Single layered particle plot overlayed on Mixture fraction for St = 1) 
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(Fig 4.5.4 – Single layered particle plot overlayed on Mixture fraction for St = 20) 
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From Fig 4.5.3 and 4.5.4, It can be observed that the jet pushes some of the particles 

to the jet and non-jet interface boundary. Apart from the interface boundaries, the particles 

clustering can be found near the centerline of the jet, where there is almost uniform and 

higher value of velocity or concentration. This implies that the particles clustering can also 

be found near to the centerline spots where the jet velocity or concentration is a little bit 

high and almost constant which also corresponds to higher velocity and lower velocity 

gradient between the surrounding flow.   

4.6 – Statistical Analysis of Spread Rates 

One of the best ways in determining the spread rate is through estimation of jet half-

widths. In this work, 2 jet half-widths based on – (1) velocity, and (2) scalar concentration, 

are estimated and the graphs are plotted in Fig 4.6.1 and Fig 4.6.2 respectively. 

 

(Fig 4.6.1 – Time series of jet velocity half-width for different St) 
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(Fig 4.6.2 – Time series of jet concentration half-width for different St) 

From Fig 4.6.1, Ther isn’t any significant difference between the velocity jet half-

widths of different St. This implies that the mean velocity profile of the jet is almost 

constant and hence no difference in velocity spread can be observed for different 𝑆𝑡. 

Although the velocity half-width shows no significant difference for different 𝑆𝑡, it is 

different in case of concentration half-width, that can be observed from Fig 4.6.2. The jet 

concentration half-widths are not significantly different, but comparatively St = 1 shows a 

little less jet half-width when compared to other 𝑆𝑡. 
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CONCLUSIONS & FUTURE WORK 

In this thesis work, the effect of the particles on the temporal jets is being studied 

and developed with the help of the Navier-Stokes equation and the advection-diffusion 

equation with appropriate grid sizes such that the smallest length scales of the turbulence 

are captured when the DNS is performed on the computation domain. The smallest possible 

eddies are seen when the grid size is less than the Kolmogorov length scale. To maintain 

this criterion to capture the simulations were carried out with ~0.5 billion grid points and 

took nearly 5 days for each simulation to run till each case of the Stokes number completes 

nearly 60𝑡𝑒. Although the simulation is carried out till 60𝑡𝑒, after nearly 35𝑡𝑒 the effect of 

domain constraints in the cross-sectional planes come into the picture, disturbing the free 

shear turbulence that is occurring in the domain. Hence the simulations were analyzed till 

35𝑡𝑒 to better understand the undisturbed turbulence phenomenon from the boundaries for 

the temporal jet in the particle-laden domain. 

The qualitative results of the cross-stream flow depict the motion of the scalar 

concentration of the jet in the domain. It also supports in establishing the results of lesser 

jet spreading in-case of higher 𝑆𝑡 in-comparison with the lower ones. Also, most of the 

particles move (or) have the velocity in-case of smaller 𝑆𝑡, whereas only some of the 

particles show movement in higher 𝑆𝑡 case.  

Also from the particle clustering results, it can be inferred that the particle clusters 

are found near the turbulent and non-turbulent (jet and non-jet domain) interface of the 

fluid. There is another cluster of particles that are closer to the centerline. These particle 
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clusters exist in the areas where the velocity (or) scalar concentration is higher than the 

surrounding fluid and their gradients are very small.  

In the centerline plane, the basic statistical analysis was done on various fluid and 

particles velocity and the scalar concentration. There is no significant difference in the 

scalar concentration decay for different 𝑆𝑡 and this decay has the virtual origin at ~2.02𝑡𝑒 

and converge at 0.2 units. The variance of the scalar concentration has the peak at ~10𝑡𝑒 

and converge to the value of 0.01 units, irrespective of the 𝑆𝑡. The scalar mixture fraction 

variance increases till 𝑆𝑡 = 1, compared to the particle-free and higher 𝑆𝑡, indicating that 

an optimal 𝑆𝑡 exists for which the scalar variation is maximum. 

The fluid velocity of the particle-laden jets decreases at the start due to the transfer 

of momentum to the particles. The velocity decay when once the flow crosses the transient 

state is same irrespective of the 𝑆𝑡. In similar lines of scalar concentration, the velocity 

converges to the value of 0.15𝑢𝑓,𝑎. The 𝑇𝐾𝐸𝑓 profiles for different 𝑆𝑡 have the peak at 

~12𝑡𝑒. Just like the scalar variance case, the 𝑇𝐾𝐸𝑓 profile for 𝑆𝑡 = 1 has later peak and 

significantly more magnitude around the peak, compared to the particle-free and higher 𝑆𝑡, 

indicating that an optimal 𝑆𝑡 exists for which the values around the peak are maximum 

when compared to other values. The final convergence value of 𝑇𝐾𝐸𝑓 plots is ~0.02𝑢𝑓,𝑎
2 .  

