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ABSTRACT

Systematic Reviews (SRs) aim to synthesize the totality of evidence for clinical

practice and are important in making clinical practice guidelines and health policy

decisions. However, conducting SRs manually is a laborious and time-consuming

process. This challenge is growing due to the increase in the number of databases

to search and the papers being published. Hence, the automation of SRs is an es-

sential task. The goal of this thesis work is to develop Natural Language Processing

(NLP)-based classifiers to automate the title and abstract-based screening for clinical

SRs based on inclusion/exclusion criteria. In clinical SRs, a high-sensitivity system is

a key requirement. Most existing methods for SRs use binary classification systems

trained on labeled data to predict inclusion/exclusion. While previous studies have

shown that NLP-based classification methods can automate title and abstract-based

screening for SRs, methods for achieving high-sensitivity have not been empirically

studied. In addition, the training strategy for binary classification has several limita-

tions: (1) it ignores the inclusion/exclusion criteria, (2) lacks generalization ability,

(3) su↵ers from low resource data, and (4) fails to achieve reasonable precision at

high-sensitivity levels.

This thesis work presents contributions to several aspects of the clinical systematic

review domain. First, it presents an empirical study of NLP-based supervised text

classification and high-sensitivity methods on datasets developed from six di↵erent

SRs in the clinical domain. Second, this thesis work provides a novel approach to view

SR as a Question Answering (QA) problem in order to overcome the limitations of the

binary classification training strategy; and propose a more general abstract screening

model for di↵erent SRs. Finally, this work provides a new QA-based dataset for six

di↵erent SRs which is made available to the community.
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Chapter 1

INTRODUCTION

Biomedical research is the core of modern healthcare, and it is important in de-

veloping e↵ective medication and treatments. Without this research, the prevention

and cure of disease would be practically impossible, and it can help stimulate the

development of healthcare and biomedical infrastructure. Recently, computer science

is playing a significant role in accelerating biomedical research. With the advent of

Artificial Intelligence (AI), it became easier to simulate patient behaviour and vi-

sualize the complex biological model. Nowadays, AI is playing a vital role in the

automation of various biomedical tasks such as biomedical text classification, ontol-

ogy harmonization, systematic reviews, and many more (Thakur et al. (2020)). In the

last few decades, Machine Learning (ML), Deep Learning (DL), Information Retrieval

(IR), Computer Vision (CV), and Natural Language Processing (NLP) have changed

the face of biomedical research. Researchers are using these learning algorithms to

simplify and automate many biomedical tasks. Because of the fruitful collaboration

between computer science and biomedical, research in the clinical domain increased

exponentially.

The growth of research in healthcare has become significant in the last few decades.

With this increasing clinical research, it is di�cult for busy clinicians and physicians

to keep up with ongoing research in various domain. Hence, systematic study and

summary of this massive abundance of studies in the various clinical domains is a

necessary task. In the biomedical field, well-conducted Systematic Reviews (SRs) and

Meta-Analysis (MA) are considered a feasible solutions for keeping physicians abreast

to ongoing research in biomedical field. The next section describes the basic overview
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of SR workflow in the clinical domain. These days, SRs are mostly carried out

manually which becomes a time-consuming, laborious, and costly task of reviewing

thousands of research articles. The relentless growth in clinical research and published

articles have created a need for automation of SRs to expedite the process.

The main aim of this thesis work is to use the strength of recent NLP techniques

to automate the SRs workflow for title and abstract based screening. In this work,

we present a detailed empirical study of datasets developed from six di↵erent clinical

SRs. We demonstrate the e↵ectiveness of classical IR techniques, advanced NLP

techniques and their ensemble in achieving a high-sensitivity system for automation of

SRs. This work presents SR as a Question Answering (QA) problem for the first time

to overcome the limitations of the binary classification training strategy, and propose

a more general abstract screening model for di↵erent SRs. Finally, this thesis work

provides a new QA-based dataset for six di↵erent SRs which will be made available

to the community.

1.1 Systematic Review

Systematic Reviews (SRs) help in facilitating easy access to evidence for busy

clinicians. They have become very important in the healthcare domain. SRs aim

to synthesize the totality of evidence for clinical practice and are important in mak-

ing clinical practice guidelines and health policy decisions. Clinical practice guide-

lines and health policy decisions depend on well-conducted clinical SRs (Tawfik et al.

(2019)).

The process for conducting clinical SR is typically done in three steps: (1) search

bibliographic datasets using inclusion/exclusion criteria, (2) screening of obtained ar-

ticles based on their title and abstract, and (3) full-text review of an included articles

from step (2) (Liberati et al. (2009)). PRISMA (Preferred Reporting Items for Sys-
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Figure 1.1: PRISMA Flowchart of Clinical SR Workflow. After Liberati et al. (2009).

tematic reviews and Meta-Analyses) flow diagram of clinical SR is shown in Figure

1.1. In this work, we have used data from six di↵erent clinical SRs. First, inclu-

sion/exclusion criteria for all datasets are defined using PICO (Population, Interven-

tion, Comparison, Outcome) approach. Detailed explanation of inclusion/exclusion

criteria are given in Chapter 3. After designing inclusion/exclusion criteria, a search

strategy is used to search various datasets to get relevant articles based on controlled

vocabulary provided by experts. After getting articles, title and abstract based screen-

ing (simply called abstract screening in the rest of the thesis) is done by two reviewers

independently (in this step, duplicate articles are also removed). As shown in Figure
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1.1, only articles included from abstract screening are reviewed again using their full

text for deciding final inclusion/exclusion from SR.

Research on methods for automating or semi-automating SR via ML and NLP now

constitutes its own (small) subfield (Marshall and Wallace (2019)). The major work

of this thesis revolves around the automation of abstract screening (highlighted block

with light blue color in Figure 1.1) for clinical SR using advanced NLP techniques.

As known, the US Institute of Medicine explicitly favors high sensitivity of literature

searches and literature screening over high specificity (Morton et al. (2011)). How-

ever, the techniques needed to achieve high sensitivity have not been systematically

studied before. In addition, this thesis work presents di↵erent methods to achieve

high sensitivity for clinical SR.

1.2 Motivation

SRs search, appraise and collate all relevant empirical evidence to provide a com-

plete interpretation of research results. Because of exponentially increasing research

in clinical domain, we must expedite the SR process (Tsafnat et al. (2013)). Nowa-

days, abstract, and full-text screening are usually carried out manually (although

some tools exist) (Marshall et al. (2017)). These steps require a large amount of time

and a considerable workforce with expertise (Allen and Olkin (1999)). According to

Allen and Olkin (1999), conducting a single review requires over 1000 hours of highly

skilled labors. Moreover, existing manual SR process is not sustainable because re-

view of current evidence goes out of date quickly. It is tiresome and challenging

task to keep updating SR. Hence, automation of SR is an essential task. Moreover,

clinicians do not want to miss any relevant article or study for any domain. Hence,

designing systems with high sensitivity is key requirement in clinical SRs.

As mentioned in Bagheri et al. (2018), abstract screening is one of the most time-

4



consuming steps in the production of SR. At the abstract screening time, reviewers

must review thousands of documents coming from various datasets. However, at the

time of full-text screening, you have to review only few hundreds, or a smaller number

of articles compared to abstract screening because many articles will be excluded

during abstract screening. Hence, the scope of this study is limited to automate

abstract-based screening of articles to reduce manual e↵orts.

1.3 Research Value and Contributions

This thesis work is the part of ongoing research project with Mayo Clinic. The

goal of this project is to develop system that can automate or semi-automate the SR

workflow and use that system to conduct “Live Systematic Review” for the real-life

use for hospitals. Having the ability to do SR without or with less human inter-

vention can be helpful to clinicians in numerous ways. For instance, clinical sites in

developing nations, o↵shore sites, or areas with limited resources, may not have the

ability to a↵ord workforce and time for SRs to maintain an up-to-date repository of

medical best-practices for a variety of situations. Moreover, automation of SR can

save tremendous amount of time and energy of medical practitioners. Doing so would

obviate the need of exhaustive manual review of thousands of new scientific articles

and allow clinicians to focus only on most relevant literature and spend more time on

making clinical and healthcare decisions. In addition, automation of SR can be help-

ful in figuring out most relevant literature related to ongoing healthcare situations in

the time of catastrophic situations such as pandemics and many more.

Research Evaluation: This work formulates automation of SR as classification

problem. Approaches of the abstract screening are evaluated based on standard

classification metrics, i.e., Precision, Sensitivity, and F-measure. Moreover, this work
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introduces new metric, the percentage of eventually-included1 articles that are missed

at various high-recall values along with precision.

Contribution: This work presents a series of contributions related to automation

of abstract screening of clinical SR:

1. High-Sensitivity NLP Methods for Abstract Screening

This work presents empirical study of NLP-based supervised text classification,

classical IR methods and their ensemble for achieving e↵ective automation of ab-

stract screening. This is the first study to propose five di↵erent high-sensitivity

methods and new evaluation metric for SR systems. The proposed methods are

analyzed on datasets developed from six di↵erent SRs in the clinical domain.

This work concludes that achieving sensitivity beyond 95% is still challeng-

ing task. However, 90% sensitivity may seem like a good compromise where

healthy precision can be achieved while losing typically on an average 5% or

fewer eventually-included articles and this system can be used as the alternate

screener in the SR process.

2. Systematic Review as Question Answering

To the best of our knowledge, this thesis work provides a novel approach to view

SR as a QA problem for the first time in order to overcome the limitations of

the binary classification training strategy; and propose a more general abstract

screening model for di↵erent SRs. This general model gives an advantage for

low resource data since it is trained on a combination of di↵erent datasets.

1Eventually included means that these are the studies that were in the SR after the full-text

review.
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3. QA Dataset

This thesis work provides a new QA-based dataset for six di↵erent SRs which

will be made available to the community.

1.4 Structure of Thesis

This work will first review some background and existing work on the topic of

Systematic Reviews and Question Answering in Chapter 2. In the next Chapter,

the creation, and statistics of all six datasets are discussed in detail. Chapter 4 will

provide an empirical study of high-sensitivity methods for datasets developed from

six di↵erent clinical SRs. Chapter 5 will discuss a novel approach to view SR as

a QA problem, propose a more general abstract screening model for di↵erent SRs

and evaluation of proposed approach w.r.t. baseline. In conclusion, Chapter 6 will

summarize the thesis work with proposed methods, limitations, contributions and

future research directions for automation of clinical SR process.
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Chapter 2

LITERATURE REVIEW

This chapter discusses some background and existing work in the field of sys-

tematic reviews and application of QA in various biomedical tasks. In Section 2.1,

I will briefly describe history of SRs, and review various text mining, ML, and DL

techniques proposed to automate SR over the past several decades. In addition, I

will discuss recent neural breakthroughs in NLP and their applicability to SRs. In

Section 2.2, I will briefly review the existing work where researcher have reformulated

various biomedical tasks as QA approach.

