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ABSTRACT

National Airspace Systems (NAS) are complex cyber-physical systems that require swift

air traffic management (ATM) to ensure flight safety and efficiency. With the surging de-

mand for air travel and the increasing intricacy of aviation systems, the need for advanced

technologies to support air traffic management and air traffic control (ATC) service has

become more crucial than ever. Data-driven models or artificial intelligence (AI) have

been conceptually investigated by various parties and shown immense potential, especially

when provided with a vast volume of real-world data. These data include traffic infor-

mation, weather contours, operational reports, terrain information, flight procedures, and

aviation regulations. Data-driven models learn from historical experiences and observa-

tions and provide expeditious recommendations and decision support for various operation

tasks, directly contributing to the digital transformation in aviation.

This dissertation reports several research studies covering different aspects of air traf-

fic management and ATC service utilizing data-driven modeling, which are validated us-

ing real-world big data (flight tracks, flight events, convective weather, workload probes).

These studies encompass a range of topics, including trajectory recommendations, weather

studies, landing operations, and aviation human factors. Specifically, the topics explored

are (i) trajectory recommendations under weather conditions, which examine the impact of

convective weather on last on-file flight plans and provide calibrated trajectories based on

convective weather; (ii) multi-aircraft trajectory predictions, which study the intention of

multiple mid-air aircraft in the near-terminal airspace and provide trajectory predictions;

(iii) flight scheduling operations, which involve probabilistic machine learning-enhanced

optimization algorithms for robust and efficient aircraft landing sequencing; (iv) aviation

human factors, which predict air traffic controller workload level from flight traffic data

with conformalized graph neural network. The uncertainties associated with these studies

are given special attention and addressed through Bayesian/probabilistic machine learn-
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ing. Finally, discussions on high-level AI-enabled ATM research directions are provided,

hoping to extend the proposed studies in the future.

This dissertation demonstrates that data-driven modeling has great potential for avia-

tion digital twins, revolutionizing the aviation decision-making process and enhancing the

safety and efficiency of ATM. Moreover, these research directions are not merely add-ons

to existing aviation practices but also contribute to the future of transportation, particularly

in the development of autonomous systems.
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Chapter 1

INTRODUCTION

1.1 Overview and Motivations

Commercial aviation systems are complex cyber-physical systems that require efficient

air traffic management (ATM) systems to ensure safe and efficient flight practices. It in-

tegrates cyberspace and physical facilities into a space-air-ground multi-dimensional net-

worked intelligent system. With the increase in air travel demand and the growing oper-

ational complexity, the current ATM paper- and voice-based ATM systems developed for

decades are facing substantially increased challenges. The decision-makers do not have

access to a high level of automated operation recommendations or lack important real-

time information feeds, resulting in the failure of situation awareness and aviation safety

concerns. These drawbacks create a highly tactical basis environment, where operation

practitioners have to make decisions based on incomplete or uncertain information. As a

result, plans to optimize operations are often rendered obsolete as the situation evolves.

To address these limitations, researchers from multiple universities, research institutes, and

government authorities are undertaking advanced ATM research and digital transformation

programs to push the steady evolution to a higher level of automated ATM systems. For

instance, the European Union Aviation Safety Agency (EASA) published two versions of

conceptual papers to provide guidelines on potential artificial intelligence (AI) applications

for innovations in ATMs and their anticipated mean of compliance with existing indus-

trial standards [5; 6]. Specifically, the MITRE Corporation provides the review article on

aircraft trajectory prediction enabling the migration to trajectory-based operations (TBO),

where the flights are represented as trajectories and shared across the ground, air, and space
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air navigation service providers for the gradual evolution to TBO [7]. With an accurate tra-

jectory prediction capability, aviation decision-makers can perform strategic planning and

robust in-house management, leveraging system-wide information coordination.

AI is linked with most of the technological breakthroughs in the 21st century, and AI-

enabled digital transformation is instrumental in shaping the fourth industrial revolution.

Leading countries invested heavily in AI, with the goal of gaining strength in international

competitions. The benefits of using AI in aviation are significant. For instance, data-

driven models can digest vast volumes of data in real-time, providing decision-makers with

accurate and timely information and operational recommendations, and leading to better-

informed decisions to enhance aviation safety and efficiency. For airline operations, AI can

also assist in predicting delays, which can help airlines and airports’ resource allocation

process, reducing financial losses and improving the passenger experience.

The concerns toward AI in aviation are obvious and twofold. The major challenge is

the trustworthiness of AI solutions, including the explainability of AI models and regula-

tory compliance. Compared to a rule-based model, AI models receive the typical black box

criticism as the complexity of the AI model brings a level of opaqueness that makes them

look unverifiable, thus will not be able to meet regulatory compliance. However, the author

would like to argue that there are some efforts into performing formal analysis types of ver-

ification and validation of simple structured AI models, providing a feasible route for AI

trustworthiness analysis. Large deep-learning models are typical modular-based architec-

ture, where each modular, or sub-network, accounts for different functionality, providing

a level of explainability to the audience. Moreover, knowledge graphs also provide a way

to include domain knowledge into the graph-structured deep learning model, resulting in

knowledge-based learning. Lastly, risk assessment and control are also helpful directions to

explore satisfying regulatory requirements and safety standards. The second major concern

comes from the integrated cyber-physical security and privacy of the ATM data transmis-
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sion process. The aviation communication security issue has been included in multiple

development plans for future ATM systems, including the Next Generation Air Transporta-

tion System (NextGen), Single European Sky ATM Research (SESAR), and Civil Aviation

ATM Moderation Strategy (CAAMS). Real-time AI-enabled decision-making substantially

increased the communication and data transmission volume within the ATM system, and

can digest masqueraded tempered signals and flight data for the AI training process result-

ing in misleading decision recommendations. The resolutions can either add cyber protec-

tion layers to the networked communications or adopt secure AI learning frameworks (i.e.,

federated learning).

Real-world data is another core component of data-driven studies. The typical machine

learning model takes real-world collected data as input and makes predictions based on

the historically recorded data, to ensure that they can be applied in the real world with

confidence. Although there are redundant open-source aviation traffic data, meteorological

data, and operational data available for research, in this thesis, we focus on investigating

the Sherlock aviation data warehouse maintained by NASA ARC. Sherlock provides an

extensive data repository for aviation big data research. Notably, this thesis emphasizes the

importance of data engineering, as the aviation data used can be in the petabyte range.

Lastly, applying AI techniques in aviation is still in the exploration stage. The potential

benefits of AI in aviation are enormous. The use of data-driven models and AI technolo-

gies in aviation is an exciting development that has the potential to transform air traffic

management and advanced avionics.

1.2 Research Objectives

Based on the above discussions, the author conducts broad reading and literature review

to identify engineering research objectives. In this thesis, the author investigated three

major research directions in the general field of ATM. Here is a list of engineering research
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objectives,

• Develop a reliable probabilistic aircraft trajectory prediction model considering con-

vective weather impacts. In real-world practices, the aircraft trajectories are guided

by the last on-file flight plan, but are impacted by various factors, considered as

various sources of uncertainties. One of the biggest uncertainties comes from the

convective weather and meteorological conditions. Thus, the first study focuses on

reducing trajectory prediction errors with convective weather, such that the predicted

trajectory gets closer to the ground truth.

• In the terminal maneuvering area (TMA), the major focus of trajectory prediction

changes to behavior/intention modeling in multi-agent scenarios. Thus, the major

objective of this stage is to develop a reliable probabilistic multi-aircraft trajectory

prediction model in the TMA. Besides predicting the probabilistic trajectories for

multiple aircraft, data-driven model robustness and intention modeling are two ad-

ditional interests. The most recent advancements in computer vision research are

investigated and integrated into the proposed model.

• Develop a probabilistic machine learning-enhanced aircraft landing scheduling model

to improve the landing runway throughput during busy operation hours. In this study,

the motivation comes from the inefficiency of the current first-come-first-served land-

ing scheduling policy. An optimization algorithm is adopted to search for the best

landing sequences of several aircraft, and probabilistic machine learning is used to

predict the minimum landing time difference between successive landing aircraft

pairs with a reliability tolerance. Integrating these two parts together results in a

machine-learning algorithm for optimal aircraft landing scheduling, to address avia-

tion safety and efficiency.

• Develop air traffic controller (ATCo) workload level prediction model with in-house
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human-in-the-loop (HITL) experiment data. The objective of this aviation human

factor research is to propose a better non-intrusive ATCo workload prediction algo-

rithm, taking advantage of the graph-structured spatiotemporal air traffic data. In this

way, proper workload management and resource allocation can be performed, to re-

duce ATCo fatigue level, avoid ATCo workload overhead, and reduce aviation safety

concerns.

• Technical exploration for aviation data engineering and aviation monitoring and sim-

ulation software platforms are two other engineering focuses. The fundamental in-

terests in data engineering are the exploration of agile geospatial data processing

tools to perform ultra-efficient big queries on air traffic data, and digital transforma-

tion tools for encoded aviation data strings (i.e., the digital translators of flight plan

strings/landing and departure procedures/ARINC air navigation records to geospatial

coordinates). On the other hand, the development of aviation software can reduce the

research effort on aviation simulations, flight visualizations, and data analytics.

1.3 Organization

The rest of this thesis is divided into five chapters, grouped into three aviation research

topics followed by a conclusion.

Chapter 2 proposes an advanced Bayesian Deep Learning method for aircraft trajectory

prediction considering weather impacts. A brief review of both deterministic and proba-

bilistic trajectory prediction methods is given, with particular emphasis on learning-based

methods. Next, a deterministic trajectory prediction model with classical deep learning

methods is proposed to handle both spatial and temporal information using a nested con-

volution neural network, recurrent neural network, and fully-connected neural network.

Following this, the deterministic neural network model is extended to be a Bayesian deep
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learning model to consider uncertainties where the posterior distributions of parameters are

estimated with variational inference for enhanced efficiency. Both mean prediction and

confidence intervals are obtained by giving the last on-file flight plans and weather data in

the region. The proposed methodology is validated using air traffic and weather data from

the Sherlock data warehouse. Data pre-processing procedures for big data analytics are

discussed in detail. Demonstration and metrics-based validation are performed during se-

vere convective weather conditions for several air traffic control centers. The results show

a significant reduction in prediction variance. A comparison with existing methods is also

performed. Several conclusions and future works are given based on the proposed study.

Chapter 3 proposes the Bayesian Spatio-Temporal grAph tRansformer (B-STAR) ar-

chitecture to model the spatial and temporal relationship of multiple aircraft under uncer-

tainties. The design of the B-STAR structure takes advantage of conclusions from the

previous deep learning robustness study. The previous work shows that the stochastic clas-

sifier after the deterministic CNN extractor has sufficient robustness enhancement rather

than a stochastic feature extractor before the stochastic classifier. This advises on utilizing

stochastic layers in building decision-making pipelines within a safety-critical domain. The

performance of the proposed B-STAR model is first validated on the standard ETH/UCY

pedestrian dataset, with UQ competence. Then, the multi-aircraft near-terminal interactive

trajectory prediction model is trained and validated with real-world flight recording data.

The sensitivity study on the prediction/observation horizon and the graph neighboring dis-

tance threshold are performed.

Chapter 4 develops a novel machine learning-enhanced methodology for aircraft land-

ing scheduling. Data-driven machine learning (ML) models are proposed to enhance au-

tomation and safety. ML enhancement is adopted for both prediction and optimization.

First, the flight arrival delay scenarios are analyzed to identify the delay-related factors,

where strong multi-model distributions and arrival flight time duration clusters are ob-
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served. A multi-stage conditional ML predictor is proposed for improved prediction perfor-

mance of separation time conditioned on flight events. Next, this chapter proposes incorpo-

rating the ML predictions as safety constraints of the time-constrained traveling salesman

problem formulation. The scheduling problem is then solved with mixed-integer linear

programming (MILP). Additionally, uncertainties between successive flights from histori-

cal flight recordings and model predictions are included to ensure reliability. This chapter

demonstrates the real-world applicability of this proposed method using the flight track

and event data from the Sherlock database of the Atlanta Air Route Traffic Control Center

(ARTCC ZTL). The case studies demonstrate that the proposed method can reduce the total

landing time compared with the First-Come-First-Served (FCFS) rule during the busy time

period. Unlike the deterministic heuristic FCFS rule, the proposed methodology also con-

siders the uncertainties between aircraft and ensures confidence in the scheduling. Finally,

several concluding remarks and future research directions are given.

Chapter 5 first performs a review of research on ATCo cognitive workload, mostly from

the air traffic perspective. Then, this chapter briefly introduces the setup of the human-in-

the-loop (HITL) simulations with retired ATCos, where the air traffic data and cognitive

workload labels are obtained. The simulations are conducted under three Phoenix ap-

proach scenarios while the human ATCos are requested to self-evaluate their workload

ratings (i.e., low-1 to high-7). Preliminary data analysis is conducted. Next, this chapter

proposes a graph-based deep-learning framework with conformal prediction to identify the

ATCo workload levels. The number of aircraft under the controller’s control varies both

spatially and temporally, resulting in dynamically evolving graphs. The experiment results

suggest that (a) besides the traffic density feature, the traffic conflict feature contributes

to the workload prediction capabilities (i.e., minimum horizontal/vertical separation dis-

tance); (b) directly learning from the spatiotemporal graph layout of airspace with graph

neural network can achieve higher prediction accuracy, compare to hand-crafted traffic
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complexity features; (c) conformal prediction is a valuable tool to further boost model pre-

diction accuracy, resulting a range of predicted workload labels.

Chapter 6 is the concluding chapter of this dissertation. It begins with a summary of

aviation research topics, followed by a list of major contributions. The chapter then offers

multi-level insights and future research directions, ranging from task-level to conceptual-

level suggestions for using AI in aviation decision-making. The task-level insights are

problem-specific, and the motivations behind them can be any of the following: (i) incre-

mentally improving model performance; (ii) expanding the research scope; (iii) redefining

experimental setups; or (iv) providing new functionalities to an existing model. On the

strategic or conceptual level, this thesis discusses critical future topics, such as security,

safety, explainability, and compliance, whenever AI applications are involved in the gen-

eral ATM domain.
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Chapter 2

STRATEGIC AIRCRAFT TRAJECTORY PREDICTION UNDER CONVECTIVE

WEATHER

2.1 Introduction

In the context of air traffic management (ATM), the development of the next-generation

national air transportation system (NextGen) [8] is of critical importance. NextGen aims to

efficiently and safely accommodate the increasing air traffic flows within the United States.

A key element of NextGen is the capability to predict and share air traffic trajectories and

conflicts with all involved stakeholders. In NextGen, information sharing between aircraft

will be greatly enhanced so that each aircraft receives and transmits the cooperative surveil-

lance information. Thus, aircraft can take over a certain amount of ATM tasks from ground

air traffic controllers. These decision-support tools (DSTs) [9] include flight plan (FP)

changes, dynamic weather reroute (DWR), trajectory prediction (TP), and conflict detec-

tion and resolution (CDR). With the advancement of these tools, NextGen can alleviate the

mental workloads of ground air traffic controllers [10; 11; 12], especially when infrequent

but critical events happened [13].

It has been shown that there are huge trajectory uncertainties during aviation operations.

The uncertainty of trajectory predictions (TP) comes from multiple sources. A typical TP

tool makes decisions based on the aircraft’s performance, pilot’s intent, and Terminal Radar

Approach Control (TRACON) regulations [14]. The unawareness of the pilot’s intent and

assumptions of the aircraft’s conditions contribute to the prediction uncertainty. Also, when

multiple aircraft are heading to the same region, communication and avoiding maneuver

between each of the aircraft will cause the uncertainty of the trajectory prediction [15].
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Among all sources of uncertainties, the environmental factor is one of the most significant

contributors to the TP uncertainty [16; 17; 18]. The convective weather condition usually

generates rapidly and randomly, which represents aleatoric uncertainties. The accuracy of

the weather prediction, such as resolution, accuracy, and forecasting intervals, will also

affect the TP uncertainties and represents epistemic uncertainty sources. In addition, the

pilot and controller’s decision regarding weather conditions brings in additional uncertain-

ties from human factors. Due to the nature of uncertainties that contribute to the TP errors,

a deterministic TP model will not be sufficient for the efficient and reliable TP models,

especially when dealing with increasingly congested airspace [19].

The availability of different massive aviation databases [20; 21] has enabled the possi-

bility of changing the conventional TP tool into a multi-source data-driven approach [22],

such as machine learning (ML) methods. Deep learning (DL), as a special type of ML tech-

nique, draws significant interest in academia and industries and has achieved great success

in object detection [23], natural language processing [24; 25], dimension reduction [26],

generative learning [27], and reinforcement learning [28]. Numerous ML studies have been

performed in ATM during the last decades, although multiple challenges (i.e., data collec-

tion, data privacy, data storage, data cleansing, and data opening) still exist in real-world

applications [29]. Compared to the traditional ML approaches, the DL model has the fol-

lowing advantages: 1) DL model has an architecture by stacking multiple back-propagation

compatible layers to discover the inherent information within the data, such as the convo-

lutional layers and recurrent layers to consider the complex spatial structures and temporal

structures presented in the TP problem; 2) DL model can take advantage of the big data as

the DL algorithm is easy to incorporate multiple factors into the TP model. However, the

traditional DL model has the following limitations. 1) The inherent characteristics of DL

models are prone to overfitting, especially for recurrent neural networks (RNNs) [30]. To

solve this, significant fine-tuning of network parameters combined with stochastic regular-
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ization techniques (SRTs) such as dropout [31] are often required. Researchers typically

choose the parameters of the DL model subjectively. 2) Traditional DL models cannot be

used to quantify the uncertainties of the trajectories.

Bayesian techniques are known as a remedy to address the issues of overfitting and

uncertainty quantification. More specifically, the DL model that incorporates Bayesian

variational inference, known as Bayesian deep learning (BDL), is shown to be robust for

overfitting problems [32]. Furthermore, instead of using a single point estimate of model

parameters in classical DL, the Bayesian methods yield distribution for each of the param-

eters, which provides an inherent estimate of prediction uncertainty.

Therefore, this chapter proposes a Bayesian deep learning-based probabilistic aircraft

trajectory prediction method under weather impact. Multiple convolutional, recurrent, and

fully-connect layers are constructed to discover the complex spatial-temporal relationship

from historical data. Bayesian theory is then applied to form a probabilistic learning frame-

work. This work performs experiments with real flight trajectories, flight plans, and con-

vective weather measurement data from the Sherlock database. To the best knowledge of

the authors, this is the first paper that the BDL is used to perform the TP task considering

weather impacts. Another new contribution of the proposed study is the proposed unique

probabilistic CNN+RNN+FCNN architecture for big data analytics involving dynamically

changing weather and trajectory information in ATM.

The rest of the paper is organized as follows. Section 5.2 reviews the studies performed

in the general field of trajectory prediction. Section 2.3 discusses the evolution of deep

learning combining Bayesian theory as well as our proposed trajectory prediction frame-

work. Section 5.4 introduce the proposed TP framework as well as the processing pipeline

on each of the three building-blocks. The test results of the proposed framework and the

comparison with other NN models are described in Section 2.5. A study on the contribu-

tions of explicitly introducing weather features into the TP framework is also conducted.
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Concluding remarks and future directions are described in Section 5.6.

2.2 Literature Review

Trajectory prediction has been long regarded as a key functional component in different

research areas such as ground vehicle trajectory prediction [33; 34; 35; 36], and pedestrian

trajectory prediction [37; 38; 39; 40] in both deterministic and probabilistic sense. Here,

this chapter focuses on the aircraft TP in the field of ATM. Existing methodologies can be

divided into deterministic and probabilistic methods. Details are shown below.

2.2.1 Deterministic Methods

The deterministic approach gives a point estimate of the aircraft location without asso-

ciated uncertainties to the predicted trajectory. Most approaches focus on the modeling of

aircraft’s intent, motions, and dynamics. The nominal approach to do the prediction is to

propagate an estimation of the state space and find the future predictions given a sequence

of past observations.

Data-based TP

Most data-driven methods include state-space model [41], Kalman and particle filtering

[42], classical neural networks (NNs) [43], and physical-based learning [44]. A state-space

model is proposed for the short-time trajectory prediction near the terminal area by using a

selection of flight plan or dead reckoning method instead of a flight plan (FP) based guid-

ance [41]. The key idea is that, if an aircraft is not following its route, the best estimation is

using the dead reckoning. The experiment is conducted with four selected trajectories and

evaluated by the distance between the predicted tracks and the radar recorded tracks. Some

of the developed TP tools have been bringing into practice. A TP function for tactical flight

management is developed based on aircraft motions [45]. These aircraft motions are sim-
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ply an extension of aircraft states. This function continuously generates four-dimensional

(4D) coordinates and updates the flight management system. The model has been deployed

in the Advanced Concepts Flight Simulator at NASA Ames Research Center. Similar work

on TP evaluates the future positions of the aircraft based on the aircraft maneuver state

[46]. Kalman filtering is used for state estimation and noise smoothing. The experiment

is demonstrated by a computer simulation of reverse turn maneuvers of an aircraft model.

Neural network has also been used in ATM. A vertical plan TP model is proposed using

a simple neural network [43]. The prediction is made with the knowledge of previous air-

craft locations. The experimental result shows that NNs are more efficient and have lower

average error comparing to non-parametric methods. Another group of deterministic ap-

proaches focuses on the selection of multiple trajectory candidates. These methods utilize

the first part of the radar measurements of the flight tracks as the indicator for selection

among trajectory candidates for single aircraft [47] or multi-aircrafts TP [42].

Human Factors on TP

There is another research direction focusing on the human factors on TP. The pilot’s intent

is inferred and combined with aircraft motions and states for the TP task with a hybrid

estimation algorithm [48]. This work first acquires the air traffic control (ATC) regulations,

the flight plan, and the environmental factors to infer the pilot’s intent. Then the prediction

is modeled as a function of aircraft state and pilot’s intent. The experiment is conducted

with a 6-DOF (degree of freedom) simulation of Boeing 747-200 aircraft. Another inter-

esting work is trying to model the aircraft trajectory into a set of intent-related languages

[49]. These languages are used for describing aircraft motions. A hierarchy of language

generating engines is modeled and each engine can perform modification over a trajectory

at different levels. Another recent work focuses on improving the accuracy of TP during

landing by including voice communications into the Bayesian framework [50].
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Issues with Deterministic TP

The major issue of the deterministic approach for TP is the lack of ability to predict the

uncertainty of the trajectory. There has been stated that the deterministic techniques suffers

from the degraded accuracy in several cases [45; 51; 46; 41]. Changing into probabilistic

TP is a feasible solution to improve the robustness of the models. Furthermore, most of

the trajectory prediction algorithms focuses on the short-term prediction, which cannot be

used to predict the future trajectory in the long-term horizon.

2.2.2 Probabilistic Methods

The probabilistic TP research experienced a transition from conventional methods to

statistical ML-based methods. The conventional methods include Sequential Monte Carlo

(SMC) [52; 53], Hidden Markov Model (HMM) [54], and others [55; 56; 57]. ML-based

methods are brought into the TP field due to the availability of surveillance data and the

increased computing power. ML-based methods include the Gaussian Mixture Model

(GMM), recurrent neural network (RNN), and several other statistical generalized regres-

sion models (GLMs).

