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ABSTRACT

Multimodal reasoning is one of the most interesting research fields because of the abil-

ity to interact with systems and the explainability of the models’ behavior. Traditional

multimodal research problems do not focus on complex commonsense reasoning (such

as physical interactions). Although real-world objects have physical properties associated

with them, many of these properties (such as mass and coefficient of friction) are not cap-

tured directly by the imaging pipeline. Videos often capture objects, their motion, and

the interactions between different objects. However, these properties can be estimated

by utilizing cues from relative object motion and the dynamics introduced by collisions.

This thesis introduces a new video question-answering task for reasoning about the im-

plicit physical properties of objects in a scene, from videos. For this task, I introduce

a dataset – CRIPP-VQA (Counterfactual Reasoning about Implicit Physical Properties -

Video Question Answering), which contains videos of objects in motion, annotated with

hypothetical/counterfactual questions about the effect of actions (such as removing, adding,

or replacing objects), questions about planning (choosing actions to perform to reach a par-

ticular goal), as well as descriptive questions about the visible properties of objects. Fur-

ther, I benchmark the performance of existing video question-answering models on two

test settings of CRIPP-VQA: i.i.d. and an out-of-distribution setting which contains ob-

jects with values of mass, coefficient of friction, and initial velocities that are not seen

in the training distribution. Experiments reveal a surprising and significant performance

gap in terms of answering questions about implicit properties (the focus of this thesis) and

explicit properties (the focus of prior work) of objects.

i



DEDICATION

Dedicated to, my loving parents, family and friends for the love, patience, and faith in this

short journey and in much more to come...

ii



ACKNOWLEDGEMENTS

Writing this thesis was a quite a journey, formulating a research problem, performing

hypothesis testing, and developing engineering infrastructure. I am really grateful to have

Dr. Yezhou Yang as my advisor. I want to express my sincere gratitude towards Dr. Yang

for guiding me throughout my masters’ journey as this would not have been possible with-

out his constant support. Special thanks to Dr. Chitta Baral for doing regular discussions to

formulate the problem statement. Also, thanks to Dr. Kookjin Lee for agreeing to become

the presiding member of the thesis.

I would also like to thank Tejas Gokhale for mentoring me on this journey. And helping

me with ups and downs. Moreover, thanks to Shailaja Sampat and Pratyay Banerjee for

their involvement in brainstorming sessions.

I would like to express my serious gratitude towards my parents, family, and friends to

being there for me and keeping me motivated. This would not have been possible without

them!

iii



TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

CHAPTER

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Vision and Language Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Physical Reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Causal Reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Motivation and Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 THE CRIPP-VQA DATASET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 QA Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Dataset Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 MODELING STRATEGIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1 Memory, Attention, and Composition (MAC) . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Hierarchical Conditional Relation Network (HCRN) . . . . . . . . . . . . . . . . . . 27

4.3 Attention Over Learned Embeddings (Aloe) . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3.1 Drawbacks of Aloe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3.2 Aloe∗ (Modified Aloe) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 EXPERIMENTS AND RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2 Benchmark Model Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

iv



CHAPTER Page

5.5 Physical out-of-distribution Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6 ANALYSIS AND DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7 CONCLUSION AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7.2 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

v



LIST OF TABLES

Table Page

2.1 A Comparison of CRIPP-VQA with Prior Work on Video Question An-

swering, in Terms of Different Aspects of Visual Reasoning That Are Tested. 11

3.1 The Key Difference Between the i.i.d. And Various OOD Evaluation Set-

tings in CRIPP-VQA. Here, “-” Indicates the No Change in Particular Prop-

erty from the i.i.d. Setting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Average Number of Collisions When One Type of Object Collides with

Another in Terms of Mass. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Average Number of Collisions When One Type of Object Collides with

Another in Terms of Mass. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 General Statistics Comparison Between CLEVRER and CRIPP-VQA. Here,

N/A Shows That Annotations Are Missing to Derive the Number, and −

Represents That Action Is Not Present in the Dataset. . . . . . . . . . . . . . . . . . . . . 23

3.5 Descriptive Question Examples of the CRIPP-VQA Dataset, Asked from

Different Types of Question Categories as Shown in Figure 3.1. . . . . . . . . . . 24

3.6 Counterfactual and Planning Task Examples from the CRIPP-VQA Dataset.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.1 Results on the i.i.d. Test Set Showing Performance of Models Evaluated

in Terms of Per-Question (PQ) Accuracy and Per-Option (PO) Accuracy.

For Descriptive and Planning Questions, Only One of the Answer Options

Are True, Therefore Per-Question and Per-Option Accuracies Are Identi-

cal. Here, Both Aloe Variants Are Modified Version over Aloe Baseline. . . . 34

5.2 Aloe*+BERT Architecture and Hyper-Parameter Details. . . . . . . . . . . . . . . . . . 36

5.3 Comparison of Aloe*+BERT with Human Evaluations. Results Show That

There Is a Huge Gap Compared to the Human Evaluations. . . . . . . . . . . . . . . 38

vi



Table Page

5.4 Accuracy of Aloe*+BERT on Descriptive Questions from Different (i.i.d.

and OOD) Evaluations Sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.1 Per-option Accuracy of Aloe*+BERT for Detecting Present Vs.Absent Col-

lisions Correctly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.2 Per-option Accuracy of Aloe*+BERT for Detecting First Collision Vs. Sub-

sequent Collisions from the Set of Occurring Collisions in Counterfactual

Scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.3 Average Number of Collisions in Ground Truth Videos (i.e., Vanilla) When

Different Types of Objects Participate in First Collision. “x → y′′, Where

x, y ∈ {Light,Heavy}, Means That x Mass Object Collides with y Mass

Object. Moreover, H: Heavy Object and L: Light Object. . . . . . . . . . . . . . . . . . 45

vii



LIST OF FIGURES

Figure Page

1.1 The CRIPP-VQA Dataset Contains Questions about the Future Effect of

Actions (Such as Removing, Adding, or Replacing Objects) as well as

Planning-based Questions. A Few Frames of a Video Are Shown above,

with the Red Highlighted Area Depicting the Objects on Which Actions

Are Performed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 A Pie-chart Showing the Distribution of Various Question Types in the

CRIPP-VQA Dataset. The Inner Pie Chart Shows the Three Broad Cat-

egories of Questions (Counterfactual, Descriptive, and Planning), While

the Outer Pie-chat Shows a Fine-grained Categorization. . . . . . . . . . . . . . . . . . 20

4.1 Mac Network Model Architecture with MAC Cell Network From (Hudson

and Manning, 2018). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Baseline Aloe Model Architecture from (Ding et al., 2021). Here, MONet

Is Pre-trained Separately on the given Training Dataset. The Rest of the

Modules Are Trained from Scratch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3 Illustration of the Failure of MONet (the Object Decomposition Module in

Aloe (Ding et al., 2021)) on CRIPP-VQA Videos. The Intended Function-

ality of MONet Is to Decompose Individual Objects into Separate Masks.

However, as Shown above, the Predicted Masks Contain Areas Correspond-

ing to More than One Object. We Modified Aloe by Replacing Monet with

Mask-RCNN, and This Approach (Aloe*) Leads to More Reliable Object

Detection Which Can Be Used by the Downstream Question-answering

Module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

viii



Figure Page

4.4 Aloe*+BERT Model Architecture. Here, Mask-RCNN and BERT Models

Are Pre-trained for Instance Segmentation and Masked-Language-Modeling,

Respectively. These Two Modules Are Kept Frozen During the Training

and the Rest Are Trained from the Scratch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1 Comparison of Performance of Models (Per-option Accuracy) for “remove”

Questions When Tested Using the i.i.d. Test Set and Each OOD Test Set. . . 39

5.2 Comparison of Performance of Models (Per-option Accuracy) for “replace”

Questions When Tested Using the i.i.d. Test Set and Each OOD Test Set. . . . 40

5.3 Comparison of Performance of Models (Per-option Accuracy) for “add”

Questions When Tested Using the i.i.d. Test Set and Each OOD Test Set. . . 41

5.4 Comparison of Performance of Models “planning” Questions When Tested

Using the i.i.d. Test Set and Each OOD Test Set. . . . . . . . . . . . . . . . . . . . . . . . . 42

ix



Chapter 1

INTRODUCTION

With the advancement in deep learning, many fields (including, Computer Vision, Nat-

ural Language Processing, Biomedical, Trading, etc.) are benefiting from it day by day. Re-

cently an intersection of Computer Vision (CV) and Natural Language Processing (NLP),

also known as Vision and Language (V&L), is becoming more popular because of its in-

nate ability to express and interact with the system using natural language. V&L has been

applied to various fields such as Robotics, Guidance to the visually impaired, etc. V&L

consists of many tasks such as Image Captioning, Visual Question Answering, Image-Text

Retrieval, etc. Apart from Images, V&L also consists of tasks having video understanding

requirements such as Video Question Answering, Video Retrieval, Video Summarization,

etc.

