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ABSTRACT 

   

Theoretical analyses of liquid atomization (bulk to droplet conversion) and 

turbulence have potential to advance the computability of these flows. Instead of relying 

on full computations or models, fundamental conservation equations can be manipulated 

to generate partial or full solutions. For example, integral form of the mass and energy for 

spray flows leads to an explicit relationship between the drop size and liquid velocities.  

This is an ideal form to integrate with existing computational fluid dynamic (CFD), 

which is well developed to solve for the liquid velocities, i.e., the momentum equation(s).  

Theoretical adaption to CFD has been performed for various injection geometries, with 

results that compare quite well with experimental data. Since the drop size is provided 

analytically, computational time/cost for simulating spray flows with liquid atomization 

is no more than single-phase flows. Some advances have also been made on turbulent 

flows, by using a new set of perspectives on transport, scaling and energy distributions.  

Conservation equations for turbulence momentum and kinetic energy have been derived 

in a coordinate frame moving with the local mean velocities, which produce the Reynolds 

stress components, without modeling. Scaling of the Reynolds stress is also found at the 

first- and second-gradient levels. Finally, maximum-entropy principle has been used to 

derive the energy spectra in turbulent flows. 
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CHAPTER 1  

INTRODUCTION 

1.1 Liquid Breakup Process to Droplets 

Liquid breakup process consists of serial occurrences. In the preliminary stage, 

the liquid discharging from an injector undergoes forming processing that depends on the 

design of the injector. This makes the intended shape of being physically vulnerable, like 

a liquid column or sheet. In the next stage, it encounters the disintegration of the 

discharged continuum liquid, as it is subjected to severe drag and shear stress while 

traveling in a medium like air. This leads to primitive droplets, fragments, or ligaments 

out of the issuing liquid, called “Primary Atomization”. Subsequently, those resultants 

experience even further breakup caused by complex reasons likely turbulence dynamics, 

triggered instabilities, collisions, or heat exchanges surrounding them. This is called 

“Secondary Atomization”.  

Hereafter primary atomization is mainly dealt with, in the view of momentum and 

kinetic energy exchanges between liquid and gas. Although there are neither identifiable 

signs nor a watershed moment clearly to distinguish between primary and secondary 

breakup processes in real, in pursuit of our analytic study we ideally confine our scope to 

the primary breakup. In addition, isothermal conditions are assumed in order to 

circumvent intricate analyses, but rather the focus is on constructing a theoretically 

simpler model. At the completion of primary breakup processes, the thermodynamic 

equilibrium state is postulated as being reached with maximum entropy. 
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1.2 Statistical Equilibrium in a Macroscopic Description 

 During the successive processes of spray breakup, we could set specifically a 

partial equilibrium state at which the primary atomization is finished. This approximation 

is possible if we assume a closed system in which the series of spray atomization 

processes is entirely terminated and reached equilibrium states. Although dissipation, i.e., 

internal friction, is inherent thereby it could not maintain a perfect closed system, it is 

still a useful consideration in that we apply integral formalism over a control volume 

occupied by a fluid and deal with it global extent, which is similar context to Navier-

Stokes Equation. Therefore it is like a closed system with steady ambient around. The 

time duration to reach equilibrium states is called “relaxation time”, and for being a 

steady state much longer period of time is required than the relaxation time. Ideally, we 

separate one of the subsystems consisting of a closed system, where primary atomization 

is being performed and then terminated at its relaxation time. Given that the subsystem 

states can be described in a macroscopic view, the “statistical equilibrium” characterizes 

its properties on average. In this manner, the subsystem could be regarded as a nearly 

closed system, and its relaxation time is proportional to the size of the subsystem [1].  

In this regard, we approximate the closed subsystem to a form of control volume 

where primary atomization is only considered, which is starting from the injection of 

continuous liquid to a group of discrete droplets being reached statistical equilibrium, for 

the duration of relaxation time. It is worth noting that statistical description for the given 

subsystem does not depend on the initial states, which means many parameters related to 

injector performance, e.g., discharge effect and turbulent intensity, or intermediate 

events, e.g., distortion or deformation in flow morphology by complex dynamics, can be 
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excluded. Hence it enables our analysis to be valid over various conditions with different 

injections under universal principles such as mass, momentum, and energy conservation, 

essentially rendering better generalized core results. 

  



  5 

CHAPTER 2  

LITERATURE REVIEW 

2.1 Research on Spray Atomization in Early Decades ( ~ the 1980s) 

At that time CFD usage was not prevalent, there were some devised mathematical 

expressions derived from classical analyses to explain the breakup mechanism of a liquid 

jet. For instance, instability theories or turbulence characteristics were accounted to 

predict liquid core dynamics and droplet formation. A liquid jet, emanating from a nozzle 

and then being fragmented thus evolving into discrete drops through the breakup process, 

was regarded as being subjected to perturbation, e.g., surface displacement on a liquid jet, 

induced velocity or pressure fluctuations, and so on.  

 

Linear Instability on Liquid Jet  

In those early days, the study on the capillary jet of inviscid liquid without 

surrounding gas was conducted by Rayleigh in 1878 [2], and he demonstrated 

axisymmetric surface instability by equating potential and kinetic energies. Accordingly, 

he derived an equation for the wave growth rate. On top of that, it was postulated that the 

disturbance with the fastest wave growth rate essentially incurs liquid core breakup, and 

the wavelength of that disturbance is of the order of drop size. This analysis was 

advanced by Weber in 1931 [3] with viscous liquid and inviscid coaxial gas stream. From 

this investigation, he concluded that the fastest growing waves are to be longer in 

wavelengths, and their growth rates are to be slower. Taylor in 1950 [4] addressed an 

instability theory based on that, having an acceleration normal to the interface between 

two fluids with different densities incurs instabilities under certain conditions, whether 
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the acceleration is directed from the lighter to heavier fluid or vice versa. A further 

enhancement was achieved by taking into account the aerodynamic effects, from Sterling 

and Sleicher in 1975 [5]. They considered the influence of density ratio and the relative 

velocity between liquid and gas, however, the suggestion was limited to uniform relative 

velocity. Later, Reitz and Bracco in 1982 [6] proposed the general dispersion equation for 

an axisymmetric liquid jet breakup mechanism to reinforce the previous shortcoming. 

 

Force Balance on Wavy Liquid Sheet 

There is a type of spray for which the internal design is specially devised to pull 

out a liquid in sheet shape rather than cylindrical, one is advantageous to result in small 

drops. As it is thought that the drop sizes are in the same order as the thickness of the 

liquid sheet, the apparatus which emanates a thin liquid sheet is used in favor. Long ago, 

Savart 1833 [7] studied the dynamics of a fluid sheet with the axisymmetric flat or bell-

shaped one. The breakup mechanism for a liquid sheet was explored by Dombrowski and 

Johns in 1963 [8] as illustrated in Fig. 2.1. In their study, the inviscid liquid sheet moving 

to a stationary gas was assumed. They postulated a wavy attenuating sheet motion 

governed by the force balance equation, which includes four forces of pressure, surface 

tension, viscous acting on the sheet, and inertia. Given that the wave amplitude grows as 

time passes until it reaches a critical value, it was predictable when the sheet 

disintegration occurs. And this leads to the tearing off the cylindrical-shaped ligaments. 

Thereafter, the ligament breaks down into droplets due to varicose wave instability. 
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Fig. 2.1  Illustration of disintegration on a liquid sheet. Drawing from Dombrowski and 

Johns [8] 

 

2.2 Research on Spray Atomization in Modern Decades (the 1980s ~ 2000s) 

A stream of interest, coming from industries pursuing optimal fuel injectors for 

internal combustion engines, drew one’s attention to the passage to accomplishing 

efficiency as well as satisfying environmental standards. The demands came up with 

CFD as an advantageous tool. Numerous breakup modeling with numerical techniques 

were pioneered, and it was realized in computational simulations.  

 

Breakup Induced by Turbulence   

Faeth et al. in 1995 [9] observed the phenomenological analogies between fully 

developed turbulent pipe flow with round pressure-atomized spray near the exit where the 

dense spray region was found, as comparing the flow structures. They assessed that the 

flow structures are dependent on the turbulence levels at the exit. The primary breakup 

was incurred by aerodynamic pressure reduction over the liquid tips, which assists the 

liquid turbulence kinetic energy to provide the surface tension energy needed to form 
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small drops. Huh et al. in 1998 [10] presented a primary atomization model by jet 

turbulent fluctuations and wave growth on the jet surface. They addressed that the 

disturbance, owing to turbulence that originated from shear stress or cavitation through a 

nozzle, grows over time. Turbulent kinetic energy and energy dissipation rate, which rely 

on nozzle parameters, were used in deriving the expressions on turbulence length and 

time scale. Those scales were assumed to be dominant scales for the primary atomization 

process, thus leading to possible calculation on the primary breakup drop size.  

 

Secondary Breakup Model 

O´Rourke and Amsden in 1987 [11] proposed TAB model, i.e., Taylor Analogy 

Breakup model. This is based on Taylor’s theoretic study of the analogy between a 

distorting and oscillating droplet and a mass-spring-damping system. The idea described 

such that force corresponds to the aerodynamic interaction between droplet and gas, 

restoring effect by surface tension, and damping effect by liquid viscosity. Accordingly, 

an equation of the oscillator was derived from those analogy relations in which the 

coefficients of the equation are obtained from the relevant physical dependencies. The 

critical value for the oscillator was set in predicting secondary breakup initiation, i.e., the 

amplitude of oscillation of the north and south poles equals the drop radius. The 

production of the subsequent droplets was deemed as being governed by energy 

conservation, so their energy after the breakup was equated to the that of parent drop. 

Accordingly, produced drop size was evaluated. Simultaneously Reitz in 1987 [12] came 

up with WAVE model, which describes the atomization processes as the breaking of 

parcels into drops. He assumed that liquid is sprayed out in the form of discrete parcels of 
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drops like cylindrical blobs. The Surface instability on those blobs was introduced by 

linearized hydrodynamic equations that give the dispersion relations. From this analysis, 

the breakup length and time scales were derived for the blobs, that were necessary to 

generate smaller droplets. The drop size of the newly formed was assumed to be 

proportional to the calculated wavelength, under the premise that the wavelength is 

smaller than the parent drop circumference. To improve the prediction of the breakup 

process, e.g., shorten liquid penetration lengths observed in a combustion diesel engine, 

Patterson and Reitz in1998 [13] suggested accelerated breakup modeling. To introduce 

more fast-growing instability, the previous WAVE breakup model was complemented 

with Kelvin-Helmholtz instability and Rayleigh-Taylor instability.  

 

Liquid Jet Breakup Model 

The simulation for primary breakup modeling was deployed in such a way that it 

makes the breakup event delayed until the liquid core length matches to which 

experimentally observed data, and then the breaking event is triggered by the TAB 

model. The fragmented liquid core at the nozzle exit was nozzle-sized large drops, and 

they are initially unstable. So their lifetime is maneuvered to prolong, and after the 

primary atomization length, the drops turn to break. They start to split into smaller 

product drops until they reach a stable condition. Tanner in 2003 [14] presented CAB 

model, i.e., cascade atomization and drop breakup. He designed it such that product drops 

are governed by the cascade breakup law, and improved treatment was added to it. For 

more realistic-looking in simulations, the initial drop size distribution is equipped so that 
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the fragmented liquid core can reflect the surface stripping effect near the nozzle exit 

through small drops. 

 

Wave Instability on Liquid Sheet 

Sirignano and Mehring in 2000 [15] proposed a linear instability method at the 

interface between liquid and gas. An inviscid liquid sheet was subjected to two types of 

disturbance, either a sinuous wave or varicose wave as seen in Fig. 2.1, and compared 

which would make the liquid sheet more vulnerable. While varying conditions to density 

and weber number for liquid and gas, it was found that the sinuous wave was higher for 

maximum growth rate when it is a low-density ratio, the varicose wave, however, tended 

to increase significantly for that as density ratio increases. In addition to that, a larger 

weber number always led to a higher maximum growth rate for both waves. Senecal et al. 

in 1999 [16] compared a viscous liquid sheet with an inviscid one for a growth rate by a 

sinuous wave disturbance, and they assessed that viscosity affects the maximum growth 

rate to reduce. Schmidt et al. in 1999 [16,17] sought to apply a swirl spray atomization 

with CFD breakup models. They used spray angle and mass flow rate to estimate the 

thickness of the torn-off sheet at which primary break up occurs with its length and time 

scale, followed by calculations of the primary drops sprouted from the torn sheet 

ligaments. Then secondary breakup modeling activated the primary drops to split into 

smaller ones afterward. 
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(a) sinuous wave (b) varicose wave or axisymmetric wave 

Fig. 2.2  Illustration of surface instability on the liquid sheet 

 

2.3 Research on Spray Atomization in Recent Decades (the 2000s ~ ) 

Direct Numerical Simulation, DNS, solves Navier-Stokes equations directly 

without introducing any turbulence model so that numerical formulation is simple, the 

actual implementation is, however, costly because of the high spatial and temporal 

resolution to be solved. Hence a compromised model such as RANS, i.e., Reynolds 

Averaged Navier-Stokes Simulation, or LES, i.e., Large Eddy Simulation, has been used 

in place of DNS for turbulent flow simulations. RANS characterized by time-smoothed 

averaging is suitable for steady-state, on the other hand, less accurate in unsteady flow. 

On the contrary, LES characterized by spatial filtering is better suitable for temporally 

unsteady flow. In spite of it is called a DNS for spray atomization, it does not necessarily 

mean which resolves down to the droplet scales and its structure, i.e., shape and internal 

flow, rather it is typically based on the point-particle droplet approximation where the 

Stokes number is very small for the droplet, so as being assumed a sphere without any 

internal flow [18]. The method for tracking of phase interfaces such as Volume-of-Fluid, 

Level-Set, or both combined is considered at the stage of primary atomization to capture 
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interactions between gas and liquid, and the coupling of Lagrangian point particle with 

Eulerian interface is then expected to perform a more accurate prediction. 

 

Implementation into CFD 

 Incompressible Navier-Stokes equations are used to solve the mixture flow field, 

where liquid and gas phases are dealt with as a single fluid having material properties that 

change across the interface. It is applied over primary atomization regions or phase 

interfaces, and other regions such as single phase regions or far fields are handled in a 

relatively coarse mesh. This method captures the interface dynamics and liquid 

curvatures, then it combines with the Lagrangian description of droplets where it is 

unable to fully resolve the small structure dynamics, developed by Herrmann [19–21]. 

Eulerian-Lagrangian Spray Atomization model, i.e., ELSA model, pioneered by 

Vallet et al. in 2001 [22] considered mean surface area per unit volume instead of mean 

droplet diameter in that the liquid parcels are not always spherical. They introduced the 

defined surface density function with Favre-averaged Navier-Stokes equations and 

evaluated the model function coefficients by comparing them with the DNS data. 

Originally intended for the high Reynolds and Weber number in turbulent flows, the 

transport equation for the mean mixture velocity was written with neglecting the terms of 

surface tension and laminar viscosity. The quantity of liquid interface or the local surface 

density was defined in terms of generalized function, and the transport equation for the 

function was solved by Lebas et al. in 2008 [23].  

Alternately, a joint sub-grid probability density function of liquid volume and 

surface was proposed by LES implementation that simulates regions of dense and dilute. 
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The modeled PDF was solved by Fokker-Plank equation. This LES-PDF approach with 

stochastic fields allowed obtaining the instantaneous sub-grid liquid structure 

distributions [24]. Elsewhere, Eulerian-Lagrangian with a sub-grid modeling approach 

was considered. One of the simulations applied with this method was the sub-grid 

breakup model based on the energy balance [25]. The criterion was handled depending on 

the relationship between the surface tension and the sum of the turbulent kinetic energy 

as well as the aerodynamic effect at the interface, with the Taylor microscale applied as 

the critical eddy size, over the coarse grid in an attempt to reduce computational costs. 

This criterion determined whether to generate and release droplets near the interface, 

which follows the lagrangian description of point particles. In a similar manner, there 

were various simulations with different sub-grid modeling. Among them were the 

turbulent resonant atomization model by Umemura and Shinjo in 2018 [26], the sub-grid 

scale stress and scalar flux model by Ketterl and Klein in 2018 [27], and the sub-grid 

scale capillary breakup model by Kim and Moin in 2020 [28]. 

 

Experimental Visualization Techniques 

Over the past decades, conventional measurement techniques, such as schlieren 

and shadowgraph, or photography and holography, were used to image the flow of sprays 

[29]. Recently, Bachalo in 2000 [30] addressed the importance of diagnostic 

measurements to clearly illustrate spray characteristics that are involved in complex 

phenomena. He criticized it for lacking completeness and quality in measured 

information, recognizing its failure and deficiencies in measurement capabilities. 

Furthermore, there has been a growing need of identifying internal features of the 
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optically highly dense regions in sprays, especially near the nozzle exit where it is not 

visible to the naked eye. So the insertion of a physical probe into the spray was an 

alternative way, but that can deform the original flow field. Among a number of different 

imaging techniques to deal with the issue, Linne in 2013 [31] reviewed the three 

methods; transillumination, internal illumination, and planar imaging. X-ray phase 

contrast imaging [32] and ballistic imaging [33], optical connectivity called OC [34], and 

structured laser illumination planar imaging called SLIPI [35] are those using the 

aforementioned techniques respectively.  

The optically dense region is believed where primary atomization initiates. Since 

the primary breakup mechanism serves as the initial source of droplets with a specific 

size distribution, location, and momentum vectors, therefore, it subsequently affects the 

development of secondary breakup. In this regard, proper experimental observation with 

convincing analysis for this region is imperative to understand spray dynamics and 

evolution well. On the other hand, CFD models resort to the initial conditions for primary 

drops by making reasonable arguments, e.g., drop generation, and tune it to match with 

the downstream measurements, leaving the prediction capability downgraded. 

 

2.4 Modeling of Drop Size Distribution 

As having numerous drops with various ranges in size after the breakup process, 

the need for the expression to characterize drop size exists, so that it can be used as a 

parameter in the function to describe the dynamics of spray atomization. The 

representative drop diameter was standardized by Mugele and Evans in 1951 [36]. The 

commonly used in spray parametric analyses is Sauter Mean Diameter, i.e., SMD or D32, 
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which is applicable in the efficiency or mass transfer study. Other mean diameters else of 

SMD were designated based on the arithmetic mean or the volume mean, and so on. 

Babinsky and Sojka in 2002 [37] reviewed the three available methods for 

modeling drop size distributions, which include the use of empirical way, discrete 

probability function, and lastly maximum entropy principle. For the empirical method, it 

was diagnosed with the incapability of fitting a wide range of actual drop size 

distributions. For the maximum entropy method, it pointed out that two representative 

diameters are needed at least for constructing the distributions although only one of two 

is currently possible to obtain by an instability analysis, hence, the correct prediction is 

incomplete. For the discrete probability function, DPF method, the fluctuating initial 

conditions were used as the input probability density function, input PDF, to the 

monodisperse spray model so that it can produce a non-deterministic distribution. It 

outlined some of the drawbacks such that being limited to primary atomization and 

difficulty in obtaining comparative experimental measurements of the quantities of 

interest. On the other hand, it would be a promising method in that it is usable for fluids 

with complex rheology or different atomization modes. Besides, advances in CFD could 

compensate for the existing drawbacks of the lack of necessary inputs. 

Paloposki in 1994 [38] carried out a comparative study among different empirical 

distribution functions which include upper-limit, log-normal, Nukiyama-Tanasawa, 

Rosin-Rammler, log-hyperbolic, and three-parameter log-hyperbolic form. In his study, 

the chi-square statistical test showed Nukiyama-Tanasawa and log-hyperbolic are better 

fit to the experimental data, implying that mathematically rather complex and having 
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more unknown fitting coefficients for the distribution functions result in a more favorable 

fit. 

Dumouchel in 2009 [39] reviewed several models based on the maximum entropy 

formalism proposed by different scholars. According to his paper, the first attempt using 

this method was by Sellens and Brzustowski in 1986 [40]. They conceived a liquid sheet 

breakup process in a way of statistical inference for a physical system that may be 

described by certain average quantities which are known. Those physical constraints were 

expressed mathematically and sought for the solution by maximizing the Shannon 

entropy distribution. The maximization problem was solved using Lagrange multipliers 

that give an expression for the probability distribution. The set of constraints they used in 

the formalism included conservation of mass, momentum, kinetic energy, and surface 

tension energy, in addition to the normalization condition from the definition of 

probability. They derived the number-based PDF over nondimensional drop size 

distribution, appearing similar in form to the Rosin-Rammler’s type. Parallel to this work, 

Li and Tankin in 1987 [41] developed their own approach independently. They used 

volume-based PDF, and the resulting distribution form was similar to the Nukiyama-

Tanasawa type. 

Sivathanu and Gore in 1993 [42] prescribed DPF method in the study for the 

radiative transfer equation in fluctuating turbulent media to avoid solving the partial 

differential equations which were traditionally demanded in obtaining PDF intensity. 

Subsequently, the DPF method was applied in the field of drop distribution study by 

Sovani et al. in 1999 [43], and they demonstrated the fluctuation effect of relative 

velocity in gas-liquid at the nozzle exit, which lead to making changes in the width of the 
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drop size distribution as increases corresponding to the level of the fluctuations. Williams 

in 1958 [44] described a droplet distribution evolution through the statistical formalism in 

the transport equation that consists of the effect of droplet growth, the formation of new 

droplets, collisions, and aerodynamic forces. The transport equation was utilized for the 

phenomenological effects in the spray simulation like dense evaporating coalescent 

region [45]. 
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CHAPTER 3  

MATHEMATICAL FORMULATION 

3.1 Equations of Conservation: Liquid Jet in a Quiescent Ambient 

The formulated equations we use here are based on fundamental physics laws 

along with the integral approach, which has been studied in those papers by Lee [46–52]. 

Some of the key equations are reviewed with added explanations as follows.  

 

Conservation of Mass 

𝜌𝐿𝑢𝑖𝑛𝑗𝐴𝑖𝑛𝑗 = ∫ ∫ 𝑛𝑃(𝐷, 𝑢)
𝜋𝐷3

6
𝜌𝐿𝑢𝐴 dD du

𝐷𝑚𝑎𝑥

𝐷=0

𝑢𝑚𝑎𝑥

𝑢=0

≈  
𝜋

6
𝑛𝜌𝐿𝑢𝐿𝐴∑𝑃(𝐷𝑖)𝐷𝑖

3 Δ𝐷𝑖

𝑁

𝑖

 

Eq. (3.1)  

 

Eq. (3.1) describes that the injected liquid mass flow rate is equated to the 

generated droplet mass flow rate with the representative droplet velocity, 𝑢𝐿, within a 

control volume in a steady state. The number of droplets flowing per unit time, 𝑛𝑢𝐴, is 

seen as the number flow rate. In addition, a spherical drop with a volume of 𝜋𝐷3/6 is 

postulated. The control volume is set from the plane of injection to that of primary 

breakup ends. As it undergoes severely disordered breakup events within the control 

volume, a wide range of drop sizes and velocities results, obviously implying that is 

unpredictable in a deterministic manner. Hence it brings to the need for probability 

distribution to utilize it in a mathematical formulation. The simpler expression is derived 

with an approximation in which a representative drop velocity, 𝑢𝐿, substitutes velocity 
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random distribution, thus reducing the expression to a single random variable D and its 

distribution 𝑃(𝐷) that are only accountable. On top of that, the discrete probability 

distribution 𝑃(𝐷𝑖), instead of the continuous probability distribution 𝑃(𝐷) as probability 

density function, is adapted. And the N number of categorical divisions for the 

discretization is used. The 𝑃(𝐷𝑖) signifies a normalized probability, meaning each 

probability is divided by an interval Δ𝐷𝑖. Finally, the summation with finite Δ𝐷𝑖 is in 

place of the integral notation. 

 

Conservation of Energy 

𝜌𝐿
𝑢𝑖𝑛𝑗
3

2
𝐴𝑖𝑛𝑗 =

𝜋

12
𝑛𝜌𝐿𝑢𝐿

3𝐴∑𝑃(𝐷𝑖)𝐷𝑖
3 Δ𝐷𝑖

𝑁

𝑖

+ 𝑛𝑢𝐿𝐴𝜋𝜎∑𝑃(𝐷𝑖)𝐷𝑖
2 Δ𝐷𝑖

𝑁

𝑖

+ 𝜇𝐿 〈(
𝜕𝑢

𝜕𝑦
)
2

〉 (𝑆𝑝𝑟𝑎𝑦 𝑉𝑜𝑙𝑢𝑚𝑒) 

 

Eq. (3.2) 

 

Eq. (3.2) describes how the kinetic energy from injection contributes to the 

formation of droplets. On the left-hand side, LHS, expresses the rate of liquid kinetic 

energy entering into the control volume. On the right-hand side, RHS, the first term 

denotes the rate of the droplet’s kinetic energy. These two terms are analogous to that of 

the conservation of mass in such a way that, it substitutes 𝜌𝐿 in Eq. (3.1) with 𝜌𝐿𝑢𝑖𝑛𝑗
2 /2. 

The second term on the LHS is for the rate of the surface tension energy, and the third 

term is for the dissipation. The dissipation term is then approximated as shown in Eq. 

(3.3). The notation of ˂ · ˃ indicates averaging operator. 𝐾 is a constant with the 

dimension of volume [L3] related to the spray volume. The 𝐾 is not a priori known so it 

demands to be calibrated in trial and error, whose value is in turn divided by injection 
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volume flow rate to get 𝐾′ with the dimension of time [T] for being the simpler 

formulation as seen later in Eq. (3.7). Here 𝐾′ could be thought of as the quantity 

associated with relaxation time. 𝐷32 in  Eq. (3.5) is a characteristic drop diameter which 

is equivalent to the definition of Sauter Mean Diameter [36]. 

 

𝜇𝐿 〈(
𝜕𝑢

𝜕𝑦
)
2

〉 (𝑆𝑝𝑟𝑎𝑦 𝑉𝑜𝑙𝑢𝑚𝑒) ∼ 𝜇𝐿 (
𝑢𝐿
𝐷32
)
2

(𝑆𝑝𝑟𝑎𝑦 𝑉𝑜𝑙𝑢𝑚𝑒)

= 𝐾𝜇𝐿 (
𝑢𝐿
𝐷32
)
2

 = 𝐾′𝑢𝑖𝑛𝑗𝐴𝑖𝑛𝑗𝜇𝐿 (
𝑢𝐿
𝐷32
)
2

 

Eq. (3.3) 

 

where 

𝐾′ = 
𝐾

𝑢𝑖𝑛𝑗𝐴𝑖𝑛𝑗
          𝐾′~[𝑇]     𝐾~[𝐿3] Eq. (3.4) 

 

𝐷32  =  
∑ 𝑃(𝐷𝑖)𝐷𝑖

3 Δ𝐷𝑖
𝑁
𝑖

∑ 𝑃(𝐷𝑖)𝐷𝑖
2 Δ𝐷𝑖

𝑁
𝑖

 Eq. (3.5) 

 

The number density, 𝑛, is derived as Eq. (3.6) from the conservation of mass Eq. 

(3.1), before it is plugged into the energy equation Eq. (3.2). The final result through all 

these accounts is the quadratic equation for 𝐷32 shown in Eq. (3.7). The solution of Eq. 

(3.7) renders the analytic expression in terms of 𝐷32  presented in Eq. (3.8). 