Conventional TP

Probabilistic Monte Carlo (MC) methods and deterministic worst-case methods are pro-

posed to perform model-based TP through a case study [52] based on current observations.

The uncertainty of this method is assumed to come from the inexact knowledge of wind and

aircraft mass, which represents the aleatoric uncertainty. Similarly, another research tries

to identify the source of uncertainty that affecting a 3-DOF point mass model of aircraft

motion [53]. These uncertainties are incorporated into their mathematical TP model. Other

works also identify the different sources of uncertainties for their probabilistic TP models
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[55; 56]. Another probabilistic model is proposed for predicting position in the near-term

and mid-term future [57]. They derive an expression for the probability of conflict using

the provided quantitative bounds. Based on the expression, the model is able to generate

potential fields for probabilistic path planning of the aircraft. MC simulations is used to

validate the purposed method. Their following work builds a probabilistic aircraft position

forecasting model using the flight plan and current position [58]. Aircraft’s intent is also an

important factor in probabilistic TP models. Researchers have incorporated aircraft’s intent

into flight dynamics to predict future positions as a series of probability density functions

[10].

Weather Impact on Conventional TP: Several existing studies focus on the impact

of convective weather to the special circumstances of a TP task [59; 60; 61; 62]. Genetic

algorithm (GA) is used to provide fuel and time-saving flight plans [59]. This method

takes tailwind into account for the best route to meet specific requirements. Dynamic pro-

gramming has been used to search for the best fuel and time-saving model, utilizing the

convective weather avoidance model [60]. The development of dynamic weather reroutes

(DWR) [63; 64; 65] is another approach to studying the weather impact on TP. It is pro-

posed as a ground-based concept to automatically and efficiently propose short-time tra-

jectories avoiding convective weather regions for in-flight aircraft in the en-route airspace

[63]. Based on this concept, the system Terminal AutoResolver was deployed to find the

auxiliary waypoint of the optimal path around the convective weather polygon [65]. A tac-

tical rerouting model around convective weather was proposed in [61], and their later work

found flight information further improves the prediction results [62].

Machine Learning Methods

The ML-based approach is also widely used for TP. Due to the nature of ML techniques,

most of the work utilized a massive amount of real history recorded data for the model
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training. A model using GLMs to perform TP is proposed in [66]. The model is trained

with labeled inputs such as aircraft type, ground speed, altitude, surface wind, etc. The

prediction is made through a step-wise regression. Recent work on dropout-based BDL

is proposed for TP-based safety assessment in [67], which adopts dropout-based BDL to

predict the trajectory deviations. Based on the predictions, this chapter proposes a method

for aircraft safety assessment.

Weather Impact on Machine Learning Methods: Weather information is included

and modeled as grids or cubes in several research papers [19; 68; 69; 70]. The airspace is

considered as a 3D grid network and the weather information is stored in each grid in [19].

The raw trajectories are aligned with weather information and made these grid 4D joint

cubes, which contains the latitude, longitude, altitude, and the weather condition (represent-

ing the time dimension). Then an HMM model is used to predict trajectories with weather

uncertainties. Another study using a deep generative convolutional recurrent neural net-

work approach for 4D trajectory prediction is the first paper using an encoder-decoder

recurrent neural structure for TP [68]. The paper proposes an end-to-end convolutional re-

current neural network that consists of a long short-term memory (LSTM) encoder network

and a mixture density LSTM decoder network. The model can predict the aircraft 4D tra-

jectories using high-dimensional weather features and last filed flight plans. The prediction

error metrics show that average absolute horizontal errors are around 50 nautical miles and

2800 feet for average vertical errors. Our previous work on TP follows this direction, in

which a conditional generative adversarial network (CGAN) is proposed for TP within each

TRACON [69] using the data from the Sherlock Data Warehouse (SDW). The convective

weather data are stored in a high-dimensional tensor. The drawbacks of CGAN are training

difficulties and the source of uncertainty comes from the sampled input. Another previ-

ous work also adopts the dropout-based BDL for probabilistic trajectory prediction and

shows effectiveness [70]. However, the dropout ratio is defined manually during the train-
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ing and the predicted TP uncertainties are strongly correlated with this model parameter.

No theoretical method is available to determine the dropout ratio and the trial-and-error is

performed. Thus, the uncertainty associated with this subjective ratio is inevitable. A more

reliable and robust approximation for the BDL model is needed.

2.3 Bayesian Deep Learning

In this section, I will give a brief review of the concept and mechanism of NN in Section

2.3.1. Following this, I will describe the formulation of approximate variational inference

(VI) to solve Bayesian neural network, which treats NN weights as probabilistic distribu-

tions in Section 2.3.2.

2.3.1 Deterministic TP: Deep Learning

The deep learning model is defined as the stacking of many NN layers as a deep model

to perform supervised learning, semi-supervise learning, or unsupervised learning task.

Different types of deep learning models may consist of different types of layers. Feedfor-

ward neural network consists of multiple fully-connected layers. Recurrent neural network

(RNN) consists a stack of recurrent layers (long short-term memory (LSTM) [71], gated

recurrent unit (GRU) [72]) and full-connected layers. Similarly, a convolutional neural

network (CNN) is the combination of convolutional layers and fully-connected layers [73].

The recent work built a recurrent-convolutional neural network (RCNN) model by integrat-

ing deterministic CNN and RNN for spatial-temporal learning [74].

Fig. 2.1 shows a simple fully connected neural network (FCNN) architecture. The

inputs are X1 and X2. The output is Y . The hidden units are H1, H2, H3 and H4. The

arrows represent the parameters or weights of the model. Typical NN parameters include

weights, and also bias terms. The fully connected layer is named as such because each

output of the fully connected layer is a weighted sum of each input element. In Eq. 2.1,
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Figure 2.1: Left: Classical Neural Network, Each Weight has a Fixed Value. Right:

Bayesian Neural Network, Each Weight is Represented by a Distribution.

the input is X and the parameters are the weight W and the bias b. fFC stands for a fully-

connect layer in NN.

fFC(X) = X ∗W T + b (2.1)

The architecture shown in Fig. 2.1 has three layers. The input layer, the hidden layer,

and the output layer. The hidden layer has two input nodes, the hidden layer has three nodes

and the output layer has one node. The output of the neural network is passed through an

activation function to cap the output into the desired range. The optimization objective

is defined as the difference measure between the NN output and the true label data. I

minimize the optimization objective to get the best parameters that can generate the closest

output to the true labels. This process is also called training. The prediction output is made

by passing the test data inputs into the NN with the best parameters.

The formulation of CNN follows a similar procedure as feedforward NN but with con-

volutional operations as shown in Eq. 2.2. The symbol ⊗ stands for convolution operations.

In practice, learning the function with fully connected layers may be difficult because of the

large number of parameters. For example, if our input is a 224×224×3 image, and our fully

connected layer has a modest output size of 500, then it will need 3×224×224×500 ≈ 75

million weights for a single layer. This is not desirable as our dataset may has much fewer
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samples than this, so the model will suffer from underfitting. One solution to this problem

is to utilize weight sharing, of which convolutional neural networks are one popular type.

fCONV (X) = X ⊗W T + b (2.2)

Convolution operations are useful to model the spatial data, when I expect our data to

exhibit translation invariance in some dimensions, such as the image data. For example,

if I am trying to detect a car, it would be useful to detect wheels. These wheels could be

anywhere in the image, so I would like our wheel detector to be translationally invariant. As

in fully connected networks, a stacked network of convolutional layers can learn complex

functions of the input data.

The convolution operation uses a kernel, or filter, to compute outputs. In convolutional

networks for image recognition, the filter size is usually small (3×3 or 5×5 for 2D convo-

lution). The weights of the filters are learnable parameters. Additionally, the convolutional

layer usually incorporates a learnable bias term, which is added to the filter output. As the

filter slides across the input, outputs are generated for each input location. At the borders

of the image, input data for the convolution is missing. This data can be replaced with

zeros (zero paddings), or the convolution output at these locations can be ignored (valid

paddings). RNN is relatively a complicated flow of computation. LSTM is a special form

of RNN and achieves great success in the learning of sequence data. GRU is viewed as a

simplified version of LSTM. All recurrent neural networks have a repeating module of the

neural network called the recurrence. I list the calculation of one LSTM recurrence here.
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ft = σ(Wf · hx + bf ) (2.3)

it = σ(Wi · hx + bi) (2.4)

ĉt = tanh(Wc · hx + bc) (2.5)

ct = ft · ct + it · ĉt (2.6)

ot = σ(Wo · hx + bo) (2.7)

ht = ot · tanh(ct) (2.8)

The LSTM cell consists of three cell gates, the forget gate in Eq. 2.3, the input gate in

Eq. 2.4, and the output gate Eq. 2.7. These three gates are stringed together by the cell state

tensor as Eq. 2.5 and Eq. 2.6. The forget gate is to decide whether the value needs to be

passed through the cell state or not. The input gate is to control if the value needs to be

stored in the cell state. The output of the model is decided by the calculation in Eq. 2.7 and

Eq. 2.8. The readers should notice the usage of the activation functions σ and tanh here.

The σ and tanh push the output into the range (0, 1) and (-1, 1), respectively. One of the

key ideas behind LSTM is to connect the previous state to the current state, which is useful

to model the complex sequential dependency. This is accomplished by the hidden tensor

and the cell tensor through the calculation of three different gates.

To avoid overfitting, various stochastic regularization techniques (SRTs) are developed

such as the use of early stop, data augmentation, parameter penalties, dropout, and Bayesian

regularization. The network with Bayesian regularization is prone to resist overtraining

and overfitting because the prior information provides a natural tendency to select simpler

models. Furthermore, the Bayesian criterion provides a natural way of stopping training

and tuning parameter selection [75].
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2.3.2 Probabilistic TP: Bayesian Deep Learning

The formulation of Bayesian Deep Learning relies on Bayesian probabilistic modeling.

The simple idea is to have stochastic NN parameters, as the right part in Fig. 2.1. For a

regression task given a training input sequence X = {x1, ..., xn} and their corresponding

output sequence Y = {y1, ..., yn}, I try to find the parameters ω for the approximation

function y = fω(x) that are most likely to generate the outputs. That is the inference of

p(ω|X, Y ).

Table 2.1: Notations in BDL

Notations Meaning

X The training inputs.

Y The prediction outputs.

ω The model parameters.

x∗ The new observed inputs.

y∗ The predictions corresponding to x∗.

qθ The approximated variational distribution

Posterior︷ ︸︸ ︷
p(ω|X, Y ) =

Likelihood︷ ︸︸ ︷
p(Y |X,ω)

Prior︷︸︸︷
p(ω)

p(Y |X)︸ ︷︷ ︸
Evidence

(2.9)

The Bayesian approach gives a space of parameters ω as a distribution p(ω) called the

prior. The prior is defined based on prior knowledge and gives us an adversarial of what

parameters are likely to generate our data before I have any data points. The Bayesian

approach also defines a likelihood distribution p(y|x, ω), which is a probabilistic model of

the model outputs given the data points and model parameters. The normaliser in Eq. 2.9,

p(Y |X), is the evidence [76]. The posterior p(ω|X, Y ) is evaluated with Eq. 2.9.

21



For the prediction of the model, if I have a new observed data input sequence x∗, the pre-

dicted output sequence y∗ is a distribution, marginalized over the posterior, as in Eq. 2.10.

I can also view it as a weighted average of the model where the weights are determined by

the posterior distribution of ω, mathematically, Ep(ω|X,Y )[p(y
∗|x∗, ω)]. This is also equiva-

lent to using an ensemble of NNs for prediction. Unfortunately, this is intractable for any

practical case [77].

p(y∗|x∗, X, Y ) =

∫
p(y∗|x∗, ω)p(ω|X, Y )dω (2.10)

The normal way to define the prior distributions is to place a standard Gaussian distri-

bution over each of the NN weights W while the bias b is a deterministic value [78]. Due

to the non-conjugacy and non-linearity of the complex structure of NNs, the closed-form

derivation for Bayesian inference to posterior is intractable. On the other hand, the tra-

ditional sampling-based methods lead to surprising prohibitive computational complexity,

and lack of scalability to large scale practical application problems.

Variational inference, as an approximated posterior inference algorithm, has been ap-

plied to the posterior inference of Bayesian neural networks. First, I define an approxi-

mated variational distribution qθ(ω) for the posterior p(ω|X, Y ). Kullback-Leibler (KL)

divergence [79] is adopted here to measure the difference between these two distributions.

Thus minimizing the KL divergence w.r.t. θ leads to the best approximated variational

distribution.
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KL(qθ(ω)||p(ω|X, Y ))

=

∫
qθ(ω)log

qθ(ω)

p(ω|X, Y )
dω

=

∫
qθ(ω)log

qθ(ω)p(X, Y )

p(ω,X, Y )
dω

= log p(X, Y )︸ ︷︷ ︸
Constant

−
∫

qθ(ω)log
p(ω,X, Y )

qθ(ω)
dω︸ ︷︷ ︸

Evidence Lower Bound (ELBO)

(2.11)

After rearranging Eq. 2.11, the minimization of KL divergence is equivalent to mini-

mize the negative Evidence Lower BOund (ELBO).

−ELBO : = KL(qθ(ω)||p(ω))−
∫

qθ(ω) log(p(Y |X,ω)) dω

= KL(qθ(ω)||p(ω))︸ ︷︷ ︸
Prior dependent

−Eqθ(ω)[log(p(X, Y |ω))]︸ ︷︷ ︸
Data dependent

(2.12)

The negative ELBO is a sum of a prior dependent part and a data-dependent part

(Eq. 2.12). The prior dependent part can be referred to as the complexity cost and the

data-dependent part can be viewed as the likelihood cost. The negative ELBO embodies

a trade-off between meeting the complexity of the dataset (X, Y ), and satisfying the sim-

plicity of prior [77]. Again, the minimizing of negative ELBO is intractable but luckily

approximations and gradient-based methods can help us to find the optimum during infer-

ence.

MC integration is introduced to approximate the data-dependent part. The basic concept

of MC integration is to substitute integrals with summations. The mean-field assumption of

variational inference is used in MC integration, for the sake of simplicity. The mean-field

variational family [80] assumes each of the latent variables is mutually independent and

each is governed by a distinct factor. In Eq. 2.13, each of the latent variable ωi is governed

by its own variational factor, the density qθi(ωi).
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qθ(ω) =
m∏
i=1

qθi(ωi) (2.13)

Under this assumption, the data-dependent part can be evaluated in a relevant simple

manner. Specifically, I sample ω̂ from the variational distribution qθ(ω) and optimize to-

wards the objective function w.r.t. θ in Eq. 2.14 each time. By doing this recursively, I find

the best qθ(ω) that approximated the true posterior. The final objective, or loss function for

NN, is defined as the summation of KL divergence between the prior and the approximated

variational distribution, and the negative log-likelihood (NLL). The method that samples

the weight of a neural network stochastically at training time is referred to as the weight

perturbation method [81].

̂−ELBO := KL(qθ(ω)||p(ω))︸ ︷︷ ︸
KL divergence

−log(p(X, Y |ω))︸ ︷︷ ︸
Negative Log-Likelihood (NLL)

(2.14)

Once the training process is finished, the uncertainty can be estimated through MC tests

as in Eq. (3.13). K is the number of tests performed.

p(y∗|x∗, X, Y ) = Ep(ω|X,Y )[p(y
∗|x∗, ω)]

≈ 1

K

K∑
k=1

p(y∗|x∗, ω̂k)
(2.15)

Gal and Ghahramani showed that a neural network with dropout applied before ev-

ery layer is mathematically equivalent to the Bernoulli approximate VI of NNs [30]. The

following work of them shows similar behavior to convolutional layers [82], and recur-

rent layers with variational dropout applied [83]. The dropout approximation to Bayesian

NNs is also known as the Monte Carlo Dropout (MCDropout) method. This work draws

large attention because only minimal change is needed to switch the current deep learning

models into Bayesian deep learning models. The uncertainty is estimated by simply apply-

ing dropout during the testing procedure. Consequently, abundant applications of dropout
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approximation to a Bayesian posterior raised, as well as in the field of ATM [67; 70]. How-

ever, researchers have queried MCDropout [84; 85; 86; 87]. A few major concerns are,

• The improper prior in variational dropout leads to irremediably pathological behavior

of the true posterior.

• The dropout ratio defined manually leads to arbitrarily poor decision making.

• The unsatisfactory on lack of theoretical grounding for dropout, without which the

choice of dropout variant remains arbitrary.

A reliable uncertainty estimate is critical for enhancing the safety in aviation operations,

such as uncertainty quantification of TP for early trajectory conflict awareness. It’s better

to constraint the KL divergence explicitly in the objective functions, as in Eq. 2.14. Weight

perturbation methods such as the local reparameterization trick (LRT) [88] and Flipout

[81] has enabled the possibility of optimizing towards Eq. 2.14 directly using sampling and

gradient-based optimization during inference. The recent development of probabilistic pro-

gramming languages build the pathway of fast and scalable application of neural network

uncertainty estimations when dealing with real-world big data [89; 90; 91; 92].

2.4 Proposed Methodology for TP under Uncertainties

The problem definition and overview of the proposed method will be discussed in Sec-

tion 2.4.1. Fig. 2.2 visualizes the innovative information fusion pipeline of the proposed

problem-solving framework. The architecture can be divided into three modules, the data

processing and filtering module, the feature extraction module, and the Sequence to Se-

quence (Seq2Seq) learning module. The data processing module is introduced in Section

2.4.2. Then the weather feature extraction module and the Seq2Seq learning module are

described in Section 2.4.3. Finally, the implementation and model inference details are

discussed in Section 2.4.4.
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Figure 2.2: Overview of the Proposed Trajectory Prediction Framework. The ML Pipeline

Consists of the Data Processing and Filtering Module, Feature Extraction Module, and

Seq2seq Learning Module.

2.4.1 Overview

Problem Definition

First, I would like to introduce several abbreviations involved, as shown in Table. 2.2.

The following data is used in our problem:

• Trajectory data Y true, which is the actual trajectory of the aircraft, with dimension

[N × L×W ].

• Flight plan data Xplan, which refers to the processed last on-file flight plan of the

aircraft prior to takeoff, with dimension [N × L×W ].

• Weather Data Xweather, which refers to the processed look ahead convective weather

data around each position of the yplan. The dimension of cube is [N×L×D×D×C].
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Table 2.2: Abbreviations

Notations Meaning

N Number of Samples/The number of flight trajectories in each sector. The total

number of the data is separated for model training and testing. N is different

for different sections.

L Length of sequence. L represents the number of aircraft positions in one

recorded trajectory, corresponding to one flight call sign. L is set to be 50 in

our case, for the simplicity of the demonstration.

W The dimension the prediction of the flight trajectories. W is 3 in our case,

which represents the latitude, longitude, and altitude dimension.

D Spatial resolution of the weather window. In our case, D is set to be 32,

which implies that the weather window is 32× 32. The selected window size

is based on the approximated distance to cover the look-ahead region at the

current coordinates.

C Channel number of weather features. C is 1 in our experiments, which only

includes the convective weather EchoTop values. Wind, pressure, humidity,

etc, can be added to expand the channel number.

H Hidden dimension of recurrent cell. The number of recurrence in the recurrent

layer. A parameter to be determined during the parameter tuning process. 64

is determined in our case.
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A more detailed description of the used data is given in Section 2.4.2. Finally, the

following output sequence will be given from the proposed neural network model:

• The predicted trajectory Y pred, with the dimension [N × (L− 1)×W ].

The model aims to perform strategic TP based on the last on-file flight plan and weather

forecast prior to takeoff. According to this, the TP task is defined as predicting Y pred based

on the last on-file flight plan Xplan and weather conditions Xweather along the planned

route Xplan. Thus, the model inputs are Xweather and Xplan, the model output is Y pred.

The objective is to minimize the distance between Y pred and Y true.

Both Deterministic TP and probabilistic TP models are implemented and evaluated un-

der the same problem definition and dataset. Probabilistic TP model includes both the MC-

Dropout approximation of BDL and the VI based BDL. A comparison study is performed

on various methods in the Sec. 2.5 and Sec. 5.6.
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2.4.2 Data Processing and Filtering Module

(a) 6 am, June 24th (b) 12 pm, June 24th

(c) 6 pm, June 24th (d) 12 am, June 25th

Figure 2.3: EchoTop Convective Weather Visualization on June 24th, 2019 at (a) 6 am; (b)

12 pm; (c) 6 pm; (d) 12 am.

The data used in this research is obtained from the Sherlock Data Warehouse (SDW)

[20]. It is a platform for reliable aviation data collection, archiving, processing, query, and

delivery to support ATM research. Data of Sherlock comes primarily from the federal avia-

tion administration (FAA) and the National Oceanic Atmospheric Administration (NOAA)

[93]. Multiple sources of raw surveillance data are processed and stored in SDW. Here
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this work only uses data from two sources. The Integrated Flight Format (IFF) flight data

and EchoTop (ET) convective weather data from CIWS. To properly address the impact

of weather on trajectory prediction, this work looks into the historical weather recordings

for a specific day with convective weather presence. The NOAA’s storm prediction center

reported convective weather was formulated, with tornado and high winds in the north-east

U.S. airspace on June 24th, 2019.

Flight Data Processing

Figure 2.4: Visualization of Sampled Flight Plans in Different Sectors on 06/24/2019

The flight data is collected from different FAA facilities and stored in IFF format. It in-

cludes all raw source data plus the derived fields such as flight summary, track points, and

flight plan. The flight summary is a general description of the flight, which contains flight

time, flight call sign, aircraft type, origin, and destination information. The flight track

points are the record of real flight operations. It includes the ground-measured aircraft

position in both the spatial and temporal domains. The flight plan comes as a string of

waypoints. I developed a web-based mining tool to translate it into WGS84 coordinates.
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I choose five air traffic control centers for our demonstration since most of the tornadoes

and high winds are reported around this area. Fig. 2.4 visualizes the flight tracks flying

inside these control centers. These flight tracks with reference to the convective weather

conditions are shown in Fig. 2.3.

Fig. 2.2 shows the procedure of processing sector flight data. The flight tracks are

extracted from the sector IFF file and a linear interpolation is performed for each of the

track points with a 1-second interval. The waypoint of each flight plan are removed if

the waypoint is outside the investigated flight control centers in this study. The Euclidean

distance is used to evaluate whether waypoints with respect to the current sector range.

The same interpolation is performed for the flight plan to make it consistent with the track

points. Finally, the sequence from the track points and flight plan interpolation are used in

the proposed model.

Weather Data Processing

The weather data are obtained from Corridor Integrated Weather Systems (CIWS) in SDW

[94]. CIWS is designed to improve convective weather decision support for congested en-

route airspace. The two key features of CIWS, i.e., EchoTop (ET) and Vertically Integrated

Liquid (VIL), come with the current and forecast dataset in the Sherlock database. EchoTop

numbers are estimates in feet of the highest cloud tops associated with the radar echoes.

The higher cloud tops usually indicate more intense precipitation. VIL is an estimate of

the total mass of precipitation in the clouds. The measurement is obtained by observing

the reflectivity of the air which is obtained with weather radar. Reflectivity represents the

intensity of radar echoes returning from clouds. ET and VIL are updated and documented

every 150 seconds, which results in 576 files daily.