Vision and Language research problems mainly involve real-world datasets such as

COCO (Lin et al., 2014), Visual Genome (Krishna et al., 2017), etc. However, these

datasets cannot test the models’ ability to reason. Datasets created using the internet do

not evaluate systems for commonsense or complex reasoning abilities. To take a step to-

wards Human-Level Artificial Intelligence (HLAI), existing benchmarks and datasets are

very limited. Because of that, there has been decent progress in creating challenges for

AI systems using synthetic environments. The synthetic environment allows us to create

a close-world scenario, where everything is under control. The benchmark has a synthetic

dataset that focuses on various complex reasoning tasks involving physics and composi-

tional behavior. Some of these problems are nearly solved and for some, we are nowhere

near to human level performance.

The main aim of this thesis work is to propose a new dataset (which requires visually
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hidden properties-based reasoning) and benchmark it using SotA methods.

1.1 Vision and Language Research

Vision and Language (V&L) is a term coined for multi-modal filed having applications

at the intersection of CV and NLP. Each V&L application can be further categorized based

on the type of visual input (i.e., image or video). V&L is growing significantly over the

past few years as it brings forth a new set of challenges which is required to overcome

to achieve the HLAI. Mogadala et. al. summarizes the recent trends in visual grounding

including the various important tasks and corresponding datasets (Mogadala et al., 2021).

This research direction started with image-text embedding models (Barnard et al., 2003),

(Frome et al., 2013), and (Kiros et al., 2014). With the advancement of deep learning,

Visual description generation (also known as captioning) tasks started getting attention.

Some of the earliest work involves image and video-specific captioning methodologies,

which uses Convolutional Neural Networks (CNNs) as visual feature extractor and adopts

seq2seq-based strategies to get better performance. Visual Question Answering (VQA)

is a task that takes natural language and visuals as input and predicts the answer corre-

sponding to the question, where the answer is present in the image. Earlier approaches for

VQA were very similar to captioning, where instead of text generation the problem of an-

swer classification. Other sets of important problems include referring expression (where

the task is to identify the focused region within the image), and visual entailment (where

the task is to identify whether the image and text are entailed or not). There are several

datasets proposed for each of these tasks. MSCOCO (Lin et al., 2014), Flickr8k, Flickr30k

(Young et al., 2014), Conceptual Captions (Sharma et al., 2018), etc. contains the image-

caption pairs, while YouCook (Zhou et al., 2018), MSR-VTT (Xu et al., 2016), etc. are

especially created for video-captioning. In the case of the referring expression, RefCOCO,

and RefCOCO+ are standard datasets (Yu et al., 2016). For VQA tasks, there are several
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datasets with different focuses such as VQA1.0/2.0 (Antol et al., 2015; Goyal et al., 2017),

OK-VQA (Marino et al., 2019), KVQA (Shah et al., 2019), GQA (Hudson and Manning,

2019), etc.

1.2 Physical Reasoning

The exciting possibility of V&L is to gain the ability to reason about commonsense

knowledge. Visual Commonsense Reasoning is an important benchmark proposed for this

task. Commonsense reasoning is a very abstract term itself and this makes it even more

difficult to create the tasks. Therefore, to evaluate the models’ capability to do complex

reasoning, the current trend is moving toward the synthetic environment. These synthetic

environments are closed worlds and allow full control with scalability. Another problem

in regular real-world datasets is that they are highly biased and there are many spurious

correlations within the dataset. Because of that model trained on these datasets learns this

correlation and gets better performance. Hence, it becomes hard to learn the limitations

of any proposed approaches. This is another reason which gave an invitation to synthetic

datasets for better analysis of the various proposed approaches.

In visual grounding, CLEVR (Johnson et al., 2016) first introduced a block-world en-

vironment for VQA to evaluate the models’ compositional reasoning ability. Similarly,

CLEVR-Ref+ was proposed for referring expression (Liu et al., 2019). On the other hand,

CLEVRER (Yi et al., 2020), CATER (Girdhar and Ramanan, 2019), etc. focused on video-

based complex reasoning. The video-based benchmark studies mainly involve physics and

their goal is to evaluate whether models can learn the physical dynamics or not. These

studies involve various levels of physics, for example, they consider the influence of grav-

ity, complex object motion, and a combination of both. Studies showed that SotA systems

perform very low compared to human upper-bound on these benchmarks. Dataset-specific

methods are developed to achieve better performance. Here, neuro-symbolic approaches
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seem to out-perform the pure deep learning methods. However, they cannot be applied

outside the close-world cases; suggesting that more research on making these methods

successful is required.

1.3 Causal Reasoning

Causality is the relationship between cause and its effects/consequences. Humans do

causal reasoning easily in day-to-day activities because of various factors. For example,

we know the differences between the consequences of kicking a football vs. a brick. This

knowledge allows us to do various tasks without putting in more effort. There has been a

lot of work on causality in medicine, economics, etc. (Pearl, 2009) gives a nice summary

of how causal reasoning can be applied via Structural Causal Models and do-calculus. An-

other important aspect of Human Intelligence is counterfactual reasoning. Given a scenario,

we can think of another imaginary case where certain conditions change (like, what if ...?).

This affects our decision-making ability and makes it more reliable.

In recent years, causal/counterfactual reasoning is being applied to various machine-

learning problems. Consider an example, where during evaluations there is an image with

a toothbrush on the dining table, while during the training there isn’t one. Here, deep

learning systems learn this spurious correlation and fail at test time. (Wang et al., 2020) at-

tempts to resolve this spurious correlation issue for robust object detection using causal in-

terventions. Similarly, (Zhang et al., 2020) proposes DeVLBert for learning deconfounded

vision-language representations. (Niu et al., 2021) attempts to remove the language bias

in V&L models using causal interventions as well. These and many other similar methods

are highly customized based on the problem statement and cannot be generalized. To get a

step closer to HLAI, it is necessary to make the system self-sufficient to these biases and

learn meaningful world knowledge to act accordingly.

It has been shown that counterfactual thinking is one of the main sources of our intelli-
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gence. It governs many of our daily decisions. For example, if someone fails in math tests

then s/he thinks that what if s/he had studied one hour more each day? (Epstude and Roese,

2008) shows that there are two types of counterfactual thinking: 1) Subtractive, and 2)

Additive. Removing the type of counterfactual thinking (i.e., after getting the exam score)

increases performance, while additive thinking (i.e., before the exam) improves creativity.

Several studies are focusing on counterfactuals in deep learning. CLEVRER (Yi et al.,

2020) focuses on remove action-based counterfactual questions-answering. CoPhy (Ba-

radel et al., 2020) focuses on displacement-based counterfactual consequences estimation.

Both CLEVRER and CoPhy are developed in a simulated environment; allowing scalable

experimentation. While CoSci focuses on real-world question-answering on hypothetical

conditions.

1.4 Motivation and Contribution

Many of our day-to-day life requires commonsense reasoning having a different level of

physical properties. I learn these properties by interesting in the world or observing some-

one interact. In other terms, I perform various actions in the environment to gain/use dif-

ferent knowledge. (Sampat et al., 2022) collected the various problems in multi-modality

with the focus on actions to do complex reasoning. Motivated by this, this thesis attempt to

propose a new benchmark with a specific focus on physical properties, which can only be

learned by performing actions on imaginary scenarios.

Videos often contain objects, each having their own properties; for instance objects

belong to certain categories, have shapes, sizes, and colors. These visible properties can

be estimated by using computer vision algorithms for object recognition, detection, color

recognition, shape estimation, etc. However, objects also have physical properties which in

many cases are not captured by cameras. For example, cameras can capture the shape and

color of an object, but not its mass. Consider the frames in Figure 1.1 that contain objects
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with different shapes, textures, and colors, existing video question-answering datasets ask

questions about these visible properties, but it is hard to reason about the masses of these

objects or their coefficients of friction.

