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ABSTRACT

Experience, whether personal or vicarious, plays an influential role in shaping

human knowledge. Through these experiences, one develops an understanding of the

world, which leads to learning. The process of gaining knowledge in higher education

transcends beyond the passive transmission of knowledge from an expert to a novice.

Instead, students are encouraged to actively engage in every learning opportunity to

achieve mastery in their chosen field. Evaluation of such mastery typically entails using

educational assessments that provide objective measures to determine whether the

student has mastered what is required of them. With the proliferation of educational

technology in the modern classroom, information about students is being collected at

an unprecedented rate, covering demographic, performance, and behavioral data. In

the absence of analytics expertise, stakeholders may miss out on valuable insights that

can guide future instructional interventions, especially in helping students understand

their strengths and weaknesses. This dissertation presents Web-Programming Grading

Assistant (WebPGA), a homegrown educational technology designed based on various

learning sciences principles, which has been used by 6,000+ students. In addition to

streamlining and improving the grading process, it encourages students to reflect on

their performance. WebPGA integrates learning analytics into educational assessments

using students’ physical and digital footprints. A series of classroom studies is

presented demonstrating the use of learning analytics and assessment data to make

students aware of their misconceptions. It aims to develop ways for students to

learn from previous mistakes made by themselves or by others. The key findings of

this dissertation include the identification of effective strategies of better-performing

students, the demonstration of the importance of individualized guidance during

the reviewing process, and the likely impact of validating one’s understanding of
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another’s experiences. Moreover, the Personalized Recommender of Items to Master

and Evaluate (PRIME) framework is introduced. It is a novel and intelligent approach

for diagnosing one’s domain mastery and providing tailored learning opportunities

by allowing students to observe others’ mistakes. Thus, this dissertation lays the

groundwork for further improvement and inspires better use of available data to

improve the quality of educational assessments that will benefit both students and

teachers.
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PREFACE

Only a fool learns from his own mistakes.

The wise man learns from the mistakes of others.

Otto von Bismarck

Learn from the mistakes of others.

You can’t live long enough to make them all yourself.

Eleanor Roosevelt

I have always enjoyed reading the preface of dissertations that I have seen in the

past. So I guess it is my turn to make one. My mind wandered as I wrote this page

while sitting in the same chair I have had in this research lab for the last six years. I

recall how when I was in elementary school, I always dreaded studying history. The

problem persisted throughout my undergraduate studies. Oh, how tedious it was to

memorize key dates and the names of notable historical figures. It was horrible for

me. Back then, I knew that I would pursue a career in computer science1, so why

should I have to memorize these details again? For example, the long name of one of

the greatest heroes of my country2. At some point, I am sure you, just like any fellow

student at my age, complained: the past is the past! Why should we study history?

As it turned out, a Google search result3 revealed a very helpful answer. Studying

history allows us to gain a more in-depth understanding of how events from the past

1Plot twist: More of in the field of Education.

2The actual name is left as an exercise for the reader.

3Yes, how academic of me to ambiguously cite something vaguely.
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influence the present. In addition, we learn why things are the way they are today.

Nevertheless, what stood out most was learning from history will help us to avoid

making the same mistakes in the future. Put simply, we learn from their mistakes!

Then it occurred to me, perhaps it is beyond mere recall of facts. Instead, it is

about learning how to make sense of the world around us. This led me to think that

perhaps we are the products or collections of our own and other people’s experiences.

Moreover, these experiences need not be limited to success. They may have been

failures. As a matter of fact, it is often these failures that have the most profound

influence on our lives. These experiences were either recorded in diaries, scrolls, or

other forms of record keeping. In today’s digital world, it is more convenient than

ever to record and access anything at the click of a button. So, why do I place such

a high value on learning from mistakes? Well, it reduces the number of unknown

unknowns for a person. There are just so many mistakes that may be made that even

one lifetime would not be enough.

It is my intention to present in this work my own perspective on how one can make

sense of various experiences in the modern classroom, particularly those relating to

Computer Science, through WebPGA. It is an educational technology I have developed

with the guidance of my mentor and have worked on since day one of graduate school.

I am proud of how it has evolved over the years.

xvi



Chapter 1

INTRODUCTION

Today’s knowledge-based economy requires that one be knowledgeable in their field

to gain a competitive advantage. Learning is an essential part of gaining knowledge.

There is more to learning than passively receiving information from one individual

to another. Learning is a process that one must undertake on their own and is the

product of how one interprets their experiences (Ambrose et al., 2010). Actively

constructing knowledge entails integrating newly acquired information gained from

experience with previous knowledge (Piaget & Inhelder, 1969; Vygotsky, 1978). Since

learning is a mental process, observable artifacts such as performance or product are

used to evaluate one’s learning.

Throughout this dissertation, computer programming is the primary focus. The

process of learning how to program requires the acquisition of knowledge that extends

beyond the programming language alone (Linn & Dalbey, 1985; Robins, 2019).

Students who attend introductory programming courses typically have an extreme

bimodal distribution of abilities—those who can program and those who cannot.

Robins (2010) proposed that this occurs due to the learning edge momentum hypothesis,

which suggests that a person’s learning outcomes become self-reinforcing over time.

Additionally, he asserts that learning one concept makes it easier to grasp others that

are closely related. A similar argument can be made that mastery learning is relevant

to computer programming since well-understood fundamental concepts are essential

for success in advanced ones. For this reason, it is essential to resolve misconceptions

as soon as possible.
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Identifying and resolving misconceptions requires reflection on one’s performance

or outcome. Reflection refers to the learner’s response to an experience that prompts

them to relive, rethink and evaluate it (Boud et al., 1985). Additionally, this is the

self-reflection phase of Zimmerman’s (1998) self-regulated learning model (SRL), where

one’s strategic actions are informed by the outcomes. Furthermore, it is believed

that one’s experience has a significant impact on one’s self-efficacy or confidence

in accomplishing a task (Bandura, 1997). Indeed, as the popular saying states,

“experience is the best teacher”. Nonetheless, as alluded to in the preface, experience

does not have to be one’s own. Alternatively, it may come from someone else, which

is known as vicarious experience (Craig et al., 2009). Observational learning occurs

when people observe how others behave (Bandura, 1977). In particular, relevant

experiences of what Vygotsky (1978) referred to as “more knowledgeable others” can

facilitate the learning process.

Modern technology has enabled researchers to conduct evidence-based investi-

gations using all kinds of approaches, such as learning analytics and data-driven

artificial intelligence, to gain a deeper understanding of how these learning expe-

riences influence students’ learning. Unsurprisingly, this became one of the many

motivations for developing educational technologies that support students. With

the advancement of technology and the advancement of computing power, artificial

intelligence and machine learning techniques are among the many ways in which

these technologies can benefit students. Providing students with opportunities to

demonstrate their understanding of a domain along with guidance will enable them

to become knowledgeable. One example of these technologies is intelligent tutoring

systems (ITS). This technology has allowed for the generation and capture of more

heterogeneous student data than ever before. These data can range from interactions
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to performance and are generated and captured at an unprecedented rate. Using these

data, stakeholders may be able to gain insights into students’ behaviors, enabling

them to make relevant, actionable, and informed interventions, which is the ethos

of learning analytics. Despite the numerous benefits these technologies can provide

to students, deploying these in blended classrooms remains a significant challenge,

especially in developing countries. It is for this reason that many teachers still use

traditional assessments in their classrooms to evaluate student performance.

1.1 Educational Assessments

In higher education, assessments, also known as exams or tests, are vital for

evaluating students’ progress. Moreover, it guides the learning process of the student

(Sheard et al., 2013). Assessments consist of items or questions that students answer

to demonstrate their understanding of predetermined concepts within a particular

domain. Tests are among the many tools that teachers use to collect data about

their students’ strengths and weaknesses (Hanna & Dettmer, 2004). In addition, it

allows them to evaluate the effectiveness of their instructional strategies. Typically,

assessments are administered in two different ways in the classroom, each of which

has advantages and disadvantages. In the traditional approach, pen and paper are

used, while in the computer-based approach, computers are used. In determining

which approach should be used in a classroom, several factors are taken into account;

some are beyond a teacher’s control. Due to their flexibility and simplicity, paper-

based tests remain popular among teachers. Moreover, these tests require in-person

proctoring and physical presence, which helps deter academic dishonesty. However, it

also has some disadvantages. Grading these papers takes a significant amount of time.
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Additionally, providing meaningful, personalized feedback to students while ensuring

consistency between and within graders requires considerable time and effort. In the

classroom, there are two types of assessment that are most commonly used, which are

formative assessments and summative assessments. The former pertains to low-stakes

tests and are typically not graded (e.g., practice quizzes). It is generally referred to as

“assessment for learning” because it serves primarily the purpose of providing feedback

on students’ performance for students to diagnose and monitor their deficiencies. In

contrast, the latter refers to high-stakes tests that evaluate students’ learning, which

are commonly called “assessments of learning”. The results of these assessments are

often used to make decisions that have a profound impact on students. It is therefore

necessary to place importance on reviewing one’s performance. Recent years have

seen an increase in interest in shifting toward the notion of “assessment as learning” in

which students take responsibility for their own learning and improvement (Earl, 2013).

It emphasizes the importance of reflection and self-evaluation during the learning

process.

1.2 Learning from One’s Experience

By reviewing their previous performance, students can gain knowledge from their

experience. It is hoped that by learning from this experience, one will be able to avoid

making the same mistakes in the future. As part of the assessment process, students

attempt a task and are given feedback on their performance. Providing feedback to

students is one of the most effective methods of enhancing their learning (Hattie &

Timperley, 2007). Given the trend of gradually replacing traditional classrooms with

technologically enhanced classrooms, such as smart classrooms or online classes, it is
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imperative that blended classes be upgraded to meet the demands of the future. In

recent years, a number of tools have been developed to provide personalized feedback

to students. Nevertheless, these systems can only be beneficial when they are used to

conduct interactions through digital platforms. Since paper-based assessment remains

a dominant evaluation method, particularly in large blended-instruction classes, solely

using electronic educational systems reveals the gap between the physical and digital

worlds. Students may be able to obtain valuable feedback on these graded papers that

can help improve their performance as well as point out misconceptions. However, it is

difficult to obtain empirical evidence regarding whether students review these papers

or what their reviewing strategies are. This motivated the design and development of

a new educational technology to facilitate the digitization, grading, and distribution

of paper-based assessments in blended-learning classes. This technology allows for

the easy capture of a wide variety of learning analytics. In Chapter 2, the research

platform Web-based Programming Grading Assistant (WebPGA) is introduced. It

also presents the results of a retrospective analysis conducted using the platform

to analyze the behavior of students in an Object-Oriented Programming and Data

Structures class at a large public university. Using the digital footprints of students,

behavioral differences and associated learning impacts were examined, specifically to

answer the following research questions:

RQ A.1: In terms of monitoring and reviewing, are there any behavioral

differences between high-achieving and low-achieving students?

RQ A.2: Are there any differences in the behavior of students when grouped

according to performance trajectories (i.e., whether the student’s score in a

subsequent examination improved relative to a prior one)?

RQ A.3: What reviewing behaviors are associated with learning?
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RQ A.4: How does personalized guidance affect the behavior of students when

reviewing?

The results indicated that students made significant efforts to review their test results.

The high-achieving students and those who improved spent more time reviewing their

mistakes and began doing so as soon as they received the results. While reviewing

graded tests allows students to develop their metacognitive skills, the absence of

adequate guidance exacerbated by a lack of maturity prevents students from fully

utilizing the benefits of learning from past mistakes. Chapter 3 presents a preliminary

analysis of the clickstream data of students from an Introduction to Computing course

as part of the effort to uncover students’ reviewing strategies. Unlike the earlier study,

the undertaken study took into account the temporal aspect of the data. To account

for the sequential nature of the data, Hidden Markov models (HMMs) were used

to model the reviewing behaviors of high-performing and low-performing students,

specifically to answer the following research questions:

RQ B.1: Do students review questions based on their performance?

RQ B.2: What reviewing patterns can be uncovered?

The results of the study indicate that the two groups used similar strategies, but

also employed strategies specific to each group. Reviewing frequently is an important

study habit that helps students to become aware of their strengths and weaknesses

(Mehrens & Lehmann, 1991). As a whole, Chapters 2 and 3 emphasize the diversity

of the characteristics of students and the importance of providing tailored guidance to

students in the reviewing process. In addition, by receiving guidance, students could

identify items where they had misconceptions. By doing so, they are encouraged to

learn from their own experiences.
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1.3 Learning from Other’s Experience

Learning from experience does not have to be confined to one’s own. In fact, one

can gain valuable knowledge from other people’s experiences, or in this case, their

mistakes. Considering the vast amount of data WebPGA has collected over the years,

not only can it provide valuable insights to teachers, but it can also be used to benefit

future students. In the educational data mining literature, one of the most common

applications is predicting a new cohort’s performance (Paredes et al., 2020). As an

alternative to this view, one could consider this data a collection of the experiences

of past students, which include their strategies and failures. As a result of observing

these experiences, future students will be able to learn and imitate desirable behaviors

based on the resulting consequences, a hallmark of Bandura’s (1977) social learning

theory. In essence, the answers of students can be viewed as worked examples of

which have been extensively examined in the literature, including their effectiveness in

improving student learning (Atkinson et al., 2000; Chi et al., 1989; Sweller & Cooper,

1985) and their important role in the initial acquisition of cognitive skills of learners

(Renkl, 2002, 2014; VanLehn, 1996). Additionally, several of these examples would

be erroneous because these answers encompass both correct and incorrect responses.

Using erroneous examples involves intentionally including errors so that students can

explain and correct the errors (Booth et al., 2013; Große & Renkl, 2007). A number of

prior studies, mostly from the mathematics field, have explored the potential benefits

of using this approach in blended learning environments. Because of the Covid-19

pandemic, most learning activities have been conducted online, making it even more

significant to study how students use WebPGA. An exploratory study is presented

in Chapter 4 in which students from a synchronous online Computer Informatics
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class were asked to evaluate varying degrees of erroneous examples. An activity was

designed to assist students in addressing their misconceptions and preparing for an

upcoming test by offering them a learning opportunity that closely resembles the

program debugging process, specifically to answer the following research questions:

RQ C.1: Do students learn from evaluating erroneous answers?

RQ C.2: Do students leverage feedback provided to them during the learning

activity?

RQ C.3: What behaviors do students exhibit when evaluating erroneous

answers?

RQ C.4: How do students benefit from receiving feedback during the learning

activity?

Students were provided with feedback via the grading process by providing them

with the actual marks and comments related to the examples. The amount of time

students spent on the activity and the difference between their assigned grade and a

subject expert’s grade were examined. While it is unclear whether students in this

study learned from exposure to erroneous examples, it was found that students who

were proactive in seeking feedback had better midterm scores. This emphasizes the

importance of feedback in the learning process. This type of supplementary resource

can prove beneficial if it is appropriate for the students’ needs, as has been widely

acknowledged in the literature on adaptive educational systems (Brusilovsky, 1998,

2001). It is therefore necessary to identify a past experience that is relevant. Knowing

what is needed and what is relevant is essential to achieving this goal. Thus, if it is

possible to predict a student’s performance on a forthcoming test, these relevant items

may be identified. The Personalized Recommender of Items to Master and Evaluate

(PRIME) Framework is introduced in Chapter 5. The purpose of this framework is to
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provide a principled approach to enable WebPGA to intelligently describe to students

their deficiencies through erroneous examples that can be used as proxies, specifically

to answer the following research questions:

RQ D.1: Using performance data on complex multi-topic test items from

a classroom setting, how can the growth of the mastery level of students be

modeled?

RQ D.2: How can a student’s outcomes on individual items be predicted on a

test that contains items that allow partial credit?

RQ D.3: Having knowledge of the potential outcomes of a test, what innovative

learning opportunities, particularly in the domain of computer programming,

can be provided to students to assist them in preparing?

Performance associated with these proxies closely resembles that of the student

for whom they are recommended. This builds upon the idea of knowledge-gap-

based remedial recommendations with the goal of providing resources to fill these

gaps (Bauman & Tuzhilin, 2018; Thaker et al., 2020). Together, Chapters 4 and 5

demonstrate a pragmatic approach to leveraging existing data, thereby allowing

students to gain insight from the experiences of others. Furthermore, it enhances

the functionality and utility of the system without requiring the teacher to exert

additional effort.

1.4 Data-Driven Educational Assessment Ecosystem

Over the past six years, WebPGA has been used by more than 6000 students from

two universities, resulting in a 40% reduction in grading turnaround times. As a result
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Figure 1. Overview of the WebPGA Ecosystem

of its integration with the physical world of educational assessments, learning analytics

was brought from the digital realm to the physical realm. An overview of the various

components is illustrated in Figure 1. This dissertation represents a comprehensive

collection of the various endeavors undertaken to understand how to help students

learn from their own as well as others’ mistakes. Using learning analytics and

assessment data to make students cognizant of their misconceptions is the

central theme of this dissertation. Thus, students can only attain a deep understanding

of the domain by recognizing their weaknesses and working diligently to improve them.

Each chapter describes the studies conducted that shaped subsequent investigations

and system improvements based on human-centered design principles1. Data from

these investigations encompassed both behavioral and performance aspects. Finally,

this dissertation concludes with a summary of all the findings and recommendations

for future research.

1See Norman and Draper (1986) for a detailed discussion of the four principles of human-centered
design.
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Chapter 2

WEBPGA: AN EDUCATIONAL TECHNOLOGY THAT SUPPORTS LEARNING

BY REVIEWING PAPER-BASED PROGRAMMING ASSESSMENTS

2.1 Abstract

Providing feedback to students is one of the most effective ways to enhance

their learning. With the advancement of technology, many tools have

been developed to provide personalized feedback. However, these systems

are only beneficial when interactions are done on digital platforms. As

paper-based assessment is still a dominantly preferred evaluation method,

particularly in large blended-instruction classes, the sole use of electronic

educational systems presents a gap between how students learn the subject

from the physical and digital world. This has motivated the design and

the development of a new educational technology that facilitates the digi-

tization, grading, and distribution of paper-based assessments to support

blended-instruction classes. With the aid of this technology, different

learning analytics can be readily captured. A retrospective analysis was

conducted to understand the students’ behaviors in an Object-Oriented

Programming and Data Structures class from a public university. Their

behavioral differences and the associated learning impacts were analyzed

by leveraging their digital footprints. Results showed that students made

significant efforts in reviewing their examinations. Notably, the high-

achieving and the improving students spent more time reviewing their
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mistakes and started doing so as soon as the assessment became available.

Finally, when students were guided in the reviewing process, they were

able to identify items where they had misconceptions.

This chapter was adapted from Paredes, Y. V., & Hsiao, I.-H. (2021). WebPGA: An educational
technology that supports learning by reviewing paper-based programming assessments. Information,
12 (11), Article 450. No special permission is required to reuse all or part of article published by
MDPI, including figures and tables. For articles published under an open access Creative Common
CC BY license, any part of the article may be reused without permission provided that the original
article is clearly cited. Reuse of an article does not imply endorsement by the authors or MDPI.
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In today’s blended learning environments, paper-based examination is still one of

the most popular methods for assessing students’ performance. Despite a wide range of

computer-based approaches to conducting examinations, the traditional paper-based

method still appeals to the teachers due to its flexibility and simplicity. It gives them

a straightforward way to manage their class due to the required physical presence.

For example, academic dishonesty could be deterred through in-person proctoring.

However, the same conventional class management method also presents a challenge.

Grading many papers can be time-consuming. It also requires significant effort to

generate meaningful and personalized feedback to students while ensuring consistency

within and between the graders. Most importantly, with the trend of gradually

shifting towards technologically enhanced classrooms, such as smart classrooms or

online streaming classes, the traditional blended classes necessitate an upgrade.

Several educational technologies that integrate physical and digital learning ac-

tivities have started to proliferate. These systems, such as clickers (Trees & Jackson,

2007) and multi-touch tabletops (Martinez-Maldonado et al., 2013), paved the way for

advanced learning analytics. However, support for personalized learning in these envi-

ronments is still limited. Therefore, in this study, a web application called Web-based

Programming Grading Assistant (WebPGA) was developed to capture and connect

multimodal learning analytics from the physical and digital spaces in programming

learning. It digitizes paper-based artifacts, such as quizzes and examinations, and pro-

vides interfaces for grading and feedback delivery at scale. The system enables students

to manage their learning by consolidating assessment content, feedback, and learning

outcome. WebPGA also allows for understanding better the students’ behaviors in a

blended class. Thus, the focus of this chapter is to explore and investigate the impacts
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of the technology on students’ learning. Specifically, it aims to answer the following

research questions:

RQ A.1: In terms of monitoring and reviewing, are there any behavioral

differences between high-achieving and low-achieving students?

RQ A.2: Are there any differences in the behavior of students when grouped

according to performance trajectories (i.e., whether the student’s score in a

subsequent examination improved relative to a prior one)?

RQ A.3: What reviewing behaviors are associated with learning?

RQ A.4: How does personalized guidance affect the behavior of students when

reviewing?

This chapter is organized as follows. Sections 2.2 to 2.6 discuss the role of

assessments in higher education, the importance of feedback in programming learning,

the emergence of behavioral analytics, and how personalization can be leveraged in

educational systems. Section 2.7 describes in detail the design of the research platform.

Section 2.8 provides an overview of the study design and the data collection process.

Finally, Section 2.9 presents the findings and discussions.

2.2 Assessments in Higher Education

Assessments play an important role in learning in higher education. It is a process

where data about students are collected to identify their strengths and uncover

their weaknesses (Hanna & Dettmer, 2004). It also is a tool used to evaluate the

effectiveness of the teacher’s instructional strategies. Two of the commonly used types

of assessments are formative and summative assessments. Formative assessments are

low-stakes and typically not graded assessments that provide students feedback on
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their current performance (e.g., practice quizzes). They enable students to diagnose

and monitor their deficiencies, leading to improved learning. However, for it to be

effective, students should be able to see the gap between their current ability and one

that is expected of them and close it (Biggs, 1998). On the other hand, summative

assessments are high-stakes assessments (i.e., graded) that aim to evaluate students’

learning. These two types are viewed as assessment for learning and assessment of

learning, respectively. A third view is assessment as learning which promotes students

to reflect on their work and be metacognitively aware. Activities could be in the

form of self or peer assessment which leads them to identify the next step in learning.

Prior definitions, however, did not explain what happens to the assessment, per se.

It was only recently given an updated definition to be “assessments that necessarily

generate learning opportunities for students through their active engagement in seeking,

interrelating, and using evidence” (Yan & Boud, 2021, p. 13). This highlights the

importance of the active role of the student in the process.

2.3 Role of Feedback in Learning

A student’s academic achievement is affected by several factors, such as learning

experience, feedback, teaching style, and motivation. Some of these are more influential

than others. Additionally, many of these are not easily quantifiable. Several papers

have highlighted the importance of feedback and what constitutes an effective one.

The timing of when it is delivered is also essential (Hattie & Timperley, 2007; Kulkarni

et al., 2015). The sooner students receive their feedback, the more they can reflect on

their learning. Moreover, the availability of immediate self-corrective feedback leads to

an increase in the efficiency in reviewing examinations (Dihoff et al., 2004). Students
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benefit more from feedback when assigned to individual components (e.g., rubrics),

compared to just showing the overall score (Kulkarni et al., 2015). This would allow

them to identify their misconceptions quickly. Furthermore, it was found that content

feedback had significantly better learning effects than progress feedback (G. T. Jackson

& Graesser, 2007). The mere provision of feedback, however, does not guarantee

an improvement in students’ learning. The student must take an active role in this

process, essentially a shift from the feedback as telling mentality. Essentially, this

conforms to the the proposed framework of Carless and Boud (2018) that underscores

the importance of developing student feedback literacy.

2.4 Technology Support in Feedback Generation

Automated grading of assessment is one of the most popular methods employed to

generate and deliver feedback at scale. It guarantees the timely release of feedback to

students at a lower cost. Such a method has been widely used in several educational

fields, such as programming, physics, and mathematics. Examples of these systems

include WEB-CAT (Edwards & Perez-Quinones, 2008) and ASSYST (D. Jackson &

Usher, 1997). Usually, pattern-matching techniques are used to assess the correctness of

the student’s work. This is done by performing unit tests and comparing the student’s

work to an ideal solution. This approach has some drawbacks. In programming

learning, the logic and the reasoning of students are being overlooked by the system as

it only focuses on the concrete aspects of the solution. As a result, teachers spend extra

time reviewing the student’s work after an auto-grader has evaluated it to provide

personalized and better feedback. One proposed solution to address this is to crowd-

source code solution, which will then be suggested to students (Hartmann et al., 2010).
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Another approach suggests using student cohorts to provide peer feedback (Denny

et al., 2008; Gehringer, 2001). Lastly, parameterized exercises can be used to create a

sizable collection of questions to facilitate automatic programming evaluation (Hsiao

et al., 2010).

The various feedback generation techniques discussed previously are focused on

evaluating digital artifacts. Less is discussed in the context of paper-based program-

ming problems, which can be addressed by digitization. This approach provides several

advantages. For example, some default feedback can be kept on the digital pages with

the predefined rubrics. Also, submissions can be anonymized, effectively eliminating

any grader’s biases. It is worth noting that there have been some relevant innovations

that attempt to address this problem, such as Gradescope (Singh et al., 2017).

2.5 Behavioral Analytics in Programming Learning

Several studies have explored student modeling. Most intelligent tutors and adap-

tive educational systems heavily rely on these student models. Student learning

is typically estimated using behavior logs. In programming learning, several pa-

rameters have been used to estimate students’ knowledge of coding. One approach

uses the sequence of success when solving programming problems (Guerra et al.,

2014). Another approach considers the progression of the student on programming

assignments (Piech et al., 2012). Some other approaches include: how students seek

programming information (Lu & Hsiao, 2016), compilation behavior when doing as-

signments (Altadmri & Brown, 2015), troubleshooting and testing behaviors (Buffardi

& Edwards, 2013), dialogue structures (Boyer et al., 2011), using snapshot of a code

while solving programming problems (Carter et al., 2015).
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2.6 Personalized Guidance in Learning

Personalized guidance refers to a group of techniques that provide learners with a

straightforward path for learning. This often requires modeling the learning content

(domain) and the learning process (interactions with the system), particularly in

intelligent educational systems. This allows for material to be presented to learners in

a personalized sequence (Chen, 2008). Additionally, it enables the learning process

to be adapted so it can scaffold the learning activity (Azevedo & Jacobson, 2008).

Changing the link appearances on the learning resources to be able to guide students

to the most appropriate and relevant ones (also known as Adaptive Hypermedia) is

one of the common techniques in personalized guidance (Brusilovsky, 1996, 1998).

This leads to better results and higher satisfaction from learners as it helps them reach

the right question at the right time. In the context of self-assessment, this increases

the likelihood of students to answer a question correctly (Brusilovsky & Sosnovsky,

2005; Hsiao et al., 2010). This heavily relies on the interaction between the artificial

intelligence of the system and the intelligence of the student. The adaptive navigation

support method has been used in the social learning context. For example, a system

that has open social student model interfaces used greedy sequencing techniques to

improve students’ level of knowledge (Hosseini et al., 2015a). It led to an increase in

the speed of learning of strong students. It also improved the performance of students.

It should be noted that the mere presence of personalized guidance in a system may

not be enough to provide a learning impact. It always depends on whether students

choose to follow the guidance or not (Hosseini et al., 2015b).
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2.7 Web-based Programming Grading Assistant (WebPGA)

WebPGA was developed to connect the physical and the digital learning spaces

in programming learning. It is an improvement of PGA (Hsiao, 2016), a system

that allows the grading of paper-based programming assessments using smartphones.