2.1 Systematic Reviews

With increasing plethora of studies, SRs have become more popular in clinical

domain to provide concise summary of evidence. However, Gough et al. (2017) states

the importance of SRs in various domains not limited to biomedical. SRs have be-

come more popular in last few decades, however, Lind (2014) conducted the first SR

to record and assess the state of knowledge on scurvy disease in 1753. It was not

until the 20th century that more attention was paid to SRs to improve the process of

synthesized research evidence. After Greenhalgh (2004) drew attention to the impor-

tance of Randomized Control Trial (RCT) in determining treatments, it significantly

impacted field of SR and pointed out the need to improve the process of SR (Chalmers

et al. (2002)). To improve the SR workflow, QUOROM (QUality Of Reporting Of

Meta-analysis) statement guidelines are proposed by Moher et al. (2000), and these

guidelines improved in 2009 as PRISMA by Moher et al. (2009). The SR dataset

creation (as discussed in next chapter) for our task in this thesis work strictly follow
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the PRISMA guidelines.

Nowadays, SRs are mainly done manually by expert clinicians and team. However,

the amount of information and published studies continue to increase at tremendous

rate which in turn increases the time and cost for conducting SR. Many attempts

have been made to reduce SR workload by automating the SR process or part of

SR workflow. The ongoing development in learning algorithms such as ML, DL, IR,

NLP, CV, etc. has paved a path to automate SR in various ways. As discussed in

Bannach-Brown et al. (2019), SRs of many clinical problems are implemented using

these approaches. Cohen et al. (2006, 2012); Liu et al. (2018) used learning algorithms

for drug class e�cacy assessment, Wallace et al. (2012) for genetic associations and

cost-e↵ectiveness analyses, Miwa et al. (2014); Shemilt et al. (2014) for public health,

Howard et al. (2016) for toxicology, Wallace et al. (2010); Rathbone et al. (2015) for

treatment e↵ectiveness, Wallace et al. (2010) for nutrition, Howard et al. (2016); Liao

et al. (2018) for preclinical animal studies, and many more studies exist. According to

Michelson et al. (2019), there are several tools available for automatizing SRs which

can be grouped into three categories. The first category is text visualization such as

Covidence (Adams et al. (2013)), Early Review Organizing Software (Glujovsky et al.

(2011)), PICO portal (Miller and Forrest (2001)), etc. The second category is term

frequency and inverse document frequency weighting methods such as SWIFT-Active

Screener (Howard et al. (2020)). The third category is semi-automate or automate

screening and selections tools (i.e., text classification methods) such as Support Vector

Machine (SVM)-based models (Yu et al. (2008); Gates et al. (2018); Ouzzani et al.

(2016)). Aim of this thesis work is to build the third category screener for abstract

screening of SRs.

With the advent of advance NLP-based techniques, many past attempts have been

made to automate or semi-automate abstract screening in SRs (Tsafnat et al. (2014,
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2018); Reddy et al. (2020); Gates et al. (2019, 2020); Jaspers et al. (2018); Ros et al.

(2017); Rathbone et al. (2015); Kanoulas et al. (2019)). NLP-based text classifica-

tion and data extraction techniques are used extensively in automation of abstract

screening (Marshall and Wallace (2019)). A recent review by O’Mara-Eves et al.

(2015) found 44 algorithms which use NLP to determine the probability that candi-

date paper should be included/excluded from the SR. NLP and ML-based approaches

have become very popular in past decades for automatic clinical SR. Machine Learn-

ing models such as SVM, k-Nearest Neighbour (kNN), Latent Dirichlet Allocation

(LDA), etc., had been proven very e↵ective in the first decade of 21st century for

text classification (Cohen (2006); Cohen et al. (2006); Bekhuis and Demner-Fushman

(2012); Miwa et al. (2014)). For the fist time, Cohen (2006) evaluated the e↵ective-

ness of SVM models, class imbalance problem, and high-sensitivity requirement for

clinical SRs. After this, Ma (2007) evaluated Active Learning (AL) and Naive Bayes

approaches for the first time for SRs. Fiszman et al. (2008) proposed use of semantic

models for the first time. First developed system for clinical SRs, i.e., GAPscreener

was proposed by Yu et al. (2008). Nowadays, many ML-based developed tools exist

to automate screening process in SRs and reducing manual workload (Marshall et al.

(2017)). Nevertheless, ML-based approaches rely heavily on arbitrarily set sample

features and are unstable and labor-intensive (Qin et al. (2021)).

In the past decade, DL-based models have emerged with e�cient text classifica-

tion ability (Qin et al. (2021)) in the field of NLP such as recurrent neural networks

(Tang et al. (2015); Poon et al. (2019)), attention mechanisms (Vaswani et al. (2017)),

transformers (Wolf et al. (2019)), Bidirectional Encoder Representations from Trans-

formers (BERT)-based models (Devlin et al. (2018)), etc. However, only a few studies

exist which analyze the e↵ect of these state-of-the-art NLP models on SRs (Brock-

meier et al. (2019); Qin et al. (2021); Schmidt et al. (2020); Begert et al. (2020); Wang
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and Lo (2021)). In this work, our focus is to use the BERT-based model (SciBERT

proposed by Beltagy et al. (2019)) and leverage the advance NLP-based QA approach

for abstract screening of SR.

2.2 Biomedical Tasks as Question-Answering

Over the past years, there has been a trend of reformulating NLP tasks as Ques-

tion Answering (QA) tasks. Levy et al. (2017) transforms a relation extraction task

to a QA task by generating a question for a relation type and if an answer can be

extracted from a sentence, then such relations exist in the sentence. Li et al. (2019)

reformulated Name Entity Recognition (NER) task to QA format in general domain.

McCann et al. (2018) transformed ten tasks to QA format and built a general model to

solve multiple tasks. Inspired by this, many attempts have been made in reformulat-

ing biomedical tasks as QA. Wang et al. (2020) presented biomedical event extraction

as QA task, and proposed QA system based on domain-specific language model SciB-

ERT. Nguyen (2019) proposed QA system which view patient related medical queries

as questions to perform self-diagnosis. Similarly, Banerjee et al. (2019) made the same

attempt but specifically on the biomedical domain in addition to leverage knowledge

to guide model learning for NER task. Similar to these previous works, our focus is

to reformulate the SR as QA task in this study.
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Chapter 3

DATASETS

The purpose of this chapter is to get familiar with the datasets used for this thesis

work. This work is developed to automate abstract screening of six di↵erent clinical

SRs. The datasets used for this study are created manually by the expert physicians

of Mayo Clinic. The scope of this study covers six di↵erent biomedical SRs: 1)

Immune Checkpoint Inhibitors (ICI), 2) Hormone Replacement Therapy (HRT), 3)

Cooking, 4) Accelerometer, 5) Acromegaly, and 6) COrona VIrus Disease (COVID).

In this chapter, various aspects of dataset creation and statistics are discussed in

detail. Here, the dataset creation procedure is explained for ICI data. In particular,

this chapter talks about data sources and search strategies for ICI dataset to get

overview of how articles are collected, and how manual annotations are done for all

six datasets. Other datasets are also created in a similar way. At the end, statistical

analysis and inclusion/exclusion criteria are presented for all six di↵erent datasets.

3.1 Data sources and Search Strategies

Devising correct search strategy is critical to ensure that review is not biased

by easily accessible studies, and all relevant literature is retrieved (Tsafnat et al.

(2014)). The purpose of this section is to describe detailed procedure of relevant

article collection to conduct SR for ICI and increase understanding related to the

data sources and search strategies. A comprehensive search of several databases from

each database’s inception to September 11th, 2018, any language was conducted. The

databases included Ovid MEDLINE(R) and Epub Ahead of Print, In-Process & Other

Non-Indexed Citations, and Daily, Ovid EMBASE, Ovid Cochrane Central Register
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of Controlled Trials, Ovid Cochrane Database of Systematic Reviews, and Scopus.

The search strategy was designed and conducted by an experienced librarian with

input from the study’s principle investigator. Controlled vocabulary supplemented

with keywords was used to search for phase 2 or 3 clinical trials, systematic reviews,

and meta-analyses of ICI drugs. After collecting the articles, the manual annotation

(i.e., screening) is done based on title and abstract of each article since the purpose

of this study is to automate abstract screening of SRs. Other five datasets are also

created in similar way with di↵erent data sources and search strategies designed by

experts in particular domain. Unfortunately, all datasets are created by Mayo Clinic

and are not publicly available yet, hence, I am restricted to provide readers with more

details about vocabulary and search strategies used for dataset creation.

3.2 Manual Screening Process

This section describes how these datasets are manually annotated by the experts

in relevant domain for the use of this study. The decision for each article whether

it’s included in SR or not is based on inclusion/exclusion criteria. If article satisfies

all the inclusion criteria, then the article is included in the final SR (i.e., Include).

For abstract screening of SR, each article was annotated manually by two expert

physicians from respective fields whether it’s “Include” or “Exclude” by analyzing

the title and abstract of an article. When there is a disagreement between two

annotators, a positive class (i.e., “Include”) is always preferred for the final label

for the experiments conducted in this study. The title and abstract of each article

are concatenated and used as the input data in our experiments. The articles rated

as “Include” after the abstract screening process (i.e., after the 2nd step of the SR

process) are considered as the positive samples and the “Exclude” articles as the

negative samples.
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3.3 Statistical Analysis

Statistics about the datasets can be found in Table 3.1. Table 3.1 shows that all

datasets are skewed - substantially fewer positive instances than the negative instances

except the ICI dataset. Because of this, we consider all datasets as low resource data

except ICI for this study. Few articles have the missing title or abstract, and we

discarded them (see Table 3.1) if both are missing (NULL values). After abstract

screening, included articles go in next stage (i.e., full-text screening). After full-

text screening, candidate article will be included in the final SR. Hence, the table

also shows the articles included in the SR after full-text reviews (i.e., at the end of

the 3rd step of the SR process). Reader can observe from the Table that number of

article included after full-text screening reduced by large margin compared to abstract

screening stage.

Statistics ICI HRT Cooking Accelerometer Acromegaly COVID

Total Articles 8817 2244 1005 717 1022 4310

Articles included after title and abstract screening 3978 323 136 164 185 683

Articles excluded after title and abstract screening 4839 1921 869 553 837 3627

Articles included after full-text screening 539 99 34 120 111 97

Abstract Missing from Included 2 34 5 0 7 242

Abstract Missing from Excluded 317 88 36 2 26 652

Title Missing 3 0 0 0 0 1

Table 3.1: Statistics of Datasets Developed from Six Di↵erent SRs

The concatenated input text of titles and abstracts varies significantly in length.

Since it is necessary to fix the maximum input sequence length for SciBERT, I studied

the input length distribution and used a data-driven approach for setting the maxi-

mum input sequence length. Figures 3.1a and 3.1b show the probability and cumu-

lative distributions of the input sequence length, respectively. Considerable variation

can be seen in sequence lengths across the datasets. ICI has longest sequences while
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(a) (b)

Figure 3.1: (a) Probability and (b) Cumulative Distributions of Title and Abstract

Sequences for the Datasets.

HRT and Accelerometer have the shortest sequences. Typically, 512 words is the 94th

percentile of the cumulative distribution for all datasets; however, the percentile for

256 words varied considerably among the datasets.