Collisions between objects, however, do offer visual cues about mass and friction.

When objects collide, their resulting velocities and direction of motion depend upon their

mass and friction coefficient, according to fundamental Newtonian dynamics. By observ-

ing the change in velocities and directions, it is possible to reason about the relative physical

properties of colliding objects.

In many cases, When humans watch objects in motion and under collision, we do not

accurately know the masses, friction, or other properties of objects. Yet, when we interact

with these objects, for example in a game of billiards, we can reason about the effect of

actions such as hitting one ball with another, removing an object, replacing an object with

a different one, or adding an object to the scene. In this thesis, I consider the task of

reasoning about such implicit properties of objects, via the use of language, without having

annotations for the true values of mass and friction of objects. Based on (Patel et al., 2022),

I propose a video question answering dataset called CRIPP-VQA, short for Counterfactual

Reasoning about Implicit Physical Properties. CRIPP-VQA contains videos annotated

with question-answer pairs. Each video contains several objects with at least one object in

motion. The object in motion causes collisions which changes the spatial configuration

of the scene. The consequences of the collision are directly impacted by the physical

properties of objects. CRIPP-VQA asks questions about these consequences.

As shown in Figure 1.1, questions in the dataset require understanding the current con-

figuration as well as counterfactual situations, i.e. the effect of actions such as removing,

adding, and replacing objects. The dataset also contains questions that require the ability

to plan in order to achieve certain configurations, for example producing or avoiding par-

ticular collisions. It is important to note that both tasks can not be performed without an
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understanding of the relative mass. For example, replace action can lead to a change in

mass inside the reference video, which can drastically change the consequences (i.e., set of

collisions).

I benchmark existing state-of-the-art video question-answering models on the new CRIPP-

VQA dataset. Key finding, in this thesis, is that compared to performance on questions

about visible properties (“descriptive” questions), the performance on counterfactual and

planning questions is significantly low. This reveals a large gap in understanding the phys-

ical properties of objects from video and language supervision. Detailed analysis shows

that the models can predict the first collision on counterfactual questions with high accu-

racy compared to the subsequent collisions. Models struggle at answering questions about

the effect of “replace” action. In the case of the “add” action, models can predict which

collisions won’t happen, but fail to predict the collisions that indeed happen.

I found Aloe (?) one-of-the stat-of-the-art baselines to be unstable on the proposed

dataset, CRIPP-VQA, primarily because one of its pre-processing modules of identifying

objects fails on CRIPP-VQA videos. Although this module works on previous datasets,

it leads to close-to-random performance on CRIPP-VQA due to the presence of complex

textures, reflections, and shadows. To mitigate this problem, I modify Aloe by adapting the

Mask-RCNN (He et al., 2017) for the object segmentation module. Moreover, I found that

adding pre-trained BERT-based word embedding significantly improves the performance

over the simple Aloe.

CRIPP-VQA also allows us to evaluate trained models on out-of-distribution test sets,

where the videos vary from the training data in terms of a single physical property at test

time (such as a change in mass, friction, and velocity). This OOD evaluation reveals a

further degradation in performance and a close-to-random accuracy for most state-of-the-

art models.

I summarize main contributions of the thesis below:
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1. I introduce a new benchmark, CRIPP-VQA, for video question answering which

requires reasoning about the implicit physical properties of objects in videos.

2. CRIPP-VQA contains questions about the effect of actions such as removing, re-

placing, and adding objects, which have not been considered in prior work on video

QA.

3. Performance evaluation on both in-domain and out-of-domain test sets shows the

significant challenge that CRIPP-VQA brings to video understanding systems.
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Figure 1.1: The CRIPP-VQA Dataset Contains Questions about the Future Effect of Ac-

tions (Such as Removing, Adding, or Replacing Objects) as well as Planning-based Ques-

tions. A Few Frames of a Video Are Shown above, with the Red Highlighted Area Depict-

ing the Objects on Which Actions Are Performed.
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Chapter 2

RELATED WORK

Video Question Answering is growing a lot in the past few years. There are several

datasets/benchmarks proposed for video-based QA tasks. VideoQA is different than Im-

ageQA as video is a temporal task and there are other important aspects such as conver-

sations, actions, consequences, etc. within a video. While ImageQA only contains the

questions whose answer is inside a single image. MovideQA (Tapaswi et al., 2016) dataset

contains 14,944 question-answer pairs from 408 movies. TGIF (Li et al., 2016) dataset

contains 100k GIFs with the corresponding description in the text. TVQA/TVQA+ (Lei

et al., 2020) is a large-scale VideoQA dataset having 152.5k question-answering pairs.

AGQA (Grunde-McLaughlin et al., 2021) is another dataset for spatial-temporal reason-

ing within the video as question answering task. This work on video question answering

has mainly focused on real-world scenes taken from movies and television shows. Ego4D

(Grauman et al., 2022) is another huge dataset that contains ego-centric videos taken from

volunteers with a diverse set of applications.

Textual Commonsense Reasoning type of tasks involves the understanding of the hid-

den aspects within the input textual data which are not explicitly present. For example,

we cannot fit a person inside a toy car means that the toy car is relatively smaller than the

person. There have been many studies in the field of NLP to incorporate commonsense

at different levels of difficulty. PIQA (Bisk et al., 2020) is proposed for physical com-

monsense reasoning for natural language understanding (NLU) systems as multiple choice

question-answering. CommonsenseQA (Talmor et al., 2019) is another QA dataset that

focuses on the relationship between entities, which are not given as a part of the input

10



Dataset Video QA
Physical Visually Hidden Counterfactual Actions

Planning Physics OOD Implicit reasoning
Reasoning Properties Add Replace Remove

MovieQA (Tapaswi et al., 2016) 3 - - - - - - - -

TGIF-QA (Li et al., 2016) 3 - - - - - - - -

TVQA/TVQA+ (Lei et al., 2020) 3 - - - - - - - -

AGQA (Grunde-McLaughlin et al., 2021) 3 - - - - - - - -

CoPhy (Baradel et al., 2020) - 3 3 - - - - - 3

CLEVR HYP (Sampat et al., 2021) - - - 3 3 3 - - -

IntPhys (Riochet et al., 2018) 3 3 - - - - 3 - -

ESPRIT (Rajani et al., 2020) 3 3 - - - - 3 - -

CATER (Girdhar and Ramanan, 2019) 3 - - - - - - - -

CRAFT (Ates et al., 2020) 3 3 - - - 3 - - -

CLEVRER (Yi et al., 2020) 3 3 - - - 3 - - -

ComPhy (Chen et al., 2022) 3 3 3 - - - - - -

CRIPP-VQA (ours) 3 3 3 3 3 3 3 3 3

Table 2.1: A Comparison of CRIPP-VQA with Prior Work on Video Question Answering,

in Terms of Different Aspects of Visual Reasoning That Are Tested.

(i.e., that is hidden). Verb Physics (Forbes and Choi, 2017) is a dataset with an emphasis

on learning relative physical knowledge (size, weight, strength, etc.). PROST attempts to

learn the consequences of several actions on different objects, which depend upon their

physical properties. QuaRel dataset focuses on the relationship between different physical

properties and how they impact each other.

Visual Commonsense Reasoning adds another layer of challenges for commonsense

reasoning on multi-modality. In the case of a multimodal setup, the commonsense meaning

is hidden inside the image, and text is used to infer this commonsense knowledge. (Sampat

et al., 2022) gives a survey of previous works on action reasoning. VisualCOMET (Park

et al., 2020) is a dataset for inferring commonsense concepts with the main emphasis on

learning the relationship between future events and their cause/effects from the images and

textual descriptions. Video2Commonsense (Fang et al., 2020) is a video captioning task

that seeks to include intentions behind the event to learn the effects of human actions to

11



derive the attribute of the subject. VCR (Zellers et al., 2019) is another standard dataset

that introduces a VQA task that requires commonsense and understanding of the scene

context to answer questions and to justify the answer. CLEVR HYPE (Sampat et al., 2021)

proposes a benchmark having hypothetical conditions/actions on CLEVR (Johnson et al.,

2016) environment.