The goal is to facilitate the digitization, grading, and distribution of paper-based

assessments in a blended learning environment. Furthermore, it aims to capture the

different actions performed by its users.

There are three types of users, namely: teachers, graders, and students. This

section discusses in detail the pedagogical foundations and technical implementation

of WebPGA. The system is divided into two components, namely the grading interface

and the reviewing interface.

2.7.1 Grading Interface

Teachers and graders use the system to grade paper-based assessments and to

provide their feedback. They upload the scanned images of the examination papers to

the system. The features discussed in this section represent different forms of feedback

that can be provided to students. Figure 2 illustrates the grading interface where

teachers and graders mainly interact.

2.7.1.1 Image Annotation

The left panel in Figure 2 illustrates the scanned image of the student’s paper.

Using the provided markers (red or yellow), graders can write directly on top of
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Figure 2. Grading Interface That Supports the Provisioning of Various Feedback to
Students

Note: Grading interface provides the tools to assess students’ answers. The left panel
presents the scanned image while the right panel contains the rubrics and a textbox
to provide free-form feedback.

the image. In Ball et al. (2009), such annotations are considered useful feedback to

students. In certain instances, this approach is even more convenient than typing in

free-form text boxes.

2.7.1.2 Grading Rubrics

The right panel in Figure 2 provides a detailed breakdown of the score obtained

by the student. The top compartment displays the overall score. It is followed by

a list of rubrics used to assess the work of the student as it is critical that students

are informed how their work was evaluated and what was expected of them (Biggs &

Tang, 2011). Ideally, these rubrics are associated with the knowledge components that
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are being evaluated in a question. This makes it easier for students to identify their

misconceptions (Kulkarni et al., 2015). A color scheme was employed to distinguish

which concepts the students are struggling with easily. The color blue indicates a

complete understanding, red indicates partial understanding, and gray represents

a misconception.

2.7.1.3 Free-Form Feedback

Rubrics alone are not enough forms of feedback. In fact, formative feedback is

preferred as it contributes to learning than on correctness alone (Hattie & Timperley,

2007). Therefore, a text box was provided to allow graders to provide free-form

feedback to students. This could be a justification of a deduction or a suggestion on

how to improve the answer. In large classes, there is a tendency for graders to become

inconsistent in the feedback they give. The system stores all the feedback given by all

graders for a particular question to address this issue. These are then listed in the list

box below. The feedback is arranged according to their frequency (i.e., most used to

least used). Such approach was recommended by Biggs and Tang (2011).

2.7.2 Reviewing Interface

Students mainly benefit from using the system as the delivery of feedback (both

summative and formative) becomes more efficient. This allows them to view their

scores once they are made available conveniently. Figures 3a–c illustrate the different

interfaces students interact with. These various levels uncover students’ reviewing

behaviors, particularly whether they simply looked at their scores or read the feedback–
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(a) Student dashboard provides an overview of the student’s performance

(b) Assessment overview lists all the questions of single assessment

(c) Question overview provides a detailed view of how a question
was graded

Figure 3. Reviewing Interface Giving Students Feedback With Varying Granularity
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a probable action in the system (Mensink & King, 2020). Such granularity allows for

distinguishing how students appreciate the varying feedback provided to them by the

system.

2.7.2.1 Dashboard

The dashboard (Figure 3a) provides students an overview of their class performance.

The left panel lists all the assessments that can be reviewed. It includes information

such as the scores, the first and the latest reviews, if applicable. The assessments are

arranged in a reversed chronological order. A color scheme was used to highlight the

importance of an assessment. The assessment panel is colored in green if the student

had a perfect score. Otherwise, it is colored yellow. If the assessment is not for credit,

it is colored in blue. When students click on a particular assessment to review, they

are redirected to the assessment overview. The middle panel provides students with a

bar chart that visualizes how they are performing in class. Below it is a personalized

reminder panel which will be discussed in detail later. Lastly, the right panel provides

administrative information about the class along with their performance.

2.7.2.2 Assessment Overview

In the assessment overview (Figure 3b), all the questions for a particular assessment

are listed along with the scores obtained and personal notes made by the student.

A color scheme was used to make the presentation meaningful. Green means the student

obtained full credit, yellow means the student obtained partial credits, and red means

the student did not obtain any credit. The questions are arranged according to how
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they were ordered in their physical counterparts (i.e., when they were administered).

However, students can follow the system’s personalized recommended sequence (see

Section 2.7.2.4) by clicking on the “See Recommended Sequence” link on the upper

right portion. When students click on a particular question thumbnail to review, they

are redirected to the question overview.

2.7.2.3 Question Overview

In the question overview (Figure 3c), more details about the question are provided

to the students. The background color of this page follows the color used in the

thumbnail in the assessment overview (green, yellow, or red). The left panel illustrates

the image of the answer, including any annotations made by the graders. The right

panel provides the overall score for the question, the rubrics and the different scores

obtained. This follows the color scheme discussed in Section 2.7.1.2. It then shows

the free-form feedback given by the grader and a 5-point Likert scale to rate their

perceived quality of the feedback they received. The system records the amount of

time spent by the student while in this view.

Three forms of reflection prompts were incorporated: (a) star bookmark to note the

importance of or the need to reference a question in the future; (b) checkbox to express

explicitly their ability to solve the problem; and (c) free-form text area where they

can type elaborated notes. Such features can encourage students to do self-learning

on their answers and self-reflect on their reasoning processes that could lead to a deep

learning experience (Chi, 2000). Such collections of bookmarks, checkboxes, and notes

enable students to be more metacognitively aware of their subject matter knowledge

as this captures what they have learned (Roscoe & Chi, 2007).
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2.7.2.4 Personalization

One of the system’s design goals is to provide some interventions to help students

who are falling behind in class. One issue in online learning systems (e.g., learning

management systems) is the tendency of feedback to be spatially separated which

hinders students from synthesizing them (Winstone et al., 2021). This could be

addressed by providing personalized prompts in the system, particularly in the student

dashboard and the assessment overview. Students are given personalized, actionable

reminders that list all assessments or questions that have not been reviewed (the lower

component of the middle panel in Figure 3a). The order of the items in the list is

determined using Algorithm 1 which was designed based on prior studies (Paredes,

Azcona, et al., 2018; Paredes, Hsiao, & Lin, 2018). The system assigns a higher

importance to questions where the student made more mistakes (i.e., the student must

review it first). From the list, if the student clicks on the name of an assessment, they

are redirected to the assessment overview (Figure 3b) but with the questions arranged

using Algorithm 2. On the other hand, if the student clicks on a specific question,

they are redirected to the question overview (Figure 3c).

2.8 Methods

To investigate the effectiveness of the educational platform, a retrospective analysis

was done on the reviewing behaviors of students by looking at their review actions.

These are the instances where students interacted with the different views in the

reviewing interface, as discussed earlier.
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Algorithm 1 Assessment and Question Listing in the Reminders Panel
1: procedure GetAssessmentsAndQuestions(S)
2: for each A ∈ assessments of student S do
3: Q := list of questions from A which are not yet reviewed
4:
5: for each q ∈ Q do
6: q.normalized := q.raw_score_of_student / q.points_worth
7:
8: if q.normalized = 1 then
9: Remove q from Q

10:
11: if Q.isEmpty() then continue
12: // Just in case there is a tie, use the next criteria
13: Sort Q by q.normalized in ascending, q.points_worth in descending
14:
15: // Display the latest assessment on top
16: Sort all assessments according to assessment_date in descending

Algorithm 2 Recommended Sequence
1: procedure GetRecommendedSequence(A)
2: Q := questions from assessment A
3:
4: for each q ∈ Q do
5: q.normalized := q.raw_score_of_student / q.points_worth
6:
7: // Just in case there is a tie, use the next criteria
8: Sort Q by q.normalized in ascending, q.points_worth in descending

2.8.1 Data Collection

The system data from an Object-Oriented Programming and Data Structures class

offered during the Spring 2018 semester in a public university were collected. This

200-level course is the second programming class taken by Computer Science major

students. The class was chosen since its instructor signified interest and volunteered

to use the system, mainly to facilitate the grading process. This class had a total of

3 examinations and 14 quizzes (five are for credit, and nine are non-credit). There
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Table 1. Distribution of Students When Grouped Based on Three Categories

Category Group No. of Students

Academic Performance High-achieving 86

Low-achieving 71

Performance Trajectory Exam1-Exam2 Period
Improving 53

Dropping 102

Retaining 2

Exam2-Exam3 Period
Improving 79

Dropping 77

Retaining 1

Personalized Guidance Guided 46

Not Guided 111

were 187 students enrolled, but only 157 (83.96%) were included in the analysis as

those who dropped the course in the middle of the semester, did not take the three

examinations, or did not use the system had to be removed.

2.8.2 Data Processing

Students were labeled and grouped in three different ways to understand how

their monitoring and reviewing behaviors affect their learning. The breakdown is

summarized in Table 1. First, they were grouped according to their overall academic

performance. Then, they were grouped according to their performance trajectory in a

given period. Finally, they were grouped according to whether they were guided by

the system or not.
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2.8.2.1 Overall Academic Performance

The final grades of the students were not included in the data collection. However,

the examinations have the highest contribution to the final grade. Therefore, the stu-

dent’s average score for the three examinations was used to determine his or her overall

academic performance in place of the final grade. Using the class average (M = 82.28,

SD = 10.83) as the cut-off point, students were classified either as high-achieving or

low-achieving. This cut-off value closely resembles the boundary between the A and B

students and the C, D, and E students as set by the instructor.

2.8.2.2 Performance Trajectory

The overall performance only provides a single snapshot of the student. It is

interesting to look at the different changes in how the student performed throughout

the semester. Therefore, the examinations were used to divide the semester into

two equal periods, namely: Exam1-Exam2 and Exam2-Exam3. In a given period,

the difference between the scores in the two examinations was computed. This value

was referred to as delta, which represented the magnitude of improvement or dropping

of the student. For that period, a student was labeled improving if the delta was

positive; dropping if negative; and retaining if zero. It should be noted that a student

may belong to different groups in the two periods.
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2.8.2.3 Reviewing Behavior

Among the 21,747 student actions captured by the system, 9,851 (45.30%) were

review actions. These actions have their corresponding duration, which represents the

amount of time a student spent reviewing. Each review action was labeled according

to the score obtained by the student in the question that was reviewed. It was

labeled r_correct if the student answered the question right. Otherwise, it was labeled

r_mistake.

2.8.2.4 Personalized Guidance

The system provides a personalized suggestion to each student, particularly on how

and what to review. If a student clicked an assessment or a question from the list on

the reminders panel (bottom component of the middle panel in Figure 3a); or clicked

on the “See Recommended Sequence” link on the assessment overview (Figure 3b),

the student was labeled Guided. Otherwise, the student was labeled Not Guided.

2.8.3 Data Analysis

In this study, after an assessment was graded, the teacher made an announcement

to inform students that the assessment was available for review. This announcement

was made using a learning management system.

An assessment was considered reviewed if at least one of its questions was reviewed.

Table 2 gives an overview of how students reviewed their examinations. This includes

the average class performance, the number of students who reviewed them, and the
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Table 2. Overview of Students’ Reviewing Behavior

Examination Avg. Score (%) Students who Reviewed Reviewing Delay (days)

N % of Class M SD

1 83.30 142 89.87 4.7 14.4

2 78.60 131 82.91 2.4 6.8

3 79.60 100 63.29 0.9 2.2

average time it took students before they reviewed it for the first time (hereinafter

referred to as reviewing delay). A downward trend can be seen for both the number

of students reviewing and their reviewing delay.

2.9 Results and Discussion

2.9.1 The Learning Effects of Reviewing Behaviors

To examine the impacts of reviewing assessments on students’ learning, the efforts

exerted by the high- and low-achieving students were compared and summarized

in Table 3. The reviewing behaviors of the two groups were measured by (1) total

number of review actions performed (review count) and (2) total time spent reviewing.

2.9.1.1 Impact of Assessment Types: Quizzes and Examinations

The system supports formative and summative assessments. In this class, the in-

structor administered three types of assessments: non-credit quizzes (used for atten-

dance and the answers of the students are not checked), quizzes for credit (answers
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Table 3. Comparison of System Usage and Reviewing Behaviors of High-achieving
and Low-achieving Students

Reviewing Behavior High Low

Review Count 48.10 47.73

Time Spent Reviewing Assessments (mins) 23.38 25.42

Examination Review Count 24.95 29.39

Time Spent Reviewing Examinations (mins)∗∗ 8.42 12.64

Correct (mins) 6.51 7.51

Mistakes (mins)∗∗ 1.62 4.73

Review Coverage∗ 0.73 0.65

Note: ∗∗p < 0.05 ∗p = 0.05

of the students are checked), and examinations (midterm and final). The non-credit

quizzes served as a formative assessment, while the quizzes for credit and the exami-

nations were considered summative assessments. All the review actions performed

by the students were logged, regardless of the type of assessment. It is hypothesized

that students would pay more attention to assessments that directly contribute to

their final grades (quiz for credit and examinations). It is also hypothesized that the

non-credit quizzes may affect students’ reviewing behavior since they may not have

given importance to items that do not count towards their final grades. However,

when the overall number of reviewing actions and the time spent of the two groups

were compared, no significant difference was found. The results suggested that all

students paid the same amount of attention to the graded assessments, regardless

of the assessment type. It is important to note that high-achieving students have

fewer mistakes to review while low-achieving students have relatively more mistakes

to review. Do these students put in the same amount of effort in reviewing the

appropriate item?
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2.9.1.2 High Achievers Focused on Reviewing Their Mistakes

To investigate further the difference of the reviewing efforts of the two groups as

well as to answer RQ A.1, how these groups reviewed their graded examinations

were looked into. Both groups still had a similar number of review actions performed.

However, high-achieving students (M = 8.42 minutes) spent significantly (p < 0.05)

lesser time reviewing all their examinations compared to low-achieving students

(M = 12.64 minutes). There are several possible explanations for this. High-achieving

students would have fewer mistakes and may not have reviewed their correct answers,

leading to less time on the system. It is also possible that high-achieving students

already knew which items to focus on. Lastly, it is also possible that low-achieving

students may have struggled to identify which questions to review and therefore spent

more time. Spending more time reviewing may not necessarily be an effective strategy.

A student may review several times but may not be on items that require their focus—

their mistakes. To investigate this, the time spent was subdivided into two categories:

on correct answers and on mistakes. Interestingly, the two groups spent a similar

amount of time reviewing their correct answers. However, when reviewing mistakes,

low-achieving students spent significantly more time compared to high-achieving

students. This was not surprising since low achievers had more mistakes. Therefore,

the review coverage for mistakes of the two groups were compared. This refers to the

proportion of questions that the students actually reviewed. In this case, the percentage

of their mistakes that they reviewed. Although just marginally significant (p = 0.05),

high-achieving students were able to review most of their mistakes compared to the

low-achieving students. This would translate into an ineffective reviewing strategy for

low-achieving students. They had more mistakes and did not exert enough effort to
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review them. This clearly exhibits a bad habit of students since they are unable to

take advantage of learning from the feedback they were provided, which could help

them correct any of their misconceptions. It is worth investigating in the future if

such a trend becomes more pronounced with more examinations. Succeeding analyses

will focus mainly on review actions on examinations.

2.9.1.3 Improving Students Reviewed Most of their Mistakes

The previous section looked into the main effects of the aggregated performance

of the students throughout the semester. In this section, students were analyzed at

a finer granularity—across examination periods. This deeper analysis allowed the

dissection of the changes in students’ behavior over time and the exploration of the

potential various strategies students’ employed across different examinations.

Improving students were not necessarily high achievers. The goal is to determine

how students differed and what led to the improvement of their grades, essentially

answering RQ A.2. For each group, the review coverage for both their correct

answers (r_correct) and mistakes (r_mistake) were computed. This is summarized in

Table 4. The retaining group was omitted because of the negligible number of students.

It can be observed that on average, both groups did not review all their answers.

For example, the improving students during Exam1-Exam2 period reviewed only 39%

of their correct answers and 63% of their mistakes. For both periods, improving

students consistently focused on reviewing most of their mistakes, demonstrated by

the higher review coverage for mistakes (63% and 32%) compared to correct answers

(39% and 15%). This suggests that focusing on your mistake to answer them right the

next time may help in improving your grade. In the case of the dropping students,
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Table 4. Comparison of Review Coverage Across the Two Periods

Period Improving Dropping

r_correct r_mistake r_correct r_mistake

Exam1-Exam2 0.39 0.63 0.42 0.64
Exam1-Exam3 0.15 0.32 0.26 0.31

Note: Both groups had p < 0.01 for each period except for Dropping during Exam1-Exam2 period.

during the Exam1-Exam2 period, they also focused on reviewing their mistakes as

they reviewed 64% of them. However, during the Exam2-Exam3 period, no significant

difference was found in their effort in reviewing their correct answers and mistakes. It

should be noted that during this period, more assessments were available for review.

Interestingly, during this period, no significant difference can be seen between the

strategies of the improving and the dropping students (32% and 31%, respectively).

This strategy may have worked on the former group but not on the latter group.

Possibly, dropping students may have overlooked their mistakes, thus were unable to

take full advantage of the feedback they were given. This is an ineffective strategy

and intervention strategies should be developed and applied.

2.9.1.4 Spending More Time Reviewing Mistakes is Associated with Improved Per-

formance

A drop of a single point may not have a significant impact on a student’s behavior

compared to a drop of 10 points. With the current grouping, there would not be

any distinction between the two. Therefore, the actual values of the deltas were used

instead of only the sign. These represent the magnitude of change in the performance

of students in a period (magnitude). The amount of time spent by students on
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reviewing their mistakes was obtained (effort). For both periods, a Pearson correlation

coefficient was computed to assess the relationship between the two variables. There

was a significant positive correlation between the magnitude and the effort for both

period (r = 0.19, p < 0.05 for Exam1-Exam2 and r = 0.23, p < 0.05 for Exam2-

Exam3). This means that students who improved focused on their previous mistakes.

2.9.1.5 Reviewing Promptly is Associated with Academic Performance

Some students attended to their graded assessments as soon as they were made

available, while some waited until the last minute before the next examination.

To determine the effectiveness of the reviewing strategy, students’ reviewing efficiency

was examined. This was obtained by getting the average reviewing delay for all

examinations reviewed by the student. A negative relationship was found (r =

−0.16, p < 0.05) between their academic performance. This means that better-

performing students attended and reviewed their graded examinations sooner. This

initiative and motivation are among the characteristics of a self-regulated learner

that lead to improved academic outcome (Zimmerman, 1990). Being more vigilant in

reviewing could potentially be associated with better grades. Another interpretation

is that students who obtained better grades started to prepare for an examination

early seriously.

The trend on how students attended to their graded assessments is visualized in

Figure 4. From this, it can be observed that students reviewed examinations sooner

than quizzes (shown by the dips). However, this was not unexpected. This suggests

that students were more attentive when the credit at stake was high. The steep

downward trend right before examinations (particularly for Exams 2 and 3) could
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Figure 4. Comparison of Reviewing Delay of High-achieving and Low-achieving Groups
Throughout the Semester

be due to students reviewing multiple quizzes before an examination. Eventually,

students learned how to use the system, as demonstrated by the overall downward

trend. They even started reviewing quizzes sooner, even if the quizzes were not for

credit. This is an encouraging note and evidence of how students self-regulate their

learning in reviewing assessments. Finally, when the trend lines of the two groups

are compared, it can be seen that high-achieving students generally reviewed their

assessments sooner (notice that the green line is generally the lowest line throughout

the semester).

RQ A.3 can be answered by looking back at the findings in the prior sections

to gain insight. Attending to their mistakes promptly was a key characteristic of

high achievers and improving students. Such behavior could indicate a willingness
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to fix any inconsistencies or misconceptions. Items where they made mistakes are

likely to have more feedback provided by the grader. Therefore, spending more time

resulted in an improvement in their performance which is consistent with the findings

of Zimbardi et al. (2017).

2.9.2 Personalized Guidance Effects: Students Reviewed More Mistakes

The personalized guidance component was introduced to highlight the items that

need to be prioritized when reviewing. RQ A.4 can be answered by looking into

whether the students used such feature. Although no significant differences were

found in the academic performance of those who were guided and not, a difference in

their reviewing behavior was found. It is hypothesized that when students are guided,

their learning will improve. However, when the overall academic performance of those

who were guided and those who were not was compared, no significant difference was

found. It should be noted that the degree of guidance the students received from the

system was not measured. Furthermore, students may have been guided at various

times throughout the semester. Since the guidance had no impact on their learning,

their reviewing behavior was compared, particularly the review coverage for mistakes.

Students who were guided (M = 0.76, SD = 0.28) were able to significantly (p < 0.05)

review more of their mistakes than those who were not (M = 0.67, SD = 0.32).

The results showed that the personalized reviewing sequences successfully led students

to focus on reviewing their misconceptions.

Feedback is indeed essential. For students to realize this, they need to be guided.

Despite the potential of personalized guidance, only a few students used it (see

Table 1). This raises the question of whether the guidance provided by the system
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is enough or visible to them. Each student is different and needs a different form of

guidance. Some do not even know that they need help (Aleven & Koedinger, 2000).

As discussed by Carless and Boud (2018), there is a need for students to take an active

role in the process and to come up with an effective strategy that works for them.

Furthermore, the lack of difference in the overall performance between the two groups

suggests that both high- and low-achieving students benefitted from this guidance.

Additionally, some students who already have an effective reviewing strategy (i.e.,

highly self-regulated) may not need explicit guidance anymore and therefore did not

use the feature.

2.9.3 Subjective Evaluation

At the end of the semester, students were instructed to anonymously answer an

online survey to rate their experience using the system. They were also asked to

provide some ideas on how the system could be further improved. Only 35 students

(22.29%) responded to the survey. Figure 5 shows some of the questions and the

students’ responses.

2.9.3.1 Usefulness of Features

Respondents indicated that they understood the color scheme used and were

aware of most of the system’s features. However, some features had low usages,

particularly the bookmark and the personal notes. Generally, the respondents were

neutral about the usefulness of such features. This could be attributed to the fact
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Figure 5. Survey Response of Students to an Anonymous Subjective Evaluation

that some other functionalities that would motivate them to use those features were

not yet implemented.

2.9.3.2 Ease of Use

Most of the respondents found it easy to use the system. They became acquainted

with it right after the first two quizzes. They indicated that they used the system

to prepare for examinations. In fact, most of them wanted the system to be used in

their other classes.
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2.9.3.3 Future Improvement

Finally, to help improve the system, respondents were asked to provide their

suggestions. One of the common responses was to include a way for them to rebut or

challenge their grades. Another suggestion was to include a feature that would help

them understand a specific question. With these suggestions, more interactions can

be captured and could help further understand how students behave.

2.10 Conclusion

This chapter discussed the design of an educational technology that facilitates

the digitization, grading, and distribution of paper-based assessments in blended-

instruction classes. This system allows for the efficient delivery of feedback to students.

It can capture the various interactions of students, providing empirical data on

how they review their graded paper-based assessments. Such data can be leveraged

to improve the design of existing educational tools. Additionally, it can provide

personalized guidance to students on how to review.

A retrospective analysis was conducted to understand the behavioral differences

among the different types of students. The reviewing strategies which were associated

with improvement and learning were investigated. Results showed that high achievers

exerted effort to review most of their mistakes. When analyzed further in finer

granularity, students who improved exhibited the same behavior. They reviewed most

of their mistakes and spent more time doing so. With the personalized guidance of the

system, students were able to review most of their mistakes. Better students reviewed

their graded assessments sooner.
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This study is subject to several limitations. This investigation focused only on

students’ voluntarily reviewing behavior to signify one of the self-regulated learning

processes: the abstract form of monitoring and reviewing one’s learning. More

comprehensive scenarios, such as planning, comprehension monitoring, and self-

explaining should also be considered. The depth of the guidance the system provided

the students was not measured. A better way to quantify this should be explored

to determine how it affects students’ performance. A more comprehensive algorithm

should be considered for the personalized guidance to investigate whether such effect

still exists. The sequence of questions that students reviewed could be studied in

the future. Sequential pattern mining techniques along with clustering techniques

could be used to determine whether different groups of students are exhibiting specific

strategies. Students were not taught how to use the system. They had to familiarize

themselves on their own. The usability of the system should be studied. Students who

did not use the system were dropped from the analysis. However, the participation of

these students could potentially provide new insights. This could be done through an

interview or the use of self-reporting mechanisms.

The findings have implications for the future development of the system. For feed-

back to be effective, students must take an active role in the sense-making process

to improve their performance (Boud & Molloy, 2013). New functionalities could be

introduced to engage the students fully. For example, providing students an opportu-

nity to discuss the feedback with their peers or their teacher. Peer evaluation could

also be supported. Ultimately, the goal is to find new ways to make students feedback

literate and guide them in the process.
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Chapter 3

MODELING STUDENTS’ ABILITY TO RECOGNIZE AND REVIEW GRADED

ANSWERS THAT REQUIRE IMMEDIATE ATTENTION

3.1 Abstract

Students utilize various resources to prepare for an examination, such

as lecture materials, homework, or previous quizzes or tests. Reviewing

graded tests allows students to develop their metacognitive skills. However,

a lack of proper guidance, exacerbated by a lack of maturity, hinders fully

realizing the benefits of learning from past mistakes. In this paper, we

investigated students’ reviewing strategies. We analyzed the clickstream

data of students taking a Computer Science Education course. Using

Hidden Markov models (HMMs), we modeled the reviewing behaviors of

high-performing and low-performing students. Our preliminary findings

suggest that the two groups share some similar strategies but also have

some that are particular to the group.

©2022 Asia-Pacific Society for Computers in Education. Reprinted, with permission, from
Paredes, Y. V., & Hsiao, I.-H. (2022). Modeling students’ ability to recognize and review graded
answers that require immediate attention. Proceedings of the 30th International Conference on
Computers in Education Volume II, 85–90.
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Students prepare for examinations using various resources that are made available

to them. In an earlier survey, students indicated that apart from lecture materials,

they also reexamine previous quizzes or tests (Paredes et al., 2017). Students used it

as a practice opportunity anticipating that a similar question would come out in the

examination. Reviewing assessments enables students to demonstrate and enhance

their metacognitive skills, such as monitoring mistakes or evaluating a learning

strategy’s success and adjusting if necessary. Knowing how they performed in a graded

assessment allows them to formulate a plan to address their misconceptions. This

paper aims to determine whether students can identify the questions that require their

immediate attention. Specifically, it aims to answer the following research questions:

RQ B.1: Do students review questions based on their performance?

RQ B.2: What reviewing patterns can be uncovered?

These questions can be answered by looking at how students interact with an

educational technology that captures their reviewing behaviors. These strategies are

captured in the form of clickstream data. Many approaches can be employed to model

and interpret such behaviors. In this paper, we modeled students’ clickstream behaviors

using Hidden Markov models (HMMs) and presented our preliminary findings.

Earlier works have examined the distribution of the students’ review actions and

how this affects their succeeding examination performance (Paredes, Azcona, et al.,

2018; Paredes et al., 2019). Moreover, when students review their graded tests, they

benefit from being guided in identifying which items to focus on (Paredes, Hsiao,

& Lin, 2018). However, these earlier investigations did not consider the dataset’s

sequential and temporal dimensions. The analyses focused only on the frequency of

user actions and did not account for the transitions between them. Therefore, this

current work aims to address the said limitation.
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HMM is among the popular approaches to analyzing and modeling clickstream

data (Rabiner, 1989). Beyond the educational data mining domain, many works have

leveraged this technique to understand behavioral patterns (e.g., common transitions

as visitors navigate an e-commerce website; Liu et al., 2017). An advantage of this

approach is that it incorporates the temporal information of the data as opposed to

simple clustering (Perera et al., 2008).