 

𝑛 =
𝜌𝐿𝑢𝑖𝑛𝑗𝐴𝑖𝑛𝑗

𝜋
6 𝜌𝐿𝑢𝐿𝐴

∑ 𝑃(𝐷𝑖)𝐷𝑖
3 Δ𝐷𝑖

𝑁
𝑖

              [ 
1

𝑚3
 ] 

 

Eq. (3.6) 
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(𝜌𝐿
𝑢𝑖𝑛𝑗
2 − 𝑢𝐿

2

2
)𝐷32

2 − 6𝜎𝐷32 − 𝐾
′𝜇𝑢𝐿

2 = 0 Eq. (3.7) 

 

In most cases, the parameters of 𝜎, 𝐾′, 𝜇, 𝑢𝐿 tend to have a much small order of 

magnitude, i.e., 1~10-3, when compared to that of (𝑎) in Eq. (3.8). The denominator (𝑎) 

quantifies the total consumed-momentum through atomization process until it reaches 

steady-state. Therefore it is deducible from Eq. (3.8) that, the representative drop size D32 

is largely attributed to the consumed-momentum (𝑎). In other words, D32 is inversely 

related to the consumed-momentum because the denominator predominates over the 

nominator.  

 

D32 Quadratic Formula 

D32 =

3𝜎 + √ 9𝜎2 +  𝐾 ′𝜇𝑢𝐿2𝜌𝐿
𝑢𝑖𝑛𝑗
2   − 𝑢𝐿2

2

𝜌𝐿
𝑢𝑖𝑛𝑗
2 − 𝑢𝐿2

2

          or equivalently, 

 

D32 =
3𝜎 + √ 9𝜎2 +  𝐾 ′𝜇𝑢𝐿2(𝑎)

(𝑎)
          where   (𝑎)  =  𝜌𝐿

𝑢𝑖𝑛𝑗
2 − 𝑢𝐿

2

2
 

 

Eq. (3.8) 

 

In addition, this view is also supported by the fact that in a number of spray 

experiments on the liquid jet in a quiescent ambient, the tendency has been typically 

observable in which higher injection velocity yields generating more small droplets. And 

this is in accordance with our derived quadratic formula, indicating that Eq. (3.8) 

favorably reflects physical phenomena. On the other hand, it is presumable that with 
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having tenuous injection velocity, according to Eq. (3.8) in this case, the surface tension 

term now becomes comparable to that of (𝑎). Accordingly, this phenomenon also has 

been observed in several experiment with low-velocity injection in the past, as reported in 

terms of a capillary-driven jet. To sum up, our derived D32 quadratic formula 

characterizes the mechanism of primary atomization, and it determines the representative 

drop size that is consistent with the physically observed outcome.  

 

3.2 Equations of Conservation: Liquid Jet with Added Gas Momentum 

In this section, we consider the incoming gas momentum in addition to the liquid 

injection. Essentially, this type is involved in gas-driven spray atomization. Eq. (3.9) 

delineates the conservation of energy, and it is justified by supplementing two terms into 

Eq. (3.2). One is the incoming gas kinetic energy term on the LHS, and the other is the 

outgoing gas kinetic energy term on the RHS. To be specific, the new term of 

𝜌𝑔𝑢𝑖𝑛
3 𝐴𝑖𝑛/2 refers to the former, and the other new term of 𝜌𝑔𝑢𝑜𝑢𝑡

3 𝐴𝑜𝑢𝑡/2 refers to the 

latter. The area from incoming or outgoing of gas is denoted by either 𝐴𝑖𝑛  or 𝐴𝑜𝑢𝑡, and 

they are not necessarily to be identical with that of liquid denoted by 𝐴. For instance, the 

cross-flow type of spray may have different area for each of liquid and gas, whereas the 

co-flow type of spray has the same outgoing area. Therefore, it depends on the type of 

spray subjected and the control volume geometry. 

To derive the expression on 𝐷32, the Eq. (3.9) is dealt with in a similar way to 

what we have done for the liquid jet in a quiescent ambient in the previous section. 

Accordingly, the resulting quadratic equation for 𝐷32 is expressed as Eq. (3.10). 

Subsequently, the positive root of the quadratic equation is presented as in Eq. (3.11). 
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 Conservation of Energy, for the Gas-Driven Spray Atomization 

𝜌𝐿
𝑢𝑖𝑛𝑗
3

2
𝐴𝑖𝑛𝑗 + 𝜌𝑔

𝑢𝑖𝑛
3

2
𝐴𝑖𝑛

= 
𝜋

12
𝑛𝜌𝐿𝑢𝐿

3𝐴∑𝑃(𝐷𝑖)𝐷𝑖
3Δ𝐷𝑖

𝑁

𝑖

+ 𝑛𝑢𝐿𝐴𝜋𝜎∑𝑃(𝐷𝑖)𝐷𝑖
2Δ𝐷𝑖

𝑁

𝑖

+ 𝜇𝐿 〈(
𝜕𝑢

𝜕𝑦
)
2

〉 (𝑆𝑝𝑟𝑎𝑦 𝑉𝑜𝑙𝑢𝑚𝑒) + 𝜌𝑔
𝑢𝑜𝑢𝑡
3

2
𝐴𝑜𝑢𝑡 

 

Eq. (3.9) 

 

(

 
 
𝜌𝐿
𝑢𝑖𝑛𝑗
2 − 𝑢𝐿

2

2
+ 𝜌𝑔

𝑢𝑖𝑛
2 − 𝑢𝑜𝑢𝑡

2 (
𝐴𝑜𝑢𝑡
𝐴𝑖𝑛

)

2
(
𝑢𝑖𝑛𝐴𝑖𝑛
𝑢𝑖𝑛𝑗𝐴𝑖𝑛𝑗

)

)

 
 
𝐷32
2 − 6𝜎𝐷32

− 𝐾 ′𝜇(𝑢𝑖𝑛 − 𝑢𝑖𝑛𝑗)
2
= 0 

 

Eq. (3.10) 

 

 

D32 Quadratic Formula, for the Gas-Driven Spray Atomization 

𝐷32 =
3𝜎 +√ 9𝜎2 +  𝐾 ′𝜇(𝑢𝑖𝑛 − 𝑢𝑖𝑛𝑗)

2
(𝑏)

(𝑏)
 

where     (𝑏) = 𝜌𝐿
𝑢𝑖𝑛𝑗
2 − 𝑢𝐿

2

2
+ 𝜌𝑔

𝑢𝑖𝑛
2 − 𝑢𝑜𝑢𝑡

2 (
𝐴𝑜𝑢𝑡
𝐴𝑖𝑛

)

2
(
𝑢𝑖𝑛𝐴𝑖𝑛
𝑢𝑖𝑛𝑗𝐴𝑖𝑛𝑗

) 

 

Eq. (3.11) 

 

Note that only one of the quadratic solutions to Eq. (3.10) is regarded as valid, 

which is positive 𝐷32 as in Eq. (3.11) since we deem negative 𝐷32 an unphysical 

outcome. In conclusion, the derived 𝐷32 quadratic formula in gas-driven spray 

atomization shows the analogous mechanism to that of the liquid jet in a quiescent 

ambient except for the influence coming from gas kinetic energy. 
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3.3 Validations and Considerations on the D32 Quadratic Formulation 

The above formulations have been shown to work quite well across a range of 

spray configurations; pressure-atomized [46], swirl [49], cross-flow [50], and air-blast 

[51]. Basically, this approach involves minimal empiricism, and it is not invoked by any 

unphysical assumptions but rather preferred to draw from the conservation equations of 

mass and energy. The usefulness of the formulations is in the following ways.  

First, it captures and delineates the physics of the atomization process without 

delving into the complex dynamics in detail for every intermediate state. Indeed, the 

conservation principles can be applied between the initial and final atomization state. To 

be specific, the conservation of energy in Eq. (3.2) and Eq. (3.9) shows that the reduction 

in the kinetic energy due to the aerodynamic interactions between the liquid and gas 

phase appears in the surface tension energy term while also being affected by the viscous 

dissipation. This energy transfer balance leads to the explicit expression for the drop size 

as in Eq. (3.8) and Eq. (3.11). If a large portion of either the liquid- or gas-phase kinetic 

energy is lost, then this energy is transferred to and makes the portion of surface tension 

energy increased, which is associated with generating small droplets. Note that a liquid 

would create more surface area in total by reforming one’s shape to being many small 

droplets for the same given volume, which status demands an additional amount of 

surface tension energy. This is because the molecules positioned along the surface 

consume more potential energy. Conversely, with substantial viscous dissipation, the 

energy partitioning toward the surface tension energy is reduced so making drop size 

increased. 
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Secondly, it enables us to investigate the relationship between drop size and its 

velocity by Eq. (3.8) and Eq. (3.11). For the liquid jet in a quiescent ambient, the result is 

found in Fig. 3.1. Fig. 3.1 illustrates the dynamic relation for drop size with velocity in 

comparison with the laboratory data by Bellerova et al. in 2019 [53]. The data are from 

the laboratory experiment that was conducted with a ¼ inch spray nozzle with water 

pressurized up to 3 bar before issuing into a quiescent atmosphere. The water injection 

velocity from the nozzle is approximated as 24 m/s. In total 3858 droplets were analyzed 

and plotted as the scattergram. Each point on the scattergram of Fig. 3.1 represents a 

single data on drop size with its velocity. A theoretical line using Eq. (3.8) is also drawn 

for the comparison. Thereby, this drop size-velocity relation is verified as favorably 

following alongside a scattergram in the measured drop size D and its velocity up.  

The “scatter” in the simultaneously measured drop size-velocity pairs is typical in 

both phase-Doppler and imaging diagnostics due to fluctuations coming from various 

factors, e.g., different local viscous dissipation or measurement uncertainties. The 

theoretic curve by Eq. (3.8) is seen as like representing an average line from the 

scattering data set. Therefore, our theoretical relationship has been demonstrated as 

reflecting well the result from the experimental data, through the expression of the drop 

size, D32, versus its velocity, uL, in the D32 quadratic formula Eq. (3.8) for the liquid jet in 

a quiescent ambient gas.  
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Fig. 3.1  Dynamic relation between the drop size and its velocity, for the liquid jet in a 

quiescent ambient gas. uinj = 24 m/s. Theoretical relation as line by Eq. (3.8), data as 

symbol by Bellerova et al. [53] 

 

In Fig. 3.2 the dynamic relationship for the liquid jet with added gas momentum is 

shown. The theoretical relation is drawn by the D32 quadratic formula of Eq. (3.11), 

whose expression of drop size D32, versus its velocity uout, is compared to the 

experimental data from the air-mist spray. This experiment was implemented by a ⅜ inch 

spray nozzle, by which liquid is pre-mixed with pressurized air before it is discharged as 

mist. The pressurized air was up to 1.5 bar. The airflow rate for a nozzle was 30,832 ℓ/h, 

and the injected water pressure was 1.98 bar. This approximates the injection velocity of 

20m/s for water, and 120m/s for air from the air-mist nozzle. 
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(a) 

 

 

(b) 

 

 

Fig. 3.2  Dynamic relation between the drop size and its velocity, for the liquid jet with 

added gas momentum. uinj = 20 m/s, and uin = 120 m/s. (a) Theoretical relation as line 

by Eq. (3.11), data as symbol by Bellerova et al. [53]; (b) sampling data at different 

radial distance r/dinj in the separate plot prior to combining 

 

Owing to the nature of mist-type spray that is vulnerable to convective velocities, 

the collected droplet data are broadly scattered as seen in Fig. 3.2(a), having an elusive 

tendency in appearance at the first glance. A necessity for treatment in the raw data arose 
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to see a more distinct tendency between drop size and its velocity, hence it is ordered in 

such a way; the separate data observed by a different position takes the post-processing, 

in which the median drop size with its velocity is sampled for every 30 droplets after the 

raw data are sorted in ascending order for the drop size. This treatment would reduce 

aberrant data by sifting out the outliers, while it draws an average estimate since frequent 

one is more likely to be sampled repetitively. The axial distance from the nozzle to the 

measurement region is 250mm, and the radial distance from the nozzle axis varies up to 

180mm. The number of measured droplets is 35043, 33858, 28283, and 23136 for 0, 60, 

120, and 180mm, respectively. The number of sampling data to plot after post-processing 

is 4013. 

There are some distinguishable features in Fig. 3.2(a) when it is compared to Fig. 

3.1. The scattergram from the gas-driven spray atomization is found to be distributed 

within more confined ranges as seen in Fig. 3.2(a) than that of Fig. 3.1. The data are so 

scattered and hard to find a curve-like trend, but rather descriptively triangle-like as seen 

in Fig. 3.2(b). And they are mostly in small drop sizes. This can be interpreted such that 

additional energy attributed to gas momentum makes surface tension energy increase to 

some extent, so correspondingly resulting in more shattered droplets with smaller sizes. 

To be specific, Fig. 3.2 (a) appears the drop size distribution mainly under 100μm 

whereas Fig. 3.1 reaches mainly up to 400μm. Even if we point out the different liquid 

injection velocities, i.e., 20m/s and 24m/s, this gap could not be regarded considerably to 

cause such a substantial drop size difference. 

On the other hand, the resulting drop velocity distributions are significantly 

different. Fig. 3.2 starts from 12m/s and spreads up to 25m/s with an injection velocity of 
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20m/s, whereas Fig. 3.1 stretches down to 2m/s and reaches up to 22m/s with an injection 

velocity of 24m/s. Therefore, it is reasonable to infer that gas-driven spray is susceptible 

to the convective velocity induced by gas momentum, from the fact that the upper limit of 

droplet velocities exceeds the liquid injection velocity. It is also corroborated by the 

triangle-shaped scattering in that the smaller droplets are more subjected to the 

convective velocity, thus making the distribution spread along the abscissa to the right for 

the relatively small droplets. For example, in Fig. 3.1 that without having convective 

velocity, dense scattering is found for small drop sizes with relatively low velocity. And 

if this dense scattering is driven by the presence of convective velocity, some of them 

would be measured at high velocity too, so making slanted-triangle-distribution like Fig. 

3.2(b). Fig. 3.3 is shown for the schematic experimental setup. 

 

 

Fig. 3.3  Schematic of the experimental setup, courtesy of Bellerova et al. [53] 

 

In both Fig. 3.1 and Fig. 3.2, there are scatter in the data while the theoretical 

result is plotted as a line. The reason for the scatter in the data is mainly due to the fact 

that these sprays are turbulent so a range of liquid velocities may exist with turbulent 

fluctuations. For the theory, the average liquid velocity is input, which explains why the 
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theoretical result is plotted as a line. If we use a velocity distribution, like a probability 

density function instead of the average input, then a range of drop size would be 

obtained, frequently matching the scatter in measured D32. And the generation of drop 

size distribution from velocity distribution is demonstrated in chapter 4. 

Lastly, Eq. (3.8) and Eq. (3.11) can be used as the primary atomization module in 

computational simulations of spray flows. Existing methods for continuous liquid flow, 

such as Volume-of-Fluid or Level-Set, work quite well prior to the small-scale droplet 

formation in which spatial and temporal resolutions are high. Also, once drops are 

formed and their initial size and velocity are known, then Eulerian-Lagrangian tracking 

algorithms are quite functional in computing the droplet trajectories under most spray 

conditions. In dense sprays, the Lagrangian tracking can be augmented with drop 

collision and coalescence models. Therefore, the current formulation can effectively link 

the two computational modules to complete a computational protocol for spray flow 

simulations [54,55].  

 

Comparison with Other Existing Model or Correlation for D32 

In Fig. 3.4, the KH instability model [56] of primary atomization for the 

prediction of drop size has been compared with the results of calculation using our D32 

equation, in pressure-atomized swirl sprays. Additionally, a correlation suggested for the 

spray modeling [57] is also compared in the figure. The comparison among the three 

curves is made while using the common parameters as in the calculation for the 

correlation, which are found in the reference paper [57]. Besides, we add experimental 

data of global mean drop size spectra from varying the atomizer geometry and injection 
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properties [58]. The agreement with the experimental data varies depending on Weber 

number ranges. For the model, however, there are tuning parameters at various places, so 

that any reasonable set of data can be reproduced. As noted in the introduction, and since 

experimental observations clearly indicate that the fluid physics of the primary 

atomization do not follow the phenomenology embedded in such models of KH-RT 

hybrid model or TAB model, these models should be considered as engineering 

estimations of the drop size. 

 

 

Fig. 3.4  A comparison of the drop size calculated from other existing spray 

atomization model [56] or correlation [57], with the same diesel injection parameters. 

Experimental data [58] is global drop size spectra, with various pressure-swirl 

atomizers and parameters 
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CHAPTER 4  

MOMENTUM ANALYSES 

4.1 The Use of Momentum Analyses  

From the momentum analysis between liquid and gas, a formulation is 

constructed to determine the conversion between liquid and gas velocities during spray 

atomization [52]. With the aid of this formulation for momentum exchanges between 

them, our description of the relation between drop size and velocity is reinforced. Since 

our D32 quadratic equation is prescribed based on the conservation equations for mass 

and energy, adding the momentum analyses to it serves to deliberate our considerations in 

diagnosing the spray atomization process. Therefore, the effort to advance in presenting 

the correlated relation between drop size and velocity makes it possible, putting our 

interpretation on a sound basis.  

In this approach, the aerodynamic drag is approximately parameterized by the 

drag coefficient and relative velocities with dimensional scaling. This allows us to 

calculate the spray drop size and its distributions from the injection parameters. The 

formulation also gives a dynamic perspective in spray atomization, in which the liquid 

momentum undergoes deceleration due to drag, and the drop size is the result of attendant 

energy transfer from the liquid kinetic to the surface tension energy; the reduced kinetic 

energy appears in terms of the increased surface tension energy for the resultant drops, so 

getting slow with small sizes after all. Therefore, the consideration of momentum change 

adds a key component to the analysis of spray atomization leading to some useful 

relationships between the drop size and velocities. In this work, the results in the use of 

momentum analyses are presented for the determination of drop size and distributions, 
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that are found in various spray injection geometries. By means of it, the momentum 

effects on the drop size and its distributions during spray atomization are well described. 

 

4.2 Formulation of Momentum Equations 

 The relations of momentum conservation for the liquid- and gas-phase are written 

as in the following. Here, pressure and surface force leading to the drag are summarized 

into the drag coefficient, 𝐶𝐷. And since we focus on the momentum-driven sprays, the 

gravitational effect is neglected.    

 

Case 1: Liquid Injection into an Initially Quiescent Gas Surrounding 

Liquid 𝑢𝐿
𝑑𝑢𝐿
𝑑𝑥

= −
𝐶𝐷
2

𝜌𝑔

𝜌𝐿

𝐴𝐷
𝑉𝑠
(𝑢𝐿 − 𝑢𝑔)

2
 Eq. (4.1) 

 

Gas 𝜌𝑔𝑢𝑔
2𝐴𝑝 =

𝐶𝐷
2
𝜌𝑔𝐴𝐷(𝑢𝐿 − 𝑢𝑔)

2
 Eq. (4.2) 

 

In the liquid momentum equation of Case 1, the acceleration term 𝑑𝑢𝐿/𝑑𝑡 was 

converted to the spatial derivative form using 𝑑𝑥/𝑑𝑡 =  𝑢𝐿, and the resulting is seen on 

the LHS. Then, the deceleration of the liquid is due to the drag force on the RHS, as 

represented by the drag coefficient 𝐶𝐷, which would depend on the shape of the liquid 

column or sheet. It is found that even in the full atomization regime, the liquid core is 

observed with producing droplets in the periphery. For this reason, the drag coefficient, 

spray area, and volume are used along with the liquid momentum equation. The gas 

momentum equation from Eq. (4.2) is used in conjunction to determine 𝑢𝑔 and 𝑢𝐿 in Eq. 
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(4.1). Spatial evolution of 𝑢𝐿 and 𝑢𝑔 can be tracked by concurrently integrating Eq. (4.1) 

and Eq. (4.2) in the x-direction. 

The formulations provide a dynamical perspective in spray atomization such that, 

once the liquid is injected, it suffers from drag which has the liquid decelerated by 

momentum exchanges with the surrounding gas. Subsequently, this reduction in 

momentum leads to an attendant decrease in the liquid kinetic energy. Since the energy 

conservation is obeyed, it is reasonable to assume that the decreased kinetic energy must 

appear in the alternate form such as the surface tension energy and viscous dissipation. 

Essentially, those perspectives are already reflected in the energy balance formulations as 

introduced in the previous contexts. The mass conservation furnishes us with the droplet 

number density n. Within this analytical framework, it brings up the four equations to 

solve the four unknowns; D32, 𝑢𝐿, 𝑢𝑔, and n. 

Next, we introduce the momentum balance for the gas-driven atomization 

processes in two cases of different incoming gas configurations; co-flowing of Case 2, 

and cross-flowing of Case 3. They are derived in Eq.( 4.3) and Eq. (4.4) for the former, 

Eq. (4.5) and Eq. (4.6) for the latter case. For simplicity, a locally representative mean 

value 𝑢𝐿,𝑥 is used for the entire liquid column or sheet. The x-direction represents the gas 

phase streamwise direction, and it is parallel to the liquid jet in co-flowing of gas or 

perpendicular to the liquid jet in cross-flowing of gas. For these gas-driven spray 

atomization cases, their momentum equations are written in a similar manner to the 

previous one, as follows. 
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Case 2: Liquid Injection with Added Gas Momentum of Co-Flowing of Gas 

Liquid 𝜌𝐿𝑢𝑖𝑛𝑗𝐴𝑖𝑛𝑗(𝑢𝐿,𝑥 − 𝑢𝑖𝑛𝑗) =   
𝐶𝐷
2
 𝜌𝑔𝐴𝐷(𝑢𝑖𝑛 − 𝑢𝐿,𝑥)

2
 Eq.( 4.3) 

 

Gas 𝜌𝑔𝑢𝑖𝑛
2 𝐴𝑖𝑛 = 𝜌𝑔𝑢𝑖𝑛𝐴𝑖𝑛𝑢𝑜𝑢𝑡 +

𝐶𝐷
2
𝜌𝑔𝐴𝐷(𝑢𝑖𝑛 − 𝑢𝐿,𝑥)

2
 Eq. (4.4) 

 

The gas transmits its momentum to the liquid. Therefore the gas loses one’s 

kinetic energy, which goes into the surface tension energy making the liquid droplets. In 

this regard, it indicates that the amount of momentum change between the two phases has 

correlated with one another, and that would be responsible for the estimation of the drop 

size and its distribution too. Indeed, the D32 quadratic formula for the gas-driven type of 

spray of Eq. (3.11) explicitly requires the expression of gas velocity ratio, 𝑢𝑜𝑢𝑡 / 𝑢𝑖𝑛, 

along with 𝑢𝐿  / 𝑢𝑖𝑛𝑗. 

 

Case 3: Liquid Injection with Added Gas Momentum of Cross-Flowing of Gas 

Liquid 𝜌𝐿𝑢𝑖𝑛𝑗𝐴𝑖𝑛𝑗𝑢𝐿,𝑥 = 
𝐶𝐷
2
𝜌𝑔𝐴𝐷(𝑢𝑖𝑛 − 𝑢𝐿,𝑥)

2
 Eq. (4.5) 

 

Gas 𝜌𝑔𝑢𝑖𝑛
2 𝐴𝑖𝑛 = 𝜌𝑔𝑢𝑖𝑛𝐴𝑖𝑛𝑢𝑜𝑢𝑡 + 𝜌𝐿𝑢𝑖𝑛𝑗𝐴𝑖𝑛𝑗𝑢𝐿,𝑥 Eq. (4.6) 

 

For liquid jet in cross-flowing gas, the configuration in which the initial x 

component of liquid momentum is zero, i.e., 𝑢𝑖𝑛𝑗 = 0, makes the momentum balance 

relations more simple form as seen in Eq. (4.5) and Eq. (4.6). On top of that, the gas 
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velocity ratio 𝑢𝑜𝑢𝑡/𝑢𝑖𝑛 is calculated from Eq. (4.6), and the arranged form are shown in 

Eq. (4.7). It includes the momentum ratio 𝑞, as defined in Eq. (4.8). 

 

𝑢𝑜𝑢𝑡
𝑢𝑖𝑛

= 1 − 𝑞
𝐴𝑖𝑛𝑗

𝐴𝑖𝑛

𝑢𝐿,𝑥
𝑢𝑖𝑛𝑗

 Eq. (4.7) 

 

where momentum ratio, 

𝑞 =
𝜌𝐿𝑢𝑖𝑛𝑗

2

𝜌𝑔𝑢𝑖𝑛
2  

 

 
Eq. (4.8) 

 

Taking all the delineated momentum balances, the following useful analyses with 

validations are shown to be possible, giving insights into the dynamic relations for spray 

atomization. More details on the derivation of the momentum equations are guided to 

APPENDIX A. 

 

4.3 Validations on Momentum Equations 

 It begins with a simple case of pressurized-straight spray by spatially integrating 

Eq. (4.1) and Eq. (4.2); for the detailed spatial integration scheme, it would be referred to 

APPENDIX A. The resulting liquid- and gas-phase velocities are plotted by solid and 

dash lines respectively in Fig. 4.1. In addition to that, the plots with various density ratios 

of g /L are included alongside in pairs, to investigate the role of the density effect; for 

the case of Fig. 4.1, the liquid density is fixed as water while the gas density is varied 

with having an ambient gas be the reference one, ρo. The top curves are the uL/uinj, which 

show a continuous decrease due to aerodynamic drag. Meanwhile, the bottom curves are 
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ug/uinj, which show a growing momentum on the contrary. Gas density leads to higher 

drag, thus more deceleration in the liquid velocity at larger gas densities. A simple drag 

coefficient for cylindrical surfaces may be used as the baseline, and any large surface 

disturbances residing with increased drag should be accounted for by modifying the drag 

coefficient. Alternatively, it can turn to computational simulations for the determination 

of the momentum field; Lee et al., 2021, [54]. The gas velocities are initially zero and 

change to increase at a higher rate with larger density ratios. Consequently, the density 

effect is to increase the liquid momentum loss through the drag term as shown in Fig. 4.1. 

 

 

Fig. 4.1  Spatial development of the liquid and gas velocities obtained by integration of 

Eq. (4.1) and Eq. (4.2). The xtip/dinj are referred to Shimizu et al. [59] as the breakup-

length. The reference gas density ρo = 1.225 kg/m3, ρL = 1000 kg/m3, uinj = 120m/s, and 

dinj = 0.3mm 

 

In addition, from the experimental observations in varying ambient densities from 

Shimizu et al., 1984 [59], it has been reported that the breakup-length happens to 

decrease with an increase in ambient density. Therefore, the final result is a combination 
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of reduced liquid velocity and breakup-length both when the ambient density is 

increased. This kind of plot serves as an initial estimate for the liquid velocities at 

primary atomization used in Eq. (3.8) to compute D32 by taking the value of uL/uinj at the 

position of breakup-length from experimental observations. About the position at 

breakup-length, the case studied in Fig. 4.1 is x/dinj ~ 130 for the reference ambient 

density condition ρ0, however, it may vary case by case depending on which 

experimental configurations are used besides the weber number. In general, the 

estimation of x/dinj ~ 100 can be used for pressurized-straight sprays and it would be 

shortened for swirl sprays. 

 For swirl sprays, the same procedures are taken to estimate the uL/uinj from the 

integration of Eq. (4.1) and Eq. (4.2), in which CD is expected to be relatively high with 

its breakup-length being relatively short due to the swirl spray configurations. Taking a 

step further, the D32 estimation by Eq. (3.8) is applied, and the results are compared with 

a correlation by Lefebvre [29] as shown in Fig. 4.2 with solid and dash lines respectively. 

The correlation referenced is, SMD ~ σ0.25 μL
0.25 ρL

0.125 do
0.5 ρg

-0.25 ΔPL
-0.375. By arranging 

it with ΔPL ~ ρLuinj
2, the change of SMD with respect to the liquid injection velocity uinj 

can be derived; other parameters that are used in this comparison with Fig. 4.2 have been 

set the same as that of Fig. 4.1. 

 Fig. 4.2 shows the results of drop size change with respect to the liquid injection 

velocity, whose reciprocal relation is expected. As studied in the analyses of D32 

formulations in the previous context, it can be interpreted by the energy equation in 

which increasing injection velocity contributes to the increase in surface tension energy, 

hence yielding to the shattering of liquid into even more small droplets. Consequently, an 
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increase in injection velocity leads to a decrease in average drop size, i.e., D32 as the 

average drop size seen in Fig. 4.2. 