Physical Reasoning is the most relevant and focus of interest in this thesis. With the

recent advancement in physics-based simulators, the application of these systems is be-

coming quite important and an alternative to a real-world environment. MuJuCO (Todorov

et al., 2012) physics engine is designed for model-based control. PyBullet1 is another

physics engine similar to MuJuCo. iGibson (Shen et al., 2021) is a rigid body-specific en-

gine for home simulations. ThreeDWorld (Gan et al., 2020) is a high-level API that uses

unity as a physics engine to render and control the environment, where the user can control

different nobs of physical properties. Because of the flexibility of using these and many

other simulators, there have been many use cases and several of the benchmarks use one or

another engine for various tasks where it is much hard to replicate the same set of exper-

iments in real-world scenarios. CATER (Girdhar and Ramanan, 2019) seeks to solve the

temporal reasoning on different actions such as pick-place, slide, rotate, etc. CLEVRER

benchmark (Yi et al., 2020) proposed the challenge of counterfactual reasoning of object

dynamics over remove action. However, all objects in CLEVRER have identical physical

properties leading to the same set of consequences. CoPhy (Baradel et al., 2020) attempted

to predict the consequences with respect to causal intervention (i.e., displacement of a

single object). It does not involve the change in physical as well for counterfactual reason-

ing instead focuses on predicting these properties using a single example. Filtered-CoPhy

(Janny et al., 2022) extends the CoPhy to perform the same task in pixel space. Recent

1https://pybullet.org/wordpress/
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work, ComPhy (Chen et al., 2022), is the most relevant/closest to this study, intending to

do physics-based counterfactual reasoning after inferring physical properties in a few-shot

setting. ComPhy focuses on explicit question-answering regarding the physical properties

(“What if object A was heavier?”). In contrast, in this thesis, physical properties need to

be learned from the video and are not mentioned in any type of questions, with three types

of questions (descriptive, counterfactual, and planning). And they should be learned in an

implicit setting.

Planning based reasoning is important aspect in robotics. Planning and decision-making

require performing the action to achieve the end goal. Planning-based tasks such as ob-

ject navigation with and without the various obstacles are previously explored. Physical

reasoning-based decision-making adds another layer to complex reasoning. A handful of

attempts have shown that indeed this is challenging. Visual planning (i.e. inferring the

required actions to reach the desired goal state) has been explored in Chang et al. (2020)

and Gokhale et al. (2019). IntPhy (Riochet et al., 2018) and ESPRIT (Rajani et al., 2020)

require planning-based reasoning under the influence of gravity. In the case of IntPhy and

ESPRIT, the system needs to predict the initial conditions to achieve the given goal. In

contrast, CRIPP-VQA focuses on a planning-based task that requires the understanding of

intrinsic physical properties.

13



Chapter 3

THE CRIPP-VQA DATASET

CRIPP-VQA, short for Counterfactual Reasoning about Implicit Physical Properties

via Video Question Answering, focuses on understanding the consequences of different

hypothetical actions (i.e., remove, replace, and add) in the presence of mass and friction

as visually hidden properties. CRIPP-VQA further involves the planning task which re-

quires the system to do reasoning involving the learned physical properties. This chapter,

explains the proposed dataset creation process. First, we explain the simulation setup and

how each videos are generated. Second, we describe the flow-chart for creating the useful

videos/annotations for training and evaluations. Third, we focus on question-answer pair

generation for each category of tasks. At last, we show the statistics of dataset to gain the

better understanding.

3.1 Simulation Setup

Physics Simulator. ThreeDWorld (TDW) (Gan et al., 2020) is used as default CRIPP-

VQA physics simulator. TDW is a multimodal physics simulator, having physics-based

interaction between environment objects and the agents. TDW uses Unity as a physics

engine, which allows better physical interaction and photo-realistic rendering. Further-

more, TDW allows the ease of scalability for data creation. Many of the previous studies

use CLEVR style rendering, leading to global overfitting (i.e., across the models/problem

statements) on visuals (as shown in section 4.3). TDW allows us to control the environment

and play with physical parameters such as mass, friction, velocity, bounciness, size, etc. in

a realistic setting.
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Property IID Mass Friction Number of Objects Velocity

Shape (sphere, cube) - - - -

Color (purple, teal, olive) - - - -

Texture (cardboard, aluminum) - - - -

Mass (2,14) (2,8,14) - - -

Friction (0.25) - (0.0) - -

# of moving objects 1 - - 2 -

Initial velocity (14) - - - (18)

Table 3.1: The Key Difference Between the i.i.d. And Various OOD Evaluation Settings

in CRIPP-VQA. Here, “-” Indicates the No Change in Particular Property from the i.i.d.

Setting.

Video creation. In each video instance, I first initialize it with N (where, N ∈ {5, 6})

number of randomly chosen objects O = {o1, ..., oN}. Here, oi ∈ {o1, ..., oM}, where M

is the predefined number of objects with fixed physical properties consistent in all videos.

Out of these N objects, one object (oi) will be initialized with a directional velocity and

with another random object (ok, where k 6= i) as target. The magnitude of the velocity is

defined in such a way that initial acceleration is same for either lighter or heavier objects.

This can be achieved my applying applying variable force to the object based on its mass

from F = ma (where, F is force, m is mass of the object, and a is the acceleration).

This allows us to create the setting where all objects are perceived as having the similar

velocity which will be impacted differently according to the friction and mass through

collisions. Each video in CRIPP-VQA is 5 seconds long, with a frame rate of 25fps. We

provide annotation and metadata for each video which contains object locations, velocities,

orientation, and collision info at each frame. These annotations are further used to generate
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the different types of question-answer pairs.

Objects and States. Table 3.1 summarizes the different properties in CRIPP-VQA. Each

object oi in the CRIPP dataset has four visible properties: a shape (S ∈ {cube, sphere}),

color (C ∈ {olive, purple, teal}), texture (T ∈ {aluminum, cardboard}), and state

(T ∈ {stationary, inmotion, undercollision}). Each object also has two invisible prop-

erties: mass (m ∈ {2, 14}) and coefficient of friction (µ ∈ {0.25}). Three actions can be

performed on each object – “remove”, “replace”, and “add”.

This work focuses on mass and friction as intrinsic physical properties of objects. Other

intrinsic properties such as bounciness or charge can be further introduced; however, this

creates unnecessarily complicated scenarios which become hard to quantify during the

evaluations. Each object having a unique combination of visible properties (i.e., {SHAPE,

COLOR, TEXTURE}) has a pre-assigned value of mass; for instance, all teal aluminum

cubes have mass 2. Note that these values are not provided as input to the VQA model and

need to be inferred in order to perform counterfactual and planning tasks. In the training

set and i.i.d. test set, the coefficient of friction for all objects with the surface is identical

and non-zero.

Out-Of-Distribution properties. Previous studies mainly focus on visible properties

based on OOD settings. This thesis proposes another dimension and seeks to observe the

models’ behaviors in OOD settings involving a change in physical properties. I consider

four types of OOD scenarios: 1) Mass: where the mass of a few objects is changed to 8,

2) Friction: where the surface friction is changed to zero, 3) Number of objects: where

two objects are moving instead of one when the scene is initialized, and 4) Velocity: initial

object velocity is increased to 18 from 14. There can be an infinite amount of possible

values for OOD physical scenarios. Doing so leads to a large number of variations within
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the dataset, which becomes hard to quantify. Therefore, I chose this fix set of OOD values

such that it leads to maximum deviations and at the same time the results are explainable.

Instance filtering. While creating each instance I randomly place N object within the

defined bounds based on the camera position. Because of this randomness, there can be

many reasons for the given set of collisions. This leads to hard-to-learn training/evaluation

examples. For instance, if we “replace” an object with another object then the resulting

collisions may or may not be because of the change in mass but it depends upon where

each object is located. Although such instances are not useful, they are valid examples and

should not be removed from the training/evaluation set. Therefore, I carefully design the

instance filtering strategy, which leads to a high number of deviations and can be explained

as mass as the major affecting factor. This pipeline can be summarized in the following

steps:

• Step 1: Randomly initialize the video with objects and their properties to render the

video. Record the video and generate annotations.

• Step 2: Filter the objects that were in collisions except for the first moving object.

• Step 3: Randomly select one object from the filtered set of objects and replace it

with another object from a predefined list of objects. Render the video and record

the annotations.

• Step 4: Change the mass of the newly introduced object and record the collisions.

• Step 5: If there are differences between collisions in “replace” based counterfactual

settings (i.e., with different mass) that means that mass is the important factor for

change in collisions.
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• Step 6: If there are differences in collisions then store this data instance in the

database else remove it and continue the loop.