3.2 Methods

A total of 88,111 actions from clickstream data of 317 students enrolled in an Object-

Oriented Programming and Data Structures class were analyzed. These interactions

were captured using the educational tool WebPGA (Paredes et al., 2019). The course

had a total of 17 paper-based assessments. Three of them were examinations, while

the other 14 were quizzes. Two of the quizzes were for credit, while the rest were not.

Students had to answer these quizzes and were awarded full points regardless of the

correctness of their answers, as these were used for attendance.

Although the system can capture multiple student interactions, this preliminary

analysis was limited to three specific actions. These actions represent the three levels

of how a student can review an assessment as illustrated in Figure 6. The first level

is the dashboard or class overview (Figure 6a), where students are presented with a

list of all the assessments administered in class and the scores they obtained. The

second level is the assessment overview (Figure 6b), where students are shown all

the questions from the selected assessment. Their scores for the individual questions

are shown at this level. From here, students can choose a question to review, which

leads them to the third level or the question overview (Figure 6c). Students can see
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fine-grained information about the question in the third level, such as the rubrics used

to assess their answer, detailed feedback from the grader on why such a score was

given, and written annotations on the digital paper.

3.2.1 Data Pre-Processing

The students used the platform throughout the semester at their convenience.

They were informed via announcements in the learning management system (i.e.,

Blackboard) immediately after an assessment was graded. Each student’s overall

performance was computed by averaging the student’s scores in the three examinations.

Lastly, students were classified as high-performing or low-performing using the class

average (M = 0.83, SD = 0.12) as the cut-off point.

Each question had varying difficulty. To determine this, how the entire class

performed was examined. The average score for all the answers to a question was

computed. The higher the value, the easier the question is. This information was

used to add context to the reviewing behavior of the students. The score obtained

by the student was compared to the question’s difficulty. If the student obtained a

higher score, a review action on this graded answer was labeled a non-urgent question

review; otherwise, it was labeled an urgent question review. The rationale behind this

heuristic is that students should attend to the questions they did not satisfactorily do

the soonest.

Each student is represented by a single sequence enumerating the various actions

performed on the system. The system can identify a group of actions performed in a

single session. Therefore, a symbol was introduced to indicate the beginning of a new
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Table 5. Symbols Representing the Various Actions Performed by the Students

Symbol Description

D Viewing the class dashboard that shows an overview of the student’s scores
on all the assessments.

A List all the questions of an assessment and the scores obtained by the student
in each question. Allows them to choose a question to review in detail.

N Reviewing a graded answer considered non-urgent. The student’s score is
above the threshold based on the question’s difficulty.

U Reviewing a graded answer considered urgent. The student’s score is below
the threshold based on the question’s difficulty.

X Reviewing an ungraded question. The question’s difficulty is unknown. A
student can still learn from this item.

S Used as a marker to denote the beginning of another session in the student’s
sequence.

session. The average sequence length was 125 actions. Table 5 provides a summary of

the various symbols used for the analysis.

Based on how the system was design, a typical workflow always begins with

the class dashboard (Figure 6a), where students choose an assessment to review.

Afterward, students choose a particular question to review (Figure 6b). Students can

navigate to the next question using the next or previous buttons; or close the current

question window, go back to the assessment overview, and choose another question

from the list (Figure 6c). The system has a personalized notification panel on the

top and is always visible regardless of where the student is. It enables students to

navigate directly to specific questions not yet reviewed.
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Figure 6. Three Levels of How Students Review Assessments

Note: (a) dashboard or class overview, (b) assessment overview, and (c) question
overview

3.2.2 Hidden Markov Model

One common approach to modeling sequential data is through HMM (Rabiner,

1989). Two HMMs were developed to model the sequences of the two student groups,

one for each group, and explore any similarities. The number of hidden states (HS)

was a parameter that needed to be estimated. The parameter was set to four based

on a similar early work where the Akaike Information Criterion (AIC) was used to

determine the optimal number of hidden states (Hsiao et al., 2017). As shown in

Table 2, each HS represents a strategy where the emission probabilities of each action

are identified. The most probable action of a strategy is highlighted. Essentially, an
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Table 6. Emission Probabilities of the Two HMMs

Group Strategy D A N U X S

High HS1 0.70 - - - - 0.29
HS2 - 0.95 - - 0.03 0.03
HS3 0.21 0.06 0.21 0.16 0.36 -
HS4 - 0.15 0.63 0.22 - -

Low HS1 0.59 0.12 0.01 - 0.28 -
HS2 - 0.79 0.09 0.12 - -
HS3 0.09 0.60 - - 0.04 0.27
HS4 0.03 - 0.31 0.66 - -

Note: The most probable action for a strategy is highlighted in bold. Values less than 0.01 were
omitted.

HS encapsulates the combination of actions that are likely to be done by the student.

The transition probabilities between strategies (HS) of the two models are illustrated

in Figure 7. Due to the system’s design, the prior probability of the HS1 for both

models is 1.00. It simply means that all sequences always begin with navigation from

the dashboard.

3.3 Preliminary Results and Discussion

The hidden states reflect the students’ reviewing strategies. As evident in the

two groups’ prior probabilities, students would always start their review from the

dashboard. However, the high-performing group’s emission probability for the HS1

strategy is limited only to actions D and S. This means they do not go into the details

of any assessments at that moment. On the other hand, the HS1 strategy of the

low-performing group shows more actions aside from the dashboard. They would go
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Figure 7. Visualiation of the Transition Probabilities of the Two HMMs

Note: The HMMs of the high-performing students (left) and low-performing students
(right) both have four hidden states (HS), each representing a strategy.

ahead and review ungraded questions. This action by the low-performing group could

indicate that they were using the notification panel.

3.3.1 High-Performing Students

High-performing students are likely to repeat their HS1 strategy of checking their

overall performance from time to time. However, there are instances where they would

change strategy and go into the details of an assessment, then later details of various

questions as evidenced by their transition from HS1→HS2→HS3. Interestingly, in their

HS3 strategy, the emission probability is high on ungraded questions, which suggests

that they exert effort to review questions that were not graded to help them prepare

for an exam. The loop in HS3→HS2→HS3 indicates that these students consciously

determine which questions to review next instead of simply relying on the built-in
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navigation buttons. It possibly suggests the ability of these students to recognize which

of their graded answers to review next. This strategy could be a potential indicator of

the student’s awareness of planning on how to address their misconceptions. The HS4

strategy, which focused on reviewing the non-urgent questions, had a lower likelihood

of happening since the only way to reach HS4 is through itself or from HS2.

3.3.2 Low-Performing Students

Low-performing students, like the high-performing students, had a high probability

of transitioning to a strategy involving the assessment overview, HS2 or HS3 (more

probable). A closer look into the more probable transition HS3 strategy’s emission

probability shows the presence of seeing the session marker. It suggests that these

students often stopped reviewing at the assessment level and did not proceed further

to the question level. It is even more pronounced in the following transition of

HS3→HS1→HS3, meaning they would only log in to the system to check their scores

without the intention of knowing where they made mistakes or learning from the

feedback provided by the grader. The strategy for reviewing questions, particularly

urgent ones, in detail HS2→HS4→HS2 involves a loop. These states can only be

reached from the HS1 strategy.

3.4 Conclusion

This chapter examined the potential of modeling students’ ability to recognize

questions requiring immediate attention as they review and prepare for an upcoming

examination. It also investigated whether the two student groups had different
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strategies in this process. One of the limitations of this analysis involves estimating

the parameters of the HMM. Although we followed the AIC method, several approaches

can be explored that use information from the data. For example, Li and Biswas

(2002) proposed a Bayesian approach to estimate the number of hidden layers based

on the data. Two other approaches to analyzing sequential data include clustering

students who had a similar distribution of actions they performed. Another is

leveraging sequential pattern algorithms (e.g., Generalized Sequential Pattern; Srikant

& Agrawal, 1996) to identify frequently performed actions. Differential pattern mining

(Kinnebrew et al., 2013) which focuses on sequences specific only to certain student

groups, is also a promising direction. Finally, instead of focusing on what actions are

frequently performed on the system, another perspective is to examine each student

group’s distinct actions.

The clickstream data used in this study focused only on what was available on

the system. This data can be used to complement other clickstream data from other

systems, such as learning management systems. In effect, it would allow for a better

understanding of the students, as shown in the work of Gitinabard et al. (2019).

With the shift of most activities to online due to the Covid-19 pandemic, it is worth

investigating if similar trends can be found in assessments administered electronically.

The current models can be incorporated into the system, allowing future studies

to investigate how students would benefit from personalized interventions to improve

reviewing behaviors. By analyzing the students’ clickstream data in real-time, tailored

suggestions in the form of notifications can be shown to students, making them

aware of their current strategy. The same can be used to make them understand the

strategies of successful students, hopefully enabling other students to emulate such

behaviors.
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Chapter 4

CAN STUDENTS LEARN FROM GRADING ERRONEOUS

COMPUTER PROGRAMS?

4.1 Abstract

Learning from erroneous examples involves the intentional inclusion of

errors as part of the learning process. Prior works, mostly from the

field of mathematics, have investigated how this can be used in blended

learning environments to help students. Due to the Covid-19 pandemic,

most learning activities have shifted to online, motivating us to study

and utilize students’ use of an existing grading platform. Students were

tasked to evaluate various degrees of erroneous answers as their learning

opportunities, resembling program debugging. The grading process was

engineered to supply feedback to students by revealing the actual marks

and remarks to help them address their misconceptions and prepare them

for an upcoming exam. This study presents our findings from clickstream

data of students taking a synchronous online Computer Informatics class.

How different students approached the activity was looked into: the amount

of time spent and the difference of their assigned grade to that of a subject

expert’s. Although it is still inconclusive whether students learned from

erroneous computer programs, we found that students who were proactive
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in seeking feedback had better midterm scores than those who were not.

This underscores the importance of feedback in this learning process.

©2021 IEEE. Reprinted, with permission, from Paredes, Y. V., & Hsiao, I.-H. (2021a). Can
students learn from grading erroneous computer programs? Proceedings of the 2021 International
Conference on Advanced Learning Technologies, 211–215. (best paper nominee) In reference
to IEEE copyrighted material which is used with permission in this dissertation, the IEEE does
not endorse any of Arizona State University’s products or services. Internal or personal use of
this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for
advertising or promotional purposes or for creating new collective works for resale or redistribution,
please go to http://www.ieee.org/publications_standards/publications/rights/rights_link.html to
learn how to obtain a License from RightsLink. If applicable, University Microfilms and/or ProQuest
Library, or the Archives of Canada may supply single copies of the dissertation.
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The Covid-19 pandemic has caused several disruptions, especially in learning in

physical classrooms. The majority of the learning activities had to be shifted online

or at home. With this impersonal environment, students and educators have more

than ever desired innovative and engaging educational technologies. Fortunately,

our research lab has designed and has been actively using and researching an online

platform called WebPGA (see Chapter 2; Paredes & Hsiao, 2021b; Paredes et al., 2019).

It bridges cyber and digital learning analytics for blended learning environments. The

capability to support learning and teaching permitted the deployment and utilization

of the platform to cope with the challenges of learning online during the pandemic.

The system was leveraged by offering a new learning activity by involving students

with new roles to participate in independent learning activity (Hsiao & Brusilovsky,

2011). Students were empowered to become graders assessing answers to past exams

to mimic peer assessment, allowing them to exercise several metacognition skills, such

as assessment and feedback-giving. The benefits to students are twofold. They learn

from giving feedback and from seeing worked-out examples. This prepares students

for an upcoming exam as they are provided actual questions from past exams. It

enables them to gauge their knowledge, highlight some of their misconceptions about

specific topics, and self-regulate their learning.

4.2 Learning from Peer Assessments

Peer assessment is a formative strategy where a learner gets to evaluate or comment

on a peer’s work (Black et al., 2003; Topping, 2017). Teachers in higher education

mostly use this learning activity to ease their workload in grading. Research has

shown that students benefit from this activity regardless of whether they are the
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receiver or the giver of the feedback (Black et al., 2003; Hayes et al., 1987; Ion et al.,

2019; Li et al., 2020). Students benefit from being exposed to other’s work, allowing

them to create a mental representation of successful or unsuccessful work. Students

can interpret the assessment criteria of what a good performance is. This helps them

adjust their actions to meet the expected results and make them more engaged in

learning (Ion et al., 2019). In this learning activity, students adopt goals such as

problem detection, diagnosis, and searching for strategies to fix the problems (Hayes

et al., 1987). Students who consistently provided feedback outperformed those who

simply rated the quality of the peer’s work (Patchan & Schunn, 2015). Ion et al. (2019)

found a high association between providing feedback and improvement in the current

task and in transferring the knowledge to future tasks. Furthermore, students had

better-perceived learning experiences and an increased sense of commitment to their

own learning. Teachers play an essential role in this process, particularly by modeling

ways to identify strengths and weaknesses from the work of others (Berg, 1999). Li

et al. (2020) did a meta-analysis of peer assessment and found the importance of rater

training. Research has been focused on training students to give task-related feedback

as these motivate them to learn and improve in their work (Kamins & Dweck, 1999).

Students can also be guided by using prompts or checklists of criteria or through

regular practice.

4.3 Learning from Worked-Out Examples

In well-structured domains such as mathematics or computer programming, worked-

out examples play an important role in the learner’s initial acquisition of cognitive

skills (VanLehn, 1996). It provides a description of the problem, a step-by-step
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solution, and a final answer. Several studies have shown its effectiveness in improving

student’s learning (Renkl, 2002; Sweller & Cooper, 1985) and found it to be more

effective compared to learning through problem-solving (Sweller & Cooper, 1985).

However, its utilization does not guarantee that students would learn from it. It

depends on the students’ ability to explain the worked-out example to themselves

as they make sense of the new information (i.e., self-explanation effect) (Chi, 2000;

Renkl, 2002). Worked-out examples are not limited only to illustrating correct answers.

In certain situations, errors are intentionally incorporated into the examples (i.e.,

erroneous examples). These mistakes can either be pointed out or left to be figured

out. This presents learners an opportunity to detect inconsistencies and violations

between their mental models and the normative model, which leads them to reflect,

self-question, or self-explain (Rushton, 2018). Prior works, mostly in mathematics,

have explored the impact of erroneous examples on student’s learning (Isotani et al.,

2011; Melis, 2005; Tsovaltzi et al., 2010). The literature is still inconclusive on its

effectiveness as although it may improve student’s performance, the improvement was

not statistically different from other conditions that did not use erroneous examples

(Griffin, 2019; Isotani et al., 2011). Despite this, in the domain of programming

learning, this approach is popularly used as a learning exercise called programming

debugging. Students are deliberately exposed to mistakes in a programming code and

are expected to think critically and troubleshoot it to make it work. This learning

activity presents as a learning opportunity for students (Brandt et al., 2010; Hsiao &

Brusilovsky, 2011). This is a critical and indispensable skill one has to be equipped to

succeed in programming. Therefore, in this case, it is worth looking into how erroneous

examples play a role in programming learning. Thus, the focus of this chapter is to
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explore and investigate on the feasibility of evaluating erroneous examples using an

educational technology. Specifically, it aims to answer the following research questions:

RQ C.1: Do students learn from evaluating erroneous answers?

RQ C.2: Do students leverage feedback provided to them during the learning

activity?

RQ C.3: What behaviors do students exhibit when evaluating erroneous

answers?

RQ C.4: How do students benefit from receiving feedback during the learning

activity?

In this chapter, erroneous example is explored in the form of answers (that contain

errors) to programming problems. This analysis looked at how students evaluated

such answers using WebPGA. Students not only get to see actual questions, but they

also get to see actual answers and the actual grades or marks given to those answers.

Section 4.4 provides an overview of the study design and the data collection process.

Afterward, Section 4.5 presents the findings and discussions.

4.4 Methods

This section provides a discussion of the classroom study conducted. Particularly, it

discusses the characteristics of the participants. Additionally, the erroneous examples

used in the study are also discussed.
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4.4.1 Participants

The behaviors of 63 non-Computer Science major students enrolled in a synchronous

online Introductory Computer Informatics class offered during the fall semester of 2020

were looked into. Class instruction was delivered through Zoom, while resources and

assessments were posted on Canvas. The topics covered were primarily focused on basic

web programming using JavaScript. It covered database management concepts and

SQL toward the end. The class had two midterm examinations. Students answered a

pre-class survey to gauge their prior programming experience. 59 students responded.

Most of them were familiar with Java (i.e., have heard of it) where the majority (58%)

had less than a year of programming experience.

4.4.2 Research Platform and Study Design

In this study, students were assigned the role of being graders on WebPGA

(see Chapter 2 for a detailed discussion of the original rationale and design of the

research platform). Students were tasked to evaluate answers to past examination

questions. This includes explaining why such an answer merits the grade they have

assigned. They were given rubrics along with their corresponding weights to serve as

their guide (Figure 8A). Students were made aware that they could grade an answer

multiple times. The system can be accessed anytime and anywhere and can capture

the amount of time spent by the students while performing the activity. It could

also determine whether the students sought help by requesting feedback from the

system for a particular answer. It can also identify how the answers were graded (i.e.,

which answer was graded first, next, and last) as each grading attempt is recorded

65



Figure 8. Grading Interface Used by Students Capable of Providing Two Levels of
Feedback

Note: The two levels are actual marks (B) and actual remarks (D).

separately. During the class meeting prior to the first midterm, the system was

introduced as a supplemental examination preparation tool. Students were told that

usage or non-usage of it would not have any bearing on their final grades.

Students were given multiple answers to grade and were given the autonomy to

determine the order on how to grade them. Figure 8 shows a screenshot of the grading

interface. The system provides two levels of feedback. After grading an answer for the

first time, a Reveal Actual Marks button on the upper right portion will appear.

This will uncover the actual marks (Level 1) the answer received from a subject expert

(Figure 8B, right next to the student’s assigned grade) and will make the Show

Grader Feedback button visible (Figure 8D). When the Show Grader Feedback

button is clicked, the actual remarks (Level 2) the expert gave will be shown on the
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Table 7. Overview of Actual Scores of Worked-Out Answers

Activity Mistakes QP1 QP2 QP3

A M 4/8 5/8 2/7
F 8/8 7/8 5/7

B F 4/5 4/5 5/5
M 0/5 1/5 1/5

Note: Activities A and B were administered prior to Midterms 1 and 2, respectively.

screen (Figure 8D). The student can either choose to seek feedback (either level) or

continue grading the next answer.

Two activities (A and B) were given in class. For each activity, students were

given three pairs of programming questions (QP). Each QP contains two versions of

answers to the same question. One version has more mistakes (M) while the other

has fewer (F). Both activities had six answers that needed to be graded. Activity A

was given prior to Midterm 1. In this activity, the answers were arranged as follows:

A-QP1-M, A-QP2-M, A-QP3-M, A-QP1-F, A-QP2-F, and A-QP3-F. Answers with

more mistakes were shown first. Activity B was given prior to Midterm 2. In this

activity, the order was swapped to counterbalance any order effects. Answers with

fewer errors were shown first: B-QP1-F, B-QP2-F, B-QP3-F, B-QP1-M, B-QP2-M,

and B-QP3-M. Table 7 summarizes the design along with the actual scores.

4.5 Results and Discussion

In this study, the impact of the learning activity was explored. A total of 11,029

clickstream data was analyzed to reveal students’ strategies as they performed the

tasks. In addition, students’ responses to a survey to obtain their subjective evaluation

of the system were examined.
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Table 8. Student Performance Based on Activity Completion

Midterm 1 Midterm 2

N M SD N M SD

Complete 50 92.36 15.53 37 85.03 11.85
Incomplete 13 83.08 29.24 26 79.54 18.48

Note: Completion is defined based on whether all six questions from the activity were graded.

4.5.1 Did the Learning Activity Help the Students?

It is hypothesized that this learning activity would help students prepare and

address any of their misconceptions as they are given the opportunity to see questions

as well as answers to past exams. To answer RQ C.1, students were grouped based on

whether they completed the activity prior to taking their midterm exam. The midterm

scores of the two groups are summarized in Table 8. No significant differences in the

students’ scores for both Midterm 1 (p = 0.14) and Midterm 2 (p = 0.09) was found.

This finding is similar to Griffin (2019) and Isotani et al. (2011). However, it can be

observed that the scores of those who completed the activity were more coherent, as

represented by having a standard deviation of almost half of those who did not. This

could also be a good indicator that exposing students to erroneous examples may not

be detrimental to the students’ performance, at least when learning to program. It

should be noted that this exploratory study focuses only on a single activity performed

before an exam. More exploration should be done to know whether this trend persists

when students are provided with multiple opportunities to see erroneous examples on

the platform.
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4.5.2 Exploring How Students Grade

The following sections provide a discussion on how to answer RQ C.2 and RQ C.3.

Particularly, these look into whether leverage feedback during the grading process,

how they improve their speed over time, whether they take personal notes, and how

students’ performance were in general.

4.5.2.1 Students Did Not Take Full Advantage of Feedback

For both activities, students had the opportunity to solicit feedback by either

revealing the answer’s actual marks (Level 1) or actual remarks (Level 2). Given

that there were two versions of answers for every question, it was hypothesized that

students would grade the first version, request feedback before grading the second

version, and finally request feedback again. Such is referred to as the immediately

reviewed behavior. It is possible to grade the first and the second versions separately

then opt to seek feedback only after both have been graded. Such is referred to as the

delayed review behavior. Any other behaviors exhibited were grouped as neither. This

includes those who may have graded both versions but chose not to solicit feedback

to either versions or both. Surprisingly, when students do solicit feedback, they would

only do it to two out of the six questions in an activity. Students assumed that since

the feedback for one version was already seen, the other version’s feedback could be

ignored. This could be an indicator that students are not taking full advantage of the

feedback provided to them. This might affect how students reflect or self-explain this

inconsistency between their mental model and the normative model. What motivates

students to seek help? Are they aware if they need help? Among the six different
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QPs, only 7.67% of the students immediately reviewed. 40.48% did a delayed review.

Most of the students (51.85%) belonged to the neither group. Such counterintuitive

findings is speculated to may have been driven by the design of the user interface.

This merits further investigation.

4.5.2.2 Students Became Faster in Grading

How does the order of presentation of the answers affect the students’ behaviors?

In this section, how much time students spent grading was looked into as this could

reflect how they strategize their problem detection and diagnosing approach to fix the

problem. In Activity A, students took significantly more time grading the answers

with more mistakes (Figure 9, left). This could be due to students trying to identify

the errors and typing in their notes. Students became more critical as they figured

out what to look for when assessing an answer. On the other hand, there was no

significant difference in the time spent grading in Activity B (Figure 9, right). Seeing

questions with fewer mistakes may be similar to seeing the answer key. Therefore,

students are likely to be less critical as students are already aware of what to look for

when grading. This could suggest that the order of presentation may have an impact

on how students grade.

4.5.2.3 Students Were Taking Personal Notes

As students assess answers, they write in their own feedback or personal notes

as a form of self-explanation (Chi, 2000) which hopefully would transfer knowledge

to future tasks (Ion et al., 2019). The amount of time spent grading may have been
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Figure 9. Comparison of Time Spent Grading Between Activities

Note: A difference in time spent grading was only seen when answers with more
mistakes (red) were presented first instead of those with fewer mistakes (green);
∗p < 0.05

influenced by these notes’ length (in characters). Unsurprisingly, a significant positive

correlation between the length of the notes and the amount of time they spent grading

a question was found for both Activity A (r = 0.54) and Activity B (r = 0.56). The

amount of time spent is composed of multiple factors: (1) analyzing the problem

at hand, (2) figuring out the mistake, (3) identifying the solution, (4) providing a

justification why such an answer deserves a particular grade. The average length of

the notes between the two activities were compared to examine the impact of how

the answers were arranged. Students had significantly longer notes in Activity A

(M = 88, SD = 103) compared to Activity B (M = 59, SD = 81). Upon closer look at

Activity A, students wrote longer notes on answers with more mistakes. This behavior

was not seen in Activity B, where the arrangement of the questions was reversed.

This suggests that the order may have mattered on how students took down notes.

If exposed to more mistakes first, they will be more critical in note-taking. When

exposed to fewer mistakes first, they will be more lenient and likely to write shorter

notes.
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4.5.2.4 Students Tend to Overgrade Answers with More Mistakes

In this study, the actual marks were considered as the grades assigned by a

subject expert. The expert’s marks were compared with the students’ marks for

every answer by computing their differences and rescaled them to [−1, 1]. Ideally,

the value should be close to zero. A positive value indicates the student assigning a

higher grade than the actual (overestimated). A negative value indicates the opposite

(underestimated). Among the six QPs, we found that regardless of the arrangement

of the answers (i.e., more mistakes showed first or the other way around), students

were not good at grading answers with more mistakes as they tend to overestimate

the grade (Figure 10). This is despite them being provided rubrics that could aid

them in the process. Students need to be informed and guided on what constitutes a

crucial part of a question to help them answer a similar question in the future. This

highlights the importance of teachers’ role in modeling what to look for when assessing

answers (Berg, 1999). In their absence in this activity, the two levels of feedback that

the system could provide was used as a proxy to help them do better the next time.

This overestimation of grade assignment is a concerning behavior as this could be a

projection of their own performance and a reflection of overconfidence in their skill

(Kruger & Dunning, 1999; Magnus & Peresetsky, 2018; Serra & DeMarree, 2016) or

may indicate a knowledge gap. Therefore, how this behavior correlates to their exam

performance was looked into. For each student, the average grade differences for the

six questions in the activity was computed and associated it with the student’s score

on the midterm exam corresponding to the activity. A significant negative correlation

between the average grade difference and the midterm exam scores was found for both
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Figure 10. Comparison of Students’ Grading Calibration in the Two Activities

Note: Students have a tendency to overgrade answers with more mistakes (red) than
those with fewer mistakes (green); ∗p < 0.05

Activity A (r = −0.34) and Activity B (r = −0.56), suggesting that those who did

not overestimate did better in the exams.

4.5.3 The Role of Feedback

The following sections provide a discussion on how to answer RQ C.4. Particularly,

these look into how soliciting feedback is associated with their midterm performance

as well as their calibration in the grading process.

4.5.3.1 Students Who Actively Sought Feedback Did Better in Exams

The system provides two levels of feedback: (1) by showing the actual marks of

the worked-out answer; and (2) by showing the actual remarks written by a subject

expert (i.e., an explanation of why such grade was given or what was being looked for

in the question). Students had to click a button to receive feedback. As noted earlier,
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Table 9. Midterm Performance of Students According to Whether They Solicited
Feedback From the System

Activity Feedback Proactive Inactive Hedges’ g

N M SD N M SD

A Actual Marks 38 96.58 9.54 25 81.12 25.76 0.87
Actual Remarks 32 96.44 10.32 31 84.26 24.03 0.66

B Actual Marks 30 87.03 10.86 33 78.88 17.31 0.56
Actual Remarks 26 88.46 9.88 37 78.76 16.81 0.67

Note: Activities A and B were administered prior to Midterms 1 and 2, respectively.

not everyone requested feedback. Students were grouped based on this behavior: the

proactive group are those who actively sought feedback to at least one of the six

worked-out answers in an activity, while the inactive group are those who did not.

The midterm exam scores immediately following the activity (i.e., Midterm 1 for

Activity A; Midterm 2 for Activity B) were compared. On average, the proactive group

(M = 92.34, SD = 10.96) had a significantly higher midterm score than the inactive

group (M = 80.05, SD = 20.17) with a Hedges’ g effect size of 0.9. Additionally,

Table 9 provides a breakdown of the performance on the two midterm examinations.

These findings highlight the important role of feedback. Moreover, as students are

exposed to erroneous examples, they must be guided throughout the process. The

mistakes have to be pointed out to them, and correct answers have to be provided.