 On top of that, the gas density effect is examined while increasing it up to 2ρ and 

5ρ. And the results are incorporated into the D32 estimation as shown in Fig. 4.2, where 

the effect from density and injection velocity is reasonably reproduced by Eq. (3.8). The 

corresponding correlation curves by Lefebvre [29] are alongside as well. It shows the 

decrease in drop size with respect to the higher density. Moreover, it exhibits a rapid 

decrease with the steep slope by higher density in Fig. 4.2. For the nearly constant 

atomization length scale, i.e., to yield the same drop size after breakup driven by the 

same injection velocity, this deceleration effect with increasing density, i.e., by subjecting 

to higher drag, can be substantial, as in some of the experimental correlations for drop 

size in swirl sprays from Lefebvre [29]. This is one of the physical mechanisms 

contributing to smaller drop sizes in swirl sprays where the liquid deceleration is more 

pronounced than in simple injection geometries. 

 Speaking of the density effect, in many spray applications like fuel injectors in a 

combustion engine, high pressure and temperature conditions exist, and there have been 

numerous experimental studies on the effects of pressure and temperature on drop size. 

The current analysis takes into account that the pressure and temperature effects are 

primarily through the density, which affects the aerodynamic drag and therefore kinetic 

energy content of the liquid phase. Thus, pressure and temperature effects during spray 

atomization can be summarized into the density effect under the ideal gas equation of 

state, i.e.,  ~ p/T.  

 



  40 

 

Fig. 4.2  Density effects on the drop size in swirl sprays. The correlations are referred 

to Lefebvre [29] 

 

The following content is about an application for the momentum analysis for the 

gas-driven type of atomization in cross-flows. In the shock-induced breakup experiment 

conducted by Chen et al. [60], they measured the drop size and its velocity as well. The 

shock induces a rapid gas motion that is characterized by free from gradual changes for 

the injection condition so that it can provide a step change in convective velocity. This 

paper finds a correlation between the observed drop size and velocity in non-dimensional 

form by normalizing with relevant parameters, i.e., D/Do = f (up/uo). In seeking to 

compare the correlation by Chen et al. [60] with the D32 equation of which momentum 

relation for cross-flow is incorporated, Eq. (4.7) and Eq. (4.8) in addition to Eq. (3.11) are 

applied. Since the experiment used elevated pressure, the gas density aft of the shock 

front is used in those equations.  
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Fig. 4.3  Dynamical relationship between the drop size and its velocity in solid line. 

The correlation in dash line and experimental data in symbol from Chen et al., 2018 

[60]; up is converted from up (uL) to up (uout), to compare with the D32 equation of Eq. 

(3.11). The up is drop velocity and D/Do is normalized drop size. 

 

Fig. 4.3 is the results of the comparison, showing reasonable agreement. The 

measured data and its correlation curve are expressed by symbol and dash line in black 

color both. These in red color are the conversion for those of measured droplet velocities 

and correlation to being expressed as convective velocities, i.e., uout as the up by using Eq. 

(4.7) and Eq. (4.8). The reason for the conversion has previously explained in the process 

of analyzing Fig. 3.2, which comes from the dynamical relation for cross-flows in the 

application of D32 equation. As mentioned in the previous chapter that droplets in cross-

flows are highly susceptible to the gas momentum so that the resulting droplet velocity up 

can be represented by its convective gas velocity uout; this approach is used in illustrating 

dynamical relation for the D32 equation in cross-flows of gas-driven atomization depicted 

as Fig. 3.2. Lastly, the red solid line is from the calculation by D32 equation of Eq. (3.11) 

with using the given spray parameters. Eventually, Fig. 4.3 demonstrates that the 



  42 

converted velocities and correlation from the measured data, which is in red symbol and 

red dash line, are in accordance with the results of using the D32 equation in the red solid 

line. The experiment used air and water at the velocity of 71m/s and 1.3m/s respectively. 

The measured diameter for the water column is 0.94mm in the experiment, so it is 

approximated to dinj in the way of applying the D32 equation. Else parameters can be 

found in the paper [60]. The experimental measurement downstream position is 50mm, 

and We = 76. The used correlation by Chen et al. [60] is, up/uo = C1 − C2 exp{-

C3/(D/Do)
2} with C1 = 0.55, C2 = 0.21, and C3

 = 0.011. The drop velocity is normalized 

by uo, which corresponds to the incoming gas velocity, uin in the D32 equation. The drop 

size is normalized by Do, which corresponds to the water column diameter, approximated 

to dinj in the D32 equation. 

 

4.4 Methods for Drop Size Distributions 

The diagnostic techniques in spray experiments enable us to measure both drop 

size and its velocity. For example, in the use of Phase Doppler Particle Analyzers with 

Particle Imaging Analyzers, data from these are acquired and then reported as a form of 

discrete distribution, e.g., histogram. In the followings, the comparisons of distribution 

are presented, one from the experimentally detected data and the other from the 

calculation with the D32 equation. Accordingly, a suggestion for the way of constructing 

drop size distribution by using the D32 equations is proposed. 

Fig. 4.4, Fig. 4.5, and Fig. 4.6 show discrete probability distributions for drop 

velocity up, and drop size D. Note that it is a normalized histogram, in which each 

probability per bin is divided by the corresponding bin width, and technically it is 
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different from a continuous distribution function that is commonly denoted by Pdf, 

although the notation in graphs here uses without distinction. 

Fig. 4.4 is for the pressurized-straight liquid jet without the aid of gas momentum. 

The experimentally collected data are from Bellerova et al. [53], and implemented 

injection parameters are previously stated in the explanation of Fig. 3.1. The scattering 

data points of Fig. 3.1 are allocated within the finite number of divisions to make the 

histogram as seen Fig. 4.4. The y-axis on the right side is for the scale of cumulative 

distribution function that is denoted by Cdf in the plot, whose appearance is as dash line. 

Fig. 4.4(a) shows the probability distribution of drop velocity Pdf(up), and Fig. 4.4(b) 

shows that of drop size Pdf(D), both as a histogram. With the aim of comparison to the 

derived drop size distribution, the mid values at every each bin are chosen as uL to input 

Eq. (3.8), which are marked in the red circle as Fig. 4.4(a). Recalling that the D32 

equation facilitates the calculation for the drop size explicitly from the liquid velocity uL, 

the corresponding drop sizes D for the chosen values as uL are derived in Fig. 4.4(b). In 

the calculation, the values of each probability are set as the same as those from the drop 

velocity distribution, i.e., Probability (D) = Probability (uL). The normalization to 

construct a discrete probability distribution Pdf(D), for which the derived results by D32 

equations are used, is carried out. Note that a different normalizing factor exists among 

the derived values of D, since their allocations are not uniform in contrast to that of the 

data histogram, i.e., each interval of D as bin size is not uniformly distributed in abscissa.  

The resulting derived Pdf(D) is in red solid line as Fig. 4.4(b), and it appears in good 

agreement with the histogram of data. 
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(a) 

 

(b) 

 

Fig. 4.4  Comparison of discrete probability for the pressurized-straight liquid jet. 

Experimental data by Bellerova et al. [53]. (a) The number of divisions within the 

range of 1 to 21m/s is 20 with a bin width of 1m/s for the histogram of drop velocity 

up; (b) The number of divisions within the range of 0 to 500 μm is 25 with a bin width 

of 20μm for the histogram of drop size D 

 

In a similar manner, Fig. 4.5 is for liquid jets in cross-flows of gas, whose data are 

aligned with corresponding bins to construct histograms from the scattering points of Fig. 

3.2. The same procedure is applied to compare the resulting discrete probability 

distributions of drop size Pdf(D); The uL are chosen in Fig. 4.5(a) to derive their drop 
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sizes from D32 equation of Eq. (3.11), then match their discrete probability of D with that 

of uL, followed by normalization each by the discrete ranges before constructing the 

derived distribution as seen in Fig. 4.5(b). 

 

(a) 

 

(b) 

 

Fig. 4.5  Comparison of discrete probability for the liquid jet in cross-flows of gas. 

Experimental data by Bellerova et al. [53]. (a) The number of divisions within the 

range of 11 to 23m/s is 12 with a bin width of 1m/s for the histogram of drop velocity 

up; (b) The number of divisions within the range of 10 to 140 μm is 13 with a bin width 

of 10μm for the histogram of drop size D 
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 It is noticeable from the comparison in Fig. 4.5(b) that the derived Pdf shows a 

sharper and higher peak towards the mean value than the histogram, whereas the effective 

range of D or equivalently the abscissa range, is not significantly different from that of 

the histogram, indicating a relatively lower standard deviation for the derived Pdf. 

; the abscissa is set to span between valid values at both limits, i.e., Pdf > 0 for the 

minimum and maximum of D from the histogram, although some of the height in the plot 

seems hardly identifiable wherein a very low Pdf exists. As we will see in Fig. 4.6(b) that 

the same features are found for the liquid jets in coaxial-flows of gas. 

 Fig. 4.6 is for the liquid jets in coaxial-flows of gas, applying the same procedures 

to obtain the derived discrete probability distribution Pdf(D) as Fig. 4.6(b), from the 

sparse samples of uL marked in red circles at the histogram as Fig. 4.6(a), and then use 

the Pdf(uL) into the D32 equation. The common features distinguish in the distribution of 

Fig. 4.6(b) as well as Fig. 4.5(b); the distribution range over spreading out is not 

significantly deviated from the one with histogram whereas the standard deviation gets 

much lower than that, showing intensively concentrated distribution towards mean value 

like Fig. 4.5(b). This tendency may imply that the aid of gas momentum causes 

devastating secondary atomization including coalescence, collision, ruptures, and so on. 

Unlike primary atomization in which the injection condition is the main cause to 

influence, e.g., weber number, so that it can be controllable, secondary atomization, 

however, occurs in circumambience where unpredictable dynamic interactions are 

prevalent between drops, ligaments, and pieces of torn sheets. Therefore, tracking 

individuals could be hardly sensible, but rather it may be pertinent to see that secondary 

atomization is regarded as an increase in randomness in the process of primary 
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atomization. This mitigates against heightened mean value so that it makes a gradual 

convergent distribution with a higher standard deviation; the higher standard deviation 

indicates the increased amount of variation of values for a given confidence interval.  

 

(a) 

 

(b) 

 

Fig. 4.6  Comparison of discrete probability for the liquid jet in coaxial-flows of gas. 

Experimental data by Eroglu and Chigier [61]. (a) The number of divisions within the 

range of 9.5 to 37.2m/s is 50 for the histogram of drop velocity up; 13 samples out of 

among are chosen sparsely as Pdf(uL) to apply to the D32 equation; (b) The number of 

divisions within the range of 4.3 to 150μm is 50 for the histogram of drop size D 
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 The increased randomness is one of the well-known characteristics of turbulence. 

The turbulence mixing, explained by stretching the range of length scales toward smaller 

ones for kinetic energy transfer, is broadly accepted in the field of study. Considering that 

our equations correlate drop size with drop velocity explicitly, it would be possible to 

draw the velocity distribution from the final drop size distribution so that the secondary 

atomization can be related in view of the turbulence effect with the velocity variations. 

Since we study within the scope of primary atomization only, the investigation of 

secondary atomization remains future work. 

 In effect, the way of selecting uL among the range of velocity in the histogram, in 

which only a few discrete values are chosen with a uniform interval, could be quite 

arbitrary. Since the derived drop size distribution depends on the selection of uL, the 

resultant one is liable to be arbitrary too. Furthermore, the detection and collection of a 

large number of small drops in experimental measurements are challenging in obtaining a 

data set with a satisfactory level of accuracy, hence individual values for each bin in the 

histogram also have the same issue. For these reasons, building the distribution with only 

a few representing values, i.e., from sparsely sampled uL, could be inadequate. Therefore, 

it is a worthwhile attempt to complement the method with a subsidiary device for 

constructing better practical drop size distribution. 

 In the followings, a different approach is tried with the same experimental data 

used above. Specifically, a continuous normal distribution is introduced with an intention 

of the reduction in risk-taking on the discrete sampling from the velocity histogram. First, 

both mean and variance are estimated from the set of velocity data to make a normal 

distribution. Secondly, we regard the whole normal distribution of u within the truncated 
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range as the probability distribution of uL; the truncated range of u is limited between the 

minimum and maximum of u from the data set. Third, D32 equations are applied to the 

range of uL, then the probability distribution of D is derived by matching to the 

corresponding distribution of uL, i.e., Normal distribution(uL) = Probability(D). Lastly, 

normalization by area is carried out to complete building the derived probability density 

function of D, Pdf(D).  

 Fig. 4.7, Fig. 4.8, and Fig. 4.9 are the results of using the normal distribution for 

the case of the pressurized-straight liquid jet, the jet in cross-flows, and the jet in coaxial-

flows respectively. In Fig. 4.7(a), the continuous normal distribution of u is compared 

with the discrete histogram whose normalization is fulfilled. In Fig. 4.7(b), the derived 

drop size distribution Pdf(D) is shown after calculation by the D32 equation of Eq. (3.8) 

for the uL with the same range of normal distribution of u. In addition, the normal 

distribution of D from the experimental data is estimated as well, along with the 

histogram, illustrated all together for the comparison among them in Fig. 4.7(b). 

 Fig. 4.7(b) shows that the derived Pdf(D) with the D32 equation in red line, is 

more similar in shape than the estimated normal distribution from data in black line, 

albeit some deviating from the histogram. As for the statement of similar in shape, it 

intends the extent of closeness for the peak and variance to the histogram’s ones; for the 

variance, the full range of abscissa does not significantly different among them. Given 

that, the peak and variance of the derived Pdf(D) with the D32 equation are more in favor.  
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(a) 

 

(b) 

 

Fig. 4.7  Comparison of continuous probability for pressurized-straight spray. 

Experimental data by Bellerova et al. [53]. (a) The normal distribution of u from the 

dataset of drop velocity up; (b) The probability density function of D using the normal 

distribution of u and D32 equation with red line, and the other one using normal 

distribution from the dataset of drop size D with black line 

 

 However, it is worth noting that in the case of pressurized-straight jet, making use 

of normal distribution gives a worse result as far as deviating from the histogram, when 

compared to using the former method; it comes to be obvious in comparison between Fig. 

4.4(b) and Fig. 4.7(b). The different outcome between them could be interpreted such 
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that, the secondary atomization effect is relatively weak when without gas momentum so 

that using data directly with sparsely sampled uL represent already well, as sufficiently 

characterizing in deriving their drop size distribution. Conversely, this implies that with 

added gas momentum, making use of normal distribution would give a more favorable 

result as we will find in both Fig. 4.8(b) and Fig. 4.9(b). 

 Fig. 4.8 is the result by using the normal distribution of u for the liquid jet in 

cross-flows of gas. In Fig. 4.8(b) the resulting derived Pdf(D) shows more skewed as 

resembling the histogram, whereas the normal distribution of D is dampened in shape. In 

the comparison of the derived Pdf(D) between Fig. 4.5(b) and Fig. 4.8(b), the make use 

of normal distribution yields a more satisfactory result. To be specific, while Fig. 4.5(b) 

shows too sharp at the peak to be persuasive, Fig. 4.8(b) shows a moderate peak with 

gradual smoothing out leading to a favorable agreement with the histogram. 

 Fig. 4.9 is the result by using the normal distribution of u for the liquid jet in 

coaxial-flows of gas. In Fig. 4.9(b) the common aspects are found we have seen in Fig. 

4.8(b); skewness for the derived Pdf(D), and dampened for the normal distribution of D. 

From the comparison between Fig. 4.6(b) and Fig. 4.9(b) as well finds the normal 

distribution of u for Pdf(D) with a modest peak better in resemblance to the histogram.  

 Consequently, for the liquid jet with added gas momentum as in both Fig. 4.8 and 

Fig. 4.9, the drop size distribution using the D32 equation with the normal distribution of 

u led to a benign outcome. To explain, we have compared four drop size distributions 

from different methods, histogram by D dataset, derived Pdf(D) by sampled uL, derived 

Pdf(D) by the normal distribution of u dataset, and normal distribution by D dataset. And 

we have compared each peak; for variance, the effective range of D is limited similarly 
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for all of them, so the comparison of variance is associated with that of peak height 

ultimately. The peak height has shown in this order; Pdf(D) by sampled uL > Pdf(D) by 

the normal distribution of u > histogram of D > normal distribution of D.  

 

(a) 

 

(b) 

 

Fig. 4.8  Comparison of continuous probability for liquid jets in cross-flows of gas. 

Experimental data by Bellerova et al. [53]. (a) The normal distribution of u from the 

dataset of drop velocity up; (b) The probability density function of D using the normal 

distribution of u and D32 equation with red line, and the other one using normal 

distribution from the dataset of drop size D with black line 
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(a) 

 

(b) 

 

Fig. 4.9  Comparison of continuous probability for liquid jets in coaxial-flows of gas. 

Experimental data by Eroglu and Chigier [61]; (a) The normal distribution of u from 

the dataset of drop velocity up; (b) The probability density function of D using the 

normal distribution of u and D32 equation with red line, and the other one using normal 

distribution from the dataset of drop size D with black line 

  

 We have studied two different methods in the formation of drop size distribution. 

Note that one makes a discrete probability distribution, while the other makes a 

continuous probability distribution that is a probability density function. The former 

method tolerates the possible inaccuracy triggered by choosing discrete uL arbitrarily. The 



  54 

latter one rectifies the shortcoming by taking a continuous uL, so that it can secure a level 

of acceptance as taking more broad and generalized possible outcomes. Especially, this 

aspect takes advantage of embracing possible variations that are involved in 

unmeasurable effects, e.g., secondary breakup or coalescence. Indeed, in aid of gas 

momentum, the derived Pdf(D) by the latter method manifests in favor of the data rather 

than one by the former method; we postulated that gas momentum draws drastic 

secondary atomization so that drop size distribution entails the impact of untraceable 

dynamic interactions among a myriad of drops.  

 The construction of drop size distribution with D32 equations benefits from the 

instance where momentum data are available since it converts from the liquid momentum 

data to the drop size distribution. This aspect is useful because in most measurements and 

computational simulations the velocities are easier to measure or compute than the drop 

size. For example, Volume-of-Fluid simulation makes it convenient to obtain the 

velocities in the liquid column or sheet prior to the breakup, to calculate the initial drop 

sizes by D32 equations. 

 

4.5 Chapter Summary 

 In the previous chapter, we used the integral form of the conservation equations of 

mass and energy to formulate a general expression for the drop size in various spray 

injection geometries. Adding the current momentum analysis completes this formulation, 

which also brings forth a broad dynamical perspective of spray atomization; liquid 

momentum is altered through interaction with the gas by drag, and this momentum 

exchange incurs the corresponding change in the kinetic energy of the liquid and the gas. 
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This deduction in the liquid kinetic energy must appear in another form, which is the 

surface tension energy. Thus, the larger reduction in the liquid momentum and therefore 

its kinetic energy, the smaller the drop size will be.  

 The current full formulation puts this perspective in a relatively simple 

mathematical form, and the resulting D32 equation yields the drop size and its distribution 

as well, showing in close agreement with experimental data across various injection 

configurations. From the comparison with experimental data, we have found the 

conversion of the liquid drop to gas velocity is needed to correlate the drop size to 

momentum data, in gas-driven atomization processes such as liquid jets in cross- or 

coaxial-flows of gas. This momentum analysis can be done for a global control volume, 

in differential formulation involving computational fluid dynamics, or directly from the 

measured velocity dataset.  

 In conclusion, the momentum analysis is verified as generalizable across a range 

of spray injection geometries, thus drop size and its distribution can be obtained without 

complex computations or modeling. 

  



  56 

CHAPTER 5  

COMPUTATIONAL PROTOCOL FOR SPRAY FLOWS, INCLUDING 

PRIMARY ATOMIZATION 

5.1 Basic Spray Geometries  

Background 

In this chapter, we explore how the above mathematical formulation of primary 

atomization may be utilized in a computational fluid dynamics, CFD framework. To be 

specific, we investigate the basic spray geometries; pressurized-liquid jets without and 

with swirl, and liquid injected into a cross-flow of air. The configuration of straight liquid 

jets with no swirl is used in Diesel and automotive fuel delivery, while swirl injectors are 

used in compact combustors as in gas-turbine engines. Liquid jets in cross-flows are used 

in aircraft fuel injection and industrial gas turbines. Thus, the basic spray geometries vary 

depending on their use and are important to befit their purpose.  

Existing CFD algorithms for the continuous liquid and dispersed phases are quite 

effective if initial and boundary conditions are fully specified. Volume-of-Fluid or Level-

Set methods reproduce the liquid motion and deformation quite well at flow length 

scales. However, small-scale liquid shearing leading to droplet formation occurs at length 

scales mostly below the spatial resolution of large-eddy or turbulence model simulations. 

Also, existing primary atomization modules require time-dependent tracking of the 

liquid-gas interface even for steady-state injection processes [25,26], straining the 

computational resources. Therefore, even in advanced high-resolution computer 

simulations, a more practical form of primary atomization module is required for the drop 

formation.  



  57 

By the way, if the droplet initial size and velocities can be specified from some 

local initial conditions, then algorithms such as particle-in-cell or Eulerian-Lagrangian 

methods work quite well in tracking the droplet trajectories. Mass and energy transfer 

modules can also be added with good accuracy, to study evaporation and combustion 

processes in sprays; though additional tasks in the computation of the droplet formation 

processes or specifications of drop size, would require. 

Eventually, the key component is the primary atomization module to link the pre- 

and post-atomization simulations. In this light, our primary atomization theory can be 

applied within the CFD modules, making the primary atomization module in spray flow 

simulation effective, which has proven to work quite well [54,55]. 

 

Method 

The analytical results described in the previous chapters 3 and 4 have several 

strengths when used in the primary atomization module during the computational 

simulations of spray flows. First, our theory is based on the fundamental fluid physics of 

mass and energy conservation. Secondly, it has been generalized and validated across all 

the major injection geometries [46–52]. The fact that it requires liquid velocity as input to 

D32 equations, Eq. (3.8) or Eq. (3.11), points to the ideal integration of the equations with 

existing computational algorithms that we can obtain numerically solved velocity or 

momentum data. 

Especially, time-averaged velocities are needed as inputs in D32 equations, so 

that steady-state simulations are sufficient for the pre-atomization with VoF. For transient 

injection processes, unsteady VoF can be run. However, here we only consider steady-
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state spray flows. In this way, we run pre-atomization liquid-phase simulations using the 

VoF method in CFD, to compute a continuous liquid velocity development from an 

injector exit to atomization planes. 

The location at the atomization plane is specified using a suitable physical 

criterion as described below. Then, the liquid velocities from VoF are input to D32 

equations to specify the local droplet size. Subsequently, the dispersed simulation can be 

initiated using this droplet size along with the local liquid velocity for the post-

atomization process. The Steps are outlined as follows. 

 

1. Run liquid-phase simulation with VoF to obtain liquid volume fraction and 

local velocity for the pre-atomization liquid flow field 

2. Apply the atomization criterion; described below 

3. Use the local liquid velocity in D32 equations to derive the local initial drop size 

4. Run Lagrangian discrete particle simulation DPM to track the droplets, using 

the above initial drop size from Step 3 and velocity from Step 1 

 

 

Fig. 5.1  A schematic of the computational protocol for straight liquid jets. The 

continuous liquid phase is computed, then local D32 of Eq. (3.8) and liquid velocity are 

used to initiate the discrete phase simulation at the surface and the primary atomization 

plane 
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Fig. 5.1 shows the schematic of the above procedure, where the liquid volume 

fraction and velocities from the VoF simulation are used in Steps 2 and 3. Then, Discrete-

Phase Model, i.e., DPM, can be run. Both the VoF and DPM are run on ANSYS-Fluent 

for the current work. Most CFD softwares have VoF and DPM functionalities, and we 

add Steps 2 and 3 into this sequence. To account for turbulence, the realizable k- model 

is used. Only the mean velocities are needed so that steady-state simulations are 

sufficient, requiring minimal computational resources. 

 

(a) 

 
(b) 

 
Fig. 5.2  (a) Axial centerline profiles of the velocity and its gradient; (b) Radial profiles 

of the velocity and its gradient. These velocities and gradients are used for (a) the 

primary atomization at the spray tip, and (b) surface atomization along the periphery of 

the liquid column 
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The liquid velocity profiles in the radial distance, i.e., cross-stream direction, are 

used for the “surface atomization”, where along the periphery of the liquid column. For 

example, Fig. 5.2(b) shows both the liquid velocity and its gradients. The atomization 

criterion is the velocity gradient exceeding ½ of the maximum; the absolute value of the 

negative gradient, as shown in Fig. 5.2(b). Due to shear stress, the velocity decreases 

from the centerline value toward the periphery, and the velocity gradient has a negative 

minimum, i.e., absolute maximum, near r/x of 0.25. Within 50% of this absolute 

maximum, the liquid is considered atomized. And local liquid velocity is input into Eq. 

(3.8) for the local initial drop size. Three to six surface atomization locations were 

selected along the x-direction, in order to ensure continuity in the discrete-phase, but the 

final number and exact locations did not affect the results to any noticeable degree. At 

each axial surface atomization with these x-locations, 5 annular zones were used to input 

varying liquid velocities and corresponding D32, according to Eq. (3.8).  

For the “primary atomization”, where all the remaining liquid is converted to 

discrete droplets, the axial velocity gradient is used seen in Fig. 5.2(a). And the location 

of the maximum gradient, i.e., the absolute value of the negative gradient, is used as the 

primary atomization plane. This follows from experimental and computational 

observations where the liquid core undergoes a relatively abrupt disintegration leading to 

the formation of a majority of atomized droplets. Surface atomization is observed up to 

this point, but simply due to the relatively small droplets, the “primary atomization” 

constitutes the major bulk of the atomized droplets.  

For swirl injection, a similar procedure is followed, except that the atomization is 

assumed to occur across the liquid sheet at several axial locations of 1, 2, 3, and 5mm 
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along the centerline, i.e., no surface atomization was separately input, unlike the straight 

liquid jet. This as well follows from experimental observations where swirl injection 

leads to nearly immediate breakup and production of droplets across the liquid sheet. 

A uniform Cartesian axisymmetric mesh with a cell height of 0.475mm in the 

VoF simulations is used for the liquid column calculation. The mean liquid trajectory is 

symmetric about the centerline of the jet, allowing a two-dimensional axisymmetric 

solver to be valid. The computational domain is 2m long and 0.25m tall. Water at the 

injection velocity of 56.7 m/s is sent into a quiescent, air-filled domain from an inlet with 

a diameter of 9.5mm. The inlet turbulence intensity is set to 3% and uses the hydraulic 

diameter of the injector as 9.5mm to accurately model the turbulent kinetic energy and 

dissipation rate at the inlet. The realizable k-epsilon viscous model is used to model 

turbulence as the injector inlet which has a typical Reynolds number of 105, thus the flow 

is fully turbulent. Additionally, the average liquid trajectory and velocity are desired in 

this work, which is provided through the k-epsilon two-equations model along with 

RANS viscous model equations during DPM. Implicit, dispersed interface modeling is 

enabled to capture the liquid-gas interface. The field is solved in a steady-state solver 

until convergence. A coupled method with a second-order discretization solution scheme 

solves the flow, in which coupled velocity and pressure are to be determined for the 

liquid velocity distribution while it enforces the continuity equation.  

In the discrete phase computations, annular or circular area injection mode is 

used with the local drop size of D32 specified as described above. Unsteady particle 

tracking is used with a time step of 10-7 seconds. Particle rotation, discrete random walk, 
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and the Saffman lifts are all included during the particle tracking, to simulate realistic 

dispersion of the particles. 