Using this flow, the CRIPP-VQA dataset is created with a good balance of different types of

scenarios. Only “replace” action-based counterfactual scenarios are considered during this

filtering process because replace action directly leads to a change in intrinsic properties.

While “remove” and “add” actions depend upon the properties of existing objects and their

spatial location.

3.2 QA Generation

CRIPP dataset focuses on three categories of tasks: 1) Descriptive, 2) Counterfactual,

and 3) Planning. Table 3.5 and 3.6 shows the examples of the questions asked in the CRIPP-

VQA dataset. This study uses various annotations files generated using TDW to create the

question-answer pairs.

Descriptive: These questions involve understanding the visual properties of the scene,

including:

1. Counting the number of objects having a certain combination of visually seen prop-

erties,

2. Yes/No questions requiring object recognition

3. Finding the relationship between two objects under collision

4. Counting the number of collisions

5. Finding the maximum/minimum occurring object properties.

CRIPP-VQA does not include questions that require reasoning over mass, to avoid the in-

troduction of spurious correlation which may influence counterfactual and planning-based

questions.
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Counterfactual. These questions focus on action-based reasoning (i.e., remove, replace,

and add). I generate a hypothetical situation based on one of these actions, and the task is

to predict which collisions may or may not happen if we perform the action on an object.

To do this, I first note the differences in collisions between original and corresponding

counterfactual scenarios. This gives us the list of new collisions and the list of collisions

that didn’t happen. They are used to create multiple-choice questions such that there are

no visual biases, which can be learned. Therefore, bias experiments do not get more than

50% per-option accuracy (as shown in section 5.4).

Remove action focuses on a counterfactual scenario where a certain object is removed

from the original video. Replace action focuses on a counterfactual scenario where one

object is replaced with a different object. Replace action does not only change the ob-

ject but it may also lead to a change in the hidden property. Add action-based questions

focus on evaluating the system’s understanding of spatial relationship along with the hid-

den property, where I create a new hypothetical condition by placing a new object to the

left/right/front/back at a fixed distance from the reference object.

Planning. CRIPP also contains planning-based questions, where the task is to perform

an action on objects within the given video to either make/stop collisions. Here, the sys-

tem needs to predict which action needs to be performed and on which object, to achieve

the goal. There can be so many solutions for a given scenario (if not infinite), which is a

time-consuming process to get all of them. To avoid this, the proposed dataset uses existing

counterfactual annotations to get the list of collisions that were new or didn’t happen in a

counterfactual setting. This allowed us to create balanced planning task questions. It is

worth noting that during the evaluations, we need to perform the actions over the environ-

ment and render the video again to check whether the predicted action achieves the goal or

not.
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Figure 3.1: A Pie-chart Showing the Distribution of Various Question Types in the CRIPP-

VQA Dataset. The Inner Pie Chart Shows the Three Broad Categories of Questions (Coun-

terfactual, Descriptive, and Planning), While the Outer Pie-chat Shows a Fine-grained Cat-

egorization.
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3.3 Dataset Statistics

CRIPP contains 4000, 500, and 500 videos for training, validation, and testing, respec-

tively. Furthermore, it has about 2000 videos focused on evaluation for physical out-of-

distribution scenarios. CRIPP training dataset has about 41761 descriptive questions, 41761

counterfactual questions (9603, 5142, and 27016 questions for remove, replace, and add ac-

tions, respectively), and 10440 planning-based questions. Figure 3.1 shows the percentages

of each subcategory within the dataset. As described before, I used specific pipeline to fil-

ter the data. To generate the most useful data, it is important to cover different scenarios

without ignoring anything. For example, counterfactual action should not always lead to

different consequences then the original reference video. Because of the distance between

two nearby objects even if we perform hypothetical actions, the set of collisions can be the

same. These type of observations are not helpful during the training but they are valid. To

get more insights, on how generated data look-like and how each physical properties are

important and can be learned with given generated dataset, I calculate various statistics:

• Mass of the objects is randomly assigned using a random operator. This allows us

to assign weights that are not highly correlated by color/shape/material. Table (3.2)

shows the list of objects with the corresponding physical properties.

• From data annotations, the observations can be made that there is a high number of

the first collision between two different objects, which itself should be sufficient to

learn the mass distribution.

• Table (3.3) shows the average number of collisions when one type (in terms of mass)

of objects collides with another. Here, it can be inferred that when the same mass

objects collide, the avg. a number of collisions are close. While, when a lighter and

heavier object collides this number either increases or decreases. This suggests that
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Object number Shape Color Material Mass

1 Cube Olive Aluminium 2

2 Cube Teal Aluminium 2

3 Cube Purple Aluminium 14

4 Cube Olive Cardboard 14

5 Cube Teal Cardboard 14

6 Cube Purple Cardboard 2

7 Sphere Olive Aluminium 2

8 Sphere Teal Aluminium 14

9 Sphere Purple Aluminium 2

10 Sphere Olive Cardboard 2

11 Sphere Teal Cardboard 14

12 Sphere Purple Cardboard 14

Table 3.2: Average Number of Collisions When One Type of Object Collides with Another

in Terms of Mass.

mass impacts the number of collisions in the video.

• Furthermore, Table (3.4) shows that the average number of collisions in different

counterfactual settings is different. This creates another challenging task to apply

physical reasoning where the effect of hypothetical action and mass is important.

To summarize, the above statistics suggest that the CRIPP-VQA dataset does not con-

tain any visual cues. At the same time, it covers the different types of collisions, and

learning physical properties is essential to do counterfactual/planning-based reasoning.
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First collision type Light→ Light Heavy→ Heavy Light→ Heavy Heavy→ Light

Avg. Number of collisions 3.12 3.23 1.78 4.03

Table 3.3: Average Number of Collisions When One Type of Object Collides with Another

in Terms of Mass.

# of moving objects Vanilla # of collisions Remove # of collisions Replace # of collisions Add # of collisions

CLEVRER 2.34 2.46 N/A - -

CRIPP-VQA 1 3 2.06 3.31 4.15

Table 3.4: General Statistics Comparison Between CLEVRER and CRIPP-VQA. Here,

N/A Shows That Annotations Are Missing to Derive the Number, and − Represents That

Action Is Not Present in the Dataset.
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Question Type Examples

Descriptive - Type 1
How many teal cardboard cube objects are there ?

How many cardboard sphere objects are static when video ends ?

Descriptive - Type 2
Do teal cardboard cube objects exist in the video ?

Do purple aluminium cube objects exist in the video ?

Descriptive - Type 3
What is the color of the collidee of purple aluminium cube in collision number 1?

What is the material of the collider of purple cardboard cube in collision number 2?

Descriptive - Type 4
How many collisions are there between teal sphere objects and teal aluminium objects ?

How many collisions are there between purple cardboard cube objects and teal aluminium cube objects ?

Descriptive - Type 5
What is the maximum occurring shape of objects in the video ?

What is the minimum occurring material of objects in the video ?

Table 3.5: Descriptive Question Examples of the CRIPP-VQA Dataset, Asked from Different Types of Question Categories as

Shown in Figure 3.1.
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Question Type Examples

Counterfactual - Remove

What will happen, if the teal cardboard sphere is removed ?

Choice: purple cardboard sphere would collide with purple cardboard cube

Choice: teal cardboard cube would collide with purple cardboard cube

Counterfactual - Replace

What will happen, if the purple cardboard sphere is replaced by the purple aluminium sphere?

Choice: purple aluminium sphere would collide with olive aluminium sphere

Choice: teal cardboard sphere would collide with purple aluminium sphere

Counterfactual - Add

What will happen, if the purple cardboard sphere is added to the right of teal aluminium sphere?

Choice: teal aluminium sphere would collide with purple cardboard cube

Choice: olive aluminium cube would collide with teal aluminium sphere

Planning
Make the collision between olive cardboard cube and olive aluminium sphere.

Make the collision between teal cardboard sphere and olive cardboard sphere .