This finding is encouraging as it shows the potential of this learning activity to help

them prepare for their exams. It also trains them on how to debug a program, which

is a critical skill one has to master to succeed in computer programming.
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4.5.3.2 Validating One’s Performance Led to Assigning Grades Closer to Expert’s

Some students opted not to reveal what the actual mark was, a failure to validate

their performance. What could be the underlying reason for such behavior? Did

the student already know what the answer was or what the assigned grade should be,

based on his or her current understanding? Was the student simply doing the activity

for the sake of compliance? The quality of their grade assignments were looked into.

Students who actively validated their performance had grade assignments that were

closer to experts (i.e., scaled difference close to zero) (M = 0.07, SD = 0.24). On

the other hand, those who did not validate their performance had a significantly

higher difference on their grade assignments (M = 0.20, SD = 0.33) with a Hedges’ g

effect size of 0.46. This is more apparent in answers with more mistakes. Those who

confirmed their gradings appeared to have more coherent and close-to-reality grade

assignments similar to that of an expert, and vice versa. Choosing not to receive

feedback would have been acceptable if they can grade properly. However, it seems

that these students need guidance. This would have been a good opportunity to

correct their misconceptions. This underscores the importance of student training as

pointed out by (Li et al., 2020). This behavior needs to be addressed as it may affect

students as they answer a similar question on their exam.

4.5.4 Subjective Evaluation

At the end of the semester, students were asked to answer an optional and

anonymous survey to solicit their subjective evaluation of the system. Only 58

students (92.06%) of the 63 responded. The results to select questions are shown
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Figure 11. Select Survey Response of Students to an Anonymous Subjective Evaluation of Their Experience During the
Grading Activity

76



in Figure 11. The majority (70.69%) answered that the grading activity has helped

them identify some of their misconceptions. Furthermore, most of them said that the

ability to see the actual mark (86.21%) of a worked-out answer, as well as the actual

remarks (84.48%), has helped them understand the question better. Most students

responded that typing in their justification for the grade they assigned to an answer

has helped them assess their knowledge (68.97%) and that grading the same question

the second time would be faster as they already know what to look for (82.76%).

Overall, students were satisfied (74.14%) with how they graded the answers using

the system. When asked which they think would help them prepare for an upcoming

exam, most would prefer to see a past exam that contains both correct and incorrect

answers (72.41%). Finally, 67.24% of the respondents indicated that they want to use

the system in future courses, while 65.52% wanted to use the system when preparing

for an exam.

4.6 Conclusion

This chapter presented an exploratory analysis of students’ behaviors as they grade

answers to programming questions from examinations of a previous offering of the

same course. It was hypothesized that students could benefit from a learning activity

that integrates peer assessments and worked-out erroneous examples, particularly in

programming learning, as this closely resembles program debugging, a crucial skill in

computer programming. This learning activity was performed on WebPGA prior to

every midterm examination to help students prepare and review. To help students

become familiar with the learning process, the system offers two levels of feedback: (1)

by revealing the actual marks, and (2) the actual remarks given by a subject expert.
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Since the activities were not mandatory, not all students completed the learning

activities. Consistent with some studies, there was no significant difference in terms

of exam performance between those who completed and those who did not. However,

those who performed the activity had more coherent exam scores. Although the

learning activity’s impact is still inconclusive, a closer look at those who used the

system highlighted the importance of feedback. Students who solicited feedback had

significantly better scores in their exams. This suggests that being proactive in seeking

feedback, especially when working with erroneous examples, could lead to a better

learning outcome. Students would greatly benefit from this when consistently guided

and trained.

In the future, a within-student analysis should be done to determine the impact of

the learning activity or the system. Also, students were providing their notes while

doing the activity. These notes can be leveraged to represent students’ knowledge

about a topic. Lastly, the analysis can be expanded to provide deeper insights to

understand why students overestimate grades, especially those with more mistakes,

and how this could be addressed.
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Chapter 5

PRIME: INTELLIGENTLY RECOMMENDING APPROPRIATE ITEMS TO

STUDENTS TO SUPPORT LEARNING FROM OTHER’S MISTAKES

In the modern classroom, systems for capturing student performance data have

become increasingly available. Over the years, vast amounts of student data have been

collected which provide an abundance of information just waiting to be discovered.

By construing this as a collection of students’ learning experiences, future students

will be able to gain insight from this information. The size of this dataset makes it

difficult for an individual to navigate through and explore it independently. Therefore,

personalized recommendations are desired to tailor to the user’s needs, as is the case

with recommender systems. Two major types of recommendations are often made

by technology-enhanced learning systems: those that enhance knowledge and those

that provide remedial advice (Bauman & Tuzhilin, 2018). Recommendations from the

former group aim to expand the student’s knowledge by suggesting the next steps. In

contrast, recommenders belonging to the latter group are concerned with filling in the

student’s gaps.

From the results of Chapter 4, it was found that when students were asked to

evaluate an erroneous example, some sought feedback by reviewing the actual score or

comments provided by an expert. This process results in the development of a student’s

evaluative judgment, which ultimately leads to an improvement in the calibrator’s

accuracy. Eventually, students became familiar with the process, which ultimately

resulted in them taking less time to complete the activity. It was unclear how exactly

students learn from such activity, or at all. This is because there was no difference
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between the test performance of students who completed the activity and those who

did not. The problem may be due to a lack of consideration for students’ needs. In

an introductory programming course, some students possess greater knowledge than

others. Like in the literature of worked examples, the value of viewing such examples

diminishes as an individual develops expertise (Kalyuga, 2007; Kalyuga et al., 2001).

A problem-solving activity would be more beneficial to these students. In contrast,

novices would benefit from examples that are on par with their level of mastery. The

recommendation should therefore consider the student’s current level of mastery.

During the learning process, guidance is the process by which a learner is directed

or influenced toward taking certain actions. It is something that should be inherent in

educational systems. Every learner has their own unique motivation, goals, preferences,

knowledge level, interests, and traits (Brusilovsky, 1996). The design of such systems

using a one-size-fits-all approach may be ineffective. It should be able to provide

learners with tailored guidance and adapt to their individual needs. A system

such as this is called an adaptive environment since it monitors the learner and

makes the necessary adjustments to enhance learning (Shute & Zapata-Rivera, 2012).

Adaptations can be expressed on a micro-, macro-, and meta-level (Folsom-Kovarik

et al., 2019). To provide effective guidance, it is necessary for a variety of components

to work in concert.

Based on the findings in Chapter 4, the present study aims to customize the

selection of erroneous examples that students will evaluate. To accomplish this,

a recommendation engine that analyzes multiple pieces of information could be

incorporated to determine the most appropriate item. Specifically, it takes into

account the student’s deficiencies. As in the previous study, students are assisted

in preparing for a forthcoming test. By using minimal information from teachers
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regarding the blueprint of an upcoming test, the system seeks to predict each student’s

item-by-item performance. Based on these predicted performances, erroneous examples

(i.e., anonymous answers of a different student) will be presented for the student to

evaluate to learn from the errors of others. To make students aware of their own

weaknesses, items that resemble their own performance are provided to them. The

present study hypothesizes that students will be made aware of their misconceptions

when a personalized recommender can intelligently provide them with an erroneous

example for them to evaluate. This will prepare them for further assessment. It will

be necessary to develop a system for forecasting one’s performance to achieve this.

While this task is similar to those that have been performed in other research, the

current context prevents it from using existing methods.

While this chapter addresses the limitations identified in the previous chapter, the

evaluation focuses primarily on the framework’s feasibility. An independent study,

such as a Wizard of Oz study, is believed to be able to test the learning effect. Thus,

the purpose of the chapter is to explore and investigate how past student performance

data can be utilized to provide appropriate learning exemplars for future students.

Specifically, it aims to answer the following research questions:

RQ D.1: Using performance data on complex multi-topic test items from

a classroom setting, how can the growth of the mastery level of students be

modeled?

RQ D.2: How can a student’s outcomes on individual items be predicted on a

test that contains items that allow partial credit?

RQ D.3: Having knowledge of the potential outcomes of a test, what innovative

learning opportunities, particularly in the domain of computer programming,

can be provided to students to assist them in preparing?
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This chapter is organized as follows. Sections 5.1 to 5.2 discuss the motivation for

the proposed learning activity and discuss various techniques for predicting student

performance. In Section 5.3, the dataset used for the experiment is described in detail,

followed by a comprehensive introduction of the PRIME framework in Section 5.4.

Afterward, Sections 5.5 to 5.6 provide a brief overview of the experiment and the

evaluation results.

5.1 Evaluating Erroneous Answers as a Learning Opportunity

Based on a survey among teachers of introductory computer programming, it

was found that students are given access to past tests to prepare for an upcoming

test (Sheard et al., 2013). In some classes, the teacher may even provide students

with copies of these tests directly. In other instances, students utilize online services

such as Chegg to obtain copies of these tests illegally. In addition, it was found that

teachers tended to use test questions from past examinations and slightly revise them.

The likelihood of obtaining questions from textbooks and the internet is low. These

findings suggest the value of reviewing old versions of the tests. The act of simply

providing access to students may be considered a passive activity. Based on the

ICAP framework, if students are engaged in learning rather than passively receiving

information, they will have a more meaningful learning experience and ultimately

learn more (Chi & Wylie, 2014). Data collected in the past can be repurposed to assist

a new cohort of students in preparing for a forthcoming examination. When students

have the opportunity to experience a similar task before taking an actual test, they

not only gain a greater understanding of the topic but also develop a greater degree

of confidence in their ability to accomplish it or increase their self-efficacy (Bandura,
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1997). The motivation of students for performing an activity is typically determined

by the expected benefits they will receive (Wigfield & Eccles, 2000). For example,

students tend not to value such additional activities if they already know the material.

Due to this, students should be provided with a level of difficulty that is appropriate

to their current level of mastery. Lastly, the supplementary activity has practical

value for students since they can gain knowledge from it and see possible test items

that may appear on the test.

5.1.1 Benefits of Peer Assessment

This type of learning opportunity may be viewed as an opportunity for learners

to evaluate the work of their peers, known as peer assessment. It offers students

a variety of opportunities to practice and integrate what they have learned geared

toward developing a mastery of the domain (Ambrose et al., 2010). Literature has

pointed out the educational benefits of the activity, particularly for those who perform

the evaluation, as it fosters evaluative judgment and enhances judgment accuracy or

calibration (Nicol et al., 2014). It facilitates the feedback-giving process, especially

when students attempt to troubleshoot the work of a peer or even to offer solutions,

which is a cognitively engaging activity based on the ICAP Framework (Chi &

Wylie, 2014). Through exposure to numerous works of varying quality, students gain

an understanding of the abstract concept of quality (Sadler, 2010). Students can

compare their mental solution to the problem at hand with that of the other student

(McConlogue, 2015). This allows them to evaluate their own work by comparison,

thereby strengthening their internal feedback mechanism. It is helpful for students

to observe the work of others to gain an understanding of alternative strategies,
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such as another approach to solving the problems (Atkinson et al., 2000). To fully

benefit from the process, students must first be trained in the process (Nicol, 2021).

Overestimation of performance is common among students. It is necessary to devise

interventions to improve a student’s calibration. Knight et al. (2022) found that when

students improved their calibration or even underestimated, their performance on the

subsequent quiz improved.

5.1.2 Benefits of Worked Examples

Seeing other people’s answers can also be construed as worked examples. Providing

students with worked examples is one of the ways to help them develop strategies,

especially when they are learning new skills (McLaren & Isotani, 2011; Renkl, 2014).

When viewing actual student answers, students will find that most contain errors.

These examples will therefore be considered erroneous if they are provided to other

students. In recent years, research has explored the benefits of exposing students to

erroneous examples, particularly in mathematics (Isotani et al., 2011; Melis, 2005;

Tsovaltzi et al., 2010) or computer programming (see Chapter 4). This learning

exercise mimics the process of “programming debugging”, an intricate and challenging

activity requiring a strategy (Winslow, 1996), which is a crucial skill in the field of

computer programming. There is a need to assist students with debugging errors

and explain how to correct them (Pillay, 2003). By studying other people’s mistakes,

students can avoid committing the same mistakes themselves (Ohlsson, 1996). By

recognizing their own mistakes or those of others, students can reflect on their own

performance and make the necessary adjustments. This develops metacognitive skills

in students, such as self-monitoring. As such, it facilitates the processes of assimilation
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and accommodation as they attempt to make sense of information that appears at

odds with their schema or existing knowledge (Piaget & Inhelder, 1969). Additionally,

this activity aligns with the main principles of social learning theory, where learning

is seen as a social process (Bandura, 1977). Learning occurs by observing others’

behaviors. Specifically, it argues that students learn by imitating others’ actions

and then observing the consequences of those actions. It may also trigger students

to encounter prediction errors as they encounter mistakes, resulting in a difference

between expected results and actual results. Learning is believed to result from this

process. The past answers of students can be construed as a collection of different

approaches to answering a question. Students can replicate or dismiss such behaviors

based on what they observe, for instance, if they observe how certain answers are

being rewarded or penalized on a test. The owner of the incorrect answers corresponds

to what Bandura (1977) refers to as a model, whereas the incorrect answers are what

is being observed. The outcome is the grade received for the answer. Thus, students

may be able to gain knowledge from such vicarious experiences and even increase their

self-efficacy as a result (Bandura, 1997).

5.2 Student Performance Prediction

The learning activity aims to provide students with examples that are tailored

to their needs. As a matter of fact, this is one of the guidelines for designing and

building effective adaptive and intelligent systems (Brusilovsky, 1996, 2001). What

is an appropriate example? Since the purpose of this activity is to make students

aware of their misconceptions, an appropriate example is one that addresses topics

on which the student has deficiencies. Learning is a mental process, so knowing
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these deficiencies can only be determined by understanding the student’s domain

mastery. Additionally, these measurements can only be determined from observables,

in this case, the results of the test. Moreover, because the learning activity includes

identifying the student’s performance in the future, the task can also be framed as

a prediction of student performance. An overview of some approaches that can be

employed to identify student strengths and weaknesses is provided in this section.

Student performance prediction has become a well-researched area as student data

has become more prevalent and machine learning has become more popular. Students’

performance is measured both quantitatively and qualitatively (Brahim, 2022) with

varying levels of granularity. The degree of granularity is significant as it provides more

information and could greatly affect the intervention. Researchers have previously

identified students at risk, identified appropriate next tasks, predicted completion

rates, and predicted performance on advanced courses, among other things (Bauman

& Tuzhilin, 2018; Romero & Ventura, 2020). Most of the literature predicts summative

performance metrics such as course grades and exam scores; however, the concept

of “knowledge gain” is gaining a lot of popularity (Hellas et al., 2018). Most studies

use statistical and machine learning methods, with few using a combination of both.

These models rely on various features, attributes, or characteristics of the student to

make these predictions. The performance of students is thought to be influenced by a

variety of factors. Many factors are involved, ranging from demographics to student

behavior (Khan & Ghosh, 2021). Many studies use demographic data, some use

performance data (from either the current or previous course), some use characteristics

(self-efficacy), and some use engagement data (such as time on task). There are also

works that combine these factors.

It is possible to categorize these works based on their objectives, as illustrated in
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Figure 12. Synthesizing and Categorizing the Various Works on Student Predictions

Figure 12. Student performance prediction is the umbrella term that encompasses

everything. Work that incorporates individual student characteristics is classified as

student modeling. Attributes may include cognitive, emotional, and self-regulation

characteristics. Finally, knowledge tracing encompasses works that focus on knowledge

and mastery.

5.2.1 Student Modeling

Self (1990, as cited in Chrysafiadi & Virvou, 2013) emphasizes the importance of

effective student models. In any adaptive education system, models are an essential

component (Pelánek, 2017). It aims to capture various aspects of students to obtain

a holistic picture of them. It is possible to collect information directly from the

student or indirectly through proxy data, such as interactions, that could assist in

developing the model. Using these data, latent characteristics of students, such

as mastery or knowledge, can be estimated. The data is used to provide tailored

pedagogical interventions and suggest appropriate learning resources for the students.

Multiple techniques have been proposed and incorporated into existing educational
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systems over the years. Table 10 combines and summarizes the current approaches

to developing student models as surveyed by Chrysafiadi and Virvou (2013) and

Zapata-Rivera et al. (2020). In conjunction with overlay student models, which are

commonly used to represent students’ mastery of a domain, this study leverages fuzzy

and machine-learning methods.

5.2.2 Knowledge Tracing

As far as the granularity of student performance is concerned, relying solely on

overall scores provides only limited insight into a student’s strengths and weaknesses.

Estimating a student’s mastery of a subject domain is a common task associated with

student modeling. Having a clear understanding of the student’s current mastery level,

particularly of a knowledge component, enables the system to provide appropriate

suggestions or actions to maximize the student’s learning. An example of this would

be the system looking at a student’s previous responses to determine whether they are

ready to learn a new concept. The process of knowledge tracing is used to accomplish

this. Knowledge tracing is extensively studied in EDM and AIED research, particularly

in order to determine what students know and does not know. A knowledge tracing

task is divided into two major components: the estimation of knowledge and the

prediction of response (N. Liu et al., 2022). According to Khan and Ghosh (2021),

most EDM research focuses primarily on success prediction using either regression or

classification. There are very few studies that focus on predicting actual marks, as

46% of the 140 surveyed focused on success prediction, 35% on final grades, and 19%

on score prediction. The purpose of the current study is therefore to make predictions

at the item level or score predictions. In this manner, the strengths and weaknesses of
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Table 10. Overview of Various Approaches to Developing Student Models

Approach Description

Overlay model Commonly used to represent mastery of topics where the student model is a subset of the domain
model. This alone cannot make inferences of knowledge integration with prior knowledge of the
learner, therefore has to be combined with other approaches.

Stereotype model Groups students based on certain characteristics that are shared. Allows the system to start quickly.
Prone to errors and requires human intervention for updates.

Perturbation model Extension of overlay model which includes possible misconceptions (i.e., mal-knowledge). Leads to
better remediation and development of bug library (i.e., buggy model). However, developing the bug
library is a laborious process.

Machine learning Uses learning algorithms to infer behavior through various characteristics or from the data. Multiple
observations enable the development of predictive models to predict future actions.

Cognitive theories Relies on various established theories on human cognition that attempts to explain behavior during
the learning process.

Constraint-based Uses constraints to represent both domain and student knowledge. Tends to be computationally
simple as it does not require an expert module.

Fuzzy model Assumes that student modeling is a complex and non-straightforward task. Capable of handling
uncertainty.

Bayesian networks Uses directed acyclic graphs representing probabilistic dependence or causal relationships among
variables. Capable of handling uncertainty using probabilities. One limitation is it is time-consuming
to make.

Ontology-based Supports representation of abstract concepts and properties to facilitate reusability and extendability
in different application contexts.
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Table 11. Overview of Various Approaches to Knowledge Tracing

Approach Description

Probabilistica Mastery of a topic is estimated based on historical performances or
practice opportunities and by including parameters for guess, slip,
learning, and unlearning.

Logistic Diagnose mastery by applying a logistic function on estimated pa-
rameters.

Deep Learning Uses deep learning algorithms to derive predictive models based on
student performance.

Others Approaches from other fields such as psychometrics and combina-
torics.

a As in Q. Liu et al. (2021) but Markov processes in Gervet et al. (2020).

a student can be more precisely identified. The next step is to survey and identify

existing approaches that attempt to accomplish a similar objective.

There are already a variety of approaches in the literature. In fact, a taxonomy has

recently been proposed to group the various models. Based on a technical perspective,

Q. Liu et al. (2021) classified models into three categories: probabilistic, logistic,

and deep learning. Gervet et al. (2020) presented a similar classification within the

categories of Markov processes, logistic regression, and deep learning. In addition,

these families of models were evaluated on nine real-world datasets to identify the

characteristics and properties that contributed to their performance. In addition

to the three categories identified earlier, knowledge tracing is also evident in the

Psychometrics literature, which is noteworthy. A summary of the different approaches

can be found in Table 11.
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5.2.2.1 Probabilistic

In the probabilistic approach, it is assumed that student learning follows a Markov

process. The latent knowledge state can be estimated from the observed performance.

A common example is the Bayesian knowledge tracing (BKT; Corbett & Anderson,

1994), which is a special case of a hidden Markov model. It has two parameters,

namely the transition and the emission probabilities.

5.2.2.2 Logistic

In the logistic approach, various factors associated with learning interactions are

leveraged to estimate both the student and knowledge component parameters. A

logistic function is used to convert these estimates into probabilities of students’

mastery. The popular examples are the learning factor analysis (LFA; Cen et al., 2006)

and performance factor analysis (PFA; Pavlik et al., 2009). In PFA, performance on the

current item is predicted based on success and failure on previous items that address

the same knowledge components. In AFM, the probability of success is proportional

to the combination of the student’s ability, the difficulty of skills associated with the

item, and the amount of learning gained from each attempt. On the other hand,

PFM improves on AFM that it includes evidence of learning from previous attempts

while discarding student ability altogether. An example in Thaker et al. (2020), PFA

was used alongside knowledge states to identify the state of the student and provide

recommendations for remedial readings in an online reading platform to provide an

adaptive recommendation.

93



5.2.2.3 Deep Learning

In this approach, deep learning techniques are exploited to develop models that

can directly learn from data. It can learn non-linear relations as well as perform

feature extraction. One prominent example is deep knowledge tracing (DKT; Piech

et al., 2015). Another example that uses deep learning models is the open-ended

knowledge tracing framework which is capable of estimating students’ mastery of

computer science concepts and generating a code that is predicted to be the output of

the student (N. Liu et al., 2022). However, their work is focused solely on computer

programs. Another is Knowledge proficiency tracing (KPT; Y. Chen et al., 2017) which

borrows from the idea of knowledge space and matrix factorization while incorporating

the theories on learning and forgetting. Notably, a common limitation of employing a

deep learning approach is the interpretability of such models.

5.2.2.4 Others

Item Response Theory (IRT) is a family of approaches aiming to uncover a latent

trait based on item difficulty and student ability interaction. It has several variants,

particularly regarding the number of estimated parameters (e.g., Rasch, 2-PL, 3-PL).

One issue often associated with the classical IRT is the unidimensional nature of the

latent trait. To get a granular idea of students’ mastery, it is necessary to go beyond

an overall latent trait. Extensions to IRT began supporting multiple latent traits (e.g.,

MIRT). Recently, one work compared the prediction performance at the item level of

IRT to machine learning methods (Park et al., 2022). Despite the promising results

of their explanatory IRT models, the dataset used was limited to dichotomous items.
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Again, in introductory computer programming classes, tests often emphasize code

writing where multiple concepts are being dealt with by the student simultaneously

(Daly & Waldron, 2004).

Cognitive Diagnostic Model (CDM) is a family of approaches that can attempt

to uncover latent subskills of students based on their item performance. In a way, it

addresses the limitation of IRT by supporting multiple subskills instead of assuming a

single latent trait. One example is G-DINA (de la Torre, 2011). Information about the

item using a Q-matrix is used to estimate students’ mastery based on their observed

performances. However, unlike IRT, where a student is described by a continuous

latent trait, in CDM, a student is characterized by a vector of discrete latent traits that

represents their mastery of the various subskills. It is worth noting that researchers

have proposed a framework for polytomous latent subskills by extending current

approaches (J. Chen & de la Torre, 2018).

Knowledge Space Theory (KST) is another approach to assessing student knowledge

based on combinatorics (Doignon & Falmagne, 1999). Arguably, this one is fairly

complex and inaccessible among all the surveyed approaches. The core idea is the

determination of the student’s knowledge state, which is a subset of problems from

a domain that the individual is capable of solving (Falmagne et al., 1990). The

collection of knowledge states is known as a knowledge structure, of which knowledge

space is a special kind. Knowing a student’s knowledge state allows for inferences on

efficient assessment procedures such as identifying which problem to solve based on

the student’s knowledge boundary (Wang et al., 2017). One prominent example that

leverages this approach is Assessment and Learning in Knowledge Spaces (ALEKS)2.

One technique that has been done in the student performance prediction literature,

2https://www.aleks.com/
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particularly for student modeling, is matrix factorization (Thai-Nghe et al., 2011;

Thai-Nghe et al., 2012; Thai-Nghe & Schmidt-Thieme, 2015). Matrix factorization is

popularly used in the recommender system area and has gained popularity during the

Netflix prize time (Koren et al., 2009). The objective is to factorize a given matrix

(i.e., ratings) into two, resulting in uncovering the latent attributes of two entities

(i.e., users and movies). One advantage of such an approach is that it implicitly

encodes parameters such as slip and guess (Thai-Nghe et al., 2012). Their earlier work

contextualized matrix factorization to a performance prediction problem given the

following correspondences: ratings-performance, users-students, and movies-questions

(Thai-Nghe et al., 2011). An extension to such work was the incorporation of biases

to account for student effects and question effects. Additionally, they accounted for

the temporal component of the data that resulted in the notion of tensor factorization

(Thai-Nghe et al., 2012). Finally, by supporting the ability to incorporate knowledge

of multiple relationships and adjust their importance, it was possible to integrate these

into the prediction process (Thai-Nghe & Schmidt-Thieme, 2015). This means that in

addition to student performance data, information about an item can be integrated

into the process. For example, if we have prior knowledge regarding the knowledge

components associated with a question, we can utilize this information to improve the

model’s performance. It can also incorporate information about whether the student

has mastered a required knowledge component. Such an approach was found to be

simpler and performed better than the Bayesian Knowledge Tracing approach when

they compared the root-mean-square error (RMSE) (Thai-Nghe & Schmidt-Thieme,

2015).
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5.2.3 Limitations of Existing Models

Most previously surveyed models were mostly designed for dichotomous items (i.e.,

correct or incorrect) that are typically associated with multiple-choice questions. Using

this information, such models can predict whether the student can answer a different

question correctly. Although this approach can also be leveraged in the context of the

present work, in reality, most of the teacher-made questions are not necessarily binarily

graded. Given the complex nature of the questions employed in paper-based tests,

teachers often give partial credits to students to reflect the severity of the student’s

mistake. Simply reducing these continuous values to a binary value would result in

a loss of information or context that would otherwise provide critical information,

for example, a question’s complexity or difficulty (Pelánek, 2017). There is also

some work that deals with polytomous responses going beyond binary correctness,

such as option tracing models (An et al., 2022; Ghosh et al., 2021). These model

student responses and predict which among the choices the student is likely to select

as an answer. In a way, this is similar to what this present work seeks to accomplish.

However, these predictions are mainly for multiple-choice questions. Most questions

are open-ended for teacher-made tests, particularly in computer programming; thus,

these models cannot be directly applied to the current context. Although there is work

that attempts to forecast student code generation, the approach is limited only to

program code (N. Liu et al., 2022). There are still other types of questions beyond it.

Therefore, it is critical that the modeling accounts for partial grading. In this study,

student performance is normalized to account for the varying question format and

their varying points. The raw score is divided by the total points possible, resulting in
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a value in the range of zero and one, inclusive. This is then construed as the student’s

partial grade for that particular question.

In terms of the results of the existing models, most of those focus mostly on

predicting a student’s success in future tasks. These probabilities often are used to

make the necessary adaptations for the student. For example, if the policy follows

Vygotsky’s (1978) zone of proximal development, the system will most likely select an

appropriate task where the success rate is optimal. However, in the present work, the

dataset contains complex questions that support partial grading. Defining what success

means becomes a subjective task requiring experts to label it manually. To the best

of our knowledge, only limited work has been done on predicting student performance

at a finer-grained level where the normalized score at the item level is predicted.