In this research, I only use the current ET data for demonstration. At each given flight

plan point in Y plan, a weather cube ahead of the current location is selected from the origi-
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nal weather file. The cube direction is rotated to align with the heading angle of the aircraft.

This is the same weather cube generator used in our previous work [95]. The cube size is

selected to be 32×32. The reason for this selection is that the size will cover the look-ahead

region for decision-making of possible weather avoidance. Thus the final dimension of the

weather feature cubes is N × 49× 32× 32× 1 and the dimension of the flight tracks and

flight plans are N × 49 × 3, where N is the number of data processed for each sector. It

should be noted that the weather data of the starting point in Y plan is not processed, as it is

the current location of the aircraft.

Data Filtering

Past study on the convective weather dataset indicates that only the flight tracks that have

encountered convective weather ET of 25,000 feet or continued for at least 2 minutes are

classified as weather encountered deviations [96]. In considering this, the flight track and

convective weather dataset are filtered by the maximum and mean value of ET of each

data pair, as shown in Table. 2.3. The threshold value for maximum value ET and mean

value ET are 25,000 and 1,000, respectively. A visualization of the data screening process

is shown in Fig. 2.5. The x-axis stands for the 4,103 pairs of data for sector ZID and the

y-axis represents the maximum and mean values of each data pair. The red line visualizes

the threshold values used in different metrics.
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Table 2.3: Weather Encounters Classified for Different Sectors

Total Weather encounters Percentage

ZID 4,103 2,817 68.7%

ZTL 6,255 3,642 58.2%

ZNY 6,135 3,757 61.2%

ZDC 5,420 2,907 53.6%

ZOB 4,771 2,333 48.9%

(a) Maximum EchoTop (b) Mean EchoTop

Figure 2.5: Data Filtering with Threshold on EchoTop. Visualizing of ZID.

2.4.3 Feature Extraction Module and Seq2Seq Learning Module

The feature extraction module and Seq2Seq learning module can perform determinis-

tic TP with classical deep learning layers as introduced in Section 2.3.1. They can also

be easily changed into probabilistic TP when the Bayesian theory is integrated with Deep

Learning as shown in Section 2.3.2. Feature extraction is performed to extract the indica-

tion of weather conditions at each point within the entire sequence. The extracted weather

feature is combined with the flight plan as the input to the Seq2Seq learning module. The

feature extraction module and Seq2Seq learning module form the complex spatial and tem-

33



poral structures of the weather information and flight trajectory. These two models can be

made deterministic for the point estimate of flight trajectories or probabilistic to quantify

the flight trajectory uncertainty.

The weather feature extraction module includes two three-dimensional convolutional

layers and two fully-connect layers. The convolutional layers are used to extract useful

features from cube into a vector. The extracted weather vector will be concatenated with

the flight plan tensor yplan as the input to the Seq2Seq learning module. The Seq2Seq

learning module consists of one recurrent layer and three fully-connect layers, which have

been shown to have a supreme performance on sequence learning tasks in the literature

[97]. The concatenation layer connects the feature extraction module and the Seq2Seq

learning module. The prediction ypred is the output from the last fully-connect layer. A

detailed introduction of these two modules is also shown in Table. 2.4. In this table, N

represents the batch size and empty cell means not applicable. The layer names that use

bold font means need input.

The first input to the model is the weather cube tensor cube with dimension [N, 49, 32, 32, 1].

The Conv3d 1 layer has a kernel size of [1, 5, 5, 3] and a stride of [1, 3, 3, 1] along the last

four dimensions of the input tensor with no padding added for convolution operation. The

output has a dimension of [N, 49, 10, 10, 3]. The second convolutional layer Conv3d 2 has

a similar setup as the first one with a kernel size of [1, 3, 3, 1], a stride of [1, 3, 3, 1], and

zero padding, respectively. The output has a size of [N, 49, 16] after flattening along the

last three dimensions of the tensor. The following two dense layers would compress the

tensor to a dimension of [N, 49, 1], which is the dimension of the weather feature tensor.

I choose to concatenate it with the flight plan tensor p as the input to the RNN cell. The

dimension of LSTM hidden state ht and cell state ct tensor is 64. Zero initialization is

used in the LSTM cell. The output of the LSTM cell will be fed into three dense layers

to calculate the output of the model. The training objective is defined based on Eq. (2.14)
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which incorporates two parts: the KL divergence and the NLL.

Table 2.4: Architecture of Feature Extraction Module and Seq2Seq Learning Module with

Processed Recorded Dataset

Layers Input Size Output Size Parameters

Conv3d 1 [N, 49, 32, 32, 1] [N, 49, 10, 10, 3] Kernel: [1, 5, 5, 3], Stride: [1, 3, 3, 1], No Padding

Conv3d 2 [N, 49, 10, 10, 3] [N, 49, 4, 4, 1] Kernel: [1, 3, 3, 1], Stride: [1, 3, 3, 1], Zero Padding

Flatten [N, 49, 4, 4, 1] [N, 49, 16] Keep first two dimension

Dense 1 [N, 49, 16] [N, 49, 4] 4

Dense 2 [N, 49, 4] [N, 49, 1] 1

Concat [N, 49, 1] [N, 49, 4] Concatenate with flight plan p

LSTM [N, 49, 4] [N, 49, 64] 64

Dense 3 [N, 49, 64] [N, 49, 32] 32

Dense 4 [N, 49, 32] [N, 49, 16] 16

Dense 5 [N, 49, 16] [N, 49, 3] 3

2.4.4 Integration and Inference

Metrics for Performance Evaluation

For the deterministic TP model, the training objective is defined as the minimization of the

difference between the predicted sequence Y pred and the ground truth sequence Y true, as in

Eq. (2.16). It is defined as the root mean squared error (RMSE) between the two sequences.

K is the size of the training dataset.

RMSE =

√√√√ K∑
k=1

(Y pred
k − Y true

k )2

K
(2.16)

For the probabilistic TP model, the training objective is derived in Eq. (2.14). This

can be reformulated to accommodate our proposed framework as in Eq. (2.17). The KL-

divergence of the variational posterior qθ(ω) and prior p(ω) for each of the parameter ω
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can be calculated analytically if a normal distribution is assumed for both of them. The

NLL term is the RMSE loss defined above. Once the inferences of network parameters

are finished, the mean predictions and corresponding uncertainties can be evaluated by MC

tests, as in Eq. (3.13).

−ELBO = KL(qθ(ω), p(ω)) +RMSE (2.17)

Implementation Details

The entire dataset is separated into the training set and the testing set with a ratio of 0.8

and 0.2. The training set is used in the model training process solely and the testing set is

for model testing after the training procedure. Furthermore, the validation set is sampled

from the training set to evaluate the model performance during the training process. Data

normalization and denormalization are performed prior to and after the model training.

Adam optimizer [98] is used to minimize the objective until the negative ELBO con-

verges. The initial learning rate is set to be 1e−3 by best practice during fine-tuning of the

model parameters. Learning rate decay follows Eq. (2.18),

lrs+1 =
lrs

(1 + r ∗ s)q
(2.18)

where s is the global step during optimization, the decay rate r is 1e−4, and the power

q equals to 0.75.

The training is performed with the deep probabilistic learning packages Edward [92;

90; 91] and Tensorflow-probability [89] based on Tensorflow 2.3.0 on a workstation with

Intel Xeon E5-1620 v4 @3.50 GHz CPU and accelerated with a single NVIDIA GTX 1080

GPU.

The comparison with the MCDropout method and deterministic model is conducted

with the same model parameters and training setups. The use of dropout operation can
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be summarized as, (a) applying regular dropout after each convolutional and dense layers;

(b) performing variational dropout [83] to LSTM cell. It should be noted that there is no

dropout operation after the last dense layer. The dropout ratio used in this chapter is set to

0.9.

2.5 Demonstrations and Results

In this section, I first evaluate the prediction of the TP framework individually with

the test data in Section 2.5.1. This includes discussions on several good prediction results

and different reasons for failed cases. Next, a statistical study for the entire test dataset is

performed to evaluate the overall TP uncertainty reduction performance in Section 2.5.2.

The comparison of all methods mentioned in the above sections is also performed.
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2.5.1 Individual Evaluation

(a) Case 1: Both deterministic and probabilistic predictions show good prediction capabilities.

The VI BNN prediction has smaller oscillations compared to deterministic prediction due to

Bayesian regularization.

(b) Case 2: Both deterministic and probabilistic predictions show good prediction capabilities.

The longitude shows a considerable accuracy compared to the latitude, potentially due to the

dynamic formulation of the aircraft motion.

Figure 2.6: The Model Performs Good by Making Predictions Closer to The Ground Truth.

The 95% Confidence Bound for VI BNN is Colored in Blue. The Start Point (Timestamp

0) is not Visualized.
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(a) Case 3: The flight plan has a waypoint at timestamp 34 ignored by the ground truth. This

waypoint has a large impact on model predictions. However, the 95% confidence interval of

VI BNN covers most of the ground truth.

(b) Case 4: The ground truth has a large deviation due to severe weather conditions (≈ 1◦

latitude/longitude) with sharp turns starting from timestamp 14. The deterministic prediction

fails at this case while the VI BNN still exhibits benefits from the confidence interval coverage.

Figure 2.7: The Model Fails at Making a Good Prediction Due to Various Reasons. The

95% Confidence Bound for VI BNN is Colored in Blue. The Start Point (Timestamp 0) is

not Plotted.

Fig. 2.6 and Fig. 2.7 visualize model predictions from the test dataset. In order to better

represent the 95% confidence interval on both latitude and longitude dimensions, I plot

the latitude and longitude separately. The x-axis is the timestamp for the entire trajectory
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sequence. As the inputs to the TP framework, it is shown that the actual flight trajectories

Y true (ground truth) deviate from the last on-file flight plans Y plan. On the other hand,

our model prediction Y pred discovered the deviation from Y plan and calibrated the outputs

towards Y true. The two cases in Fig. 2.6 reveal the effectiveness of the proposed ML

pipeline. In case 1, both the deterministic prediction and the VI BNN prediction are closer

to the ground truth compared with the flight plan. The 95% confidence interval acts as a

reliable safety assurance on the predicted trajectories. The mean prediction of VI BNN

shows smaller oscillations which comes from the intrinsic Bayesian regularization of NNs.

Case 2 is another test example from the test dataset of ZDC. In this case, I noticed that the

longitude shows a higher accuracy compared to the latitude, due to the dynamic formulation

of the aircraft motion. This can be further investigated when the aircraft motion recording

data (e.g. gyroscope measurements) is available.

On the other hand, Fig. 2.7 shows two typical failed cases of the proposed ML pipeline.

In case 3, the aircraft ignored the assigned waypoint at timestamp 34. As the input of

the ML pipeline, the flight plan has a large impact on the outputs. Although the overall

trajectory deviation is reduced compared with the flight plan, the figures show unsatisfied

predictions. In this case, the 95% confidence interval prediction based on VI BNN is able

to cover the ground truth most of the time. Case 4 shows an extreme case where a large

deviation and sharp turn in the ground truth is presented due to severe weather conditions.

This is one of the drawbacks of data-driven TP models [99]. In this case, the deterministic

method fails for trajectory deviation reduction. The VI BNN method exhibits benefits with

the help of uncertainty quantification (UQ) capabilities. More accurate predictions for these

cases will need other information, such as voice communication data between the pilot and

controller, to fully explain the discrepancy.
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2.5.2 Statistical Evaluation

In this section, I evaluate the effectiveness of the proposed model statistically on the

entire test dataset. The key metric used is the percentage of the deviation variance reduction

for the mean prediction. I compare the deterministic prediction, and the mean prediction

of MCDropout and VI BNN. I also study the contribution of the feature extraction module

toward deviation reduction in this section.

Metrics

The equations used for statistical evaluations are shown in Eq. (2.19) and Eq. (2.20). I

denote the original deviations as lori2k , defined as the L2 distance of the true trajectory ytruek

and the flight plan xplan
k . Similarly, the predicted deviation can be defined as the sum of the

squared error of the true trajectory ytruek and predicted trajectory ypredk as lnew2k . The index

k is the index of the test dataset. In Eq. (2.21), I denote ρk as the percentage of deviation

variance reduction of the prediction lnew2k compared to the original variation lori2k in the kth

test data. The subscripts k, n, and d represent the dimensions of the tensors corresponding

to the size of the data, length of the sequence, and DOF for the prediction, respectively. In

this evaluation, n is 49, and d is 2 for latitude and longitude dimensions. Eq. (2.21) is the

equation I used to calculate the overall variance reduction among the data. The size of ρ is

equal to the number of data points with deviation variance reduction.

l2
ori
k =

n∑
i

d∑
j

(ytruek,i,j − yplank,i,j )
2 (2.19)

l2
new
k =

n∑
i

d∑
j

(ytruek,i,j − ypredk,i,j )
2 (2.20)

ρk =
var(lori2 )k − var(lnew2 )k

var(lori2 )k
(2.21)
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Deviation Reduction and Weather Effects

In Table. 2.5, I show the percentage of samples that can achieve deviation variation reduc-

tion (i.e., ρk < 1) based on the evaluation metrics described. I also examine the contri-

butions of convective weather. This is achieved by omitting the weather feature extraction

module in the ML pipeline. For example, using the deterministic model with a weather

feature extraction module, 78.5% of the flight trajectory deviations are reduced. The total

variance reduction is 22.4% for the test dataset of ZTL. While only 62.3% of the flight

trajectory deviations are reduced by 14.5% without the weather data.

I discover that the proposed ML pipeline is effective and shows benefits in all cases,

but with different performances for different experiment settings. I also notice that ZTL

and ZID have a higher percentage of deviation reductions than the other sectors, especially

weather-related reductions. One of the reasons is that they have a higher ratio of weather

encounters in flight trajectories. This is verified by checking the movement of the meteo-

rological weather contours in Fig. 2.3 and Table. 2.3. By feeding the weather features into

the ML pipeline, the model achieves a higher percentage of flight deviation reduction and

a better total variance reduction. Thus, adding the weather feature extraction module im-

proves the model TP performance by explicitly considering weather uncertainties. On the

other hand, the prediction without the weather data also shows a considerable deviation re-

duction. The reason is that our proposed ML pipeline implicitly learns the flight deviations

caused by factors other than weather-related reasons from the historical record.

Comparing different methods, I realize that deterministic and VI BNN methods have

better performance than MCDropout. There are multiple reasons behind this. It is worth

pointing out that the dropout ratio used for MCDropout requires hyperparameter tuning.

The training is unstable and hard to converge if I use a large dropout ratio. In contrast, the

uncertainty will be underestimated if I choose a small dropout ratio. I perform a hyper-
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Table 2.5: Deviation Reduction For Deterministic (NN) and Probabilistic Methods (BNN).

The Probabilistic Methods include MCDropout and VI BNN. For Probabilistic Methods,

the Results are Evaluated with the Mean Prediction. Note: In A | B, A is the Result with

Weather Features, and B is the Result Without the Weather Features.

Model Flight Control Sector Deviation Reduced/% Variance Reduction/%

Deterministic

ZTL 78.5% | 62.3% 22.4% | 14.5%

ZID 84.6% | 46.6% 30.3% | 25.7%

ZDC 54.4% | 60.8% 36.5% | 26.5%

ZNY 59.6% | 67.1% 57.6% | 43.2%

ZOB 66.7% | 44.1% 48.9% | 27.5%

MCDropout

ZTL 45.8% | 39.1% 8.7% | 7.4%

ZID 36.1% | 11.5% 11.2% | 2.3%

ZDC 25.4% | 23.7% 3.5% | 6.7%

ZNY 28.7% | 29.7% 9.8% | 5.8%

ZOB 14.6% | 17.6% 5.0% | 7.8%

VI BNN

ZTL 69.8% | 55.9% 24.1% | 16.4%

ZID 79.0% | 22.5% 36.7% | 6.7%

ZDC 60.7% | 52.5% 46.4% | 16.2%

ZNY 40.6% | 39.0% 28.6% | 18.3%

ZOB 25.0% | 11.6% 31.6% | 14.6%

parameter search over the dropout ratios, from 0.1 to 0.9 with an interval of 0.1 on a sector,

and choose the best-performed dropout ratio (0.9) for all cases. Also, the Bernoulli assump-

tion on NN parameters improves the difference between each draws during sampling thus

introducing more fluctuations. In Table. 2.5, the deterministic approach performs slightly

better than VI BNN in several flight control sectors. However, I only list results calcu-

lated using the mean prediction for probabilistic methods. The confidence interval of VI

BNN significantly improves the confidence by inferring airspace coverage in a probabilistic

sense. The oscillation behavior discussed in Sec. 2.5.1 of the deterministic method is also
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non-negligible.

In conclusion, our proposed ML pipeline shows considerable TP capabilities. The in-

clusion of convective weather products exhibits enhancements to the overall prediction

power. The variational inference-based inference method for Bayesian neural network

shows benefits from the aspect of training stability, model regularization, and uncertainty

quantification. The deterministic setting also shows effectiveness but with conspicuous

deficits.

Furthermore, instead of showing only the deviation reductions based on the mean pre-

dictions, I compute the histogram of the variation reduction in ρ. To better understand the

deviation reduction capability of the model, I visualize the results for all five flight con-

trol sectors in Fig. 2.8. For example, using VI BNN with the data of ZID, nearly 20 test

samples achieve deviation reduction between 0 to 10%. It’s obvious that VI BNN model

performs better compared with MCDropout. The VI BNN method is good at generating

predictions with lower percentages (e.g. less than 50%) of deviation reductions. And only

a few samples have a deviation reduction larger than 50%. The deterministic method also

performs well in most of the cases while I am only considering the mean predictions.

2.6 Conclusion

A major key requirement of NextGen pursuing accurate and reliable aircraft trajectory

prediction. To accommodate this, I propose a ground-based strategic trajectory prediction

Bayesian neural network with explicit consideration of convective weather products. Af-

ter the model training, I individually and statistically justify the model performance. A

comparison study is performed to evaluate the difference between the deterministic and

probabilistic methods. Experiments demonstrate that the VI BNN method shows various

benefits for our TP approach, with competitive deviation reduction and complexity. Here

is a list of major contributions and conclusions on the proposed study,
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(a) ρZID (b) ρZTL

(c) ρZNY (d) ρZDC

(e) ρZOB

Figure 2.8: Histogram Showing Percentage of Overall Deviation Reduction of Determin-

istic, MCDropout, and VI BNN for Different Sections (a) ZID and (b) ZTL (c) ZNY (d)

ZDC (e) ZOB
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• The proposed nested CNN+RNN+FCNN structure is able to handle the complex

spatial-temporal correlations of aircraft trajectory and weather conditions. It’s scal-

able and flexible for information fusion and time-series modeling with various data

sources and measurements.

• The data processing is critical for successful model learning and data discovery. This

includes the proper conduct of data filtering and feature engineering based on domain

knowledge expertise, either from the literature or human ATC experts.

• VI is shown to have robust performance compared to the MCDropout for BNN

which depends on the subjective dropout ratio selection and requires hyper-parameter

search. The deterministic method also shows benefits but lacks of uncertainty quan-

tification power.

• Results show that variance reduction of the proposed method happens for both small

and large flight deviation cases. The statistical study on deviation reduction indicates

that the proposed method is more likely to reduce less than 50% of the deviations

regardless of the choice of control sectors. I notice that the ML model implicitly

considers the deviation caused by other factors such as onboard anomalies and the

pilot’s intent cached in the data. Although the prediction deviation can be reduced

based purely on the last on-file flight plan, considering the weather explicitly into the

ML pipeline can help further reduce the trajectory deviations.

For future work, I have the following suggestions. (a) It would be interesting to inves-

tigate the influence of adding other types of weather features, such as vertically integrated

liquid (VIL). Also, it would be valuable to consider probabilistic weather forecasting in

the model. All of these can be treated as additional dimensions of the weather feature

cubes Xweather in this proposed ML pipeline. (b) Other than the weather impact on TP,
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another impact factor is the traffic management for neighboring aircraft due to potential

conflict. This requires the data structure to change and search for the nearest neighbor in a

dynamically changing spatial-temporal database. In addition, human factors are also crit-

ical uncertainty sources as some flights are operated by the visual approach of pilots. (c)

The current application focus on the en-route flight and another interesting and important

application will be for the near-terminal region, e.g., landing and taking-off phases. Many

uncertain events happen near these phases due to increased density, vortex and turbulence

effect, and altitude holding patterns. In addition, the standard terminal arrival procedures

(STARs) and the standard instrument departure routes (SIDs) based procedures play an

important role in near-terminal regions. The consideration of multi-aircraft awareness is

critical and challenging for both data preparation and algorithm development. For exam-

ple, the airport surface detection equipment, model X (ASDE-X) data, and the on-aboard

Automatic Dependent Surveillance-Broadcast (ADS-B) data can be used for model valida-

tion of near-terminal TP with multi-aircrafts awareness. Significant additional research is

required to consider the aforementioned factors.
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Chapter 3

PROBABILISTIC MULTI-AIRCRAFT TRAJECTORY PREDICTION IN THE

TERMINAL AIRSPACE

3.1 Introduction

The escalation of civil aviation operations leads to the concept of the next-generation air

traffic management system (NextGen), which aims to efficiently and safely accommodate

the growing air traffic flow within the United States airspace [8]. In 2020, FAA reported

the statistical analysis results of U.S. air traffic operations before the COVID-19 pandemic

[100]. It shows that the aviation operations handled by the core 30 airports increased by

1.8% annually. Moreover, the pilot certificates issued annually are also surging. Nonethe-

less, the total headcount of air traffic controllers is decreasing from 2018 to 2019. It has

been shown that Air Traffic Controller (ATC) workload is one of the main limitations to

the capacity of the current Air Traffic Management (ATM) system [101; 102]. This ATC

workload increase urges the advancement of air traffic decision-support tools (DSTs) [9]

of NextGen, which includes flight plan (FP) change, dynamic weather reroute (DWR),

trajectory prediction (TP), and conflict detection and resolution (CDR). Furthermore, in

NextGen, surveillance information sharing is greatly enhanced among the controllers and

the pilots. In such a way, the aircraft itself can take over a portion of ATM tasks from

ground air traffic controllers. And this leads to the prediction of multi-aircraft trajectories,

which is beneficial in the relevantly congested, near-terminal air space.

In practice, a deterministic TP model is insufficient when dealing with increasingly con-

gested airspace [19] and is not suitable for safety-related applications due to the inability to

consider uncertainty. The uncertainty comes from a variety of sources. The environmental
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factor is one of the major contributors to the TP uncertainty [16; 18; 103], which usually

develops expeditiously and randomly. Human factors such as the pilot’s intent or decision

preference when dealing with an aviation event also contribute to TP uncertainty. Other

factors such as aircraft performance and the pilot’s physical condition can lead to an unre-

liable deterministic model prediction. This work focuses on modeling multi-aircraft social

awareness happening in the real world. I demonstrate our framework using the terminal

flight track data near one of the busiest airports (Class B Airspace) in the 30 major hubs.

