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ABSTRACT

As threats emerge and change, the life of a police officer continues to intensify.

To better support police training curriculums and police cadets through this critical

career juncture, this thesis proposes a state-of-the-art framework for stress detection

using real-world data and deep neural networks. As an integral step of a larger study,

this thesis investigates data processing techniques to handle the ambiguity of data

collected in naturalistic contexts and leverages data structuring approaches to train

deep neural networks. The analysis used data collected from 37 police training cadets

in five different training cohorts at the Phoenix Police Regional Training Academy.

The data was collected at different intervals during the cadets’ rigorous six-month

training course. In total, data were collected over 11 months from all the cohorts

combined. All cadets were equipped with a Fitbit wearable device with a custom-built

application to collect biometric data, including heart rate and self-reported stress

levels. Throughout the data collection period, the cadets were asked to wear the Fitbit

device and respond to stress level prompts to capture real-time responses.

To manage this naturalistic data, this thesis leveraged heart rate filtering algorithms,

including Hampel, Median, Savitzky-Golay, and Wiener, to remove potentially noisy

data. After data processing and noise removal, the heart rate data and corresponding

stress level labels are processed into two different dataset sizes. The data is then

fed into a Deep ECGNet (created by Prajod et al.), a simple Feed Forward network

(created by Sim et al.), and a Multilayer Perceptron (MLP) network for binary

classification. Experimental results show that the Feed Forward network achieves

the highest accuracy (90.66%) for data from a single cohort, while the MLP model

performs best on data across cohorts, achieving an 85.92% accuracy. These findings
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suggest that stress detection is feasible on a variate set of real-world data using deep

neural networks.
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Chapter 1

INTRODUCTION

1.1 Motivation

Stress is a common, undeniable human experience which emerges when we respond

to challenges or demands that overwhelm us. Though manifesting differently across

individuals, stress is a shared experience impacting behavior, decision-making, social

interactions, and health. According to the American Psychological Association [29],

some common correlates of stress in adults include getting angry very quickly, unex-

pected mood swings, and screaming or yelling at a loved one. Stress and other intense

physical and emotional states are generally associates with increased cardiological

activation, such as heart rate [12, 23].

When investigated in a deeper context, stress is detrimental in workplace situations.

According to The American Institute of Stress [33], 80% of workers feel stress on the

job and nearly half of them requested stress management techniques. Police work,

more specifically, yields overwhelming amounts of stress. The deeply unpredictable

situations, coupled with high expectations from the public, have shown to increase

feelings of stress, burnout, and mental health. Further, studies [21] have found

correlations between health and years of service, observing that officers with more

years of service had more evidence of mental health decline.

Such negative consequences of police work have impacted far more than just the

officers. Families of the officers report increased stress and tension on family dynamics,

noting that 30% of surveyed family members agreed that their spouse releases work

1



stress on the family [14]. Negative perceptions and repercussions of the job can also

impact recruitment and retention rates in police academies and units. Police agencies

face enormous costs when officers leave their jobs due to stress-related incidents,

becoming responsible for covering long-term disability or early retirement costs [20].

This thesis aims to address the significant and relevant issue of stress among police

cadets and the detrimental impact it can have on health, well-being, family, and job

performance. The proposed stress detection framework leverages advanced technology,

including wearable devices and robust deep neural networks, to detect instances

of potential stress. The system uses data collected in realistic stressful situations

to identify biometric patterns and provide early intervention strategies to prevent

negative consequences of stress-controlled situations. By leveraging naturalistic data,

we circumvent the induced nature of traditional data collection, ensuring that the

stress experiences are authentic. However, accurate stress detection in naturalistic

contexts is difficult to achieve. Very few studies have proposed effective solutions,

attributing its challenges to the noisy, variate data and a lack of ground truth. Further,

even fewer studies leverage deep neural networks for detection. This thesis explores

data processing and filtering techniques and various deep neural network architectures

to enhance stress detection systems and provide more accurate intervention steps.

1.2 Key Objectives

This thesis focuses on 2 key research objectives to design a robust stress detection

system using real-world data and deep neural networks. The research goals are outlined

below.

• What data processing techniques and methodologies create the most robust
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and best-performing dataset for data collected in real-world contexts using a

wearable device? Do those techniques address the challenges of unconstrained

data collection?

• How do existing deep neural networks perform on real-world data for stress

detection tasks? Are there specific data processing approaches that perform

more optimally?

1.3 Methodology

This thesis uses data collected in real-world contexts. In order to gather the data,

our lab (the Virtualized Infrastructures, Systems, and Applications Lab - VISA) and

the The Emotion, Culture, & Psychophysiology Lab at Arizona State University

collaborated closely with the Phoenix Regional Police Training Academy. We worked

with 5 training cohorts, equipping consenting cadets with Fitbit Versa 3 devices. Each

Fitbit device came with a custom-built Fitbit application. The application, detailed in

Section 4, uses the Fitbit heart rate sensor to display 4 stress level buttons when the

recorded heart rate exceeds a chosen threshold value (called a ‘Stress Prompt’). Data

collection periods for each cohort ranged from about 2-4 months. During the data

collection period, cadets were instructed to wear their Fitbit watch both on-academy

and off-academy hours. The Fitbit API was responsible for gathering biometric

measurements, while the custom built application performed handshakes with the

study’s cloud instance to back up stress level responses. To manage and monitor each

Fitbit device during the collection period, a web-interface dashboard was built.

Following the completion of data collection for each cohort, the raw heart rate

data and stress level responses were extracted from the Fitbit API and the custom
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cloud instance. The heart rate data were processed into 5-second granularities before

being associated around stress level values to ensure accurate analysis. Various

windows of heart rate were extracted to capture heart fluctuations prior to the stress

prompt. Then, to understand the characteristics of the collected data, we evaluated

the frequency of absolute change between heart beats and the range frequency over a

5-minute heart rate window. Through this analysis, we identified some outlier values,

indicating potential noise. Such noise could pose a challenge to pattern detection in

the deep learning models.

To address this potential challenge, we employed four different noise filtering

techniques designed for heart rate artifact detection and smoothing: Hampel, Median,

Savitzky-Golay, and Wiener. We then used two different structuring approaches the

dataset: 1) contiguous samples of heart rate standalone and 2) features extracted

from contiguous samples of heart rate. To further evaluate the effectiveness of the

models, we divided the dataset into two groups: data from a single cohort and data

from all cohorts combined.

These datasets were then fed into three deep neural network architectures, the

Deep ECGNet, created by Prajod et al. [24], a Feed Forward network, created by Sim

et al. [28], and a Multilayer Perceptron model. The data processing techniques and

the feed forward neural network proposed by Sim et al. were leveraged as they were

proposed and created to help establish baseline. Before evaluating their effectiveness,

we carried out hyperparameter tuning to improve the performance of these models.

Results from the experiments on different techniques are compared across the three

different deep neural network architectures. Results achieved on the same techniques

and feed forward network as Sim et al. are compared to demonstrate the feasibility of

stress detection on the large, multi-user dataset compared with the smaller subset of
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data. The experimental results give us a better look at the temporal dependencies

and features of the heart rate data.

1.3.1 Results and Contributions

In an effort to address the long and short-term impacts of stress in police officers

and the overall law enforcement domain, this thesis contributes to a growing domain

of stress management interventions. This work proposes a stress management system

that uses data collected from police cadets at the local Phoenix Regional Police

Training Academy on different neural networks. The proposed system suggests a

preliminary approach to stress detection in police cadets using finely-tuned heart

rate data and complementary self-reported stress scores collected by Fitbit wearable

devices unconstrained and real-world contexts to highlight instances of potential stress

through neural network architectures.

The most significant results from the experiment are as follows:

• Extracting samples of contiguous heart rate prior to stress level prompts is the

most effective approach for capturing relevant trends. This approach outperforms

the use of extracted heart rate features as input to deep neural networks.

• Hampel and Savitzky-Golay filters are the most successful at removing outliers

in the heart rate data and preserving the characteristics of the data majority.

Datasets with these filters applied perform higher on deep neural networks

compared to other traditional filtering techniques.

• Smaller, cohort-specific datasets perform better on the deep neural networks

than the full dataset with all participants. The Feed Forward network achieved

the highest accuracy (90.66%) on a smaller dataset that was treated with the
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Hampel filter. The MLP network achieved an 85.92% accuracy on the larger

Hampel-filtered dataset. Both best-performing results leveraged the Approach 1

data structuring technique which used contigious heart rate samples prior to

the stress prompt. These results suggest that deep neural networks may be able

to generalize well.

1.4 Outline

The rest of the thesis is organized as follows: Section 2 provides background

information about algorithms and technologies used; Section 3 investigates related

works pertaining to real-world data collection, artifact removal, and deep neural

networks for stress detection; Section 4 presents our StressManager framework for

stress detection; Section 5 details our data processing strategies; Section 6 analyzes the

collected data in terms of compliance and biometrics; Section 7 presents our approach

to deep learning for stress detection; and Section 8 concludes the thesis.
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Chapter 2

BACKGROUND

2.1 Wearable Devices as a Health Management Tool

Wearable devices are marketed toward the everyday, busy consumer. Affordable

and lightweight, these devices allow users to stay connected via Bluetooth pairing to

their smartphone, use common applications like timers or alarms, and view trends

of their sleep, exercise, and other biometrics without disrupting their day. Their

popularity is booming in recent years. According to Insider Intelligence [13], 23.3% of

the US population owned a wearable device in 2021. This percentage is expected to

increase to 25.5% in 2023 and nearly 27.2% in 2025.

With such a boom in this domain, its Internet of Things (IOT) features and

capabilities have also grown substantially. Improvements to battery life, processing

capabilities, and monitoring (such as blood oxygenation, sleep quality, crash detec-

tion, and more) have made the wearable device market more competitive and more

attractive.

More specifically, wearable devices as a health management tool are on the rise.