When dealing with normalized scores, the given illustration can still be accomplished

as these normalized scores are directly comparable to each other. Additionally, the

probability of success cannot be easily translated to a normalized score as they are

two different constructs. This means if a model outputs a probability of success of

P (S) = 0.75, certainly, it does not follow that the correctness of the student’s work

is 0.75 as well. Given the nature of the current dataset (i.e., performance scores),

obtaining a probability value will be ambiguous. Furthermore, normalized scores are

easier to interpret than success probability as the former is concrete, which could

lead to actionable findings. Although there is some work that attempts to reverse the

process where evidence from the dataset is estimated based on the success probability,

this is only done in Bayesian models (Keith, 2021). As one of the system’s objectives

is to identify similar performances of students from the past, it is critical that the

metrics involved in the process are comparable. This suggests that it is necessary to

devise another mechanism, which this work proposes as a novel contribution.
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Another limitation of the existing models is the manner in which the data is

received. In particular, these data are received one at a time, depending on the level

of granularity. For example, when a student performs a step, the model interprets it

to determine what steps should be performed next (VanLehn, 2006). However, the

context of exams, particularly summative ones, involves students answering multiple

questions in a single session before feedback is provided. Due to the nature of the

exam, typically it is not possible to provide multiple opportunities for independent

practice, unlike in other systems. Due to these factors, leveraging the learning curve

plot can be challenging. Thus, it is necessary to consider such factors as the order in

which the model receives input will determine how the model estimates the student’s

mastery. This will help ensure that the proposed solution is feasible in the current

context. As has been noted by Pelánek (2017), certain learner modeling approaches

are not fundamentally appropriate for detecting mastery. However, they are helpful

to gain insights for offline analyses.

5.3 Educational Assessment Dataset

This section provides an in-depth discussion of how the dataset used for the student

modeling was curated. The dataset was obtained from an Introductory Computer

Programming course offered to information management students from the years 2018

to 2020. This course has been taught by the same instructor and followed the same

syllabus. Three exams were administered each semester covering a predefined set of

topics. Due to the nature of the domain, the coverage of the topics was cumulative.

Recent topics are given higher importance in terms of point assignments. In total,

there were nine exams in the dataset. Table 12 provides an overview of the dataset.
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Table 12. Descriptive Statistics of the Examinations Across the Years

2018 2019 2020
(N = 124) (N = 123) (N = 124)

E1 E2 E3 E1 E2 E3 E1 E2 E3

Max Points 100 100 105 100 93 100 100 89 100
No. of Questions 18 21 21 18 18 19 16 12 15
No. of KCs 39 53 43 40 50 49 40 35 43
No. of Attempts 126 124 124 126 124 123 128 127 126
Average Question Difficulty 0.74 0.68 0.80 0.84 0.72 0.73 0.86 0.72 0.77
Point Contribution

Dichotomous 0.24 0.30 0.43 0.30 0.39 0.45 0.30 0.27 0.30
Polytomous 0.76 0.70 0.57 0.70 0.61 0.55 0.70 0.73 0.70

Topic Distribution
01 - intro 0.06 0.03 0.02 0.02 0.08 0.07 0.02 0.06 0.05
02 - fundamental data type 0.56 0.08 0.10 0.51 0.12 0.06 0.59 0.19 0.15
03 - decision 0.20 0.11 0.08 0.29 0.04 0.02 0.16 0.07 0.04
04 - loop 0.18 0.07 0.04 0.18 0.04 0.03 0.23 0.07 0.02
05 - methods - 0.22 0.10 - 0.13 0.03 - 0.08 0.07
06 - arrays and array list - 0.21 0.07 - 0.19 0.06 - 0.17 0.02
08 - objects and class - 0.28 0.33 - 0.39 0.38 - 0.37 0.25
09 - inheritance and interface - - 0.28 - - 0.35 - - 0.40

Cumulative Point Distribution
01 - intro 0.55 0.82 1.00 0.12 0.58 1.00 0.17 0.58 1.00
02 - fundamental data type 0.76 0.86 1.00 0.74 0.91 1.00 0.65 0.84 1.00
03 - decision 0.51 0.79 1.00 0.83 0.94 1.00 0.62 0.85 1.00
04 - loop 0.63 0.86 1.00 0.72 0.88 1.00 0.74 0.94 1.00
05 - methods - 0.69 1.00 - 0.80 1.00 - 0.50 1.00
06 - arrays and array list - 0.75 1.00 - 0.74 1.00 - 0.88 1.00
08 - objects and class - 0.44 1.00 - 0.49 1.00 - 0.57 1.00
09 - inheritance and interface - - 1.00 - - 1.00 - - 1.00

Note: N indicates the number of students who took all the three examinations.

100



5.3.1 Data Collection and Processing

The number of student attempts is presented for each exam. A few students had

to be removed from the dataset due to them not taking the three required exams.

Only students who were able to take the three exams were retained and are indicated

below the year in Table 12. There were a total of 158 unique questions in the dataset.

It should be noted that, as mentioned in the literature, there are instances where

questions from previous years were reused (Sheard et al., 2013). In this dataset, even

if two questions are very similar or identical, they were counted separately.

Whenever a new test is created, the instructor uses the Test Authoring interface

of the system (Figure 13) to provide the following information: the question and

its corresponding KCs. The questions take various forms, such as multiple-choice,

program tracing, or program writing. Multiple-choice questions are often graded in a

binary fashion, while the others involve partial grading. In complex questions, multiple

KCs are often assigned. Along with the KCs are their corresponding subjective weights

(i.e., score). For this particular class, all questions were written by a single instructor

and were typically based on the main textbook reference specified in the syllabus.

The exams were designed to be answered for two hours on paper without external

references. Consistent with the findings of Sheard et al. (2013), the questions written

contain a mix of various types, mainly composed of multiple choice, filling in the

blanks, and code writing, thereby suggesting that multiple KCs were being assessed in

several questions. The perceived importance of a KC to successfully answer a question

is determined based on the points assigned by the instructor.
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Figure 13. Test Authoring Interface Used for Creation of New Assessments

5.3.2 Using Human Judgment for Topic Labeling

Figure 14 illustrates an example of a student’s work being assessed using a prede-

fined set of KCs and their associated weights. Despite the tests being written by a

single instructor, the terminology used for the KCs had slight variations. Some terms

were inconsistently used although referring to the same concept. Given the varying

granularity of the KCs, a common level for the 392 KCs had to be identified for the

analysis. Thus, a coarse-level knowledge unit was determined as a topic. Human

judgment was leveraged to identify which topic a particular KC was associated with.

The course covered eight major topics based on the syllabus and the reference book

Java for everyone: Late objects by Horstmann (2013), namely:

01 - intro

02 - fundamental data type

03 - decision

04 - loop

05 - methods

06 - arrays and array list

08 - objects and class

09 - inheritance and interface
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Figure 14. Example of Student Work Evaluated Using a Set of Predefined KCs

It is worth noting that these topics are similar to that found by Tew and Guzdial

(2010) when they surveyed both the literature and several introductory programming

courses across various universities as they attempted to develop a guide for developing

validated assessments.

To validate the process, two subject-matter experts with prior teaching experience

(10 and 14 years) independently analyzed the 392 rubrics and assigned each to a

single topic. After the initial pass, the two experts compared their labels. Any

disagreements were resolved through discussion until a consensus was reached. This

re-labeled data was used for the study. The proportion of the topics being assessed in

a test is summarized in Table 12. As expected in a typical introductory computer

programming course, advanced topics build upon a solid understanding of fundamental

topics. Therefore, it is expected that exams early in the semester do not have complete

coverage of all topics.
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5.3.3 Consistency of Exam

Although a single instructor has been handling the same course over the years, it

is worth investigating whether the topic coverage of these tests was consistent over

time. One approach to measuring consistency is by comparing the distribution of the

various test at a given time to their corresponding test from a different year. This

means the distribution of topics of Exam 1 from Year 1 will be compared to that of

Exam 1 from Year 2 and so on. This can be done through the Kolmogorov–Smirnov

test. It is a nonparametric test that allows testing whether two samples were drawn

from the same probability distribution, thereby quantifying the difference. For a

two-sample test, the general idea is to obtain the cumulative frequency distribution

for each sample and get the absolute difference. Afterward, the maximum absolute

difference becomes the Dstatistic. As with other hypothesis tests, the next step is to

obtain the Dcritical value using the following formula for confidence level α = 0.05:

Dcritical = 1.36

√
n1 + n2

n1n2

(5.1)

where n1 and n2 represent the sample sizes. A detailed computation can be found

in Appendix A. Given the computed values, it can be seen that the instructor has

consistently written and used similar tests when assessing students.

5.3.4 Descriptive Statistics

The following section provides some descriptive statistics regarding the dataset.

It gives an insight into the complexity and difficulty of each question based on the

number of topics associated with each question and the composition of the types of

questions. Also, it provides an overview of the students included in the dataset.
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5.3.4.1 Question Complexity

One way of measuring question complexity is based on the number of associated

topics. On average, each question is associated with 1.85 (SD = 1.50) topics. Another

approach is to look into the number of KCs associated with each question. On average,

each question is associated with 4.96 (SD = 4.83) KCs. Another approach is to look

into the total points associated with a question. On average, each question has a

total possible score of 5.61 (SD = 4.53) points. The correlation between the number

of associated topics to a question and the point association was looked into where a

significant positive correlation (r = 0.80) was found. Unsurprisingly, this suggests that

the more topics being assessed in a question, the more points are at stake. Table 12

provides a detailed breakdown of each exam. Finally, a metric was added to enable

questions to be compared based on the points assigned and the number of KCs being

assessed. This metric, denoted by ϕ is computed by dividing the maximum points

associated with a question by the number of KCs associated with the question.

5.3.4.2 Question Difficulty

The difficulty of a question can be estimated using the performance of the student

who answered it, defined mathematically as the proportion of those who answered the

item correctly (van de Watering & van der Rijt, 2006). Essentially, it is a normalized

value that ranges from 0 to 1 where a value close to 0 indicates that the question

is very difficult. In fact, some studies suggest using the term easiness due to the

direction of the values (Pavlik et al., 2009). Due to the presence of partial credit,

the normalized score is used instead of a simple count of the number of students
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who correctly answered an item. A breakdown of the average question difficulty for

an exam is provided in Table 12. A Kruskal–Wallis test was performed to check

the consistency of the average question difficulty of each exam belonging to different

semesters (i.e., Exam 1 over the three years, and so on). No significant difference was

found (Exam 1, p = 0.16; Exam 2, p = 0.23; Exam 3, p = 0.24) suggesting that there

was consistency over the years. The average difficulty on all 158 questions from the

three years taken by 371 students is 0.76 (SD = 0.17).

5.3.4.3 Grading Assignment and Point Contribution

As in the literature, how questions are graded plays an important role in the mod-

eling approach. The following provides a breakdown of the number of questions that

were graded dichotomously (i.e., correct or not). On average, in a given examination,

a proportion of 0.33 of the total points is from dichotomous questions while 0.67 is for

polytomous which necessitates partial grading. Table 12 provides a breakdown of the

proportion for each exam.

5.3.4.4 Cumulative Point Distribution

Given the cumulative nature of the number of topics being assessed in this course

over time, it was necessary to determine the distribution of each topic at a given time

point. Essentially, this value becomes the ceiling value a student can possibly attain

for that topic at that given time point. For example, during the E1 time point of

2018 as shown in Table 12, a student can obtain a maximum of 0.55 for the 01 - intro

topic, indicating that the student has fully mastered the available material at that
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given moment if the student obtains a level of 0.55. However, since it is still early

in the semester, it is still premature to conclude that the student has already fully

mastered the topic. Besides, there are still other opportunities where the student will

be assessed in the future (e.g., E2 and E3 ).

5.3.4.5 Overview of the Students

The dataset encompasses students taking an Introductory Computer Programming

course and is mainly composed of first-year students. A total of 48,469 transactions

were collected pertaining to the KC-level performance of the students. These were

derived from 371 students over the course of three years. On average, a student was

evaluated using 130.64 KCs with varying weights throughout the semester. Similar to

the earlier chapters, the actual final grades of the students were inaccessible. Thus,

student outcome was simply estimated using a proxy measure, which is the average

performance of the student in the three exams denoted by λ. Figure 15 provides

an overview of the distribution of the λ of the students grouped according to year.

The line indicates the median while the green dot indicates the average. A Kruskal–

Wallis test was performed to check the consistency of the average overall performance

of students belonging to different semesters. No significant difference was found

(p = 0.49) suggesting that there was consistency between the average performances of

the students over the years. In succeeding sections, students were labeled as either

high-performing or low-performing based on a certain cutoff point. The cutoff point

used was the average λ of the 371 students (M = 0.78, SD = 0.11).
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Figure 15. Distribution of Overall Performance

5.4 Personalized Recommender of Items to Master and Evaluate (PRIME) Framework

5.4.1 Problem Formulation

It has been shown in Chapter 4 that validating one’s evaluative judgment by

soliciting feedback while evaluating erroneous examples was associated with improved

performance on a forthcoming test. Nevertheless, the study had one limitation in that

students were given the same set of examples to evaluate (i.e., hypothetical student

answers with mistakes). The current mastery levels of the students were not taken

into account. This might partially explain why the completion of the learning activity

had no significant impact on their test performance. To enhance the learning activity

further, students should be provided with appropriate examples to evaluate. This

means that the difficulty level of the activity is just the right amount (i.e., Goldilocks

principle) or within what Vygotsky (1978) termed as zone of proximal development.

This work examines a coarse-grained knowledge unit referred to as topics, which

is composed of multiple concepts (i.e., KCs). It is important to explain how the

term is operationalized within this research context. As the aim of the exercise is to

make students aware of their misconceptions, an example is considered appropriate
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if it addresses topics in which they have deficiencies. Additionally, to ensure that

the difficulty level is appropriate, the example must have a score which is similar to

what students are predicted to obtain for a similar example. By using the learning

activity, students are given the illusion that they are evaluating another person’s

answer, however the system is assuming that the same student would have the same

answer if they were given the same question. As a result, students implicitly evaluate

their own work, which fosters what Sharp (2012) refers to as stealth learning. Through

this activity, students are made aware of somebody else’s performance that resembles

their own performance, thus helping them become more aware of their own deficiencies.

Furthermore, it uses a knowledge gap-based remedial recommendation system that

makes recommendations intended to close these gaps (Bauman & Tuzhilin, 2018;

Thaker et al., 2020).

Given the study context, it is then important to identify the different components

of the system to achieve the goal. The goal is to find an appropriate example to

evaluate given a student’s forecasted performance on an upcoming test. This goal can

be subdivided into two subgoals, namely: (1) forecast the student’s future performance

on a test and (2) find an answer to recommend to the student. These two subgoals

will then be discussed in detail in the following subsections. An overview of the steps

is illustrated in Figure 16.

5.4.2 Forecasting of the Student’s Future Performance

There are numerous approaches to predicting future performance in the literature.

One common approach involves knowledge tracing where a student model estimates

the mastery of a given knowledge component. However, as previously mentioned, the
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Figure 16. Overview of the PRIME Framework

context of the study involves complex questions that mostly involve partial credits.

One way to solve this problem involves looking at the following analogy. Over the

years, the teacher sees a lot of students with varying backgrounds and performances

taking the same class. It is more likely that in the future, a new student will exhibit

a similar behavior that has already occurred in the past. Based on this, it is then

possible to assume that this new student might perform somewhat similarly to this

other student from the past. Therefore, in this work, to be able to forecast a student’s

future performance, the system relies on a library of student models and identifies a

candidate student model.
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5.4.2.1 Populating the Student Library

In developing the student library, a model was developed for each student. This

section provides an overview of the principled approach to modeling student mastery.

5.4.2.1.1 Rescaling and Defining Uniform Time Points

Despite having a similar number of examinations in a semester over the years,

the time when these were administered varied by a few days. If these differences

were unaccounted for, it would be difficult to develop certain models and incorporate

additional assessments in future analyses. Therefore, these dates had to be transformed

and rescaled to ease the process. Basically, the entire semester is viewed as a timeline

and all dates are transformed into a value from 0 to 1 to indicate the relative time

point progression with respect to the total number of days in the semester. For

example, if a semester has a total of 110 days and an exam was administered on the

40th day, this translates to a time point π = 0.36. Throughout this work, a time point

will be denoted by π.

5.4.2.1.2 Extracting Student Knowledge Mastery Levels

Certain assumptions were made in estimating students’ mastery levels. In this

work, the knowledge domain is assumed to be represented by a set of questions from

all the examinations that were given to the students. Such an approach was motivated

by knowledge space theory where a set of domain problems or items constitute the

knowledge domain (Doignon & Falmagne, 1999; Falmagne et al., 1990). Mastery is
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determined based on the student’s response on the question (Doignon & Falmagne,

1999). Additionally, as typical in other studies, course content was believed to reprent

domain knowledge and KCs to be learned (Khan & Ghosh, 2021). Because of the

cumulative nature of the computer programming domain, it is necessary to identify an

approach that captures this. In other words, this value should reflect the accumulated

knowledge of a student over time from varying pieces of evidence (i.e., performance

data). To achieve this, it is necessary to identify an upper bound for a given time point

π to allow for the value to be normalized and comparable with other values. Using

historical data, such an upper bound can be identified. Consider the curated dataset

described earlier in Section 5.3. It can be seen that despite having been collected at

different years, there was consistency in terms of the average distribution of topics

and points among the tests created as illustrated in Section 5.3.3.

With the proposed approach, a student’s mastery level for a topic at a given time

point π, denoted by δ (π), is the ratio of the cumulative sum of all the points obtained

up until π that are associated with the topic to the total possible points that could

be earned associated with the topic (5.2a). Such information is readily available for

offline analysis. However, for online analysis, this can only be estimated as long as

both the mastery level and the cumulative sum of points at time point π are known

(5.2b). Using historical data, it is possible to estimate the mastery level for any given

time point.

δ (π) =
pointsπ

total points
(5.2a)

ˆtotal points =
pointsπ
δ (π)

(5.2b)

To illustrate this, assume that at an arbitrary time point π, it is expected that

based on the past, the mastery level for a given topic is δ = 0.25 and that by this

point, the maximum points that could be earned is 30. Therefore, the total points,
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or the maximum possible points that could be earned by the end of the semester,

can be estimated. In this case, the total is estimated to be 120 points. Note that

this estimation is subject to change and must be recalculated as new data becomes

available, particularly the cumulative points.

ˆtotal points =
pointsπ
δ (π)

=
30

0.25

= 120

Using this estimated value, the student’s mastery level at time point π can now

be calculated. For example, if the student has only accumulated 15 points, this would

translate to a mastery level of 0.13 at time point π.

δ̂ (π) =
pointsπ

ˆtotal points

=
15

120

= 0.13

With this approach, the mastery level has an upper bound of that of the ideal case

(i.e., the student always gets a perfect score) which in this case is 0.25. Unless π = 1,

the mastery level only provides an incomplete snapshot of the student, particularly

only up until π. As π → 1, it follows that δ (π) → 1 along with the confidence on the

value obtained. A similar situation was observed in an earlier study, in which the

accuracy of predictions increased with time as more information was accumulated

(Paredes et al., 2018). Employing this approach makes mastery level monotonically

increasing. A similar approach was employed by Sosnovsky and Brusilovsky (2015)

to model a student’s current level of knowledge on a topic referred to as “average of

sums of averages”. As opposed to their study, this study allows students to make only
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one attempt at answering test items. Interestingly, modifying their approach yields a

similar result to that discussed previously.

5.4.2.1.3 Modeling Topic Mastery Growth

Quantifying domain knowledge mastery is a challenging task (Lorenzetti et al.,

2016, as cited in Khan & Ghosh, 2021). In this operationalization of knowledge

mastery levels, the values range from 0 to 1. Unlike approaches from other studies

that represent mastery as a probability of success, this work represents mastery as a

real value reflecting the accumulation of various pieces of evidence throughout the

semester. It is worth noting that this approach assumes that students do not have

any prior knowledge at the beginning of the semester as indicated by the δ (0) = 0

mastery level illustrated in Figure 17. Considering that the course investigated was

an introductory course typically offered to first-year students, such an assumption is

supposed to be adequate. Throughout the section, the discussion refers to a single

topic. The various mastery levels of the students were estimated using (5.2a). For

an offline analysis, it is unnecessary to estimate the total points as done in (5.2b)

because this value is known. Therefore, all scores obtained by the student throughout

the semester were transformed into their corresponding mastery levels, with respect

to the known total points, during the time point when they were administered. An

example is illustrated in Figure 17, top.

The next step involves modeling the growth of the mastery level over time. Re-

garding these data points as snapshots of a student’s state enables the development

of a growth model. An approach capable of modeling this is the logistic growth

curve (S-curve) or also referred to as Verhulst model (Verhulst, 1845) illustrated in
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Figure 17. Fitting a Growth Curve Using the Mastery Level Over Time
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Figure 17, middle. The general form is:

f (x) =
k

1 + exp (−r [x−m ] )
(5.3)

where k is the carrying capacity (i.e., maximum sustainable population), x is a time

point, r is the growth rate representing the curve’s steepness, m is the time point

at which the curve is at the midpoint. f (x) is the population size at time x. This

model is known for its S shape and is commonly used in the fields of Biology and

Economics. In this work, y is treated as the mastery level. Furthermore, since its

value is bounded ranging from 0 to 1, it can be assumed that k = 1. As a result, this

Sigmoid function only needs to estimate two parameters from the data, namely the

growth rate (r) and at what time point the mastery level reached 0.50 (m). Thus, It

assumes that an individual doing a new task begins slowly. Gradually, the individual

becomes proficient and ultimately, a plateau is reached. It is a progression of discovery

geared towards the limit.

As an illustration, consider the previous example shown in Figure 17, bottom. By

performing curve fitting (more details later), the optimal parameters for the data

points can be identified. In this case, the values for r = 5.26 and m = 0.67 were

obtained suggesting that the student’s growth rate is 5.26. Additionally, the student

was able to attain a level of mastery of 0.50 at π = 0.67.

5.4.2.1.4 Development of Unified Student Model

The preceding section discussed how mastery of a single topic can be modeled. As

a result, each student has a total of t independent sigmoid models, one for every topic.

Considering how all these models are associated with the same student, introducing a

common parameter will unify the t independent models and will account for the fixed
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effect of the student. As a result, a unified student model (which will be referred to

as β function) was developed based on (5.3). It integrates the independent models

and introduces a student latent trait θ. The function is:

β (X) =
t∑

i=1

Xi

1 + exp (−θRi [Xt+1 −Mi])
(5.4)

where X is a consolidation of a one hot encoding of the topic (first t elements) and the

time point (last element). R1×t and M1×t correspond to the growth rate and the time

point at which the mastery level reached 0.50, respectively, for each of the t topics.

Finally, θ is a scalar value representing the interaction between the student’s latent

trait and the student’s growth rate for a particular topic.

X1×(t+1) =

(
x1 x2 · · · xt π

)

5.4.2.1.5 Estimating Individual Growth Model Parameters

The β function allows for the estimation of the parameters of the students who

took the course. The collection of parameters serve as the core of the student model

library that can be used to make predictions to a new cohort of students. Similarly,

this library represents the various types of students (i.e., profiles) that have been

encountered in the past and may be encountered again in the future.

A total of 2t+1 parameters need to be estimated: one common parameter associated

with the student and two parameters associated with each topic (growth rate and

time point). These parameters can be estimated by performing curve fitting. In this

work, the curve_fit function from the SciPy3 library was used for the curve fitting.

In this process, (5.4) is referred to as the basis function. The optimal parameters are

3https://scipy.org/
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determined through nonlinear least squares estimation. The curve_fit function will

be passed the following input: X′ and Y. The former is a vector of X while the latter

is a vector of the actual mastery levels. Both have a length of n data points. The

error function, denoted by e (·), is computed based on the root-mean-square deviation

shown in (5.5)

e (β;X′,Y) =

√√√√∑n
i=1

(
Yi − β̂ (X′

i)
)2

n
(5.5)

5.4.2.1.5.1 Example Student

As a demonstration, consider a student with a profile of λ = 0.69 along with

their performance data captured by the system. The lines in Figure 18 represent the

estimated mastery level of the student for each topic over time. On the other hand,

the points represent the actual mastery level. It is also possible to visualize the errors

according to topics. The latent trait of this student was θ = 5.88.

5.4.2.1.5.2 Ideal Student

It is also noteworthy to see what the growth curve of an ideal student looks like.

This ideal student, which will be referred to as ω, simply is a hypothetical student

who obtains a perfect score in all learning opportunities (λ = 1). As can be seen in

Figure 19, the curves tend to uncover which topics were mostly the focus during a

particular time point as some curves are closer to each other. The latent trait of this

student was θ = 7.81.
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(a)

(b)

Figure 18. Profile Overview of an Example Student
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(a)

(b)

Figure 19. Profile Overview of an Ideal Student ω
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5.4.2.1.5.3 Interpreting the Latent Trait

It is assumed that θ is the student’s general learning rate. However, because

this value was only estimated, a possible interpretation was sought. Hence, students

were classified either as high-performing or low-performing based on their overall

performance λ. The average of all the λ values was used as the cut-off value (M =

0.77, SD = 0.11). Interestingly, the result of a Mann–Whitney U test suggests that on

average, the θ of the high-performing students (M = 6.38, SD = 4.74) was significantly

(p < 0.01) higher than the low-performing students (M = 5.18, SD = 1.96).

5.4.2.2 Identifying a Candidate Student Model

The previous section has demonstrated that the student model is capable of

forecasting the mastery level of a student once the parameters are known. However,

these parameters can only be identified once all the performance data had been

collected which is at the end of the semester. If this framework is to be deployed to be

used during the class, it will struggle to make predictions due to the incompleteness

of the data. To address this, identifying a candidate model can be framed as a

recommender problem where a neighborhood-based approach is employed. Essentially,

the models of previous students can be leveraged and compared for similarity to

account for these missing parameters. With the student model library L already

developed, forecasting the outcomes of future or next-term students (denoted by γ)

may be performed as new data arrives. This scenario is considered an instance of

online analysis as a complete picture of γ only becomes available at the end of the

semester. This section enumerates the various steps.
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5.4.2.2.1 Step 1: Determining Key Time Points

As forecasting student outcomes rely on existing evidence, it is necessary to define

two key time points to accomplish the task, namely πe and πq. The former is the latest

time point at which evidence of the student’s performance exists while the latter is the

time point at which the system is being queried to do the forecasting. Usually, πq is

the time when the next test will be administered. It is assumed that 0 ≤ πe < πq ≤ 1.

Otherwise if πq ≤ πe, it is simply reduced to a simple lookup. Figure 20 illustrates

an example where the system already has evidence of student performance (yellow

region) and attempts to forecast the student’s performance (blue region). The yellow

line denotes πe while the blue line denotes the πq.

5.4.2.2.2 Step 2: Fitting Evidence to an Existing Student Model

The next step involves searching and retrieving a model βs from the library L

that best fits the available data points of a new student γ. Finding a student from

the past that closely resembles this new student can help inform how γ would likely

perform in the future. This can be accomplished by minimizing the the error between

the model’s output and the actual data (i.e., points in the yellow region) based on

(5.5). An example is illustrated in Figure 21, top.

min
∀s∈L

e (βs ;X
′
γ,Yγ) (5.6)
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Figure 20. Time Point Regions

5.4.2.2.3 Step 3: Finding a Similar Student Profile

Besides fitting the existing data points of a new student, another approach to

measuring similarity can be based on the mastery level of the student at a given time

point δ (π) for each topic denoted by Sπ.