Table 3.6: Counterfactual and Planning Task Examples from the CRIPP-VQA Dataset.
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Chapter 4

MODELING STRATEGIES

There are several methodologies proposed for Visual Question Answering. This chapter

describes the three state-of-the-art deep learning-based VideoQA systems and how I mod-

ified them for the CRIPP-VQA dataset. Apart from these deep learning models, Neuro-

Symbolic systems are also being studied for similar tasks. Neuro-Symbolic approaches

assume that some prior knowledge about the environment is already known. In the case

of the CRIPP-VQA tasks, it proposes the challenge of learning visually hidden proper-

ties without external knowledge. Therefore, I select the following three approaches: 1)

Memory, Attention, and Composition (MAC) (Hudson and Manning, 2018), 2) Hierarchi-

cal Conditional Relation Network (HCRN) (Le et al., 2020), and 3) Attention over learned

embeddings (Aloe) (?).

4.1 Memory, Attention, and Composition (MAC)

(Hudson and Manning, 2018) proposed MAC for compositional visual question answer-

ing task. MAC network consists of several MAC cells focusing on basic reasoning steps.

MAC cell allows the system to decompose the input into sequences of attention, which can

be used to perform the reasoning without the need for strong supervision. Unlike LSTMs,

each MAC cells are independent of the other (in terms of weights sharing) and they rely

on previous cells’ output to do the reasoning. Figure (4.1) shows the example of the MAC

network and what each MAC cell looks like. MAC cell contains three submodules: 1)

control unit, 2) read unit, and 3) write unit. The Control unit takes the textual input and

previous step control unit output to update the state. The read unit takes the image as input

and memory state to extract the important features, which is controlled by the control unit.
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Figure 4.1: Mac Network Model Architecture with MAC Cell Network From (Hudson and

Manning, 2018).

Write unite processes the read unit output and previous memory state to update the existing

memory state, which is again maintained by the control unit.

Experiments on CLEVR show that MAC can achieve 98.9% accuracy. Furthermore,

it has been observed that based on the input question, MAC attentions can successfully

identify the relevant objects within the image (Hudson and Manning, 2018). As MAC has

shown its potential for compositional reasoning, I adapt it for benchmarking the CRIPP-

VQA dataset. The original MAC network only takes the single image feature vector ex-

tracted using the pre-trained classifier. I modify the image feature extractor to adapt the

image-frame sequences from a video. To do this, we can first get features for each frame in

(batch size, frames, channels, h, w) dimensions and convert it to (batch size, frames, h, w)

by taking a mean of channel-wise features for each frame. The rest of the network is kept

unchanged during the experiments

4.2 Hierarchical Conditional Relation Network (HCRN)

I use HCRN as another baseline to benchmark the CRIPP-VQA dataset. HCRN was de-

signed specifically for Spatio-temporal video question answering by (Le et al., 2020). The

hierarchy in the HCRN model is divided into two steps: 1) Clip-level, and 2) Video-level.
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Each video is divided into many clips with some overlap frames. First, HCRN performs

this clip-level modeling as a part of the first layer. Second, output feature representation

from the clip level is used as input to the second layer (i.e., video level). This hierarchy

style modeling allows the HCRN to attend at a different granular level and achieve better

performance.

HCRN extracts two different feature representations from the set of frames from the

video/clip: 1) Frame-specific features using pre-trained ResNet, and 2) Video/Clip motion

features extracted from pre-trained 3D CNN. Textual inputs are encoded using pre-trained

context-free GloVe embeddings. As HCRN is designed for spatial-temporal reasoning, I

adapt the model as it is without changes 1.

4.3 Attention Over Learned Embeddings (Aloe)

Aloe (?) is one of the best-performing models on the CLEVRER (Yi et al., 2020)

benchmark. It is a transformer-based model, designed for object trajectory-based com-

plex reasoning over synthetic datasets. Figure (4.2) summarizes the Aloe model from the

(?). First, Aloe uses MONet (Burgess et al., 2019) for obtaining object features. MONet

extracts these features by performing an unsupervised decomposition of each frame into

observed objects. Like, other vision-language-based models, Aloe takes the object-specific

features from the images (in this case, MONet features) as a visual representation of the

video. Furthermore, Aloe trains the text embedding lookup from the scratch. Aloe takes

these frame-wise object features to predict the answers to the input question, using the

[CLS] token and self-supervised training strategy. (?) explores several different self-

supervised learning strategies, where per-frame object mask prediction seemed to be more

useful during experimentation.

1https://github.com/thaolmk54/hcrn-videoqa
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Figure 4.2: Baseline Aloe Model Architecture from (Ding et al., 2021). Here, MONet Is

Pre-trained Separately on the given Training Dataset. The Rest of the Modules Are Trained

from Scratch.

4.3.1 Drawbacks of Aloe

From experiments, I find that the MONet module used in Aloe is very unstable and

fails to produce reliable frame-wise features on complex visuals from CRIPP. MONet is

not able to recognize object properties such as color and is not able to decompose the

image into several images containing individual objects. It was observed that MONet-

based unsupervised object decomposition results in failure on complex realistic visuals and

it is hard to guarantee that it will decompose each object on independent images/features.

In Figure (??), I show three failure cases of MONet on the CRIPP-VQA dataset. Here, we

can observe that MONet is not only able to decompose the objects independently, but it is

also not able to learn the color of the objects. That said, at least MONet can learn the texture
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Input Object 1 Object 2 Object 3 Object 4 Object 5 Masks

MONet Object Decomposition (Aloe -- unmodified) Mask RCNN (Aloe*)

Figure 4.3: Illustration of the Failure of MONet (the Object Decomposition Module in

Aloe (Ding et al., 2021)) on CRIPP-VQA Videos. The Intended Functionality of MONet

Is to Decompose Individual Objects into Separate Masks. However, as Shown above, the

Predicted Masks Contain Areas Corresponding to More than One Object. We Modified

Aloe by Replacing Monet with Mask-RCNN, and This Approach (Aloe*) Leads to More

Reliable Object Detection Which Can Be Used by the Downstream Question-answering

Module.

(i.e., metal or cardboard). As a result, we can see that the re-generated images lack greatly

in terms the important features. However, the same MONet model achieves remarkably

good results. Since the CLEVR was proposed, many algorithms and SotA challenges were

derived from similar visuals setup. This leads to temporal overfitting on visual biases on

proposed methodologies.

4.3.2 Aloe∗ (Modified Aloe)

As MONet fails measurably on CRIPP-VQA visuals, the Aloe baseline also exhibits

close-to-random performance because of the lack of information. I propose additional

modifications to Aloe to make it more widely applicable beyond prior datasets that are
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Figure 4.4: Aloe*+BERT Model Architecture. Here, Mask-RCNN and BERT Models

Are Pre-trained for Instance Segmentation and Masked-Language-Modeling, Respectively.

These Two Modules Are Kept Frozen During the Training and the Rest Are Trained from

the Scratch.

built using the CLEVR (Johnson et al., 2016) rendering pipeline. I replace unsupervised

MONet with supervised Mask-RCNN object detector (He et al., 2017) to perform instance

segmentation. Then I train an auto-encoder to compress the mask-based object-specific

features to make it compatible with the Aloe feature requirement. I call this version of

Aloe with Mask-RCNN object detector Aloe∗.

With this change, it was observed that Aloe∗ improves the performance over Aloe.

However, in my experiments on CRIPP-VQA, I learn that instead of learning the word

embedding from the scratch, given that the text embeddings are extracted from a pre-trained

BERT model. Therefore, I further modify the Aloe∗ to use BERT-based word embeddings
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as an alternative to learn embedding lookup from scratch. Aloe*+BERT leads to faster

and stable convergence on CRIPP-VQA. Figure (4.4) shows the model diagram of the

Aloe*+BERT model.
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Chapter 5

EXPERIMENTS AND RESULTS

5.1 Problem Statement

Given an input video (v), and a question (q) the task is to predict the answer (a).

Each video v contains the m number of objects randomly selected from the set O =

{o1, o2, ..., on}. Here, object oi has several associated properties (i.e., oi = (mi, ci, si, ti, li, vi)),

where color (ci), shape (si), texture (ti), location (li), and velocity (vi) are visually observ-

able properties alongside with mass (mi) as hidden property. More formally, we need to

learn the probability density function p such that we maximize the p(a|v, q).

Evaluation Metrics. Accuracy is adapted as an evaluation metric for different categories

of QAs. In the case of the descriptive question, we simply need to check whether the

predicted answer is in the set of correct answers. To evaluate the models on counterfac-

tual questions, this study uses two accuracy metrics – per-option (PO) and per-question

(PQ) accuracy. Here, each counterfactual questions have multiple options describing the

collisions. Therefore, per-option accuracy refers to the option-wise performance and per-

question accuracy considers whether all options of correctly predicted or not. Each plan-

ning task involves performing an action over objects within a video. Because of that, to

achieve the given goal there can be multiple possible solutions, which are hard to predict.