These tools are able to collect biometric data, such as heart rate, steps per day,

movement intensity, and calories burned. With such raw metrics, these devices come

with processing software to turn that data into trends over time to indicate overall

health and quality of health. Additionally, some wearable devices, like the Apple

Watch [27], allow users to send their data to their healthcare providers to increase

health visibility.
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Figure 1. Figure Provided by Insider Intelligence [13] Visualizing the Projected Trend
of Wearable Devices from 2021-2025

Further research suggests the use of data collected from these wearables to conduct

predictive healthcare-related analysis and research. A study conducted by Beniczky

et al. [3] investigated the use of wearable devices to detect and predict seizures for

patients with epilepsy. The researchers collected electrocardiogram (ECG), heart rate

variability (HRV), and accelerometer data from wearable devices. These data were

then fed into machine learning models to create predictive models for generalized

tonic-clonic seizures. A similar study, conducted by Rykov et al. [26], leveraged

wearable devices in the same capacity to screen for depression-related biomarkers. The

researchers collected sleep patterns, physical activity, and psychological measurements

from wearable devices to evaluate mental states of their study participants. There

is precedent in using wearable devices to manage health through machine learning

systems.
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2.2 Validity of Wearable Device Data

As the monitoring capabilities of wearable devices increase, evaluating the validity

of the collected data becomes important. Several studies compare commercially

available devices and their performance in terms of accuracy of the metrics collected.

A study by Bai et al. [2] runs tests on wearable devices, including Fitbit, Garmin,

and Apple Watch. The authors test the quality of data collection across these three

devices in a “free-living setting“ compared to traditional sensors for steps, heart rate,

and moderate-to-vigorous minutes (MVPA). Over the 24-hour data collection period,

the authors find that all three devices measure steps accurately and both the Fitbit

and Apple devices provide reasonable heart rate calculations. The authors also find

that all three underestimate the MVPA metric.

Cumulative research shows that no watch is particularly better than the other. In

this competitive space, new hardware and software capabilities are bound to improve

performance and increase accuracy in biometric data collection.

2.3 Machine Learning Fundamentals

Machine learning is an integral part of daily life. From recommendations from

streaming services to spam detection of emails, machine learning is responsible for

daily functions beyond what we can see. These systems learn from input data and

its features. Over time and with more relevant data, the model learns patterns and

adjusts its parameters to become more accurate. Models are “trained” on training

data, which consists of the data and their classification, and are evaluated on testing
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data, which omits the correct classification and measures the model’s success based

on its prediction compared to its expected label.

There are roughly four integral pieces in a machine learning pipeline [1]: 1) data

acquisition, 2) data processing, 3) model development and training, and 4) model

evaluation. Each phase of this pipeline is dependent on the domain of the problem,

but often requires fine-tuning and adjustment to improve the overall accuracy and

robustness of the model.

2.4 Data Acquisition

The first piece in the machine learning pipeline is data acquisition. This phase

focuses on collecting data and labels that will eventually contribute to the training of

the machine learning model. This phase is important and needs to be done properly.

This means that the data collected should be relevant, not missing or repeating values,

has a strong representation of each class, and has accurate labels. In most cases, it

is better to collect a wide variety of data points that are relevant rather than a few

cases to help complement the data and enable the model to learn on wider patterns.

2.5 Data Processing

The next phase of the pipeline is data processing. There are three key pieces to

this stage: 1) detecting and handling data outliers, 2) transformation of raw data into

data that is more usable by machine learning models, and 3) removal of non-essential

noise and redundant data from the dataset.

10



2.5.1 Outlier Detection

In real-world data collection, noise and outliers in data are expected. With

wearable devices still being improved for extraneous noise detection, improper wrist

placement, tattooed skin, and sudden movements often introduce noisy data that are

not consistent with actual physiology. It becomes more challenging when researchers

do not have the exact context behind when the data was collected. Machine learning

models can struggle to learn patterns with noisy data and empirically perform better

with invariant, pure data [11].

Noise detection itself is, however, a difficult task. There are different statistical

approaches that can be used to identify specific instances of noise. In the case of

heart rate, which is calculated in beats per minute, heart rate is highly fluctuating.

According to a study by Falcone et al. [7], the heart rate of a normal, healthy adult can

change nearly 75 bpm in 1 minute of exercise. Moreover, heart rates varies between

adults depending on age and overall health, proving more so that heart rate anomaly

detection is not always constrained by min-max heart rate values. To mitigate this

issue, there are several outlier detection filters that are designed to detect anomalies

and smooth them over.

The Hampel Filter is designed for outlier detection in time series data [22]. This

algorithm leverages a configurable sliding window, as seen in Figure 2.

Xs represents the observation value. k = lenwindow−1
2

+ 1 indicates the number of

samples before the observation and after the observation in the window.

For each window, the median, median absolute deviation (mad), and standard

deviation are calculated. The median is calculated traditionally (mwindow). The mad
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Figure 2. Visualization of the Hampel Filtering Window [10]

is calculated as the median of all the absolute values of the observation minus the

median of the complete window.

j is the Gaussian coefficient and the standard deviation is calculated as follows:

σ = j ∗madwindow

Each value is then analyzed. 3 is used as the default threshold:

|Xs −mwindow| > 3 ∗ σ

If the condition is satisfied, the conditions for outlier have been met, and the value

is replaced by the median over the window, mwindow.

The Median Filter is a common algorithm used in digital image processing to

preserve edges of images and remove noise. This filter uses a configurable window,

similar to the Hampel Filter above.

An example of the algorithm is shown below[19]:

Assume input vector is as follows: X = (1, 2, 3, 6, 10), window size = 3.

1. y1 = median(1, 2, 3) = 2

y1result = (2)

2. y2 = median(2, 3, 6) = 3

y2result = (2, 3)

3. y3 = median(3, 6, 10) = 6

y3result = (2, 3, 6)
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4. yresult = (2, 3, 6)

The Savitzky-Golay Filter is built to smooth sequenced data. For each value in

the input sequence, the algorithm takes its N neighbors and tries to fit a polynomial

to the data. Each polynomial is set to the same degree, but is fit to different values in

the window. To ensure the polynomials don’t fall into Runge’s phenomenon, large

oscillations in the data that don’t match the integrity of the data, the Savitzky-Golay

filter finds the lower order polynomial that fits the sequence in terms of least-squares

[25]. Figure 3 shows how the filter works on the sequential data.

Figure 3. Example of Savitzky-Golay Filtering - the Blue Line Indicates the Original
Data, the Green Line Indicates the Data Smoothed by the Filter [25]

The Wiener Filter is often used to enhance signals from data. The main goal

of this filter is to minimize the mean square error and the average squared distance

between the output and the desired signal. It depends on the power of degree of the

signal and the noise.
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2.5.2 Data Transformation

Another phase of data processing is transforming the data so it is understandable

by the machine learning model. Models learn by pulling patterns from input data and

correlating them to their given label. It is important that the input data is normalized

in a way that enables pattern identification.

Firstly, data contiguity is important. That means that the number of data points

must be consistent across individual data samples. For example, if a model is given

10 data points to indicate a specific label, it will be trained to find patterns across

the next input of 10 data points. This also means in the case of time series data, the

variability across data points is consistent - i.e. 1 minute variability from point to

point.

Another common technique used by machine learning scientists is data normal-

ization. These include min-max normalization, z-score normalization, and decimal

scaling, among many others. The goal of normalization is to maintain relationships

between the data points and improve generalization. If there are values at different

scales, the model may become biased toward a specific value.

Min-max normalization is very common [17]. All features in a given vector are

scaled to values between 0 and 1. The observation value, Xobs, in a given vector, X,

is scaled using the following formula:

Xnormalized =
Xobs −Xmin

Xmax −Xmin

where Xmin and Xmax represent the min and max values from the input vector.

Z-score normalization scales the input vector so the vector has a mean of 0 and
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a standard deviation of 1. Each value in the input vector is scaled using the following

formula:

Xnormalized =
Xobs − µ

σ

where µ represents the mean of the input vector, while σ represents the standard

deviation of the data.

Decimal scaling scales the data from an input vector by dividing values by a

power of 10. Each value in the input vector is scaled using the following formula:

Xnormalized =
Xobs

10j

where j represents a configurable exponent.

2.5.3 Data Redundancy

The final stage of data processing is removing non-essential and redundant data.

This step reduces the complexity of the models and ensures that models learn on a

wide variety of relevant data. Removing redundancy in data can also ensure that

the models don’t learn with bias. In order to avoid training bias, it is important to

make sure that the number of samples representing each class label in the dataset is

balanced. If unbalanced, the model will see more data leaning toward the majority

class and tend to predict closer to the majority class.

In real-world situations, however, balanced data is often not feasible. To com-

bat that, scientists have come up with re-sampling techniques: undersampling and

oversampling (see Figure 4).
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Figure 4. Visualization of Undersampling and Oversampling Techniques [6]

Undersampling is a technique that balances datasets by keeping data from the

minority class, and reducing samples from other classes, including the majority class,

to balance. This approach will preserve features of the minority class which are harder

to predict since they are less frequent. However, this approach will also shrink the

overall dataset and could lead to loss of information.

Oversampling, on the other hand, balances datasets by creating synthetic data

learned from the minority class to increase the size of the minority class to match

the majority class. Some common over-sampling algorithms include SMOTE: Syn-

thetic Minority Oversampling Technique, which is integrated into Python for easy

re-sampling.

2.6 Model Development and Training

Deep neural networks typically have an intricate architecture with at least two

layers. These models are typically more complex than classification models and are

built for multi-faceted data. Within deep neural networks are convolutional neural
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Layer Type Function of the Layer

Convolutional This layer generates a feature map from an image by sliding a filter to
detect patterns.

Activation This layer defines how the input’s weighted sum is transformed.
Pooling This layer is responsible for down-sampling the feature map which

reduces the problem of overfitting.
Batch Normalization This layer normalizes the data to fix the mean and variances of the

data.
Dropout This layer is responsible for randomly setting units to zero during

training to prevent the problem of overfitting.
LSTM This stands for “Long Short-Term Memory Network”. It is an RNN

layer that recognizes patterns in time series or sequence data.

Table 1. Common Layers in a Deep Neural Network and Their Function

networks (CNNs) that are commonly used in image classification tasks, artificial neural

networks (ANNs) used for classification or clustering, and recurrent neural networks

(RNNs) for time series prediction. Models are usually developed with different layer

types based on the task at hand. Table 1 shows some common layers and their

function.

Once the architecture of the model is created, the next phase is training the model.

The conventional data split is 80% for training and 20% for testing. The training

data is what will tune the weights in the model, while the testing data is a set of data

that the model will not have seen before. The testing data plays a key part in the

evaluation phase described in the following subsection.