For the particle’s velocity, the lower 𝑆𝑡 follows the fluid profile and attains the fluid 

velocity much faster when compared to that of higher 𝑆𝑡, but ultimately irrespective of the 

St all the velocity and 𝑇𝐾𝐸𝑝 converge to the same value of the respective fluid counterparts 

which are 0.15𝑢𝑓,𝑎 and 0.02𝑢𝑓,𝑎
2  respectively. Also, from the 𝑇𝐾𝐸𝑝 results, it can be 
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inferred that the particles can freely absorb and give away the energy from and to the fluid 

domain for the smaller 𝑆𝑡 whereas it becomes increasingly difficult with increase in 𝑆𝑡. 

In the streamwise-normal plane, the difference between the profiles of mixture 

fraction among the different 𝑆𝑡 grows and becomes significance as 𝑡 progresses. Although 

the difference of scalar concentration profile between different St grows, the position where 

the maximum occurs is the same which is at the centerline. For the scalar variance, the 

maximum occurs at the jet concentration half-width, and this is also almost same 

irrespective of 𝑆𝑡 and 𝑡. The peak value of the variance decreases with increase in 𝑆𝑡. The 

variance curve from the centerline to the peak is shifted downwards and the slope of the 

variance curve from peak to the boundary decreases with increase in 𝑆𝑡. 

Although in the fluid velocity profiles, no significant difference is observed for 

different 𝑆𝑡, there exists a significant difference at the regions near the boundaries in 

between the particles and no-particles case due to the significance of the pressure term in 

solving the particles transport equation during early time steps of the simulation. Same 

impact can also be observed in the estimation of the 𝑇𝐾𝐸𝑝 and 𝑅𝑢𝑣 at the regions near the 

boundaries. Also, their respective values for given 𝑡 is maximum for 𝑆𝑡 =  1. This suggests 

that 𝑆𝑡 =  1 case is better when compared to the lower and higher 𝑆𝑡.  

Hence whether streamwise parallel (or) streamwise normal plane is considered, the 

scalar concentration variance, 𝑇𝐾𝐸𝑓 and 𝑅𝑢𝑣 are comparatively high for 𝑆𝑡 =  1 when 

compared to other 𝑆𝑡 that are away from 𝑆𝑡 =  1. This implies that for 𝑆𝑡 =  1 effective 

exchange of turbulence between the particles and fluid occurs causing more scalar variance 
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and ultimately effective mixing. Also, the jet spread could be noticed when the scalar 

concentrations are considered. The jet spreading along the width is less common in-case of 

𝑆𝑡 =  1 when compared with other 𝑆𝑡. This implies the effective mixing for 𝑆𝑡 =  1 

within lesser space when compared to other 𝑆𝑡.  

From all the results, the trends of self-similarity can be noticed after a certain time 

of around 7𝑡𝑒. The deviation from the self-similarity can be due to either the velocity or 

the scalar concentration profile. From the generated and analyzed data, the deviation from 

the self-similarity in-case of velocity occurs much later than the scalar concentration. For 

larger 𝑆𝑡, the deviation from the self-similarity occurs sooner in-comparison to that of 

lower 𝑆𝑡. In the current work, as 𝑆𝑡 =  1 & 𝑆𝑡 =  20 are the most discussed, the deviation 

from the self-similarity for 𝑆𝑡 =  20 occurs around ~30𝑡𝑒. For lower St which is St = 1, 

the velocity profiles are self-similar from 10𝑡𝑒 to 35𝑡𝑒. From extrapolating, the estimated 

the time for the deviation from the self-similarity, it turns out to be at ~54𝑡𝑒. 

 During the 35𝑡𝑒 of analysis, the spread for the particle-laden case is less when 

compared with the particles-free case, making the particles acting as the barrier for the jet 

spread. The simulations were successful for the 35𝑡𝑒, during which the jet is free from the 

impacts of the domain size and the jet passing through the cross-sectional boundary. Hence 

in future studies, the cross-sectional domain length needs to be increased so that the jet can 

attain stability. This change leads to an increase of the grids in the simulation, eventually 

requesting more processor cores to solve for the DNS.  
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 In this current work, even when the particles are initiated with zero velocity, the 

pressure term in transport equation imparts little velocity to the particles that are in the non-

jet domain. So, in future studies the velocity of the particles inside the jet can be initialized 

with the velocity of the jet. Also, the future simulations need to be run in such a way that 

velocity of the fluid and particles in the non-jet domain at the domain boundaries isn’t 

impacted significantly by the pressure term as in the current work. 

 Also in the current work, the jet velocity profile considered is the uniform profile 

and the noise added on top of it. In the future work, the other jet profiles like Gaussian 

profile along slot width, uniform profile with sinusoidal noise, gaussian profile with 

sinusoidal noise can be considered so that the difference in results can be observed for these 

different jet profiles and their effects with different Stokes numbers.  
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