The number flow rate, i.e., ṅi = ṁi/ (π/6)Di
3ρL, the local mass flow rate based on 

the liquid velocity, i.e., ṁi = ρL(uL)iAi, is used for the annular area in surface atomization, 

as well as the circular area in primary atomization, that involved in the breakup process. 

Although the drop size distribution can be input, however for the current study, local D32 

is input in this discrete-phase simulation, since variations in the local liquid velocity lead 

to a natural spread in the distribution of the final drop size. Fundamentally, diverse 

velocity field yields varied in drop size according to Eq. (3.8). For example, large uL/uinj 

corresponds to large D32, and vice versa, hence resulting in various drop sizes in local. 

And, their subsequent drop trajectories allow for the “mixing” of these particle sizes, 

making the variations in the sampled D32. 

 

Results and Discussions for Pressure-Atomized Sprays without and with Swirl 

 To summarize the protocol introduced briefly, we run the steady-state simulation 

of the continuous liquid core using VoF, then use the velocity profiles to input into Eq. 

(3.8) to obtain the local drop size D32, and finally, droplets with the D32 are released at the 

local liquid velocities in Lagrangian tracking of droplets DPM. 

The computational results obtained from the above protocol are compared with 

various experimental results for pressure-atomized sprays without swirl [62–64] and with 

swirl [65]. Among those data, the velocity and droplet size near the liquid surface by Ruff 

et al. [62] is used for the validation as seen in Fig. 5.3(a) and Fig. 5.3(b) respectively. The 

data finds that the drop velocities and SMD are high near the liquid column surface, then 
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both decrease in the radial direction. As it turns out this observation is well reflecting our 

results of the computational simulation and derived drop sizes. To describe from the 

simulation with a continuous liquid jet, the centerline velocity is highest and then 

decreases toward the periphery. This indicates that large liquid velocities close to the 

surface would produce or be associated with large droplets according to Eq. (3.8) and 

Fig. 3.1. Conversely, low liquid velocities are correlated with small droplets. Therefore, it 

displays analogous characteristics to the experimental observation.  

When the droplet velocities were tracked in the Lagrangian simulation, in which 

the particle reflects the droplet dynamics through changing velocities along its trajectory, 

it showed that the initial liquid velocity was getting retarded by the drag with the 

surrounding gas. This observation was also carried out to ensure our procedure integrity, 

but, since it is not an essential but rather a subsidiary measure, we place that observation 

here with only such supplementary explanation but skip details. 

In Fig. 5.3(b) the droplet behavior is fairly well simulated in the current method. 

However, some deviation between both velocity profiles is shown in Fig. 5.3(a), implying 

the existence of perturbations in practice relative to the average by various causes. For 

example, the drop velocity from measurement is overestimated in Fig. 5.3(a). 

Computationally, the turbulent fluctuations can introduce variations in the drop size and 

velocity, that may lead to better accordance with those of measurement. Although this 

can easily be taken into account, it has not been added to the current computational 

module. Moreover, the measurement by Ruff et al. [62] was made using double-pulsed 

holography so that sampling and data analyses inherently contain some extent of errors. 
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Still, the agreement between the simulation and data is encouraging, as the SMD is in 

quite good agreement given the low computational cost with grid requirements.  

 

(a) 

 

(b) 

 

Fig. 5.3  Comparison of the computed drop velocities (a), and drop sizes (b), with 

measurements by Ruff et al. [62] for pressure-atomized water spray without swirl. The 

u/uinj and SMD are plotted as a function of r/x, which is the radial similarity variable at 

various x/d locations 

 

The spray shape is visualized by the contour plot of the drop number density as 

shown in Fig. 5.4. The transition from continuous liquid core to dispersed droplets is 

abrupt at x/d ~ 100. The reason for that is, the atomization criterion corresponding to the 
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maximum negative centerline velocity gradient has been applied at this point. In addition, 

it shows that the droplet number density following this atomization criterion of liquid 

core break-up is an order of magnitude higher than surface-atomized droplets in the 

periphery of the liquid jet. This contour appears coincident with our previous statements 

that the majority of droplets in experimental observations are occupied by the bulk 

droplets coming from the primary breakup.  

 

 

Fig. 5.4  Contour plot of the drop number density for pressure-atomized sprays without 

swirl. The inner part of the spray has a nearly constant drop number density beyond 

x/dinj ~ 100, indicating at the end of the liquid core, both physically and 

computationally 

 

 

In addition to Ruff et al. [62]’s experiment with water spray, two more 

comparisons for pressure-atomized diesel jets are made. In this study, our simulation is 

referred to the experiments by Martinez et al. [63], and Lee and Park [64]. These data sets 

for diesel injection are compared with the simulation results, as followed the same 

procedure outlined in the previous context. With the same geometry for pressure-

atomized straight jet, else parameters were handled to be matched with the referred 

experimental conditions, e.g., modified injector diameter, fluid properties, and injection 
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operation. And their results in comparison are quite favorable as shown in Fig. 5.5 and 

Fig. 5.6. 

Overall, from the comparison studies with the three independent experimental 

observations for pressure-atomized jets in different parameters, our approach is 

demonstrated as a versatile tool to handle various spray flow simulations efficiently. It 

showed acceptable performance in visualization as well as convincing results, supporting 

our theory and its application into CFD. 

 

 

Fig. 5.5  Comparison of the computed SMD with measurements by Martinez et al. 

[63], for diesel spray with an injection diameter of 186μm and injection pressure of 

50MPa. The SMD is plotted as a function of r, at various x locations 
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Fig. 5.6  Comparison of the computed and measured centerline SMD with 

measurements by Lee and Park [64], for diesel spray with an injection diameter of 

0.3mm and injection pressure of 80MPa 

 

 

For swirl injection, a tangential velocity component is accounted at the injector 

exit in addition to axial velocity. It makes a bell-shaped liquid sheet as we will find in the 

continuous liquid VoF of Fig. 5.7(a). Due to the thin sheet shape against the swirling 

motion, it undergoes severe shearing in multi-directional and ends up in rapid break up. 

Furthermore, the drag coefficient of the sheet shape is expected to be large, leading to a 

rapid reduction in liquid velocity. Indeed from the VoF simulation, we find the liquid 

sheet rapidly slowing down. Hence, the induced large drag in addition to the swirling 

motion would cause atomization near the injector exit.  

The atomization criterion for swirl sprays is set at the point of maximum negative 

velocity gradient in the same manner as for the pressure-atomized sprays. The 5 locations 

at x = 0.47, 1, 2, 3, and 5mm are selected, where much close to the injector compared to 

that for pressure-atomized sprays. This accords with the earlier explanation of rapid break 
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up near injector exit. After making a decision on the atomization plane, the remaining 

procedures follow the same computational protocol; the velocity profiles on several 

atomization planes are extracted from the resulting VoF simulation of continuous liquid 

in order to calculate the initial drop size by the D32 equation in Eq. (3.8). 

Having furnished the initial drop size and its velocity in DPM simulation, it 

visualizes the track of discrete droplets as shown in Fig. 5.7(b). The number flow rate for 

the droplets is prorated by the liquid centerline velocity at each injection point, so that the 

total number flow rate multiplied by the liquid density and droplet volume equals the 

injected mass flow rate.  

Fig. 5.7(b) displays the spray shape by using the drop number density. The lobes 

in the periphery of the spray are due to two factors; first, there is a similar lobe in the 

liquid velocity simulation in Fig. 5.7(a) so that the droplet mean motion may follow that 

path, and secondly, discrete injection locations may lead to such lobes, which can be 

remedied by increasing the number of injection planes.  

 

 
 

(a) Velocity field in VoF (b) Drop number density via particle 

tracking in DPM 

Fig. 5.7  Simulation for swirl sprays. The velocity profiles at several atomization 

planes are extracted along the liquid sheet, to initiate the DPM as schematically 

shown in (a); locations are approximated for the illustration purpose 
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After the above simulations for the swirl sprays, the obtained velocity profile and 

calculated drop size at specific locations of x = 8 ~ 20mm are plotted in order to compare 

with the experimental data from Marchione et al. [65], as in both Fig. 5.8 and Fig. 5.9. 

The drop size is quite well reproduced as shown in Fig. 5.8(b) and Fig. 5.9(b). But the 

profiles, which are in the radial distributions of the droplets, are further out in the radial 

direction than the measurements up to x = 14 mm. This may have to do with the initial 

velocity vector, and since the liquid sheet is curved in swirl sprays, any deviations in the 

initial velocity vector will lead to spreading in the drop size profiles. Beyond x = 14 mm, 

the trajectories of the droplets agree reasonably well, and this is due to the re-alignment 

of the velocity vectors for the droplets injected at the furthest point of x = 7mm. This 

points to the need for fine-tuning the injection location to apply Eq. (3.8) in this type of 

simulation. 

For the droplet velocity, there is a decent agreement for the peak velocity 

magnitude and locations, although similar deviations in the width of the velocity profiles 

are observed. Also, in the simulations very low droplet velocities appear in the periphery 

of the spray that are both ends of width in profile, whereas the minimum measured drop 

velocities are 5 to 6 m/s in Fig. 5.8(a) and Fig. 5.9(a). For the calculated SMD profile, it 

finds that lowered liquid velocity results in decreased droplet size, and that is an expected 

feature from Eq. (3.8) and Fig. 3.1. 

 

 

 



  70 

(a) 

 

(b) 

 

Fig. 5.8  Comparison of computed and measured (a) drop velocities, and (b) SMD, for 

swirl sprays. They are plotted as a function of r, at various axial distances of x = 8 ~ 

14mm. A nozzle diameter of 0.46mm and kerosene Jet A-1 fuel with 7bar are used. 

The data are from Marchione et al. [65] 
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(a) 

 

(b) 

 

Fig. 5.9  Comparison of computed and measured (a) drop velocities, and (b) SMD, for 

swirl sprays. They are plotted as a function of r, at various axial distances of x = 16 ~ 

20mm. A nozzle diameter of 0.46mm and kerosene Jet A-1 fuel with 7bar are used. 

The data are from Marchione et al. [65] 

 

Distribution of global drop size can be made by sampling drops from the 

simulation at x = 20 mm across the spray plane, as shown in Fig. 5.10. Although the drop 

size distribution, which is made out of such sampling, could not be directly compared 
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because they were not available from the measurements of reference paper [65], the made 

distribution shows a typical log-normal shape, which is a commonly found in the 

distribution of spray droplets from various cases. 

 

 

Fig. 5.10  Global drop size distribution p(D) is obtained at x = 20 mm for swirl spray. 

The solid line is of the sampled droplets from the simulation, while the other lines are 

lognormal ( ̵ · ̵ ) and curve ( ̶   ̶ ) fit to the raw p(D) 

 

Results and Discussions for Liquid Jets in Cross-Flows  

For liquid jets in cross-flows, Fig. 5.11 displays its side and front view of the 

appearance from a three-dimensional simulation after following the same computational 

steps. Having the three-dimensional structure enables us to capture the multi-angle 

images in cross-sectional, which is useful in investigating its various aspects in dispersed 

trajectory. Specifically in our study, the spatial distributions of the droplets in different 

planes are instructive to distinguish the local spreading degree as displayed in Fig. 5.11. 

In Fig. 5.11(a), an overall look is quite similar to those of experimentally observed 
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images [66–68], under similar momentum ratios. To describe, the droplets are 

concentrated slightly fore from the mid-region of the liquid column, with a little upward 

direction. 

  

  

(a) Side view (b) Front view 

Fig. 5.11  Simulation for liquid spray in cross-flows. The contours are the drop number 

density via particle tracking in DPM  

 

 The drop size and velocity from computation with the simulation are compared 

with data from Mashayek’s experiment [69]. According to this reference, a high-speed 

airflow of 40.8 m/s which is perpendicular to a water jet of 9.6m/s was used with a 

momentum ratio of q =12.3 and a high Weber number of 57.2. The diameter of the water 

injector was 0.5mm. Based on that setup, our flow simulation was run by Reynolds 

averaged steady-state turbulence models at a relatively coarse grid spacing of 0.5mm. 

The computation results are shown in comparison with the experimental measurements, 

from both Fig. 5.12 and Fig. 5.13.  

In the drop velocity profiles of Fig. 5.12(a) and Fig. 5.13(a), the simulation result 

appears with a more fluctuating plot in the gas velocity along y/d at the same x/d 
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locations, while the experimentally measured drop momentum is less prone to alternate 

due to its much high inertia. The computed drop velocities are lower, ranging from 10 to 

15% below the experimental data. Recalling that the initial drop velocity came from the 

liquid column trajectories prior to any atomization, the gas velocities will tend to be 

lower in comparison to the actual spray which breaks up into smaller ligaments and 

droplets, thus less obstructing the gas flow. Although the accuracy in the drop velocity 

could be improved by compensating for this difference, we used a straightforward way 

and input the sampled velocity to specify the initial drop velocities, as described in the 

previous section. 

 

  

(a) (b) 

Fig. 5.12  Comparison of the computed (a) drop velocity, and (b) D32 profile, with 

experimental data from Mashayek [69] for liquid spray in cross-flows. The airflow in 

x-direction and water injection at y/d = 0. The x/d = 138 ~ 168, d = 0.5mm, data as 

symbol 

 



  75 

  

(a) 

 

(b) 

 

Fig. 5.13  Comparison of the computed (a) drop velocity, and (b) D32 profile, with 

experimental data from Mashayek [69] for liquid spray in cross-flows. The airflow in 

x-direction and water injection at y/d = 0. The x/d = 183 ~ 215, d = 0.5mm, data as 

symbol 

  

 The comparison of results in drop size between the simulation and experimental 

measurement is quite favorable as seen in Fig. 5.12(b) and Fig. 5.13(b). The large drop 

sizes are found in low height, and drops with decreased sizes are toward the mid-height 

for most measurement positions of x/d = 138 ~ 215; the height here means that the 

distance from the liquid injection at y/d = 0. In high heights where the data are reported 

along the streamwise direction of airflow, the drop sizes do not vary appreciably across 

the measurement positions in x/d nor y/d, while staying mostly between 50 ~ 0 m. 

 In addition to the examination of the spatial profiles for the drop size and 

velocities with Mashayek’s data [69], we further investigate the spray characteristics, 

including volumetric flux and drop size distribution. For this comparison study, the 
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experimental measurement by Song et al. [67] is used. The computational procedure is 

identical, except that the liquid injection and gas inlet velocity need to be differently 

initialized subjecting to the specific experimental conditions, e.g., momentum ratio of 10 

with an air pressure of 6.89 bar. Jet A-1 fuel is used with a liquid injection diameter of 

0.508mm which is almost the same size as the one used in the preceding comparison 

study. Likewise, the airflow is in the x-direction and the fuel injection is at y/d = 0, which 

are also in the same configuration. The data measurement is made at the position of x/d = 

50. 

 In Fig. 5.14 volumetric flow rate comparison is shown for two different gas weber 

numbers of 250 and 1000. Because of the signal drop-off during phase-Doppler 

interferometry measurements, both the raw and normalized data are plotted separately as 

symbol and dash line, respectively. The normalized volumetric flow rate is obtained by 

multiplying the raw data by a constant, so that the integrated value is brought equal to the 

injected mass flow rate.  

 The agreement with the experimental data is quite reasonable in that the liquid 

flux is concentrated in the upper part of the flow, implying that the extent of stripping out 

of the liquid column is considerable near the column fraction height. As being subjected 

to the stronger weber number, i.e., Weg = 1000, the stripping out in the region where 

below the fraction height occurs in an uncontrolled manner, showing the more rugged 

volume flux profile found in Fig. 5.14(b). 
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(a) Weg = 250 (b) Weg = 1000 

Fig. 5.14  Comparison of the computed and measured volumetric flux for liquid spray 

in cross-flows, at x/d = 50. The measured data by Song et al. [67] as symbol for raw 

data and dash line for normalized data, d = 0.508mm 

 

In Fig. 5.15, global drop size distributions are made for each weber number. It is 

made with the sampled drops from the computational results across the flow section at 

x/dinj = 50, where the same position as the experiment. The drop size distributions are 

evaluated for weber numbers of 250 and 1000, and compared with the results by Song et 

al. [67]. As noted in the previous context, making use of velocity fluctuations into Eq. 

(3.11) enables the drop sizes to result in varied outcomes from the mean estimate, hence 

the distribution profile of the initial drop size is obtained. In effect, this idea is coherent 

since we run simulations with a time-averaged steady-state solver, indicating that the 

computed mean velocity field is also accountable for such velocity fluctuations. The 

performance in this way is well verified through the comparison with data in Fig. 5.15, as 

they appear to be usable in the construction of drop size distribution. 
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(a) Weg = 250 

 
(b) Weg = 1000 

 
Fig. 5.15  Global drop size distribution for liquid spray in cross-flows, at x/d = 50. The 

measured data by Song et al. [67] as symbol 

 

Conclusion 

Finally, the comparison studies support the validation of D32 equations of Eq. 

(3.8) and Eq. (3.11) as an effective expression for the drop size along with the 

computational protocols presented. The current agreement and level of accuracy for the 

drop size are expected as long as reasonably accurate velocities are input. 
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5.2 Liquid Jets Atomized by High-Speed Gas Flows 

Background 

Flat spray air-assist nozzles are important in many industrial processes including 

spray cooling, agricultural sprays, and medical processes. One of the key components in 

simulating spray cooling flows is the determination of initial drop size during primary 

atomization. For this reason, much work has been done experimentally and 

computationally to determine the droplet sizes, including velocities, impact pressure, and 

surface heat transfer coefficients generated by these nozzles [70–74]. And for these 

applications, extensive computational studies of air-assist flat sprays have been 

performed with much focus on the visualization of liquid break-up processes [70–74].  

By the way, to fully resolve the phenomenon, the computational requirements can 

be challenging against necessitating operation conditions, i.e., high Reynolds and Weber 

numbers. While a high-resolution computation is useful for observing the fundamental 

break-up processes, it may not practical to apply with routine design iterations. To 

circumvent unreasonable computational costs, turbulence models based on Reynolds-

averaged Navier-Stokes equations or large eddy simulations can be utilized. However, 

since the length scales required for droplet formation are below the spatial resolution of 

such computations, a primary atomization model is crucial. 

Multiple primary atomization models have been generated and implemented in 

various spray geometries [25,56,75]. Upon determination of the initial drop sizes through 

these methods, dispersed-phase simulations can be used to track the droplet motion while 

accounting for momentum exchanges with the surrounding gas. Likewise, interphase 
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mass and energy transport also can be added to account for evaporation and combustion. 

These simulations often are Eulerian-Lagrangian types of algorithms.  

In general, with the Eulerian-Lagrangian algorithms, the computation of spray 

flows can be classified into 1) continuous liquid phase simulation 2) primary atomization 

module 3) dispersed phase particle tracking. The time-averaged turbulence modeling is 

applicable for the liquid phase portion of the algorithm with sufficient accuracy. The 

Eulerian-Lagrangian particle tracking droplet motion and turbulent dispersion models in 

commercial computational software, such as ANSYS Fluent, have also been deemed 

sufficiently accurate for this application. This leaves the primary atomization module as 

the missing key parameter for robust spray flow computations [25,56,75]. For example, 

Gorokhovski and Herrmann [75] correctly assessed that the determination of the drop 

size in atomization is needed in modern simulations of spray flows. Existing models of 

primary atomization are not fully generalizable, requiring inputs of detailed extraction of 

liquid surface and velocity data [25,56,75].  

On the other hand, we have used the integral form of conservation equations to 

find analytical expressions for the drop size during primary atomization [46–52]. In 

effect, we have utilized the integral form of the conservation equations to analyze spray 

atomization for numerous spray geometries [46–52]. Through these analyses, the 

complex details of primary atomization are circumvented by relating the initial and final 

energy, mass, and momentum states of the spray flow. In addition, we have shown that 

combining the analytical results with CFD works quite well across different spray 

geometries. Upon the implementation of an effective primary atomization module, 

coarse-grid, time-averaged spray flow simulations with minimal computational load are 



  81 

realized without having to resolve the detailed drop formation processes. Thus far, the 

computational protocol has been applied and validated for pressure-atomized sprays 

without and with swirl, and liquid jets in cross-flow. In principle, this methodology can 

be adapted for any spray geometry, as we will demonstrate in this work for air-assisted 

flat sprays. 

 

Computational Procedure 

This method composes of resolving the continuous liquid-gas mixture prior to 

atomization followed by dispersed phase particle tracking, as discussed in Section 5.1.  

To furnish the initial drop sizes in the dispersed phase algorithm, Eq. (3.11) is facilitated 

as the primary atomization module, which includes the effect of the gas motion. In the 

simulation, steady-state VoF for the liquid-gas mixture is performed to resolve both the 

liquid and gas velocities. It is implemented with the assumption that the liquid and gas 

phases are completely mixed upon exiting the nozzle, based on the Everloy ⅜ inch 

KSAME 5395 flat spray air-assist nozzle. Hence, a single representative fluid is injected 

into quiescent air. The material properties of the representative fluid are volume averaged 

and computed based on the air-water volume ratio provided by the spray nozzle 

manufacturer.  

An inlet velocity profile is made, given the spray angle assigned by the 

manufacturer. The initial velocity is set at the nozzle exit plane as a top-hat profile with 

turbulent boundary layers at the walls, adjusted to match the observed spray angle and 

total fluid volumetric flow rate. As we can see in the results, this approach produces 

viable results, while bypassing time-consuming simulations of internal injector flows. 
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Two separate air inlet pressures with the same water flow rate are applied. The 

implemented conditions are outlined in Table 5.1. 

 

Table 5.1  Test conditions 

 

Water 

Flow Rate 

[L/min] 

Air 

Pressure 

[bar] 

Spray 

Angle 

[°] 

Nozzle 

Stand-off 

[mm] 

Air-Water 

Volume 

Ratio 

Plate 

Temperature 

[K] 

Case 1 6.0 0.5 90 250 25.0 1500 

Case 2 6.0 1.5 90 250 92.0 1500 

 

 

(a) 

 

(b) 

 

Fig. 5.16  Injected liquid-gas mixture volume fraction near injector exit for air-assist 

flat spray. The (a) and (b) correspond to inlet air pressure of 0.5 bar from Case 1, and 

1.5 bar from Case 2, respectively 
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Reynolds-averaged Navier-Stokes with two-equation viscous modeling is applied 

to account for the turbulence in the spray field. Thus, computational requirements are no 

more than those needed for running k- types of turbulence models; in typical studies of 

detailed spray flows, they involve high temporal and spatial resolutions to capture the 

evolution of the liquid-gas interface, resulting in two- to three orders of magnitude 

increase in computing time and power. The resulting VoF is shown as the contour of the 

liquid-gas mixture trajectory in Fig. 5.16. 

The atomization criterion is then applied by examining the centerline velocity and 

axial velocity gradient in Fig. 5.17. The location downstream where the axial velocity 

gradient is at the maximum marks the primary atomization plane. Accordingly, the nozzle 

exit plane is set as the one for both Case 1 and Case 2. Considering that the nozzle has an 

internal liquid-gas mixing chamber, and since the air-water volume ratio is relatively high 

in both cases, the primary atomization plane would logically reside at the nozzle exit.  

 

 

Fig. 5.17  Liquid-gas mixture centerline velocity as solid line, and axial velocity 

gradient as broken line for air-assist flat spray. They are plotted as a function of 

downstream position of the nozzle for Case 1.  



  84 

The liquid and gas phase velocity components are extracted from the primary 

atomization plane. The mixture velocity is separated into liquid and gas phase velocities 

via local mass and momentum balance. This function is performed internally within the 

Fluent CFD, and since the data extraction is local no energy constraints are needed. The 

liquid and gas phase velocities are input into Eq. (3.11) to furnish the initial drop size. 

Then, the initial drop sizes and local mixture velocity components are input into 

injection files for Lagrangian discrete particle simulations. A total of 375 point injections 

are defined in a 2D plane, encompassing the nozzle exit plane, and particles are released 

at the local mixture velocity. The injected particle mass flow rates are computed on a 

velocity-weighted average basis, so that the entire injected liquid mass flow rate matches 

the sum of individual particle mass flow rates. The droplets are tracked as Lagrangian 

point particles in air using the discrete-phase model, DPM in ANSYS Fluent as seen in 

Fig. 5.18. 

In summary, the current computational protocol involves computing the 

continuous liquid-phase motion first, then from the liquid velocity data, calculating the 

initial drop size analytically with Eq. (3.11), and lastly tracking the resultant droplet 

motion. As noted above, it is advantageous in combining the computed momentum field 

with a theoretical solution of derived drop size. Plus, the performance has been 

demonstrated well in various spray geometries [54,55,76]. 

 

Results and Discussion 

In this context, the application of the air-assist spray is considered. Spray flow 

visualization is made via particle visualization colored by normalized drop number 
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density shown in Fig. 5.18. The drop number density is normalized by the volume 

average drop number density to display relative concentrations of droplets. The droplet 

trajectories with spreading, and their overall figures in atomization near the injector exit, 

resemble closely experimental images [70,73]. 

 

 

Fig. 5.18  Particle tracks for air-assist flat spray, colored by normalized number density 

to highlight relative concentrations of droplets for Case 2 

 

The quantitative comparisons for the Case 1 and Case 2 to experimental data from 

Chabicovsky et al. [71] are made in Fig. 5.19 and Fig. 5.20 respectively. The drop size 

and velocities were measured using a dual-pulsed high-speed camera setup [71]. The 

experimental set-up was limited to particles with diameters greater than 5μm and a 

reasonable dynamic range of 1:100 [77].  

First, the averaged droplet velocity magnitudes for each case are compared to the 

corresponding data in Fig. 5.19(a) and Fig. 5.20(a). For Case 1 of Fig. 5.19(a), the trend 

of increased particle momentum between 50 and 100mm from the nozzle center is 

captured in the simulations, with some overestimation of about 7 to 12%. For Case 2 of 
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Fig. 5.20(a), the droplet velocity profile is relatively flat, 15m/s at the centerline and 

20m/s at the periphery in the simulation results, and 16 to 20m/s in the experimental data. 

Although the trend is reversed, the range of droplet velocities is within the experimental 

error range. The discrepancies in the droplet velocity magnitudes are likely a statistical 

error both in the measurements and simulations. In addition to that, there might be some 

initial input differences from the VoF. Nonetheless, the above computational procedure 

still returns agreeable results. 

 

(a) 

 

(b) 

 

Fig. 5.19  Comparison of averaged (a) particle velocity, and (b) D32, for air-assist flat 

spray with Case 1. The computation is averaged within 100  30mm regions centered 

at the y-location along the length of the plate at 250mm downstream of the nozzle. The 

data from Chabicovsky et al. [71] 
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(a) 

 

(b) 

 

Fig. 5.20  Comparison of averaged (a) particle velocity and, (b) D32, for air-assist flat 

spray with Case 2. The computation is averaged within 100  30mm regions centered 

at the y-location along the length of the plate at 250mm downstream of the nozzle. The 

data from Chabicovsky et al. [71] 

 

Next, the averaged Sauter Mean Diameters, i.e., SMD or D32, are studied in 

comparison as a function of distance from the center of the spray; relative to the y-

direction as marked in Fig. 5.18. This returns quite good agreement with experimental 

data for both Case 1 and Case 2, as found in Fig. 5.19(b) and Fig. 5.20(b), with a 

maximum deviation of 16%; but that is only at one y-location and probable experimental 

deviation. The only deviatoric data point is at y = 120mm for Case 1, which relatively 
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drops off from other points, suggesting an anomaly in the measurement statistics. Except 

for this data point, the averaged SMD of computation matches well with the experimental 

data. In addition, the averaged SMD in Case 1 shows the largest one near the center of 

the spray and decreases slightly as the distance from the centerline increases. For Case 2, 

the opposite trend is correctly captured in the simulation, where the averaged SMD at the 

center of the spray is the smallest one and increases as the distance from the centerline 

increases.  

There are atomization models that produce drop size data for specific injectors 

with a narrow range of test conditions [56]. On the contrary, the current primary 

atomization module is versatile since it is based on conservation principles applicable to 

various injector geometries at practical Reynolds and Weber numbers. Accordingly, the 

results of the above validation corroborate it. 