Therefore, TDW is used to re-simulate the models’ predictions on the original video to

check whether the given planning goal is achieved or not. This creates a new evaluation

pipeline for planning-based questions for interactive evaluations.
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Model Descriptive
Remove Replace Add

Planning
PQ PO PQ PO PQ PO

Frequency 8.21 0.00 50.18 0.00 50.00 0.00 50.00 3.49

Random 8.51 7.21 49.58 3.34 49.40 9.39 50.04 7.39

Blind-BERT 53.82 20.18 54.67 17.57 50.45 15.86 51.55 8.11

MAC 48.72 16.41 50.68 17.31 50.21 16.29 49.83 6.26

HCRN 64.98 27.20 59.04 19.87 55.97 20.49 56.06 21.38

Aloe* 68.94 31.10 62.90 9.91 52.10 18.13 56.55 31.76

Aloe*+BERT 71.04 33.64 65.46 22.07 56.76 39.71 67.43 32.61

Table 5.1: Results on the i.i.d. Test Set Showing Performance of Models Evaluated in

Terms of Per-Question (PQ) Accuracy and Per-Option (PO) Accuracy. For Descriptive and

Planning Questions, Only One of the Answer Options Are True, Therefore Per-Question

and Per-Option Accuracies Are Identical. Here, Both Aloe Variants Are Modified Version

over Aloe Baseline.

5.2 Benchmark Model Details

As described in the previous chapter, for this study, I consider three different deep

learning-based state-of-the-art models for the video question answering task: 1) MAC (Hud-

son and Manning, 2018), 2) Hierarchical Conditional Relation Network (HCRN) (Le et al.,

2020), and 3) Attention over learned embeddings (Aloe) (?).

In addition to these strong baselines, it is also important to consider a “random” base-

line which randomly selects one answer from a possible set of answers, and a “frequent”

baseline which always predicts the most frequent label. To analyze textual biases, a text-

only QA model “Blind-BERT” is used. Blind-BERT is a pre-trained language model

(BERT (Devlin et al., 2019)) which takes only questions as input to predict the answer
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and ignores the visual input.

5.3 Experimental Setup

I follow the training guidelines provided by the authors of each baseline study. All

systems are trained on Quadro RTX 8000 GPUs. Each model is trained with a maximum

of 200 epochs. And I select the best model based on average performance accuracy on

the validation set. I follow the below instructions to support each model which are MAC,

HCRN, Aloe*, and Aloe*+BERT. Moreover, for planning based task, we need to add extra

four classifier heads on top of all models which predicts: 1) the type of the action, 2) an

object on which action needs to be performed, 3) an object which needs to be added through

replace or add action, and 4) relative direction of the object if we are adding a new object.

MAC: I modify the public implementation of MAC from https://github.com/rosinality/

mac-network-pytorch to adapt the video frames as input. First, it is important to resize

the each 125 frames leading (125, 3, 224, 224) video dimension. Later, ResNet101 is used

to extract the features (125, 512, 14, 14). After taking the channel-wise mean of features,

this leads to the final video re-presentation of (125, 14, 14) dimension matrix supportable

for the rest of the pipeline. I also do the necessary changes described for the planning task

as well.

HCRN: As HCRN is the VideoQA model and official implementation is available at:

https://github.com/thaolmk54/hcrn-videoqa, I use the source code as it is. Except

again additional classifier heads are introduced to do the planning based tasks.

Aloe*/Aloe*+BERT: I first reproduce the Aloe on PyTorch based on the architecture de-

tails from the research paper by Ding et. al. (?) and their public available demo at https:

//github.com/deepmind/deepmind-research/tree/master/object_attention_
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Hyper-parameter Value

# of layers 28

# of attention heads 128

embedding size 768

visual feature size 512

text embedding size 768

Batch Size for descriptive 96

Batch Size for Counterfactual 32

Batch Size for Planning 16

Learning rate 0.00005

Optimizer RAdam

Table 5.2: Aloe*+BERT Architecture and Hyper-Parameter Details.

for_reasoning. Moreover, the code base from transformers1 library (as it is well tested

and used across the industry and academia) is used and modified to support the VideoQA

in the same way as Aloe does. My initial experiments on CLEVRER showed that Aloe

cannot reproduce the results on CLEVRER with the specified set of architecture details

and hyper-parameters from the original paper. Therefore, I do extensive experiments on

Aloe architecture and hyper-parameter search to reproduce similar results. After achiev-

ing a similar performance from the paper, this new reproducible Aloe architecture is used

in experiments. Table (5.2) shows the hyper-parameter details to reproduce the results.

Moreover, the Aloe* source code from experiments is available at https://github.com/

Maitreyapatel/CRIPP-VQA/.
1https://github.com/huggingface/transformers
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5.4 Results

Table 5.1 summarizes the performance comparisons of baselines on the CRIPP-VQA

i.i.d. test set. On Descriptive questions, the “random” and “frequent” baselines achieve

around only 8% accuracy, while Blind-BERT gets 53.82% which suggests the existence of

language bias associated with correlations between question types and most likely answers

for each. Surprisingly, MAC achieves only 48.72% which is lower than Blind-BERT. This

implies that the video feature representations learned by MAC hurt performance compared

to text-only features. HCRN, and both Aloe variants improve performance indicating that

visual features are crucial for descriptive questions. Aloe*+BERT is the best performing

model which implies that proposed modifications helps to improve the performance.

Counterfactual questions involve a total of three types of actions. Table (5.1) shows the

action-wise performances. The performance of MAC is again close to Blind-BERT. HCRN

performs slightly better than Blind-BERT. This shows that even though visual features in

HCRN are better than the MAC but it is not sufficient enough to do such complex reason-

ing. Aloe*+BERT achieves much better results only in terms of remove and add actions.

However, Aloe*+BERT is close to random for questions with the “replace” action as it di-

rectly involves the change in physical properties (i.e., mass and shape) of an existing object

within the given scenario. This implies that Aloe*+BERT is able to do spatial reasoning

to some extent, but is not good at reasoning about changes in physical properties. While

it can also be seen that Aloe*+BERT outperforms the Aloe across the actions, this implies

that BERT-based embedding helps the model to learn the relation between the objects and

action.

Planning task can have more than one possible answer and it is created from the counter-

factual reasoning tasks. Therefore, we can observe a similar trend in results, and Aloe*+BERT
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Model Descriptive Remove – PO Replace – PO Add – PO Planning

Aloe*+BERT 71.04% 65.46% 56.76% 67.43% 32.61%

Human Evaluations 90.00% 86.67% 73.33% 76.67% 58.87%

Table 5.3: Comparison of Aloe*+BERT with Human Evaluations. Results Show That

There Is a Huge Gap Compared to the Human Evaluations.

performs better than the other baselines. Further analysis on Aloe*+BERT predictions

shows that model predicts “remove”, “replace”, and “add” actions for planning tasks with

70.52%, 10.6%, and 18.87%, respectively. This also suggests that the model finds it easy

to reason when “remove” hypothetical action is present.

Human evaluations: To learn more about the upper bound of the CRIPP-VQA dataset

and what to expect from the different proposed systems, I perform human evaluations.

There was a total of 6 people participated as volunteers. All were given 5 videos and

corresponding QA pairs to get habituated with the environment. Then they are asked to

answer total of 30 questions. As shown in Table 5.3, Human evaluations achieved 90.00%,

78.89%, and 58.87% on descriptive, counterfactual, and planning tasks, respectively.

5.5 Physical out-of-distribution Experiments

Most of the previous studies focus on feature-based OOD cases (like the rotation of the

entities within the image).