3.4 Inclusion and Exclusion Criteria

Inclusion and exclusion criteria set the boundaries for the SR. They are determined

usually before the search is conducted. These are simply natural language queries.

As a practice, SR developers clearly state the criteria at the beginning of the process

and modify if necessary along the way. The inclusion and exclusion criteria for each

dataset are shown in Appendix A.1. These criteria are important and can be used

in automating articles screening. The criteria are used in the bibliographic searches

as well as during the manual abstract screening and full article reviews. Moreover,

example of one positive and negative sample of ICI dataset is presented in Appendix

A.2 for readers understanding.
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Chapter 4

EMPIRICAL STUDY OF HIGH-SENSITIVITY METHODS

The techniques needed to achieve high-sensitivity, a key requirement for screening

published articles, have not been systematically studied before. In this chapter, I

present an empirical study of high-sensitivity techniques using datasets developed

from six systematic reviews in the clinical domain. Using SciBERT as a baseline

supervised text classifier, five di↵erent techniques are studied for achieving high-

sensitivity and it is observed that a combination of up-sampling and down-sampling

of the training data achieves the best results. A new evaluation metric, the percentage

of eventually-included articles that are missed at various high-sensitivity values along

with corresponding precision, is proposed in this study. Our results show that 1% or

fewer eventually-included articles were lost at ⇠ 99% sensitivity; typically 3% and 5%

were lost at ⇠ 95% and ⇠ 90% sensitivity, respectively. However, a lower sensitivity

may be used (with better precision) if losing about 5% or so eventually-included

articles is acceptable.

4.1 Background

As stated in Chapter 1, a crucial step in SRs is the abstract screening of the ar-

ticle. As known, this step is one of the most time-consuming steps in the production

of SR (Bagheri et al. (2018)). Abstract screening is often conducted by two individ-

uals independently based on the list of inclusion and exclusion criteria followed by

adjudication, thus doubling the e↵ort. Automating this step would reduce the labor

required and the time needed for a SR. Nowadays, ML and NLP are used extensively

to create many tools to automate the SR process (Marshall et al. (2017)). As known,
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the US Institute of Medicine explicitly favors high-sensitivity of literature searches

and literature screening over high precision (Morton et al. (2011)). However, an im-

portant requirement of the SR development was not well studied, i.e., the need for

high-sensitivity (⇠ 99%) for the “inclusion” (positive) class, even at the cost of preci-

sion. It can be colloquially stated as: I don’t want to miss any articles even if I have to

review more full length papers. In this Chapter, an empirical study of high-sensitivity

techniques is presented using datasets developed from six SRs in the clinical domain.

In this work, the important questions are addressed: what is the best way to achieve

high-sensitivity with modern neural networks and how low precision would be at the

high-sensitivity? Even more fundamentally, since precision reduces with increasing

sensitivity (rather dramatically at high-sensitivity), how high the sensitivity needs to

be in order to achieve e↵ective automation for abstract screening?

An empirical study, addressing these questions is presented in this research. We

(along with Mayo Clinic) developed a new dataset from six systematic reviews in

the clinical domain, which will be released to the community (after this work is pub-

lished). The state-of-the-art text classification BERT-based model (SciBERT) (Sun

et al. (2019)) pre-trained on the relevant corpus, and the state-of-the-art information

retrieval method (BM25) (Robertson and Walker (1994)), and their tandem assem-

blies, as the baseline methods for screening articles are implemented. Then, five dif-

ferent strategies for achieving high-sensitivity are explored in this work: (1) Lowering

the probability threshold for inclusion; (2) Training with imbalanced data, favoring

positive instances through up-sampling; (3) Training with imbalanced data, disfa-

voring negative instances through down-sampling; (4) A combination of up-sampling

and down-sampling; (5) Cost-sensitive optimization. This study presents the highest

sensitivity achievable with each method and corresponding precision, as well as sen-

sitivity and precision for points prior to the maximum (i.e., plotting the P-R curves
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in the high-sensitivity region). This research work also studies the percentage loss of

eventually-included articles for the high-sensitivity achieving strategies. Eventually-

included studies are the articles that were included in an SR after the third step of

the study selection described in Chapter 3 (i.e., full-text screening).

The results showed that SciBERT achieves the best F-measure (harmonic mean of

precision and sensitivity) across the datasets, and the strategy of simultaneously up-

sampling and down-sampling achieves the highest sensitivity (⇠ 99%), with associated

precision of about 20% for four data sets and about 50% for the remaining. The

metric we introduced, percentage loss of eventually-included articles, was useful in

understanding trade-o↵s in the sensitivity range from 90% to 99%: e.g., mostly 1%

or fewer eventually-included articles were lost at 99% sensitivity; however, a lower

sensitivity may be used (with better precision) if losing about 5% or so eventually-

included articles is acceptable. This thesis work provides a new and useful data point

for NLP in high-sensitivity applications and a new dataset for further research.

4.2 Methods

In this section, di↵erent methods used to develop the SR system are explained in

detail, and the experiments are discussed for this empirical study.

4.2.1 Abstract-Screening Methods

Here, I discuss the two state-of-the-art text classification and IR methods used for

abstract screening, and their combinations, as the baselines. It should be noted that

for SRs, it is not necessary to rank the screened abstracts (unlike a search application)

and text classification can be used as well as the IR techniques. Supervised Learning

(SL) is used with SciBERT for text classification; IR was implemented using BM25,

re-ranking methods were implemented by using them in combination (i.e., BM25 +
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SciBERT and SciBERT + BM25).

Supervised Text Classification - SL

The SciBERT Model (base-uncased) is used with the linear layer along with the

Softmax activation on the top of the model (Beltagy et al. (2019)). The schematic

representation of the proposed model is presented in Figure 4.1.

Figure 4.1: Schematic Representation of Supervised Text Classification (SL) Method.

The article text (title + abstract) is used as the input “sentence” for the SciBERT

model. As the output, the model produces the probability for each class. To build a

classifier, the model is fine-tuned on our data (10-fold cross-validation is used, details

are described later). The embeddings are used corresponding to [CLS] token for the

classification purpose, as shown in Figure 4.1. At the inference time, the ([CLS] +

text segment + [SEP ]) is given as input to this trained model and used the output

[CLS] representation in a linear layer with the Softmax activation function to predict

probabilities for each class. As usual, the class with the highest probability is the

final predict label.
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Information Retrieval - BM25

Recently, BM25 is the most commonly used search and ranking model for the IR

systems (Robertson and Zaragoza (2009)). Hence, this research work proposes to

use BM25 ranking module to build the SR system. BM25 ranks articles returned by

the bibliographic search for an SR based on the query terms corresponding to the

SR. The BM25 query is formulated using the inclusion criteria for each dataset. The

queries are presented in Appendix B.1.

Hybrid approaches

Two hybrid approach are used for abstract screening, i.e., BM25 + SciBERT and

SciBERT + BM25, each of which comprise two modules working in tandem. In the

first, the BM25 is the retriever and the SciBERT is next level filter (re-ranker). The

retriever is responsible for selecting articles that contains the specific query terms,

which are then passed to the SciBERT for second stage filtering, and vice-versa for

SciBERT + BM25.

4.2.2 High-sensitivity Techniques

To achieve the high-sensitivity, five di↵erent techniques are proposed here. Ex-

periments with the baseline abstract screening showed that text classification with

SciBERT consistently achieved better results, and so the high-sensitivity techniques

were targeted for SciBERT supervised learning.

Several techniques have been studied in past for training with imbalanced datasets

to achieve optimum F-measure (Elkan (2001); Zhou and Liu (2005); Japkowicz et al.

(2000)). Here, I propose to use these techniques for a di↵erent purpose - to destabilize

the operating point for achieving high-sensitivity. In addition, this work also makes

use of the standard approach of adjusting the probability threshold for the positive
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class (commonly used with the feature engineered models such as Logistic Regression

and SVM (Yu et al. (2015))).

Lowering the probability threshold for inclusion In this method, a custom

(lower than normal) threshold is used for predicting the positive label (i.e., “Include”)

at output of the Softmax activation. In order to find the highest threshold that yields

the highest sensitivity value, all the values from 0 to 1 with 10e-5 increment are used

to calculate the sensitivity, and select the threshold with maximum sensitivity value.

Up-sampling positive In this method, positive instances are up-sampled ku times

by the replication. I varied ku, and empirically found ku value that yields the highest

possible sensitivity for each dataset.

Down-sampling negative In a way similar to the above method, here negative

instances are down-sampled by factor of kd while keeping all the positive samples

of the dataset (i.e., we randomly selected fewer negative samples compared to the

positive samples). The value for kd yielding the highest possible sensitivity for each

dataset is determined empirically.

Hybrid sampling: Up-sampling positives and down-sampling negative In-

spired by previous studies (Wang (2014); Padmaja et al. (2007); Sei↵ert et al. (2009))

for achieving optimum F-measure, a hybrid approach is proposed, i.e., a combination

of up-sampling positives and down-sampling negatives to achieve a high-sensitivity.

In this method, positive instances are up-sampled using duplication by a factor of k1,

and negatives instances are down-sampled by a factor of k2. The combination of k1

and k2 is selected empirically in a way that yields the highest possible sensitivity for

each dataset.
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Cost-sensitive optimization In this method, a di↵erent weight is assigned to each

class using the equation given below.

weight (class) = kc ⇤
# of total samples

# of samples from class
(4.1)

The cost-sensitive factor kc yielding the highest possible sensitivity is found em-

pirically for each dataset. The intermediate values of precision and sensitivity are

recorded for all the methods for plotting P-R curves.

4.2.3 Experiments

Various experiments are conducted to analyze the performance of the proposed

systems. All the experiments were performed using Google Colab Pro. Note that the

SciBERT standard (base) model allows sequence lengths up to 512. To determine

ideal input sequence length, two experiments are performed on the SciBERT using:

(1) maximum sequence length of 512 and batch size of 12; and (2) maximum sequence

length 384 and a batch size of 16. Both the experiments resulted in the almost

similar performance. Since increasing sequence length increases the computational

(GPU memory and running time) requirements, maximum sequence length of 384

and a batch size of 16 are used along with AdamW optimizer. I used ‘0’ padding for

tokenized text less than 384, and removed tokens for tokenized text with length more

than 384.

Next, experiments are conducted for the baseline abstract-screening methods to

get optimum F-measure. 10-fold cross-validation is used to make best of the data we

have as well as to calculate standard deviation. Positive and negative class data is

randomly shu✏ed and divided into ten groups where each group contains 10% data

of both classes (i.e., stratified sampling). Here, the simplest cross-validation method

called “holdout method” is used (Raschka (2018)). For text classification - SL, the
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model is trained for 10 epochs with learning rate 10e-4. For the IR method - BM25, 10-

Fold cross-validation is used to learn the optimum threshold. The threshold is decided

for each training fold so that the threshold should include all the positive samples.

The test set threshold is the average of optimum thresholds across all training folds.

The re-ranking experiments are also conducted using the combinations of BM25 and

SciBERT. All the methods for optimum F-measure are trained using the balanced

datasets (1:1 ratio of positive and negative samples).