Sπ 1×t =

(
δ1 (π) δ2 (π) · · · δt (π)

)
By relying on recent information, this would translate to identifying a student s from

the library L that minimizes the distance between the profile of s and γ at time point

πe of γ (5.7).

min
∀s∈L

d (s, γ, πe) (5.7)
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Figure 21. Comparison of Sample Output of the Three Student Similarity Metrics

Euclidean distance is used to measure the similarity (5.8). A value of 0 indicates an

absolute identity. An example is illustrated in Figure 21, middle.

d (s, γ, πe) =

√√√√ t∑
i=1

(
Sπesi − Sπeγi

)2 (5.8)
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5.4.2.2.4 Step 4: Combining and Weighing the Two Metrics

Insofar as identifying similar students from the library is concerned, the two

previously discussed metrics can be seen as independent from each other as each

focuses on a different aspect of the student. Simply relying on the fitted student model

imposes a strong assumption that the current student will exhibit similar behavior in

the future despite the lack of strong evidence (i.e., no data points beyond πe). On

the other hand, relying only on profile similarity disregards the overall aspect of the

student model as it focuses solely on a particular time point (πe). Therefore, it is

important to integrate both information while accounting for such uncertainty. This

could be achieved by assigning weights to the metrics based on the available evidence.

Intuitively, the fitted student model is given importance up until πe. For the remaining

period (1 − πe), the system gives more importance to the similarity of the student

profiles to account for the uncertainty (5.9).

min
∀s∈L

[(πe · e (βs ;X
′
γ,Yγ)) + ((1− πe) · d (s, γ, πe))] (5.9)

An example is illustrated in Figure 21, bottom. The yellow region highlights the area

in which evidence exists and therefore is given importance. The blue region highlights

the area in which the system is being queried to predict the likely performance of the

student. Typically, it is based on when the new test will be administered in class.

Finally, the red region highlights the area in which the system does not have any

information about the student and therefore has a very high degree of uncertainty.

In summary, given the current mastery level of a student γ, identifying a candidate

profile from the library can be framed as a recommender problem. The system

implicitly recommends a profile that is likely to have a very similar trajectory to that

of the student γ. Formally, to forecast the performance of a new student γ at time
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point πq, a similar student s from the library L is identified. Afterward, this model

βs will be used under the assumption that both students will have similar outcomes

based on a similar normalized gain. A popular metric for assessing the quality of

recommendations is to determine whether the item being recommended is relevant

to the user. However, in this case, defining what is relevant for the student is not

and cannot be explicitly defined. Therefore, the nature of the profiles chosen by the

system needs to be looked into.

5.4.3 Identifying an Appropriate Example to Recommend

Given that the system is now capable of making projections of a student’s mastery

level at any given time point, the next part of the framework involves identifying

and recommending an appropriate student answer to a given question. This entails

identifying the types of questions that form part of an upcoming test. Recall that

regardless of when the course was offered, the same syllabus was followed thereby

making the content and the timing effectively identical. In addition, there is a tendency

for teachers to reuse questions from prior years. Therefore, if the system is provided

with information of an upcoming test, it should be possible to find a similar question

from the past. The rationale behind this is that the system cannot explicitly tell

the students what exact questions will come out in the upcoming test. However, the

system can tell the students that a certain proxy question is believed to be similar

enough and has already been administered in the past. Therefore, in this work, to

be able to identify an appropriate answer to recommend, the system first uses the

forecasted performance to determine the critical item or the question in the upcoming

test where the student is likely to perform the poorest. Then, it uses the information of
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the critical item to identify a proxy from the past. Finally, it looks for student answers

to the proxy question where the associated score closely resembles the projected score

of the current student γ.

5.4.3.1 Populating the Question Library

To be able to identify a proxy question, it is necessary to develop a library which

contains all the questions written for the course. Whenever teachers create a new

test, they supply the system information pertaining to the various KCs and the

point assignment for each item. Using this information, the topic distribution for a

question can be derived. One way to represent a test is through a Q matrix. This

matrix contains the distribution of topics required to answer the question correctly

as illustrated in (5.10). Each value represents the strength of the influence of a

topic to getting the question correctly. Somewhat, this can be closely associated to

the test blueprint or table of specifications (Mehrens & Lehmann, 1991). The Q

matrix developed by other researchers often contains binary values (Barnes, 2011;

de la Torre, 2011; Tatsuoka, 1983). Similar to Brewer (1996), in this work, the values

are continuous from 0 to 1, where a non-zero value represents the degree of importance

of mastery of the topic as tests in introductory programming courses typically contain

questions that simultaneously assess multiple topics (Sheard et al., 2013). Essentially,

the value corresponds to the weight of importance of a topic (Guo et al., 2014). The

row represents the various questions, while the column represents the various topics

(or knowledge components) covered in the course. Each row sums to one. Similarly,

another matrix can be used Q′ which is identical to Q except that the row values

were not normalized. Thus, instead of a distribution of topics, Q′ contains the raw
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points associated to each topic for each question. Dividing each row with its row-wise

sum transforms it to Q. Finally, because teachers provide the information about the

tests, both Q and Q′ are considered to be is defined by subject-matter experts.

Qq×t =



α1,1 α1,2 · · · α1,t

α2,1 α2,2 · · · α2,t

...
... . . . ...

αq,1 αq,2 · · · αq,t


(5.10)

5.4.3.1.1 Question Representation

Now, focusing on one particular question, this step entails determining how to

quantify the similarity between two questions. In constructing a question, teachers

provide the weights (or importance) associated with the various knowledge components

(KCs). According to Koedinger et al. (2012), every question or problem can be

represented by a set of domain KCs or coarse-grained topics. In representing a

question, all KCs were grouped together according to topics and the weights were

aggregated since KCs may belong to the same topic (refer to the earlier example in

Figure 14). Afterward, these aggregated weights were normalized to make it possible

to compare multiple questions based on I. The values of the first t elements range

from 0 to 1, and sum to 1, effectively representing the topic distribution of a question.

Some questions may be more complex than others. This information is discarded in

the normalization process. To preserve and incorporate this, a metric is introduced to

represent a question’s complexity, called point per KC. It simply is the average point

or weight associated with a KC, denoted by ϕ, regardless of the topic.

One issue that may arise when computing for the similarity given the current
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question representation would be the scale of ϕ as it currently lacks an upper bound.

To address this, the value is rescaled through min-max normalization. sklearn’s4

MinMaxScaler was applied to bound the values from 0 to 1. This rescaled value ϕ̂

becomes the last element of I. It is worth noting that ϕ̂ is dynamic as these have to

be recomputed whenever questions are added due to the dependence on the minimum

and maximum values. However, based on the dataset, if the ϕ of the new questions

are within the range of 1.00 to 6.00, then, no recalculation is necessary. Essentially, I

is the row of the question from Q plus ϕ̂.

I1×(t+1) =

(
i1 i2 · · · it ϕ̂

)

5.4.3.2 Identifying the Critical Item

The next step is identifying the critical item, an item from the upcoming test

where the student is believed to perform the worst given their projected mastery levels.

Afterward, a proxy question based on the critical item will be identified from the

question library. As a reminder, this is an online process where certain information

only becomes available at certain time points π.

The next step is identifying the critical item, an item from the upcoming test

where the student is believed to perform the worst given their projected mastery levels.

Afterward, a proxy question based on the critical item will be identified from the

question library. As a reminder, this is an online process where certain information

only becomes available at certain time points π.

4https://scikit-learn.org/
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5.4.3.2.1 Step 1: Modifying the Performance Forecasting Formula

Recall that the mastery level for a given time point δ (π) of the student can be

estimated using (5.2a). Because the goal is to identify the performance of the student

in an upcoming test at time point πq, (5.2a) is modified to distinguish the cumulative

points already earned up until πe from the score projected to be earned at πq. The

modified formula is given in (5.11b).

δ (πq) =
pointsπq

total points
(5.11a)

=
pointsπe

+ scoreπq

total points
(5.11b)

As both (5.2a) and (5.11b) pertain only to a single topic, the following convention is

employed for clarity and to account for any given topic τ :

CM (s, τ, πq) =
CP (s, τ, πe) + PE (Q′, s, τ, πq)

TP (τ)
(5.12)

This convention simply generalizes the formula to any given student s for topic τ

using the following functions: CM (·) for cumulative mastery, CP (·) cumulative points,

PE (·) for points earned in a test given its Q′ matrix (raw points), and TP (·) for total

points.

5.4.3.2.2 Step 2: Estimating the Course Total

Due to the online nature of the process, the final total is unknown unless π = 1.

Thus, the system relies on historical data as done in (5.2b) based on the ideal student

s = ω to estimate the total points for the topic. So, (5.12) is rewritten to solve for

TP (·). Additionally, in the case of the ideal student ω, the PE (·) is equal to:

PE (Q′, ω, τ, πq) =

q∑
i=1

Q′
i,τ (5.13)
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As an illustration, consider two arbitrary values for πe and πq, such that πe < πq.

Based on historical data of an ideal student ω, it was found that the mastery level is

δ (πq) = 0.30. Moreover, it is known that a student can obtain a maximum possible

points 20 by πe. Based on the Q′ matrix of the upcoming test at πq, the maximum

score possible is 10 points. With all these, it is possible to estimate the total points

using:

T̂P (τ) =
CP (ω, τ, πe) + PE (Q′, ω, τ, πq)

ĈM (ω, τ, πq)
(5.14a)

=

CP (ω, τ, πe) +

q∑
i=1

Q′
i,τ

ĈM (ω, τ, πq)
(5.14b)

=
20 + 10

0.30
(5.14c)

= 100 points (5.14d)

5.4.3.2.3 Step 3: Identifying Raw Topic Performance

Presently, the total points can be estimated. Also, the mastery level of a student

can be projected based on the candidate student model as identified in Section 5.4.2.2.

Using the candidate student model, the normalized gain on the mastery level between

πe and πq is calculated as defined by Hovland et al. (1949, as cited in Sosnovsky &

Brusilovsky, 2015) and provided in (5.15).

∆δτ =
CM (s, τ, πq)− CM (s, τ, πe)

1− CM (s, τ, πe)
(5.15)

This allows for the computation of the forecasted mastery level CM (·) by adding

the obtained normalized gain to γ using a rewritten version of the normalized gain
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formula given in (5.16).

CM (γ, τ, πq) = ∆δτ −∆δτ · CM (γ, τ, πe) + CM (γ, τ, πe) (5.16)

Using these, the points earned in the upcoming test PE (·) can now be forecasted.

Note that for now, these points pertain to a topic and not a question. By rewriting

(5.12) the following is obtained:

CM (s, τ, πq) =
CP (s, τ, πe) + PE (Q′, s, τ, πq)

TP (τ)
(5.17a)

TP (τ) · CM (s, τ, πq) = CP (s, τ, πe) + PE (Q′, s, τ, πq) (5.17b)

PE (Q′, s, τ, πq) = TP (τ) · CM (s, τ, πq)− CP (s, τ, πe) (5.17c)

Continuing the example provided, assume a student s = γ earned 15 of the 20 possible

points so far. Thus, δ (πe) = 0.15. This suggests that δ (πe) ≤ δ (πq) ≤ 0.25. These

boundaries were identified based on the minimum and maximum score that the student

could obtain in the upcoming test (0 and 10, respectively). Because this value is

provided by the candidate student model of γ, it is possible for the value to fall

outside of the range. In such event, the value is clipped to restrict it within the

boundary. A similar approach was employed by Gong et al. (2010) to account for the

overestimation of their models which resulted to negative learning rates. Similarly,

Huang et al. (2020) performed a clipping on their student score prediction models to

limit the values between 0 and 1 on values obtained from their knowledge proficiency

tracking.

5.4.3.2.4 Step 4: Computing the Topic Performance Weights

Recall that the steps identified earlier will be performed for each topic τ . Once

the forecasted topic scores are computed, these will be divided by their corresponding
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maximum possible scores based on the test’s Q′ matrix (i.e., the score of the ideal

student ω). This step results in the construction of the topic performance weights W

which contains the weights associated with the performance of the students on each

topic. This is similar to the simple weighted student overlay model where topic-weight

pairs represent the mastery of the student of a topic (Brusilovsky, 2003).

W1×t =

(
w1 w2 · · · wt

)
(5.18a)

=

(
PE (Q′, s, τ1, πq)

PE (Q′, ω, τ1, πq)

PE (Q′, s, τ2, πq)

PE (Q′, ω, τ2, πq)
· · · PE (Q′, s, τt, πq)

PE (Q′, ω, τt, πq)

)
(5.18b)

5.4.3.2.5 Step 5: Determining the Critical Item

The goal is to identify a question or item in the upcoming test where the student is

supposed to perform poorly. However, the W contains value that pertains to the topic

scores of the student and not questions. Recall that a question may be associated with

multiple topics. Therefore, to calculate for the forecasted scores of the student to each

question P, the cross product of the Q matrix and the W is computed. To simplify

the process, Q is used instead of Q′ as the results are identical. A similar approach

was employed by Huang et al. (2020) in which the predicted students scores were the

inner product of the student’s proficiency vector and the question’s knowledge vector.

Thus, in this framework, the student’s predicted scores for each question is computed

as Q •WT. Each value in W range from 0 to 1 to indicate the normalized score to a
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question.

Pq×1 =



α1,1 α1,2 · · · α1,t

α2,1 α2,2 · · · α2,t

...
... . . . ...

αq,1 αq,2 · · · αq,t


•



w1

w2

...

wt


=



p1

p2

...

pq


The question with the lowest normalized score is marked as the critical item. It is

the question which the system believes the student will have the lowest performance

or the most misconceptions. Therefore, it is beneficial for the student be aware of this

considering it is an item the student will gain the most when resolved. However, since

the test is yet to be administered in class, this item cannot be directly shown to the

student. For this reason, a proxy question from the library will be identified based on

its relevance and will be provided to the student.

5.4.3.3 Determining Question Relevance

Given the I of a new question, the goal is to find a similar item from the library. The

measurement of item similarity is, however, a challenging task. For the vast majority

of domains, there does not seem to be a standard approach (Pelánek, 2020). Model-

based and feature similarity-based approaches are the two most common approaches

found in EDM literature. In this work, the latter approach is employed since the

former often relies on latent attributes derived from student performance data (e.g.,

matrix factorization). Moreover, since questions have already been associated with

topics in this context, it is reasonable to use them. In fact, one approach that can be

employed is to measure similarity based on associated concepts as done by Hosseini

and Brusilovsky (2017). Detailed steps as well as considerations of PRIME are outlined
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Figure 22. Heatmap Visualizing the Pairwise Application of the Three Metrics to Questions in the Library

Note: Questions are sorted according to their associated time point π, followed by the year.
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in this section. For illustration purposes, the following discussion focuses on existing

test questions in the library. However, it also applies to newly created questions.

5.4.3.3.1 Step 1: Computing the Euclidean Distance

A metric often employed in the data mining literature to measuring similarity

between two vectors is the Euclidean distance. It is a common measure used for

quantifying item similarity based on the item features (Pelánek, 2020). In accordance

with the learning edge momentum hypothesis, items with closely related topics should

be identified (Robins, 2010). Based on the dimension of I, the distance ranges from 0

to
√
t+ 1 where a value of 0 indicates an absolute identity. Given two questions a

and b, the distance can be computed using (5.19). The pairwise distance of all the

questions in the library is visualized using a heatmap shown in Figure 22, left.

QD (a, b) =

√√√√ t+1∑
i=1

(bi − ai)
2 (5.19)

5.4.3.3.2 Step 2: Computing Temporal Proximity

Given that the values in I are normalized along with the nature of the Euclidean

distance, it is possible to find false similar questions from varying time points π if

only the topic distribution were used. For example, a question administered from an

earlier time point might be regarded as similar to a question from a later time point

even if they are not. Additionally, because the schedule is defined in the syllabus,

it was evident earlier in the growth curve of the ideal student ω that certain topics

are often assessed together in a given time point (Figure 19, left). To address this, a

metric that prioritizes questions that belong from a similar or nearer time point is
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introduced. Intuitively, a question that is temporally nearer is given more importance

over those that are further. Given two questions a and b, the temporal proximity can

be computed using (5.20). The value ranges from 0 to 1 where a value of 0 indicates

a low degree and a value of 1 indicates a high degree of temporal importance. The

pairwise temporal proximity of all the questions in the library is visualized using a

heatmap shown in Figure 22, center.

QT (a, b) = 1− | bπ − aπ | (5.20)

5.4.3.3.3 Step 3: Computing Suitability

Recall that the objective is to identify proxy questions based on an upcoming test.

These proxies will be provided to students to enable them to practice on the topics

covered in the test. Thus, it is important to factor the topic coverage of the questions.

For example, it is not beneficial for students to see questions on advanced topics that

are not yet covered in class. This means that given the set of topics covered by two

questions a and b, if b covers certain topics that are not present in a, b is deemed not

suitable to be recommended. Suitability follows the idea of a superset in set theory

and can be computed using (5.21).

QS (a, b) =


1, if T (a) ⊇ T (b)

0, otherwise
(5.21)

where T (·) is the set of topics associated with the question. The value can either be 0

or 1. It should be noted that this value is not necessarily symmetric. The pairwise

suitability of all the questions in the library is visualized using a heatmap shown in

Figure 22, right.
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Figure 23. Heatmap Visualizing the Pairwise Relevance of Questions in the Library

Note: Questions are sorted according to their associated time point π, followed by
the year.

5.4.3.3.4 Step 4: Computing Relevance

After considering the various aspects of a question, it is now possible to quantify

relevance. Combining all the previous steps would yield the following (5.22).

QR (a, b) = QD (a, b) · QT (a, b) · QS (a, b) (5.22)

Intuitively, it first computes for the Euclidean distance between a and b. Next, this

distance value is adjusted based on their temporal proximity. Finally, the suitability

acts as a masking function to determine whether b is ultimately a relevant question for

a. As a consequence, the relevance value obtained is not necessarily symmetric. As

this value is based on a distance measure, a value close to 0 is preferred. The pairwise
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relevance of all the questions in the library is visualized using a heatmap shown in

Figure 23. Figure 24 illustrates an example of the results obtained after using the

metric on a single question.

5.4.3.4 Identifying an Appropriate Example to Recommend

Once a proxy question has been identified from the library, the final step entails

identifying a single student answer from the past. Given that multiple students

attempted the question, the objective is to find an appropriate one for the student γ.

If the ultimate goal is to make apparent to students their misconceptions, it would

be beneficial to identify one which closely resembles or imitates how they would

answer. Also, how difficulty will be affected by the degree of error has to be taken into

consideration (i.e., Goldilocks principle). Ideally, it should be within the student’s zone

of proximal development as to not discourage the student (Vygotsky, 1978). Students

are expected to observe this example and learn from the consequences associated with

it (Bandura, 1977). Therefore, the forecasted normalized score of student γ is used as

a cut-off value to assign priority to existing answers from the database. Answers with

scores lesser or equal to the cut-off value are given higher priority while the remaining

are given low priority. Additionally, providing answers with higher scores gives rise to

the possibility of simply giving out the answer key in which the student may fail to

see their misconceptions or possible mistakes.

Priorities alone give rise to cases with multiple ties. Thus, for each priority

group, the scores are arranged in descending order. The rationale here is to identify

answers with scores that are as much as possible close to the γ’s predicted score.

The next step involves looking into the breakdown of the score based on topics. The
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Figure 24. Top 5 Relevant Questions of an Example Test Item

Note: Question in red is the input while those in black are the candidate relevant questions arranged from top to bottom,
left to right, as determined by PRIME. The test questions in the figure were intentionally blurred in this document to
preserve their integrity.
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topic performance weights W of γ will be used to identify an answer with a similar

performance on the various topics. The distance can be calculated using Euclidean

distance. Afterward, it will be arranged in ascending manner. Finally, there still

is a possibility to see ties at this point. Therefore, the last step is to look into the

student profile (i.e., topic mastery levels Sπq) of the owner of the answer at time

point πq (see Section 5.4.2.2.3 for the discussion). The distance between the profile

of the answer’s owner is and γ is computed using (5.8). The values are arranged in

ascending order. At this point, based on the multi-criteria sorting employed, the top

result will be marked as the appropriate answer to the question deemed to be relevant

to the γ’s critical item.

5.4.4 Underlying Assumptions

The following assumptions are made by this framework. First, that the course

content is structured and consistent over the years. This means it follows a similar

syllabus and deviations are minimal. Additionally, it assumes that the Q matrix is

defined by an expert and that it is consistent with the syllabus. Finally, it is assumed

that the granularity of concepts are consistent.

5.5 Methods

This section provides an overview of the experimental design along with the various

evaluation used to validate the PRIME framework. The context in which is to be

deployed is for the framework to support predictions online and in real-time with

minimal to no additional effort on the teacher’s part. As previously stated, the primary
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goal of the development of this framework is to provide a principled approach to

providing personalized items that are appropriate to the student’s needs. This is the

initial attempt in doing based on the context of summative assessments where students

are assessed at predefined time points in the semester based on topics outlined in the

class syllabus.

This framework aims to address some of the limitations of existing methods given

the current context. First, questions are complex. Students are provided limited

learning opportunities to demonstrate their mastery of a topic given that these involve

exams. The student performance prediction in this framework aims to predict at a

finer grain level, particularly the score that will be obtained on an item as opposed

to successfully answering it correctly or not. Given that the framework proposes to

address some of the limitations of existing modeling techniques, fitting the current

dataset to such models would not be feasible as it would result in losing some contextual

information such as partial credit. Therefore, instead of providing a comparison of the

results of this framework to existing ones, this investigation solely focuses on providing

a comprehensive exploration of the behavior of the framework and understanding the

boundary conditions it can support. Additionally, The goal of this evaluation is not

focused on measuring the learning effect of having the learning activity as it requires

the existence of a valid approach in doing so. Thus, the initial step investigates the

validity of the framework before proceeding to the next step which is to measure any

learning effects.
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5.5.1 Evaluation of Individual Components

It is important to note that evaluation in AI research is often thought of only in

terms of how well the system performs. However, as Cohen and Howe (1988) argue,

these are not typically confined only to performance measures. In fact, in the research

community, describing how programs work and the various problems encountered faced

along the way are also valuable. Cohen and Howe (1988) provided some experiment

schemas and guidelines in conducting the evaluation of AI systems. Considering how

the framework is composed of multiple components, it was deemed reasonable to have

these components tested independently. Some evaluation approaches on AI systems

include layered evaluation as done by Sosnovsky and Brusilovsky (2015). Another is

through an ablation study which investigates how the system overall performs once

certain components are removed (Newell, 1975, as cited in Cohen & Howe, 1988).

Lastly, another is through limitations studies where the system is provided with

unusual cases to identify the behavior and thus would uncover the boundary cases.

There are two main components of the PRIME framework. The two may appear

to be interdependent, but they are in fact two independent components that just

happen to be arranged in a certain order. The first component focuses on predicting

the performance of a student on a future test. The second component focuses on rec-

ommending a relevant test item to a student. Both rely on historical data. The second

component can be said to be informed by the first component. The second component

can be viewed as a recommendation problem. The first component, although the goal

is to make forecasting, the underlying idea is that of a recommendation problem. To

be more specific, it follows the idea of a neighborhood-based forecasting problem. The

evaluation of the entire framework was divided into two, one for each component.
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Given the nature of the task being solved by each component, its corresponding

evaluation was done. The first component was objectively evaluated while the second

component was subjectively evaluated.

5.5.2 Longitudinal Approach

The experimentation was framed to follow a retrospective approach. Essentially,

the study withholds the data gradually and proceeds as if data comes into the system.

Given the longitudinal approach of the data, this investigation follows a walk-forward

validation method to evaluate the framework. This involves doing the forecasting

which involves redoing steps using historical data prior to the current time step which

is a combination of a rolling window analysis and expanding window analysis for time

series data often leveraged in the literature of financial trading. Afterward, the same

observation will become part of the historical data and the process continues. This

closely resembles the actual utilization of the system and the framework. Since the

complete data have already been collected, this will be held out during the process

and will only be used during the relevant time step and to compute for the error.

RMSE will be used to measure the errors as well as the mean signed error.

There was three years’ worth of data, the first data will form the preliminary

content of the library. Afterward, the following year will be the first to implement

and deploy the model. The final year will utilize the two prior years’ data for the

task. To be more clear about it, when populating the library, the library L constitutes

all the student models in the database. It accumulates all information collected by

the system over the years. Each student in the dataset is assigned an ID along with

their year. The experiment was framed to begin in the second year since the first
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year was simply used to populate the library. The process was applied and evaluated.

Afterward, it became part of the library and the process was repeated for the year

2020. Thus, the library was composed of all the historical events that transpired in

the years prior to it. Additionally, given that in a year there are only three time

points that contain evidence, the experiment was framed such that the next test (at

time point πq) was the performance of the student that the model should predict.

Thus, in a year, there were only two time points of interest: E2 and E3. E1 cannot be

forecasted because it was considered a cold-start problem (i.e., no other information

is known about the student).

5.5.3 Objective Evaluation

The objective evaluation pertains to those where ground truth is available. Partic-

ularly, in this context, the actual scores obtained by each student for each question on

a test. It also includes the mastery levels derived from these performance data.

5.5.3.1 Dataset of Real and Artificial Students

As previously mentioned, the data have been collected already from prior years.

It was used retrospectively in this experiment. A detailed discussion is provided in

Section 5.3. The first component focuses on understanding the predictive performance

of the framework. Using the curated dataset, predictive accuracy can be identified. In

addition to this, it is worth investigating how PRIME behaves when various students

are encountered. However, with only a limited number of students and the difficulty of

accurately capturing the real mastery levels of students, the evaluation also employed

145



simulated or artificial students, similar to that of VanLehn et al. (1998). Students

were generated at the conceptual level of each test following the algorithm defined in

Listing B.1. A student was instantiated primarily by randomly assigning them a level

of proficiency sampled from a uniform distribution. Afterward, this proficiency level

adjusts the bandwidth of the student’s probability of obtaining a particular score,

particularly in questions that require partial credits. In cases when the score has a

fractional component, it is truncated to accommodate the algorithm. The idea behind

the weighting follows that of a decreasing reciprocal association of weight. In essence,

the higher the proficiency of the student, the higher the probability of obtaining a

higher score as compared to that of a binary outcome. On the other hand, a lower

proficiency reduces the determining of the score to an equally likely chance. For

example, the distribution of getting a particular score of a student who has a complete

proficiency (Figure 25a) is geared towards getting full credit while a student who has

no proficiency (Figure 25b) has an equal chance of getting any possible score. This

attempt to account for partial credit in simulation goes beyond the typical approach

to simply simulating binary outcomes such as success. Unlike other simulations, as the

goal is to investigate the robustness of the framework, all possibilities were accounted

for instead of generating a set of simulated students drawn from a predetermined

distribution (i.e., often the normal distribution). Finally, it is noted that there are

indeed some correlations between certain concepts in a given test. Given that this

investigation aims to serve as the baseline, incorporating this additional information

in the simulation is reserved for future work5.

5See https://sdv.dev/Copulas/ for more information on Copulas.

146

https://sdv.dev/Copulas/


(a) High-Proficiency

(b) Low-Proficiency

Figure 25. Probability Distribution of Simulated Students Adjusted Based on Ran-
domly Assigned Proficiency on Various Maximum Item Points
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5.5.3.2 Evaluation of the Unified Student Model

The first aspect of the framework involves developing an individual student growth

model that will encapsulate student performance data to demonstrate a student’s

mastery of the various topics. As a result, the unified student model (5.4) was

developed and discussed in Section 5.4.2.1.4. A total of 371 student models were

instantiated where several parameters associated with the student were obtained.

Afterward, each model was used to predict a student’s mastery level at every time

point in which the student took a test. Thus, it was possible to obtain the difference

between the predicted M̂ and the actual M mastery levels for each topic for each

time point. Specifically, a student had three M̂-M pairs. M denotes the cumulative

level for each t topics.

5.5.3.3 Student Performance Prediction Error

After identifying a candidate profile, the system proceeds to predict the performance

of a future test provided the Q matrix is known. It should be noted that no predictive

model was developed. Rather, predictions were made based on parameters transferred

from a candidate profile, specifically based on the growth of mastery. As such, the

accuracy is deemed to be influenced by the ability to choose the best candidate profile.