Figures (5.1, 5.2, 5.3, and 5.4) shows the comparison of VideoQA models on i.i.d.

and different OOD scenarios for remove, replace, and add action, and planning questions,

respectively. From Figure 5.1, it can be seen that in the case of the OOD settings the

model performance becomes close to random which is around 50%, for all models. This
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Figure 5.1: Comparison of Performance of Models (Per-option Accuracy) for “remove”

Questions When Tested Using the i.i.d. Test Set and Each OOD Test Set.

suggests that models are very sensitive to such small physical perturbations, especially

for the “remove” action. Furthermore, Figure 5.2 shows that all models perform close

to random for the replace action. From Figure 5.3, we can observe that the performance

drop is negligible across the OOD sets for the add action, especially for Aloe*+BERT. The

reason behind this is that Aloe*+BERT is not able to predict the actual set of collisions but it

can learn that based on the direction of the new object which collisions won’t happen (more

details are in the next section). Moreover, Figure 5.4 shows that the performance increases

on several OOD scenarios for planning task. In case of the remove action, Friction and

Velocity OOD settings is the hardest for models to perform. While, for replace action,

Number of Objects OOD setting is the hardest but Aloe*+BERT improves the performance

on Velocity. Number of Objects – OOD setting is also tough for models to understand for
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Figure 5.2: Comparison of Performance of Models (Per-option Accuracy) for “replace”

Questions When Tested Using the i.i.d. Test Set and Each OOD Test Set.

add action based questions.

Descriptive questions are based on the observable reference video. In ideal scenario,

irrespective of the OOD tasks the performance on OOD descriptive questions should be

similar to the i.i.d. setting. Table 5.4 shows the performance of Aloe*+BERT model on de-

scriptive evaluation set from different settings. Here, it can be observed that performance

of Aloe*+BERT is consistent across the evaluation sets. Except for the “Number of Ob-

jects” OOD setting where there are two moving objects instead of only one moving object,

leading to slight drop in performance.
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Figure 5.3: Comparison of Performance of Models (Per-option Accuracy) for “add” Ques-

tions When Tested Using the i.i.d. Test Set and Each OOD Test Set.

i.i.d. Mass Friction Number of Objects Velocity

Aloe*+BERT 71.04 70.85 70.62 66.57 71.16

Table 5.4: Accuracy of Aloe*+BERT on Descriptive Questions from Different (i.i.d. and

OOD) Evaluations Sets.
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Figure 5.4: Comparison of Performance of Models “planning” Questions When Tested

Using the i.i.d. Test Set and Each OOD Test Set.
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Chapter 6

ANALYSIS AND DISCUSSION

This section raises several important questions and derive the insights accordingly.

Performance for true vs. false collision detection Consider the scenario with three ob-

jects (A,B,C), where only A collides with B. In this case, the collisions are categorized

between A & B as the actual collision ( i.e., prediction label true), and collisions are cat-

egorized between B & C and A & C as an absent collision (i.e., prediction label false). I

further check the performance of detecting all occurring collisions and the collisions that

never happened. For this analysis, all occurring collisions are selected if they are captured

in annotation files. Table 6.1 shows the action-based performance of Aloe*+BERT on these

two categories. It can be inferred that detecting the actual set of collisions is easy in the

case of the “remove” action but we can observe the opposite results for “add” action. This

reveals that Aloe*+BERT is learning the object trajectories as it can detect collisions cor-

rectly for removing action but is not able to perform spatial reasoning. However, in the case

of the replace action, the model is failing in both categories. This implies that it is hard for

existing models to learn the concept of mass in an implicit setting.

Performance for First Collision vs Subsequent Collisions. In the CRIPP-VQA dataset,

a collision between a pair of objects may lead to subsequent collisions between other ob-

jects. We analyze the performance of the best model (Aloe*+BERT) on counterfactual

questions, by comparing the accuracy on questions about the first collision, with the accu-

racy on questions about subsequent collisions. To correctly predict subsequent collisions,

models need to understand the mass of the objects involved in the first collision to learn

the consequences (i.e., sequence of future events). From Table (6.2), we can observe that
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Action Present collisions Absent collisions

Remove 78.27 52.81

Replace 65.74 60.23

Add 46.41 79.47

Table 6.1: Per-option Accuracy of Aloe*+BERT for Detecting Present Vs.Absent Colli-

sions Correctly.

for all three actions, there is a drop in performance on subsequent collisions; the drop is

highest (28.48%) for “remove” action.

Importance of mass as intrinsic property. There are many hidden factors (i.e., mass,

friction, object shape, velocity) that play roles in object trajectories and collisions in any

scenario. Therefore, to understand the some dynamics, I analyze the number of collisions

in different counterfactual scenarios and collisions between two different types (in terms of

mass) of objects. Table 6.3 shows that if first collision is between either two light or two

heavy objects then it leads to almost same number of collisions. However, if first collision is

between light and heavy objects then the number of collisions either decreases or increases

based on the scenarios. Analysis on the number of collisions in different counterfactual

settings shows that there are on an average 3.0, 2.06, 3.31, and 4.15 collisions in vanilla,

“remove”, “replace”, and “add” counterfactual settings, respectively.

To summarize, these analyses suggests that each counterfactual scenarios are unique

and contains different challenges. Furthermore, these strengths the argument that models

fail to learn various reasoning capabilities including but not limited to intrinsic physical

properties, and consequences of the actions.
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First Subsequent

Action Collision collisions Difference

Remove 90.52 62.45 28.07

Replace 75.38 66.03 9.35

Add 55.45 41.01 14.44

Table 6.2: Per-option Accuracy of Aloe*+BERT for Detecting First Collision Vs. Subse-

quent Collisions from the Set of Occurring Collisions in Counterfactual Scenario.

First collision type L→ L H→ H L→ H H→ L

3.12 3.23 1.78 4.03

Table 6.3: Average Number of Collisions in Ground Truth Videos (i.e., Vanilla) When

Different Types of Objects Participate in First Collision. “x → y′′, Where x, y ∈

{Light,Heavy}, Means That x Mass Object Collides with y Mass Object. Moreover,

H: Heavy Object and L: Light Object.
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Chapter 7

CONCLUSION AND FUTURE WORK

This chapter summarizes the thesis, the limitations of the study and shows the potential

future research directions.

7.1 Summary

The current imaging pipeline cannot determine the visually hidden properties (such

as mass, and friction). However, these properties can be identified by using visual cues

from the video (like, collisions and change in velocity). Humans do not require one-to-

one mapping to estimate such properties of the surroundings. We infer these properties in

implicit manner just by observations. Therefore, in this thesis, I propose CRIPP-VQA to

benchmark the state-of-the-art models’ ability to learn such properties in implicit settings.

CRIPP-VQA contains the three types of tasks: 1) Descriptive QA, 2) Counterfactual

QA, and 3) Planning. Descriptive question is about the visually seen properties of the

given video. Counterfactual QA is about an hypothetical scenario where we perform re-

move/replace/add action on given reference video. Intrinsic physical properties play a big

roles in such counterfactual scenarios. Hence, Counterfactual QAs gives the additional

cues about hidden properties. Planning tasks are completely opposite of the counterfactu-

als. In this case, model needs to perform an action which achieves the given goal to either

make or stop the collisions between two objects.

Extensive experiments shows that state-of-the-art models struggle to achieve the human-

like performance. Especially, in case of the “replace” action all models hardly improve

upon the random baseline. Further analysis suggests that visuals are key component and

unsupervised object decomposition method (i.e., MONet) fails to decompose on CRIPP-
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VQA visuals, suggesting that previous SotAs are only evaluated on some specific visuals

leading to overfitting on some visuals properties. I further extend the studies on physical

out-of-distribution, where I vary the different physical properties one at a time and observe

the behaviour of the trained models on i.i.d. set. Detailed analysis on various kinds of col-

lision predictions showed that Aloe*+BERT can predict the first collision in counterfactual

scenarios correctly but it cannot predict the subsequent collision.

7.2 Limitations and Future Work

This study has several limitations and future work is needed to improve the current state

of the AI/ML algorithms.

• This thesis focuses on discrete intrinsic physical properties which leads to diverse set

of consequences. In future, it would be important to extend this work to continuous

variables to make the system more generalize.

• CRIPP-VQA contains fix set of visual properties leading to only handfull of objects.

In future, it would be important to expand the types and number of objects.

• Our experiments shows that deep learning based state-of-the-art methods struggles

to achieve better performance. Maybe neuro-symbolic methods might be able to

achieve better results. It is worth noting it down that CRIPP-VQA proposes the

challenge of learning intrinsic properties in unsupervised manner without external

resources such as simulators. This also creates another layer of challenge for neuro-

symbolic systems.

• CRIPP-VQA is the synthetic dataset on simulated environment. But it is necessary

to expand this idea to real-world setting. For example, a person kicking a football

vs. brick leads to different consequences and it necessary for systems to learn these

physical differences.
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