Subsequently, the high-sensitivity experiments are performed with the text classi-

fication SL-based method because it achieved the highest optimum F-measure across

the datasets. I started with 0 as a threshold for lowering the threshold for inclusion

class and increasing with the margin of 10e-5 at the inference time. The sensitivity

for the positive class is obtained for all possible values between 0 to 1 with 10e-5

increment and select the threshold with a maximum possible sensitivity for testing.

For the up-sampling and down-sampling, I started with the 1:1 ratio of positive and

negative samples. After that, I started improving the number of positive instances via

replication or removing negative samples via randomly selecting fewer samples until

the model gets biased towards positive samples (here, this means yielding sensitivity

of 1.0 for every epoch). The value of factor ku and kd is selected just before the

model gets biased towards positive samples. For the hybrid sampling, I started with

the up-sampling factor and down-sampling factor obtained for the high-sensitivity

individually; and the similar mechanism as up-sampling and down-sampling is used

to estimate the factors k1 and k2 for hybrid sampling. In the case of cost-sensitive

learning, the value of kc = 1 is the starting point for the eq. 4.1, and increased the

k by 0.2 for positive class and select value of kc before model gets biased towards

positive samples.

Lastly, the % of eventually-included articles is calculated for each dataset for
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various sensitivity values varied from optimum sensitivity to maximum sensitivity

achievable. I wrote code that counted the number of eventually included articles of

an SR that were not in the list of articles that the model predicted as “include” at

each operating point in the above range. The count was normalized as a percentage.

Metrics

Standard classification metrics, i.e., precision, sensitivity and F-measure are used

as performance metrics. The performance is measured only for the positive class,

since the goal of SR is to find included articles after the abstract screening process.

For further analysis of high-sensitivity methods, Precision-Recall (P-R) curves are

generated. To plot the P-R curve, precision and sensitivity values are used at di↵erent

operating points. A new performance metric is also used in evaluation, the percentage

of eventually-included articles that are missed at various high-sensitivity values along

with precision for di↵erent methods. Eventually-included means that these are the

studies that were in the SR after the full-text review.

4.3 Results

This section presents the results for the three experiments: (1) Optimum F-

measure (Table 4.1), (2) high-sensitivity methods (Table 4.2), and (3) percentage

of eventually included articles at various sensitivity (Table 4.3).

In Table 4.1, we can see that the supervised text classification method achieves

better F-measure compared to the rest of the approaches. For ICI, HRT, and Ac-

celerometer datasets, SL achieved F-measures of 0.892, 0.569 and 0.764, respectively.

For the COVID, SL achieves similar performance in terms of F-measure as hybrid ap-

proaches. Although the F-measures of the hybrid approaches are better than SL for

Cooking and Acromegaly, the di↵erence is small. BM25 has better sensitivity for all
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Method Dataset Precision Sensitivity F-measure

SL

(SciBERT)

ICI 0.874 (0.014) 0.910 (0.018) 0.892 (0.013)

HRT 0.427 (0.061) 0.873 (0.071) 0.569 (0.047)

Cooking 0.453 (0.116) 0.838 (0.102) 0.577 (0.092)

Accelerometer 0.675 (0.066) 0.895 (0.114) 0.764 (0.051)

Acromegaly 0.383 (0.085) 0.796 (0.097) 0.509 (0.070)

COVID 0.482 (0.069) 0.824 (0.065) 0.604 (0.051)

BM25

ICI 0.472 (0.009) 0.957 (0.009) 0.633 (0.007)

HRT 0.144 (0.002) 0.990 (0.015) 0.252 (0.003)

Cooking 0.154 (0.015) 0.925 (0.102) 0.264 (0.026)

Accelerometer 0.229 (0.010) 0.969 (0.044) 0.371 (0.016)

Acromegaly 0.184 (0.010) 0.957 (0.056) 0.309 (0.017)

COVID 0.114 (0.007) 0.814 (0.055) 0.245 (0.013)

BM25 +

SciBERT

ICI 0.875 (0.014) 0.911 (0.019) 0.892 (0.014)

HRT 0.423 (0.065) 0.851 (0.058) 0.561 (0.052)

Cooking 0.478 (0.111) 0.795 (0.112) 0.588 (0.092)

Accelerometer 0.678 (0.082) 0.871 (0.103) 0.757 (0.056)

Acromegaly 0.391 (0.083) 0.775 (0.117) 0.511 (0.068)

COVID 0.482 (0.069) 0.824 (0.064) 0.604 (0.051)

SciBERT +

BM25

ICI 0.875 (0.014) 0.911 (0.019) 0.892 (0.014)

HRT 0.423 (0.067) 0.842 (0.052) 0.559 (0.054)

Cooking 0.544 (0.163) 0.707 (0.147) 0.595 (0.112)

Accelerometer 0.678 (0.082) 0.786 (0.135) 0.718 (0.064)

Acromegaly 0.390 (0.086) 0.732 (0.123) 0.499 (0.072)

COVID 0.482 (0.069) 0.824 (0.065) 0.604 (0.051)

Table 4.1: Optimum F-measure Results for Supervised Text Classification (SL), In-

formation Retrieval - BM25, and Hybrid Approaches - BM25+SciBERT and SciB-

ERT+BM25. All the Cross-validation Results Are Presented in the Table Has Mean

(Standard Deviation) Format. Bold Results Indicate the Best Method for Each

Dataset.

datasets except for COVID (Table 4.1) but has poor precision across the board. The

SL and hybrid approaches have better precision compared to BM25. In summary,

the SL method outperforms the IR method in terms of F-measure; the IR method
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has superior sensitivity; and hybrid approaches perform similar to SL.

Method Dataset Precision Sensitivity F-measure

Th

ICI 0.576 (0.057) 0.990 (0.008) 0.726 (0.045)

HRT 0.249 (0.051) 0.969 (0.0004) 0.393 (0.064)

Cooking 0.252 (0.091) 0.926 (0.003) 0.389 (0.110)

Accelerometer 0.556 (0.187) 0.939 (0.002) 0.680 (0.161)

Acromegaly 0.273 (0.065) 0.946 (0.002) 0.420 (0.075)

COVID 0.234 (0.065) 0.985 (0.0001) 0.374 (0.080)

USP

ICI 0.827 (0.015) 0.932 (0.010) 0.876 (0.011)

HRT 0.219 (0.082) 0.972 (0.040) 0.350 (0.106)

Cooking 0.180 (0.093) 0.970 (0.074) 0.291 (0.110)

Accelerometer 0.325 (0.159) 0.982 (0.040) 0.468 (0.158)

Acromegaly 0.276 (0.093) 0.950 (0.061) 0.417 (0.108)

COVID 0.243 (0.099) 0.960 (0.059) 0.377 (0.123)

DSN

ICI 0.711 (0.063) 0.974 (0.008) 0.820 (0.044)

HRT 0.221 (0.082) 0.975 (0.040) 0.360 (0.106)

Cooking 0.279 (0.044) 0.919 (0.092) 0.426 (0.055)

Accelerometer 0.443 (0.087) 0.982 (0.029) 0.606 (0.080)

Acromegaly 0.256 (0.020) 0.945 (0.059) 0.402 (0.026)

COVID 0.280 (0.018) 0.963 (0.035) 0.433 (0.022)

USP

and

DSN

ICI 0.584 (0.140) 0.987 (0.013) 0.724 (0.106)

HRT 0.144 (0.002) 0.993 (0.019) 0.251 (0.003)

Cooking 0.197 (0.047) 0.970 (0.038) 0.326 (0.067)

Accelerometer 0.469 (0.074) 0.988 (0.026) 0.633 (0.070)

Acromegaly 0.193 (0.026) 0.994 (0.018) 0.323 (0.035)

COVID 0.306 (0.057) 0.965 (0.031) 0.461 (0.071)

CSL

ICI 0.757 (0.109) 0.964 (0.021) 0.843 (0.078)

HRT 0.273 (0.082) 0.963 (0.029) 0.419 (0.102)

Cooking 0.262 (0.093) 0.970 (0.039) 0.403 (0.114)

Accelerometer 0.454 (0.201) 0.982 (0.030) 0.594 (0.195)

Acromegaly 0.213 (0.027) 0.973 (0.038) 0.348 (0.037)

COVID 0.315 (0.063) 0.960 (0.025) 0.472 (0.077)

Table 4.2: Results for High-sensitivity Strategies - Th: Lowering the Probability

Threshold for Inclusion, USP: Up-Sampling Positive, DSN: Down-Sampling Nega-

tive, USP and DSN: A Combination of Up-Sampling Positive and Down-Sampling

Negative, and CSL: Cost-Sensitive Learning. All the Cross-validation Results Are

Presented in the Table Has a Mean (Standard Deviation) Format. Highlighted Re-

sults Indicate the Best Method and Bold Results Indicate the Second-best Method

for Each Dataset.
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All the high-sensitivity experiments in Table 4.2 are conducted using the SL (SciB-

ERT) method. SL (SciBERT) achieves the best performance in terms of F-measure

for ICI, HRT, and Accelerometer datasets; and achieves almost similar F-measure for

Cooking, Acromegaly and COVID datasets compared to other methods from Table

4.1. Since our goal is to maintain reasonable precision at high-sensitivity, and high

F-measure is an indication of both good precision and sensitivity, the high-sensitivity

methods are analyzed only on the best performing SL (SciBERT) method. From Ta-

ble 4.2, it can be observed that, as expected, precision drops (rather dramatically in

some cases) at higher sensitivity values. The hybrid technique of up-sampling positive

and down-sampling negative yields the highest sensitivity for HRT, Accelerometer,

Acromegaly and the second-highest sensitivity for ICI, Cooking and COVID, ranging

from 0.965-0.994.

Another observation is that cost-sensitive learning maintains best or second-best

precision for ICI, HRT, Cooking and COVID with only 2% or less reduction in the sen-

sitivity. Also, the threshold-based method achieves the highest-sensitivity (⇠ 0.99) for

the ICI and COVID datasets; however, this method fails to achieve similar sensitivity

for the remaining datasets. Up-sampling positives and down-sampling negatives indi-

vidually perform better than the threshold-based method, for all the datasets except

for ICI and COVID.

Figure 4.2 shows P-R curves for di↵erent high-sensitivity methods and for di↵er-

ent datasets. In a P-R curve, ideal performance is when it shows horizontal flat line,

which would mean that we do not lose precision while improving sensitivity. However,

that is not usually the case in practice as we see here. In the high-sensitivity range

(0.98-0.99), hybrid sampling achieves better precision compared to the other meth-

ods for three datasets but loses precision considerably for the remaining datasets.

The threshold-based method is consistent across all the datasets but mostly has low
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(a) ICI (b) HRT (c) Cooking

(d) Accelerometer (e) Acromegaly (f) COVID

Figure 4.2: P-R Curves for Di↵erent High-Sensitivity Methods Presented in Table 4.2.

Threshold: Lowering the Probability Threshold for Inclusion, USP: Up-Sampling Pos-

itive, DSN: Down-Sampling Negative, Hybrid: Combination of Up-Sampling Positive

and Down-Sampling Negative, and CSL: Cost-Sensitive Learning.

precision.