Models are trained with finely tuned hyperparameters. These include the optimizer

function, the loss function, the learning rate, batch size, and number of epochs. It

is very important to test and experiment with these hyperparameters, as they can

impact how the model’s weights and training processes are updated. These parameters

specify how the model learns from the training data. Table 2 defines some key

hyperparameters and their function and importance.
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Hyperparameter Function of Hyperparameter

Optimizer Function The optimizer function is an algorithm that defines how the attributes
of the neural nework should be updated. Some common optimizers are

Adam or SGD (stochastic gradient descent).
Loss Function This hyperparameter is a function that compares how different the

target value of the data is from the predicted value from the model.
Some loss functions include the binary cross entropy function and the

mean squared error.
Learning Rate The learning rate defines the rate at which the network updates its

parameters. Usually a low learning rate means slower learning but
smoother convergence, while a high learning rate is faster for learning

but doesn’t always converge.
Batch Size Batch size is how many samples are processed before the model

updates its parameters.
Epochs This number specifies how many times the training data is fed to the

model in the training stage.

Table 2. Hyperparameters and Their Function

2.7 Model Evaluation

Once the model is trained, the next step is to separate the testing dataset from

the main dataset and feed the values through the model. The testing dataset is the

best way to evaluate the model since these are values that the model has not seen

before. The output from the model is compared to the expected label to evaluate

model success. Typically, machine learning engineers use accuracy as a measurement

of model success. Accuracy is usually calculated as follows:

Accuracy =
Number of Correct Predictions

Number of Total Predictions Made

Accuracy, however, is not always a helpful metric to determine model performance.

Accuracy can be biased to the majority labels in a given class; higher occurrence labels

may be more correctly predicted while the lower occurrence labels are misclassified

and ignored. To correct this bias, engineers also leverage precision, recall, F1-Score,

and ROC curve.

Precision and recall are calculated using values found in a confusion matrix (see
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Figure 5. Visual Representation of a Confusion Matrix for Model Evaluation [32]

Figure 5) for binary classification tasks. These values describe the relationship between

the predicted values and the actual values [4].

• True Positive (TP): Positive classes correctly predicted as positive

• True Negative (TN): Negative classes correctly predicted as negative

• False Negative (FN): Positive classes incorrectly predicted as negative

• False Positive (FP): Negative classes incorrectly predicted as positive

Precision tells us the percentage of correct predictions for a given class given all

predictions for that class. In other words, what percentage of identifications for the

positive class were actually right?

Precision =
TP

TP + FP

Recall tells us the percentage of correct predictions compared to the total number

of occurrences of the class. In other words, what percentage of actually positive labels

were identified correctly?
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Recall =
TP

TP + FN

The F1-score is a combination of the precision and recall, and is calculated as

follows:

F1− Score =
2 ∗ Precision ∗ Recall
Precision + Recall
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Chapter 3

RELATED WORKS

3.1 Data Collection in Real-World Contexts

Research in real-life contexts is rather rare. Simply put, as researchers, we do

not have much context when we gather data in daily-life contexts and rely on self-

reported information as ground truth. Larradet et al. [15] researches the importance,

advantages, and disadvantages of data collection in the wild. The authors emphasize

that data collected in laboratory settings are often done through highly controlled

induction techniques, which don’t always induce the desired emotion or feeling. They

state that some advantages of real-world data collection include maintaining ethical

constraints (not having to induce a feeling or experience in someone) and natural

context awareness. However, the authors also underscore the challenges of such data

collection, stating that the absence of ground truth, introduction of noisy data without

context, and necessity for long-term experiments limit the overall data collection

process. Real-world data collection is difficult to implement and execute.

A handful of studies focus on stress management in situ, collecting data from

participants without any intervention using wearable devices. Wearable devices, as

highlighted in prior sections, tend to capture data trends, but also integrate noisy data

collected from daily wear and movement. Martinez et al. [18] does an investigation

into the efficacy of the HRV metric on stress in the real-world. The authors note that

in laboratory settings, where the stress is induced in an isolated environment, HRV

alone is a reliable metric for stress detection. They note that its reliability comes from
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the specific stress events and research-grade sensors. The authors deploy a long-term

study where they collect HRV in daily life contexts of different participants. Through

their analysis, they find that HRV and stress have a small relationship in the data

collected in situ. They conclude that while HRV is enough to deduce experiences

of stress in controlled laboratory settings, HRV collected in real-world contexts is

not enough for stress prediction and should be considered a piece of a more complex

phenomenon. This tells us the importance of real-world data collection and the

difficulty associated with phenomenon conclusions.

The ability to make diagnoses and predictions like these in real-world contexts

rather than typical evaluations in controlled environments demonstrate the feasibility

of using wearable devices to extend clinical research. It becomes clear that wearable

devices have capabilities that far surpass traditional data collection techniques, allowing

for data collection in broader, naturalistic, and more extensive contexts.

3.2 Artifact Removal in Wearable Device Data

As mentioned, real-time data collections inherently comes with noisy data or noise

artifacts that misrepresent the true values of the data collected. Noisy data is common

in any type of data collection, but becomes essential to manage when wearable devices

are used.

Veeravalli et al. [31] proposes a real-time heart rate monitoring system for patients

that can identify normal heart fluctuations and call out abnormal or noisy heart rate

artifacts. In this paper, the authors use filtering techniques to weed out any abnormal

or high-frequency ECG data in real-time current beat analysis, specifically using

the Savitzky-Golay filter which simultaneously preserves high order characteristics
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corresponding to the ECG peaks. To capture anomalies in uni-variate data, the authors

highlight the benefits of the Hampel filter, which proves to be most effective and

robust. The research also leverages a median filter to smooth the data, which is also

a linear-time complexity algorithm. All of these algorithms present a low complexity,

lightweight solution for real-time detection. The authors find high accuracy results

for their detection algorithm, contributing the reduced complexity and high accuracy

to filtering techniques to remove abnormalities.

Another paper by Zhang et al. [35] proposes a motion artifact detection experiment

across supervised and unsupervised models integrating accelerometer data. The

authors leverage data collected in laboratory settings and data collected in real-world

settings and use 5 different supervised models and 3 unsupervised models. The

models are able to determine abnormalities in ECG data with 94.1% accuracy, but the

authors find that complementing ECG data with accelerometer data does not improve

classification performance and in fact drops it substantially. They find that detecting

abnormalities in real-world data is still difficult, but can be done with well-trained

models and extracted features.

Both these papers show that artifact detection from wearable device data is essential,

improves overall accuracy compared to non-filtered data, and is simultaneously difficult.

The second study investigates using other metrics to complement the heart rate data

but doesn’t get promising results. Several papers emphasize the importance of some

type of filtering to smooth data abnormalities.
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3.3 Stress Detection using Deep Neural Networks

Stress detection using deep neural networks is a growing area of research. Over time,

different studies have worked with different channels of data to complement stressful

situations and different deep neural network architectures to capture relationships

with that data.

A recent study by Li et al. [16] proposes stress detection using various physiological

measurements calculated from traditional sensors on a 1-dimensional convolutional

network and a multilayer perceptron (MLP) neural network. The data were collected

from participants performing specific tasks, creating a binary distinction between stress

and non-stressed states. The datasets were processed into training and testing using

subject-independent cross-validation. Their binary approach on the deep convolutional

neural network reached 99.80% accuracy, while the MLP model reached 99.65% for

the same classification task.

Prajod et al. [24] proposes a new deep neural network architecture, called the Deep

ECGNet, to predict stress using publicly available datasets, WESAD and SWELL.

The Deep ECGNet is a CNN-LSTM model that uses the CNN layer to extract features

and the LSTM layer to learn the patterns from the extracted features. They used the

ECG data from both datasets as input to the model. For the ECG data, the authors

leveraged a second-order Butterworth band-pass filter and Min-Max normalization.

Similar to the previous paper, the datasets were processed into training and testing

using subject-independent cross-validation. The model achieved 90.8% accuracy on

the WESAD dataset and 75.5% on the SWELL dataset using the leave-one-subject-out

(LOSO) approach.

More recently, Sim et al. [28] proposed the use of simple classification models and
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a simple feed forward neural network on data collected from police training cadets

in real-world contexts. The Sim et al. study is a preliminary phase of the larger

work conducted in this thesis. The authors take heart rate data, presented in beats

per minute, and extract features including the mean, standard deviation, minimum,

maximum, and other resting heart rate specific features. The participants in the study

provide self-reported stress level scores to complement instances of possible stress.

The authors then feed the features into a simple feed forward network, designed with

six hidden layers activated by the ReLu function. They achieve 95.98% accuracy using

the heart rate features on the feed forward network.

Numerous studies have been done on stress detection using deep neural networks

using different models and channels of data. The results achieved by these studies

demonstrate the potential of stress detection using deep learning. However, very few

studies leverage deep learning on data collected in real-world contexts. Such research

can expand the models’ ability to generalize to different populations and contexts,

proving important in stress management across the board. This thesis proposes a

unique approach by investigating data taken in real-world contexts, processing the

data for potentially noisy artifacts, and leveraging deep neural networks to learn from

the naturalistic data to generalize trends between heart rate and stress.
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Chapter 4

STRESSMANAGER: DATA COLLECTION FRAMEWORK

Figure 6. StressManager Architecture showing the Fitbit Application, Storage, and
Web Application components

The data collection framework, called StressManager, is a study initiative led by

two interdisciplinary teams focusing on machine learning and stress psychology. The

goal of StressManager is to design and gather biometric and self-reported data in daily,

unconstrained contexts of police training cadets. This study was conducted over the

course of 11 months at the local Phoenix Regional Police Training Academy. The study

alternates between various cohorts with different cadets and varying forms of intensity

based on their training interval. Participants in the study are each equipped with a

Fitbit Versa 3 device and a companion mobile application component, forming the

larger Fitbit architecture. The participants are asked to wear their device both on and
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off academy hours, while sleeping, and on weekends. Each device has a custom-built

Fitbit application that is responsible for gathering all relevant information about

the user while worn. The data is then propagated to relevant database storage

buckets, where they are then retrieved and visualized through the custom-built web

application. This section describes the key elements of the data collection framework,

StressManager, including the services and software designs behind the study. Figure 6

shows the architecture diagram of the StressManager framework.

4.1 Participants

The participants of the study are training cadets at the Phoenix Police Regional

Training Academy. The cadets range between the age of 20-50, originating from

various backgrounds, prior experiences, and demographics. The batch of cadets, called

cohorts, undergo rigorous training as part of their initiation into the police force. Their

training program lasts about 26 weeks and consists of varying periods of intensity:

orientation, lecture work, field training, and physical conditioning. As part of this

study, we worked with 5 unique cohorts to gather insights and data during different

phases of their training. Table 3 shows the number of consenting participants and

duration of data collection for each cohort.