 

5.3 Jets on the Sea Surface Plumes 

Background 

One of the places where cross-flow spray atomization has been observed is the 

sea surface. There is an increasing interest in dynamic phenomena over the sea surface 

and its interactions with the atmosphere, e.g., exchanges of momentum, species, and heat 

[78,79]. Since climate change has been a global issue, critical research on the sea surface 

sprays is conducted by scholars in seeking the causal relationship, essentially unveiling 

the formation process of the sea spray. Here we try to apply our theoretical methods in 

the calculations of drop size distribution and compare it with experimental data. In this 

way, we corroborate our theory as viable in various spray fields. Our simulation is 
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modeled based on the experiment of sea spray spume droplets by Vernon et al. [80]. The 

spume drops are generated from the crest of steep waves when wind shear is strong 

enough to tear it [81]. Therefore, analyses are attempted considering it as the case of 

liquid jets in the cross-flowing of gas.    

 

Simulation Domain 

 The three conditions of wind speeds blowing on the sea surfaces are simulated in 

a two-dimensional computational domain, U10 = 31.3, 41.2, and 47.1m/s. The wind is 

input from the left on the stagnant water surface, and then resulting local velocities are 

extracted from the sampling positions at various coordinates, x = 0.4, 0.7, 1m, y = 0.46 ~ 

0.51m, between the interface region of water and air. The control volume is set as x = 0 ~ 

6m, y = 0.4 ~ 0.6m, where the upper region on the free surface seen in Fig. 5.21. 

 

 
Fig. 5.21  Simulation domain for jets on sea surface plumes 

 

 Boundary Condition 

The wind velocity profile to input is referred to well-known ‘law of the wall’ by 

which it renders a logarithmic velocity profile so that pertinent drag effect on the surface 

can be reflected.  
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 𝑢𝑖𝑛 =  𝑢𝜏 ( 
1

𝑘
ln
𝑦

𝑦0
 ) Eq. (5.1) 

 

Eq. (5.1) is for the incoming wind velocity profiles at the boundary. This equation comes 

from bulk aerodynamic drag relations,  𝜌𝑢𝜏
2 = 𝐶𝐷𝑁𝜌𝑈𝑅

2,  where  𝑢𝜏 as friction velocity, 

𝐶𝐷𝑁 as neutral drag coefficient, and 𝑈𝑅 as velocity at reference height. In the equations 

the requiring parameters, such as 𝑢𝜏, and 𝑦0 as roughness length, are used from the 

experimental estimation. For example, 𝑦0 is calculated from the given estimations of U10, 

𝑢𝜏, and 𝐶𝐷𝑁 from the reference paper of Vernon et al. [80]. The 𝑘 in Eq. (5.1) is von 

Kármán constant. 

Table 5.2 is the parameters implemented on the boundary conditions. It is 

foreseeable that the boundary layer thickness forming on the water surface should be 

large due to non-negligible roughness length from undulations, therefore turbulent length 

scale is set up as sufficiently high as 4m for the simulations.  

 

Table 5.2  Boundary condition parameters 

U10 [ms-1] 𝐶𝐷𝑁 𝑢𝜏 [ms-1] 𝑦0 [m] 

31.3 1.7 × 10 -3 1.29 6.0 × 10 -4 

41.2 2.3 × 10 -3 1.98 2.4 × 10 -3 

47.1 2.4 × 10 -3 2.33 2.8 × 10 -3 

 

Fig. 5.22 depicts different aspects of the undulations on the surface subjecting to 

the varied U10. It characterizes an increase in acuate spots with more strong velocity 

blowing on the surface. These can be regarded as sharpened plumes of wave crests or 
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ripples induced by the high wind momentum. As transferring wind momentum more to 

the still liquid, the plumes evolve their appearance from diffusive to perturbed. 

 

 

Fig. 5.22  Comparison of the sea surface undulations in various wind speed 

 

Simulation Setup 

ANSYS-Fluent is used for the CFD simulation. In the CFD setup, the turbulent k-

ε model with VoF multiphase of water and air is taken. Discretization schemes are 

second-order upwind and first-order upwind for momentum and k-ε equations 

respectively. The pressure solver is v-cycle with PRESTO, and SIMPLE is in coupling 

pressure-velocity while correcting continuity. For the volume fraction Compressive 

scheme is used. The structured quadrilateral mesh of 0.1m × 0.1m is constructed at first, 

and then gets adapted refining the mesh depending on the volume fraction while solving 

proceeds, which technique is the equipped function usable in CFD. Not a significant 

mesh quality problem was reported. 

Both transient and steady-state solvers were tried in order to compare what 

different figures might be drawn in applying the spray simulation. During the transient, 
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first-order implicit time integration was used. In the transient-solver, the time step size 

was 0.01 ~ 0.001s for about 5min long so that it could give a quasi-steady state solution. 

And for the steady-state solver, iterations continued until it reaches the convergence 

limits. In comparison for both solvers, it turned out to be no noticeable differences 

overall, having the results by steady-state solver ascertained. Therefore, the simulation 

results by the steady-state solver are represented here in the analyses.     

 

Implicit Variables 

When it comes to the mass conservation for the liquid drops in our mathematical 

derivations as Eq. (3.1), an inevitable issue arises and hinders our conservation theory 

from being fulfilled in a normal way. Specifically, the free surface that initially stagnant 

liquid evolves gradually into dynamic motions owing to incoming gas momentum and 

interactions with it, resulting in the creation of liquid drops from zero liquid mass flux, 

within the control volume. This contradiction is compensated by a global variable, which 

the estimate is obtained by area averaging of the local variable of interest, over the 

control volume. This means the global estimate should be evaluated implicitly through 

the resulting local values only after the simulations. How the global estimate is set and 

enforced into our theoretical formalism would be dependent on the situation. In general 

liquid injection circumstances, the task does not necessarily a required one. In this study, 

we use the global estimates of 𝑢𝑖𝑛𝑗, 𝑢𝑖𝑛, and turbulent kinetic energy. 
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Results and Discussion 

Fig. 5.23 are local velocities at three different horizontal positions of x = 0.4, 0.7, 

and 1m for the liquid and gas phase separately when U10 = 41.2m/s. In the liquid velocity 

profiles of Fig. 5.23(b), a drastic changes within the interface region y = 0.4 ~ 0.5 is 

apparent, especially for x = 0.4m. This observation implies strong shear stress exists and 

causes spray atomization. In addition to choosing that horizontal position at x = 0.4m as a 

pertinent sampling location, specific vertical coordinates ranging in y = 0.46 ~ 0.51m are 

taken in extracting the local velocities, recalling that still surface level is y = 0.4m. These 

sampling coordinates are corresponding to the experimental measurement carried out, in 

which they measured at the height of 8 ~ 9.5cm above the still surface to estimate all 

parameters involved in droplet size distribution.  

For the gas velocity profiles of Fig. 5.23(a), inconsiderable differences are made 

among them. Within the interface region y = 0.4 ~ 0.5, the steep gas velocity gradient is 

also found, likewise in the liquid velocity profile of Fig. 5.23(b).  

Consequently, Fig. 5.23 indicates that the momentum transfer from gas to liquid 

is effectively reflected in the velocity profiles with x = 0.4m, while farther horizontal 

locations are not eligible. It is natural since the nearest sampling position downstream 

from the initiated wind momentum is subjected to a strong influence of it, in CFD 

simulations. Elsewhere far downstream from the initial boundary conditions of wind, 

more diffusive or dissipated dynamics for the wind momentum, and therefore relatively 

less momentum transfer to the liquid phase would result. Conversely, it means that in the 

nearest downstream distance x = 0.4m, less of the gas momentum is lost to transfer to the 

liquid so that the liquid can add more momentum, as shown in Fig. 5.23(b). 
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 Therefore, it convinces us of choosing the sampling coordinates, x = 0.4, y = 0.46 

~ 0.51m, as the primary atomization region satisfying the primary atomization criterion, 

i.e., liquid velocity gradient. And it requires the different vertical coordinates to choose 

for the sampling with respect to the initiated gas momentum of U10, since the liquid crests 

positioning and height vary with U10. For example, in the case of U10 = 41.2m/s, the y-

coordinates of 0.49, 0.5, and 0.51m are chosen for the particular sampling positions. 

 

  

(a) (b) 

Fig. 5.23  The velocity profiles in the simulation of jets on the sea surface plumes; (a) 

for gas phase, and (b) for liquid phase 

 

In virtue of the analytic expression of Eq. (3.11), a representative drop size at a 

specific coordinate can be calculated from local velocity profiles, recalling that  𝑢𝑖𝑛𝑗 ,

𝑢𝑖𝑛,  𝑢𝐿 , 𝑎𝑛𝑑 𝑢𝑔 are the main variables in the cross-flow spray atomization. On the other 

hand, it is desirable to construct a drop size distribution rather than a single representative 

value, which is a better suitable and recognizable measure to characterize a myriad of 
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generated droplets. For instance, a gaussian distribution is applied to give a statistical 

variation on the mean local gas velocity with its turbulent kinetic energy as Fig. 5.24(a). 

The turbulent kinetic energy is obtained in a global manner as mentioned in the previous 

context. Having the truncated gaussian distribution function with a Z-standard score of 

1.75 gives a confidence interval of 96% within a finite range of 𝑢𝑔, and the resulting 

distribution is shown separately with different vertical positions in Fig. 5.24(a). 

Within the range of y = 0.46 ~ 0.51m, the three different vertical positions at y1, 

y2, and y3 are chosen. These are where the velocity values from the simulation are 

extracted to make the gaussian distributions of velocity and drop size, as shown in Fig. 

5.24(a) and Fig. 5.24(b). Fig. 5.24(b) is the conversion to the drop size probability density 

function, PDF, from the corresponding velocity PDF of Fig. 5.24(a). Both PDFs are area-

normalized distribution to preserve the formal definition, i.e., area = probability. 

 

  

(a) (b) 

Fig. 5.24 The normal distributions of velocity and drop size, from simulation of jets on 

the sea surface plumes; (a) for gas velocity, and (b) for drop size  
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Further manipulation is devised with Fig. 5.24(b) such that it is discretized in 19 

bins logarithmically, which is consistent with the way of experimental treatment on 

counting droplets, ensuring that the category of drop sizes is also obeyed. In turn, it 

summed up all three PDFs covering the same bins to make a single combined distribution 

function. For example, f(D) = f1(D) + f2(D) + f3(D) where Di ≤ D < Di+1. After this 

process, re-normalization is required for the same reason as previously stated, and the 

resulting distribution shows in Fig. 5.25. 

While the combined PDF would suffice to depict the derived drop size 

distribution as seen in Fig. 5.25, for the purpose of comparison with the experimental 

data, which is expressed in the spectral concentration for the distribution, additional 

normalization by the total concentration on the combined PDF is taken. Those results are 

found in Fig. 5.26, Fig. 5.27, and Fig. 5.28. 

 

  

Fig. 5.25  Discrete probability distribution of drop size in the sea spray simulation 
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Fig. 5.26, Fig. 5.27, and Fig. 5.28 are the calculated distributions, and compared 

with the experimental data [80] for three different incoming wind velocities, U10 = 31.3, 

41.2, and 47.1m/s respectively. It manifests that our calculations are in good agreement 

with them. It is noted that the more strong incoming wind velocity yields higher and more 

intensive distributions toward small drop ranges. This is deducible in that for the gas-

driven cross-flow process, the strong gas momentum plays an important role in spray 

atomization producing many smaller droplets. The calculated distribution deviates 

slightly from the experimentally measured one, for the highest wind velocity of Fig. 5.28. 

Supposedly, in practical circumstances of experimental measurements, energy loss is 

inevitable whereas the CFD domains obey energy balance. As a result, the deficit energy 

causes less contribution to the breakup processes, so it comes to broadening its range 

towards more large drop sizes in measurement. 

 

 

Fig. 5.26  Comparison of drop size distributions for U10 = 31.3m/s 
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Fig. 5.27  Comparison of drop size distributions for U10 = 41.2 m/s 

 

 

Fig. 5.28  Comparison of drop size distributions for U10 = 47.1 m/s 

 

Overall, our method performs well while demanding relatively a low 

computational cost. In this regard, our method based on conservation principles with the 
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CFD atomization module, exhibits a promising potential to use as an adaptable approach, 

as its versatility has been demonstrated in a variety of spray fields.  

 

5.4 Liquid Jets in Sydney-Burner Flows 

Background 

 The idea of making a circumstance where liquid fuel droplets are in more diluted 

conditions after fuel spray breakup processes, has been of interest in combustion research 

[82–85]. The combustion in such a condition is observed to have more enhanced 

performance in effectiveness as fuel droplets are well mixed with ambient oxygen. It 

benefits in that this prolongs the combustion duration as well as reduces the products of 

imperfect combustion and unburned fuel. In the usual way of sprays, however, the 

configurations of resultant droplets are highly sporadic and partially dense.  

On the other hand, a specially devised apparatus, by the name of Sydney-Burner, 

has been proposed by a research group in Canada to improve the performance of 

conventional sprays. It is characterized by the recession for the location of liquid 

injection within the pipe where co-flowing air is being supplied. This induces the liquid 

breakup inside of the pipe long enough, while both fluids are passing through as distance 

as the recession length before exiting into the atmosphere. The state of diluted droplets 

was proven in the flame stability experiment, in which the recessed fuel injection was set 

up [85].  

In this context, we apply our method with the recessed spray configuration, then 

compare the results with the experimental observation. Particularly, the non-reacting fuel 

spray is considered. In the case of reacting fuel spray, the material composition supplied 
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through the pilot is manipulated under stoichiometric conditions, so that serves as a 

reactant on the fuel, e.g., premixed hydrogen, acetylene, and air [85]. However, our 

theory does not deal with factors coming from combustion that might have an impact on 

the liquid breakup mechanism, such as chemical reactions or evaporation in 

thermodynamics. Therefore, we focus on non-flammable spray in the Sydney-Burner. 

Our procedure including the D32 equation is applied to the type of recessed spray under 

the non-reacting condition to investigate its applicability, so that it can promote its 

usability beyond ordinary geometric configurations of sprays. 

 

CFD Simulation Setup 

The simulation of the Sydney-Burner is modeled based on the serial experimental 

works of Masri et al. [82–85]. The multiphase VoF, i.e., Volume-of-Fluid, is used and the 

resulting velocity field is shown in both Fig. 5.29 and Fig. 5.30. It is the type of liquid 

jets in co-axial flowing of gas, if we place it under the category that used for the theoretic 

analysis in previous chapters. Therefore, an axisymmetric computation domain suffices to 

deploy. Acetone and air are used as liquid fuel, and both co-flowing gas and 

supplementary gas issuing through the pilot. Acetone was injected with a diameter of 

0.686mm needle, dinj = 0.686mm, which resides within the coaxial air pipe with a 

diameter of 10mm, din (= d) = 10mm. From the jet exit plane at x/d = 0, two distant 

lengths of the recession were initiated with Lr = 25mm and Lr = 80mm before running 

the simulation. These configurations in the simulation domain are shown in Fig. 5.29 and 

Fig. 5.30 respectively, including the resulting velocity fields. The simulation is set up, 

such as the Shear Stress Transport k-ω turbulence model with VoF multiphase in steady 
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state, and initial velocities of uinj = 2.58m/s for acetone, uin = 48m/s for co-flowing air, 

and 4.5m/s for air issuing from the pilot. 

 

 

Fig. 5.29  Simulation domain including velocity field, for liquid jets in Sydney-Burner 

flows with Lr = 25mm. The spray exit plane at x/d = 0 is marked 

 

 

 

Fig. 5.30  Simulation domain including velocity field, for liquid jets in Sydney-Burner 

flows with Lr = 80mm. The sampling positions of x/d = 0.3, 5, 10, and 20 are marked  

 

  

x/d = 0 
Lr 25mm 

d = 10mm 

dinj = 0.686mm 
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Results and Discussion 

From the VoF simulation, the velocity profiles at the specific locations are 

obtained with x/d = 0.3, 5, 10, and 20, for both cases of Lr = 25mm and Lr = 80mm. And 

the separate profiles are found in Fig. 5.31 and Fig. 5.32 respectively. Both figures 

indicate the impending dynamics of turbulent mixing near the exit plane induced by the 

significant velocity gradient in the jet flow. Especially, more vigorous mixing is 

presumable in the interface between liquid and gas of r/d = 0.2 ~ 0.4, as trying to 

neutralize the velocity gradient initiated by the different forcing velocities of uinj and uin. 

In addition, imposing a far recessed distance led to enhanced inner-mixing in the core 

region prior to exit, making velocity in the core further neutralized. For example, with Lr 

= 80mm, the more heightened velocity than with Lr = 25mm is found for r/d = 0 ~ 0.4 

where liquid fuel at low speed as uinj is loaded.  

The dynamic mixing is induced by the turbulence kinetic energy of contiguous 

co-flowing air. Due to the high air momentum and wall shear stress within the pipe, 

turbulent mixing is aroused, and extension in the recessed distance would result in 

accumulations of the intensively suppressed stress. Consequently, liquid fuel is 

influenced by the co-flowing air and undergoes a destructive breakup process while 

passing through turbulent air flows within the air pipe. Then, the confined and 

accumulated turbulent stress is discharged after the exit plane x/d = 0, hence its mixing 

scales get expanded and also the dynamics get wider. The dilute droplets can be made 

during this outer-mixing. After all the inner- and outer-mixing, the increased centerline 

velocities for Lr = 80mm at all x/d are made, which explain the enhanced mixing 

momentum than that for Lr = 25, from both the experiment and simulation. 
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In experimental data, this aspect is noticeable far up to the distance of x/d = 5, in 

which the centerline velocity is enhanced up to 10m/s from that of Lr = 25mm. 

Accordingly, the corresponding Vof results appear similarly as well in this respect. On 

the other hand, diffused and dissipated profiles after x/d = 10 are apparent in both results 

of the experiment and simulation. Therefore, in the DPM simulation, we only consider 

the case of Lr = 80mm, and designate a primary atomization plane at x/d = 5 to initiate 

particle release with DPM. Especially this location is where the most accordance comes 

between the experiment and simulation results of VoF.  

 

 

Fig. 5.31 The comparison of velocity profiles, for liquid jets in Sydney-Burner flows 

with Lr = 25mm. The experimental data from [85] 
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Fig. 5.32  The comparison of velocity profiles, for liquid jets in Sydney-Burner flows 

with Lr = 80mm. The experimental data from [85] 

 

The DPM, i.e., Discrete Phase Model, is applied on the velocity field after the 

VoF simulation with continuous phase is completed. Fig. 5.33 shows the derived drop 

sizes from the calculation of the D32 equation in Eq. (3.11) using the updated velocity 

field after the DPM simulation. The updated velocity field is the result of being 

influenced by the drag force induced by the particles released at x/d = 5. The Navier-

Stokes equations in which a drag force term is added launch a numerical solving under 

the steady-state condition, starting from the previously solved velocity field in the 

continuous phase, hence, it subsequently updates the velocity field on the discrete phase.  

Fig. 5.33 compares the calculated drop size with corresponding experimental 

observations [82,83] at the same sampling locations. Because the measurements in drop 

sizes with respect to the radial coordinates for Lr = 80mm are not available, the second 

best references in which experimental data for Lr = 60mm [83] and 75mm [82] were 

available are used as an alternative in comparison to the derived drop sizes seen Fig. 5.33. 
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There seems to exist some extent of deviations with an approximate margin of error of 

5μm for all the sampling locations of x/d. On the other hand, the trend between both is 

consistent at each sampling locations; drop size in radial direction decreases for x/d = 5, 

whereas increases for x/d = 10 and 20, in both calculation and experimental data.  

 

 

Fig. 5.33  The comparison of drop sizes, for liquid jets in Sydney-Burner flows with Lr 

= 80mm. The experimental data from [82,83]  

 

In the calculated D32 of Fig. 5.33, the individual tendencies are differently found, 

for the drop sizes in a radial direction at separate axial locations of x/d. To be specific, it 

gets a decrease as farther from r/d = 0.2 for x/d = 5, on the contrary for x/d = 10 and 20, 

both get an increase. Plus, it seems constant in r/d = 0 ~ 0.2 for both x/d = 10 and 20, 

whereas it decreases for x/d = 5 as closer to the centerline. Those spatially varied 

tendencies also differ from that of the velocity profiles in Fig. 5.32. Hence, this implies 

that it may be difficult to deduce the relationship between drop size and velocity merely 

from their portrayal in the plot with bare eyes. But rather, it could be achievable by 
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coherent analyses attributed to spray dynamics with principle laws, likewise D32
 

equations.  

In this regard, a prediction to drop sizes with different sprays has been a hurdle 

while giving highly sensitive and case-dependent results. This diluted spray configuration 

is also not exceptional but finds local dependency, e.g., axial and radial direction, in 

which dynamics and breakup mechanisms have different aspects. Due to the obscurity, a 

correlation on a fitting curve with a few modifiable coefficients was typically reported 

from case to case, without revealing a unified framework. By the way, making use of 

conservation laws in our theory renders a more reasonable framework in that it is capable 

of covering a wide range of spray methodologies. 

 

 

Fig. 5.34  DPM simulation including particle tracking and velocity field, for liquid jets 

in Sydney-Burner flows with Lr = 80mm 

  

Fig. 5.34 shows particle tracking after momentum exchange is completed between 

the discrete particles and continuous mixture phase, i.e., jet of liquid acetone and airflow. 

The particles were released at x/d = 5 with Lr = 80mm in the steady-state velocity field 
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with DPM. To make the picture more realistic, a turbulent dispersion effect is included 

with a stochastic tracking option. Else physical modeling, such as collision, coalescence, 

or breakup effect, is not included in this simulation. In this way, it excludes artificial 

changes in drop sizes but preserves the genuine drop sizes of primary atomization which 

are derived from our theory with the D32 equation. Without having a secondary 

atomization effect, a discrepancy from the final drop size distributions would exist as we 

will find in Fig. 5.35. 

 

 

Fig. 5.35  Drop size distribution for liquid jets in Sydney-Burner flows with Lr = 

80mm. The experimental data from [85] 

 

Fig. 5.35 shows the derived drop size distribution for Lr = 80mm in comparison 

to the experimental data [85]. The portion of the probability distributions less than 0.01 in 

the experimental data is omitted for the optimal plot. According to the experimental 

observations, it reports as large as 600μm of sampled drops fall into the probability below 
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0.01. However, less than 1% could be negligible in the event, so we try to focus on the 

main portion. Another point to be mentioned is that, drop samples in the experiment were 

collected near the exit plane, whereas our sampling from the simulation is executed at x/d 

= 5, 10, and 20. Recalling the velocity profiles comparison of Fig. 5.32, the diluted state 

in simulation is achieved farther away from the exit plane than that in the experiment, 

thus we samples drop at the above three distant positions. 

At each of the sampling positions along the centerline axis, equally spaced 50 

radii in a radial direction are assigned. Given the total loaded liquid mass flow rate of 

0.00075kg/s, it is assumed to be distributed equally to each of the annulus regions 

between neighboring radii. Finally, the drop number density is calculated using the 

derived drop size and corresponding annulus region velocities; for the calculation 

formula, it can be referred to the Eq. (3.6). In this way the discrete probability 

distribution of drop size is calculated first, then adjusted with 5 edges by which the 

structure of the distribution is well characterized. This can be done by grouping each 

probability into 4 bins; the adjusted probability distribution is obtained after 

normalization, and preserves add up to 1. 

In Fig. 5.35, it is found that the derived distribution is more narrowed than the 

experimental one. Because neither extra modeling to secondary break up nor coalescence 

effect with DPM, are included in the current simulation, since these artificial treatments 

manipulate initial drop sizes, hence some discrepancy arose for the final drop size 

distribution between them. For the same reason, the turbulent velocity variation effect is 

also excluded from the results, although the variance from the mean estimates would 
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yield making a more dispersed drop size distribution seemingly similar to the 

experimental one. 

Besides, with the use of this specially devised spray in Sydney-Burner, the flow 

dynamics are subject to the outcome of intensified turbulent mixing, driving further 

deviating results from ones of primary atomization, as seen in Fig. 5.35. Nonetheless, the 

most plausible drop size, i.e., mean drop size, is in the same order of 101 for both derived 

and measurement data; 20 ~ 30μm in data, and 10 ~ 40μm in the calculation. In the 

comparison among different sampling positions, it appears the closer to the exit plane, the 

smaller the drop size in the highest probability and the wider distribution. Therefore, it 

indicates that liquid breakup as near as the exit plane would make the range of resulting 

drop sizes broaden, a promising clue to be consistent with the experimental observations. 

 

5.5 Chapter Summary 

 We have used the generalized primary atomization module in computational 

simulations of spray flows. The use of our quadratic formula in the simulation with basic 

spray configurations has been validated, under realistic Reynolds and Weber numbers; 

pressurized jets without and with swirl, and jets in cross-flow. On top of that, more 

attempts have been made in the validation with various applications, such as air-assist 

mist jets for cooling film, sea surface plume jets, and diluted jets in Sydney-Burner.  

 The computational protocol consists of four steps; 1) continuous phase simulation 

2) determination of atomization criterion 3) specify initial drop size and velocity 4) 

dispersed droplet trajectory simulation. With the comparison to the experimental data, we 

have corroborated the computational protocol. Our method renders satisfying results 
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without having to cost substantially in numerical computation. Moreover, this protocol is 

easy to implement, computationally efficient, and robust in producing realistic spray flow 

simulations. In addition, the results are utilizable to make the drop size distribution or 

obtain spray contours. 

 Instead of relying on intensive numerical tasks, we take advantage of integrating 

the analytics results into CFD. This is an ideal interconnection between the use of 

analytic and numeric solutions. The D32 quadratic formula, Eq. (3.8) and Eq. (3.11), is 

derived from the conservation of mass and energy, and it requires liquid and gas velocity 

as input. VoF is quite capable of obtaining the mean velocity field, and DPM is useful for 

drop trajectory calculations in post-atomization. Thus, the complex details of the 

atomization processes at small length scales are coped with the analytic solution from the 

quadratic formula, resulting in a robust computational protocol for the primary 

atomization module. 
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PART Ⅱ 

Turbulence Theory and Inverse Solution Method 

for Wall-Bounded Flows 
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CHAPTER 6  

TURBULENCE THEORY 

Turbulence has been of interest yet remains a long-standing elusive problem 

[86,87]. In an attempt to cope with the problem, most of the work these days employ 

direct numerical simulations, DNS, in order to look into the details of the turbulence 

structure [88–98]. While these results are impressive and useful, still a general theoretical 

framework to unify the fluid physics of turbulence is demanding. 

Some turbulence characteristics are postulated by scholars. For example, the 

attached eddy hypothesis [99] poses turbulent flows as a hierarchy of eddies, cumulating 

to the observed profiles. With a logarithmic expression for the energy scale distribution 

by using “eddy intensity function”, the model achieves agreement with data in the inertial 

region of the boundary layer [99]. Klewicski et al. [100] supported this hierarchical 

concept, through a mathematical analysis based on a hypothetical “test function”. 

Starting from 2016, an alternative Lagrangian formalism for the Reynolds stress 

has been derived and presented in a series of works [101–107]. In this new perspective, if 

an observer moves at the local mean velocity, then the turbulence fluctuation and 

attendant transport can be mostly decoupled from the mean velocity, resulting in compact 

expressions for the Reynolds stress tensor components [104]. This decoupling results in a 

minimalistic but complete description of the inter-dynamics of turbulence momentum and 

energy, without any ad-hoc or heuristic modeling. The equation set, Eq. (6.1), Eq. (6.2), 

and Eq. (6.3), is an assertion made in the basic conservation principles of momentum and 

energy through a Lagrangian perspective, to address the turbulence problem. In addition 

to that, the Second Law of thermodynamics is applicable to find the uniqueness of the 
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turbulence structure. With the use of the Second Law in the form of the maximum 

entropy principle, a lognormal class of the turbulence energy spectra is obtained [105]. 