In Table 4.3, we can see that the eventually-included articles that are missed in

abstract screening are 1% or fewer at the highest sensitivity for all datasets. As

expected, the number of missed studies increases as sensitivity decreases. However,

cooking and COVID datasets are an exception - only 1% or fewer missing studies for

sensitivity at F-optimum.

At ⇠ 90% sensitivity, we are getting reasonably high precision, but we are losing

typically 5% or so eventually-included articles. But at ⇠ 95% sensitivity, we are

loosing typically 3% or fewer. The loss of eventually-included studies is much higher

in Accelerometer and Acromegaly compared to the other datasets.
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Dataset Sensitivity Precision Missing/Total (%)

ICI

0.911 0.874 16/539 (2.97%)

0.900 0.895 25/539 (4.63%)

0.950 0.851 10/539 (1.86%)

0.990 0.576 02/539 (0.37%)

HRT

0.873 0.427 04/99 (4.04%)

0.900 0.364 03/99 (3.03%)

0.950 0.294 02/99 (2.02%)

0.970 0.249 02/99 (2.02%)

0.993 0.144 01/99 (1.01%)

Cooking

0.838 0.453 00/34 (0%)

0.870 0.462 01/34 (2.94%)

0.900 0.392 01/34 (2.94%)

0.926 0.252 00/34 (0%)

0.970 0.180 00/34 (0%)

Accelerometer

0.850 0.675 13/120 (10.83%)

0.895 0.733 06/120 (5.00%)

0.900 0.625 07/120 (5.83%)

0.939 0.556 05/120 (4.16%)

0.988 0.469 02/120 (1.66%)

Acromegaly

0.796 0.383 22/111 (19.82%)

0.850 0.351 14/111 (12.61%)

0.900 0.309 10/111 (9.01%)

0.946 0.234 6/111 (5.40%)

0.994 0.193 3/111 (2.70%)

COVID

0.824 0.482 01/97 (1.03%)

0.900 0.420 00/97 (0%)

0.950 0.349 00/97 (0%)

0.985 0.234 00/97 (0%)

Table 4.3: % Of Eventually Included a Study That Is Missed after Abstract-screening

at Various High-Sensitivity along with Corresponding Precision. For Each Dataset,

the First Row Presents the Sensitivity at Optimum F-measure, and the Last Row

Represents the Maximum Achievable Sensitivity for Each Dataset.

4.4 Discussion

One of the reasons behind high-sensitivity but poor precision of BM25 may be

its TF-IDF based approach for searching articles. An article should be included if it
29



matches all the inclusion criteria. However, the BM25 method includes articles that

have not met all (but only some of) the criteria; hence more false positives. On the

contrary, the SL method seems to learn better patterns from the positive samples.

The improvement in precision for the hybrid approaches is because SciBERT reduces

the false positives retrieved using BM25.

We hypothesize that the reason for better precision for ICI and COVID datasets

at high-sensitivity is that these two datasets have more positive samples compared to

the other datasets. A larger sample of positive instances is likely to lead to a more

robust performance.

While the combination of up-sampling positive and down-sampling negative ben-

efits from relatively larger number of positive samples, it also increases the false

positives and thus reduces the precision at high-sensitivity. This can be seen in the

considerable reduction in precision for this method from Figure 4.2.

Based on Table 4.3 results, this study suggests 90% sensitivity may good com-

promise where healthy precision can be achieved while losing typically on an average

5% or fewer eventually included articles. For example, for the COVID dataset, we

are missing 0 eventually-included articles at 90% sensitivity with 40% precision. So,

we are reducing the total articles by a factor of 2.5 for full-text analysis. Hence, out

of 4310 (from Table 3.1), 1724 article can be filtered without manual e↵ort for the

full-text review. This operating point may be particularly interesting when used as a

replacement for one of the human abstract-screeners.

This automation reduces the manual e↵ort for SR. Let assume, we have N articles

to be review for SR, and time for abstract review is tA and time for full-text review

is tF (tF > tA). nF articles are filtered for the full-text review from N articles, and

N � nF articles are excluded. The time for this abstract review is TA = N ⇤ tA and

full-text review is TF = nF ⇤tF . Now, let assume that our system gives you n̂F articles
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for full-text review from N , the time for full-text review is T̂F = n̂F ⇤ tF . and Time

reduction in the manual e↵ort can be calculated using the below equation:

Treduction(%) =
TA + TF � T̂F

TA + TF
⇤ 100% (4.2)

As shown in eq. 4.2, percentage of time reduction is calculated w.r.t. to the

manual e↵ort required by one screener. This reduction may not make much of a

di↵erence for small datasets; however, this method is advantageous when you have a

large datasets like ICI and COVID.

4.5 Chapter Summary

This is an empirical study of high-sensitivity methods using six datasets developed

from actual SRs. From the results, we can conclude that the text classification system

performs superior to IR using BM25 and re-ranking approaches involving both, in

terms of optimum F-measure. We note that achieving high-sensitivity beyond 95% is

still a challenging task, and precision reduces rather by a large margin beyond 95%

sensitivity. A hybrid strategy of over-sampling positives and under-sampling negatives

is a promising approach in achieving high-sensitivity (⇠99%). At that sensitivity level,

only a few eventually-included articles would be missed but precision may be as low

as 20%. A reasonable compromise might be to aim for 90% sensitivity and use the

system as the alternate screener in the SR process.
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Chapter 5

SYSTEMATIC REVIEW AS QUESTION ANSWERING

As stated in Chapter 1, a high-sensitivity system is a key requirement in clini-

cal SRs. Most existing methods for SRs use binary classification systems trained on

labeled data to predict inclusion/exclusion (proposed in Chapter 4). However, this

training strategy has several limitations: (1) It ignores the inclusion/exclusion crite-

ria, (2) lacks generalization ability, (3) su↵ers from low resource data, and (4) fails

to achieve reasonable precision at high-sensitivity levels. To overcome these limita-

tions, we reformulate SR as a Question Answering (QA) problem. The proposed QA

model is compared with the binary classification model on datasets developed from

six di↵erent clinical SRs. The experimental results show that our QA model achieves

promising results in terms of precision and F-measure at the high-sensitivity levels

(⇠0.99). More importantly, I train a general QA model and show that this model

further improves the performance in low resource data compared to the data-specific

model. To the best of author’s knowledge, this is the first study to reformulate SR

as a QA task and propose a more general abstract screening model for di↵erent SRs.

5.1 Background

With advances in NLP, many studies have proposed automating abstract screen-

ing as stated in Chapter 2 (Marshall et al. (2018); O’Mara-Eves et al. (2015); Miwa

et al. (2014); Matwin et al. (2010); Gates et al. (2019); Del Fiol et al. (2018); Bian

et al. (2019)). However, high-sensitivity requirements for the included articles even

at the cost of precision for abstract screening are not well studied as discussed in

Chapter 4. In other words, high-sensitivity systems are required in many SRs. How-
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ever, it is challenging to maintain reasonably high precision at high-sensitivity levels.

Most existing methods train classification models using labeled data for SR, i.e., a

model predicts either inclusion or exclusion for a given article. However, this train-

ing strategy has several limitations: limitation 1 - It ignores the inclusion/exclusion

criteria, limitation 2 - lack of generalization ability, limitation 3 - su↵ers from low

resource data since obtaining huge labeled data for SR is costly and time-consuming,

and limitation 4 - fails to achieve reasonable precision at high-sensitivity levels. To

overcome these limitations, and inspired by recent works (Levy et al. (2017); McCann

et al. (2018)), we reformulate SR as a QA problem.

The empirical study of the proposed QA approach is presented on datasets de-

veloped from six di↵erent clinical SRs. The proposed QA system utilizes inclusion

criteria in an e�cient way (addresses limitation 1 ). In particular, each inclusion cri-

teria are converted to a boolean question, then the QA system takes the question as

well as the title and abstract of an article as input and predicts the answer to the

question, i.e., “Yes” or “No”. If the answer to all inclusion criteria is Yes, then the

article label is inclusion, otherwise exclusion. To train the proposed QA model, all

six datasets are converted to QA format which gives us the advantage to train a more

general abstract screening model (simply called general QA model in the rest of the

Chapter) on combined data (addresses limitation 2 ). This idea of the general QA

model gives an advantage for low resource data since it is trained on a combination

of di↵erent datasets (addresses limitation 3 ). For six datasets, we also analyzed the

e↵ect of the pre-training model on five datasets and fine-tuning with the remaining

dataset, i.e., a lifelong and continual learning scenario (Chen and Liu (2018)) (see

Section 5.2.2).

The results show that the proposed QA model achieves on an average 7.6% higher

precision compared to baseline at high-sensitivity levels (⇠ 99%) (addresses limitation
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4 ). The general QA model achieves better performance than baseline and almost

similar performance to the data-specific QA systems. However, the general model

only uses 1/6 of parameters compared to data-specific models. In addition, the fine-

tuning on a particular dataset after pre-training with the remaining datasets improves

the performance. In summary, the main contributions of this work are a new high-

sensitivity approach for screening for SRs, and a new QA based dataset for further

research in SRs to be made available to the community.

5.2 Methods

Title, Abstract

SciBERT

CLSo T1 Tm A1 ... An SEP

CLSi T1 Tm A1 ... An SEP

Linear
Layer

inclusion
exclusion

(a)

QA Model

yes no
yes no

yes no

inclusion 
criteria

Question

Title,
Abstract

Question, Title, Abstract

SciBERT

CLSo Q1 Qm SEP T1 An SEP

CLSi Q1 Qm SEP T1 An SEP

no

Linear
Layer

yes

(b)

Figure 5.1: Schematic Representation of (a) Binary Classification Model (BCM), and

(b) Proposed QA Approach.

5.2.1 Abstract Screening Systems

Baseline: Binary Classification Model

The SciBERT Model (base-uncased) is used with the linear layer along with the

Softmax activation on the top of the model (Beltagy et al. (2019)) as shown in Figure

5.1a as Binary Classification Model (BCM). The article text (title + abstract) is
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used as the input for the SciBERT model. As the output, the model produces the

probability for each class (i.e., “inclusion” or “exclusion”). To build a classifier, the

model is fine-tuned on our data. We used the embeddings corresponding to [CLSo]

token for the classification purpose. At the inference time, we input the ([CLSi] + title

and abstract + [SEP ]) to the trained model and use the output [CLSo] representation

in a linear layer with the Softmax activation function to predict probabilities for each

class. As usual, the class with the highest probability is the final predicted label.

Proposed QA System for SRs

We creatively apply a QA-based approach to SRs. Each SR has inclusion criteria,

and we convert them into boolean questions, i.e., the answer to the question is either

“yes” or “no”. In this way, a set of questions is obtained for SRs. Table 5.1 shows

the corresponding questions for each inclusion criteria (shown in Table A.1) on six

datasets. For a given article, title and abstract text is concatenated with all questions

for each dataset and ask the QA model to predict answers for given questions. If all

answers are “yes”, it means this article satisfies all inclusion criteria thus the label

is inclusion, otherwise, the label is exclusion. Figure 5.1b shows our proposed QA

pipeline. Di↵erent from the baseline model described in Section 5.2.1, the QA model

is given explicitly inclusion criteria as questions, which is the key component of the

QA model.