The development of TP models is of fundamental importance to various advanced en-

gineering application domains, e.g., autonomous systems and warning systems in the auto-

motive and defense industry. Although most of the literature focuses on building TP models

for a single agent, the multi-agent TP problem can be more challenging and practical in the

real world. The difficulties come from a) the agent-to-agent interactions are hard to capture

in a dynamic environment, e.g., two agents can have interactions in the current timestamps

but no interactions in the future [104]; b) the action space for multiple agents are signif-

icantly larger than the single-agent case, e.g., at each step, the action of one agent has an

impact on the actions to its neighboring agents; c) the temporal correlations are coupled

with spatial interactions, e.g., the time-series motions of the current agent need to consider

the motions of all the neighbors [105].

A few classical data-driven multi-agent TP models capture multi-agent interactions by

energy functions, which requires significant feature engineering in a real case [106; 107].

The advancement of deep neural networks has demonstrated promising performance on a

few pedestrian data benchmarks [37; 39; 105; 108]. The core idea behind these models is

to capture the motion of each agent by the hidden space tensor and merge/share the hidden

space across multiple agents. Social pooling is a widely used technique to equally combine

the hidden space of each agent by the pooling mechanism. The attention mechanism weighs

each agent using a learned score function, which treats each agent unequally. Transformer
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adopts the efficient yet straightforward self-attention mechanism to improve the temporal

modeling than the previous literature [109]. Recently, the Spatio-Temporal grAph tRans-

former network (STAR) has been developed and shows state-of-the-art performance on the

commonly used pedestrian dataset [99]. This work interleaves the spatial and temporal

correlations by a separate spatial transformer and temporal transformer. The spatial trans-

former adopts transformer-based graph convolution (TGConv) to extract the spatial inter-

actions. The temporal transformer is a classical Transformer with multi-head attention for

each pedestrian. The experiment shows that the proposed framework achieves state-of-the-

art performance on the ETH/UCY pedestrian benchmark dataset. I propose an uncertainty-

aware multi-agent TP model with a multi-head temporal transformer and TGConv-based

spatial transformer modules to capture the multi-aircraft interactions in the low-altitude

near-terminal area. I combine Bayesian deep learning with STAR to achieve uncertainty

quantification (UQ) in safety-critical air transportation systems. The Bayesian Spatio-

Temporal grAph tRansformer network (B-STAR) for uncertainty-aware multi-aircraft TP

in the near-terminal airspace. Like pedestrian TP, I model the near-terminal aircraft as

a graph and leverage the spatiotemporal correlation by interleaving a graph-based spatial

Transformer module and a temporal Transformer. While the aviation domain typically fo-

cuses on operation safety and regulations (e.g., separation assurance [110; 111]), I propose

to address this domain-specific knowledge with uncertainty quantification techniques with

Bayesian formulation and by encoding air traffic rules into the deep learning model. The

uncertainty of our proposed B-STAR model directly comes from the data variations and is

solved by the variational approximations with Gaussian priors over the network parameters.

It should be noted that the simple dropout approximation to Bayesian deep learning [99] is

not used in this study due to some known deficiencies related to the user-defined dropout

ratio, the improper Bernoulli prior assumptions, and the lack of theoretical groundings

[84; 85; 86; 87].
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The test performance evaluation is done on the UCY/ETH benchmark pedestrian dataset

to validate the prediction accuracy of the proposed B-STAR framework. Then, I propose

a machine learning (ML) problem-solving pipeline to perform near-terminal multi-aircraft

trajectory prediction using the data from Airport Surface Detection System — Model X

(ASDE-X). Our proposed framework includes the efficient large-scale flight data querying

module, the advanced graph transformer-based prediction module, and the web-based in-

teractive visualization module. Graph-based spatiotemporal prediction models have been

applied to engineering problems, such as power grid performance prediction [112] and

traffic volume forecasting [113; 114]. However, to the best of our knowledge, the authors

believe this is the first work utilizing the graph-based deep learning model for multi-aircraft

interactive trajectory prediction.

One of our previous studies focused on the single aircraft trajectory prediction method

[103], where a TP framework under convective weather conditions was proposed in the

en-route phase. In the current work, the focus is on the impact of near-terminal multiple-

aircraft interactions. Real-world flight recording data is used to demonstrate and validate

the proposed methodology for multi-aircraft interactions in the near-terminal area. The

proposed work refines the recent advancement in deep predictive modeling and adapts to

the air transportation domain by encoding aviation regulations and physics knowledge into

the deep learning model. Our contributions are listed below.

• This chapter proposes a multi-agent trajectory prediction model with uncertainty

quantification capabilities called B-STAR. The uncertainties are inferred from the

variations within the flight track data instead of pre-defined parameters or random-

ized inputs in other probabilistic frameworks.

• I encode the aviation regulations on the aeronautical separation into B-STAR. This

is achieved by estimating the Haversine distance when selecting silent neighbors of
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the current object to build the graph encoding. Additionally, I perform a sensitivity

study on separation assurance distance to see the impact to the proposed framework.

• This chapter develops a module-based machine learning framework utilizing ad-

vanced computer software and hardware tools for data analysis. Open-source toolsets

for data pre-processing and web-based interactive visualization are made available

and integrated with the B-STAR framework.

The rest of the paper is organized as follows. First, Section 5.2 reviews the studies

performed in the general field of trajectory prediction (TP), with a specific emphasis on air

transportation. The development of various advanced data-driven TP models and necessary

background knowledge are discussed in detail. Section 5.4 introduces the problem setup

and the proposed module-based multi-agent trajectory prediction framework. In Section

5.5, the experimental results will be discussed in two parts. I first show that our B-STAR

achieves state-of-the-art with comparison to various recent advancements in multi-agent

TP. Then I show the testing results for the multi-aircraft trajectory prediction task with

processed ASDE-X data. A discussion on limitations and future directions of the proposed

work is described in Section 3.5. Section 5.6 discusses the limitations and potential future

research directions.

3.2 Literature Review

In this section, I first review the research on TP across different domains, with an em-

phasis on air traffic trajectory prediction. Then, I introduce the necessary concept required

in this study. This includes Transformer and Self-Attention, Graph Neural Networks, and

Bayesian Deep Learning.
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3.2.1 Related Works

Overview of Trajectory Prediction

Trajectory prediction is a critical functional component for the research focusing on differ-

ent objects such as pedestrians, ground vehicles, aircraft, spacecraft, and rockets. Model-

based methods are widely adopted in rigorously controlled, data-expensive environments

(e.g., spacecraft and rockets), while data-driven models are more popular for less-controlled,

data-intensive circumstances (e.g., ground vehicles, pedestrians, and civil aircraft). Model-

based methods typically predict the control parameters in the differential kinematic equa-

tions, where the control parameters can be used to describe the motion state of the target

[115]. Due to the limitation of available data, the data-driven approach in these areas adopts

state-space estimations or intent inference [116; 117; 118] methods to compensate for the

learning models. On the other hand, TP in data-intensive circumstances acquires data-

driven methods or a combination of data-driven and model-based methods. Researchers

have proposed numerous advanced data-driven models, such as classical deep neural net-

works and graph-based deep neural networks with attention. The ground vehicle TP mainly

focuses on predicting the behaviors of vehicles, pedestrians, and environments based on

the observations, where the decentralized communication between each agent is critically

important [119]. Additionally, a hybrid approach combining data-driven methods with

model-based methods is commonly adopted [120]. Other researchers propose to analyze

the trajectory patterns (e.g., trajectory similarities) on the macro-scale for a high-level pre-

diction of trajectories [121].

Trajectory Prediction in Air Transportation

Trajectory prediction for aircraft has been long regarded as a major topic in air transporta-

tion research. As a result, researchers have developed extensive TP frameworks but with
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assumptions on different impact factors, in both deterministic and probabilistic senses. This

includes TP with voice communication between the pilot and the tower [50], convective

weather and other weather-related factors [59; 60; 61; 62; 103; 69], human factors such as

pilot/aircraft intent [48; 49; 10], and aircraft conditions [52; 53].

The air transportation society has witnessed a significant increase in data-driven TP so-

lutions in the last decade, associated with the advancement of machine learning techniques.

The commonly used models are Kalman filtering [42], state-space model [41], simple neu-

ral network [43], Hidden Markov model [54], generalized linear regression [66], recurrent

neural network (RNN) [68], and generative adversarial net [69]. Despite the aforemen-

tioned individual aircraft TP methods, there are very few works on multi-aircraft TP. A re-

cent work using Social-Long Short-Term Memory (Social-LSTM) network was proposed

for multi-aircraft trajectory prediction, where the social pooling layer learns interactions

[122]. One limitation of this method is that it treats aircraft within certain airspace equally,

which doesn’t follow the aeronautical separation standards [123]. For example, in FAA Or-

der 7110.65, different separation distances (from 3NM to 10NM) are allowed for different

cases. In such cases, a dynamic determination of neighboring aircraft is preferred.

Multi-Agent Interactive Trajectory Prediction

The research on interactive trajectory prediction is primarily within the human pedestrian

context. Existing methods can be divided into classical methods and deep learning-based

methods.

Classical methods (e.g., Social Force models, Geometry-based methods) require hand-

crafted features to capture crowd behaviors. They are less data-intensive with increased

interpretability. Social Force models (guided by virtual repulsive and attractive forces) are

built upon the assumption that pedestrians are mission-driven for destination navigation

and collision avoidance [106]. However, Social Force models perform poorly on TP tasks
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[124]. Geometry-based models adopt optimization-based interactive TP with the geometry

of each agent [125; 126]. Classical methods require extensive feature engineering and are

hard to generalize in different scenes [105].

Deep learning-based methods learn crowd behaviors directly from the data, which

achieves automatic feature engineering. Recurrent neural networks have been applied to

TP and show satisfactory performance [37; 39; 104; 105; 108]. Behavior CNN captures

crowd behaviors using CNN [127]. RNN-based approaches learn the pedestrian dynam-

ical behavior with their latent state but generally perform poorly on complex temporal

scenes [109]. Social-pooling layers merge the latent space between several nearby pedes-

trians, leading to a socially aware prediction. The attention mechanism [104; 105; 108]

weighs each pedestrian with individual pedestrian importance through a learned function.

In these works, the attention mechanisms are very simple with unsatisfied TP performance.

More complex attention mechanisms, such as Transformer with self-attention, show effec-

tiveness in modeling temporal dependencies [109]. Furthermore, the multi-head attention

mechanism jointly learns multiple hypotheses from different positional embedding repre-

sentations [109].

3.2.2 Preliminaries

Transformer and Self-Attention

The recurrent architecture of deep neural networks relies on the sequential encoding of in-

puts, which leads to computational inefficiency since the processing cannot be parallelized.

To tackle this issue, researchers propose the Transformer architecture that replaces the

RNN recurrence with a multi-head self-attention mechanism, which incorporates a richer

context compared to RNN recurrence. The self-attention mechanism captures the mapping

between input and output and demonstrates a shorter training time due to parallelization
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and higher accuracy for the Machine Translation task [109]. Transformer has become

the state-of-the-art framework for natural language processing (NLP). Variants of Trans-

formers have shown success in a wide variety of problems, such as OpenAI’s Generative

Pre-trained Transformers (GPTs) [128; 129], and Bidirectional Encoder Representations

from Transformer (BERT) for language representations [130].

In a typical temporal Transformer, the embedding ht at t is pre-trained or is simply the

output from the annotation functions. The self-attention of Transformers learns the query

matrix Qt = fQ(ht), the key matrix Kt = fK(ht), and the value matrix Vt = fV (ht). The

attention at time t computes at,

Attention(Q,K, V ) =
softmax(QKT )√

dk
V (3.1)

where 1√
dk

accounts for the numerical stability of attentions. In Equation (3.1), the com-

patibility function f(Q,K) = QKT defines how the keys and queries are matched to-

gether. The choice of compatibility functions defines the relationship between K and Q.

The commonly used dot-product function, f(Q,K) = QKT is called machine-learned

attention [131]. A similarity-based compatibility function replaces f(Q,K) = QKT by

f(Q,K) = sim(Q,K) called similarity attention [132], where the most relevant keys are

the most similar to the query. f(Q,K) = f(Q) is called location-based attention, where

the relevance is solely a function of the key’s location, independently of its content [131].

In Equation (3.1), softmax is the distribution function. The choice of distribution function

depends on what properties the model needs, for instance, probability scores or Boolean

scores to enhance sparsity.

Decouple attention recurrence into multiple matrices allows self-attention to handle

complex temporal dependencies. Multi-head attention is simply embedding the output

from multiple self-attentions. With n heads, I have,
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MultiAttention = fh([Attention(Q,K, V )]ni=1) (3.2)

where fh is simply a fully connected layer merging the output from n heads. Additional

position encoding is also required. Finally, the Transformer outputs the embeddings by a

linear layer with two skip connections.

Graph Neural networks

Transformers are limited to non-structured data, e.g., linguistic languages. Graph neural

networks (GNNs) are introduced to model complex social behaviors from the structured

graph data with explicit message passing [133; 134]. I denote a graph with vertices and

edges, represented as G = (V,E), where the number of nodes Nnodes = |V | and the

number of edges Nedges = |E|. The adjacency matrix A ∈ RNnodes×Nnodes . The graph can

be directed or undirected depending on whether the edges are directed from one node to

another. The graph is considered a dynamic graph when the topology of the graph varies

with time. Especially, the graphs in our work are undirected dynamical graphs. Graph

convolutional networks (GCN) [135] convolve the input X using the derived compact form,

H = D̃− 1
2 ÃD̃− 1

2XW (3.3)

where Ã = A + IN , D̃ii =
∑

j Ãij . X ∈ RNnodes×Ninput is the input matrix, W ∈

RNinput×Noutput is the kernel parameters, and H ∈ RNnodes×Noutput is the updated graph

embedding.

The attention mechanism has also been adopted on graphs where different neighbors are

assigned different weights to alleviate noises and achieve better results [136; 137]. Graph

Attention network (GAT) incorporates weighted message passing between nodes and multi-

head attention to achieve state-of-the-art results on multiple domains [137]. The recently
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introduced STAR model performs spatiotemporal TP with merely a self-attention mech-

anism and also demonstrates state-of-the-art performance on the UCY/ETH dataset [99].

They also introduce the Transformer-based graph convolution module (TGConv), which

advances GAT with a self-attention Transformer. The spatial and temporal correlation is

learned by simply interleaving the spatial Transformer and the temporal Transformer [138].

Furthermore, STAR also introduces a read-writable graph memory module to smooth the

predictions and enforce temporal consistency continuously.

Bayesian Deep Learning

Bayesian Deep Learning (BDL) is a widely explored area of research on quantifying the

uncertainty and improving the robustness of deep learning models. The idea behind BDL

is to put distributions over neural network parameters. For a regression problem, given an

input sequence X = {x1, ..., xn} and the corresponding output sequence Y = {y1, ..., yn},

I try to estimate the parameters ω for the approximation function y = fω(x). That is, to

inference p(ω|X, Y ). During the test phase, if I have an observation data sequence x∗,

the prediction sequence y∗ is simply the weighted average of the model where the weights

are determined by the posterior distribution of ω, mathematically, Ep(ω|X,Y )[p(y
∗|x∗, ω)].

Unfortunately, this is intractable in any practical case [77]. Consequently, Variational In-

ference (VI) is introduced to approximate the posterior of the Bayesian neural network. In

VI, I aim to find the best variational distribution approximation qθ(ω) of p(ω|X, Y ), where

qθ(ω) ∈ QΘ(Ω), and QΘ(Ω) is a family of i.i.d. Normal distributions,

QΘ(Ω) ∼ N (µ, diag(σ2
d)) (3.4)

and with mean-field assumption on each component of QΘ,

QΘ = {q|qθ(ω) =
d∏

i=1

qθi(ωi)} (3.5)
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Kullback–Leibler (KL) divergence is used to measure the discrepancy between qθ(ω)

and p(ω|X, Y ). That is, I want to solve the optimization,

minqθ∈QΘ
KL[qθ(ω)||p(ω|X, Y )] (3.6)

Researchers showed that this objective is equal to minimizing the objective function in

Equation (3.7), which is also known as variational free energy.

minqθ∈QΘ
KL(qθ(ω)||p(ω))− Eqθ(ω)[log(p(Y |X,ω))]

≈ 1

N

N∑
i=1

[log(qθ(ωi))− log(p(ωi))− log(p(Y |X,ωi))]
(3.7)

From Equation (3.7), I show that the VI approximation to the Bayesian neural network

can be inferred through the sampling of the three terms derived from the variational free

energy. Various weight perturbation methods [88; 81] enable direct gradient-based opti-

mization during VI. The recent advancement of probabilistic programming languages also

established the pathway of building scalable real-world applications [89; 90; 91; 92].

3.3 Methodologies

In this section, I first define the setup for the problem I am trying to solve in Section

3.3.1. Then, I introduce the architecture of the proposed deep learning framework B-STAR

in Section 3.3.2. B-STAR architecture decomposes spatiotemporal attention learning into

temporal modeling, spatial modeling, and uncertainty modeling, which will also be dis-

cussed in detail.

3.3.1 Problem Setup

The task I am focusing on is the time-series forecasting of trajectories for multiple air-

craft. I wish to predict future trajectories based on observed trajectories. The total times-
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tamps of this sequence are size T for each individual aircraft. The first Tobs timestamps are

observations, and the other T − Tobs timestamps are the prediction horizon of our model. I

set the total number of agents that show up in a scene as N . I use pit = (xi
t, y

i
t) to denote

the position of agents in a top-down view environment. An undirected edge for each air-

craft pairs with a distance less than a threshold ζ . This leads to the dynamical undirected

graph Gt = (V t, Et) mentioned in previous sections. Similar setups have been used for the

pedestrian TP case [99].

dti,j = 2×R× arcsin(

√
sin2(

yit − yjt
2

) + cos(yit) cos(y
i
t) sin

2(
xi
t − xj

t

2
))

R = 6371km

(3.8)

For the aircraft TP case, I use pit = (xi
t, y

i
t) to denote the position of aircraft pi’s location

shown in the radar measurement. The graph is built by calculating the distance between two

aircraft pairs (pit, p
j
t) at the same timestamp with Equation (3.8). It’s also called Haversine

distance [139] to calculate the great-circle distance between two WGS84 coordinates. If dti,j

is greater than a neighboring threshold ζ , I establish a connection Et
i,j between aircraft i and

j at timestamp t, and vice versa. This leads to the dynamical changing graph Gt = (V t, Et)

at each timestamp t, which includes all the aircraft pairs classified as neighbors.

3.3.2 Proposed Bayesian Spatio-Temporal Graph Transformer

B-STAR is a stacked encoder-decoder structure, where the encoder composes of sev-

eral Transformer building blocks to leverage spatial and temporal modeling separately. In

addition, the decoder accounts for uncertainty modeling and outputs predictions. I keep a

deterministic encoder from a Bayesian decoder to reduce computational complexity while

retaining the performance of the entire framework [140]. The encoder-decoder structure of

B-STAR has been shown in Figure 3.1.
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Figure 3.1: B-STAR: Multi-Aircraft Trajectory Prediction Network Architecture. In B-

STAR, Trajectory Prediction is Achieved by Interleaving the Spatial Transformer and Tem-

poral Transformer into an Encoder-Decoder Structure. The Inputs to Transformers are Em-

bedded with Linear Layers and Concatenated to Feed into another Transformer Module.

Here, I propose to Extend the Decoder by using a Bayesian Neural Network Approximated

with Variational Inference Mentioned in Section 3.2.2. The Last Observation Timestamp

is Tobs. The Prediction at Tobs+1 is Added Back to the Observation Sequence to Predict the

Aircraft Locations at Timestamp Tobs+2.

Transformer Encoder: The temporal Transformer block considers every single agent

independently and learns each agent’s dynamics from its own data. The temporal model is

simply a standard temporal Transformer network, which has been shown to achieve better

time-series learning performance compared to RNNs [99]. For spatial modeling, I adopt

TGConv to perform Transformer-based graph convolution. The proposed architecture con-

sists of two parallel-aligned Transformer blocks and two sequentially aligned Transformer

blocks. I propose to use a multi-layer perception after the parallel-aligned Transformers,

which gives a new spatiotemporal embedding of the data. The sequentially aligned module

acts as the post-processing of the concatenated feature embeddings.

Bayesian Decoder: The decoder takes the updated embedding as inputs and outputs the

predicted trajectory for each agent in the graph. Similarly, I propose a Bayesian version of
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the decoder, which consists of a stochastic Bayesian fully-connected layer for predictions

and uncertainty quantification. The parameters of Bayesian layers are initialized with stan-

dard normal distribution and sampled during inference of the posterior as Equation (3.7).

Specifically, the prediction of each timestamp is added back to the observation for fu-

ture prediction. To improve the long-horizon temporal consistency of the predictions, an

external graph memory is used to allow the temporal Transformer to condition the current

temporal embeddings on the previous temporal embeddings. In such a way, I can get a

consistent trajectory prediction to avoid unreasonable trajectory predictions. This graph

memory module is read-writable.

Temporal Modeling

The input of the temporal Transformer block is the input embeddings from the raw input

data, mathematically, {hi
1, h

i
2, ..., h

i
t}, for agent i. Input embedding is commonly achieved

using a simple linear layer. The output is the updated embedding sequence {ĥi
1, ĥ

i
2, ..., ĥ

i
t}.

For agent i, the temporal Transformer first learns the query matrix Qi, Ki, and V i.

Qi = fQ({hi
t}Tt=1), Ki = fK({hi

t}Tt=1), V i = fV ({hi
t}Tt=1) (3.9)

where the functions fQ, fK , and fV are shared across all agents. The computing of atten-

tions for temporal Transformer follows the standard computation flow of the multi-head

attention mechanism, as in Equation (3.1) and Equation (3.2).

Spatial Modeling

The spatial Transformer block learns the interaction between agents in a scene with TG-

Conv proposed by [99]. As mentioned, TGConv is a Transformer-based graph convolution

block that performs message passing between graph nodes. It is an attention-based graph

convolution block, with a different spatial embedding hi updating computation procedure.
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In TGConv, the input is a spatial embedding set for multiple agents, mathematically,

{h1, h2, ..., hi}. The query vector for the agent i is qi = fq(h
i), key vector is ki = fk(h

i),

and value vector is vi = fv(h
i). The message passing from agent j to agent i is defined as,

mj→i = (qi)Tkj (3.10)

The attention-based graph convolution in Equation (3.1) is reorganized into TGConv as,

Atti(Qi, Ki, V i) =
softmax([mj→i]j∈NB(i)

⋃
{i})√

dk
[vj]

T
j∈NB(i)

⋃
{i} + hi (3.11)

where NB(i) is the neighbors set of agent i. The updated embedding ĥi is calculated by

Equation (3.12) with skip connections before the output function fo.

ĥi = fo(Att
i) + Atti (3.12)

The spatial Transformer outputs the updated spatial embedding {h1
t , h

2
t , ..., h

i
t}, t ∈

{1, 2, ..., Tobs+1} of the current agent i, which concatenates with the updated temporal em-

bedding {ĥi
1, ĥ

i
2, ..., ĥ

i
t}, t ∈ {1, 2, ..., Tobs+1} of agent i. The multi-layer perception takes

the concatenation as the input and feeds the output into the second temporal Transformer.