Those studies have been validated with either DNS or experimental data [101–107]. 

In this chapter, we study the turbulence formalism that has been developed and 

validated. It includes the origin of the turbulence structure as prescribed by the 

Lagrangian transport equations, and a brief exhibition of the possible solution method to 

the Navier-Stokes equations, and also a lognormal type of turbulence energy spectra. 

Although the title has limited the scope to wall-bounded flows, the results should be 

applicable to other types of turbulence, e.g., jet flows [103]. The work in the following 

sections has been published in Lee and Park [102,106] and Lee [101,103–105,107]. 

 

6.1 A New Set of Turbulence Transport Equations 

To begin with, we place the Lagrangian transport of turbulence that leads to a 

symmetric set of gradient expressions for the Reynolds stress tensor components. From 

this perspective, turbulence structures in wall-bounded flows are seen to arise from an 

interaction among a few intuitive dynamical terms; transport, pressure, and viscous term.  

A succinct picture of turbulence structure and its origin emerge, indicating a 

reflection of the basic physics of momentum and energy balance if placed in a specific 

moving coordinate frame. An iterative algorithm produces an approximate solution for 

the mean velocity in turbulent channel flows. Since the main features of the turbulent 

flow can be theoretically prescribed in this way, it enables us to reconstruct channel or 

boundary layer flows. Accordingly, it is validated in comparison with available data in 

direct numerical simulation.  
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The Lagrangian turbulence transport equations introduced in the precedent study 

are reiterated here below. 

 

𝑢′ momentum transport:  

𝑑(𝑢′𝑣′)

𝑑𝑦
= −𝐶11𝑈

𝑑(𝑢′2)

𝑑𝑦
+ 𝐶12𝑈

𝑑𝑣′2

𝑑𝑦
+ 𝐶13

𝑑2𝑢′

𝑑𝑦2
 Eq. (6.1) 

 

𝑣′ momentum transport:  

𝑑(𝑣′2)

𝑑𝑦
= −𝐶21𝑈

𝑑(𝑢′𝑣′)

𝑑𝑦
+ 𝐶22𝑈

𝑑𝑣′2

𝑑𝑦
+ 𝐶23

𝑑2𝑣′

𝑑𝑦2
  Eq. (6.2) 

            or alternatively, 

𝑑(𝑣′2)

𝑑𝑦
=
−𝐶21𝑈

𝑑(𝑢′𝑣′)
𝑑𝑦

+𝐶23
𝑑2𝑣′

𝑑𝑦2

1 − 𝐶22𝑈
 

 

  

𝑢′2 transport:  

𝑑(𝑢′3)

𝑑𝑦
= −𝐶31

1

𝑈

𝑑(𝑢′𝑣′ ∙ 𝑢′)

𝑑𝑦
+ 𝐶32

1

𝑈

𝑑(𝑣′ ∙ 𝑢′𝑣′)

𝑑𝑦
+ 𝐶33

1

𝑈
(
𝑑𝑢′

𝑑𝑦
)

2

 Eq. (6.3) 

 

Note that in these equations and throughout this paper as well, we are using an 

abbreviated expression for the notations of turbulent variables. The expression for 

fluctuation variables such as u′v′ and u´2 are implicitly Reynolds-averaged, e.g., u′ v′  

and u´2  , and used in a concise form. Likewise, for the expression of u′ and v′ connote 

root mean square, u′rms and v′rms. These abbreviated terms are used throughout this paper. 
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The concepts and hypotheses contained in Eq. (6.1), Eq. (6.2), and Eq. (6.3) are described 

in Lee [104], and also summarized in the next context. When used in conjunction with 

the Reynolds-averaged Navier-Stokes equations, i.e., RANS, these turbulence transport 

equations fulfill the number of equations required to solve for the turbulence variables; 

u´2, v´2, u′v′, and U. 

Examination of the terms in the Lagrangian turbulence equations illuminates the 

dynamics for the momentum and energy transport intuitively making sense. For example, 

Eq. (6.1) depicts the Reynolds shear stress of u′v′ as the net lateral transport of the 

turbulence momentum to balance out the streamwise flux, pressure, and viscous forces. 

Indeed, Fig. 6.1 reveals this explanation supporting our perspective. From Fig. 6.1 the 

result of computation with Eq. (6.1) is exemplified in the comparison with the DNS data 

[95] for the u′v′ gradient, which finds a good agreement between them. This exposes the 

simple Lagrangian momentum balance in conformity with our transport equations. 

 

 

Fig. 6.1  The u′ momentum budget for the Reynolds shear stress gradient. The Eq. (6.1) 

in comparison with DNS data from Graham et al. [95] as symbol 
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Basically, this approach is in contrast to the Eulerian models that requiring several 

layers of adjusted relationships to the mean variables. In the Lagrangian perspective, 

particularly the momentum conservation holds in any non-inertial coordinate frame, i.e., 

the Galilean invariance, and the principle of relative motion removes most of the complex 

coupling with the mean components, leaving bare core dynamics of the turbulence 

fluctuating variables. So to speak, in place of taking unproven proportionality to the mean 

velocities for granted, e.g., u′v′ ~ νt dU/dy, to relate one fluctuating component to another 

makes far more dynamical sense to figure out Reynolds stresses, as in our approach. 

Since this formalism is relatively new, a synopsis of the logic involved is 

represented in Fig. 6.2 and Fig. 6.3. In a control volume moving at the local mean 

velocity of U and V, the effects of turbulence fluctuation components, i.e., Reynolds 

stress, can be isolated as depicted in Fig. 6.2. And Fig. 6.3 illustrates the displacement 

effect, in which d/dx is converted to the d/dy term with the mean velocity of U(y) as the 

proportionality constant [101–104]. 

 

(a) 𝜌𝑢′ 
transport 
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(b) 𝜌𝑣′ 
transport 

 

(c) 𝜌𝑢′2 

transport 

 

Fig. 6.2  Schematics of the dynamics contained in the Lagrangian turbulence transport 

that following a control volume moving at the local mean velocity 

 

 

Fig. 6.3  Schematic for the concept of displacement effect that leading to d/dx → d/dy 

transform. The schematic is from Lee [104] 
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 The conversion of the derivative due to the displacement effect as seen in Fig. 6.3 

is expressed as Eq. (6.4). 

 

𝑑

𝑑𝑥
→ ± 𝐶𝑈

𝑑

𝑑𝑦
 Eq. (6.4) 

  

The C is a constant with the unit of ~ 1/Uref. The +/- sign depends on the flow 

geometry, i.e., the direction of displacement relative to the reference point. There are no 

displacement effects for channel flows since the flow is bounded by the walls on both 

sides. However, we still obtain the above conversion in the spatial gradients using the 

“probe transform” analysis [104]. Implicit in this transform idea is that both vectors of u′ 

and v′, and scalar of u´2 are displaced or transformed in this manner.   

 For the triple correlations of the u´2 energy transport equation in Eq. (6.3), a 

simple product rule is applied with Eq. (6.5). 

 

𝑢′2𝑣′ ≈ 𝑢′ ∙ 𝑢′𝑣′   and   𝑢′𝑣′2 ≈ 𝑣′ ∙ 𝑢′𝑣′   Eq. (6.5) 

 

Also, pressure and rate of work of pressure are written as 𝑃 ≈ −𝜌𝑣′2 and 
𝑑(𝑃𝑢′)

𝑑𝑥
, 

respectively. These are evidently new and unique concepts, and further details can be 

found in reference papers [103,104]. 

It is quite well known that the mean velocity profile in channel flows arises due to 

the mean momentum balance among the Reynolds shear stress, viscous, and pressure 
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forces, described by RANS [108]. Accordingly, Eq. (6.6) represents this balanced relation 

among them. 

 

𝑑2𝑈

𝑑𝑦2
=
1

𝜈

𝑑(𝑢′𝑣′)

𝑑𝑦
+
1

𝜇

𝑑𝑃

𝑑𝑥
 

Eq. (6.6) 

 

By integrating Eq. (6.6) once with a constant found from the boundary condition, we 

obtain the mean velocity gradient as Eq. (6.7), which will be used as the starting 

viewpoint to demonstrate our derived equations along with its plot in Fig. 6.4. 

 

𝑑𝑈

𝑑𝑦
=
1

𝜈
(𝑢′𝑣′) +

1

𝜇

𝑑𝑃

𝑑𝑥
(
𝑦

𝑅
− 1) Eq. (6.7) 

 

Validations with DNS Data 

In Fig. 6.4 the individual terms in Eq. (6.7) are plotted as showing each profile of 

the mean velocity gradient, Reynolds stress, and pressure force. More focus is given to 

the near-wall region, i.e., y/R < 0.2, for close inspection and comparison with DNS data 

for Reτ = 1000 from Graham et al. [95]. The parameter Reτ denotes friction velocity 

based Reynolds number formed uτR/ν, in which R denotes a half channel height. 

It may be implemented according to the following procedures. First, inputting u´2, 

v´2, and U from the DNS data on the right-hand side, RHS, of Eq. (6.1) leads to our own 

version of d(u′v′)/dy. Subsequently, its numerical integration yields u′v′ itself, as plotted 

in Fig. 6.4. Then, this u′v′ is used to derive dU/dy through Eq. (6.7). Successively, both 

the derived u′v′ and dU/dy are comparable to each of the corresponding data from DNS.  
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There is a very close agreement in the current result with DNS data for the u′v′, 

although for the dU/dy somewhat less possibly due to the division by a small viscosity. 

Nonetheless, the dU/dy computed using the u′v′ from Eq. (6.1) and Eq. (6.7) has 

sufficient accuracy to reproduce the mean velocity profile. To be specific, it has all the 

structural features such as the initial mild slope in the near-wall region, y/R < 0.004, and 

then the sharp descent shortly afterward. Consecutively, the gradual transitions to a small 

slope find between y/R ~ 0.02 to 0.05. These aspects of the dU/dy will result in a 

flattened velocity profile in channel and other wall-bounded flows, as acknowledged 

well. Hence, we ascertain that the current dynamics are well realized with the aid of our 

procedure, in which substituting the u′v′ Reynolds shear stress obtained from Eq. (6.1), 

and then inputting it into Eq. (6.7). 

 

 

Fig. 6.4  The Reynolds shear stress gradient du′v′/dy of Eq. (6.1) is integrated, and the 

mean velocity gradient of Eq. (6.7) with the integrated u′v′, both are compared with 

DNS data from Graham et al. [95] that plotted as dot symbol. The y is normalized by 

the channel half-width of R, and also u′v′ and U are normalized by uτ
2 and uτ 
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Some analytics on the turbulence structure is facilitated by these dynamical 

equations while delving into intriguing questions. The first question that arises is what are 

the origins of these features in dU/dy? It is evidently from the Reynolds shear stress 

profile [108], which in turn owes to the d(u′v′)/dy shown earlier in Fig. 6.1. In that figure, 

u´2 transport term, − C11U du´2/dy in Eq. (6.1), has a sharp negative peak near the wall, 

y/R ~ 0.01, while the viscous stress near the wall adds to this negativity. This is the 

reason the Reynolds shear stress in Fig. 6.4 descends rapidly near the wall with an 

inflection at y/R ~ 0.01. And the negative plateau occurs y/R ~ 0.05 in Fig. 6.4 since that 

is approximately the location where d(u′v′)/dy → 0 in Fig. 6.1. For the pressure force 

term in Eq. (6.1), we find from Fig. 6.1 that it compromises the u´2 transport term to 

subdue the positive slope to keep its positive slope small. Thus, from the Lagrangian 

perspective with Fig. 6.1, the negative peak for the Reynolds shear stress gradient in the 

near-wall is due to the momentum balance between streamwise momentum flux u´2 and 

cross-stream momentum flux u′v′ with the pressure force modifying this x-momentum. 

Reynolds shear stress is the cross-stream momentum flux to balance the large streamwise 

flux of u′. Consequently, tracking the terms in Eq. (6.1) with Fig. 6.1 allows us to predict 

the dU/dy trajectory as found in Fig. 6.4. 

The next question is what brings forth the structure for x-momentum u′, or its flux 

u´2? This momentum component is typically expressed through its kinetic energy 

manifestation, (u′rms)
2 = u´2 . Eq. (6.3) is the Lagrangian transport equation for the u´2 

flux, u´3 = (u′rms)
3, which consists of the lateral flux of u´2, pressure work, and viscous 

dissipation term. Fig. 6.5 shows the comparison of Eq. (6.3) with DNS data [95] for 

du´3/dy. In the same way as previously implemented, DNS data for u´2, v´2, and u′v′, are 
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input on the RHS of Eq. (6.3), to come up with our own “mix” for du´3/dy, and plotted in 

Fig. 6.5 to validate the Lagrangian energy balance. The budget terms, consisting mainly 

of lateral flux and pressure work, add to a nearly perfect match with DNS data, in spite of 

the fact that the viscous term was omitted. It justifies, however, due to its small 

magnitude. Thus, Eq. (6.3) depicts the Lagrangian transport for u´2, as validated with 

DNS data, and presents us with a dynamical picture wherein u´2 is transported laterally 

by v′, while some of that energy is expended through pressure work that is with the 

negative sign correctly. The lateral transport is compacted toward the wall, and this 

causes a very sharp peak near the wall region. This peak then undergoes a gradual decline 

to the centerline boundary condition, as observed in wall-bounded flows. Notice that 

most of the action is over by y/R = 0.05 at this Reynolds number, with only a small 

residual negative slope beyond that. 

 

 

Fig. 6.5  The budget for u´2 of kinetic energy in Eq. (6.3), and comparison with DNS 

data from Graham et al. [95] that plotted as symbol, normalized by friction velocity uτ 
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Lastly, what stands in a causal relation for the structure of y momentum flux v´2?  

Fig. 6.6 shows Lagrangian momentum balance for v′ through dv´2/dy. In this figure, sub-

components of the v′ momentum balance have been plotted, which includes each term in 

the RHS of Eq. (6.2). In comparison to the DNS data [95], the agreement is nearly exact 

till y/R ~ 0.1. Although the negative slope is slightly less than DNS beyond y/R ~ 0.1, it 

could be corrected by enforcing the centerline or the total v´2 content with boundary 

conditions. It is worth mentioning that more emphasis should be placed on the profile 

near-wall region. In this regard, the v′ momentum balance of Eq. (6.2) gives favorable 

results overall. Indeed, it is usually the near-wall where dynamics are more complex and 

difficult to predict. The triad of forces which are subject to u′v′ transport, pressure, and 

viscous, make influence intricately to cause the v´2 profile near the wall. It is also 

interesting to note that the pressure term is the most dominant, which would represent a 

feedback mechanism to outline the v´2 distribution in wall-bounded flows; it finds that 

the profile of the pressure term multiplied by an arbitrary constant is comparable solely to 

the v´2 profile as seen in Fig. 6.6. When we use P = − ρv´2, then the role of v´2 is quite 

significant as it modifies the turbulence structure, and this will be pronounced in 

boundary layer flows too, that discussed later. Considering that the moving control 

volume is subjected to the shifted gradient in lateral profiles as illustrated in Fig. 6.3, the 

C22U term must be factored into the dP/dy in Eq. (6.2), in order to account for this 

displacement effect.  

We have posed the above structural questions separately. However, in effect, Eq. 

(6.1), Eq. (6.2), and Eq. (6.3) contain a coupling among the turbulence variables, u´2, v´2 

and u′v′ so that we can start our logical train with any one of these three components. The 
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important conclusion is that the Lagrangian transport equations furnish the inter-

relationships between the turbulence variables, thus we can obtain a succinct view of the 

underlying dynamics, and also compute and reconstruct the variables directly. Moreover, 

the same set of transport equations holds for turbulent flows in various geometries 

[103,104]. Let us see what this new perspective can reveal when we examine boundary 

layer flows over a flat plate.  

 

 

Fig. 6.6  The budget for v′ momentum in Eq. (6.2), and comparison with DNS data 

from Graham et al. [95] that plotted as symbol, normalized by uτ
2 

 

Fig. 6.7 is a plot exhibiting the Reynolds shear stress gradient budget, for flow 

over a flat plate with a zero pressure gradient, ZPG. The DNS data from Spalart [92] are 

used in comparison for Reθ = 670, where Reθ is a momentum thickness based Reynolds 

number. The description of Fig. 6.7 finds in a similar manner to the previously examined 

one of channel flow, in that the contribution of the viscous term to the Reynolds stress 

gradient is relatively small and limited to the near-wall region. For the u´2, i.e., 

longitudinal transport term, it has the largest effect particularly near the wall due to its 



  125 

steep gradient. For the pressure force term, in the current Lagrangian analysis, it is 

manifest in the cross-stream direction due to the displacement effect; movement of the 

control volume in the displaced boundary layer will cause a small but finite pressure 

imbalance in the y-direction, and that is expressed in Eq. (6.1) through dP/dx ≈ − 

CUdv´2/dy where the mean pressure is approximated as P ~ − ρv2 [109]. These three 

terms all add up near to the Reynolds stress gradient precisely as shown in Fig. 6.7. 

 The Reynolds shear stress appears structurally similar to those from channel 

flows, meanwhile, this flat plate flow contains some pronounced positive slope bulging, 

as one moves away from the wall. And it finds that this bulge is induced by the 

combination of the transport and pressure terms. This has some consequences if the flow 

is subjected to an adverse pressure gradient, APG, as will find in the following context. 

 

 

Fig. 6.7  Reynolds shear stress gradient budget for flow over a flat plate at zero 

pressure gradient. The DNS data with Reθ = 670 from Spalart [92] as symbol, and solid 

line from Eq. (6.1). The y is normalized by boundary layer thickness δ, u+v+ is 

nondimensional after normalized by uτ
2 
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To begin with, we preview the alterations of the basic turbulence parameters 

when an adverse pressure gradient, APG, is applied for boundary layer flows by plotting 

u´2 and v´2 from DNS data in Fig. 6.8. Both the u´2 and v´2 profiles contain pronounced 

protuberance relative to ZPG in the mid-layer region; in ZPG, the u´2 and v´2 have a 

monotonic decrease after the near-wall peak. To be specific, the protuberance appears 

where in positive slope for 100 < y+ < 380 then negative slope for 380 < y+ < 900. And 

the few weak undulations between y+ ~ 500 to 900 are observed too. As having these 

behaviors, Eq. (6.1) predicts that profiles of d(u′v′)/dy will reflect these aspects, drawing 

similar features in the Reynolds shear stress; recall that Eq. (6.1) includes the first order 

gradient of u´2 and v´2. 

 

 

Fig. 6.8 Reproduced profiles of basic turbulence variables for -u′v′, u´2, and v´2. The 

DNS data from Kitsios et al. [93] for flow over a flat plate with adverse pressure 

gradient in Reθ = 3500 as solid line and Reθ = 4800 as dash line; y+ = yuτ/ν, each of -

u′v′, u´2, and v´2 is normalized by uτ
2 where uτ  is a friction velocity 

 

In Fig. 6.9, the plots of the individual terms in Eq. (6.1) are shown, and the sum of 

these terms is compared with DNS data under the adverse pressure gradient. The viscous 
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term is included to illustrate its impact despite its numerical perturbations. It does add to 

the overall momentum balance, but it seems for a neat plot, a higher definition of data 

than what was available to us is required to compute its second-order gradient accurately; 

recall that in Eq. (6.1) viscous term includes the second-order gradient. 

 

(a) 

 

(b) 

 

Fig. 6.9  Reynolds shear stress gradient budget for flow over a flat plate with adverse 

pressure gradient. The DNS data as dot symbol from Kitsios et al. [93] at Reθ = 3500, 

and solid line from Eq. (6.1); (b) contains the same data as (a), with zoom in on the 

near-wall region 
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 Fig. 6.9(a) shows the entire d(u′v′)/dy profile across the boundary layer, while 

Fig. 6.9(b) zooms in on the near-wall region for a closer inspection. The overall 

agreement between Eq. (6.1) and DNS results is good across the boundary layer, 

however, the gradients are not entirely smooth and there are some deviations. This 

includes the undulations away from the wall, which is mimicked but not exactly 

followed. This is attributed to the tracing of the DNS data from Kitsios et al. [6], leading 

to some errors when taking the gradient of the transcribed data. And this kind of 

numerical differentiation error is also present from a close inspection of the near-wall 

region in Fig. 6.9(b). And, there is some deviation from DNS data at the inflection point, 

i.e., y+ ~ 40 with some small spikes and undulations, but still, Eq. (6.1) tracks the DNS 

data reasonably well. Therefore, the overall structure and origin of the Reynolds shear 

stress are moderately captured by Eq. (6.1), providing further ascertainment with a 

different flow geometry. 

As for the features in u´2 and v´2 profiles translating to d(u′v′)/dy, Fig. 6.8 is 

brought back and examined their tendency once again. The profiles of both u´2 and v´2 

after the near-wall peak, increase for 100 < y+ < 380 and then decrease for 380 < y+ < 

900, in which both slope or equivalently gradient are expected to be positive and then 

negative. This protuberance leads to a positive short, and then negative long slope, and 

for du´2/dy and dv´2/dy, being short positive and then negative. Since the u´2 transport 

and pressure terms, i.e., the first and second term on the RHS of Eq. (6.1), point toward 

d(u′v′)/dy having the negative sign, the opposite trend is expressed in Fig. 6.9, i.e., a 

negative shortly before positive long, over the range of 100 < y+ < 900.  
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While the u´2 transport effect is quite strong at y+ < 100, however, since it is the 

pressure force that dictates the momentum balance afterward, the adverse pressure 

gradient effect is manifest through the pressure term and onto d(u′v′)/dy during 380 < y+ 

< 900. These distinctive features for the Reynolds shear stress with APG result in the 

mean velocity profile that exhibits different slopes in comparison to ZPG for the same 

region of 380 < y+ < 900 [93]. 

 In summary, the transport equation set, Eq. (6.1), Eq. (6.2), and Eq. (6.3), is based 

on the fundamental fluid physics of momentum and energy conservation in a specific 

moving coordinate frame, and provides intuitive, dynamical explanations. Eulerian 

versions of the same phenomena tend to hide the underlying dynamics, first due to a large 

number of inter-correlated source and sink terms, and secondly, when layers of complex 

ad-hoc models, e.g., mean gradient transport, are introduced to the pure transport 

equations, then basic fluid physics of turbulence tends to become obscured or at times 

abandoned. As validated, the current turbulence transport equations provide a clear view 

of turbulence physics. In addition, it points to a viable solution method since there is a 

sufficient number of equations, i.e., Eq. (6.1), Eq. (6.2), Eq. (6.3), and Eq. (6.7) for the 

unknown turbulence variables. In specific, the transport expressions for u′v′, v´2, and u´2 

corresponding to Eq. (6.1), Eq. (6.2), and Eq. (6.3), along with RANS of Eq. (6.7) for U, 

they furnish an inter-coupled but complete set of equations to solve for these variables; 

four equations with four variables reserve the solvability. The following Steps are to draw 

up guidelines for the attainment, that has been used similarly in previous work [103]; 
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1. Start from initially estimated test functions for u´2, v´2, and U 

2. Compute then integrate d(u′v′)/dy to find u′v′ using Eq. (6.1) 

3. Use u′v′ in Eq. (6.7) to compute dU/dy and then integrate to find U 

4. Update v´2 using the computed d(u′v′)/dy and U in Eq. (6.2) 

5. With the computed u′v′, U, and updated v´2, update u´2 using Eq. (6.3) 

6. Repeat until convergence 

 

 Fig. 6.10 and Fig. 6.11 show the result of running the above routine. The starting 

test functions for u´2 and v´2 are lognormal functions, while we expedite the numerics 

with an initial U = y1/n where n = 7. All the test functions including this U, are updated 

using Eq. (6.1), Eq. (6.2), and Eq. (6.3) during the iteration. To facilitate convergence, we 

also use a y-m type of function for u´2 on the “backside”, e.g., for channel flows y/R = 0.5 

~1, which ensures the boundary conditions are enforced both at y/R = 0 and 1. It is found 

that a reasonable u´2 profile starts to emerge after just one iteration. And then it is 

enforced at y/R = 1 by the centerline boundary condition as setting u´2 = (u´2)y/R=1, seen in 

Fig. 6.10. The (u´2) y/R=1 can be obtained from DNS data, or estimated from E with Eq. 

(6.8) in below context. 

Reynolds shear stress is obtained from the Step 2, which leads to the mean 

velocity profile in Step 3. This resulting single iteration for the mean velocity shown in 

Fig. 6.11 is quite close to the DNS data. In order to circumvent integration errors in the 

mid-layer, dU/dy is integrated from both y/R = 0 and 1 until the solutions intersect, e.g., 

at about y/R = 0.6. The outer solution has a small slope that is fairly close to the often 

used approximation, U ~ y1/n [109]. The inner solution advances to this “power-law” 
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region while tracking all the DNS data closely. An important point to be made here is that 

the mean velocity profile in Fig. 6.11 satisfies the RANS of Eq. (6.7) along with other 

transport equations that are associated with or needed to solve it; Eq. (6.1) for the 

Reynolds shear stress u′v′, that goes in Eq. (6.7) explicitly, and then into Eq. (6.2) and 

Eq. (6.3) for v´2 and u´2, respectively. Thus, the U profile is a valid solution to RANS 

since it satisfies Eq. (6.1), Eq. (6.2), and Eq. (6.3) implicitly as well as Eq. (6.7) 

explicitly. 

 

 

Fig. 6.10  Turbulence kinetic energy u´2, iterated using Eq. (6.1), Eq. (6.2), Eq. (6.3), 

and Eq. (6.7) in comparison with DNS data from Graham et al. [95] 
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Fig. 6.11  Normalized mean velocity profile, iterated using Eq. (6.1), Eq. (6.2), Eq. 

(6.3), and Eq. (6.7) in comparison with DNS data from Graham et al. [95] 

 

6.2 Scaling in Gradient Profile of Reynolds Stress 

In the near-wall region for wall-bounded turbulent flow, non-dimensional inner 

variables u+ and y+ are customarily used in describing its profile of interest. The u+ 

denotes the mean velocity scaled by a friction velocity uτ, and the y+ denotes the distance 

away from the wall scaled by a viscous length scale ν/uτ. Those scalings are 

advantageous in attempting to illustrate turbulence structures. Specifically, among 

different flows, characterized by Reτ, i.e., δuτ/ν where δ is a boundary layer thickness 

which could be a half-channel width or a diameter, some identical features can be 

captured under the inner coordinates. For example, a near-wall peak of turbulent intensity 

scaled by the inner variable, u2+  = u´2  / uτ
2, was found to be located at the same inner 

coordinate of y+ [110]. As a matter of fact, the y+ coordinate is equivalent to the local 

Reynolds number consisting of y and ν/uτ, therefore, a universal profile in turbulence 

structure can be investigated by means of the inner coordinates. 



  133 

For boundary-layer flows with zero pressure gradients, the normalized one-

dimensional turbulence kinetic energy, u´2+ = u´2 / uτ
2, with respect to y/δ where y is 

normalized by the outer length scale δ of boundary layer thickness, exhibits a progression 

of the profiles, with a peak sharpening and moving closer to the wall with an increasing 

Reynolds number [111]. Similarly, a negative peak in the Reynolds shear stress, u′v′, 

moves closer to the wall with a gradual ascent toward zero centerline boundary condition 

in the outer coordinate of y/δ [111]. For pipe flows, the pattern for u´2+ is similar, but 

interestingly the peak location in the inner coordinates is mostly invariant at y+ ~ 15 

[110]. The scalability of these turbulence variables will have significant implications on 

the structure of channel flows, including the mean velocity profiles [112].   

Here, scaling and structural evolutions are contemplated in a new perspective for 

turbulent channel flows. The total integrated turbulence kinetic energy remains constant 

when normalized by the friction velocity squared, while the total dissipation increases 

linearly with respect to the Reynolds number. This serves as a global constraint on the 

turbulence structure.  