Cohort # of Participants # of Males # of Females Weeks of Collection

Original Cohort 15 12 3 13
Cohort C 10 8 2 23
Cohort D 4 3 1 12
Cohort E 6 6 0 18
Cohort F 2 2 0 13

Table 3. Information about Participating Cohorts
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4.1.1 Participant Responsibilities

The participants are asked to participate in personal study components. Using

their Fitbits, the cadets are asked to individually rank their stress, when prompted,

on a set scale: 1 (Not Stressed), 2 (A Bit Stressed), 3 (Moderately Stressed), 4 (A Lot

of Stress), 5 (Extremely Stressed). Over time and progression of the study, this scale

was reduced from 1-4 to increase clarity due to feedback from the cadets. This scale

is individual to the user, and the study emphasizes that there is no right or wrong

answer. Psychologically speaking, this range will be interpreted differently for each

cadet as some people can be naturally more reactive to stress than others. The cadets

are also asked to wear their Fitbit throughout the day and night in order to collect

biometric data in a naturalistic context, but are encouraged to take “wrist breaks” to

charge their devices. Daily surveys are also administered to each cadet. This survey

consists of about 4 questions with a few subsections and focuses on gauging emotional

and decision-making perception scores. Occasionally, consenting participants were

asked to wear their Fitbit as they endure training drills and scenarios as part of their

academy curriculum.

4.1.2 Participant Consent and Anonymity

This study, approved by the Institutional Review Board (IRB), allows our team to

consent willing and able participants to our research. Each cohort went through an

in-depth introduction to the study, what it would entail for them, and how it would

help them address their own stress. Participation was strictly voluntary, and any

participant, at any point, could halt participation.
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Figure 7. Default and Prompted Face of the StressManager Clock Face Application

Due to the confidential and sensitive nature of the data collected, the identity of

each participant is strictly and carefully protected. Each cohort of focus was assigned

a unique letter to help distinguish between collected data. Each individual cadet

within each cohort was also assigned a unique, unidentifiable username. Personal

data, like height, weight, age, and gender were gathered and entered into the Fitbit

application for each individual device to ensure the data collected was accurate to the

user’s physiology.

Each user, upon entering into the study, was required to sign a consent form indi-

cating desire to particpate and an equipment loaner form for the study administrators

to manage. The consent form details the extent of participation, commonly asked

questions, and above all, guarantees that the data collected will not be misused or

associated with the specific cadet.

29



4.2 Fitbit Application

The Fitbit interface and device are simple and easy to use, securely store data for

easy retrieval from the Fitbit API, and connect to a Fitbit Developer [8] interface for

custom-built applications with a readily-available developer support community. Fitbit

Developer provides a robust pipeline for creating Fitbit applications and deploying

them onto any consenting device. Additionally, the developer toolkit provides simple

queries to the Fitbit API, allowing developers to store and retrieve Fitbit data and

provides read and write methods for data retrieval.

Our team created a StressManager Fitbit application, developed with JavaScript,

HTML, and CSS constructs to gather and monitor heart rate with a dynamic and

scaling threshold, determined by the Fitbit-calculated resting heart rate. The applica-

tion was designed to be functional and intelligent. To make the watch convenient to

use, we included a simplistic clock face, which includes the time, date, current heart

rate, calories burned, steps, and watch battery life.

Along with this functionality, our application’s main purpose was to collect data.

The Fitbit Versa 3 device will automatically collect heart rate (raw and processed

into features), steps, calories, intensity (measured in METs), and sleep using the

sensors on the device. This data, upon a “sync” from the user’s companion smartphone

application, will automatically be stored by Fitbit. This data can be retrieved through

the Fitbit API.
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4.2.1 Application Logic

To complement this biometric data with real-time stress perception scores, our

application listened to the heart rate sensor as the “prompting” trigger. A potentially

“stressful” episode is classified using the prompting algorithm outlined in Algorithm 1.

Our application classifies a stressful episode as the user heart rate increasing 35% above

the resting heart rate. The resting heart rate is calculated by Fitbit once a day. This

value is re-queried every time the heart rate sensor is turned on. Once the prompting

trigger has been satisfied, the application prompts for stress level information to help

correlate how the user’s heart rate fluctuations impact their anxiety and stress.

Each stress level choice is represented using a button component in CSS. The

options are: 1 (Not Stressed), 2 (A Little Stressed), 3 (Moderately Stressed), and 4

(A Lot of Stress). If a user does not respond to a prompt, which is displayed on the

Fitbit face for a total of 7 minutes, the response is marked as a ‘0’ in the database.

Figure 7 shows visualization of the default and prompted faces of the application. On

click of any button, the application is responsible for writing the corresponding stress

level and timestamp of the click to a CBOR (Concise Binary Object Representation)

file. The CBOR file with the data is stored to the file transfer queue and waits for

steady bluetooth and mobile phone connection to transfer the file to the companion

mobile app.

4.2.2 Storage Architecture

Once the data is stored to the mobile companion application, the file is deleted

from the Fitbit to allow for storage maintenance and is then queued for transfer to
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restingHR← API(user.CurrentRestingHR);
percentageIncrease← 1.35;
threshold← restingHR ∗ percentageIncrease;
currentHR← HeartRateSensor.CurrentHR;
if currentHR ≥ threshold then

sleep(60); /* Wait for 1 minute */
if currentHR > threshold then

Display prompt and vibrate;
answered← False;
timer ← CurrentT ime;
if response then

answered← True;
Hide prompt;
Record as ‘entered’ prompt;

else
if timer is 7 minutes & answered is False then

Hide prompt;
Record as ‘missed’ prompt;

end
end

end
end
else

currentHR← HeartRateSensor.CurrentV alue;
end

Algorithm 1: StressManager Application Prompting Algorithm

the cloud. Using AWS API Gateway, our companion application logic sends data

to the API endpoint. The Lambda Uploader, responsible for building functions to

handle requests and responses from the user, takes in the stress data and processes it

for storage. Finally, the data is stored in DynamoDB, a key-value store, sorted by

unique id (for each user) and containing the stress level and corresponding timestamp.

We chose to use DynamoDB to store the collected stress level data. The key-value

data is efficient to query by the partition key or sort key, like extracting heart rate

values for a specific user given start and end dates. It is also a non-relational database
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Table 4. Capabilities of Each Authorization Role in the Web Application

that allows scaling both vertically and horizontally, which is important to support

data generated continuously from many wearable devices.

4.3 Web Application

As the number of participants grew, we needed a dashboard to manage the

participants in the study and the data inflow from each Fitbit device. The static web
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Figure 8. Snapshot of the StressWatch Web Application Showing Fitbit Device
Information and Visualizations of Heart Rate Data from the Root Account

application, termed StressWatch, was created using Amazon Web Services (AWS)

components, including the Simple Storage Service (S3), which holds the HTML,

CSS, and JavaScript files. Through this web application, we can ensure that data is

getting propagated as expected and can identify when specific users may be having

trouble using their device.

4.3.1 Functionalities

The web application provides several functionalities depending on the logged-in

user. Each participant is equipped with their own credentials to take their daily survey

and view their heart rate and stress level trends. The researcher account is created for

the research team to batch download data for each user and manage all active devices.
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The root account registers new Fitbit devices but cannot batch download data like

the research account. See Table 4 for more detailed information.

4.3.2 Architecture

Fitbit requires HTTPS protocol for outside communication, so we purchased a

private domain name and connected the domain to the S3 bucket using Route53,

CloudFront, and Certificate Manager. Most importantly, we utilized AWS

Lambda functions to allow our static web application to act as a standard server.

AWS Lambda is a server-less computing service that executes code without establishing

a server. It is event-driven, executed only when the service is requested. Lambda helps

the application build data processing functions by accessing other resources provided

by AWS such as DynamoDB and S3. It can handle up to 250MB of code, and the

execution time cannot be more than 15 minutes, which is sufficient for our needs. In

the case of our application, we built lambda functions for creating and logging in user

accounts and uploading and retrieving recorded data to the web interface.

We also utilized the API Gateway to build APIs. Our application runs in

RESTful APIs, which requests and responds in JSON format with four methods,

including CREATE(post), READ (get), UPDATE (put), and DELETE (delete).

AWS’s API Gateway provides users in the backend with an endpoint to access data

in other services, such as DynamoDB. It also controls authentication to filter out

unidentified requests. In our application, we built endpoints and mapped them to

Lambda functions so that end-users can access and upload data. More specifically,

the companion uploads the stress level data through an API gateway endpoint to

DynamoDB.
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Chapter 5

DATASET PROCESSING

After the data collection period, it became important to understand the charac-

teristics of the data. Each cadet was left relatively un-monitored during the data

collection window. This however required us to process the data at several large

scale steps to learn trends about the cadets as a whole and prepare the data for

machine learning training and inference. This phase consisted of data extraction, data

contiguity and correlation, and noise removal techniques.

5.1 Data Extraction

The web application is responsible for making requests for stress level and Fitbit

data. As specified in the sections above, Fitbit data is managed and stored by Fitbit

itself. The stress data, since it is collected through the custom-built application, is

stored in our personal DynamoDB instance.

5.1.1 Fitbit Data

Through the use of an OAuth Client Identifier, Secret and special Client Intraday

heart rate permissions (see Figure 9), each user’s collected Fitbit data could be

accessed by our team. The Intraday service pulls any queried biometric value collected

by Fitbit for a 24 hour period using an API request. Heart rate is sampled by the

Fitbit heart rate sensor every 5-15 seconds when it detects “OnWrist” presence. As
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Figure 9. Authorization Flow for Fitbit Code Grant using OAuth2.0

part of our data acquisition process, we batch downloaded CSV files with this 5 to

15-second separated heart rate data and the corresponding timestamp of recording.