The output of the temporal Transformer finally feeds into the second spatial Transformer

before getting into the Bayesian decoder. Also, the second temporal Transformer returns

the output to the first temporal Transformer to account for a consistent recursive temporal

prediction.

Uncertainty Modeling

The uncertainty comes from the Bayesian linear layers in the decoder. For example, it has

been shown that a stochastic Bayesian classifier is sufficient for uncertainty quantification

and improves ML systems’ robustness [140]. Here, I believe that a Bayesian encoder is
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sufficient instead of adopting Bayesian input embeddings or probabilistic attention in the

decoder part. I leave probabilistic embeddings and probabilistic attention for future study.

Finally, the output layer of the decoder remains deterministic to avoid training instability.

In the test phase, the prediction uncertainty can be estimated through MC tests as in Equa-

tion (3.13). x∗ and y∗ are test data pairs, ω is the well-trained model parameters, and N is

the number of tests performed.

p(y∗|x∗, X, Y ) = Ep(ω|X,Y )[p(y
∗|x∗, ω)]

≈ 1

N

K∑
n=1

p(y∗|x∗, ω̂k)
(3.13)

3.4 Experiments

In this section, I first discuss the evaluation metrics used in the experiments in Sec-

tion 5.5.1. Then I report our results on the ETH (ETH and HOTEL) and UCY (ZARA1,

ZARA2, and UNIV) pedestrian TP dataset in Section 3.4.2. ETH and UCY are human

crowds datasets with a medium interaction density. They serve as the most used bench-

mark dataset for demonstrating state-of-the-art performances in multi-agent TP research

works. I compare B-STAR to 8 state-of-the-art TP models developed on the pedestrian

dataset with the same setup. I use the leave-one-out cross-validation strategy to get the

test results. Lastly, I report the proposed machine learning problem-solving pipeline for

near-terminal multi-aircraft TP, demonstrated with real-world radar recording data in Sec-

tion 3.4.3. Additionally, a sensitivity study is performed on the aircraft case.

Briefly, I show that: a) The proposed uncertainty-aware B-STAR model can achieve

state-of-the-art mean prediction performance on the ETH and UCY pedestrian dataset; b)

B-STAR gives reliable uncertainty estimates without sacrificing the prediction power; c)

The sensitivity study shows a larger prediction-observation ratio leads to a declined test

performance.
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3.4.1 Evaluation Metrics

The standard way to evaluate the model performance is to use the Average Displace-

ment Error (ADE) and Final Displacement Error (FDE) as our minimization objectives. A

lower ADE and FDE represent better model performance on the given dataset. I minimize

the ADE and FDE on the training set and backpropagate them to update the parameters

during training. After several epochs of training, I start to evaluate the ADE and FDE on

the test set and save the best model.

• ADE: The averaged mean square error between the prediction and ground truth se-

quences.

• FDE: The L2 distance between the predicted final position and the ground truth final

position.

3.4.2 Case I: Pedestrian Crowd TP

This case study is conducted as a baseline study to validate our B-STAR performance,

especially compared with the ML models proposed in the literature to understand the con-

tributions of the proposed work. I use the same experiment set up on the 5 scenarios from

ETH/UCY dataset for a fair comparison. To keep this case study simple, I record the results

from the literature.

State-of-the-art Models

I compare our model with several state-of-the-art models as baselines. This includes,

• Social LSTM [37]: Each agent in the scenario is modeled with an LSTM, where the

hidden states are shared between neighbors.
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• State Refined LSTM (SR-LSTM) [104]: Similar to S-LSTM, each agent is modeled

with an LSTM but with a state refinement module on the hidden state tensors. The re-

finement module includes a motion gate and pedestrian attention functions to extract

useful features of each pedestrian.

• Social Attention [141]: The crowd of pedestrians is modeled with a spatiotemporal

graph and adopts two LSTMs to handle the spatial and temporal dependencies.

• TrafficPredict [142]: TP motion prediction model using LSTMs. This method intro-

duces a category layer to refine the predictions of the agents belonging to the same

type, i.g., vehicles, and pedestrians.

• STAR [99]: The interleaved spatial and temporal Transformers learn spatiotemporal

features from graph-structured data with TGConv.

• Social GAN [39]: The social Pooling Module (PM) is adopted into the general ad-

versarial network (GAN). The generator module G learns from the data and outputs

the predicted trajectory. G is an encoder-decoder framework where the hidden states

of the encoder are linked with the hidden states of the decoder via PM. The discrimi-

nator D tries to classify the ground truth and the predicted trajectory from G. Similar

to the classical GAN, the randomness comes from the random input to the Generator.

• Trajectron [143]: A variational encoder-decoder structure for multi-agent TP. The

encoder encodes the history and future states of a given node and predicts the distri-

bution of future trajectories using deep generative modeling. This chapter also adopts

the β-weight ELBO [144]. The randomness comes from the random sampling of hid-

den variables.

• STAR-Dropout [99]: The STAR model with dropout applied on fully connected lay-

ers. The randomness comes from the pre-defined dropout ratio.
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Comparisons

Table 3.1 shows the comparison of the proposed B-STAR with the literature on pedestrian

datasets. I compare our method with 5 deterministic methods and 3 stochastic TP methods.

I show that I achieve state-of-art test performance in these scenarios, except for ETH and

HOTEL. Then, I apply the proposed ML framework to the air transportation problem.

Table 3.1: B-star Compares with State-of-the-art Multi-agent TP Models on the ETH/UCY

Dataset. The Stochastic Methods Are Averaged over 20 Samples and Compared with

the Mean Predictions. The Performance Reported is Based on the Evaluation Metrics

ADE/FDE. B-star Achieves Comparable Performance to the Star with Dropout. However,

Our Proposed B-star Doesn’t Require a Pre-defined Dropout Ratio for Uncertainty Quan-

tification.

Deterministic ETH HOTEL ZARA1 ZARA2 UNIV

Social LSTM 0.77/1.60 0.38/0.80 0.51/1.19 0.39/0.89 0.58/1.28

SR-LSTM 0.63/1.25 0.37/0.74 0.41/0.90 0.32/0.70 0.51/1.10

Social Attention 1.39/2.39 2.51/2.91 1.25/2.54 1.01/2.17 0.88/1.75

TrafficPredict 5.46/9.73 2.55/3.57 4.32/8.00 3.76/7.20 3.31/6.37

STAR 0.56/1.11 0.26/0.50 0.41/0.90 0.31/0.71 0.52/1.15

Stochastic ETH HOTEL ZARA1 ZARA2 UNIV

Social GAN 0.81/1.52 0.72/1.61 0.34/0.69 0.42/0.84 0.60/1.26

Trajectron 0.65/1.12 0.35/0.66 0.34/0.69 0.29/0.60 0.52/1.10

STAR-Dropout 0.36/0.65 0.17/0.36 0.26/0.55 0.22/0.46 0.31/0.62

B-STAR 0.44/0.72 0.24/0.43 0.26/0.54 0.25/0.41 0.36/0.68
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3.4.3 Case II: Near-Terminal Multi-Aircraft TP

In this section, I report our implementation details for the near-terminal multi-aircraft

TP as a module-based system. As mentioned in Section 5.1, I propose a module-based ML

problem-solving pipeline with a refined state-of-the-art multi-agent prediction model. I

discuss our framework from the data processing module, to the modeling training module,

until the web-based interactive visualization module. The data used in this case is the

ASDE-X near-terminal flight track surveillance recording of Hartsfield-Jackson Atlanta

International Airport (KATL). I follow the classical leave-one-out cross-validation method

during the training and evaluation process. Furthermore, I perform two sensitivity studies

to fully understand the prediction capability of the proposed B-STAR architecture.

ASDE-X Near-Terminal Flight Data

I obtain the raw data streams from the Sherlock Data Warehouse (SDW) [20; 3]. SDW is a

platform for reliable aviation data collection, archiving, processing, query, and delivery to

support ATM research. The Sherlock data primarily comes from the FAA and the National

Oceanic Atmospheric Administration (NOAA) [93]. In this work, I am focusing on the

specific problem of near-terminal multi-agent TP. Thus, only the near-terminal surveillance

recordings are required, which is the data from the Airport Surface Detection System —

Model X (ASDE-X) system. ASDE-X is a surveillance system using radar, multilateration,

and satellite technology that allows air traffic controllers to track the surface movement of

aircraft and vehicles. It’s reported that KATL has the highest average daily capacity and

average hourly capacity among the core 30 airports of the United States [100]. Thus, I

obtained one week’s (Aug 1st, 2019 to Aug 7th, 2019) flight trajectory recordings from

the ASDE-X of KATL, with the busiest operation period each day (2 pm to 10 pm), for

the demonstration of our proposed method. The dataset has a time interval ∆t = 1s and
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Figure 3.2: A Batch of the Filtered ASDE-X data on Aug 7th, 2019, Visualized with Google

Cloud Map API, to Understand the Pattern of Aviation Operations Around the KATL. The

Unix Timestamps and Flight IDs are Anonymized. The Figure Clearly Shows That There

Are Four Runways on Duty at KATL. The Aircraft Departed to the West and Landed from

the East. Several Flight Tracks are Crossing the Airspace of KATL.

is down-sampled into ∆t = 5s timestamp. I filter out the data from a rectangular area

(r = 0.2◦ latitude/longitude) around KATL, with the accelerated geospatial query tool in

GeoSpark [145]. The first 6 days’ data is used for training and validation, and the last day’s

data is kept for testing and performance visualization. I visualize a batch of the processed

test dataset in Figure 3.2.

The processing of the raw ASDE-X data from Sherlock can be summarized as follows,

a) perform a time window filter to find the flight tracks within the desired time range on
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each day. In this work, the time range is from 2 pm to 10 pm locally; b) perform rectangular

filter of the flight tracks within the area of interest, with the help of geometry large-scale

data processing package. In this work, I define the range as 0.2◦ latitude by 0.2◦ longitude

centered at the airport coordinates. Also, I filter along the altitude dimension to make sure

the aircraft is above the ground level; c) anonymize the sensitive information in the ASDE-

X dataset, e.g., the real flight callsign, flight ID, and Unix timestamps; d) downsample the

time-series to a user-defined forecasting time interval. In our case, I have ∆t = 5s. This

sampled data sparsity will determine the capability of a well-trained model. I will discuss

this in detail in Section 3.5.

Further pre-processing of the data follows the standard strategy as in [104; 99]. The

origin of the input sequence shift to the last timestamp of observations. Also, the entire

sequence has 20 timestamps for each aircraft. In this case, I have 12 timestamps as obser-

vations and 8 timestamps as predictions.

Module-Based Machine Learning Pipeline

I propose the machine learning problem-solving pipeline for the uncertainty-aware near-

terminal multi-aircraft TP task. The schematic representations and technical stack are

shown in Figure 3.3. The lower level of the proposed pipeline shows how is the raw radar

recording data collected, processed, and stored in SDW, where data integration is adopted

to handle data heterogeneity [146]. The user of SDW utilizes a user interface to acquire

the data desired for the proposed research. I build our novel machine learning application,

B-STAR, with an object-oriented programming language and large-scale data processing

tools. With the help of multiple CPU & GPU cores, I perform parallelized training for

rapid inference in our demonstration case. On the system output layer, I adopt web-based

interactive visualization tools for the geometrical representation of our model predictions.
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Figure 3.3: Schematic Representation of the Data Workflow. The Figure Shows the

Flowchart of the Proposed Problem-solving Machine Learning Framework. Sherlock Data

Warehouse Processes the Data from Multiple Surveillance Data Sources and Stores It in

the Data Cluster. The User Who Has Access to Sherlock Can Acquire the Data from a

Web-based User Interface. Then I Clean the Data into the Required Format Using Apache

Spark, and Apache Sedona (Geospark) with Multi-cores. I Build the Training Environment

Using Python with Cuda Acceleration. Finally, I Show the Forecasting of Aircraft Coor-

dinates with the Web-based Geometrical Visualization Tool Bokeh and the Cloud-based

Google Map API.

Visualization of Test Results

I present the prediction on the test dataset in Figure 3.4 and Figure 3.5. Also, I show the

uncertainty values corresponding with both the observation timestamps and the prediction

71



Figure 3.4: Visualization of a Sample Testing Case with Google Map API on Bokeh. Red:

The Mean Predictions; Blue: The Ground Truth Track Points; Green: the Input Historical

Track Points are Known as Observations.

timestamps in Figure 3.6. In Figure 3.4, I visualize one sample from the model output that

belongs to the test dataset. To achieve this, I first determine the neighbor indices by plotting

the adjacency matrix A of TGConv. Based on A, I can find the correct neighbor indices and

match the indices with the observations, predictions, and ground truth tracks. Additional

coordinate shifting and rotating are performed.

I show the B-STAR model can predict temporal consistent trajectories in Figure 3.5a,

where three aircraft are heading toward the airport in parallel. The uncertainty of these

three aircraft in Figure 3.6a and Figure 3.6e is also small, given that they follow the same

parallel pattern without possible intersection. In Figure 3.5b, the model predicts the aircraft
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moving direction successfully but with slightly delayed locations. However, I find that

the uncertainty value for the prediction also increases with a longer prediction horizon. In

Figure 3.5c and Figure 3.5d, I present two cases where the moving direction is not correctly

predicted. The typical case is departing aircraft fails at making a good prediction. It’s a

common pattern that the prediction uncertainty on the latitude dimension has a sudden drop

in Figure 3.6. This is due to the FDE constraint on trajectory sequences. Also, the runway

of KATL has an east-west layout, which has minimal changes in the latitude dimension.

This explains no similar pattern in the longitude dimension.

Generally, B-STAR shows a significant predicting capability on the landing aircraft

sequence but doesn’t perform well on departing aircraft. As shown in Figure 3.2, the de-

parting aircraft has multiple flight routes. On the contrary, the landing sequence is much

simpler, while the aircraft are lined-up. I leave improving the prediction power for more

complicated departing aircraft cases as a major future study, which will be discussed in

section 3.5.

Sensitivity Study

To better understand the prediction capability and provide sufficient guidance for applying

the machine learning model in the real case, I conduct the sensitivity study on the two

parameters of B-STAR as follows:

• Prediction-Observation Ratio (PO-ratio) Θ: The ratio between the prediction horizon

and the observation horizon. A larger PO-ratio stands for longer prediction power

with less observed data.

• Graph Neighboring Threshold ζ: The separation distance threshold to determine if

the connection between two aircraft was established.

The sensitivity study is performed by retraining the model, with different parameters in
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(a) Test Sample 1 (b) Test Sample 2 (c) Test Sample 3 (d) Test Sample 4

Figure 3.5: Visualization of B-STAR Trajectory Predictions. The Red Color Represents

the Output from Our Model. Black Star Is the Departing Location for Each Aircraft. At

Each Prediction Timestamp, I Visualize the 95% Confidence Bound along with the Mean

Prediction, Where the Standard Deviations for Latitude and Longitude Are Measured with

the Monte Carlo Test. It’s Obvious That Our Well-trained B-STAR Makes Reasonable

Trajectory Predictions, with the Contributions from the 95% Confidence Interval.

the preprocessing stage. It is obvious that in Figure 3.7a, the ADE and FDE increase with

the enlargement of PO-Ratio. It’s expected to have a larger error with a longer prediction

horizon. I also notice that the ADE has a minor increase at Θ = 0.67, 1.0, 1.5. Figure 3.7b

shows the error when altering the graph neighboring threshold (10, 20, and 30 kilometers,

corresponding to approximately 5, 10, and 15 nautical miles). I notice that there is not a

significant change in the error metrics. The reason is ASDE-X data only covers a small

range of flight tracks, ζ = 10km already covers all the aircraft in the airspace. In such a

case, increasing ζ makes no difference to the neighboring graph.

3.5 Discussions

This work shows that the uncertainty-aware TP model can leverage the spatial and tem-

poral coherence between multiple agents in the scenario. The model interactively forecasts

the future location of multiple agents with a user-defined prediction time interval based on
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(a) Sample 1: σlat (b) Sample 2: σlat (c) Sample 3: σlat (d) Sample 4: σlat

(e) Sample 1: σlon (f) Sample 2: σlon (g) Sample 3: σlon (h) Sample 4: σlon

Figure 3.6: Uncertainty for Trajectory Prediction. The Standard Deviation for the Start

Location Is Not Shown. The Left of the Vertical Line Shows the Standard Deviation of the

Observation. During Inference, the Model Also Outputs Predictions for the Observation

Steps. The Uncertainty for Observation Is Relevantly Stable and Minimal. The Right of

the Vertical Line Demonstrates the Standard Deviation for the Prediction Timestamps on

Both Latitude and Longitude Dimensions. Due to the Nature of the Time-series Forecasting

Model, the Uncertainties Propagate Through Prediction Timestamps.

the current observations. The proposed model can handle an arbitrary number of agents

shown in the current map. The uncertainty of the prediction increases with an elongated

prediction horizon. I first perform a case study on the standard pedestrian dataset to show

the effectiveness of B-STAR. Then I apply the proposed model to the safety-critical air

transportation field. Furthermore, I propose an ML problem-solving pipeline to tackle the

multi-aircraft TP problem. In this section, I will mainly discuss the limitations in Sec-

tion 5.6.1 and insights in Section 5.6.2 from the air transportation aspects.
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(a) Prediction-Observation Ratio Θ (b) Graph Neighboring Threshold ζ

Figure 3.7: Sensitivity Study Results. The Error is Measured with ADE and FDE.

3.5.1 Limitations

There are several limitations of the existing methods. Firstly, the construction of the

graph data requires a minimum distance threshold to fill the adjacency matrix. The thresh-

old value is an assumption on the potential impact between nearby aircraft. Based on the

aeronautical separation standards, I use ζ = 10km as the threshold, where the tower be-

lieves two aircraft with a distance closer than ζ = 10km will have interactions. Further

validation on the best ζ is valuable. Also, this work doesn’t consider the operation on the

altitude dimension. This is based on the assumption that the near-terminal aircraft is gener-

ally at a low altitude where a vertical separation is not critical, as I am simulating the cases

of surveillance radar. Lastly, the time interval of the down-sampled data is actually the pre-

diction time interval. In real applications, to achieve real-time forecasting, the execution

time of the model should be smaller than the prediction interval. I am using ∆t = 5s at

the moment. In the deployment phase, the model inference time for forecasting the next

location of the current scenario is 2.74s. If using classmate enforcing [147], the prediction-

response time for the controller/pilot will be 2.26s. However, in the current experiment

setup, I am not feeding the ground truth into the model prediction in real-time, and the total
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inference time for the entire 8 prediction timestamps is 21.66s. The corresponding response

time for the pilot/controller will be 18.34s, which is acceptable in real-world practices.

3.5.2 Insights

This work is beneficial for the future development of safety-critical autonomous sys-

tem applications, e.g., an accurate uncertainty-aware TP contributes to an early collision

warning system. Probabilistic risk assessment is based on uncertainty quantification from

the training data. Based on the limitations, I have the following initiatives,

• The demonstration of the proposed model can be improved in many aspects. I am

expecting a further accuracy improvement if I include the orientations, the airspeed,

and the altitude dimension in the prediction framework. In such a way, our approach

is suitable for predicting trajectories in the enlarged airspace rather than the low-

altitude, near-terminal region.

• The sensitive study on neighboring threshold can be further improved using the data

from larger airspace. The current ASDE-X data has limited coverage around the

airport control tower compared to the data from an air traffic control center (ARTCC).

• Future work combined with transfer learning and domain adaptation is desired to

increase the generalizability of the proposed framework. For instance, I train our

model with the flight data from one airport and manage to get an accurate prediction

on the flight data from another airport using domain adaption methods, where differ-

ent controllers’ preferences existed. Also, I can try to generate the prediction power

from commercial aircraft to other airborne agents, such as helicopters and drones,

with the help of domain generation methods.

• Due to the characteristic of Bayesian deep learning, the execution time of the pro-

posed model for online, multi-aircraft trajectory forecasting is impacted by the sam-
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pling procedure during the test phase. From the algorithm-development aspect, the

model compression technique can be beneficial for reducing computational cost,

where knowledge distillation is a feasible direction to look into. From the engineer-

ing perspective, both software and hardware upgrades are available. TensorRT [148]

with C++ will significantly reduce the inference time. Hardware such as NVIDIA

Orin will boost performance by a wide margin.

3.6 Conclusions

In this chapter, a graph-structured Transformer-based deep neural network architecture

is proposed for the uncertainty-aware multi-agent trajectory prediction task. It is shown

that uncertainty-aware prediction can be achieved with a particular Bayesian formulation of

the trajectory prediction deep learning network. The proposed model is demonstrated and

validated using the commonly used standard pedestrian TP dataset (ETH and UCY) and a

near-terminal aircraft TP dataset from Sherlock. I analyze the predictions individually and

statistically, with a sensitivity study to further understand the prediction power. I visualize

several cases on the geographical map around the ASDE-X data range of KATL. Following

this, the sensitivity studies focused on the PO-ratio Θ and the neighboring threshold ζ .

These studies show the optimal future prediction horizon w.r.t. the observation horizon.

One unique focus of the proposed study is on the impact of different aviation regulation

encodings on air traffic predictions. The current limitations are discussed and the potential

research directions are suggested.

78



Chapter 4

AIRCRAFT LANDING SCHEDULING USING MACHINE LEARNING-ENHANCED

OPTIMIZATION

4.1 Introduction

The civil aviation industry is losing air traffic control talents, while the need for main-

taining daily operations keeps surging [100]. This situation leads to increased operational

costs, higher safety concerns, the elevated workload for air traffic controllers, and frequent

flight delays [149]. Flight delay is a major problem of interest faced by domain experts,

which results in both economic and customer loyalty losses [150]. It’s reported that 20% of

the civil flights in the U.S. were delayed from 2010 to 2018, and the annual cost of delays

before the pandemic is estimated to be $30 billion [151]. The initial flight delays come

from various resources (e.g., extreme weather conditions, carrier and controller issues) and

can propagate through several hours [152; 153]. Moreover, the aviation industry is encoun-

tering a shortage of experienced operation talents after the COVID-19 pandemic due to

various reasons (e.g., loss of operational and airline experience, staffing, and changing cus-

tomer demand patterns). All of this urges the automation and digitization of the aviation

industry in a regulated fashion, which heavily relies on innovative data-driven modeling

techniques.

Automated computer-aided decision support tools (DSTs) are practical solutions to ad-

dress safety and efficiency concerns (e.g., flight delays), with the help of modernized data

monitoring and recording equipment. DSTs will help maximize the operational capac-

ity of the terminal maneuvering area (TMA), where the optimization of departure/arrival

operations in the TMA is a critical problem of air traffic control (ATC). In most cases,
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the heuristic decision by the ATC will be suggested together with a graphic view of each

corresponding location and speed of the aircraft near the TMA. This setup is efficient on

normal operations but leads to flight delays and elevated controller workload during ex-

treme scenarios. The unfolded diamond shape symbols in the graphic view may overlap

and lead to significant delays during certain extreme cases [154]. DSTs are developed

to alleviate flight delays and maximize operational capacity during certain cases and busy

traffic. For instance, the measurement coverage of NextGen will be enlarged to hundreds of

nautical miles (NM) due to the advanced surveillance radar for the Automatic Dependent

Surveillance-Broadcast (ADS-B) system [155]. The enlarged surveillance measurement

space enables the possibility of developing optimization-based DSTs, to be applied in the

en-route phase. Lastly, DSTs assist controllers in suggesting reasonable resolutions by

searching from historical data or learning from human preferences. Various government

agencies proposed advanced DST system concepts. Airport Collaborative Decision Mak-

ing (A-CDM) [156] concept and Next Generation Air Transportation System (NextGen)

[8] was proposed by the European Organization for the Safety of Air Navigation (EURO-

CONTROL) and Federal Aviation Administration (FAA) to assist air traffic controllers in

decision makings, with enhanced safety, efficiency, and capacity. Field demonstrations on

either single-airport or multi-airport scenarios show great safety enhancements and effi-

ciency improvements [157; 158].
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Figure 4.1: Flight Tracks on Aug 1st, 2019. Archived in Sherlock Data Warehouse [3] for

ARTCC ZTL.