Since the actual test results were available, these values served as the ground truth

for measuring the errors. Unlike the typical workflow of measuring either the mean

absolute error (MAE) or mean squared error (MSE), the errors are analyzed with

their sign. Importance was given to understanding how the system does its forecasting

over a variety of student proficiency levels, particularly whether it overestimates or
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underestimates given a particular λ. Accordingly, this is referred to as mean signed

deviation (MSD).

5.5.4 Subjective Evaluation

The subjective evaluation pertains to those where ground truth is not available. It

also covers instances in which certain terms are operationalized under a particular

assumption. Particularly, in this context, evaluating a recommender system involves

defining what constitutes relevancy. Due to the retrospective nature of the evaluation,

certain assumptions were made.

5.5.4.1 Assessing the Ability to Identify Relevant Items

As a result of predicting the performance of students on a variety of items, the

system recommends a relevant item from the library for students to work on. This item

is essentially similar to one expected to appear on an upcoming test. The system should

therefore identify the item on which it believes the student will perform the poorest.

As a result, the problem being addressed is a recommendation problem in which

the system is supposed to provide students with recommendations that are relevant

to them. Since actual users were not involved in evaluating the recommendations,

relevance was operationalized as those items where the student had the lowest scores,

which served as ground truth. This assumption was derived from the findings in

Chapter 2, which indicate that high-performing students tend to review items on

which they made mistakes. Furthermore, this aligns with the primary purpose of the

framework, which is to assist students in identifying their misconceptions.
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This problem can be formulated as a ranking problem provided by a defined

utility function (e.g., the critical item defined in Section 5.4.3.2). Based on the top K

recommendations, the system can be evaluated based on the coverage and the order of

items recommended based on their relevance for the user. Specifically, in this context,

items that require immediate attention from the student. There are several ways in

which this can be assessed. It is possible to calculate rank correlation coefficients

using Kendall Tau. It requires, however, that the lengths of the two lists be equal.

If the library is large enough, recommendations that are irrelevant or at the lower

end are still examined, which could lead to an unnecessary penalty. This evaluation

takes into account only the top K items. Items below this are not considered. In this

case, a commonly used information retrieval metric, the mean average precision at K

(MAP@K), was used as similarly done by Thaker et al. (2020).

5.5.4.2 Defining a Baseline Recommender

In evaluating the recommenders, only the ranking was considered. The actual

score became irrelevant. Therefore, all the scores were replaced with rankings using

the rank() function of the pandas6 library. However, an exploratory analysis of the

dataset revealed that there were instances where the normalized performances of a

student brought forth a tie. In terms of relevance, all those whose ranking was less

than or equal to K were marked as relevant. On the other hand, when making the

recommendation, the system followed the same approach by ranking the predicted

scores of each test item. In the event of a tie, the system worked its way through from

1 . . . K. It followed the given algorithm in Listing B.2 in doing so. The algorithm

6https://pandas.pydata.org/
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worked by randomly picking items from i-th rank level and adding them to a container

until K items had been collected. Each new rank level begins with the exhaustion of

all items from the i-th rank level.

5.5.5 Question Relevance Evaluation by Subject Matter Experts

The ground truth becomes increasingly subjective toward the end of the framework.

The next part, which involves determining whether two items are similar, presents

a challenge. As noted earlier, determining item similarity is challenging due to the

lack of a standard approach (Pelánek, 2020). Similarly to the earlier discussion of

candidate profiles, item similarity in this context can be viewed as a recommender

problem, including one that involves ranking items according to a utility function (5.22).

Contrary to the student profile, where ground truth was available, the only information

available for questions was the distribution of topics within them. As a result, it

requires expert evaluation. Nine teachers with experience teaching introductory

computer programming courses in higher education were recruited to rate the quality

of the items identified as relevant by PRIME. The average teaching experience was

11.89 years (SD = 7.01). 20 questions were randomly selected from the 158 questions

to ensure that each exam was represented equally (15%). The four top candidates

were presented to an expert who then assessed their relevance to the question on a

five-point Likert scale. It was not disclosed to them that these candidates had been

ranked in a particular order. The only instruction they received was to evaluate the

relevance. The full instruction is provided in Appendix C.
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5.6 Results and Discussion

To evaluate the feasibility and impact of PRIME, this section presents details of

the evaluation findings. Specifically, the testing was conducted in the context of a

practical and straightforward approach to providing students with tailored support

in preparing for an upcoming test without additional work by the teacher. Each

component of the framework was independently evaluated. There are three main

parts to this section, each presenting the results of the evaluation of a component and

answers to the corresponding research question. The section concludes with a general

discussion.

5.6.1 Growth on Student’s Mastery Level Can be Estimated From Test Performance

Data

One aspect of PRIME involves using student performance data, particularly test

scores on complex items where multiple topics are assessed and typically allow for

partial credit. A unified model was developed to encapsulate the student data to

facilitate modeling a student’s growth in mastery of the topics (see Section 5.4.2.1.4).

To test its validity and to answer RQ D.1, all the student models from the real

students were extracted from the library to test the ability of each model to estimate

mastery of a topic at a given time point. Figure 26 provides an overview of the

errors between the predicted and the actual mastery levels according to topics. The

results were divided into student groups. Figure 26a illustrates the absolute errors.

Unsurprisingly, Topic 9 had the lowest error as this topic was only assessed during

the last examination, suggesting that it may be due to overfitting. Topics 2, 3, and 4

152



had relatively high errors. However, these three topics were constantly evaluated in

each examination throughout the semester. On average, the absolute error for a topic

mostly lies below 0.10 points. Thus, it suggests the potential of the unified growth

model in summarizing all of a student’s performance data into a set of parameters

that could easily be used for forecasting and has the potential to work at scale. Note,

however, that the model assumes that a student does not have any mastery at the

beginning. It is acknowledged that certain students do already have prior knowledge

early on in the semester. An investigation of the effect on the model when this is

accounted for is reserved for future work.

5.6.1.1 More Evidence Leads to More Conservative Estimations of Mastery Levels

for Low-Performers

In this analysis, special interest was given to the sign of the error as it provides an

idea of whether the model underestimated or overestimated its prediction. Particularly

it is worth looking into whether a difference exists between how it performs for a certain

student group. As can be seen in Figure 26b, Topics 2, 3, and 4 had a clear distinction

between which direction a particular student group lies. Clearly, the model has the

tendency to overestimate a high-performing student’s mastery of these three topics.

On the other hand, a low-performing student’s mastery is often underestimated. A

series of Mann–Whitney U tests was performed on each topic and the results indicated

statistically significant differences (p < 0.05). This finding suggests the conservative

nature of the model in making predictions about low-performing students as more

pieces of evidence become available. When such predictions are conveyed to this group,

they do not become complacent about their preparation. Considering how this group
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(a) Absolute Error

(b) Signed Error

Figure 26. Overview of Mean Absolute and Signed Errors of the Unified Model

often overestimates their own performance (i.e., Dunning–Kruger effect; Dunning,

2011; see Chapter 4), this behavior of the model can help counter such effects if the

ultimate goal is to provide students with appropriate learning resources. In contrast,

a further investigation should be undertaken on the effect of the overestimation of

the prediction on the part of the high-performers. Particularly, how does this interact

with certain phenomena often attributed to this group, such as imposter syndrome?
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5.6.1.2 Modeling Approach Performs Consistently Regardless of Student Profile

To further explore the nature of the unified model, 5,000 random artificial students

who were hypothetically enrolled in 2020 were leveraged. The algorithm used is

described in Listing B.1. The goal is to generate as many students to cover as many

profiles or stereotypes as possible. As a result, these students will have varying

proficiencies which affect the scores they obtain for each KC in the questions. Also,

these students will also have their corresponding overall performances λ.

The nature of the errors of the unified models for these students was looked into.

Figure 27 illustrates both the absolute and signed errors grouped according to topics.

Interestingly, the trend exhibited for the artificial students was similar to that of the

real students illustrated in Figure 26. This suggests that not only it was feasible to

summarize the performance data into a unified model for real students, but it is also

possible to do so for artificial students. Remember that these artificial students follow

a different distribution than that of the real ones. Thus, it may be the case that the

approach works for any student profile.

5.6.2 Student’s Performance on Complex Test Items Can Be Predicted Using Pa-

rameters from a Candidate Model

The next component relies on the existence of these candidate models in the model

library L. With a new cohort of students, these models will be used to forecast a

new student’s performance on a future test. Moreover, these predictions attempt to

forecast the actual scores of the students instead of simply predicting success. To test

this and to answer RQ D.2, a rolling and expanding window analysis was performed.
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(a) Absolute Error

(b) Signed Error

Figure 27. Overview of Mean Absolute and Signed Errors of the Unified Model of
Artificial Students

Specifically, the years 2019 and 2020 were used to determine the accuracy of the

predictive approach. There are two steps in this process. First, a candidate profile

needs to be determined. Afterward, prediction can take place.
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Table 13. Overview of Candidate Profiles

2019 2020

Student Count 123 124
Library Model Count 124 247
Unique Candidates (Coverage) 20 (0.16) 35 (0.14)

E2 Forecast 13 (0.11) 26 (0.11)
E3 Forecast 7 (0.06) 9 (0.04)

Average Candidate λ (SD)
E2 Forecast 0.89 (0.02) 0.86 (0.06)
E3 Forecast 0.54 (0.07) 0.58 (0.08)

Average Signed ∆λ (SD)
E2 Forecast 0.11 (0.10) 0.08 (0.08)
E3 Forecast -0.24 (0.10) -0.20 (0.09)

5.6.2.1 Relatively Few Profiles Were Recommended

Finding a candidate profile is framed as a recommender problem. One issue that

is being faced by recommender systems is the coverage of the items from the entire

list that is selected and eventually recommended to its users (Aggarwal, 2016). It is

often attributed to data sparsity. In the current framework, a list of top candidates

can be determined by sorting the weighted distance measure (5.9) against all profiles.

For this analysis, only the first candidate is focused on. Essentially this is the model

which has the lowest weighted distance from the student. The breakdown of the two

years is summarized in Table 13.

For each year, the system was designed to do two forecastings (i.e., two time

points πq). The first is to predict the result of E2, given the performance information

from E1. The second is to predict the result of E3 given the performance information

from both E1 and E2. Figure 28 provides an illustration of the top candidates as well

as the distribution of the year from which this candidate profile was from. Interestingly,
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(a)

(b)

Figure 28. Top Candidates Associated to Students

Note: The chart on the left represents E2 while the right represents E3.

candidate 1222 has been popularly and consistently selected. Thus it is worth looking

at this profile.

Figure 29 illustrates the topic growth of student profile 1222. This student has a

λ = 0.52. Clearly, this student has had a below-average performance throughout the

semester. In fact, when broken down by exams, it becomes clear that 1222 is more
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Figure 29. Growth Model of Top Candidate

prominent when forecasting the result of E3. Therefore, future students will certainly

benefit from the mistakes done by this student. However, this objective is far along in

the pipeline. For now, the main goal of the candidate selection process was to identify

a similar profile.

Since these top candidates were former students who took the same class, it was

possible to recover their overall performance λ. This would provide insights into the

average performance of the profiles being recommended by the system. Table 13

summarizes the averages by tests and year. During E2, the profiles associated with

the students tend to belong to the high-performing group. On the other hand, during

E3, the profiles mostly belong to the low-performing group. Notably, the same trend

persisted in the succeeding year. Two perspectives can be taken into account when

analyzing this finding. First, the ability to find a similar profile may warrant further
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adjustments. But, on the other hand, such a trend could be utilized in informing

the succeeding tasks. Therefore, these two perspectives are taken into account in

subsequent sections.

5.6.2.2 Upper Limit on the Number of Unique Student Profiles is Unknown

If the library is expected to expand every year as new students are added, it seems

logical to expect a more diverse list of candidate profiles over the years. Based on the

findings in the previous section, it is worth investigating why the system had limited

unique profiles when it made the recommendations. Could this suggest that there are

only so many profiles that exist in the course (i.e., stereotypes)?

To further understand the behavior of the system, a clustering algorithm, particu-

larly K-Means was applied to the profiles of the students in the library. K-Means is

an unsupervised approach and since the number of profiles (K) is unknown, it had to

be looked into from the data itself. There are two approaches often employed. The

first is the elbow method while the second is through the use of silhouette scores.

In this exploration, the final mastery levels M of all students were used as it was

consistent with their overall performance. In this case, each student was represented

with eight features denoting their final mastery level for each of the eight topics. No

rescaling was done as these values fall within the same range of values from 0 to 1.

The result of the Elbow Method where K-Means was run from 1 to 50 to identify

the optimal number of clusters (K) is illustrated in Figure 30a. The figure shows

the corresponding inertia, or the sum of the squared distance of each point to their

corresponding centroid, based on a given K. It can be seen that it resulted in a

somewhat smooth curve making it challenging to identify the optimal number of
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(a) Elbow Method

(b) Silhouette Score Analysis

Figure 30. Identifying Optimal K Profiles for K-Means

clusters with confidence. However, it can be observed that the improvement slowed

down past K = 4.

Another approach done was by comparing the various silhouette scores of the

different K. Figure 30b illustrates that K = 2 had the highest silhouette coefficient.

What this likely suggests is that it somewhat reiterates what has already been found in

the literature of programming learning that indeed, there is a bimodal distribution of

students (Robins, 2010). What this means is that knowing this upper-bound number

of profiles not only ensures the framework works at scale, but could also provide

161



valuable insights for the teacher as they could provide tailored sets of instructions to

these particular profile groups or stereotypes. However, for now, it is inconclusive

whether there is an upper limit to this based on the current findings.

5.6.2.3 Candidate Profile Can Potentially Be Used to Inform the Difficulty of a Task

to Recommend

A student’s overall performance λ is unknown up until the end of the semester.

However, in this offline evaluation, these are known. Therefore, it is worth looking

into how similar the student is to the candidate model based on the difference in their

λs. This difference will be referred to as ∆λ.

∆λ = λcandidate − λstudent

As with the earlier analysis, the sign or the direction is of special interest and was

retained. A negative value indicates that the candidate profile was less proficient

relative to the current student. Thus, the student’s λ was underestimated. Similarly,

a positive value indicates the opposite. Table 13 provides an overview of the average

performance difference during the two time points of the two years.

Interestingly, a similar trend for the two years was observed when the system

forecasted the students’ performance for E2. The positive ∆λ suggests that the

system had the tendency to pair a student with a candidate that was relatively more

proficient. This means that eventually, the items that will be recommended will have

fewer mistakes as these belong to better performers. On the other hand, when the

system made a forecast for E3, it was the other way around. Students were mostly

paired with those that were relatively less proficient. As a consequence, the system

will end up recommending items containing more mistakes. Considering that the
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overall performance accounts for all the exams, these numbers suggest that early on,

the system overestimates the likely projection of the student’s performance in an

upcoming exam. However, as it collected more performance data, it became more

conservative and underestimated its forecast.

In light of the purpose and timing of making the forecast, it is reasonable to

provide students with easier items at the beginning of the process, while they are still

learning the domain. Overwhelming them early on could affect their cognitive load. It

is expected that by the end of the semester, students will have mastered the majority

of the topics. Therefore, they would be capable of dealing with being exposed to more

mistakes to determine whether they had truly mastered what was expected of them.

As a result, this behavior of the system appears to be promising. Therefore, a deeper

look at the relationship between the two λs was looked into. Two separate Pearson

correlation tests were performed, one for each test. The results suggest that there is a

significant correlation between the two variables for E2 (r = 0.47, p < 0.05) and E3

(r = 0.47, p < 0.05). This encouraging finding provides initial support for the behavior

of the system in which it is able to provide a similar profile to a student. However,

further investigation is needed.

5.6.2.4 Expanding the Library Led to an Improvement in Identifying Candidate

Profiles

Another aspect that was looked into was whether there was a difference in the

average ∆λ between the two years. It is expected that as more students are added to

the library, the system’s collection will expand and lead to providing a closer profile

to that of the student. Therefore, a Mann–Whitney U test was performed to the
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average of the two exams for the two years. Both suggest that there was a significant

difference between the average difference for E2 in 2019 and E2 in 2020 (p < 0.05),

and the same goes for E3 (p < 0.05). It can be seen that the difference lowered as

more profiles were added to the library. This result is encouraging considering how

similar this is to that of a human experience. As a person gains more experience, they

become better at performing a task. Comparing the performance differences by years

yields an overall of around −0.07 as summarized in Table 13.

It is important to note that performance differences are still referred to as errors

given the objective is to identify a similar profile. By disregarding the signs, a similar

trend can be found. As provided in Table 13, the errors significantly lowered in the

succeeding year when more profiles became available in the library. These findings

suggest that as more profiles were incorporated into the library, its ability to provide

a better candidate model improved. It may be a consequence of introducing a new

profile or stereotype in the library that was previously not available. However, an

upper bound of the number of profiles in a particular class is yet to be discovered.

5.6.2.5 Student Ability Should be Taken into Consideration When Determining the

Difficulty of a Recommended Task

Motivated by findings in the earlier sections where the model had varying tendencies

depending on a student’s proficiency, a closer look at the ∆λ was done. Particularly,

how does it correlate to the student’s λ? Figure 31 illustrates the relationship between

the two variables and grouped according to tests. Essentially, the x-axis is the student’s

λ while the y-axis is the ∆λ which ranges from -1 to 1. Interestingly, a significant

negative correlation (r = −0.416, p < 0.05) was found. What this suggests is that it is
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the case that high-performing students were associated with profiles of which that are

lower than theirs. As a consequence, these students tend to see more errors. Similarly,

low-performing students were associated with profiles that were geared towards either

those close to them or those who performed better. As a result, these students would

see fewer errors.

This provides a better picture of how the system provides a candidate depending

on the student’s ability and the amount of data it has about the student. Perhaps

there may be more appropriate methods of determining difficulty when recommending

an item than simply maximizing gains. Pedagogically, this approach to identifying

the level of difficulty exemplifies the ZPD where students are provided with problems

that are within their ability and would not require additional help (Vygotsky, 1978).

This helps lower-performing students’ cognitive load to be manageable (Sweller, 2011).

Additionally, this finding is in consonance with that of the fading worked example

principle and prevents the expertise reversal effect (Kalyuga, 2007; Kalyuga et al.,

2001; Renkl, 2002). If an item contains more mistakes, it translates into a problem-

solving activity. On the other hand, if an item contains fewer mistakes, it translates

into a worked example. Knowing the right amount of difficulty for a student would

hopefully prevent students from disengaging from the learning activity.

Thus far, the findings obtained demonstrate the possibility of identifying a profile

from which recommended items will be derived. The signed performance differences

could be used to guide the process. Nevertheless, the same measure suggests that the

component’s goal of identifying a similar profile from the library may still need to be

improved.
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Figure 31. Correlation Between λ and ∆λ

5.6.2.6 An Item’s Grading Method Impacts the Accuracy of Predicting a Student’s

Score

Among the many goals of the system is the ability to predict student performance

on multi-skill items that require partial credit. As opposed to simply determining the

probability of answering an item correctly, it aims to determine the degree of correctness

of a student’s answer. The steps to accomplish this are outlined in Section 5.4.2.2.

In essence, the normalized gain ∆δ of the candidate model is transferred to the

current student’s level to forecast the student’s mastery level, which is used to predict

item-level performance on a test. Figure 32 illustrates the distribution of the signed

errors on each item in the two tests from the two years. Both the mean (blue) and the

median (red) are shown for reference. As previously stated in Table 12, certain items

were graded on a binary basis. As a result, the student may either receive full marks

or not. Item numbers for these questions are highlighted in red. This determination,

however, was not made by the teacher. It was determined based on performance data.

If the grader assigned no marks and only a full mark, it would be considered binary,

otherwise, it would be considered non-binary.
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Figure 32. Distribution of Signed Predictions Errors For the Two Exams of the Two Years

Note: The x-axis denotes the question numbers while the y-axis denotes the signed errors. Questions in red indicate
binary grading. The median is indicated by a red line and the mean by a blue line.
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A preliminary visual inspection of the distributions in Figure 32 suggests the

apparent distinction between binary questions (question numbers in red) and those

with partial credits (question numbers in black). The errors were grouped accordingly

to whether the question was binary or not. Both the average and midpoints of the

two groups were compared. The result of a Mann–Whitney test suggests a significant

difference (p < 0.05) in the prediction errors (or MSD) on non-binary questions

(M = −0.07, SD = 0.25,Mdn = −0.12) and on binary ones (M = −0.14, SD =

0.49,Mdn = −0.35). As both values show negative signs, it appears that the system

underestimates the scores of students when making forecasts in line with an earlier

finding.

In addition to understanding the predictive accuracy of the system, it is also

important to consider whether the nature of the question has any impact on the

accuracy. Figure 33 visualizes the kernel density of the two question groups. There

are two apparent distributions in the error for the binary group, both of which are

centered at -0.5 and 0.5. This can be explained by the nature of the question itself.

It follows a binomial distribution that has an expected value of p. In this particular

case, p = 0.5. The sign is a consequence of not disregarding the direction of the error

in the current analysis. Moreover, item difficulty was looked into to determine its

impacts. However, no significant patterns or differences were found in terms of the

errors and how they were distributed. This suggests that the prediction errors are not

likely due to the item difficulty for binary questions.
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Figure 33. Distribution of Signed Predictions Errors Based on Type of Grading

5.6.2.7 Increasing the Number of Topics Assessed by an Item Improves the Accuracy

of Score Prediction

The previous section described how an item is graded impacts the accuracy of

the prediction. Most of the binary questions often had a single topic associated

with them. On the other hand, non-binary ones often have multiple. To determine

whether assessing multiple topics in a question impacts the accuracy of prediction,

a Pearson correlation was performed. The results indicate a significant moderate

positive correlation (r = 0.49, p < 0.05). Considering how error can either be positive

or negative, this finding suggests that the system tends to overestimate its prediction

of the student score as more topics were being associated.

A simple linear regression was conducted to determine whether the number of

topics associated with an item significantly influenced the error rate on non-binary

questions. The fitted regression model was:

errors = −0.235 + 0.0343 ∗ topic_count

The regression was statistically significant (R2 = 0.235, F (1, 15) = 4.615, p = 0.04).
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It was found that the number of topics significantly predicted error on non-binary

questions (β = 0.0343, p = 0.04). Based on the fitted model, it appears that by

default, the system underestimates the student’s performance. As each question has a

minimum of one topic, the model yields an underestimate of -0.20. As only eight topics

are available in the course, the system would always produce an underestimation

of student performance. As stated previously, if the main goal is to recommend

additional resources, this should not be a significant concern. It is possible that

students will be more motivated to improve their performance if they are provided

with an underestimated performance.

In spite of the fact that the predictive accuracy was not as good as expected,

pedagogically, it was better to assume that a student would underperform and

thus motivate them to review rather than mislead them by overestimating their

abilities. Due to the system’s role as a recommendation system for supplementary

learning materials, relatively low accuracy is not necessarily indicative of failure, since

supplemental resources over and above what students are expected to utilize may be of

value to them. As illustrated in Figure 32, complex questions requiring partial credit

are more likely to be correctly predicted. Therefore, this component of the framework

was able to achieve what it set out to accomplish. The accuracy of prediction for

binary questions can be further improved by using this framework in conjunction with

those typical knowledge tracing models since these are the types of questions those

models cater to.

As a final point in evaluating the predictive accuracy, one should note that the

prediction was not made taking into account the time horizon between two time points.

Generally, the wider the gap between πe and πq, the higher the uncertainty, and thus

it is suspected to lead to increased error in prediction. Due to a lack of data, this was
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not evaluated. Also, the framework uses W to estimate the items’ scores as discussed

in Section 5.4.3.2.5. The points were equally distributed among all questions that

related to the topic. In reality, it is possible that the distribution of points may not

be uniform. There is a need to determine how topic points may be allocated to the

questions which could be done through machine learning. This should be taken into

account in future improvements. In doing so, the complexity of the alternative should

be considered as well.

5.6.3 A Subjective Approach to Evaluating PRIME’s Ability to Identify Relevant

Items

Following the forecast of the likely performance of students on a future test, it is

up to the consumer of the information to determine the best course of action. As

discussed previously, PRIME consumes this information to provide a student with

an appropriate worked example that contains errors. This example is intended to

encourage the student to reflect on his or her own mastery as they prepare to take a

test in the near future. To assess the relevance of such recommendations and to answer

RQ D.3, the predicted and the actual scores of the students were compared. The

performance of PRIME was compared against a baseline recommender system, which

simply shuffles all items and returns the first K elements. The MAP@K scores of the

two recommenders for varying K values were compared. The results are summarized

in Figure 34, left.
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Figure 34. Performance Comparison of PRIME and the Baseline Recommender

Note: The x-axis denotes the K values or cut-off points while the y-axis denotes the corresponding metric score.
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5.6.3.1 Low Performers are more likely to be Recommended Relevant Items by

PRIME

It can be seen that by K = 5, the baseline MAP score began to match the PRIME

score. Note, however, that the main purpose of the recommender is to provide students

with appropriate items to master and not necessarily to cover all items. Due to this,

this recommender system is typically used to select top items such as the top three.

The graph clearly shows that PRIME performs similarly to a random recommender.

Nonetheless, it can be seen that at earlier values of K, the system had a slightly

better MAP score, albeit a relatively low one. Three points are worth mentioning.

Considering that the ground truth used for the list of relevant questions captures more

test items, the performance of both recommenders should converge as K increases.

The operationalization of item relevance can be attributed to such a trend. Secondly,

the overall low MAP scores are to be expected as a consequence of the use of a proxy

and a strict definition of item relevance. Third, considering that the goal is simply to

recommend a critical item (1 or 2), focusing only on those K values provides a slight

improvement. Moreover, this suggests that on average, students receive 25% relevant

results at K=1. In this instance, only assessment data were used. In the same way as

other predictive models, if more information were provided to this model, it would

perform better. Therefore, future work could examine the possibility of improving the

system by incorporating additional information about the user.

As with earlier sections, the MAP scores were grouped by student performance to

examine whether the system was capable of recommending relevant items to students

of varying abilities. The results are illustrated in Figure 34, left. There is some

interesting evidence suggesting that the recommender system performed better for low-
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performing students. It is encouraging to see this trend because it is these students

who are believed to benefit the most from the guidance provided. On the other

hand, MAP scores were low in the high-performing group. The odds of the system

identifying the relevant items for them are slimmer since they had already performed

well. Those where many errors have been committed are prioritized by the system.

As a result, if they are already high performers, it is understandable why the system

would have difficulty providing them with the appropriate items. Considering that

this is supplementary material, the recommender is primarily concerned with the first

few items on the list.

5.6.3.2 Relevant for a Student: What Does It Mean?

A closer examination of the dataset where students were grouped according to

their performance, year, and exams was done. It is supposed that increasing the

number of students in the library should improve the system’s ability to provide

relevant items for review. As shown in Table 14, comparing the MAP scores between

the years indicates that the ability to provide relevant information decreased for both

student groups. This finding contradicts the earlier finding that expanding the library

led to an improved ability to identify candidates. These findings, therefore, should

not be construed as evidence of PRIME’s poor recommendation capability. Instead,

this result should be viewed as a recommendation to refine the definition of relevance.

Human judgment would certainly provide more insight into this issue. Due to the

inability to reach the original owners of the dataset, this finding should be regarded

as an indicator of future research. Alternatively, this pattern may also serve as a

potential diagnostic tool. If it is suspected that these recommendations are truly
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Table 14. MAP@K Scores of PRIME By Student Groups

K Group 2019 2020

E2 E3 E2 E3

1 High 0.24 0.35 0.06 0.14
Low 0.42 0.46 0.28 0.40

2 High 0.17 0.20 0.11 0.12
Low 0.25 0.30 0.25 0.32

ineffective and such patterns are exhibited by a student, it may serve as an early

warning sign for intervention.