Weak Negative Samples To train a QA model, the training set should consist

of both positive samples (i.e., a tuple of a question, input text, a label “yes” ) and

negative samples (i.e., a tuple of a question, input text, a label “no”). The positive

samples can be constructed from the labeled data: the articles annotated as inclusion

can be a positive sample. However, it is not easy to get negative samples since for an
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exclusive article, we don’t know precisely which inclusion criteria does it violate. To

tackle this issue, a rule-based weak selection approach is applied. Specifically, some

keywords are extracted manually for each criterion1. For example, the keyword of

criteria “Mentions ICI drug” is “ICI ”. If an article does not include any keyword,

then this article can be used as a weak negative sample.

Dataset Questions

ICI

i) Is this article mentioned immune checkpoint inhibitors (ICI) drug?

ii) Does this study report clinical trial data or systematic review or meta analysis?

iii) Is this article about phase 2 or 3 randomized control trial (RCT)?

iv) Does this article report trial results for at least one immune checkpoint inhibitors (ICI) and one non-ICI arm?

HRT

i) Does this study report randomized and non-randomized comparative hormone replacement therapy (HRT) studies?

ii) Is the study related to postmenopausal women of any age?

iii) Is the follow-up period more than 6 months?

iv) Does this article compare study with non-HRT (hormone replacement therapy) studies?

Cooking

i) Is this study related to any person, adult or child, healthy or with comorbidity?

ii) Is this article related to cooking class or culinary intervention delivered by anyone such as chef, dietitian, etc.?

iii) Is this study compared with any control group?

Accelerometer

i) Is this study related to children ages 1-18 years?

ii) Does this study use accelerometers in a validation experiment?

iii) Are there any di↵erent accelerometers in the study?

iv) Does this article report randomized and non-randomized comparative studies?

Acromegaly

i) Does this article include any type of observational and longitudinal studies?

ii) Does this study report randomized and non-randomized, case-control, case series, and case reports?

iii) Does this study include patient with any age who reported receiving medical treatment of acromegaly as a first line of treatment?

iv) Is this article about medical or surgical treatment?

v) Is this article about patients achieving biochemical control?

COVID

i) Is this study related to adults 18 years or older?

ii) Does this article report patients with ARDS (acute respiratory distress syndrome)?

iii) Does this article talk about cell therapy transplantation?

iv) Is this study only about usual and supportive care only, no treatment?

v) Is this any study designed that includes case reports?

Table 5.1: Set of Boolean Questions Created Manually from the Inclusion Criteria

for Each Dataset

1Since criteria are few, it is easy to create rules manually
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5.2.2 Experiments

Various experiments are conducted to analyze the performance of the proposed

systems. All the experiments were performed using GTX1080 and V100 NVIDIA

GPUs. For all the experiments, SciBERT (base-model) is used as a text encoder. Note

that the SciBERT standard (base) model allows sequence lengths up to 512. Since

increasing sequence length increases the computational (GPU memory and running

time) requirements, a maximum sequence length of 384 and a batch size of 8 are used

along with 4 gradient accumulation steps and AdamW optimizer. All the models

are optimized using Binary Cross Entropy (BCE) loss. All models are trained for

10 epochs with a learning rate of 1e-4. We used ‘0’ padding for tokenized text less

than 384, and removed tokens from tokenized text with a length more than 384.

Proposed experiments are divided into four categories: (1) data-specific experiments,

(2) general QA model, (3) high-sensitivity experiments, and (4) pre-training and fine-

tuning. To measure the performance, standard classification metrics, i.e., precision,

sensitivity and F-measure are used as performance metrics. Here, the performance is

measured only for the positive class since the goal of SR is to find included articles

after the abstract screening process.

Data-Specific Experiments

The data-specific experiments are performed for the baseline and QA model where

model is trained on each dataset separately to get the optimum F-measure. For these

experiments, we use the simplest “set aside test set” method. In order to make a

training and testing set, positive (i.e., inclusion) and negative (i.e., exclusion) class

data is randomly shu✏ed, and divide it into 70% of training and 30% of testing.

For BCM, six di↵erent models are trained on training data of each dataset. For the

37



proposed QA model, all the training data of each dataset is converted in QA format

as suggested in Section 5.2.1. After that, the QA model is trained similarly to the

BCM model as described in Section 5.2.1. All the data-specific models are tested on

the testing data from the respective dataset.

General QA Model

To analyze the e↵ect of the generalization ability of the proposed QA model on all six

SRs, the experiment is conducted to train the general QA model. Since modifying SR

datasets in QA format (boolean questions for inclusion criteria) gives us the advantage

in terms of training the more general model. For the training, training data from all

six SR is combined and converted into a QA dataset. After that, the text classification

SciBERT model is trained as suggested in Section 5.2.1. In the end, the general QA

model is tested on the testing data of each dataset.

High-Sensitivity Experiments

High-sensitivity experiments are conducted for data-specific and general QA model.

Here, this work makes use of the standard approach of lowering the probability thresh-

old for the positive class (commonly used with the feature engineered models such as

logistic regression and SVM (Yu et al. (2015))). In this method, a custom threshold

is used for predicting the positive label (i.e., “Inclusion”) in the case of the BCM

model and positive label (i.e., “Yes”) in the case of the QA model at the output of

the Softmax activation. In order to find the highest threshold that yields the highest

sensitivity value, I tried all the values from 0 to 1 with 1e-4 increment to calculate

the sensitivity and select the threshold with maximum sensitivity value.
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Pre-training and Fine-tuning

To show that the proposed QA approach can be generalized for new SR (not from

these six SRs), this experiment is simulated. This is a scenario of lifelong or continual

learning, where the model needs to keep learning when a new dataset (or task) comes

(Chen and Liu (2018)). In our case, we assume that five datasets come at first, on

which we pre-train a QA model, then a new dataset comes, we further fine-tune the

pre-trained QA model on this dataset.

5.3 Results and Discussion

In this section, results are presented for (1) comparison of optimum F-measure and

high-sensitivity results with baseline, data-specific QA model and general QA model

(Table 5.2); and (2) optimum F-measure for pre-training and fine-tuning (Table 5.3).

Model High Sensitivity
ICI HRT Cooking Accelerometer Acromegaly COVID

P R F P R F P R F P R F P R F P R F

BCM 0.868 0.894 0.881 0.434 0.858 0.577 0.603 0.780 0.681 0.690 0.800 0.741 0.486 0.625 0.547 0.603 0.780 0.681

QA 0.747 0.939 0.832 0.299 0.979 0.458 0.194 0.976 0.324 0.385 0.990 0.556 0.224 0.982 0.365 0.330 0.922 0.486

General-QA 0.738 0.953 0.832 0.335 0.928 0.503 0.172 0.927 0.463 0.371 0.990 0.602 0.242 0.929 0.418 0.374 0.892 0.526

BCM X 0.553 0.995 0.711 0.158 0.990 0.273 0.167 0.976 0.285 0.243 0.980 0.389 0.202 0.982 0.335 0.170 0.995 0.290

QA X 0.662 0.983 0.791 0.214 0.990 0.353 0.194 0.978 0.324 0.412 0.983 0.580 0.225 0.982 0.365 0.242 0.985 0.389

General-QA X 0.626 0.981 0.764 0.214 0.990 0.353 0.180 0.976 0.303 0.516 0.980 0.676 0.188 0.982 0.314 0.279 0.975 0.433

QA (RP) X 10.90% -1.20% 8.00% 5.60% 0% 8.00% 2.70% 0.2% 3.90% 16.90% 0.3% 19.10% 2.30% 0% 3.00% 7.20% -1.00% 9.90%

General-QA (RP) X 7.30% -1.41% 5.30% 5.60% 0% 8.00% 1.30% 0% 1.80% 27.3% 0% 28.70% -1.40% 0% -2.10% 10.90% -2.00% 14.30%

Table 5.2: The Comparison of Optimum F-measure (First Block) and High-sensitivity

(Second Block) Results Between Baseline BCM and Proposed Models (QA and

General-QA). The Third Block Presents Relative Performance (RP) of Proposed

Models Compared to Baseline at High-sensitivity (Green Highlighted % Indicates

Improvement and Red Highlighted % Indicates Degradation). P: Precision, R: Sen-

sitivity, F: F-measure, BCM: Binary Classification Model, QA: Question-Answering

Model and General-QA: QA Model Trained on Six Datasets. Bold Results Indicate

the Best Method for Each Dataset
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As shown, the BCM model achieves higher precision at optimum F-measure for

all datasets as shown in Table 5.2 (first block). However, the BCM model fails

to achieve high-sensitivity at optimum F-measure. Since high-sensitivity is a key

requirement in clinical SRs, the results are compared at high-sensitivity levels. Table

5.2 (second block) represents high-sensitivity results for the baseline and proposed

QA models. It can be observed that BCM fails to achieve higher precision compared

to QA models at high-sensitivity levels (⇠0.99). Relative Performance (RP) in %

is analyzed for QA and general QA model compared to BCM as shown in Table 5.2

(third block). RP (%) is calculated via simply subtracting performance of one method

from other. We observe that the QA model outperforms the baseline model for all

six datasets in terms of precision and F-measure by on an average 7.6% and 8.65%,

respectively. The general QA model yields better precision and F-measure compared

to the baseline model for all six datasets except Acromegaly. In particular, the general

QA model outperforms the baseline model in terms of precision and F-measure by

on an average 8.5% and 9.33%, respectively. From Table 5.2, we also observe that

the data-specific QA model achieved slightly better precision and F-measure than the

general QA model for ICI, Cooking and Acromegaly datasets. However, the general

QA model performs better or similar compared to QA model for remaining datasets.

The advantage of general QA model over QA model is that a it (single model) can

be applied to all six datasets, hence, less complex model for a deployment.