While the government-led efforts mostly focus on building the system workflow for on-

board deployment, academic research focuses on algorithmic development and advanced

data analytics to enable automated decision-making to support aviation digitization. The

Aircraft Landing Scheduling (ALS) problem is vital to overcome flight delays and achieve

efficient aviation operations in the TMA [159]. ALS studies the planning of the landing

schedule for all the aircraft landed on the same runway in a short time period [160], where

the runway capacity is pre-defined based on the existing infrastructure [161]. In aviation,

the ALS problem is viewed as a critical element of the general planning system of air-

craft around the TMA [159]. Researchers who are studying ALS focus on the following

objectives,

• Maximize the fuel efficiency by arranging the landing aircraft at the most economic

landing times and speed profiles [162; 163; 164].
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• Minimize the difference to the flight schedules [165; 166; 167].

• Maximize the runway throughput by minimizing the total landing time [168; 169;

170].

This chapter focuses on the last item, i.e., maximizing the runway throughput. During

arrivals, the air traffic controllers (ATCs) give instructions to the pilots when the aircraft

enters the range of the terminal surveillance radar. Thus, ATCs provide guidance for safe

and effective landings. Landing safety is enforced by the minimum separation time (MST)

between two landing aircraft. The MST is introduced to account for aerodynamic safety

considerations [161]. For instance, when the leading aircraft is much heavier than the

following aircraft, the leading aircraft’s wake vortices will result in hazardous conditions

for the following lighter aircraft within MST and poses immediate safety concerns. The

ALS problem has been formulated into two sub-problems [160]. Firstly, the order of the

aircraft entering the TMA is determined. Then, the exact scheduled landing time is de-

termined based on the landing sequence and MST. These two steps can be collaboratively

solved with proper optimization algorithms. The extension of the surveillance area enables

the possibility of developing a novel landing scheduling scheme that can be performed in

the en-route phase rather than only in the terminal area to prevent congestion and reduce

congestion-related safety concerns. However, the current literature either focuses on for-

mulating the optimization problem in both static [163] and dynamic [171; 161] scenarios

with synthetic examples, or considering one of the related factors during sequencing to

formulate the mathematical model (e.g., ground staff workload [172], airline preferences

[173]). The above pure simulated demonstration limits the applicability and generalizabil-

ity of the developed algorithms to be deployed in the real world.
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(a) Boxplot Grouped by Daily Hours. It’s Obvious That The Busy Hour Typically Starts From

13:00 to 22:00 Each Day.

(b) Boxplot Grouped by Aircraft Types. There Is Not a Clear Correlation Between Time Spent

in TMA to Aircraft Types.

Figure 4.2: Time Spent from 100NM to 40NM for Landing Aircraft Entering the TMA of

KATL During the Entire Month of August 2019.

The availability of a well-maintained aviation data warehouse [3; 21] has enabled the

83



possibility of learning and generating aviation operational decisions from realistic opera-

tional data. Machine Learning (ML) is an example of data analytics that draws interest

from both academia and industry. In the ATM domain, the use of ML techniques also

surges in recent years [122; 174; 95; 103; 175; 176], although multiple challenges (i.e.,

data privacy/collection/storage/integrity, system reliability, and scalability) still exist when

deploying ML systems into real-world (MLOps) [177; 29]. Compared to the conventional

methods, ML methods show the following benefits: a) A ML-based DST takes advantage

of realistic historical data to simulate the human experience accumulation process, where

the model can provide experienced guidance within the machine response time; b) ML

methods are highly flexible to fuse structured or unstructured data from various sources for

decision-making. Nonetheless, criticisms against ML methods also rise regarding model

interpretability/explainability, prediction generalizability, and output trustworthiness. The

authors believed that ML-based DSTs are beneficial for computer-assisted decision-making

under the supervision of human controllers.

In view of the above discussion, there is a need and gap to develop data-driven aircraft

landing scheduling algorithms from extended airspace to maximize runway throughput and

reduce flight delays. In this chapter, I first investigate and identify several factors causing

flight delays through data analysis. Then, I propose a data-enhanced optimization tech-

nique for ALS, where the statistics of minimum separation time (MST) is incorporated into

the safety-critical constraints under the TSP formulation. The probabilistic MST is learned

with a conditional tree-based ML method, namely a conditional gradient boosting machine

(conditional GBM) with quantile distributions to retrieve the upper and lower bounds of

MST. Following this, an optimal method using TSP formulation solved by MILP is pro-

posed for sequencing to minimize total delay while taking into account the uncertainty of

arrival time prediction.

The contributions of this work can be summarized as
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• I investigate several arrival delay scenarios that occurred in the historical data and

gain the following insights, a) the arrival time of aircraft has a highly multimodel

distribution conditioned on the flight events; b) go around (looping) - the event hap-

pened in most arrival delay scenarios - occurs at approximately 100 nautical miles

away from the terminal, where FCFS rule starts to take effect; c) the preference of

landing scheduling made by human controllers may not be optimal (e.g., landing

aircraft from west of terminal should yield to other directions on a west heading

runway). This observation gives insights into identifying relevant impact factors in

building ALS solutions.

• The statistics of MSTs are predicted with a tree-based probabilistic machine-learning

algorithm from the historical flight recordings. The obtained probabilistic MSTs are

incorporated as safety constraints to the time-constrained traveling salesman prob-

lem. To the author’s best knowledge, this type of probabilistic scheduling setting is

the first time.

• I propose to use a conditional ML predictor based on the event counts within a certain

distance of the target aircraft to improve the prediction performance. Geographical

location, speed profiles, flight event counts, and airspace complexity measures are

integrated together for probabilistic prediction of arrival time, which has not been

explored in the open literature.

• The proposed framework shows a reduction in total aircraft landing time compared

to the FCFS rule, through case studies during busy operation hours at KATL. The

proposed method takes effect from extended airspace (e.g., en-route phase flights

200NM away from the terminal), such that early adjustment of aircraft speed profiles

can be issued to avoid holding patterns.

The rest of the paper is organized as follows. In Section 5.2, I review the related
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literature on this topic first. The methodology proposed in this research is discussed in

Section 5.4, where the optimization formulation and machine learning predictor are dis-

cussed. Investigations on flight delay scenarios and insights are discussed in Section 4.4.

The optimization case studies and experimental results are shown in Section 5.5. Finally,

conclusions and future insights are given based on the current investigations.

4.2 Literature Review

This section discusses the related literature to our proposed study on data-enhanced

ALS. I first review the studies for the prediction of aircraft estimated arrival time (ETA)

and MST in Section 4.2.1. Then, I review the research on aircraft landing scheduling

problems in Section 4.2.2.

4.2.1 Estimated Arrival Time Prediction and Minimum Separation Time (MST)

Landing aircraft move along the predefined landing procedures with standard descend-

ing profiles when entering the TMA, with the help of necessary guidance from ATCs. The

MST between two consecutive landing aircraft should be guaranteed in the approaching

phase. The MST depends on the types and relative positions of two consecutive landing

aircraft, which can be translated by considering the speed profiles [159]. Once a landing

aircraft enters TMA, it should line up and proceed to the runway. However, delays happen

on a daily basis and can propagate from ground to mid-air airplanes due to the sub-optimal

scheduling of runway usage. In this case, ATC issues a holding order to the approach-

ing aircraft and forces the aircraft to circle around and wait for the clearance to land. The

conservative determination of the landing safety buffer will result in lower runway through-

puts, with larger landing intervals between landing aircraft. In extreme cases (e.g., severe

convective weather conditions), the delay might be very significant and prolonged due to

high congestion and weather uncertainties. Real-time traffic management systems (e.g.,
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Integrated Arrival Departure Surface Traffic Management by NASA) consider potential

conflicts by constantly adjusting the group of aircraft within TMA in terms of re-routing,

re-timing, and holding [159].

To properly include MST as the safety-critical landing buffer time with various oper-

ational uncertainties, I predict the ETA along with the corresponding ETA confidence in-

terval. The prediction of ETA usually happens upon the aircraft entering the TMA, which

is usually 40 minutes ahead of landing [178]. Early works to predict arrival time focus

on using physics-based trajectory models, which are usually associated with the aircraft

performance, flight plan, and the predicted atmospheric conditions provided by flight-desk

systems [179]. In [180], a method is proposed to predict the arrival time in heavy weather

conditions using the aircraft dynamics and weather avoidance algorithm. Estimated time

of arrival time prediction is approached from a hybrid linear system in [181], then the cho-

sen route probability is further incorporated for stochastic arrival time prediction [182].

A state-dependent hybrid estimation method is used for improved prediction accuracy in

[183]. Many 4D trajectory prediction algorithms with various kinematic assumptions can

also provide an estimated time of arrival [184; 185; 186].

Data-driven methods for arrival time prediction have increased rapidly in recent years,

due to the rise of machine learning and well-maintained data storage facilities. Tree-

based methods have been used to predict air traffic delays [187; 188; 189; 190], where

the weather-related features are taken into account to enhance arrival time prediction capa-

bilities. However, tree-based methods with quantile regression [191] have not been used

for uncertainty quantification of arrival time predictions. Deep learning methods, such as

recurrent neural networks (RNN), are also adopted for arrival time prediction under differ-

ent circumstances [192; 193]. Moreover, the importance of feature selection in air traffic

prediction is discussed in [149]. The experiments with Changi extended TMA conclude

that when building machine learning models for air traffic prediction tasks, feature selec-
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tion with the help of domain knowledge is critical. The model performance is less sensitive

to the selection of machine learning algorithms itself. This also guides the discoveries on

feature studies and case analysis in the later sections of this chapter.

4.2.2 Aircraft Landing Scheduling

The definition of the ALS problem is as follows. Assume that there are n aircraft

lining up for landing on a single runway. The objective of the ALS problem is to find a

schedule of the respective landing time {t1, t2, . . . , ti} for each aircraft {1, 2, . . . , i}. In

ALS, there are two constraints to be satisfied: 1) the aircraft must land within a specific

time period; 2) the minimum separation time between each pair of landing aircraft should

be guaranteed [194]. The common practice for ALS used by ATC is following the First-

Come-First-Served (FCFS) rule, where the scheduled landing sequence is consistent with

the time for each aircraft entering the TMA. FCFS is convenient to maintain safe landing

operations but can lead to severe delays during busy hours (e.g., Figure 4.4). The FCFS rule

has several known drawbacks, a) the lower speed leading aircraft will impact the following

aircraft, even if the following aircraft has higher ground speed; b) the FCFS rule can create

unnecessary long separations for aircraft with different weight classes; c) when terminal

area congestion presents, the aircraft reaching TMA will hold and poses significant delays

to wait for the clearance of congested aircraft; d) the delay will easily propagate to several

hours in extreme scenarios.

Thus, many researchers have proposed different approaches to optimizing the aircraft

landing sequence within the scheduling range. The ALS problem can be formulated into

mixed-integer program [163], where the relationship to machine scheduling problem has

been exploited in the literature [195; 196]. Researchers propose a variety of algorithms to

address the ALS problem: 1) the ALS problem can be classified into dynamic and static

scheduling approaches, depending on whether the environment is dynamically changed or
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not [178; 163; 171; 161]; 2) the scheduling algorithm itself considers various impact factors

and objective functions, such as airlines’ preferences [173], ground workload [172], and

cellular automation [197]; 3) consider the ALS problem from limited airspace or extended

airspace. A detailed review of the above-mentioned three major perspectives is given below.

Static Scheduling v.s. Dynamic Scheduling Static aircraft landing scheduling defines

the ALS problem with a predetermined time window, such that the scheduling constraints

are ensured. [163] proposes a mixed-integer zero-one formulation of ALS for both sin-

gle and multiple runway scenarios, to consider commonly encountered issues in practice

(e.g., restricting the number of total landings in a given period). The problem is further

solved with linear programming-based tree search. [198] proposes a static optimization

algorithm for aircraft landing in a single-runway, uncontrolled airport, with performance

metrics such as total holding time and total landing time. Some other researchers view

dynamic programming as a feasible approach to ALS. [199] adopts [163]’s formulation but

with a novel dynamic constraints generation algorithm. The proposed algorithm approxi-

mates the MST into a rank two matrix, which leads to linear programming with relaxation.

The dynamic ALS problem received less attention in the literature and is usually achieved

with the same approach called rolling horizon [161]. Rolling horizon is as simple as rolling

the time window of agents for optimization. Firstly, the aircraft inside TMA within the

rolling horizon (typically several minutes) are optimized. Then, the landed aircraft are re-

moved from the rolling horizon, and the new aircraft just entered the rolling horizon are

added to the algorithm. [200] solves dynamic ALS with genetic algorithms using data from

Sydney airport, and shows that the genetic algorithm can perform good results in real-time

with a rolling horizon of 3 minutes.

Optimization Objectives & Related Factors Researchers working on the ALS prob-

lem consider various impact factors with different optimization objectives. In [163], the au-

thors focus on reducing the deviation from the scheduled landing times. A linear programming-
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based tree search method was proposed for landing scheduling, building upon the pioneer-

ing work of mixed-integer programming formulation for ALS [201]. Similarly, [165] ex-

tend the work to reduce deviations from scheduled landing times under time window con-

straints, but the MSTs are pre-defined for five different aircraft weight classes. Based on

the tree search approach proposed in [163], [173] considers airline preferences into the op-

timization framework, in which the optimal landing sequences are given by tree search and

MILP is used to determine the optimal landing time. Dynamic programming-based land-

ing sequencing method is proposed in [202] to maximize the runway throughput. [202]

achieves a highly satisfactory result, but the concern on computational complexity limits

the real-world applicability. Studies on alleviating computational complexity are also con-

ducted, such as the cellular automaton optimization method [160], ant colony optimization

method [203], genetic algorithm [178; 204], and population heuristic algorithm [165; 164].

TMA Scheduling Range There have been several studies focusing on changing the

range of the TMA for ALS. Some of the researchers propose to perform landing schedul-

ing on the entire TMA, to consider the ALS problem from a systematic view. [205; 206]

divide the ATC controls into routing decisions, scheduling decisions, and air segments and

runways. Then, a job shop formulation is used to reduce the delay caused by conflicts in

TMA. More recently, researches on arrival management suggest that performing aircraft

sequencing in an extended area rather than in TMA is actually an effective solution. This

concept allows ATCs to monitor and control traffic into a busy terminal area from the en-

route phase, enabling aircraft to adjust their speed before their top of descent. Thus, time

spent in mid-air holding in the TMA can be reduced. In [207], an algorithm is developed

using the merging optimization method to simultaneously optimize trajectories, arrival se-

quence, and allocation of aircraft to parallel runways. A two-stage stochastic mixed-integer

programming model is proposed in [208]. Another study [209] assessed the effect of flights

departing on extended arrival management, in terms of the flight crew and air traffic control
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task load, sequence stability, and delay. Two-stage stochastic programming is presented in

[210] to address the arrival sequencing and scheduling problem under uncertainty.

Several existing gaps can be identified from the above review. For example, the exist-

ing landing scheduling methods assume the actual arrival times to deviate randomly from

target times (calculated using the en-route speeds) to infer MST. Also, the scheduling algo-

rithm assumes a pre-defined MST based on the aircraft weight classes. In practice, there is

tremendous uncertainty associated with the arrival time prediction, which violates the as-

sumptions of deterministic separation. Several factors, such as aircraft type, weather con-

ditions, and airspace density information can be explicitly acquired in the aviation database

and should be used to reduce the uncertainties of arrival time prediction. In addition, the as-

sumption of static and fixed arrival time distributions is not valid and may cause ineffective

landing scheduling and/or unsafe separation between aircraft (examples shown later using

realistic data). The exact arrival time prediction with accurate uncertainty quantification

for each landing aircraft should be determined, which further optimizes landing schedules

for all of the landing aircraft with an ensured confidence level. Thus, the main focus of this

chapter is to develop a real-world data-enhanced landing scheduling algorithm to achieve

optimal landing scheduling with uncertainties.

4.3 Methodologies

This section demonstrates the methodologies for ML-enhanced ALS. I first illustrate

the tree-based machine learning selected – Gradient Boosting Machine (GBM) with quan-

tile regression in Section 4.3.1. Then, I provide the necessary background to the Traveling

Salesman Problem (TSP) and introduce the formulation of time-constrained TSP formula-

tion to solve the ALS problem in Section 4.3.2. Following this, I describe our proposed

approach to integrating machine learning prediction of arrival time into time-constrained

TSP formulation in Section 4.3.3.
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4.3.1 Gradient Boosting Machine

Although the literature has concluded that selecting the correct feature set is more ad-

vantageous than pursuing the most advanced machine learning algorithms [149], I choose

tree-based machine learning algorithms due to their proven outstanding performances on

structured data. Furthermore, across various tree-based machine learning algorithms, I

select boosting over simple trees or bagging. Gradient Boosting Machine (GBM) is a

commonly used model [211; 212; 213]. Boosting methods add new base learners to the

ensembles at each iteration, and each base learner has trained w.r.t. the residual from the

current ensembles. GBM connects boosting and optimization [212; 213] to perform gradi-

ent descent on both the loss functions and the base learners.

Considering a supervised learning problem with structured data D = {(xi, yi)|i =

0, ..., n}, where xi ∈ RM is also called the feature vector of the i-th sample with M different

features, and yi is the continuous response as the label of xi in a regression problem. In

GBM, I have a set of base learners B = {bγm(x) ∈ RM} parameterized by γm. In GBM,

the predictions are the linear combination lin{B} of the predictions from each of the base

learner bγm(x) ∈ B, where each of the base learners is additively learned with pseudo-

residuals (τm). The corresponding predicted label to feature vector xi is f(xi) ∈ lin{B}, in

the form of,

f(xi) =
M∑

m=0

αmbγm(xi) (4.1)

where αm is the coefficient for each base learner bγm(x) ∈ B. Examples of base learn-

ers include linear models, support vector machines, classification, and regression trees

[212; 214]. Additionally, for the most popular tree-based learners set, the GBM turns

into Gradient Boosted Decision Trees (GBDTs). GBM aims to obtain the best function set

f̂(xi) ∈ lin{B} to minimize the given data-fidelity evaluation function (e.g., least squared
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residual loss for simple regressions).

f̂(xi) = argminf(xi)∈lin{B}

n∑
i=0

ξi(yi, f(xi)) (4.2)

where ξi(yi, f(xi)) is the data-fidelity evaluated at the i-th feature vector.

Using the defined notations above, the GBM minimizes the loss function by calculating

the steepest descent to the objective function defined in Equation (4.2), where the steepest

gradient is determined with line-search on the best base learner parameter set γ̂m.

The following research explores the possibility of improving the boosting method per-

formance from many perspectives [213].

• Introduce a learning rate λ to the updating equation of f(x): fm+1(x) = fm(x) +

λρmbγm(x). Multiplying λ provides the damping of controlling the rate of descent

on the error surface.

• Sampling without replacement from the dataset before the gradient calculation step

gives stochasticity to GBM and greatly improved the performance of the algorithm.

• Using ANOVA decomposition can restrict the depth of the trees, which further con-

trols the order of approximations of GBM: f(x) =
∑

i fi(xi) +
∑

ij fij(xi, xj) +∑
ijk fijk(xi, xj, xk) + · · ·

Specifically, GBMs can be turned into probabilistic predictors when applying quantile

distributions to the response variable. The gradient calculation of τm changes to the quantile

pseudo-redisual τm = βξ(yi ≥ f(xi)) − (1 − β)ξ(yi ≤ f(xi)), where β =
∑n

i=0 ωiξi(yi≤q)∑n
i=0 ωi

and q denotes the weighted quantile. With the GBM prediction label of the defined quantile,

given a test sample x̂i, I can obtain the confidence interval σŷi along with the prediction ŷi.
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4.3.2 Traveling Salesman Problem with Time Windows (TSP-TW)

The ALS problem involves landing sequencing and landing scheduling, which is a dis-

crete optimization problem in nature. Combinatorial optimization tackles discrete opti-

mization problems from the intersection of combinatorics and theoretical computer sci-

ence. Combinatorial optimization is widely utilized to solve tasks like resource allocation

and scheduling for transportation and supply chains. TSP-TW is a classical combinato-

rial optimization problem [215]. The original definition of TSP-TW aims at finding the

optimal tour that minimizes the length of the tour and visits each node once within the

specified time window [li, ui], where li and ui are the lower and upper bound for visiting

time of node i. The bounded time windows set time constraints to the agent traveling within

the node graph, and mark the significant difference to classical TSP problems. TSP-TW

has been applied to bus scheduling and delivery systems [215]. In this work, I propose to

use TSP-TW for ALS and incorporate the machine learning predicted aircraft ETAs into

the constraints of TSP-TW.