Several other metrics were explored to determine the system’s capability to rec-

ommend relevant items based on the actual performance of the students. Although

several K values were explored, the framework only encompasses the top 1 or 2

items. Thus, the remaining elements on the list become irrelevant. The degree of

agreement between the actual items and the recommended items was evaluated. This

computation of the degree of agreement was adapted from Huang et al. (2020). The

degree of agreement was normalized and illustrated in Figure 34, center. As can be

seen from the results, it is apparent that another method of determining relevance

is required based on the relatively low normalized degree of agreement score. Thus,

relevance may extend beyond simply focusing on students’ actual scores. However,

as consistently has been seen in the evaluation so far, PRIME performed better for

low-performing students. It is these students who are intended to benefit most from

the recommendations. Another metric explored was the average distance. It basically

computes the sum of displacements between two sequences. Unfortunately, the results

as illustrated in Figure 34, center, are inconclusive. However, this suggests the need
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for formalizing a metric that could truly measure the quality of an ordered list of

recommended learning resources for students.

5.6.4 Question Relevance Rating of PRIME Aligns With Subject Matter Experts

As the actual questions used for forecasting a student’s performance has not yet

been released, it was necessary to identify proxies from the question library (refer to

Section 5.4.3.3 for details). To evaluate the approach, the most viable candidates for

each of the 158 questions were identified (i.e., those with the lowest relevance score).

In general, the relevance score of a candidate question was 0.07 (SD = 0.12), where

a value close to zero is preferred. In other words, there typically exists a relevant

question in the library that can serve as a proxy. Upon closer examination of these

candidates, it can be found that in some cases, multiple candidates are identified due

to a tie in relevance scores. Therefore, variation can be incorporated into the process

of making recommendations. As a matter of fact, on average, 0.08 (SD = 0.07)

of the library’s materials were considered viable candidates for a given item. This

further suggests the possibility of variation. In this situation, it is up to the system to

decide which ties to recommend to the student. A closer examination of the effects of

randomization on the system can be conducted in future research. For the present

study, only the first item on the list will be returned.

Due to the lack of ground truth regarding whether such a question is indeed relevant

to the other questions, it was necessary to rely on experts to perform the validation.

The following were determined: Each of the nine teachers independently rated the

relevance of the top four results that will be returned by PRIME. Interestingly, on

average, most of the results were assessed to be relevant as indicated in Figure 35.
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Figure 35. Average Rating of Subject Matter Experts on Top Four Relevant Questions
Provided by PRIME

A Kruskal–Wallis test was performed to determine whether there was a significant

difference between ratings of the relevant items. The result suggests that there was no

significant difference (p = 0.39) in terms of the rating provided by the teacher. It is

important to note that when this is deployed on WebPGA, only one item from a list

of relevant items will be chosen (e.g., Relevant Item 1). However, it was unclear what

relevance truly meant for experts. In the same survey, they provided their approach

or basis on how they identified whether a question was relevant or not.

Teachers were also asked about their thought processes on how to assess relevance.

Some participants found the tasks challenging and at times confusing. One participant

indicated that the topics they believed were associated with the question were one way.

Another participant indicated that the prerequisite was another way to determine

relevance. If the output was a prerequisite or topic of the input, then it was deemed

relevant as well because you cannot really proceed further if not. Interestingly, this

reinforces the idea of the utility function of PRIME as discussed in Section 5.4.3.3.

Recall that it is composed of three parts. First, it focuses on the similarity of

distribution. Followed by the temporal aspect and the appropriateness of the question.
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The third one deals with the prerequisite aspect of the case. Based on this information

from a participant, it is encouraging how these align with PRIME.

5.6.5 General Discussion

It appears that the results of the objective evaluations conducted earlier point to

the potential of PRIME. It is worth noting that two different perspectives can be

considered when analyzing the results. Taking a broader view, the results indicate

that it was possible to identify tasks that are appropriate for the needs of a student

based on the candidate profiles identified for a student. It is possible to determine

the difficulty level by evaluating the underestimation or overestimation of the overall

performance λ, or in other words, the performance difference ∆λ of the student and the

candidate. Meanwhile, taken from a narrow perspective (i.e., the goal of the individual

component), it appears that PRIME requires further improvement to provide a more

accurate prediction of an individual’s overall performance. Understanding these

contradictory scenarios could assist in clarifying PRIME’s role in the future. Findings

related to the ability to provide relevant items refer to an examination of the ability to

do so in the absence of ground truth that can only be derived from a human perspective.

As a result, it is necessary to investigate what considerations are pertinent to consider

when determining whether an educational item is relevant to a student. As a final

point, the same framework can also be applied to a similar problem. A common

problem teachers face is the need to conduct a pilot test to help improve the quality

of a new test. Using the same infrastructure, teachers can use the library to assist

them in conducting a pilot test to assist them in improving the quality of the test.

178



5.7 Conclusion

In this chapter, the PRIME framework was presented as a means of addressing the

limitations of an earlier work as well as the limitations of existing knowledge-tracing

methods. A principled and practical approach was developed to model student mastery

growth using performance data collected from semester-long classes. Particularly,

scores on test items that are complex and may require partial credit were taken into

account and used to obtain parameters that represent a student’s growth rate in

learning domain topics. Using the same model and a neighborhood-based forecasting

approach, it was possible to provide a more detailed prediction of performance

instead of a binary indicator of success, particularly by leveraging parameters from

an identified candidate in the model library. Additionally, these predictions may

help recommender systems provide relevant resources to students as they prepare

for examinations. In this case, a worked example for students to evaluate. The

workflow was intentionally designed to facilitate real-time recommendations. As new

data is received, the framework can make updated recommendations, which simplifies

the process without requiring additional effort from the teacher or additional offline

training.

Every component of the framework was evaluated in order to gain a better

understanding of its behavior and to assess its accuracy. As the results indicate,

the framework holds particular promise for encapsulating student performance data

into a unified growth model. In turn, these models can be easily instantiated and used

by a new cohort of students to forecast their own performance. A closer examination of

the framework’s performance revealed that it was more effective with low-performing

students, albeit marginally. Therefore, it achieved the purpose for which it was initially
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intended. Certain findings, however, raise some concerns, including the various factors

affecting the accuracy of the predictions. Moreover, it challenged some assumptions

about what constitutes relevancy for students that had been adopted in earlier chapters

of this dissertation. The framework should therefore be tested in its entirety in the

future after it has been put together to determine whether it contributes to student

learning.

The content of this chapter provides a framework for understanding how WebPGA

can analyze existing performance data to intelligently provide students with personal-

ized learning resources as they prepare for a test. Nonetheless, some of its limitations

should be considered to guide future research. First, item difficulty was not considered

in this study either in estimating mastery or during score prediction as it might have

been in item response theory. It is posited that additional information about the items

would result in improvement. Second, it was assumed that a well-defined syllabus

would be followed over time, but it is worthwhile to consider how the framework

will adapt to any major deviations. Third, for simplicity, certain processes were

performed manually, such as relabeling KCs and matching them with topics. Several

studies have already explored the possibility of automating some of these processes

(e.g., ExamParser; Hsiao & Awasthi, 2015) that could be applied to certain steps

of the framework. To minimize the possibility of introducing confounding factors,

automation was minimized during the development. Fourth, the dataset examined

only one aspect of the student. Additionally, students were assumed to have no prior

knowledge at the beginning of the class. To provide a holistic picture of the student’s

mastery, many other systems could be included. This can be incorporated into the

process, for example, if a standardized data collection method is used (e.g., xAPI;

Paredes et al., 2020). Finally, it is essential to emphasize the importance of privacy.
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Considering how this framework deals with sensitive student performance data, future

research can examine how to possibly reconstruct student answers. It will ensure that

the responses students receive are synthetic but based on real answers. Exploring this

avenue would be a worthwhile endeavor.
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Chapter 6

SUMMARY

Throughout this dissertation, several studies were designed and conducted on

WebPGA to leverage learning analytics on educational assessment data. In addition

to bridging the gap between the physical and digital worlds of educational assessment,

WebPGA paved the way for empirical research into how students review their graded

summative assessments. The various endeavors to better understand the students

were hoped to facilitate the development of informed interventions so that students

can become more aware of their misconceptions. In this work, assessment data was

viewed as a source of human experience from which it was possible to gain knowledge.

Moreover, it was demonstrated that experience could come either from oneself or from

others.

In Chapter 2, it was hoped that students would reflect on their own experiences and

learn from their mistakes by reviewing their own graded tests. Since this dissertation

is focused on a specific learning environment and scenario of interest, no prior data

was readily available. To devise interventions to assist students in becoming better

learners, several factors need to be understood first. As a result, RQ A.1, RQ A.2,

and RQ A.3 were posed with the goal of determining whether behavioral differences

exist among students. This revealed that better students tend to review their previous

performance and learn from their mistakes, while the other group tended to do the

opposite. This information was utilized to improve the system to provide guidance to

low-performing students so that their misconceptions could be more clearly highlighted.

Consequently, RQ A.4 was posed to determine whether students would benefit from

182



tailored recommendations based on their performance. Guidance of this type was found

to be beneficial to students, particularly low-performers. The belief that importance

(or relevance as in Chapter 5) should be operationalized in this manner emerged as a

result. By simply pointing out the areas where students made the most mistakes, it is

assumed that they will be able to maximize their learning as they strive to close this

gap.

In Chapter 3, another approach was used to understand students’ behavior. Transi-

tions or sequences were specifically considered, which had been omitted in the previous

analysis. Following this, RQ B.1 and RQ B.2 were posed to further investigate

the best practices that could be identified so that low-performing students could see

and emulate these and improve. This chapter echoes findings previously reported but

provides a more detailed description of how students distributed or attended their

graded tests throughout the semester. Once again, it was evident how low-performing

students do not recognize their misconceptions as they fail to make an effort to uncover

them and learn from them. Specifically, these students rely on superficial, high-level

feedback such as overall scores and do not take advantage of the feedback they are

given. Additionally, the same students missed out on various other learning resources

that were not required but provided additional knowledge.

In Chapter 4, an innovative approach to reviewing was presented. The students

were asked to evaluate incorrect answers to test items of a hypothetical student. As a

matter of fact, these test items are similar to items on the test they will soon take. It

is therefore somewhat similar to reviewing, but with a twist. In addition, it is intended

to illustrate the process of learning from the experiences of others. RQ C.1 was

posed in an attempt to determine whether students would benefit from the learning

experience. The results of the study, however, were inconclusive. As a result, RQ C.2,
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RQ C.3, and RQ C.4 were posed to determine whether students attempted to make

sense of the experiences of others, specifically whether they sought feedback to confirm

their understanding. It was determined that students benefited from validating their

understanding based on their improved performance on their midterms. Additionally,

the same students improved their calibration or ability to assign the correct scores.

Finally, Chapter 5 takes a different approach. Incorporating the lessons learned

in earlier chapters led to the development of a framework that addressed both the

limitations of the proposed learning activity and those of existing knowledge-tracing

techniques. This framework hopes to address several things based on RQ D.1,

RQ D.2, and RQ D.3. First, encapsulate student performance data in a simple

manner that allows for growth in mastery levels to be estimated. Second, make

predictions that extend beyond knowing whether the student will succeed in answering

a question. Third, identify relevant items for each student to facilitate the process

of learning from others. All of this is for the purpose of streamlining and making

intelligent the proposed learning activity. While the results of the evaluation appear

promising, more questions remain. Identifying a relevant resource for a student and

understanding how the characteristics of the student affect that resource are two key

questions that must be addressed.

Overall, the system has provided an infrastructure for blended learning environ-

ments that streamline the various processes of learning analytics to enhance the

student’s learning experience. Due to its modular design, future improvements can be

easily incorporated and tested, increasing the system’s usefulness.
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6.1 Educational Implications

This dissertation supports the shift towards the notion of assessment as learning.

Assessments are already being viewed differently and students are expected to take an

active role in understanding their assessment results. It is critical that students have

the opportunity to reflect upon their experiences as part of developing the fundamental

skills that enable them to become independent learners. The findings regarding the

behaviors of successful students can serve as a reminder for teachers to emphasize the

importance of reflecting on one’s own performance to their students. In addition, this

dissertation has highlighted the approach of learning from erroneous examples and how

it can potentially be employed in instruction, particularly in the domain of computer

programming. By also showcasing mistakes, people can widen their understanding of

the domain and avoid repeating common mistakes. In the era of rapid technological

advancements, teachers must continue to explore ways of incorporating innovation

into their teaching strategies to meet the ever-changing needs of modern students.

Developing technologies will be facilitated by combining artificial intelligence and

machine learning. The success of these depends, however, on their ability to harness

both human and artificial intelligence.

The current system can be utilized by teachers to assist them in making sense of

the numerous questions that they have created over the years. The collected data may

be used to improve the items (e.g., to adjust the points or question type). As a matter

of fact, although the PRIME framework is intended to ultimately facilitate and guide

students, its original purpose was to provide teachers with a data-driven approach

for improving the quality of the tests that they construct (Paredes & Hsiao, 2022a).

Students from the same library can be used to simulate a classroom so the teacher
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can see the likely outcome of a newly constructed test. In this way, teachers will be

able to revise their tests as necessary. It is possible that these revision behaviors of

teachers could contribute to the identification of best practices that can be shared

with fellow teachers early in their careers. Additionally, an understanding of these

behaviors could contribute to closing the loop on automated educational assessment.

A recurring theme in this dissertation is the exploration of potential uses of

performance data and assessment that some teachers may be reluctant to consider.

The days when it was impossible to obtain a copy of an old test are long gone.

For example, if a course is common, such as an introductory course, a determined

individual may be able to locate test banks that are similar to those that will be used

by the teacher. As a compromise, it is believed that recognizing such problems and

exploiting them to prepare students would be a good approach. To the best of my

knowledge, the context of utilizing existing student performance data to serve as a

potential exercise for future students has not been investigated. By removing any

personal information or reproducing past students’ answers, future students can benefit

from these vicarious experiences. Further research is necessary to fully understand

how it impacts students’ mastery and their learning.

6.2 Limitations and Future Work

All of the explorations have been focused on computer programming. Whether

or not these findings are also applicable to other domains, including those that are

ill-defined, remains unclear. In addition, all the datasets were derived from digitized

paper tests. Digital tests are increasingly being considered by more and more classes.
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Therefore, it would be interesting to learn if the same findings hold for WebPGA’s

digital counterpart.

The digital artifacts (i.e., scanned paper) were not tapped due to their sensitive

nature. However, it is believed that there may be something useful that can be

learned from them. In fact, there is growing interest in exploring how to make sense

of these markings. It could potentially pave the way for reconstructing a student’s

answer such that the actual is not presented elsewhere, thus addressing the privacy

issue. In addition to student performance and behavior data, WebPGA collected

behavioral data about teachers and graders as they graded student answers. It is

possible to examine the coherence and consistency of graders’ evaluations in the

context of evaluating answers to the same question. While data have already been

collected, this issue has not yet been investigated. Another aspect that has not yet

been explored is the use of performance data in conjunction with behavioral data.

The behavioral component could help shed light on determining what constitutes

relevance for a specific individual. For example, if an item has already been reviewed

by the student, it should not be recommended further. With data constantly arriving

at the system, these ever-changing dimensions are likely to serve as implicit feedback

to assist in improving performance. A deeper understanding of the behavioral aspects

would also be beneficial in guiding how artificial students behave in a simulation

environment. Lastly, there has been much research on integrating human aspects

into educational systems, such as the use of pedagogical agents (Biswas et al., 2005;

Matsuda et al., 2013; Schroeder et al., 2013). Integrating lessons learned from other

systems would be a worthwhile endeavor.
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6.3 Contributions

Among the contributions of this dissertation is the design and development of a

research platform that facilitates the application of learning analytics to educational

assessment systems. In the past six years, it has served over 6,000 students from

two universities. The system helped streamline and support the grading process for

over 40 classes (including Mathematics) handled by more than 15 faculty members,

thereby eliminating the need for physically moving papers. It resulted in at least a 40%

reduction in the time it takes students to receive feedback! Furthermore, it provided

empirical evidence on how students review their graded answers, thus paving the way

for the introduction of various interventions that could assist students in reviewing

their results. Further, this study contributes to the literature on student modeling by

developing the PRIME framework, a novel method for predicting student performance

on complex questions that allow partial credit. A prototype of the framework itself,

deployed on WebPGA, is the final contribution of this dissertation, as it provides a

guideline for students to identify appropriate items to review. The findings of the

evaluation can serve as baseline values for future developments.
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E1 S1 S2 S3 Cum% S1 Cum% S2 Diff Cum% S1 Cum% S3 Diff Cum% S2 Cum% S3 Diff
01 - intro 0.06         0.02         0.02         0.06         0.02         0.04         0.06         0.02         0.04         0.02         0.02         -           
02 - fundamental data type 0.56         0.51         0.59         0.62         0.53         0.09         0.62         0.61         0.01         0.51         0.59         0.08         
03 - decision 0.20         0.29         0.16         0.82         0.82         -           0.82         0.77         0.05         0.29         0.16         0.13         
04 - loop 0.18         0.18         0.23         1.00         1.00         -           1.00         1.00         -           0.18         0.23         0.05         
05 - methods -           -           -           1.00         1.00         -           1.00         1.00         -           -           -           -           
06 - arrays and array list -           -           -           1.00         1.00         -           1.00         1.00         -           -           -           -           
08 - objects and class -           -           -           1.00         1.00         -           1.00         1.00         -           -           -           -           
09 - inheritance and interface -           -           -           1.00         1.00         -           1.00         1.00         -           -           -           -           

D-stat 0.09         D-stat 0.05         D-stat 0.13         
D-crit 0.19         D-crit 0.19         D-crit 0.19         

SAME SAME SAME

E2 S1 S2 S3 Cum% S1 Cum% S2 Diff Cum% S1 Cum% S3 Diff Cum% S2 Cum% S3 Diff
01 - intro 0.03         0.08         0.06         0.03         0.08         0.05         0.03         0.06         0.03         0.08         0.06         0.02         
02 - fundamental data type 0.08         0.12         0.19         0.11         0.20         0.09         0.11         0.25         0.14         0.12         0.19         0.07         
03 - decision 0.11         0.04         0.07         0.22         0.25         0.03         0.22         0.31         0.09         0.04         0.07         0.02         
04 - loop 0.07         0.04         0.07         0.29         0.29         0.01         0.29         0.38         0.10         0.04         0.07         0.02         
05 - methods 0.22         0.13         0.08         0.51         0.42         0.09         0.51         0.46         0.04         0.13         0.08         0.05         
06 - arrays and array list 0.22         0.19         0.17         0.72         0.61         0.11         0.72         0.63         0.09         0.19         0.17         0.02         
08 - objects and class 0.28         0.39         0.37         1.00         1.00         -           1.00         1.00         -           0.39         0.37         0.02         
09 - inheritance and interface -           -           -           1.00         1.00         -           1.00         1.00         -           -           -           -           

D-stat 0.11         D-stat 0.14         D-stat 0.07         
D-crit 0.19         D-crit 0.19         D-crit 0.19         

SAME SAME SAME

E3 S1 S2 S3 Cum% S1 Cum% S2 Diff Cum% S1 Cum% S3 Diff Cum% S2 Cum% S3 Diff
01 - intro 0.02         0.07         0.05         0.02         0.07         0.05         0.02         0.05         0.03         0.07         0.05         0.02         
02 - fundamental data type 0.10         0.06         0.15         0.11         0.13         0.02         0.11         0.20         0.09         0.06         0.15         0.09         
03 - decision 0.08         0.02         0.04         0.19         0.15         0.04         0.19         0.24         0.05         0.02         0.04         0.02         
04 - loop 0.04         0.03         0.02         0.23         0.18         0.05         0.23         0.26         0.03         0.03         0.02         0.01         
05 - methods 0.10         0.03         0.07         0.32         0.21         0.11         0.32         0.33         0.01         0.03         0.07         0.04         
06 - arrays and array list 0.07         0.06         0.02         0.39         0.27         0.12         0.39         0.35         0.04         0.06         0.02         0.04         
08 - objects and class 0.33         0.38         0.25         0.72         0.65         0.07         0.72         0.60         0.12         0.38         0.25         0.13         
09 - inheritance and interface 0.28         0.35         0.40         1.00         1.00         0.00         1.00         1.00         0.00         0.35         0.40         0.05         

D-stat 0.12         D-stat 0.12         D-stat 0.13         
D-crit 0.19         D-crit 0.19         D-crit 0.19         

SAME SAME SAME

alpha 0.05
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1 import random
2 import numpy as np
3
4 def get_adjusted_band_width(max_score , adj):
5 # this widens the success directly prop to adj
6 # adjusted for success
7 choices = max_score + 1
8 adj_r = 1-adj # had to flip if we want to be directly prop
9

10 # this is just weighted means incremental
11 a = np.arange(choices)+1
12 b = np.flip( np.arange(choices) )
13 c = b * adj_r
14 d = a+c
15
16 # recomputed prob
17 pr_orig = np.array( [1/ choices ]* choices )
18 pr_mult = pr_orig * d
19 pr_chance = pr_mult / (d.sum()/choices)
20
21 # get new cut offs
22 return pr_chance.cumsum ()
23
24
25 def get_adjusted_score(max_score , adj):
26 # current limitation is that we truncate floats
27 max_score = int( max_score )
28
29 # get the adjusted bands
30 cut_offs = get_adjusted_band_width(max_score , adj)
31
32 # flip a coin
33 coin = random.uniform(0, 1)
34
35 # determine the position , if tie , position it to the right
36 return cut_offs.searchsorted(coin , side='right')

Listing B.1. Code defined to identify partial credit scores of simulated students given
proficiency
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1 def get_prime_predicted_at_k(row , K):
2 # rank and remove nans
3 row = row.dropna ().rank(method='min')
4 tmp_rr = row[row <= K]. sort_values ().reset_index ()
5 prop_set = []
6
7 actual_elem_counter = 0
8 for ir, dr in tmp_rr.groupby(tmp_rr.columns [-1]): # sorted

guaranteed per documentation
9 needed_elems = K - actual_elem_counter

10 # how many elems here
11 potential_elems = dr['question_number ']. tolist ()
12 potential_elems_count = len( potential_elems )
13
14 # if still below capacity
15 if potential_elems_count <= needed_elems:
16 # add all
17 prop_set.append( set( potential_elems ) )
18 else:
19 # just shuffle and choose the remaining
20 prop_set.append( set( random.sample(potential_elems , k=

needed_elems) ) )
21
22 return prop_set
23
24 def get_actual_at_k(row , K):
25 # rank and remove nans
26 row = row.dropna ().rank(method='min')
27 tmp_rr = row[row <= K]. sort_values ().reset_index ()
28 prop_set = []
29 for ir, dr in tmp_rr.groupby(tmp_rr.columns [-1]): # sorted

guaranteed per documentation
30 potential_elems = dr['question_number ']. tolist ()
31 prop_set.append( set( potential_elems ) )
32 return prop_set
33
34 def get_baseline_predicted_at_k(row , K):
35 # literal assume random with singleton only
36 return [ {el} for el in random.sample( row.dropna ().index.tolist

(), k=K ) ]
37
38 def get_actual_relevant_questions(row , K):
39 row = row.dropna ().rank(method='min')
40
41 return row[row <= K].index.to_numpy ()

Listing B.2. Code defined to obtain the recommendation of both PRIME and the
Baseline recommender
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APPENDIX C

DATA COLLECTION SYSTEM USED FOR EXPERT EVALUATION OF
QUESTION RELEVANCE
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Figure 36. Sample Screenshot of System Used to Solicit Expert Rating on Question Relevance

Note: The tests questions in this figure were intentionally blurred in this document to preserve their integrity.
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Figure 37. Experiment Instructions for Experts
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WORKED EXAMPLE OF IDENTIFYING CRITICAL ITEM
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Raw Points Normalized Q‐Matrix
T1 T2 T3 Total T1 T2 T3 Total

Q1 2.00          ‐            5.00          7.00          Q1 0.29          ‐            0.71          1.00         
Q2 4.00          2.00          1.00          7.00          Q2 0.57          0.29          0.14          1.00         
Q3 9.00          3.00          7.00          19.00        Q3 0.47          0.16          0.37          1.00         
Total 15.00        5.00          13.00        33.00       

Beta 0.70          0.60          0.40         

Manually Computed Directly Computed
T1 T2 T3 Total Normalized T1 T2 T3 Total

Q1 1.40          ‐            2.00          3.40          0.49          Q1 0.20          ‐            0.29          0.49         
Q2 2.80          1.20          0.40          4.40          0.63          Q2 0.40          0.17          0.06          0.63         
Q3 6.30          1.80          2.80          10.90        0.57          Q3 0.33          0.09          0.15          0.57         
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APPROVAL: EXPEDITED REVIEW

Scotty Craig
IAFSE-PS: Human Systems Engineering (HSE)
480/727-1006
Scotty.Craig@asu.edu

Dear Scotty Craig:

On 5/11/2022 the ASU IRB reviewed the following protocol:

Type of Review: Initial Study 
Title: Development of a Web-based Educational 

Technology: Incorporating Artificial Intelligence in 
the Educational Assessment Process

Investigator: Scotty Craig
IRB ID: STUDY00015953

Category of review:
Funding: Name: ASU: Graduate and Professional Student 

Association (GPSA)
Grant Title:

Grant ID:
Documents Reviewed: • Consent Form Student, Category: Consent 

Form;
• Consent Form Teacher, Category: Consent 
Form;
• IRB_Application_11-05-2022.docx, Category: 
IRB Protocol;
• Recruitment_Methods_Email_11-05-2022.pdf, 
Category: Recruitment Materials;
• Research Grant AppID388553.PDF, Category: 
Sponsor Attachment;
• Supporting_Documents_11-05-2022.pdf, 
Category: Measures (Survey questions/Interview 
questions /interview guides/focus group 
questions);
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The IRB approved the protocol from 5/11/2022 to 5/10/2027 inclusive. Three 
weeks before 5/10/2027 you are to submit a completed Continuing Review 
application and required attachments to request continuing approval or closure. 

If continuing review approval is not granted before the expiration date of 
5/10/2027 approval of this protocol expires on that date. When consent is 
appropriate, you must use final, watermarked versions available under the 
“Documents” tab in ERA-IRB.

In conducting this protocol you are required to follow the requirements listed in 
the INVESTIGATOR MANUAL (HRP-103).

REMINDER - - Effective January 12, 2022, in-person interactions with human 
subjects require adherence to all current policies for ASU faculty, staff, students 
and visitors.  Up-to-date information regarding ASU’s COVID-19 Management 
Strategy can be found here.  IRB approval is related to the research activity 
involving human subjects, all other protocols related to COVID-19 management 
including face coverings, health checks, facility access, etc. are governed by 
current ASU policy.

Sincerely,

IRB Administrator

cc: Yancy Vance Paredes
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CERTIFICATION

There are chapters in this dissertation that have been previously published. I
was the first author of all previous publications. The following publications were
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Chapter 2

Paredes, Y. V., & Hsiao, I.-H. (2021b). WebPGA: An educational
technology that supports learning by reviewing paper-based pro-
gramming assessments. Information, 12 (11), Article 450.
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Paredes, Y. V., & Hsiao, I.-H. (2022b). Modeling students’ ability
to recognize and review graded answers that require immediate
attention. Proceedings of the 30th International Conference on
Computers in Education Volume II, 85–90.
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Paredes, Y. V., & Hsiao, I.-H. (2021a). Can students learn from
grading erroneous computer programs? Proceedings of the 2021
International Conference on Advanced Learning Technologies, 211–
215. (best paper nominee)

The purpose of this page is to certify that I have obtained the approval of my
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