Table 5.3 represents the optimum F-measure results for pre-training and fine-

tuning. Moreover, Table 5.4 indicates the RP (%) improvement between pre-trained

and fine-tuned models. From Table 5.3 and Table 5.4, we observe that fine-tuning

helps to improve precision and F-measure for all low resource datasets (i.e., all

datasets except the ICI). However, fine-tuning hampers the performance of the model

on other datasets used for pre-training. In particular, fine-tuning improves precision
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ICI HRT Cooking Accelerometer Acromegaly COVID

Pre-trained with Fine-tune P R F P R F P R F P R F P R F P R F

H+C+ACC+ACR+COV 0.0 0.0 0.0 0.397 0.856 0.542 0.630 0.829 0.716 0.661 0.820 0.732 0.378 0.857 0.525 0.467 0.820 0.595

H+C+ACC+ACR+COV I 0.743 0.958 0.837 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

I+C+ACC+ACR+COV 0.748 0.951 0.837 0.0 0.0 0.0 0.175 0.927 0.295 0.368 0.980 0.536 0.218 0.964 0.355 0.333 0.946 0.493

I+C+ACC+ACR+COV H 0.728 0.948 0.823 0.365 0.918 0.522 0.248* 0.902 0.389* 0.416* 0.940 0.577* 0.299* 0.679 0.415* 0.339* 0.849 0.485

I+H+ACC+ACR+COV 0.756 0.941 0.838 0.291 0.969 0.448 0.0 0.0 0.0 0.446 0.999 0.617 0.202 0.982 0.335 0.367 0.898 0.521

I+H+ACC+ACR+COV C 0.795* 0.879 0.835 0.401* 0.876 0.550* 0.275 0.951 0.426 0.333 0.460 0.387 0.231* 0.589 0.332 0.418* 0.751 0.538

I+H+C+ACR+COV 0.687 0.976 0.806 0.288 0.979 0.445 0.305 0.951 0.462 0.0 0.0 0.0 0.225 0.964 0.365 0.350 0.902 0.504

I+H+C+ACR+COV ACC 0.768* 0.889 0.824* 0.426* 0.835 0.564* 0.371* 0.951 0.534* 0.467 0.980 0.632 0.331* 0.804 0.469* 0.397* 0.780 0.526*

I+H+C+ACC+COV 0.748 0.958 0.840 0.394 0.918 0.551 0.343 0.878 0.493 0.462 0.960 0.623 0.0 0.0 0.0 0.396 0.834 0.537

I+H+C+ACC+COV ACR 0.795* 0.941 0.862* 0.379 0.804 0.515 0.818* 0.439 0.571* 0.714* 0.200 0.312 0.242 0.964 0.387 0.697* 0.112 0.193

I+H+C+ACC+ACR 0.817 0.904 0.858 0.378 0.928 0.537 0.342 0.927 0.500 0.412 0.980 0.580 0.296 0.893 0.444 0.0 0.0 0.0

I+H+C+ACC+ACR COV 0.750 0.892 0.815 0.476* 0.608 0.534 0.778* 0.512 0.618* 0.999* 0.060 0.113 0.0 0.0 0.0 0.353 0.922 0.511

Table 5.3: Optimum F-measure Results for Pre-training and Fine-tuning Experi-

ments. I: ICT, H: HRT, C: Cooking, ACC: Accelerometer, ACR: Acromegaly, COV:

COVID. * Means Fine-tuning a Model on a New Dataset Improves the Performance

on Other Datasets

and F-measure by on an average 3.93% and 4.9%, respectively. One interesting find-

ing from Table 5.3 is that pre-trained models can not be used directly (without

fine-tuning) for particular datasets since they are performing poorly (⇠0.0). We also

observe that fine-tuning with large datasets like ICI degrades the performance of other

datasets dramatically (⇠0.0).

5.3.1 P-R Curves

To analyze the performance of the proposed systems at a di↵erent level of sen-

sitivity (especially high-sensitivity range), we plot Precision-Recall (P-R) curves for

all datasets as shown in Figure 5.2. In a P-R curve, ideally, we want a horizontal

flat line, which would mean that we do not lose precision while improving sensitivity.

However, that is not usually the case in practice as we see here. At high-sensitivity

(⇠0.98-0.99), our proposed QA models achieve better precision compared to base-
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Dataset
Pretrained on other five datasets

P R F

ICI -0.4% +1.9% +0.5%

HRT +6.6% -6.1% +6.4%

Cooking +8.1% -2.5% +10.2%

Accelerometer +8.2% -0.1% +7.6%

Acromegaly +1.8% -1.8% +2.2%

COVID +2.3% 0.0% +2.5%

Table 5.4: Relative Performance (in %) of Optimum F-measure Results Between Fine-

tuning Model Pre-trained on Other Five Datasets and Model Trained Only Using

Particular Dataset (Data-Specific QA Model)

line for ICI, HRT, Accelerometer, Acromegaly, and COVID; and show almost similar

performance for the Cooking dataset.

5.3.2 Analysis

Here, this section discusses the strengths of the proposed methods in terms of

explainability and robustness in detail.

Explainability

Inclusion criteria satisfied and unsatisfied by any article can be identified easily using

our QA model since it is giving us predictions corresponding to each inclusion criteria.

To achieve this kind of similar explainability using BCM is very challenging.

Robustness

Here, two di↵erent questions are answered: (1) can the model understand two se-

mantic equivalent questions at inference time? ; and (2) is the model sensitive to
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(a) ICI (b) HRT (c) Cooking

(d) Accelerometer (e) Acromegaly (f) COVID

Figure 5.2: P-R Curves for Di↵erent Methods Presented in Table 5.2. BCM: Binary

Classification Model, QA: Question Answering Model and General-QA: General QA

Model Trained on Combined Data

Model Training Testing
ICI HRT Cooking Accelerometer Acromegaly COVID

P R F P R F P R F P R F P R F P R F

QA Q1 Q1 0.747 0.939 0.832 0.299 0.979 0.458 0.194 0.976 0.324 0.385 0.999 0.556 0.224 0.982 0.365 0.330 0.922 0.486

QA Q1 Q2 0.763 0.940 0.842 0.281 0.969 0.436 0.196 0.976 0.327 0.394 0.999 0.565 0.225 0.999 0.367 0.336 0.922 0.493

QA Q1 Q1 0.747 0.939 0.832 0.299 0.979 0.458 0.194 0.976 0.324 0.385 0.990 0.556 0.224 0.982 0.365 0.330 0.922 0.486

QA Q2 Q1 0.766 0.947 0.847 0.306 0.948 0.462 0.198 0.976 0.329 0.427 0.999 0.599 0.229 0.964 0.370 0.356 0.946 0.517

Table 5.5: Optimum F-measure Results for the Data-specific QA Model to Analyze

the Robustness of the Model Towards Di↵erent Question Formats. Q1 Indicates Set

of Questions given in Table 5.1, and Q2 Indicates Set of New Semantically Equivalent

but Syntactically Di↵erent Questions Prepared from Q1

questions?. To answer the first question, data-specific QA model is trained on the

QA dataset prepared using questions mentioned in Table 5.1 (Q1). At the infer-

ence time, semantically identical questions are provided but with di↵erent syntactic
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formulation (Q2), and yet the QA model can maintain its performance as shown in

Table 5.5 (first block). Hence, we can say that the QA model can understand two

semantic equivalent questions at inference time. To answer the second question, two

di↵erent data-specific QA models are trained, one on the QA dataset generated using

questions mentioned in Table 5.1 (Q1) and the other on the QA dataset generated

using semantically similar questions (Q2). However, both models train on di↵erent

questions show almost similar performance at inference time as shown in Table 5.5

(second block). Hence, we can say that the model is not sensitive to questions at

training time.

Pre-training and Fine-tuning

Here, two di↵erent questions are answered: (1) can a pre-train model generalize well

on unseen data? ; and (2) does a pre-training model help?. From Table 5.3, we observe

that the only pre-trained model is performing poorly (⇠0.0) if the dataset is not

included at the training time (i.e., unseen data). Hence, a pre-train model can not

be generalized well on unseen data. However, fine-tuning on a particular dataset

after pre-training on other remaining datasets has improved precision and F-measure

compared to QA model trained only on the particular dataset (RP(%) is shown in

Table 5.4 after fine-tuning).

5.4 Chapter Summary

In summary, this research study presented clinical SRs as a QA task for the first

time to overcome several limitations of BCM. This QA approach is promising in

various aspects such as utilizing inclusion criteria in e↵ective ways, providing gen-

eralization ability, achieving reasonable precision at high-sensitivity levels, and an

e�cient way to utilize low resource datasets. More importantly, this work studied
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the high-sensitivity systems for clinical SRs and achieved promising results in terms

of precision. Besides, this study provides a new QA-based dataset for further research

in clinical SRs.
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Chapter 6

CONCLUSIONS

This chapter presents a summary of the thesis work, limitations of this current

work, and future research scopes in the field of SRs.

6.1 Summary

The aim of this work is to develop low manual e↵orts NLP-based classifiers to

automate abstract screening of SR. The major contribution of this work is that it

presents an empirical study of di↵erent techniques to achieve high sensitivity for

six di↵erent SRs. To the best of the author’s knowledge, this work presents SR as

a QA system for the first time to overcome the limitations of binary classification

training. The proposed QA system outperforms existing binary classification models

in terms of precision, sensitivity, and F-measure. The QA formulation of SR gives

an opportunity to develop more general SR system so that a single system can work

on various datasets. This approach can be helpful for low resource datasets. This

work analyzes the e↵ectiveness of this approach on five low resource SR datasets.

All the proposed approaches are evaluated on datasets developed from six di↵erent

clinical SRs. In addition, this work provides a novel QA dataset to the community

for continuing research in the domain of clinical SR.

6.2 Limitations and Future Research

This research work has various limitations, and they provide future research di-

rections. This study provides a scope of further research in the domain of clinical

SRs.
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• This thesis work is conducted only on six datasets. Extending proposed method-

ologies to a larger number of datasets would improve our understanding. This

work opens a future research direction in terms of new datasets creation and

the use of proposed methodologies on these clinical SR datasets.

• This study is limited to title and abstract screening only, and so applying NLP-

based classifiers to full-text reviews would enable end-to-end automation for SR

development. Automated full-text reviews may eliminate the need for abstract

screening or act as a countermeasure to the low precision and loss of eventually-

included articles in the automated abstract-screening step. A detailed study of

this aspect would be a very promising future research score in clinical SRs.

• We have not leveraged the exclusion criteria in BM25 queries and creating ques-

tions for the proposed QA approach. We have not explored text classification

methods that directly leverage both inclusion and exclusion criteria in addition

to the context language modelling of SciBERT. Both are suitable topics for

future study.

• The data creation for the clinical SRs is very time-consuming and costly. More-

over, getting new datasets and waiting for the model to be trained on this new

data limits scalability and adoption in real world systems. The proposed frame-

work in this thesis can be restructured to the “instruction paradigm” (Le Scao

and Rush (2021); Mishra et al. (2021)) where instructions or prompts written

in natural language can replace a lot of data samples.

• Several recent works have shown that spurious dataset biases provide unin-

tended shortcuts for models to solve the task without truly understanding its

underlying features, this overestimates performance of model and prevent it
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from generalizing. Removing these biases have shown to significantly improve

model performance (Le Bras et al. (2020); Mishra et al. (2020)). Similarly

for the SRs, filtering can be performed in the pre-screening phase to remove

redundant or potentially biased documents.

• Unlike general ML paradigm, incorrect answering in health care domain have

serious consequences. Hence, model should have an option to skip answering

whenever model is not confident and seek human intervention. We can incor-

porate selective answering methodology (Kamath et al. (2020); Varshney et al.

(2020)) in our proposed framework to build a more reliable system for real world

application.

48



REFERENCES

Adams, C. E., S. Polzmacher and A. Wol↵, “Systematic reviews: work that needs to
be done and not to be done”, Journal of Evidence-Based Medicine 6, 4, 232–235
(2013).

Allen, I. E. and I. Olkin, “Estimating time to conduct a meta-analysis from number
of citations retrieved”, Jama 282, 7, 634–635 (1999).