Define an undirected graph G = (V,A) with a finite set of nodes, V = {0, 1, . . . , n},

and a finite set of edges, A = {(i, j)|i ̸= j, i, j ∈ V }. TSP-TW determines the time

ti that the agent visits node i ∈ {0, 1, . . . , n}. Meanwhile, an additional variable, tn+1,

is introduced to represent the completion time of the tour, as the agent has to return to

node 0 at the end of the tour. A distance matrix, tij , records the shortest distance between

each node pair, which can be further treated as the scalar transformation of time distance

between node pairs [216]. Mathematically, the classical formulation of TSP-TW is shown

in Equations (4.3) to (4.8).

min tn+1 (4.3)

subject to
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ti − t0 ≥ t0i i = 1, 2, . . . , n (4.4)

|ti − tj| ≥ tij i = 2, 3, . . . , n; 1 ≤ j < i (4.5)

tn+1 − ti ≥ ti0 i = 1, 2, . . . , n (4.6)

ti ≥ 0 i = 0, 1, . . . , n+ 1 (4.7)

li ≤ ti ≤ ui i = 1, 2, . . . , n (4.8)

To solve TSP-TW, there are several methods spanning from mathematical programming

approaches to heuristic approaches. Mixed Integer Linear Programming (MILP) techniques

are commonly used approaches to solve TSP-TW. Despite the difference between problem

setups and applications, researchers propose various methods to solve TSP-TW with MILP

for up to 200 clients [217; 216; 218]. Additionally, constraint programming methods are

proposed to develop both exact [219] and heuristic [220] solvers for TSP-TW.

min tn+1 (4.9)
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subject to

ti ≥ t0i · y0i i = 1, 2, . . . , n (4.10)

ti − tj + (ui − lj + tij) · yij ≤ ui − lj ∀i, j = 1, 2, . . . , n : i ̸= j (4.11)
n∑

i=0

yij = 1 j = 1, 2, . . . , n (4.12)

n∑
j=0

yij = 1 i = 1, 2, . . . , n (4.13)

ti + ti0 ≤ tn+1 i = 1, 2, . . . , n (4.14)

li ≤ ti ≤ ui i = 1, 2, . . . , n (4.15)

yij ∈ {0, 1} ∀(i, j) ∈ {(i, j) : i, j ∈ 0, 1, ..., n} (4.16)

ti ≥ 0 ∀i = 0, 1, ..., n+ 1 (4.17)

In this work, I introduce the minimum separation time (MST) into the constraints of

the TSP-TW model (Equations (4.9) to (4.17).). The objective is to minimize the total

landing time for all aircraft. ui and li denote the earliest and latest time for aircraft i to

land, respectively. ui − li indicates the maximum allowed flight time of aircraft i, which

can reflect the aircraft conditions (e.g., fuel, pilot fatigue level, etc). yij is the adjacency

matrix, defined as,

yij =

{
1, if aircraft j lands right after aircraft i,

0, otherwise.
(4.18)

Equation (4.11) describes the constraint on the separation requirement between two

consecutive intermediate aircraft. tij denotes the MST from aircraft i to aircraft j. Sec-

tion 4.3.3 will discuss the method used to incorporate GBM predicted MST into tij . As

MST depends on the wake turbulence generated by the leading aircraft, the formulation is

an asymmetric TSP-TW problem, indicating tij ̸= tji. The time window for the agent to

96



visit a node corresponds to the specified time range for the aircraft to start to land, consid-

ering the fuel consumption and aircraft dynamics. Equations (4.10) and (4.14) guarantees

that the smallest and largest ti values. Equations (4.12), (4.13) and (4.16) ensure that each

aircraft will land exactly once. Equation (4.15) introduces the pre-determined time sched-

ule of each aircraft. In practice, I solve the model in Equation (4.9) with GLPK solver

[221] and Python Optimization Modeling Objects (Pyomo) package [222].

4.3.3 Incorporating Uncertainties of MST Constraints to TSP-TW

As I reviewed earlier, there are tremendous uncertainties associated with the estimated

arrival time and minimum separation time (MST). Thus, the proposed study will include

uncertainties in the landing scheduling problem to ensure confidence.

For each successive landing aircraft pair (i, j), GBM with weighted quantile gives the

predicted landing time distributions for variable ti and tj from real-world data. It is as-

sumed that arrival time for landing aircraft follows i.i.d. Gaussian distributions. The MST

is defined as the difference between the two arrival time for the two aircraft (i, j). Thus,

the MST can be expressed

tij ∼ N (Tij, σij) (4.19)

where Tij is the referenced MST between aircraft i and j by the related authorities [1].

σij =
√

σ2
i + σ2

j represents the uncertainty of MST from the quantified uncertainties (stan-

dard deviation) from the arrival time of the two aircraft (i, j). The major reference values

of Tij are listed in Table 4.1.
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Table 4.1: Tij: Minimum Required Time-Space (s) Used by Arrival Manager [1].

Trailing Aircraft

Leading Aircraft

Heavy B757 Large Small

Heavy 82 118 118 150

B757 60 64 64 94

Large 60 64 64 94

Small 60 64 64 94

Given a fixed spacing conflict probability Pc, the MST between landing aircraft i and

j, ˇ̌tij can be calculated,

ˇ̌tij = Φ−1
tij
(Pc) (4.20)

where ˇ̌tij forms the separation constraints in Equation (4.9). By Equation (4.20), the min-

imum allowable separation time between two successive landing aircraft pair (i, j) is ob-

tained as ˇ̌tij . It is worth pointing out that ˇ̌tij is different from ˇ̌tji, since the MSTs are

significantly impacted by the leading aircraft. Additionally, the predicted mean values of

estimated landing times µi and µj are included in the upper and lower bound (ui and li) of

Equation (4.11) and Equation (4.15).

In this work, I aim to predict the arrival time from 200 miles of the TMA, and the

aircraft can adjust the speed in the en-route phase to reach the scheduled arrival time. The

fuel consumption can be limited to a low level if the scheduled arrival time is constrained

to a time window around the optimal speed. Thus, fuel consumption is also considered

in the constraints. I incorporate the fuel consumption constraints into the calculation of

upper bound ui and lower bound li of the time window constraints, adjusted based on the

distribution of tij .
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Figure 4.3: Proposed Machine Learning-Enhanced Optimization Model for Aircraft Land-

ing Scheduling. The Aviation Source Data Are Obtained from the Sherlock Data Ware-

house and Processed into the Well-organized Tabular Dataset. The Boosting Model Takes

the Tabular Dataset and Fits into Base Learners Sequentially, Where the Residuals Are

Concatenated for the Best Set of Base Learners. The Boosting Model Predicts the Distri-

bution of the Landing Time Difference Between Two Successive Flights and Formulates

the TSP-TW Constraints for ALS.

The complete ALS procedure is shown in Section 4.3.3. GBM is trained with real-world

air traffic data, to predict the estimated aircraft landing time with associated uncertainty in-

tervals. First, a look-ahead horizon is defined to determine the rolling time window for

scheduling. For instance, the TMA ranges from 100 nautical miles to 200 nautical miles

from the destination airport. The detected number of aircraft in this area is n. The max-

imum number of aircraft to be scheduled is constrained to nmax to limit the computation

complexity for real-time implementation. If n ≥ nmax, the first nmax aircraft is selected
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and performs the landing scheduling, otherwise select all the aircraft in the current horizon.

The trained model is used to predict the arrival time of all the affected aircraft. Then the

scheduled arrival time is calculated using the algorithm described above.

4.4 Empirical Data Analysis

In this section, I first investigate several flight delay scenarios via real-world aviation

flight recordings. Through the investigations, I discover that the holding pattern is one of

the major impact factors leading to flight delays. I propose to explicitly include safety-

related flight event counts as the features for GBM to demonstrate effectiveness. A short

description of the flight track and flight event data is given.

4.4.1 Investigation on Flight Delays

Figure 4.4 shows the relevant time spent from three distance intervals ([200, 100], [100, 40], [40, 0]

nautical miles) away from the terminal. I obtain and visualize the flight track data from

Sherlock Data Warehouse (SDW) [3]. SDW is a distributed big data platform for data

visualization to support air traffic management research. Sherlock includes a database, a

web-based user interface, a few data visualization tools, and other services. The flight data

is stored in the Integrated Flight Format (IFF). It includes all raw data plus the derived

fields such as flight summary, track points, and flight plan. The flight summary is a general

description of the flight which contains flight time, flight call sign, aircraft type, origin,

and destination information. The flight track points are the record of real flight operations.

It includes the ground-measured aircraft position in both the spatial and temporal aspects.

The format of flight track data in SDW and conversion between WGS84 coordinates to

absolute distance has been discussed in previous work [175].
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(a) Aug 1st, 2019@13:20 - 13:45 (b) Aug 8th, 2019@13:20 - 13:45

Figure 4.4: Flight Landing Progress Recording During Busy Hours. A Comparison Be-

tween Two Consecutive Mondays. Both Days Present Normal Weather Conditions.

In Figure 4.4(a), I visualize the landing aircraft between the time window 13 : 20 and

13 : 45 on Monday, Aug 1st, 2019, during which severe landing flight delays happened. For

reference, I also visualize the normal flight landing process of the next consecutive Monday

in Figure 4.4(b). During the given time window, 17 flights entering the 100 nautical mile

range from the terminal are captured by the surveillance radar. Figure 4.4(a) shows flight

delay starts at the 5-th flight.

I draw the complete tracks for 3 landing flights (DAL1276, DAL3053, DAL2526) com-

ing from the northeast towards an east landing, and 7 landing flights coming from the north-

west towards an east landing. In Figure 4.6 and Figure 4.7, the diamond marks represent

the location of reaching 200, 100, 40 NM from the airport center. I gain valuable insights

from Figure 4.6 and Figure 4.7, a) holding command is the common practice during ALS,

and the flight receives a holding command loop around in the airspace; b) holding pattern

contributes to the long arrival time within the TMA, and can last for various period; c) hold-

ing patter usually happens when the aircraft is in TMA range [100, 40]NM, where FCFS

rule takes effect for air traffic control.

101



Figure 4.5: Flight Tracks for Landing Aircraft in Figure 4.4(a).

It’s obvious that holding in the congested near terminal airspace poses a safety concern

to air traffic operations, which motivates our proposed method to perform from an extended

TMA. In this work, I propose to do ALS from an extended TMA, such that an early landing

scheduling can be issued. By doing this, I can alleviate the near terminal airspace complex-

ity, and landing aircraft can adjust the speed profile to account for the issued arrival time,

over 100NM away from the terminal.
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(a) DAL1276 (b) DAL3053 (c) DAL2526

Figure 4.6: Landing Aircraft Coming From the Northeast for West Landing.
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(a) DAL2463

(b) SWA237

(c) SWA1289

(d) DAL2454

Figure 4.7: Landing Aircraft Coming From the Northwest for West Landing.
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4.4.2 Aviation Data Mining

The aviation data used in this work are obtained from the SDW, where the flight tracks

and flight event recordings are of interest.

Flight Track Recordings

The flight track data takes the standard Integrated File Format (IFF) for aviation standards.

The IFF flight track data contains the processed raw flight data collected from FAA facilities

across the United States territories, as well as some derived features such as flight summary.

I use IFF flight track data from the FAA Atlanta Air Route Traffic Control Center (ARTCC

ZTL). ARTCC ZTL covers airspace across Alabama, Georgia, South Carolina, Tennessee,

and North Carolina. For a better illustration of ARTCC ATL, Figure 4.1 shows the flight

tracks recorded in ARTCC ZTL.

IFF flight track data contains the flight operational features (e.g., flight plans, flight

callsign), positional features (e.g., coordinates, speed, course), and flight identifiers/codes

(e.g., Beacon code, operations type). As discussed in previous sections, I are interested

in the features that can represent the status of the target aircraft, as well as the nearby

airspace complexity. I select and construct a proper set of features for the prediction of

landing aircraft arrival times, as shown in Table 4.2. These features show an impact on

the prediction performances. The aircraft type is obtained from the Sherlock data. I use

latitude, longitude, and altitude as the spatial features, each coordinate is associated with

a timestamp. I also round the timestamp to full hours with the assumption that the hours

of operation will impact the aircraft’s landing time. Additionally, I count the number of

aircraft ahead or behind the target aircraft as the indicators for airspace complexity measure.

The airspace complexity largely impacts the workload of the controller, which further leads

to potential flight delays due to ATC.
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Table 4.2: IFF Flight Track data: Processed Features for GBM

Feature Group Feature Name Descriptions

Flight acType Type of the aircraft

Spatial Latitude Latitude

Longitude Longitude

Altitude Altitude

Distance Distance to the destination

Temporal
Time Timestamp

Hour Round to the nearest full hour

Speed GroundSpeed Aircraft ground speed

Complexity

AC 10mins ahead Aircraft count 10 mins ahead

AC 10mins behind Aircraft count 10 mins behind

AC 30mins ahead Aircraft count 30 mins ahead

AC 30mins behind Aircraft count 30 mins behind

AC 60mins ahead Aircraft count 60 mins ahead

AC 60mins behind Aircraft count 60 mins behind

Flight Event Recordings

Flight event recordings are also processed and archived in SDW. IFF flight event data are

well-organized tabular format data, instead of time-series coordinates combined with tabu-

lar information in flight track data. The timestamp, location, and flight callsign associated

with the flight event are stored. Table 4.3 shows the detailed descriptions of fifteen different

flight event types recorded in the data. I identify three safety-related flight events. Simi-

larly, I process the feature based on the timestamp that the target landing aircraft reaches

the defined TMA, which has the same levels (e.g., 10min, 30min, 60min). I count the num-
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ber of flight events that happened ahead or behind the target aircraft for each level. In such

a way, I obtain the flight event recordings as the predicted safety indicators for the target

aircraft.

Table 4.3: List of Flight Event Types in IFF Flight Event Data. The Three Safety-Related

Flight Events are EV RRT, EV LOOP, and EV GOA.

Event Type Descriptions

EV TOF
Take off event; defined when the aircraft crosses the

departure runway threshold/aircraft wheels come off the pavement.

EV USER
User event; a flexible event defined by users preference

(e.g., how many times an airplane goes into a center, different volume definitions).

EV MOF
Mode of flight; a measure of aircraft trajectory in the

vertical domain (e.g., descending level, climbing level).

EV INIT Indicator of flight track beginning recorded by the facility surveillance system.

EV TRNS Transition from above/below altitude. Not often used.

EV XING Crossing event; defined when aircraft is crossing between different spaces.

EV RRT
Reroute event; defined when there is a new flight plan issued.

Issuing reroutes significantly increases the workload of the ATC, which poses safety concerns.

EV TOC Top of climb; defined when the aircraft reaches the cruise altitude.

EV TOD Top of descend; defined when the aircraft starts to descend from the cruise altitude.

EV PXCP Unknown event type.

EV LND Landing event; defined when the arrival aircraft passes the arrival runway threshold.

EV LOOP
Holding event; defined when the aircraft is circling around in the trajectory.

Looping in the TMA increases airspace complexity and leads to safety concerns.

EV STOL Holding end; defined when the LOOP event ended.

EV STOP Indicator of stopping flight track recording by the surveillance systems.

EV GOA
Go around event; defined when the aircraft aborted landing in final approach

or after touchdown. Go around is a major safety concern.
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4.5 Case Study on Scheduling

In this section, I introduce machine learning prediction and flight delay optimization

case studies. First, the performance evaluation metrics are briefly discussed. Then, I ex-

plain the condition-based machine learning predictor for improved performance, where the

processed features are classified based on the number of looping event counts. Last, I show

that the proposed machine learning-enhanced TSP-TW solution can achieve a shorter total

landing time compared to FCFS, for all of the landing aircraft within a time window.

4.5.1 Performance Evaluation Metrics

Proper performance evaluation metrics are required to select the best parameter setup

for the machine learning model. Considering a supervised regression problem, I propose

three cost functions to address various statistical behaviors. Define a predicted label yi and

the ground truth ŷi, I have,

Mean Absolute Error (MAE): MAE is the arithmetic average of the absolute errors be-

tween predicted labels and ground truth labels. MAE is a commonly used metric in fore-

casting and prediction objectives. MAE weighs each sample at the same scale.

MAE =
1

n

n∑
i=0

|yi − ŷi| (4.21)

Root Mean Squared Error (RMSE): RMSE is an alternative to MAE, which share the

same drawbacks. RMSE is sensitive to outliers, where a significantly bad prediction aggra-

vates the overall performance measure. This skews the evaluation results towards overesti-

mating the models’ badness.

RMSE =

√√√√ 1

n

n∑
i=0

(yi − ŷi)2 (4.22)

Root Mean Squared Log Error (RMSLE): In ALS predictions, severe delays can hap-
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pen due to various reasons, which are treated as outliers in data-driven prediction. These

outliers are unlikely to be captured by predictors and result in overestimating of model’s

badness. This can be misleading. I propose to use RMSLE, as shown in Equation (4.23).

RMSLE is viewed as the RMSE of log-transformed prediction and log-transformed ground

truth. RMSLE is preferred as I need to avoid over-penalizing severe delay scenarios, which

helps select the best model parameters.

RMSLE =

√√√√ 1

n

n∑
i=0

[log(yi + 1)− log(ŷi + 1)]2 (4.23)

4.5.2 Prediction Analysis

The model development/training phase has two objectives, predicting the ETA distri-

butions with GBM and formulating the predicted values into optimization for the demon-

stration of case studies. The first part requires model-tuning efforts. I tackle this from three

aspects,

Table 4.4: GBM Parameters and Search Spaces for Grid Search

Parameters Definition Search Space

learn rate The learning rate for the optimizer. [0.05, 0.1]

max depth The maximum tree depth. [7, 8, 9, 10, 11, 12]

sample rate
The sample without replacement rate

along the feature dimension.
[0.8, 1.0]

col sample rate
The sample without replacement rate

along the sample dimension.
[0.5, 0.6, 0.7, 0.8]

Grid Search Grid search is common practice to fine-tune parameterized machine learn-

ing predictors, to find the best combination of modifiable parameters. For the GBM used in
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this work, I am especially interested in the following parameters, a) the learning rate con-

trolling the step size of optimization (efficiency); b) the maximum tree depth to control the

order of approximations (accuracy); c) the data sampling rate along the feature and sample

dimension (stochasticity). More discussion of b) and c) is in Section 4.3.1. I list the search

space of this study in Table 4.4. Refinement of search spaces can certainly improve the

predictor performance and is beyond the scope of this study.

Domain Knowledge Domain expertise and human intelligence can benefit data-driven

models. In Section 4.4.1, I have discovered the impact of holding patterns on flight de-

lays. The holding pattern is recorded as a looping event in the IFF flight event recordings.

Airspace complexity is represented by the number of nearby aircraft of the target landing

aircraft. As discussed in Section 4.4.2 and Section 4.4.2, I implicitly include the airspace

complexity measurements and flight event number that happened within the certain time

range of the target landing aircraft.

Divide-and-Conquer The renowned strategy Divide-and-Conquer, or Divide-and-Rule

stands for gaining and maintaining supremacy divisively. I propose conditional GBM,

which pre-filters the data samples based on the number of looping event counts, to gain

exceptional prediction capability. Figure 4.8 shows the statistical analysis between the

number of flight events and the arrival aircraft landing time within the [100, 40]NM range.

Figure 4.8(a) shows a non-monotonic trend, where an obvious drop of looping events is pre-

sented when the arrival time is greater than 2, 500 seconds. However, from Figure 4.8(b), I

notice there are approximately three stages along with the increase of looping event counts.

I separate the entire dataset into three parts and trained with separate GBM models. I

discuss each of the separations here,

• Stage I (EV LOOP ≤ 10): In this stage, minimum flight event conditions exist, where
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(a) Looping Event Counts v.s. Time Spent from

100NM to 40NM

(b) Averaged Time Spent from 100NM to 40NM

v.s. Looping Event Counts

Figure 4.8: Data Analysis to Identify the Reasonable Conditions for Conditioned Predic-

tion. The Legend Stands For The Number Of Looping Events 600/1, 800/3, 600 Seconds

Ahead/Behind The Current Timestamp.

the arrival time duration is near optimal. At this stage, the arrival time increase is not

significant.

• Stage II (10 < EV LOOP ≤ 40): The steady growth stage. At this stage, the arrival

time duration is steadily growing with the increase of looping event counts.

• Stage III (EV LOOP > 40): The rapidly increasing stage. The arrival time sharply

increases when the number of looping events increases.

I collect and process the flight track and flight event data for August 2019 at ARTCC

ZTL. A total of 28, 181 well-structured arrival flight information are obtained, with the

feature set described in previous sections. Then, the data is filtered for three stages based

on the EV LOOP 600 feature. For each stage, I further separate the data into training,

validations, and testing set. The training and validation sets are used for GBM training and

fine-tuning, and the testing set is used for prediction case studies.
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In Table 4.5, I evaluate the performance of the three-stage model using the testing

dataset and compare it with the unconditional method without considering different growth

behaviors. Including the flight event-related features boost the model performance by a

large margin, while the conditioned predictor further refines the results. Figure 4.9 shows

the evaluation results in comparison for unconditioned predictions and conditioned predic-

tions. Figure 4.10 shows the corresponding variable (feature) importance for conditioned

predictors. For stage I, the conditioned prediction doesn’t significantly improve the predic-

tion accuracy. At this stage, the number of looping events is not a critical variable for the

GBM. The ground speed is prominently dominant in the stage I predictions. However, for

stage II and stage III, the conditioned predictor greatly enhanced the performance. At stage

II, the type of aircraft shows nearly the same variable importance as the ground speed.

Notably, at stage III, the ground speed turns into a less critical factor contributing to the

overall model performance. The airspace complexity factors, geological information, and

flight safety-related events are essential.

Table 4.5: GBM Evaluation Results on the Testing Dataset

Model RMSE MAE RMSLE

Predictor w/o Flight Events 118.147 42.139 1.136

Predictor w/ Flight Events 93.784 38.085 1.011

Conditioned Predictor w/ Flight Events 90.944 36.259 0.098

112



(a) EV LOOP ≤ 10 (b) 10 < EV LOOP ≤ 40

(c) 40 < EV LOOP

Figure 4.9: Splitting the Testing Set: Unconditioned Prediction v.s. Conditioned Prediction
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(a) Variable Importance: EV LOOP ≤ 10

(b) Variable Importance: 10 < EV LOOP ≤ 40

(c) Variable Importance: 40 < EV LOOP

Figure 4.10: Variable Importance for Three Divisive Predictors. The Importance of the

Speed Profile Keeps Decreasing with the Increase in the Number of Looping Events. In

(C), the Dominant Variables Are Airspace Complexity, and Safety-related Event Counts.
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4.5.3 ALS Case Studies

In this section, I discuss real-world demonstration case studies. At first, I define the

problem horizon by visualizing and analyzing the real-world data. Figure 4.11 shows the

scatter plot of time spent for approaching flights around KATL TML on Aug 1st, 2019. The

increased scatter density indicates the business of aviation operations at a certain times-

tamp. The Y-axis denotes the flight time from 100NM to 40NM away from the terminal

TMA. It’s clear that the normal time spent should be lower than 1, 000s, which are also

cross-referenced by Figure 4.2(a) and Figure 4.4(b). Based on these, I conclude that there

are three severely delayed time ranges, starting from 13:00, 16:00, and 20:00, approxi-

mately. In this demonstration, I present two case studies. In the first scenario, I take 9

successive landing flights from 13:20 to 13:45 and show the trajectories in Figure 4.12(a).

These landing flights mostly follow two groups of landing procedures. The first group of 6

flights came from the west side of KATL for a west landing on KATL runway 26R, while

another group of landing aircraft came from the northeast for the same west landing at 26R.

Similarly, in the second case study, I set the time duration starting from 16:00 to 16:30.

Case II has three groups of landing procedures, where flight EDV3441 and DAL2794 ma-

neuvered for west landing ahead of time. The selection of time windows is based on the

availability of aircraft landing on the same runway, and the scalability of the TSP-TW

solver.
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Figure 4.11: Scatter Plot of Flight Times Around KATL TMA on Aug 1st, 2019. This

Figure Shows That There Are Three Severe Delay Periods, Starting from Around 13:20,

16:00, 20:00, Respectively.