Other supplemental data were also downloaded. These data included steps, calories,

resting heart rate, and METs. METs, a somewhat unfamiliar metric in the traditional

physiology sense, stands for “metabolic equivalent of task”. In other words, it is the

rate of energy expended per unit. This information was collected and stored by Fitbit

in a 1 minute interval, as it is not a linear growth but a measurement of change over

time. These raw values and their corresponding timestamp of collection were also

batch downloaded into formatted CSV files. The Fitbit API queries were made for

each day in the specified date range and were sent and processed in the web application

backend.
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5.1.2 Stress Level Data

Each stress level recorded by each participant is stored with its timestamp in the

Stress Level table in the key-value store. The database schema is as follows:

deviceId : stressTime : heartRateTime : stressLevel

Each Fitbit device was assigned a unique device identifier. This identifier serves

as the partition key in the database. API requests were made to the stress level table

in DynamoDB and the results were downloaded into formatted CSV files. Query

parameters included the device id and the start and end date range chosen by the

user on the web application.

5.2 Data Contiguity and Mapping

We began by exploring the features of the biometric data downloaded from Fitbit.

In particular, we were interested in the granularity of the heart rate data itself. Fitbit

provides multiple heart rate data granularities: 1-second, 1, 5, and 15-minutes. Due

to the intricacy of heart rate and how it quickly is impacted by feelings of anxiety

and stress, we chose to specifically leverage the second-by-second heart rate data in

our processing. Fitbit documentation specifies that heart rate is sampled every 5-15

seconds, so the 1-second granularity provided a heart rate value in beats per minute

(bpm) between 5-15-second intervals. To normalize this data and ensure that the

beat-by-beat variation stayed consistent, we insert heart rate values if two samples

are either 10 seconds or 15 seconds apart. We inserted values using a data contiguity

algorithm, illustrated in Figure 10. After this normalization approach, we maintained

a 5-second variance between samples that were collected either 5, 10, or 15 seconds
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Figure 10. An Example of the Data Contiguity Processing Done on Heart Rate Files
to Maintain 5-second Intervals from Beat-to-beat

apart. Rows sampled more than 15 seconds apart were kept as is, since it implies that

the heart rate sensor may not have been continuously worn.

With nearly 194MB of collected data, the next step was the correlate biometric

data to the target classified label and reduce the data complexity. The label in our

case was the stress level provided by the user. This was the ground truth, specified by

each participant, to explain the biometric patterns. This thesis mainly focuses on the

relationship of stress and heart rate. As a result, heart rate was the only biometric

measure correlated to the stress level. Each stress level also has its timestamp of

creation. This is when the heart rate met the threshold trigger logic in the Fitbit

application and created the prompt for the user. Since the threshold was based on

the resting heart rate value, the resting heart rate (which was collected by Fitbit in

day granularity) was also extracted around the stress level window.

To provide the most number of data points and history of heart rate fluctuation

to each stress level, we chose to extract the 5 minutes of heart rate prior to the stress

39



prompt. 5 minutes were chosen to give the most amount of heart rate history in hopes

that patterns could be deduced from heart rate fluctuations leading up to a potentially

stressful episode. In our re-processed heart rate dataset, 5 minutes of heart rate data

would translate to 60 samples (12 samples per minute * 5 minutes). As explained in a

following subsection, other history samples (ie. 1 - 4 minutes : 12 - 48 samples before

the stress prompt) were also extracted to view the optimal prediction window. 60

samples was marked as the upper bound of the data extraction so all 60 samples were

used in the noise detection and removal phases.

For each stress level and timestamp of prompt creation from a given cadet, our

algorithm leverages binary search on their heart rate data to find the closest timestamp

before or equal to the target timestamp. The logic then backs out from that timestamp

by 60 samples (the upper bound of the detection range). The first timestamp (the

timestamp that is 59 samples away from the closest timestamp) must be within 5

minutes of the closest timestamp, and the last timestamp (the closest timestamp from

the target timestamp) must be within 5 seconds of the target timestamp. Figure 11

shows an illustration of the data correlation task with bounds checking. The bounds

are changed depending on the number of samples extracted for each dataset.

At this point, our dataset consisted of stress level values and their 60 samples of

heart rate. The frequency of stress level responses was largely biased. As mentioned

in the prior section, users were initially given stress level options, 1-5. This range

was condensed to 1-4 to simplify choices for the users. If a user did not respond to

a prompt, which was displayed for 7 minutes, the response to the stress level was

marked as a ‘0’ in the database. As seen in Table 5, our dataset is heavily biased

toward missed responses, and the frequency of the stress level intensity decreases

exponentially.
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Figure 11. Illustration of the Data Correlation Process for Stress Levels to the 60
Contiguous Samples of Heart Rate Prior to the Stress Level Timestamp

Stress Level Number of Responses in Dataset

0 (“Missed Prompt”) 9397
1 (“Not Stressed”) 3060

2 (“A Little Stressed”) 485
3 (“Moderately Stressed”) 123

4 (“A Lot of Stress”) 31
*Removed* 5 (“Extremely Stressed”) 2

Table 5. Frequencies of Responses to Each Stress Level Option in the Dataset

To manage the imbalanced nature of the dataset, the stress levels and corresponding

heart rate data were passed through an oversampling technique, called SMOTE, to

add samples to the minority class. Further, to simplify the classification task, we

decided to leverage a binary classification problem. For all datasets created in the

following subsections, we grouped stress level ‘1’ into the “Not Stressed” class and

levels ‘2-4’ values in the ‘Stressed’ class.
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5.3 Noise Detection

Data collected in unconstrained contexts inherently have noise. Fitbit devices,

which are still being developed and improved upon, do not have the ability to collect

data without any environmental bias. As explored in Section 2, Fitbit devices tend

to underestimate heart rate. Studies have also found that improper wrist placement,

tattooed skin, and sudden movements can contribute to wildly fluctuating, inaccurate

data. At this point in time, such limitations are common in any wearable device.

All the Fitbit data collected was done in unconstrained contexts. Because of this

characteristic, we are unclear if/how much noisy data exists in our dataset. If noise

does exist in the dataset to some capacity, noise removal techniques can be leveraged

to handle the outliers. In the context of this investigation, we define ‘noise’ as any

heart rate characteristics that are much higher or much lower than the other frequent

characteristics in the dataset.

We begin by removing any samples of heart rate that correspond to a ‘0’ stress

level. These values are removed because they were missed responses, indicating that

we do not have a ground truth label for that period of heart rate data. Additionally,

missed responses tended originate from infrequent watch wearing, leading to a higher

probability unnatural heart rate fluctuations.

5.3.1 Beat Variance Frequency

We decided to extract the absolute change across beats for each sample of heart

rate data. Since each beat value should be 5-seconds apart from the next, this

analysis can help us identify sharp increases and decreases in heart rate (bpm). Some
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characteristics of noise from the Fitbit heart rate sensor includes random drops or

spikes in recorded data. Each absolute change value was plotted on a histogram to see

the most frequent beat variation values. We figured the more common values would

naturally fall together since we assume noise will be present, but not largely frequent.

Figure 12 shows the frequency distribution for this variance characteristic. It

becomes immediately apparent that the most common beat to beat variance falls from

-10 to 10. The next common range is -20 to -10 and 10 to 20. We can see that on

both ends of the histograms, there are very few occurrences of larger variance. We

classify these larger variants as “noise“ or outliers in the dataset.

If we look closer at these outlier values, we see large increases across some beat

values. In the window below, we see a sample of heart rate values:

87 88 88 88 141 141 155 156

From value 88 to value 141, we see a 53bpm absolute change in a 5-second span.

When we look at the histogram (Figure 12), we can see that 53 bpm absolute change

is in the outlier range. Another example of a possible outlier is the window below:

127 127 130 120 86 87 84 81

Here, we see a -34bpm absolute change from 120 to 86 in a 5-second span. The

left end of the histogram (Figure 12) shows that -34 falls in the outlier range. It is

unclear whether we should count these windows as noise or if this is normal in highly

stressed individuals. To manage these potential outliers, filtering techniques were

leveraged, as outlined in the next section.
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Figure 12. Histogram Representation of the Absolute Change Beat Variance of the
Dataset

5.3.2 Range Frequency

We also decided to investigate the range value of the 60 samples of heart rate. This

means that we will find the minimum and maximum value in the 60 sample window,

and take the difference. This will show us how much the heart rate changed over the

course of the 5 minutes of heart rate data. Similar to the previous characteristic, we

will take the data to a histogram to see possible outliers the end of the spectrum.

Figure 13 shows the histogram of the range characteristic. We can see from the
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Figure 13. Histogram Representation of the Range Variation of Heart Rate over 60
Samples (5 Minutes)

histogram that the most common range of heart rate over the 5 minute interval sits

from 0-30bpm. Outliers in this data characteristic based on the histogram appear

to be values above 70bpm. It is unclear if this is a normal heart rate range over 5

minutes, since we do not know the user that it belongs to or have their heart health

and trends.

Some outliers from this investigation are shown in the table below. The maximum
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value and minimum value columns are the respective values taken from the 60-sample

window of data.

Maximum Value Minimum Value Range Variance

145 59 86

Maximum Value Minimum Value Range Variance

163 82 81

These samples and range values are on the higher end of the most common range

variance values in the histogram. This indicates to us that over the 5 minutes, the

users heart rate changed more than 80bpm. While this falls out of the most common

range of heart rate variance for other values in this dataset, we are unsure if we can

attribute this sample to noise or simply a biological reaction to an event or feeling.

Again, to manage these potential outliers, filtering techniques were leveraged, as

outlined in the next section.

Through this noise detection investigation, it becomes apparent that there is

no clear bounds or values to determine noise. This investigation does show us the

variability of our dataset, and how on a beat-by-beat level, the patterns of change are

important. Due to the real-world data collection strategy used in this study, we can

deduce that some outliers observed will be unnatural.

5.4 Noise Removal

From a machine learning perspective, abnormalities or outliers in the data can

impact how the model draws trends and patterns. To address any finer grained

beat-by-beat characteristics, we decided to run our processed dataset through different
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noise removal filters designed for outlier detection and smoothing. These filters are

described in detail in Section 2. We tested the four filters, Hampel, Median, Savitzky-

Golay, and Wiener on the datasets to see which was most effective on the deep neural

networks.

5.4.1 Hampel Filter

This filter is designed for outlier detection in time series. A study by Ghaleb et

al. [9] is one of several that leverage the Hampel filter to detect outliers in their

ECG (Electrocardiogram) data. ECG data is another measure of heart health. It

measures how often and how regular the heart beats. The Hampel filter has not been

used in heart rate data measure in beats per minute in any publicly available studies.