Motivated by the flux balances in the root turbulence variables, we discover 

dissipative scaling for u´2 and v´2, respectively through its first and second gradients. This 

self-similarity allows the profile reconstruction at any Reynolds numbers based on a 

common template, with a simple multiplicative operation. Using these scaled variables in 

the Lagrangian transport equations derives the Reynolds shear stress, which in turn 

computes the mean velocity profile. The dissipation scaling along with the transport 

equations render possible views of the turbulence dynamics and computability of the full 

structure in channel flows. 
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 Let us begin by taking a brief look at Fig. 6.12 the evolution of one-dimensional 

turbulence kinetic energy u´2 for a sequence of Reynolds number Reτ. The channel flow 

data are from the DNS works of Iwamoto et al. [98], Graham et al. [95], and  Lee and 

Moser [90]. In our work, u´2 and other turbulence variables are normalized by a friction 

velocity squared uτ
2, e.g., as denoted by u´2+, but at times written as u´2 in abbreviation. A 

pronounced feature of the u´2 curves is the movement of peak location toward the wall, 

and it is known that when plotted in the inner coordinate y+, this point tends to stay fixed 

[110]. The peak height elevates with an increasing Reynolds number, even after 

normalizing by uτ
2 as shown in Fig. 6.12. No single function seems capable of collapsing 

the curves with any kind of stretching or scaling, particularly because of the sharp peak 

followed by an abrupt bend close to the wall, e.g., for Reτ = 5200. However, if we make 

an estimate of the area under each curve in Fig. 6.12, the possibility emerges that a total 

integrated turbulence kinetic energy may be constant; denoted by E, defined in  Eq. (6.8). 

 

 

Fig. 6.12  Reproduced u´2+ profiles showing a progression from Reτ = 110 to 5200; 

DNS data of  Reτ = 110, 150, 300, 400, 650 from Iwamoto et al. [98]; Reτ = 1000 from 

Graham et al. [95]; Reτ = 5200 from Lee and Moser [90] 
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 Indeed, numerical integration by Eq. (6.8) shows that this total integrated 

turbulence kinetic energy, E, is invariant with respect to the Reynolds number. This owes 

to the fact that uτ is the momentum scale representing a total available momentum, which 

would then makes uτ
2 the energy scale. Therefore, normalizing by the global energy scale 

results in constant E, as shown in Fig. 6.13. Additionally, we define a total integrated 

dissipation, Φ, as in Eq. (6.9) based on the gradient of the square root of u´2, which 

presents a linear dependence on the Reynolds number in Fig. 6.13.  

 

𝐸 = ∫ 𝑢′
2+
(𝑦) 𝑑 (

𝑦

𝑅
)
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0

 Eq. (6.8) 

 

Φ = ∫ (
𝑑𝑢′+

𝑑𝑦
)

2

𝑑 (
𝑦

𝑅
)

1

0

 Eq. (6.9) 

  

 

Fig. 6.13  The total turbulence kinetic energy E, and dissipation Φ, as a function of 

Reynolds number from 110 to 5200; DNS data of  Reτ = 110, 150, 300, 400, 650 from 

Iwamoto et al. [98]; Reτ = 1000 from Graham et al. [95]; Reτ = 5200 from Lee and 

Moser [90] 
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Consequently, those global characteristics reaffirm uτ
2 as a useful energy scale, 

and also provoke the following interpretations; (1) the total turbulence kinetic energy E 

remains constant even though the “internal” transport distributes u´2 in progressively 

skewed curves, (2) the dissipation Φ must increase with Reynolds number as the 

restraining effect of viscosity is reduced relative to the turbulence energy that exists in the 

flow. These may be considered as global constraints on the u´2 distribution; E ≈ const., 

and Φ ≈ A Reτ where A is a constant. If we perceive the dissipation through a 

thermodynamic lens, then it is recognizable as the degree of disorder that exists in the 

system. When the restoring force of viscosity is relatively reduced at higher Reynolds 

numbers, then it would spare more room for the disorder. Accordingly, dissipation must 

occur as showing severe skewness in the profile. Therefore, we postulate that the Φ 

increases with respect to the Reynolds number proportionately. 

In this light, Fig. 6.13 indicates some potential scaling of the plot with the “local 

dissipation” in y/R coordinates. The above observations together with the transport 

equations of Eq. (6.1), Eq. (6.2), and Eq. (6.3) elicit us to ponder upon the internal 

dissipation structure. Recalling that an invariant u´2+ peak location in the y+ coordinate is 

observed in experimental [110] and DNS [90,98] data, we redefine the dissipation scaling 

in the y+ coordinate, such as ε+(y+) = du´2+/dy+. Then, an interesting pattern emerges, as 

found in Fig. 6.14. Note that the differentiation for ε+ is with respect to the y+ coordinate, 

and it differs from the y, y/R coordinate, or d/dy operation in Eq. (6.8) and Eq. (6.9).  

In Fig. 6.14, the ε+(y+) curves appear to merge for all Reynolds numbers except 

for the positive and negative peaks that protrude progressively in an inverted manner. 

That is, the positive peak in ε+(y+) increases with Reτ, while the negative peak decreases 
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in magnitude. Therefore, the dissipation curves, ε+(y+), are self-similar with an inverted 

proportionality on either side of a zero-crossing. The zero-crossing means the position 

where a profile is across the axis of abscissa with ε+(y+) = 0. Alternatively, in this profile 

the zero-crossing is equivalent to the near-wall peak position of u´2+, hence denoting by 

y+
peak. To explain, it is at ε+(y+) = du´2+/dy+ = 0, satisfying the change of the sign of slope 

in u´2+ curvature.  

 

 

Fig. 6.14  The du´2+/dy+ profiles from Reτ = 110 to 5200. The near-wall peaks ascend, 

and the negative undulations reduce in magnitude with increasing Reynolds number. 

DNS data of  Reτ = 110, 150, 300, 400, 650 from Iwamoto et al. [98]; Reτ = 1000 from 

Graham et al. [95]; Reτ = 5200 from Lee and Moser [90] 

 

This calls for an asymmetrical scaling in the front (y+ < y+
peak) and back (y+ > 

y+
peak) sides, as depicted in Fig. 6.15(a) and Fig. 6.15(b). For the front side, the scaling 

factor increases, while for the back side the opposite is applicable. Multiplying 

asymmetrical scaling factors to the template profile at a very low Reynolds number, Reτ 

= 110, replicates the du´2+/dy+ curves at all others up to Reτ = 5200. Consequently, this 

analysis justifies that the dissipative structure scales with the Reynolds number. 
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With asymmetrical boundary conditions on u´2 = 0 at y = 0 and u´2 > 0 at the 

centerline, the internal transport dynamics end up with the resulting u´2 distributions in 

space as prescribed by Eq. (6.3) while enforced by the global constraints of E ≈ const. 

and Φ ~ Reτ. As shown earlier in Fig. 6.5, the interior fluxes are delineated by Eq. (6.3), 

and the dissipation scaling exhibited in Fig. 6.15 is the result of this re-distribution 

process. Therefore, the self-similarity in du´2+/dy+ can be regarded as the manifestation 

that a Reynolds number is the sole dynamical parameter in the transport equations. 

 

(a) 

 

(b) 

 

Fig. 6.15  Comparison of the scaled profiles of du´2+/dy+ from Reτ = 110 to 5200 based 

on the template at Reτ = 110. (a) Near-wall side prior to the zero-crossing, and (b) aft 

side. DNS data of  Reτ = 110, 150, 300, 400, 650 from Iwamoto et al. [98]; Reτ = 1000 

from Graham et al. [95]; Reτ = 5200 from Lee and Moser [90] 
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A beneficial characteristic of this scaling is that we can start from a base template 

of the du´2+/dy+ profile at any low Reynolds number and reconstruct curves at other 

higher Reτ. Although at high Reynolds numbers, the curves start running out of the y+ 

range with some deviations on the back side seen in Fig. 6.15(b), nevertheless the scaling 

covers a wide dynamic range from Reτ = 110 to 5200 across individual data sets 

[90,95,98]. The errors are mostly on the backside and within tolerable margins. It could 

be remedied by changing a baseline template at a higher Reynolds number or adjusting 

the centerline boundary condition in corrective extrapolation algorithms. Likewise, the 

du´2+/dy+ profiles show the possibility of self-similarity. With this scaling and via the 

transport equations of Eq. (6.1), Eq. (6.2), and Eq. (6.3), a reconstruction of the entire 

turbulence structure is realizable, as will be demonstrated in the next section. 

 In Fig. 6.16(a), we can see that the peak of the dv´2+/dy+ elevates in a similar 

manner as the du´2+/dy+ profiles, but the trailing edge continues to digress outward. On 

the other hand, the aligned peaks indicate that their second-order gradient should all 

merge at the zero-crossing point on that profile. Indeed, it turns out that taking a second-

order gradient as d2v´2+/dy+2 exhibits a self-similarity structure found in Fig. 6.16(b). The 

scaling factors in Fig. 6.17 this time monotonically increase on both sides of the zero-

crossing point.  

The governing equations for u´2 and v´2 are evidently different; Eq. (6.3) and Eq. 

(6.2) are energy- and momentum-conserving equations, respectively. This leads to the 

speculation on the existence of different scaling schemes that are involved; the energy is 

dissipated by the first gradient squared while the momentum diffusion is prescribed by 
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the second-order gradient, thus resulting in the different gradient scalings between the 

energy and momentum.  

 

(a) 

 

(b) 

 

Fig. 6.16  The (a) dv´2+/dy+ profiles, and (b) d2v´2+/dy+2 profiles from Reτ = 110 to 650. 

The v´2+ is applied dissipation scaling via second-order gradient as in (b); DNS data of 

Reτ = 110, 150, 300, 400, 650 from Iwamoto et al. [98] 

 

In Fig. 6.17, the template for a second-order gradient of v´2+ at a lower Reynolds 

number, Reτ = 300, can be expanded through simple arithmetic stretching to replicate the 

profiles at any higher Reynolds number, Reτ = 1000 and 5200. Reconstruction to the 
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d2v´2+/dy+2 profiles simply involves multiplication by monotonically increasing scaling 

factors, that are disproportionate for the front and back sides. 

 

 

Fig. 6.17  Comparison of the scaled profiles of d2v´2+/dy+2 based on the template at Reτ 

= 300, with DNS data of Reτ = 300 from Iwamoto et al. [98], Reτ = 1000 from Graham 

et al. [95], Reτ = 5200 from Lee and Moser [90] 

  

The second-order gradient profiles for the Reynolds shear stress, d2u′v′+/dy+2, are 

shown in Fig. 6.18. The zero-crossing points tend to merge, but as Reynolds number 

increases both the negative- and positive-segment widths are broadened. Also, the scaling 

factor exhibits a steady increase for Reτ = 110 to 650, but leaps and insignificantly varies 

from Reτ = 1000 to 5200, having the scaling behavior out of expectation. A possible 

speculation is that u´2 and v´2 flux terms scale differently, and the cross-transport u′v′ 

contains the mixture of both elements contributing in as Eq. (6.1), hence resulting in the 

scaling deviations. There may be some pertinent operations or alternative coordinates 

utilizable specifically for the “mixed” variable such as the Reynolds shear stress, 

although we defer pursuing such a possibility. Instead, we turn to examine the Reynolds 
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shear stress variations by using self-similar, scalable u´2 and v´2 gradients with the 

transport equation Eq. (6.1) in the next section.  

 

 

Fig. 6.18  The d2u′v′+/dy+2 profiles from Reτ = 110 to 5200. The u′v′ is applied 

dissipation scaling via second-order gradient. DNS data of Reτ = 110, 150, 300, 400, 

650 from Iwamoto et al. [98]; Reτ = 1000 from Graham et al. [95]; Reτ = 5200 from 

Lee and Moser [90] 

 

To summarize, the gradient profiles of turbulence stresses bring our attention to 

their self-similarity, and scalability with respect to the Reynolds number. The scalability 

is viable as capturing well essential features of wall-bounded turbulent flows across the 

entire width of the boundary layer. And applying the different order of gradient is 

apposite to this scaling, such that first-order gradient for u´2+, and second-order gradient 

for v´2+ and u′v′+. This remark is germane to the dynamics in which either dissipation or 

diffusion is involved with the corresponding Reynolds stress transport formation. In 

addition to that, the zero-crossing point draws attention that emerges from the gradient 

profiles; the local maximum of  u´2+, and the inflection point of v´2+ and u′v′+.  
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Since the peak and nadir magnitudes of the gradient of u´2+, v´2+, and u′v′+ vary 

asymmetrically with respect to Reynolds number, by adjusting scaling factors with 

Reynolds number, e.g., maximum and minimum of du´2+/dy+ as a function of Reynolds 

number, the profiles with different Reynolds numbers could be reconstructed. As for the 

scaling factors, they are dealt with in the way of making a unitary functional form of the 

gradient structure, which we will find in the following section. 

 

6.3 Gradient Structure Functions for Reynolds Stress 

 A single profile to represent the gradient structure of Reynolds stress is suggested 

as a functional form for channel flows and flat plate flows. To be precise, the gradient 

profiles of Reynolds stresses in Fig. 6.19, Fig. 6.20, and Fig. 6.21 are constructed using 

the two distinctive structure functions from Eq. (6.10) and Eq. (6.11), which zero-

crossing point near the wall is the watershed. Because of having a different magnitude 

between maximum and minimum for the gradient profile at each of the different 

Reynolds numbers, it necessitates the adjustment of both magnitudes being ratioed, so 

that multiple profiles get congregated as being laid closely onto the single representative 

structure which made by Eq. (6.10) and Eq. (6.11). 

 

Modified Gaussian Function (prior to zero-crossing):  

𝑓(𝑥) =  𝑦𝑜 +
𝐴

𝑡0
𝑒
[
1
2
(
𝑤
𝑡0
)
2
− 
𝑥−𝑥𝑐
𝑡0

] 1

2
[𝑒𝑟𝑓 (

𝑧

√2
) + 1] Eq. (6.10) 

where  𝑒𝑟𝑓(𝑧)  =  
2

√𝜋
∫ 𝑒−𝑦

2
𝑑𝑦

𝑧

0
  



  144 

, and  𝑧 =
𝑥−𝑥𝑐

𝑤
 −  

𝑤

𝑡0
  

 

Exponentially-Decaying Sinusoidal Function (aft of zero-crossing):  

𝑔(𝑥)  =  𝑦𝑜 + 𝐴𝑒
−
𝑥
𝑡0 𝑠𝑖𝑛 (𝜋

𝑥 − 𝑥𝑐
𝑤

) Eq. (6.11) 

 

Table 6.1  Coefficients used in the functions of Eq. (6.10) and Eq. (6.11), for Fig. 6.19, 

Fig. 6.20, and Fig. 6.21 

 
yo 

(offset) 

A 
(amplitude) 

xc 

(phase shift) 

w 
(period) 

to 
(decay const.) 

𝑑𝑢′2+

𝑑𝑦+
 

Eq. (6.10) -0.45851 19.0855 2.2697 2.74361 6.9332 

Eq. (6.11) -0.0258 5606.23332 -67342.61328 67358.30435 9.74248 

𝑑2𝑣′2+

𝑑𝑦+2
 

Eq. (6.10) -0.36326 17.45365 2.38421 2.55586 7.04135 

Eq. (6.11) -0.0095 2432.8139 -29463.52313 29480.08518 11.3206 

𝑑2𝑢′𝑣′+

𝑑𝑦+2
 

Eq. (6.10) 0.26135 -7.064892 2.56368 1.8676 1.39541 

Eq. (6.11) 0.00437 3.15388E7 7.88493 8.68622E7 4.30653 

 

The du´2+/dy+ profile in Fig. 6.19 shows that on the near-wall side y+ < 15, i.e., 

prior to the zero-crossing point of y+ ~ 15, is traced by the Modified Gaussian Function 

Eq. (6.10), while on the aft side y+ > 15, Exponentially-Decaying Sinusoidal Function Eq. 

(6.11) suffices to approximate DNS data. Parametric modifications are made in these 

functions to capture the structural curves of the gradients, and the parameters are listed 

and tabulated in Table 6.1. 
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Fig. 6.19  The du´2+/dy+ profiles with gradient structure functions, ratioed by respective 

peak and nadir heights in left and right of zero-crossing y+ ~ 15 to preserve the overall 

function shape; channel flow (CF) DNS data of Reτ = 110, 150, 300, 400, 650 from 

Iwamoto et al. [98], Reτ = 1000 from Graham et al. [95], Reτ = 5200 from Lee and 

Moser [90]; boundary-layer flow over a flat plate (FP) DNS data of Reθ = 300, 670, 

1410 from Spalart [92] 

 

Interestingly, the second-order gradient of v´2+ in Fig. 6.20, not only collapses for 

all the Reynolds numbers considered but also exhibits similarity to the first-order gradient 

of u´2+ in shape, even though at the raw data level u´2 and v´2 profiles appear different. 

This points to the availability in the second-order gradient profile as well, with the same 

structure functions. Precisely, The zero-crossing where an inflection point of d2v´2+/dy+2 

is somewhat aft of y+ ~ 15, but the function shape on either side of it is again properly 

traced by the Modified Gaussian Eq. (6.10) or the Exponentially-Decaying Sinusoids Eq. 

(6.11). 

For the Reynolds shear stress, d2u′v′+/dy+2 in Fig. 6.21, the resulting shape from 

both functions is also retained except for being inverted. And that on the near-wall side, 

prior to the zero-crossing of y+ ~ 10, is compressed severely toward the wall. 
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Fig. 6.20  The d2v´2+/dy+2 profiles with gradient structure functions, ratioed by 

respective peak and nadir heights in left and right of zero-crossing y+ ~ 17 to preserve 

the overall function shape; channel flow (CF) DNS data of Reτ = 1000 from Graham et 

al. [95], Reτ = 5200 from Lee and Moser [90]; boundary-layer flow over a flat plate 

(FP) DNS data of Reθ = 300, 670, 1410 from Spalart [92] 

 

 

Fig. 6.21  The d2u′v′+/dy+2 profiles with gradient structure functions, ratioed to preserve 

the overall function shape by respective peak and nadir heights in left and right of zero-

crossing y+ ~ 10; channel flow (CF) DNS data of Reτ = 1000 from Graham et al. [95], 

Reτ = 5200 from Lee and Moser [90]; boundary-layer flow over a flat plate (FP) DNS 

data of Reθ = 300, 670, 1410 from Spalart [92] 
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Fig. 6.22 shows the normalization constants that are used in collapsing the 

profiles from DNS data [90,95,98] on the unified gradient structure functions of Eq. 

(6.10) and Eq. (6.11), as found in Fig. 6.19, Fig. 6.20, and Fig. 6.21; the magnitudes of 

the peak and nadir in the profiles at different Reynolds numbers are normalized. In this 

way, they are closely organized as converging on a single unitary curve. Conversely, it 

implies that the curve can be expanded to its realization at any Reynolds number by using 

the normalizing factor. For example, function forms of Eq. (6.10) and Eq. (6.11) can be 

multiplied by the constants ai and bi from Fig. 6.22 to retrieve the gradient profile which 

is aimed at the Reynolds number.  

In this light, the utility of the gradient structure functions is the same as what 

other self-similar profiles are capable of doing. To explain, the form of the gradient 

profile abiding by the structure functions Eq. (6.10) and Eq. (6.11), is feasible in the 

reconstruction of u´2, v´2, and u′v′ through numerical or analytical integrations. 

 

 

Fig. 6.22  Scaling factor for the gradient structure in channel flows, based on DNS data 

of Reτ = 110, 150, 300, 400, 650 from Iwamoto et al. [98], Reτ = 1000 from Graham et 

al. [95], Reτ = 5200 from Lee and Moser [90]; (au, bu) = magnitude of the (peak, nadir) 

for the du´2+/dy+ structure; (av, bv) = magnitude of the (peak, nadir) for the d2v´2+/dy+2 

structure; (auv, buv) = magnitude of the (nadir, peak) for the d2u′v′+/dy+2 structure 
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On top of that, the gradient structure functions may shed a little light on the 

explanation of some discernable features that are exhibited in the profile. More precisely, 

a secondary peak in the u´2+ profile starts to evolve at high Reynolds numbers. And this 

phenomenon has been reported by other researchers [87,113,114] with the interpretation 

that it is owing to some energetic feature from large scales. However, it remains still in 

obscurity with ambiguous concepts.  

Meanwhile, the gradient structure functions may give a clue to further 

understating the secondary peak development. Based on the meaning of the gradient 

structure functions, this is attributed to a second harmonic in the du´2+/dy structure, in 

which the harmonic sinusoidal function is capable of reproducing this high-Reynolds 

number effect.  

With the functional form of Eq. (6.11), the relaxation in the decay rate would 

produce a higher amplitude for the sinusoids as shown in Fig. 6.23(a), and it is associated 

with the larger dissipation according to our theory; recalling that the total dissipation Φ 

increases with respect to the Reynolds number in Fig. 6.13, and the profiles with higher 

Reynolds numbers show increasing skewness in Fig. 6.12. 

Since high-resolution DNS-type data for precise analyses are not feasible 

currently, only the experimental data at the high Reynolds numbers are examined as in 

Fig. 6.23(b). Even so, it finds that the synthetic second-harmonic function with a slower 

decay factor by Eq. (6.11) produces the secondary rising-up when integrated, as 

described in Fig. 6.23(b). 
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(a) 

 

(b) 

 

Fig. 6.23  Secondary peak structure at high Reynolds numbers; (a) the synthesized 

harmonic function using Eq. (6.11), DNS data at Reτ = 1000 from Graham et al. [95]; 

(b) integration of the function to obtain the secondary peak, in comparison with 

experimental data from Fernholz and Finley [115] at Re = 5023 in circle, Re = 16080 

in diamond  

 

To summarize, the Lagrangian turbulence transport framework, finds inter-related 

dynamics among the Reynolds stress components in terms of momentum and energy 

flux, outlined in Eq. (6.1), Eq. (6.2), and Eq. (6.3). And particularly the turbulence shear 

stress u′v′, is the key unknown in the RANS, outlined in Eq. (6.6) and Eq. (6.7). Based on 

that, the gradient structure functions can be used as the approximate solution for Eq. 

(6.1), Eq. (6.2), and Eq. (6.3) with the satisfaction of mutual inter-relationships among 
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u´2+, v´2+ and u′v′+ gradient. Therefore, the gradient structure functions can serve as the 

inverse solution that can be input into RANS for wall-bounded turbulent flows. And then, 

the self-similarity from the Reynolds stress gradient structure is utilizable to scale to 

other Reynolds numbers. 

   

6.4 Maximum Entropy Turbulence Energy Spectra 

Background 

The kinetic energy distribution in turbulence, often referred to as the power 

spectrum, is of importance for fundamental and practical reasons. Numerous “spectral 

closure” has been an intensely studied topic in fluid physics. Much effort has been 

expended on identifying the interaction mechanisms between eddies, so-called cascade 

transfer. Some analytical methods for viscous incompressible flows have been developed 

since long ago, with turbulence energy spectrum scaling in the inertial range such as well 

acknowledged “k−5/3 law” [116]. This is attributed to theoretically, the similarity 

transform in which turbulent flow is postulated in self-similar, i.e., homogeneous and 

isotropic [117], at small scales having a unique scaling exponent. And also empirically, 

the second-order longitudinal structure function that is observed in fully developed 

turbulence supports the power law [116]. Rather sophisticated methods like the EDQNM 

[118], i.e., Eddy Damped Quasi Normal Markovian, or one applied for two-dimensional 

turbulence [119] are available in the literature as examples among the numerous ones. 

Unfortunately, DIA [120], i.e., Direct Interaction Approximation, and EDQNM [118] 

tend to be complex in derivation and also the final form, hence reducing the accessibility. 

A more compact and easily understandable theory is preferred for practical purposes. 
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There have been some attempts to use the maximum entropy principle in deriving 

the turbulence energy spectra [121,122]. This is a cogent argument since turbulence 

consists of a statistically large ensemble of eddies which is expected to achieve rapid 

dynamical equilibrium. And essentially, it aligns with the Second Law of 

Thermodynamics that dictates the state of this equilibrium, wherein the partition of 

energy is prescribed by the maximum entropy principle [123]. The assertion of the 

maximum entropy principle through the Lagrange multiplier method typically results in 

inverse exponential distributions. Then, the remaining step is to apply associated 

constraints or boundary conditions, to arrive at the final energy spectral distribution 

[124]. 

There are several constraints or boundary conditions that can be stipulated within 

the maximum entropy formalism. The most frequently used ones are momentum and 

energy conservation, written in terms of some variations of the Navier-Stokes equations, 

such as Fourier-transformed [121] or expressed vorticity equation [122]. On the other 

hand, there are more obvious and easily implementable constraints from boundary 

conditions, such as limiting length scales with their energy contents. And the previous 

work has shown that by using these constraints in the maximum entropy method, the 

most probable energy distribution in turbulence is a lognormal form [105]. Even better, 

this functional form is intuitive and utilizable to parameterize the energy distribution 

since it involves the basic turbulence properties.  

In this section, an overview of scaling properties for the spectral form derived 

from the previous work [105] is offered, with a demonstration of how they can be 

adapted in different turbulent flows. To be specific, the log-normal type of turbulence 
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energy spectral function, derived from the maximum entropy principle, is shown to be 

parameterizable in terms of a root turbulence variable including the Reynolds number. 

The spectral function is first compared with a number of experimental data sets, showing 

a very close agreement across the entire energy and length scales in wavenumber. 

Moreover, Energy spectra at various locations in channel flows are also reproduced using 

the same function, indicating its applicability wherever local equilibrium is achieved. 

Therefore, based on a small number of scaling parameters, the full energy spectra can be 

prescribed using the maximum entropy formalism. 

 

Turbulence Energy Spectral Function Using Maximum Entropy 

 The energy distribution that maximizes Shannon entropy under the physical 

constraints can be obtained using the Lagrange multiplier method [124]. Here, the 

principal constraint is the conservation of turbulence energy; the kinetic energy is 

dissipated by a viscosity effect progressively at large wavenumbers [116]. The detailed 

derivation can be guided to the reference paper [106], and we start from Eq. (6.12) which 

is the resulting distribution function for the turbulence energy spectra.  

 

𝐸(𝑘) =
𝐶1
𝑘4
𝑒𝑥𝑝{−𝐶2𝑢′

2 − 𝐶3𝑘
2𝑢′2} Eq. (6.12) 

 

The constants C1, C2, and C3 in Eq. (6.12) are determined from the constraints of 

the turbulence energy content, limiting length scales, and viscosity. For the limiting 

length scales, it is considered such that from the Kolmogorov dissipation length scale to 
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the maximum length scale that exists in the flow. We still need the kinematic scaling for 

u′(k) in Eq. (6.12). In the Kolmogorov theory, u´2(k) ~ k−5/3 is obtained in the inertial 

subrange. In the current maximum entropy formalism, however, this is an unknown 

element or lack of a piece of information. The maximum entropy principle gives the most 

probable energy distribution under the given physical constraints, but it does not produce 

unknown information. Thus, the missing piece of information needs to be supplemented 

from observational data, and Eq. (6.12) provides a framework for testing various 

kinematic scaling of u′(k). 

To deduce the empirical form for u′(k), several attempts are made. For example, 

Fig. 6.24 shows the plot of u′(k) ~ k−1/3 which is comparable with a log form of k−1, 

precisely the expression in u′(k) ~ m − log(k). The m is a parameter associated with 

shifting and heightening for the spectra as it prescribes the spectral location and 

magnitude. Note that it is within the exponential function of E(k). The η denotes a 

dissipation length scale associated with the Kolmogorov length scale of (ν3ε−1)1/4, and 

normalizes k in the expression of a nondimensional form of wavenumber, kη. 