Bagheri, E., P. Rios, A. Pourmasoumi, R. C. Robson, J. Hwee, W. Isaranuwatchai,
N. Darvesh, M. J. Page, A. C. Tricco et al., “Improving the conduct of systematic
reviews: a process mining perspective”, Journal of clinical epidemiology 103, 101–
111 (2018).

Banerjee, P., K. K. Pal, M. Devarakonda and C. Baral, “Knowledge guided named
entity recognition for biomedical text”, arXiv: Computation and Language (2019).

Bannach-Brown, A., P. Przyby la, J. Thomas, A. S. Rice, S. Ananiadou, J. Liao
and M. R. Macleod, “Machine learning algorithms for systematic review: reducing
workload in a preclinical review of animal studies and reducing human screening
error”, Systematic reviews 8, 1, 1–12 (2019).

Begert, D., J. Granek, B. Irwin and C. Brogly, “Towards automating systematic
reviews on immunization using an advanced natural language processing–based
extraction system”, Canada Communicable Disease Report 46, 6, 174–179 (2020).

Bekhuis, T. and D. Demner-Fushman, “Screening nonrandomized studies for medical
systematic reviews: a comparative study of classifiers”, Artificial intelligence in
medicine 55, 3, 197–207 (2012).

Beltagy, I., K. Lo and A. Cohan, “Scibert: A pretrained language model for scientific
text”, arXiv preprint arXiv:1903.10676 (2019).

Bian, J., S. Abdelrahman, J. Shi and G. Del Fiol, “Automatic identification of recent
high impact clinical articles in pubmed to support clinical decision making using
time-agnostic features”, Journal of biomedical informatics 89, 1–10 (2019).

Brockmeier, A. J., M. Ju, P. Przyby la and S. Ananiadou, “Improving reference pri-
oritisation with pico recognition”, BMC medical informatics and decision making
19, 1, 1–14 (2019).

Chalmers, I., L. V. Hedges and H. Cooper, “A brief history of research synthesis”,
Evaluation & the health professions 25, 1, 12–37 (2002).

Chen, Z. and B. Liu, “Lifelong machine learning”, Synthesis Lectures on Artificial
Intelligence and Machine Learning 12, 3, 1–207 (2018).

Cohen, A. M., “An e↵ective general purpose approach for automated biomedical
document classification”, in “AMIA annual symposium proceedings”, vol. 2006, p.
161 (American Medical Informatics Association, 2006).

49



Cohen, A. M., K. Ambert and M. McDonagh, “Studying the potential impact of au-
tomated document classification on scheduling a systematic review update”, BMC
medical informatics and decision making 12, 1, 1–11 (2012).

Cohen, A. M., W. R. Hersh, K. Peterson and P.-Y. Yen, “Reducing workload in
systematic review preparation using automated citation classification”, Journal of
the American Medical Informatics Association 13, 2, 206–219 (2006).

Del Fiol, G., M. Michelson, A. Iorio, C. Cotoi and R. B. Haynes, “A deep learning
method to automatically identify reports of scientifically rigorous clinical research
from the biomedical literature: comparative analytic study”, Journal of medical
Internet research 20, 6, e10281 (2018).

Devlin, J., M.-W. Chang, K. Lee and K. Toutanova, “Bert: Pre-training of
deep bidirectional transformers for language understanding”, arXiv preprint
arXiv:1810.04805 (2018).

Elkan, C., “The foundations of cost-sensitive learning”, in “International joint confer-
ence on artificial intelligence”, vol. 17, pp. 973–978 (Lawrence Erlbaum Associates
Ltd, 2001).

Fiszman, M., E. Ortiz, B. E. Bray and T. C. Rindflesch, “Semantic processing to sup-
port clinical guideline development”, in “AMIA Annual Symposium Proceedings”,
vol. 2008, p. 187 (American Medical Informatics Association, 2008).

Gates, A., M. Gates, D. DaRosa, S. A. Elliott, J. Pillay, S. Rahman, B. Vandermeer
and L. Hartling, “Decoding semi-automated title-abstract screening: findings from
a convenience sample of reviews”, Systematic reviews 9, 1, 1–12 (2020).

Gates, A., S. Guitard, J. Pillay, S. A. Elliott, M. P. Dyson, A. S. Newton and
L. Hartling, “Performance and usability of machine learning for screening in sys-
tematic reviews: a comparative evaluation of three tools”, Systematic reviews 8, 1,
1–11 (2019).

Gates, A., C. Johnson and L. Hartling, “Technology-assisted title and abstract screen-
ing for systematic reviews: a retrospective evaluation of the abstrackr machine
learning tool”, Systematic reviews 7, 1, 45 (2018).

Glujovsky, D., A. Bardach, S. G. Mart́ı, D. Comandé and A. Ciapponi, “Prm2 eros:
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A.1 INCLUSION/EXCLUSION CRITERIA

Dataset Inclusion Criteria Exclusion Criteria

ICI

Mentions ICI drug,
Reports clinical trial data or is SRMA,
Phase 2 or 3 RCT having at least one ICI arm
and one non-ICI arm that reports trial results

Focus is on drugs other than ICI,
phase 1 trials; non-randomized/single-arm trials;
trial protocols with no results reported;
trials that include ICI drugs in both arms;
non-English language articles;
conference abstracts; or are article types other than RCT and SRMA

HRT

Randomized and non-randomized comparative HRT studies,
Study-related to postmenopausal women of any age,
The follow-up period of more than 6 months,
Comparison with non-HRT studies

Systematic review;
case series or uncontrolled studies;
di↵erent population;
di↵erent intervention;
follow-up period less than 6 months;
mortality is not one if the outcomes

Cooking
Study-related to any person, adult or child, healthy or with comorbidity,
Cooking class/culinary intervention delivered by anyone (chef, dietitian, etc.),
Comparison with any control group

-

Accelerometer

Study-related to children ages 1-18 years,
Use of accelerometers in a validation experiment,
Di↵erent accelerometers in the study,
Randomized and non-randomized comparative studies

Studies with specific populations in which physical activities are limited
(ex, asthma, cerebral palsy) Reviews,
conference abstracts and any non-original research.

Acromegaly

Any type of observational and longitudinal studies;
randomized and non-randomized; case-control; case series; and case reports,
any age who reported receiving medical treatment of acromegaly
as a first line of treatment, medical or surgical treatment,
patients achieving biochemical control

Non-original research (review, guidelines, meta-analysis, etc.);
non-surgical or non-medical groups included or compared;
other intervention of interest is used;
outcomes of interest are not included;
ascertainment of IGF-I is not included;
follow-up period <2 weeks;
non-acromegaly population;
patients received another treatment prior to or during enrollment

COVID

Study-related to adults 18 years or older,
Patients with ARDS (acute respiratory distress syndrome),
Cell therapy transplantation,
usual and supportive care only, no treatment,
Any study design including case reports

Non-original data (e.g., narrative reviews, editorials, letters or erratum);
qualitative studies; cost-benefit analysis;
cross-sectional (i.e., non-longitudinal) studies;
animal studies; children

Table A.1: Inclusion and Exclusion Criteria for Each Dataset. RCT: Randomized
Control Trial, SRMA: Systematic Review and Meta Analysis
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A.2 DATA SAMPLES

Data Samples Label

Antitumor E↵ect of Nivolumab on Subsequent Chemotherapy for Platinum-Resistant Ovarian Cancer.
Platinum-resistant recurrent ovarian cancer is generally refractory to chemotherapy. Programmed cell
death-1 (PD-1) signaling is a new target for antitumor therapy. The anti-PD-1 antibody nivolumab had
a 10% durable complete response rate in our phase II clinical trial. However, how nivolumab a↵ects
sensitivity to subsequent chemotherapy remains unclear. We encountered several cases of unexpected
antitumor response among patients who underwent palliative chemotherapy in the follow-up study of
our phase II nivolumab trial (UMIN000005714). Several agents had an unexpected antitumor response
in patients who were resistant or refractory to standard chemotherapeutic agents. In one patient, both
pegylated liposomal doxorubicin (PLD) and nedaplatin (CDGP) resulted in partial response. In another
patient, PLD and CDGP resulted in partial response and stable disease, respectively. These two patients
remained alive on the cuto↵ date. These two cases raise the possibility that nivolumab might improve
sensitivity to adequate chemotherapy for ovarian cancer.

Include

Anti-HER agents in gastric cancer: from bench to bedside. Despite some advances in the past few years,
the search for e↵ective treatment modalities for advanced gastric and gastro-esophageal junction cancer
is far from over. Available data clearly demonstrate that the development of new drugs will have little,
if any, chance of success if it is not guided by in-depth knowledge of disease biology. However, using
biologic agents to target key molecular pathways, such as those regulated by human epidermal growth
factor receptor (HER) family members, may be e↵ective. Indeed, the positive results achieved by the
anti-HER2 agent trastuzumab in a phase III trial in HER2-positive patients support this approach. Many
new anti-HER molecules are now under evaluation for the treatment of gastric and gastro-esophageal
junction cancer, but so far attempts to identify reliable predictive factors from phase I and II trials have
produced inconclusive results. In addition, large phase III trials are still being conducted in molecularly
unselected populations. Refining patient selection is essential to maximize the benefit of targeted agents,
to avoid significant toxicities and for the development of alternative therapeutic approaches in patients who
have nonresponsive disease.

Exclude

Table A.2: Manually Annotated Positive (i.e., Include) and Negative (i.e., Exclude)
Samples from ICI Dataset. Here, the Data Sample is Concatenation of Title and
Abstract from the Candidate Article
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B.1 QUERIES FOR BM25

Here are the queries formulated from inclusion criteria for each dataset.

• ICI: clinical trials RCT randomized control trials randomly assigned immunother-
apy IO drugs ICI PD PDL1 checkpoint inhibitors Pembrolizumab Nivolumab
Cemiplimab Atezolizumab Avelumab Durvalumab CTLA-4 MPDL3280A
MSB0010718C MEDI4736 BMS-734016 MDX-010 MDX-101 ONO-4538 BMS-
936558 MDX1106 MK-3475 REGN-2810 placebo two arm

• HRT: randomized and non-randomized comperative studies related to Hormone
replacement therapy HRT for postmenopausal women of any age with follow up
period of more than 6 months and comparision with no HRT

• Cooking: comparison with any control group cooking class culinary interven-
tion delivered by anyone chef dietitian adult child healthy with comorbidity

• Accelerometer: randomized and non-randomized comparative studies related
to use of di↵erent techniques or accelerometers in validation experiments on
children ages one to eighteen 1-18

• Acromegaly: observational longitudinal randomized non-randomized case con-
trol series report comparative study patients receiving medical treatment of
acromegaly microadenoma macroadenoma surgical treatment as first line of
treatment somatostatin analogues octreotide lanreotide dopamine agonists caber-
goline biochemical control igf level morning gh hypopituitarism ha mortality

• COVID: patient with ARDS acute respiratory distress syndrome failure adults
18 years and older cell therapy transplantation stem cell mesenchymal stromal
msc progenitor cell ips ipsc exosome extracellular vesicle secretome supportive
care publications 1990
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