The Hampel filter was implemented using the Python Heart Rate Analysis Toolkit

(heartpy). The filter size was set to 12, meaning 6 data points were taken from the

left side of the current heart rate sample, and 6 data points were taken from the right

side of the current heart rate sample for the analysis. 12 was chosen arbitrarily based

on the generalized idea that there are 12 samples for every 1 minute of data in the 60

sample range.

5.4.2 Median Filter

This filter is a common algorithm used in digital image processing to preserve

edges of images and smooth values. This filter is used very commonly in heart rate

estimation and artifact removal, as seen in a study conducted by Yang et al. [34].

They found that this filtering technique was able to successfully remove artifacts, and
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proved to be generally intuitive and computationally simple. The Median filter was

implemented using the Scipy Signal library (medfilt). The kernel size, indicating the

local window size was set to the default, 3.

5.4.3 Savitzky-Golay Filter

The Savitzky-Golay filter is a type of low-pass filter, meaning that it gets rid of

signals that are below a selected cutoff. It is often used to clean signals and smooth

data. It has been used in heart rate studies, including a study by Chatterjee et al.

[5], which uses PPG heart rate data - data collected using a photoplethysmograph.

This filter was implemented using the Scipy Signal library (savgol_filter). The

parameters given to this filter include window_length = 5 (default) and the order of

the polynomial, which is set to 2. These are arbitrarily chosen.

5.4.4 Wiener Filter

The Wiener filter is a filter that takes the linear estimation of the original data

using a stochastic framework. It is commonly used to remove any additive noise and

to invert blurring in data. Temko et al. [30] explores the use of a Wiener filter to

estimate heart rate from photoplethysmography. This filter was implemented using

the Scipy Signal library (wiener).

Table 6 shows the distributions of absolute beat change on each filtering technique.

Compared to the non-filtered frequencies, the Hampel and Median filters tend to move

more samples toward the most frequent distributions. They are not able to smooth

the outliers on both ends of the range. The Savitzky-Golay and Wiener filters seem

48



to do a better job of clearing out the outliers on both ends of the range while moving

more samples to the most common ranges.

Ranges (bpm) None Hampel Median Savitzky-Golay Wiener

-40 ↔ -30 3 3 2 0 0
-30 ↔ -20 16 16 10 2 6
-20 ↔ -10 236 229 158 79 39
-10 ↔ 0 70910 64368 48056 103426 88210
0 ↔ 10 146664 153266 169759 114626 129992
10 ↔ 20 442 392 311 217 98
20 ↔ 30 74 70 52 9 11
30 ↔ 40 12 13 9 0 2
40 ↔ 50 1 1 1 0 1
50 ↔ 60 1 1 1 0 0

Table 6. Frequencies of Each Absolute Beat Change Based on BPM Range Using the
Different Filtering Techniques

Table 7 shows the distributions of the range variance over the 60 samples (5

minutes) leading up to the stress prompt of heart rate data. This, as a refresher,

shows how much the heart rate changed over the course of the sample window. The

analysis of the frequencies here are not as clear-cut as the previous characteristic

comparison. Each filter pushes the samples toward the 0-10bpm range, but do not

thin out the outlier ranges as much. This characteristic may not be as important as

the beat variance characteristic since heart rate can fluctuate a lot in the course of 5

minutes.

Ranges (bpm) None Hampel Median Savitzky-Golay Wiener

0 ↔ 10 946 1092 1231 1162 1285
10 ↔ 20 1770 1684 1706 1713 1648
20 ↔ 30 657 611 507 531 503
30 ↔ 40 180 172 138 169 145
40 ↔ 50 68 63 54 54 53
50 ↔ 60 37 36 30 33 33
60 ↔ 70 27 28 26 22 24
70 ↔ 80 13 12 9 14 9
80 ↔ 90 3 3 0 3 1
90 ↔ 100 0 0 0 0 0

Table 7. Frequencies of Range Variation Based on Bpm Range over 60 Samples (5
Minutes) Leading up to the Stress Prompt Using the Different Filtering Techniques
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5.5 Dataset Variations

5.5.1 Approach 1 - Contiguous Heart Rate Samples

In the 5 individualized filtered datasets created in the noise removal stage, 60

samples (12 samples * 5 minutes) representing 5 minutes of heart rate data were

extracted. We considered this as the upper bound of the extraction window due to the

prompting logic of our application. Noise detection and noise removal were conducted

on this larger sample range to encapsulate the larger variation of data. To experiment

with variate duration of heart rate history, in addition to the 60 samples of heart rate

(5 minutes), we also extracted data using the following sample history prior to the

stress prompt creation:

• 48 samples of heart rate (4 minutes)

• 36 samples of heart rate (3 minutes)

• 24 samples of heart rate (2 minutes)

• 12 samples of heart rate (1 minute)

5.5.2 Approach 2 - Heart Rate Features

As proposed in Sim et al. [28], which conducted an initial experiment into the

unconstrained police officer data and stress detection, our second approach leverages

feature extraction using heart rate and resting heart rate. In the study, the authors

extract 70 samples of heart rate, chosen as a potential upper bound, leading up to the

stress prompt. With the heart rate data, which is not normalized or made contiguous,

the authors extract the following features from the data to feed into the ML models.
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1. Resting heart rate (as calculated by Fitbit)

2. Mean of 70 heart rate samples

3. Standard deviation of 70 heart rate samples

4. Maximum sample value of 70 heart rate samples

5. Minimum sample value of 70 heart rate samples

6. Difference in resting heart rate:

(mean(HR)− resting(HR))/resting(HR) ∗ 100

7. Root mean square of successive differences:
√
mean((HR)2)

Each dataset was passed through the filtering techniques mentioned above for each

approach. To capture the performance differences between one cohort and every cadet

throughout the study, the datasets are also created in two batches, “Full Dataset”

and “One Cohort“. All datasets used for neural network training were processed using

SMOTE to add samples to minority class. Additionally, as specified above, the stress

levels were converted into binary classes: ‘Stressed’ and ‘Not Stressed’. Table 8 shows

how the classes were created using the different stress level values. The experimental

results achieved in the thesis from these dataset variations are conducted and explained

in detail in the following sections.

Class Stress Levels Used

“Not Stressed” Level 1
“Not Stressed” Levels 2 - 4

Table 8. Stress Levels Used for Each Binary Class - “Not Stressed” and “Stressed”.
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Chapter 6

DATA ANALYSIS

This section provides a deeper look into the data collected, specifically related to

study compliance and high-level biometric patterns from the extracted data.

6.1 Compliance Analysis

This subsection focuses on the compliance rates and takeaways from the study as

a whole. Compliance is an important aspect of conducting a successful study, directly

impacting the validity and reliability of study results. Over the course of the entire 9

month data collection period, we collected thousands of raw data points and stress

level values. Due to the large scale of incoming data, we weren’t entirely clear on the

full extent of our data and the overall feasibility of the study. This analysis focuses on

the prompt generation and response rates across the entire study and specific cohorts

to learn overall compliance trends from participants.

Figure 14 shows the percentages of missed prompts to responded prompts for all

users throughout the study. This pie chart corresponds to Table 5 in the previous

section. We see immediately that approximately 3/4 of all prompts created were

missed or not responded to. There are two possible conclusions we can make from this

data. One possibility could be that the prompting threshold (35% increase over resting

heart rate for 1 minute) was too sensitive. Users could have been getting prompted

too frequently and didn’t respond to the prompts. Another possible conclusion is that

users were too consumed by their stress to reply to the prompt. The stress, or the
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Figure 14. Response Frequencies Across the Full Study Dataset

scenario itself, had the potential to be consuming and users couldn’t break away from

their current situation to provide a response. To remedy this in the future, we can

address the prompting threshold to make it less sensitive, and provide a way for users

to give stress scores after the moment may have passed to make up for lost data.

Figure 15 looks at response percentages across cohort-specific data. The distribu-

tion across cohorts shows us that in almost every cohort, more than half of the prompts

created were missed. Cohort F, which only consisted of 2 users, was the best in terms

of response. The heart rate threshold could be too sensitive, causing the application

to prompt when there is no stress or when it is off the wrist. The threshold was set to

135% above the resting heart rate, which may be too low. Additionally, we have found

that the “OnWrist” presence feature for the Fitbit is at times inaccurate in determining

wrist presence. When the watch is not being worn and the “OnWrist“ presence is still
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Figure 15. Response Frequencies Visualized as a Percentage Sorted by Cohort.
Original Cohort: N = 15, Total Prompts = 12976, Cohort C: N = 10, Total Prompts
= 2309, Cohort D: N = 4, Total Prompts = 890, Cohort E: N = 6, Total Prompts =

1204, Cohort F: N = 2, Total Prompts = 410

true, the heart rate sensor continues to pick up noisy or faulty heart rate values. Our

application, dependent on the heart rate sensor and not looking at wrist presence, will

continue to prompt users, leading to missed prompts. Over the course of the academy,

the demand for high psychical and mental attention also increases. Users probably

did not have time or the ability to respond to the prompts immediately.

Figure 16 shows the percentage distribution of missed versus responded prompts

by gender. This statistic takes the total number of prompts for each gender and finds

the response and non-response rates. We can see in the figure that female cadets
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Figure 16. Percentage of Prompts Missed vs. Responded by Gender. Female: N = 6,
Total Prompts: 3982, Male: N = 31, Total Prompts: 13803

tended to miss more prompts than male cadets. This could be paired with some of

the emotion regulation data collected from the pre- and post-academy questionnaires

to see how women managed their emotions and feelings.

Figure 17 shows the average number of prompts generated each week during the

study period by each cohort. The number of prompts per week for each cadet in each

cohort were averaged. We specifically focus on the number of prompts generated to

understand how much the Fitbit was worn. We assume here that if prompts were
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Figure 17. Average Number of Prompts Generated from Each Cohort Across Weeks
in the Study

generated, the Fitbit was on and there was a high probability that the Fitbit was on

the wrist (or recently on the wrist). The figure shows that over time, the number of

responses generated decreased. This tells us that compliance was higher when the

study began than later in the study. Overall study perception and attitude could play

a large part in these trends. Frequent prompting could have caused disruptions during

high-focus academy tasks, which typically appeared later in the academy curriculum,

leading to negative feelings toward the device.
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6.2 Biometric Analysis

Analyzing biometric trends from heart rate data can provide insights into a person’s

stress response and help identify triggers that lead to that stress. This subsection

looks into the heart rate data collected and its relationship to prompting and the stress

level scale. Learning generalized trends can guide psychologists to understanding what

factors and patterns indicate higher stress.