In Fig. 6.25, the comparison of the power spectra E(k) from Eq. (6.12) to the 

observational data [125] is made, as while applying the various empirical forms of u′(k) 

into the E(k). And it shows the E(k), generated using the inverse logarithmic expression, 

i.e., marked as a with the plot, gives the best consistency with the experimental data 

[125]. Therefore, the inverse logarithmic scaling for u′(k) appears most plausible to apply 

along with Eq. (6.12) for the time being, although subjecting to further experimental 

verifications. The data is measured with Taylor microscale based Reynolds number, Reλ 

= (u′)rms λ/ν where λ = (15ν u´2 /ε)1/2.  
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Fig. 6.24  Comparison of u′(k) format as u′(k) ~ m − log(k) with u′(k) ~ k−1/3 

 

 

Fig. 6.25  Various u′(k) scaling used in Eq. (6.12) to generate the turbulence energy 

spectra; a. u′(k) = m − log(k), b. k−1/2, c. k−1/3, d. k−3; bold line is the Kolmogorov’s 

k−5/3 law in the inertial subrange; symbol is data from Comte-Bellot and Corrsin [125] 

at Reλ = 71.6. Note the lognormal shape from the data plot when graphed in linear 

scale axes 

 

Fig. 6.26 demonstrates the efficacy of this lognormal form in reproducing the 

observed turbulence spectra, in which the agreement between Eq. (6.12) and data is quite 

good for a wide range of Reynolds numbers. Furthermore, the spectral coverage 

encompasses the entire energy as well as the wavenumber ranges, starting from the 

energy-generating to the Kolmogorov dissipation scale. There is no restriction either 
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theoretically or pragmatically to be within the so-called “inertial range”, as the maximum 

entropy principle produces the full energy state across the entire wavenumber domain. At 

the lower energy-generating wave number, the distribution is truncated since the mode of 

turbulence production at these scales differ from one experiment to another, and it has not 

been input as a constraint. 

 

 

Fig. 6.26  Comparison of maximum entropy spectra from Eq. (6.12) with experimental 

data [125–128] for normalized longitudinal velocity spectrum of Reλ = 71.6 ~ 1500. 

The data references are listed in Table 6.2 with details 

 

The final form of Eq. (6.12) may be referred to as a lognormal-type distribution in 

which it is truncated at kmin and with the k−4 modifier in place of k−1 in the conventional 

lognormal distribution function, e.g., f(k) ~ k−1 exp{-[log(k) – μ]2} where μ is mean 
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parameter. Note that the similar functional format between the conventional one and Eq. 

(6.12) in which if u′(k) ~ m − log(k) is input then u´2(k) ~ [log(k) – m]2, as leading to 

E(k) ~ k−4 exp{-[log(k) – m]2}. Hence, it comes by that called a lognormal-type 

distribution. 

As a matter of fact, various kn type of scalings, e.g., the most prominent one is n = 

−5/3 [116], are local or regional tangents to the lognormal distributions. Although for 

large Reynolds numbers, n = −5/3 tangent overlaps with the full E(k) over a good range 

of scales, however, it is a localized approximation. Conversely, it implies that unless the 

Reynolds number is very high, the so-called inertial range would be only a small portion 

of the entire energy spectrum, as being missed off large sections near the energy-

containing and dissipation scales from the full picture. 

The lognormal form of Eq. (6.12) is beneficial in that it makes straight forward to 

parameterize the distribution functions. For example, the m is the logarithmic mean, 

which in this case corresponds to the log(km) where km is the wavenumber at the peak 

energy scale, i.e., 1/km ~ L is the energy-generating length scale. Given some variations 

in the energy generation processes, we write as m ~ log(km).  

The C1 is the amplitude parameter, proportional to Emax. Considering that various 

experimental conditions exist or sometimes are unclear in reference papers, the simpler 

form is taken as C1 ~ Emax. 

The C2 is the width parameter, inversely proportional to the logarithmic variance. 

Because the current form is not normalized, but instead vertically scaled by C1 ~ Emax in 

energy magnitude, C2 has a large influence on the energy scale too. In other words, small 

C2 is corresponding to a more gradual decrease in E(k) slope, leading to stretching out the 
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k range farther with a larger amount of total content of E. Consequently at large Reynolds 

numbers, both the width and height of the energy spectra are increased by decreasing C2. 

To be specific, when the Reynolds number increases C2 has ~ 1/(Re)p dependence, with 

the exponent p ~ km. For this reason, C2 is the key parameter in the use of maximum-

entropy turbulence energy distribution.  

Finally, the C3 is the viscosity parameter, C3 ~ ν, setting the maximum 

wavenumber and causing rapid dissipation close to this scale. It only modifies the 

spectral form near the dissipation range noting that C3 is multiplied by k2, and controls 

the rate of descent with rapidly depleting kinetic energy. 

Thus, km, Emax, Reλ, kmax, and ν furnish the parameters to prescribe the full 

turbulence energy spectra over the correspondent wavenumbers. The function parameters 

for the plots in Fig. 6.26 are listed in Table 6.2. 

 

Table 6.2  Parameters of the energy spectra for various data sets 

Reλ 
Emax / 

(εν5)1/4 
(kη)@Emax (kη)max C2 m 𝜈 Reference 

71.6 878 0.00439 1.164 0.315 0.5 0.0225 
CBC: Comte-Bellot 

and Corrsin [125] 

132 3183 0.001283 1.229 0.25 1.12 0.032 
U & F: Uberoi and 

Freymuth [126] 

282 15849 0.000777 0.685 0.25 0.45 0.01 Tieleman [127] 

600 199000 0.0000578 1.429 0.16 2.5 0.05 
S & V: Saddoughi 

and Veeravalli [128]  

1500 1446000 0.0000379 1.2 0.1475 2.5 0.05 
S & V: Saddoughi 

and Veeravalli [128]  

 

 In Fig. 6.27 more recent data from LES by Kang et al. [129] is examined, in 

which the evolution of the energy spectrum in decaying turbulence is observed. Eq. 
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(6.12) follows this decay with a change in only the parameter C2, meanwhile, all other 

constants are kept without change. The spectra tend to merge near the dissipation range, 

while diverging at the low wavenumbers as the Reynolds number decreases downstream. 

This spectral characteristic is reproduced by Eq. (6.12) with only a small variation in C2 

from 0.135 at Reλ = 716 to 0.140 at Reλ = 626. The current spectra by Eq. (6.12) 

overestimate the data in the range of k1η ~ 0.002 to 0.05. Strictly straight or triangular 

probability distribution on logarithmic axes is seldom observed except in the inertial 

turbulence range, as energy distributions in nature tend to be of exponential decay found 

in Maxwell-Boltzmann distribution, or lognormal-type found in Planck distribution, that 

depending on the physical constraints. During a single experiment, it is also difficult to 

cover larger spans of the Reynolds number. Nonetheless, the lognormal-type distribution 

of Eq. (6.12) exhibits feasible parametric variations to apply, as it mimics the Reynolds 

number dependence seen in Fig. 6.27; recall that C2 ~ 1/(Re)p. 

 

 

Fig. 6.27  Comparison of the turbulence energy spectra with LES data of Kang et al. 

[129] for decaying turbulence. The C2 is varied from 0.135 at Reλ = 716 to 0.140 at Reλ 

= 626, with fixed for C1, m, and C3 in Eq. (6.12); data in symbols and the equation in 

lines 
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Likewise, it has merit in terms of complementing the observed kn scaling 

exponents which tended to vary across different experiments. For example, in 

atmospheric turbulence, the exponent n goes from -3 to -5/3 in the inertial range as seen 

in Fig. 6.28, when the flow transition from two- to three-dimension, e.g., synoptic scales 

to mesoscale [130,131]. This change in the slope is realizable with Eq. (6.12) when the 

width of the spectra is broadened, i.e., with decreased C2. More specifically, Fig. 6.28 

shows that reducing C2 from 0.1 to 0.034 in Eq. (6.12) can replicate the transition of 

energy spectra from two- to three-dimension for zonal wind, as compared with large-

scale atmospheric data [131]. For meridional and potential temperature spectra, similar 

transitions are found when C2 = 0.1 → 0.05 and 0.1625 → 0.05, respectively. The 

dimensional transition at these scales involves a substantial change in C2.  

 

 

Fig. 6.28  Transition of the energy spectra from two- to three-dimension with Eq. 

(6.12) as solid and dash line respectively; synoptic and sub synoptic mesoscale data as 

symbols are from Nastrom and Gage [131]  
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The lognormal behavior of turbulence energy spectra is as well evident in 

inhomogeneous flows such as channel flows in Fig. 6.29. The power spectra DNS data 

[97] for Reτ = 180, 395, and 590 are taken at various heights from the wall, and the 

current lognormal form follows all to an acceptable degree when compared with the data 

shown in Fig. 6.29. Current maximum-entropy distribution replicates the observed 

spectra quite well, except near the wall in the mid-wavenumber range, i.e., kx/kmax ~ 10-1, 

where Eq. (6.12) underestimates from the data. Also, at low Reynolds number Reτ = 180, 

there is a small discrepancy at low wavenumbers. Except that, the overall reconstruction 

of the energy spectra using Eq. (6.12) is good as in Fig. 6.29. It can be interpreted such 

that local equilibrium is achieved at high Reynolds numbers so the state of maximum 

entropy exists, indicating that the lognormal energy spectra form is as well applicable to 

the inhomogeneous flows. Moreover, lognormal behavior is dominant across nearly the 

entire range of scales, reaching far beyond the so-called inertial range.  

Consequently, the extent of the current concept is viable to even inhomogeneous 

flows at sufficiently high Reynolds numbers, implying that our concept has universal 

applicability in globally and also locally equilibrated turbulence. 
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(a) (b) 

 

(c) 

Fig. 6.29  Comparison of the turbulence energy spectra with DNS data of Moser et al. 

[97] at various distances y+ from the wall for channel flows, with (a) Reτ = 180, (b) Reτ 

= 395, and (c) Reτ = 590; Eq. (6.12) as lines are compared with DNS data as symbols 
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6.5 Chapter Summary  

The gradient of u´2 and v´2 are key terms in the expression of Reynolds shear 

stress u′v′ from Eq. (6.1). With the computed u′v′ profile, in turn, that can be used to 

generate the mean velocity profile. And we have shown that the derived profiles are 

within reasonable margins of error relative to the DNS data.  

The mean velocity profiles can be obtained from RANS, in conjunction with 

the scaled Reynolds shear stress profile or transport equation set. Since the pressure 

force term in RANS is linear, while u′v′ is highly nonlinear, no single function, either 

linear or logarithmic, appears likely to track the observed mean velocity profile 

across the entirety of the boundary layers. Instead, since the Reynolds shear stress is 

fairly well prescribed by the current scaling and dynamical formalism, a simple 

combination of the pressure, viscous, and u′v′ facilitates determining the mean 

velocity in wall-bounded flows.  

 The global effect of Reynolds number is to increase the maximum allowable 

total dissipation Φ, while u´2 and v´2 after being normalized by the energy scale uτ
2 

must contain a fixed total kinetic energy E. The route for elevating Φ is by skewing 

the u´2 spatial distribution. However, u´2 and v´2 transports are internally constrained 

by the flux terms in Eq. (6.3) and Eq. (6.2), and also must follow continuous and 

smooth functional progressions. 

And we have shown that the gradient profile of these variables has self-

similarity, with which they perform such interior dynamics via the gradient transport. 

The self-similarity in the root turbulence variables is found in the “dissipation space” 

using d/dy+ and d2/dy+2 operations. The fact that u´2 and v´2 transports are dictated by 
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energy and momentum fluxes respectively, is a potential cause of the different 

dissipation scaling, such as first- and second-order gradient, du´2+/dy+ and 

d2v´2+/dy+2. 

Making use of these operations neatly folds the profiles at various Reynolds 

numbers onto a single curve. Meanwhile, a normalized gradient structure form can 

serve as a template to expand to other Reynolds numbers. The ordered gradient 

structure function from Table 6.1 is made with the two distinctive functions Eq. 

(6.10) and Eq. (6.11), that allows for reconstructive tasks at any Reynolds numbers. 

The scalability has been utilized from the turbulence structure in this way, with the 

validation on wall-bounded flows through a comparison study with experimental 

data from others. Therefore, it proves that these scaling characteristics along with the 

transport equations of Eq. (6.1), Eq. (6.2), and Eq. (6.3) furnish useful insights and 

computability for the interior dynamics of turbulent channel flows. 

Turbulence energy distribution derived from existing spectral closure models 

like DIA or EDQNM, includes some approximated transport modeling functions for 

eddy interaction. By the way, energy transfer is a natural phenomenon prevalent 

existing in other systems too, such as during molecular collisions or thermal energy 

variations through blackbody radiation. Hence, a more general approach would be 

useful to explain the turbulence energy distribution.  

To portray turbulent flows, energetic particles or turbulent eddies will 

organize themselves in an order that maximizes entropy. In this light, derivation for 

the turbulence energy or power spectra would be possible under the maximum-

entropy formalism. This route does not necessitate complex eddy interaction terms 
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since the distribution is representative of the final statistical state. Plus, this approach 

is referred to as the method of most probable distribution, representing a universally 

observable behavior in energetic systems. In this way, the complex details of the 

energetic interactions can be circumvented, essentially through the use of the 

maximum entropy principle, as seen in Maxwell-Boltzmann or Planck distribution 

function.  

The postulated lognormal-type distribution is validated through the comparison 

study with experimental data from various reference papers. Mostly, those reference data 

resort to showing punctuated E(k) ~ kn, that is n = 2 to 4 for the ascending portion while n 

= -5/3, -3, or near, for the descending portion, which depending on the dimensionality 

and type of the turbulent flow. On the other hand, lognormal functions trace a parabola in 

log-log scale axes, thereby any one of these tangents can be observed without having to 

describe in segments of a range of scales.  

Given observable constraints, such as the cutoff at the energy-generating length 

scale and width of the spectrum as a function of the Reynolds number, the distribution 

form can be parameterized in the lognormal function. And we have demonstrated that 

through this parametric scaling, full energy spectra can be graphed based on input 

parameters, such as Reynolds number, viscosity, energy-producing length scales, and its 

containing energy scale, for homogeneous and some inhomogeneous turbulent flows. 

While a limited applicable range is expected under kn scaling, the current theoretical 

results, by the way, cover the observed energy spectra over the entire range of length and 

energy scales. 
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The parameters are deployed under the following considerations. When the 

Reynolds number increases, the range of length scales increases leading to the widening 

of the spectra through the C2 term in Eq. (6.12). The C2 also raises the overall energy 

spectrum magnitude because there is a linkage effect at high Reynolds numbers. The 

peak energy level, however, is determined by the total energy generation rate, typically 

estimated as U3/L. Therefore, the peak energy level for different turbulence geometries 

needs to be adjusted with the C1 in Eq. (6.12). The bending of the spectra at high 

wavenumbers due to viscosity is achieved by maneuvering the C3 in Eq. (6.12). 

These attributes of the current study are worth consideration and should be further 

explored.  

 

Comments on the Turbulence Theory Relative to the Existing Models 

There is growing evidence against the eddy viscosity concept in turbulence 

models despite their relative success in simple flow geometries. From a simple physical 

standpoint, however, turbulent eddies interact strongly at all scales, and there is no reason 

to believe that the viscosity concept based on elastic molecular collisions is applicable in 

turbulent flows. By the way, the current theory is based on a Lagrangian analysis by 

applying the conservation equations to a coordinate frame moving at the local mean 

velocities. This results in a set of transport equations relating to the Reynolds stress 

components. Thus, the physics of turbulent flows in wall-bounded and other flows is 

revealed in this work, amenable to mathematical prescriptions without ad-hoc modeling. 
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APPENDIX A 

DERIVATION OF MOMENTUM EQUATIONS 
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The momentum balance within a spray control volume is considered. Let 𝑢𝐿(x, t) 

denote the average velocity for the local spray structure of liquid in the control volume. It 

is assumed that asymptotic status is reached inside the control volume, starting from the 

inlet plane to just before the primary break-up where it yields at the end of the control 

volume called the exit plane. Accordingly, it approximates 𝑢𝐿(x, t) ~ 𝑢𝐿(x). The most 

prominent factor considered in the momentum exchange between liquid and gas, is the 

aerodynamic drag force. And let the drag coefficient 𝐶𝐷  encompass any other momentum 

effects from surface tension or viscous force. Gravity is also neglected. 

 

Case 1: Liquid Injection into an Initially Quiescent Gas Surrounding 

 The momentum of the liquid is subjected to the drag force by the surrounding gas. 

Since the spray velocity is of interest, it is assumed that the local liquid mass is 

distributed without being varied significantly, at the stage of the primary breakup. The 

momentum balance is written as, 

 

𝑚𝐿
𝑑𝑢𝐿
𝑑𝑡

= 𝐹𝐷 Eq. (A.1) 

 

In Eq. (A.1),  𝑚𝐿 and 𝐹𝐷 denote liquid mass and drag force respectively, and 𝑑𝑢𝐿/𝑑𝑡 is 

changed its expression in term of a spatial derivative. Those are presented as Eq. (A.2), 

Eq. (A.3), and Eq. (A.4). 

 

𝑚𝐿 = 𝜌𝐿𝑉𝑠 Eq. (A.2) 
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𝐹𝐷  =  −
𝐶𝐷
2
𝜌𝑔(𝑢𝐿 − 𝑢𝑔)

2
𝐴𝐷 Eq. (A.3) 

𝑑𝑢𝐿
𝑑𝑡
 =  

𝜕𝑢𝐿
𝜕𝑥

𝑑𝑥

𝑑𝑡
 + 

𝜕𝑢𝐿
𝜕𝑡
 =  

𝑑𝑢𝐿
𝑑𝑥

𝑢𝐿 Eq. (A.4) 

 

The local spray volume 𝑉𝑠 in Eq. (A.2), and the local spray area 𝐴𝐷 subjected to the drag 

force effectively in Eq. (A.3), are used. The rate of velocity is shown in the spatial 

derivative form as Eq. (A.4). The arrangement of them into Eq. (A.1) leads to the liquid 

momentum equation as in Eq. (A.5), which is corresponding to the Eq. (4.1). 

 

Liquid 𝑢𝐿
𝑑𝑢𝐿
𝑑𝑥

= −
𝐶𝐷
2

𝜌𝑔

𝜌𝐿

𝐴𝐷
𝑉𝑠
(𝑢𝐿 − 𝑢𝑔)

2
 Eq. (A.5) 

 

The gas momentum is influenced by the drag force in addition to the gas 

entrainment effect that would appear in the form of pressure force. The gas momentum 

balance is written as Eq. (A.6). 

 

𝑑

𝑑𝑡
(𝑚𝑔𝑢𝑔) = 𝐹𝐷  +  𝐹𝑝  =  0 Eq. (A.6) 

 

In Eq. (A.6), the gas momentum is balanced between the pressure force and the drag 

force. The pressure force 𝐹𝑝 is represented as in Eq. (A.7). The local spray projection area 

𝐴𝑝 is used, which is subjected to the pressure force effectively in Eq. (A.7). Note that the 

sign of 𝛥𝑝 is negative. 
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𝐹𝑝  =  −𝛥𝑝 𝐴𝑝  =  𝜌𝑔𝑢𝑔
2 𝐴𝑝 Eq. (A.7) 

 

The arrangement for both Eq. (A.3) and Eq. (A.7) into Eq. (A.6) leads to the expression 

of the gas momentum equation as in Eq. (A.8), which is corresponding to Eq. (4.2). 

 

Gas 𝜌𝑔𝑢𝑔
2𝐴𝑝 =

𝐶𝐷
2
𝜌𝑔𝐴𝐷(𝑢𝐿 − 𝑢𝑔)

2
 Eq. (A.8) 

 

 

Case 2: Liquid Injection with Added Gas Momentum of Co-Flowing of Gas 

 Let 𝑢𝐿,𝑥 denotes the average velocity for the whole continuous spray structure of 

liquid in the control volume whose status is asymptotic. In a similar approach, the 

momentum balance mainly depends on the aerodynamic drag force. The effect of gas 

entrainment is assumed to be negligible when it is compared to that of an initially 

quiescent gas surrounding. When it comes to the gas-driven type of spray atomization, 

high input gas momentum is generally preferred since a more destructive breakup is 

expected if desired. The momentum balance is written for liquid and gas simultaneously 

between inlet and exit of the system as in Eq. (A.9). Each of the corresponding 

momentums is delineated as Eq. (A.10), and its arrangement into Eq. (A.9) results in Eq. 

(A.11).   

 

𝑑

𝑑𝑡
(𝑚𝑣)𝑖 = 

𝑑

𝑑𝑡
(𝑚𝑣)𝑒 Eq. (A.9) 
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(𝑚𝑣)𝑖 = 𝑚𝐿𝑢𝑖𝑛𝑗  +  𝑚𝑔𝑢𝑖𝑛 (𝑚𝑣)𝑒  =  𝑚𝐿𝑢𝐿,𝑥  +  𝑚𝑔𝑢𝑜𝑢𝑡 Eq. (A.10) 

𝑢𝑖𝑛𝑗
𝑑𝑚𝐿
𝑑𝑡

 + 𝑢𝑖𝑛
𝑑𝑚𝑔

𝑑𝑡
 =  𝑢𝐿,𝑥

𝑑𝑚𝐿
𝑑𝑡

 + 𝑢𝑜𝑢𝑡
𝑑𝑚𝑔

𝑑𝑡
 

or   equivalently, 

𝑚𝐿̇ 𝑢𝑖𝑛𝑗  +  𝑚𝑔̇ 𝑢𝑖𝑛  = 𝑚𝐿̇ 𝑢𝐿,𝑥  + 𝑚𝑔̇ 𝑢𝑜𝑢𝑡 

Eq. (A.11) 

 

In the meanwhile, the drag force is derived from the change in the rate of 

momentum for gas as shown in Eq. (A.12). And this relation is regarded as the 

momentum balance of gas. 

 

𝑚𝑔̇ (𝑢𝑖𝑛 − 𝑢𝑜𝑢𝑡 )  =  − 𝐹𝐷 Eq. (A.12) 

 

Therefore, the momentum balance for liquid is obtainable by Eq. (A.11) and Eq. (A.12), 

which is shown in Eq. (A.13).  

 

𝑚𝐿̇ (𝑢𝐿,𝑥 − 𝑢𝑖𝑛𝑗)  =  − 𝐹𝐷 Eq. (A.13) 

 

In Eq. (A.12) and Eq. (A.13),  𝑚𝐿̇ , 𝑚𝑔̇ , and 𝐹𝐷 denote mass flow rate of liquid, gas, and 

drag force respectively. Those are presented as Eq. (A.14) and Eq. (A.15). 

 

𝐹𝐷  =  −
𝐶𝐷
2
𝜌𝑔(𝑢𝑖𝑛 − 𝑢𝐿,𝑥)

2
𝐴𝐷 Eq. (A.14) 

𝑚𝐿̇  =  𝜌𝐿𝑢𝑖𝑛𝑗𝐴𝑖𝑛𝑗 𝑚𝑔̇  =  𝜌𝑔𝑢𝑖𝑛𝐴𝑖𝑛 Eq. (A.15) 
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The projection area for the whole spray structure 𝐴𝐷 is used, which is subjected to the 

drag force effectively in Eq. (A.14). The arrangement for both Eq. (A.14) and Eq. (A.15) 

into Eq. (A.13) and Eq. (A.12) leads to the expression of the momentum equation for 

liquid and gas, respectively. The results appear in Eq. (A.16) and Eq. (A.17), which are 

corresponding to Eq.( 4.3) and Eq. (4.4). 

 

Liquid 𝜌𝐿𝑢𝑖𝑛𝑗𝐴𝑖𝑛𝑗(𝑢𝐿,𝑥 − 𝑢𝑖𝑛𝑗) =  
𝐶𝐷

2
𝜌𝑔𝐴𝐷(𝑢𝑖𝑛 − 𝑢𝐿,𝑥)

2
  Eq. (A.16) 

Gas 𝜌𝑔𝑢𝑖𝑛
2 𝐴𝑖𝑛 = 𝜌𝑔𝑢𝑖𝑛𝐴𝑖𝑛𝑢𝑜𝑢𝑡 +

𝐶𝐷

2
𝜌𝑔𝐴𝐷(𝑢𝑖𝑛 − 𝑢𝐿,𝑥)

2
  Eq. (A.17) 

 

 

Details of Spatial Integration for Case 1 

Fig. 4.1 has shown the momentum exchanges between liquid and gas via drag 

force, which is the result of spatial integration of the momentum equations for Case 1. 

Fig. 4.1 has been presented to prove the usability of the momentum balance with a simple 

spray as the example; 𝜌𝐿 = 1000 kg/m3, 𝜌𝑔 = 1.225 kg/m3, 𝑢𝑖𝑛𝑗 = 120 m/s, 𝑑𝑖𝑛𝑗 = 0.3mm. 

The numerical calculations for 𝑢𝐿 and 𝑢𝑔 by the aid of spatial integration are suggested as 

follows.  

 

Liquid 𝑢𝐿,𝑖+1 = 𝑢𝐿,𝑖 −
∆𝑥𝑖
𝑢𝐿,𝑖

[
𝐶𝐷,𝑖+1
2

𝜌𝑔

𝜌𝐿
(
𝐴𝐷
𝑉𝑠
)
𝑖+1

(𝑢𝐿,𝑖 − 𝑢𝑔,𝑖)
2
] Eq. (A.18) 

Gas 𝑢𝑔,𝑖+1  = √
𝐶𝐷,𝑖+1
2

(
𝐴𝐷
𝐴𝑝
)
𝑖+1

(𝑢𝐿,𝑖 − 𝑢𝑔,𝑖)
2
 Eq. (A.19) 
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Eq. (A.18) and Eq. (A.19) are shown in the expression with the discretizational form of 

Eq. (A.5) and Eq. (A.8), for liquid and gas respectively. The elusive parameters to 

determine in the implementations are 𝐶𝐷, (𝐴𝐷/𝑉𝑠), and (𝐴𝐷/𝐴𝑝), these are dependent on 

the distance from the injection, i.e., the 𝑥 variable. 

 

 

  

Fig. (A.1)  Description of reduction in drag force to the local spray volume for Case 1 

 

Fig. (A.1) illustrates the decrease in drag force with respect to 𝑥, and it 

corresponds to the pressure force as stated in the previous context. To simplify this 

approach, let 𝛥𝑝 be a constant for a local spray volume 𝑉𝑠. This assumption enables us to 

express the extent of the drag force effect by solely the size of the area subjected to the 
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pressure force 𝐴𝑝. To circumvent complicated calculations, let 𝐴𝑝 ~ 1/ 𝑥2. Moreover, the 

local spray volume is considered in a shape of a cylinder, which allows the frontal area of 

the local spray volume 𝐴𝐷 to be a constant. This leads to (𝐴𝐷/𝑉𝑠) ~ 1/𝑥 and (𝐴𝐷/𝐴𝑝) ~ 

𝑥2. Besides, 𝐶𝐷 is assumed to be a monotonic change in 𝑥, such that it spans a certain 

range of trial values.  

In taking account of the increase in ambient density as depicted in Fig. 4.1, e.g., 

2𝜌𝑔 and 5𝜌𝑔, the use of augmented 𝐴𝐷 is suggested as the reflection of elevated drag 

force caused by the denser ambient. In the experimental observations by Shimizu et al., 

1984, [59], they described that spray angle increases as the ambient pressure increases, 

implying the effect from denser ambient. Lefebvre et al., 2017 [29] also prescribed the 

increase in aerodynamic drag on the resultant droplets by an increase in gas density, with 

the tendency of a greater deceleration in the axial direction than in the radial direction. 

Accordingly, this is illustrated in Fig. (A.1) as showing the wider spreading in the frontal 

area 𝐴𝐷
′ than 𝐴𝐷, and the 𝐴𝐷 is when resides in the reference ambient 1𝜌𝑔. 

 