Figure 18. Box Plot Indicating Median, 25th, and 75th Percentile for Heart Rate
Values 5 Minutes Prior to Stress Prompt Creation for Each Stress Level Value

Figure 18 shows the distribution of heart rate values for each stress level metric.

The boxplot shows the median values for each stress level, along with the 25th and

75th percentile values. We can see from the figure that the median value slightly
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Figure 19. This Graph Shows the Average Prompts Created Across Males and
Females in the Study

increases across increased stress levels, which could support the theory that higher

heart rate yields higher stress. This boxplot also shows the outliers outside of the

range. We can see that other stress levels have data well past the maximum range,

indicating that even though heart rate is high, stress levels may not always follow suit,

contradicting the earlier assumption. These outliers could also be from high-intensity

exercise, which naturally increases heart rate.

Figure 19 shows the average number of prompts generated across genders. Here,

the assumption is that if a prompt was generated, the watch was worn and the current

heart rate of the user at the time of the prompt was higher than the threshold. This

figure corrects for proportion, calculating the average number of prompts generated for
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each gender group. Assuming the threshold is appropriately sensitive, this figure shows

that women had an average of 664 prompts during the course of the study and men

had an average of 445 prompts during the study. These values suggest that women

had higher heart rate and were consequently prompted more often. These values

could also suggest that women were more compliant overall in the study, yielding

more Fitbit wear time and more generated prompts.

Figure 20. This Graph Shows the Percentage of Responded Prompts for Each Stress
Level Across Males and Females in the Study. Females: N = 6, Total Prompts = 973,

Male: N = 31, Total Prompts = 3903

Figure 20 illustrates the percentage of responses for men and women split by stress

level values. Figure 18 showed that a higher heart rates tended to correspond to

higher amounts of stress. With more average prompts from women, we can possibly
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deduce that women had higher heart rate values overall. Higher heart rate could have

implied higher levels of stress, per Figure 18. This figure, however, shows that on

average, men tended to respond with higher stress levels than women.

This section looks into different characteristics of the collected data to draw some

trends and conclusions about compliance and biometrics. The takeaways are as follows:

• Approximately 3/4 of all prompts during the whole study were not responded

to. More specifically, on a cohort level, most cohorts had nearly half of the

generated prompts missed.

• Over the course of the study, the number of prompts generated decreased. The

number of prompts indicate Fitbit wear time, since prompts were only generated

when the heart rate sensor was marked as active.

• According to 18, the corresponding heart rate values tended to increase as stress

levels increased.

• Female cadets had more generated prompts on average than the male cadets,

indicating higher compliance and higher heart rate values.

• Male cadets responded to higher stress levels (2 - 4) more than women.
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Chapter 7

STRESS DETECTION ON DEEP NEURAL NETWORKS

With these carefully processed and curated datasets, the next step is to design

deep neural networks to learn features of stress and heart rate to detect situations

of stress. With meticulously crafted neural networks, our eventual goal would be to

catch moments of intense stress in an accurate and non-disruptive manner. Several

papers have already begun investigating stress detection using deep neural networks

(see ‘Related Works’ section). This section goes into the training and evaluation

results of several different deep neural networks using the two approaches on dataset

formulation, 1) heart rate contiguity and 2) heart rate feature extraction. The deep

neural networks leveraged in the experiments have different capabilities, strengths

and weaknesses. They are highlighted in subsequent subsections. These datasets are

initially comprised of user’s heart rate (in bpm) and their relevant features leading up

to a stress prompt, and are then processed as follows to eliminate any potential noise

pollution:

1. Raw, Non-Filtered Heart Rate

2. Hampel Filtered Heart Rate

3. Median Filtered Heart Rate

4. Savitzky-Golay Filtered Heart Rate

5. Wiener Filtered Heart Rate
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7.1 Models

7.1.1 Deep ECGNet

The Deep ECGNet was created by Prajod et al. [24] in their work on stress

detection using ECG heart rate data. This study leverages a publicly available wearable

device dataset, called WESAD, to test their created neural network. Through their

experiments, they are able to achieve a 90.8% accuracy using the WESAD dataset

and the Deep ECGNet. The architecture of the Deep ECGNet is seen in Figure 21.

This model has one convolutional layer, two dropout layers, one max pooling layer,

two batch normalization layers, and two LSTM layers. An LSTM layer is a recurrent

neural network layer typically used for time series data to detect data dependence on

time. This model uses its convolutional neural network layer to extract features from

the input data. It then uses the two LSTM layers to extract temporal (time-based)

features from the extracted features. This methodology makes this model effective on

contiguous, sequential, time-series data. Table 9 shows the hyperparameters used for

training.

Hyperparameter Value

Loss Binary Cross Entropy
Optimizer Adam

Learning Rate 0.001
Batch Size 156

Table 9. Hyperparameters for Deep ECGNet
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Figure 21. Architecture of the Deep ECGNet
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7.1.2 Feed Forward Neural Network

This network was proposed in Sim et al. [28] for stress detection networks. It

is proposed as a relatively simple network (see Figure 22), comprised of six hidden

layers activated by the ReLu function and an output Sigmoid function layer. The

output layer with the Sigmoid function outputs a probability between 0 and 1 which

makes the model useful for binary classification tasks. This model has unidirectional

layers without any feedback connections. This model works well with tabular data,

which is often read from a CSV. From the study, the authors are able to achieve a

95.98% accuracy using a feature extracted dataset. This model is used as created

to measure the baseline of the larger dataset created here compared to the smaller

dataset leveraged in Sim et al.

Hyperparameter Value

Loss Binary Cross Entropy
Optimizer Adam

Learning Rate 0.005
Batch Size 156

Table 10. Hyperparameters for Feed Forward

7.1.3 Multilayer Perceptron Network (MLP)

The Multilayer Perceptron Network is a type of artificial neural network that

uses several layers of input nodes and backpropogation for training. A study by Li

et al. [16] investigates the use of the MLP network on wrist-worn wearable device
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Figure 22. Architecture of the Feed Forward Neural Network
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data. Through the use of publicly available datasets, they were able to achieve 99.65%

accuracy for binary stress classification. This model is a type of feed forward neural

network where each perceptron takes a weighted sum of its inputs, adds bias, and

applies activations. This model works well with tabular data, which is often read from

a CSV. The MLP model was taken from the sklearn.neural_network package. The

first hidden layer had 250 neurons, the second layer had 100 neurons, and the last

layer used 150 neurons.

7.2 Approaches

7.2.1 Approach 1 - Contiguous Heart Rate Samples

To determine the most optimal and best-performing dataset and sample window

prior to stress prompt creation, we tested the non-filtered dataset on the different

sample ranges to observe the best performance on the Deep ECGNet. The idea behind

using the non-filtered dataset for evaluating sample window significance is due to the

data variance across the non-filtered dataset. We assume that this dataset will be the

most noisy and variate, so model results on this dataset will help establish a solid

baseline. Once the best performing sample range dataset is found on this model, the

same sampled range will be leveraged for the other filtered datasets on other models.

Each dataset has rows of heart rate data and the corresponding label. Each machine

learning model is designed to take in a 3-dimensional input array. To satisfy this

design choice, each row of data from the dataset was processed into a 2-dimensional

array, called a “Bucket of Samples”. The shape of the training data is (_, X, 1), where

_ is the number of rows, X is the number of samples in the row (this is determined
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through the investigation below), and 1 is the outer dimension, called a “channel“.

The train and test data is split into 80% train and 20% test.

Model Number of Samples Accuracy F1-Score

Deep ECGNet

60 Samples 76.80% 77.57%
48 Samples 82.20% 82.01%
36 Samples 80.13% 81.00%
24 Samples 84.13% 84.66%
12 Samples 79.22% 78.77%

Table 11. Approach 1 Investigation - Accuracy and F1-scores from the Deep
ECGNET on Different Windows of Heart Rate Samples

Table 11 shows the baseline results using the Deep ECGNet. From this experiment,

it becomes clear that on the non-filtered, contiguous 24 sample heart rate dataset, we

see the highest performance of 84.13% accuracy and 84.66% F1-Score. The datasets

used for testing on the specified models will leverage 24 samples (2 minutes) of data

leading up to the stress prompt and will contain various forms of filtering.

1. Non-Filtered: 24 samples of heart rate

2. Hampel Filtered: 24 samples of heart rate

3. Median Filtered: 24 samples of heart rate

4. Savitzky-Golay Filtered: 24 samples of heart rate

5. Wiener Filtered: 24 samples of heart rate

For this approach, the input data for all three deep neural networks consists of a

24-sample vector, where each sample in the window is an input feature.

7.2.2 Approach 2 - Heart Rate Features

This approach is inspired by the success achieved by Sim et al. [28]. The authors

leverage the same data as this study, but on a smaller scale and process the data into
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features which are then fed into a simple feed forward neural network. Approach 2

tests the impact of this data processed into 7 different features from the heart rate

data. The study uses 70 samples of heart rate data (∼5-6 minutes without contiguous

5-second samples). To keep consistent with the previous work, we also leveraged 70

samples prior to the stress prompt. Since there is some possibility of noise in our

dataset, we begin by first processing the data into the different filtering techniques

presented in the above sections. After the data is processed, we take the filtered data

and extract 7 features from the dataset. As mentioned, to maintain consistency across

this thesis and the paper, we leveraged the same features as well as same window size.

Future work could make this data

1. Resting HR: Resting heart rate value for the day as calculated by Fitbit

2. Mean: The average of all the 70 heart rate samples

3. Standard Deviation: The standard deviation of all the 70 heart rate samples

4. Maximum: The maximum value of all the 70 heart rate samples

5. Minimum: The minimum value of all the 70 heart rate samples

6. DiffResting : The change in the resting heart rate from the mean value

7. RMSSD : the root mean squared of successive differences value to show the

beat-by-beat variance

As mentioned in the prior section, this testing on both approaches is done on

two dataset sizes, the full cohort, which consists of all 38 cadets throughout different

cohorts in the study period, and a smaller dataset that is only comprised of one

cohort with 15 cadets. Sim et al. [28] leveraged a single cohort dataset to achieve

high performance on the simple feed forward network. The data used in the single

cohort dataset for this thesis leverages the same 15 cadets as the Sim et al., ensuring

consistency when comparing results.
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7.3 Experimental Results

Approach Model Filtered Dataset Accuracy F1-Score Accuracy F1-Score
Full Dataset Single Cohort

Approach 1
24 Samples of
Contiguous
Heart Rate
Before the
Stress Prompt

Deep ECGNet [24]

None 84.13% 84.66% 85.49% 85.83%
Hampel 84.87% 85.60% 85.98% 86.80%
Median 74.94% 76.67% 85.39% 85.88%

Savitzky-Golay 83.40% 84.38% 86.38% 87.01%
Wiener 83.97% 84.88% 85.29% 86.17%

Feed Forward [28]

None 81.77% 82.90% 89.86% 90.27%
Hampel 82.10% 83.43% 90.66% 90.94%
Median 76.81% 77.29% 85.19% 85.29%

Savitzky-Golay 79.66% 81.40% 89.76% 90.20%
Wiener 80.31% 81.78% 88.07% 88.44%

MLP

None 85.35% 86.15% 87.77% 88.49%
Hampel 85.92% 86.88% 85.59% 86.07%
Median 81.53% 81.38% 86.08% 86.27%

Savitzky-Golay 85.92% 86.49% 85.69% 86.07%
Wiener 84.62% 85.79% 85.49% 85.63%

Approach 2
Features
Extracted
from 70
Samples
of Contiguous
Heart Rate
Before the
Stress Prompt

Deep ECGNet [24]

None 80.70% 82.01% 84.42% 84.52%
Hampel 78.82% 79.97% 84.22% 84.29%
Median 78.74% 79.75% 83.62% 84.11%

Savitzky-Golay 80.38% 81.65% 80.82% 81.10%
Wiener 80.21% 81.72% 83.12% 83.51%

Feed Forward [28]

None 83.73% 84.27% 85.71% 85.69%
Hampel 80.38% 80.23% 86.81% 86.77%
Median 80.87% 81.10% 86.51% 85.98%

Savitzky-Golay 81.68% 82.80% 84.52% 83.46%
Wiener 81.85% 82.66% 84.52% 84.07%

MLP

None 83.16% 83.76% 81.02% 82.41%
Hampel 80.54% 80.99% 77.92% 78.10%
Median 81.36% 81.58% 77.92% 77.74%

Savitzky-Golay 83.65% 84.35% 74.43% 75.19%
Wiener 82.26% 81.90% 79.52% 79.19%

Table 12. Accuracy and F1-score Results on Two Different Data Processing
Approaches on the Deep ECGNET, Feed Forward Network, and the MLP. The

Results Are Separated into “Full Dataset” And “Single Cohort” Results Specifying
How Much Data Collected from the Study Is Fed into the Training and Testing.

The accuracy and F1-score from the different experiments are shown in Table12.

Both approaches were run on the three neural networks described above; Deep ECGNet,

Feed Forward, and Multilayer Perception Network.

• Approach 1: 24 Samples of Contiguous Heart Rate Before the Stress Prompt

• Approach 2: Features Extracted from 70 Samples of Contiguous Heart Rate

Before the Stress Prompt
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For each approach, the models are tested on two different processed datasets. The

“Full Dataset” consists of every user’s collected data during the entire course of the

study. The “Single Cohort“ focuses on only the first cohort in the study, as similarly

leveraged by Sim et al. [28].

7.3.1 Approach 1 Results

Both approaches take a unique method of data processing to represent the heart

rate variations prior to the stress prompt. Results from the Approach 1 structuring

technique show the efficacy of using simple input data consisting of 24 samples of

contiguous heart rate data, where each sample is passed in as a feature. Across the

three models and five filtered datasets in Approach 1, the best accuracies for both the

“Single Cohort” and “Full Dataset” are bolded. The best performing filtering technique

appears to be the Hampel-filtered dataset. The best accuracy achieved from Approach

1 on the “Single Cohort” dataset is 90.66% on the Feed Forward neural network using

the Hampel-filtered dataset, proving its efficacy on the deep neural networks as a whole.

On the “Full Dataset”, the best accuracy is 85.92% accuracy on the MLP network

using the the Hampel-filtered dataset. In terms of overall generalizability, the accuracy

achieved on the MLP network (85.92%) is the most promising. It demonstrates the

models’ ability to scale to a larger variation of data. This was also the best accuracy

achieved on the “Full Dataset”.

One thing to note is that the MLP network performs better than the Deep ECGNet

on the “Full Dataset”. The Deep ECGNet has a complex LSTM architecture. The

lower accuracy results from the Deep ECGNet may indicate that the temporal features

and dependencies of the Approach 1 dataset may not be strong enough to require the
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complex LSTM architecture. However, since the accuracy difference is not large, the

difference may be attributed to architecture, hyperparameters, and other factors.

7.3.2 Approach 2 Results

Results from the Approach 2 data structuring technique leverage hand-crafted

features extracted from 70 samples of heart rate. Across the best performing accuracy

results, the best filtering technique comes from the Non-Filtered dataset. The best

accuracy achieved on the “Single Cohort” dataset is an 86.81% accuracy from the Feed

Forward Neural network on the Hampel-filtered dataset. The best accuracy from the

“Full Dataset” is 83.73% accuracy, which also comes from the Feed Forward network

on the Non-Filtered dataset.

This accuracy result (83.73%) is less than the best performing accuracy from the

“Full Dataset” (85.92%). Approach 1 performs better than Approach 2. This is an

indication to us that the hand-crafted features fed in as input in Approach 2 may not

have been the most optimal. Further, extracting these hand-crafted features required

a lot of manual overhead. Prior to the training and inference tasks, these datasets

needed to be processed with the different feature extractors, which is time-consuming.

Such manual overhead did not yield any accuracy improvements, proving to us that

Approach 1 may have been more effective. Overall, with the two approaches, we

can deduce that deep neural networks perform better with simple input data, where

the models themselves can extract relevant features and do the feature engineering

without user overhead.

Additionally, the difference between the two approaches is probably due to the

most amount of relevant history prior to the stress prompt and the higher probability
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that the user was wearing the watch for the full 2 minutes (24 samples) compared to

the full 5-6 minutes (70 samples) captured in Approach 2. Psychology and biology

also suggest that stress can happen instantaneously, in which case Approach 2 would

initially capture unstressed heart rate data in a later stressful episode.

7.3.3 Dataset Size Results

Results from the experiments show that the “Single Cohort” dataset performs

much better than the “Full Dataset“. In each model and approach type, excluding the

MLP for Approach 2, most of the accuracy and F1-score values sit around the mid-

to high-80%s. This is much higher than the “Full Dataset” performance, which barely

broke 80% in the case of both approaches. These results are probably attributed to

the strong correlation of Fitbit wear time, response rates, and overall perception of the

cadets on a cohort-specific level. Cohorts operated with a strong sense of community

and camaraderie and most probably discussed or shared experiences while wearing

and recording self-reported stress values. Across the “Full Dataset“, the cohorts each

had different scenarios and different levels of environmental stress (from their lead

sergeants or other peers) which could have impacted the biometric measurements and

self-report rates, leading to lower levels of generalizability.

7.3.4 Filtering Results

Further, the experiments suggest that some of the filtering techniques prove to be

more effective for the machine learning models than others. The Wiener filter, which

is designed for blurred inversion and additive noise removal, and the median filter,
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for image smoothing, did not perform the highest in any experiment. However, the

Hampel filter performed the best, preserving the relationships between the heart rate

values and smoothing the data across the 24-sample viewing window. The Savitzky-

Golay filter was also successful in maintaining relationships across the data values and

producing acceptable accuracy scores. From these experiments, we can also see that

the non-filtered data was also high-performing, indicating the possibility of processing

and changing the non-filtered data for higher accuracy.

Overall, the Hampel filter performed the best on both approaches, but specifically

the best performing approach, Approach 1. This is should be investigated in other

contexts to prove its overall efficacy.
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Chapter 8

CONCLUSION AND FUTURE WORK

In summary, this thesis presents a framework that uses real-world data and

deep neural networks to detect stress in police cadets, with the eventual goal of

better supporting police officers and law enforcement agencies. Through the use of

various data processing strategies, this study successfully handles the naturalistic

and unconstrained characteristics of the collected data. The data was then fed into

carefully designed deep neural networks. The results from those models prove that

deep neural networks can learn from heart rate data and detect stress in real-world

scenarios. Further, the results from the full dataset with various characteristics show

the models’ ability to generalize. Overall, the thesis contributes to a growing domain

of research aimed at improving the lives of police officers and enhancing the overall

effectiveness of law enforcement agencies.

To summarize, this thesis presented the following takeaways:

• Processing heart rate data into a 2-minute window prior to stress level prompts

is more effective than using extracted heart rate features as input to different

deep neural networks.

• Hampel and Savitzky-Golay filters proved most effective at removing outliers in

heart rate data. The data processed with these filtered achieved higher deep

neural network performance than traditional filtering techniques.

• Deep neural networks exhibit better performance when trained on smaller

datasets that are cohort-specific compared to larger, generalized dataset with all

participants. The Feed Forward network achieved the highest accuracy of 90.66%
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when trained on the smaller dataset that was treated with the Hampel filter,

while the MLP network achieved 85.92% accuracy on the larger Hampel-filtered

dataset.

8.1 Limitations and Implications for Future Work

This work presents some limitations and areas for future improvement. Firstly,

the method of data collection presents challenges in terms of the quality of the ground

truth. The stress scale is relatively arbitrary - what one cadet may perceive as ‘level 4

stress’, another may perceive as a ‘level 1 stress’. Such discrepancies may be making it

difficult for the model to generalize with higher accuracy. To address this, a possible

goal would be to develop individualized models for each user. Such models would be

trained on data from a specific user so that stressed and unstressed characteristics are

relevant to the user.

Additionally, compliance rates from the participants may have affected the quality

of the data. Through the data analysis, we see that certain cadets participated more in

the data collection process, and several stress prompts were not responded to. We also

saw that as the intensity of the academy training increased, the Fitbit wear time (and

thus, the data collected) rapidly decreased. If we can find a way to improve the data

collection experience, we may be able to improve compliance rates and data integrity.

Another way to improve compliance could be to revisit the prompting algorithm to

ensure that the prompts are non-disruptive but also simultaneously capture moments

of stress.

Finally, this thesis presented a binary classification approach to stress detection.

Using this approach may have muted some essential characteristics of the data. In
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the future, it may be beneficial to move towards a multi-class problem. Addressing

these limitations and incorporating suggestions for future work could lead to a more

reliable and comprehensive stress detection model for real-world applications.
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