(a) Case Study I: Landing Trajectories on

KATL Runway 26R

(b) Case Study II: Landing Trajectories on

KATL Runway 26R

Figure 4.12: Visualization of Landing Trajectories for Two Case Studies on KATL Runway

26R: a) 13:20 to 13:45, Aug 1st, 2019; b) 16:00 - 16:30, Aug 1st, 2019
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From GBM, I obtain the distributions for successive landing aircraft pair ti ∼ N (µi, σi),

tj ∼ N (µj, σj). To determine the Tij for various aircraft types, I refer to FAA Order 7360.1

[2]. Following Equation (4.19), I obtain the distribution of tij . Given the separation viola-

tion probability, I can estimate the probability intervals with numerical tools. In this way,

I obtain ˇ̌tij , ui, and li from the learning of historical data. Then, I incorporate the learned

parameters into the formulation of TSP-TW and solve with Python optimization solvers

[222]. It’s worth pointing out that, the aircraft involved in our case studies are classified as

medium size aircraft. Based on Table 4.1, I choose the Large-Large minimum separation

threshold, 64 seconds, for our case studies. I set the number of landing aircraft to 9 for

both cases due to the computational complexity, which corresponds to at least ∼ 10min

optimization horizon in extreme scenarios. The exploration of other efficient solvers for

MILP is beyond the focus of this study.
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Table 4.6: The Detailed ALS Results for Two Case Studies. The Determination of the Case

Study Windows Has Been Discussed. Depending on FAA-Order 7360.1 [2], All Of The

Aircraft Involved In These Case Studies Belong To The Medium Weight Class. Referring

to Table 4.1, I Use The Large-Large Tij to Be Fixed at 64. All Of the Unix Timestamps

Contained In The Data Have Been Transformed To The Local Time Zone At ARTCC ZTL

(UTC-4).

Case Study I: 13:20-13:45 Case Study II: 16:00 - 16:30

Entering

Sequence
Callsign AcType Tij/s

Landing

Sequence

Landing

Time/s
σij/s Callsign AcType Tij/s

Landing

Sequence

Landing

Time/s
σij/s

1 DAL2617 B712 64 3 13:47:52 4.45 DAL1954 A321 64 2 16:30:12 18.11

2 DAL1524 B752 64 6 13:52:44 21.91 DAL1676 MD88 64 1 16:28:45 1.13

3 SKW3742 CRJ2 64 1 13:44:47 2.95 EDV3441 CRJ9 64 3 16:43:12 16.11

4 EDV5373 CRJ7 64 2 13:46:19 10.09 DAL2212 B712 64 8 17:23:42 26.33

5 DAL1276 MD88 64 8 13:55:16 11.63 DAL2794 B739 64 4 16:45:04 34.25

6 DAL3053 MD88 64 7 13:54:03 6.44 DAL2136 MD90 64 5 17:01:55 3.16

7 DAL2846 MD88 64 4 13:49:10 3.25 DAL1546 A321 64 7 17:20:37 90.57

8 DAL2825 B738 64 5 13:50:57 31.54 DAL2028 A321 64 6 17:14:13 143.43

9 DAL2526 MD88 64 9 13:57:32 27.21 DAL3004 B739 64 9 17:29:28 146.37
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(a) Case Study I: Proposed Method v.s. FCFS

(b) Case Study II: Proposed Method v.s. FCFS

Figure 4.13: Experiment Results for Two Case Studies with Landing Flight: a) 13:20 to

13:45, Aug 1st, 2019; b) 16:00 - 16:30, Aug 1st, 2019. Looking At the Landing Time of

The Last Aircraft In This Time Window, It’s Obvious The Proposed Method Takes a Shorter

Time Than The Actual Landing Time Recorded in the Data, At Which ATC Applies The

FCFS Rules.

I list the detailed landing scheduling results in Table 4.6 and Figure 4.13. Table 4.6 gives

the original sequence of landing aircraft entering the 100 NM TMA, and their predicted

corresponding landing sequence, and estimated landing time from the proposed method.

The MSTs between two successive landing aircraft comply with FAA regulations while in-

corporating additional uncertainties learned from aviation history recordings. Figure 4.13

compares the total landing time between the FCFS rule (history recordings) and the pro-
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posed methods. As mentioned in Section 5.4, the straightforward objective is to achieve

a shorter total landing time for all the landing aircraft heading the same runway. In Fig-

ure 4.13, I color the optimized landing time in red, and the total landing time for all the

aircraft is the landing time difference between the first landed aircraft and the last landed

aircraft (i.e., the time duration between 13:44:47 for SKW3742 and 13:57:32 for DAL2526

is 12 minutes and 45 seconds).

4.6 Conclusions

In this work, I propose a novel machine learning-enhanced aircraft landing schedul-

ing algorithm, which provides a new conceptual design to avoid significant delays with

safety constraints. First, the aircraft landing scheduling algorithm is formulated into a

time-constrained traveling salesman problem. Being machine learning-enhanced, I in-

corporate machine learning-predicted results into several safety-related constraints of the

time-constrained traveling salesman problem formulation. Regarding the machine learn-

ing prediction algorithm, I propose explicitly introducing nearby flight event situations and

airspace complexity measurements into the conditional data-driven learner, which greatly

enhances the prediction accuracy. The variable importance analysis suggests that aircraft

type, ground speed, distance to destination, and airspace density are key factors affecting

arrival time prediction accuracy. Finally, I evaluate and compare the performance of the

proposed method through real-world case studies during peak hours at ARTCC ZTL. Vari-

ous uncertainties from aircraft, speed, and airspace density are included. The key concept is

to optimize the scheduling using enhanced operational predictability combining advanced

instruments (e.g., ADS-B) and data analysis (e.g., arrival time prediction model in this

study).

Insights A few insights are discussed based on the current investigation, and a few

potential research directions are suggested.
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• The scalability of this work can be improved. In extreme cases, the current optimiza-

tion horizon corresponds to a planning horizon of ∼ 10mins. Dynamic scheduling

with rolling window horizons can be integrated with the current method to extend the

proposed method for a longer planning horizon. The performance of this extension

can also be evaluated.

• The proposed study focuses on the methodology demonstration and only uses limited

data at one center. A significant amount of data collection and validation at multiple

airports is required.

• Weather is an important factor affecting arrival time prediction. The proposed model

did not include the weather feature explicitly. The complexity measure indirectly

reflects some weather conditions. Additional theoretical work and validation are

required for explicit weather feature inclusion.

• Another important research direction is multi-runway aircraft landing scheduling,

which can be especially important for ATC of major international airports. The

multi-runway scheduling problem is more challenging, and significant further study

is needed. Both hierarchical and concurrent optimization can be used based on our

beliefs. Performance evaluation and scalability need to be balanced for decision sup-

port.
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Chapter 5

AIR TRAFFIC CONTROLLER WORKLOAD PREDICTION USING

CONFORMALIZED DYNAMICAL GRAPH LEARNING

5.1 Introduction

The rapid advancement of intelligent vehicles substantially reduces the operational ef-

fort from the individual user level but escalates the system-level complexity of real-time

decision-making and corporate planning due to the dynamically changing environments,

time restrictions, and tactical constraints [223; 224; 225; 154]. The exponential growth

of computation power enables swift individual decision-making and can lead to serious

task overhead on the system level, especially during certain unexpected events (i.e., traffic

flow restrictions, communication errors, and severe weather). In complex semi-automated

systems (i.e., vehicle piloting [226; 227; 228; 229; 230; 231]). Prediction and assessment

of the cognitive workload of operating such complex systems have long been regarded as

critical research objects [232; 233; 234; 235; 236]. The cognitive workload is defined as

the mental resources required to accomplish task demands placed on the human operator.

Workload overhead can occur when the demands exceed the human operator’s capacity and

can lead to efficiency drop and operational safety concerns. Various factors such as level

of automation, transparency of automation, and task complexity have been identified as

factors that can influence cognitive workload [237; 238; 239].

Air traffic control (ATC) is a crucial part of aviation safety, ensuring that aircraft are

safely guided through the airspace and landed or taken off from airports. Air traffic con-

trollers (ATCos) are responsible for managing the flow of aircraft, communicating with

pilots, and making critical decisions in real-time to ensure the safety of all involved. As
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air traffic continues to increase [100], it puts more pressure on ATCos, who already have

highly demanding and stressful daily routines [240; 149; 241]. Quantifying the effort made

to meet these task requirements lead to the concept of cognitive workload as an air traffic

controller, which denotes the subjective qualitative measure of perception demand placed

by the current air traffic situation [242; 154; 234]. Moreover, proper workload manage-

ment and scheduling are vital to ensure ATCos can perform their duties effectively and

faultlessly without being overwhelmed. Human performance is a crucial factor in ensuring

the safe operations of the National Airspace System (NAS). In the past, human operators

have been identified as significant contributors to accidents involving air carrier operations

governed by the 14 Code of Federal Regulations (CFR) Part 121, which covers commer-

cial airliners frequently used by the public [243]. For instance, around 80% of the 446 air

carrier accidents that occurred between 1997 and 2006 were attributed to personnel-related

factors, while environmental factors were cited in approximately 40% of the accidents and

aircraft-related factors in 20% [244]. Workload prediction can help in several ways, such

as ensuring that enough ATCos are available to manage the traffic, preventing fatigue and

burnout, optimizing shift schedules, and improving overall efficiency. By accurately pre-

dicting the workload, air traffic organizations can ensure that they have the necessary re-

sources and personnel to maintain a safe and efficient air traffic system [245; 246; 247]. All

of these objectives are based on reliable ATCo cognitive workload level modeling and pre-

dictions. Moreover, artificial intelligence (AI)-enabled aviation human factor studies have

been identified as one of the core elements of AI taxonomy by related authorities [5; 6],

where ATCo workload management is a key dedicated objective.

A tremendous amount of research has been done to understand the impact factors and

demand patterns that drive the workload of a controller, such that a better workload pre-

diction performance can be discovered. Two types of factors are studied extensively in the

literature, (a) subjective features including ATCo mental stress, fatigue level, communica-
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tion difficulties, and situation awareness [248; 249; 250; 251]; (b) objective factors such as

traffic and airspace complexity measures (i.e., operational errors (OE)), abnormal events,

level of automation, and weather situations [13; 252; 253; 254; 255; 256; 257]. In order

to collect objective features for workload prediction, researchers have proposed to collect

human-subject data (i.e., eye movement, communications, heartbeat rates, and Electroen-

cephalography (EEG) signals) [258; 259; 260], in an intrusive and non-intrusive sense. On

the other hand, objective features can be directly obtained from computer flight record-

ings and operational recordings. However, some specific objective features need post-hoc

processing (i.e., loss of separations (LoS), OEs). Specifically, in this work, I am inter-

ested in objective features since it is very unlikely to collect real-time biological features

(i.e., EEG/ECG signals or heartbeat rates) in the near future due to privacy concerns and

regulatory requirements. Moreover, I discover that the existing model on workload predic-

tion is mostly using handcrafted features, even if a graph data structure and simple neural

networks (i.e., minimum spanning trees) have been proposed [252]. To the best of the

authors’ knowledge, there is no investigation on utilizing advanced data-driven learning

techniques (i.e., graph neural networks (GNNs)) for workload prediction possibilities that

directly leverage the spatiotemporal relationships contained in the traffic data and airspace

layout.

In this work, I investigate the possibility of using the graph neural network to predict

ATCo cognitive workload levels, with an additional post-processing technique, namely

conformal prediction, to boost the accuracy with a set of prediction labels. The data is

collected by conducting experiments with retired ATC participants who have experience

at FAA Radar Approach Control (TRACON) facilities, under three different scenarios, (a)

baseline conditions; (b) high workload nominal conditions; (c) high workload off-nominal

conditions. The major difference scenarios are the peak traffic densities and the presence of

off-nominal events (i.e., runway switch, communication errors, etc). The simulation sce-
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nario is limited to a few Phoenix approach procedures for a duration of 25 minutes for each

scenario. A detailed description of the experimental setup is in Section 5.3. Specifically,

the ATCo workload I investigated is the executive (R-side) controllers’ workload [245].

Predicting controller workload levels can be viewed as a pattern recognition problem [253]

and thus is suitable for data-driven learning algorithms. In this work, the problem of pre-

dicting workload based on the spatiotemporal layout of airspace is viewed as a time-series

dynamically evolving graph classification task. Being time-series classification, I propose

to input multiple historical timestamp graphs into the model for the prediction of workload

level at the next timestamp. Also, the spatiotemporal layout of the graph structure varies at

each timestamp (i.e., number of nodes, graph edge connections), resulting in a dynamical

graph classification problem.

Our contributions are summarized as,

• This chapter investigates the possibility of predicting executive controller workload

during approach scenarios directly from the recorded air traffic data with graph neural

networks and discovers that traffic conflict is a nontrivial contributor to improving

workload prediction capabilities.

• I propose to formulate the ATCo workload prediction task into a dynamical time-

series graph classification problem and show that the Evolving Graph Convolutional

Network (EvolveGCN) can achieve a higher prediction accuracy than both statisti-

cal (i.e., regression, handcrafted features) and classical learning methods (i.e., MLP,

GCN). I show that graph neural networks have great potential for predicting con-

troller workload with varying spatiotemporal airspace layouts.

• A moving window approach is proposed to build the correct input-output matching

from the collected sparse workload data. The moving window size represents the

temporal length of the historical information used in workload prediction. The se-
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lection of parameters can be alternated to fit into the operational need. The data

structure formulation transfer complex structured traffic features into a lucid format

for research and development purposes.

• To further improve the classification accuracy of the experimental data. I explore

conformal prediction to expand the prediction as set predictions. I show that con-

formal prediction has better ground truth label coverage by giving multiple possible

predictions as indicators of model uncertainties. I suggest that conformal prediction

is a valuable machine learning post-hoc processing tool to boost performance further

as well as indicate prediction uncertainties.

The rest of the paper is organized as follows. First, Section 5.2 reviews related stud-

ies on air traffic controller workload prediction. I first introduce the impact factors of

ATCo workload in Section 5.2.1, then list the current practices in predicting workload

Section 5.2.2. In Section 5.3, I introduce the detailed workflow of human-in-the-loop sim-

ulations to collect the traffic data and ground truth ATC workload labels, along with data

analysis of the collected data. Section 5.4 describes the flowchart of the proposed machine

learning framework, from experiment data handling to innovative modeling. The prediction

performance and evaluation of the conformal prediction set are discussed in Section 5.5.

Section 5.6 concludes this chapter by giving limitations of this study and provides future

insights.

5.2 Related Works

Due to the surging number of daily aviation operations, the aviation industry is in ur-

gent need of advanced decision support tools that can accommodate the rapid annual air

traffic growth. Numerous studies have investigated into ATCo workload. It’s an aviation

researchers’ consensus that understanding the impact factors that drive mental workload
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can help improve airspace capacity, thus reducing aviation safety concerns [261; 154; 262].

With meaningful impact factors collected or modeled, predictive modeling is critical to

building an accurate workload prediction algorithm. In this section, I discuss the related

works from two aspects, (1) understand the impact factors that drive the mental workload

in Section 5.2.1; (2) discuss the current practice in predicting ATCo workload from open

literature with a focus on predicting workload from traffic factors Section 5.2.2.

5.2.1 Task Demands and Impact Factors to ATCo Workload

In air traffic control, task demand refers to the level of mental and physical effort re-

quired for ATCos to complete their duties effectively. These tasks are classified as either

primary tasks, which are the core duties required to ensure the safe and efficient flow of

air traffic, or secondary tasks, which are supportive or administrative tasks that support the

primary duties. Primary tasks for ATCos include monitoring the position and movement

of aircraft, communicating with pilots, issuing clearances and instructions, and managing

potential conflicts between aircraft. Secondary tasks include administrative duties such

as filling out paperwork, conducting briefings, and updating flight progress information.

The level of task demand for air traffic controllers varies depending on several factors,

including air traffic factors, airspace complexity measurements, operational constraints,

and ATCo cognitive states during working hours. High task demand leads to increased

workload, which negatively impacts aviation safety. Therefore, understanding the level of

task demand and appropriately managing workload is essential for ensuring that ATCos

can perform their duties effectively and safely. Correctly modeling task demand is viewed

as the prerequisite for workload prediction for a long history. It’s noteworthy to mention

that ATCos workload is not a simple function of task demands; the ATC strategy the con-

troller adapted to meet the increased task demands also provided a feedback loop to ATCo

workload [154]. I discuss each of these aforementioned grouped impact factors separately.

127



Air traffic factors refers to both the aircraft count under the ATCo control and their

spatiotemporal relationships. The number of aircraft under control is viewed as the most

important factor that drives ATCo’s mental workload [263; 264]. A high aircraft count leads

to higher communication frequency and a higher possibility of safety events, resulting in a

higher mental and physical workload. Traffic density is typically measured in aircraft per

unit of airspace, such as aircraft in unit time and unit airspace sector area. Measurements

of traffic density have been developed based on the averaged vertical/horizontal separation

distances [253], as they directly infer loss of separations. Another research investigates

the necessity to consider flight interactions and flight characteristics, which includes the

changes/variability in heading, speed, or altitude, the pattern of how air traffic flows merges

and separates into a set of air traffic complexity metrics [265; 253; 264; 266; 234]. Their

regression analysis shows subjective workload depends on both aircraft count and other

air traffic complexity measures. Additionally, some other studies also suggest that a lower

aircraft count also can lead to task overload if these aircraft are interacting in a complex

fashion [267; 268].

Airspace complexity factors include the number of routes, altitudes, and restrictions,

which can also impact the workload of ATCos, as they need to monitor and manage multi-

ple variables simultaneously. Airspace-related factors are another key contributor to ATCo

mental workload [269]. Larger airspace size indicates a higher aircraft count and higher

metrics on traffic complexity, while small airspace size reduces conflict resolution options

and higher traffic evolving rates. It is noteworthy to mention another work considering both

the traffic factors and airspace structure complexity and proposes Structural Complexity

Metric (SCM), which incorporates a measure of the organization, hierarchy, and interde-

pendence into the complexity calculation [270]. Furthermore, this chapter suggests using

well-defined ingress and egress points in the airspace to distinguish normal and abnormal

flights based on real-time monitoring.
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Operational Constraints are another major contributor that drives the ATCo workload.

Operational constraints refer to the temporal variability within the operational conditions of

the airspace, as well as the conditions of related technology and equipment. Several factors

are viewed as operational constraints; (1) pilot-controller communications are critical for

maintaining safe aviation operations. Malfunctions of communication devices can disrupt

air traffic control operations. This is known as loss of ratio communication (NORDO)

(2) convective weather conditions, such as thunderstorms or heavy fog. These types of

objective factors can affect air traffic control operations by reducing visibility and creating

unsafe flying conditions. (3) subjective airspace restriction is another type of operation

constraint. The restrictions come from multiple sources, i.e., aircraft holding, no-fly zones,

or special-use airspace [154]. In addition, certain other off-nominal events are considered

operational constraints, i.e, runway switch, and minimum fuel reported [271; 272].

Cognitive states directly contribute to the cognitive task demands of ATCo. To measure

cognitive states, the researchers propose to measure the psychological states of the air traf-

fic controller, including brain activities, eye movements, and heartbeat rates. These states

can be quantitatively measured by sensors signals such as electrocardiography (ECG) sig-

nals, electroencephalography (EEG) signals, galvanic skin response (GSR), blood pressure

(BP), and certain biochemical analysis [273; 274; 275]. However, using intrusive psycho-

logical state measurements is disruptive to controllers’ normal working conditions, as it

creates additional mental stress and discomfort in maintaining ATC operations. Alterna-

tively, computer vision (CV) based non-intrusively psychological state measurements are

proposed to collect distractions, drowsiness, head poses, eye movements, and fatigue levels

[276; 277; 247]. However, these types of measurements can lead to information security

and privacy concerns.

129



5.2.2 Workload Prediction Algorithms

The dynamic density model builds a regression model to find the linear relationships

between traffic complexity factors and ATCo workload. The Dynamic Density metric uses

a combination of traffic density and complexity measures to estimate workload in real-

time, with the goal of providing a more accurate and responsive measure of controller

workload [278]. However, dynamic density metrics fail to consider the human cognitive

workload, which is the primary source of real ATCo cognitive workload. In [264], the

traffic complexity, as well as the airspace complexity of different sections, are considered.

The results show that the airspace factor can actually contribute to workload prediction

in a multi-sector study. Similarly, in [249], the authors find that the ATCo workload is

proportional to the number of aircraft controlled by the enroute sector. They conduct HITL

experiments and found a linear relationship between aircraft count and workload ratings.

However, it’s still difficult to identify the most contributing impact factors to work-

load prediction from regression analysis. The first reason is the multi-collinearity within

these factors. For instance, the number of conflicts depends on the speed, altitude, and

heading variabilities. The complexity of traffic situations, such as traffic density and po-

tential conflicts, also mediate the causal connection between traffic count and workload.

The inter-relationship of these factors makes it challenging to determine the relative im-

portance of each predictor in a regression equation. The second query is the debate on

the linear relationship between these factors and workload ratings. For instance, the ATCo

can alternate control strategies during a certain period to meet the increased task demands.

Additionally, the online processing or post-processing of these factors only considers the

current situations, and there is no inference on ATCo’s intent and air traffic intent informa-

tion. Trajectory prediction from flight plans helps with estimating the workload of ATCos,

where prediction and reduction of trajectory uncertainties can help alleviate ATCo work-
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load [15; 256].

Machine learning algorithms have been adopted for workload prediction. In [279], tree-

based models, and support vector machines are included for workload measurements. The

authors consider both traffic complexity and operational constraints as features and show a

high F1 score of over 0.9. However, these types of works are not dynamically considering

the traffic pattern of the airspace, but still formulate the data as a tabular format, which fails

to address the aforementioned concerns [154]. On the other hand, [236] proposes to use a

3-layer simple neural network to forecast ATCo workload. However, the ATCo workload

in this work is assessed from voice communication data, which fails to model the task

demand factors mentioned earlier. Impressively, direct prediction from the spatiotemporal

air traffic layout is actually proposed decades ago. In [13; 253], the authors propose to

model air traffic at each timestamp into graph-structured data and calculate the second-

order statistics of time-series of graphs as extracted air traffic complexity measurements.

Then a simple neural network is adopted to do classification from these features.

In summary, understanding the factors that drive mental workload has been a challeng-

ing yet unresolved open question for decades. Instead of investigating the linear relation-

ship between impact factors and workload, one should look into the dynamic properties of

these factors and workload. This leads to our study on workload prediction – I model the

spatiotemporal airspace layout into time-series graph structures and propose to use a time-

series learning algorithm to predict workload levels, in consideration of historical dynamic

variabilities contained within the air traffic data.

5.3 Human-In-The-Loop (HITL) Simulations

In this section, I provide an overview and the detailed simulation setup of the Human-

In-The-Loop (HITL) experiment as in Figure 5.1. The scope and objectives will be dis-

cussed. Then, data analysis on the collected data is presented in Section 5.3.3.
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5.3.1 Simulation Overview

The HITL simulation is the first human factor study of our aviation big data project,

which aims at addressing the safety needs and technology solutions for future NAS [280].

The backbone of the project lies in information fusion and uncertainty management for real-

time system-wide safety assurance, where human factors like cognitive workload play a key

role. As mentioned, accurately predicting the ATCos workload can improve operational

efficiency and reduce safety concerns such that aviation authorities can ensure a reasonable

resource allocation and workload management.
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Pop-up window

Human-in-the-loop Simulations Human-in-the-loop Data Analysis

Three 
25min 
KPHX

Approach 
Scenarios

Baseline 
Condition

High 
Workload 
Nominal

High 
Workload 

Off-Nominal

Figure 5.1: Overview of the Human-In-The-Loop (HITL) Experiments. The Left Part

Shows the Atc Simulation Platforms Equipped with a Simple Demonstration of the Graph-

ical User Interface. The Primary Focus of the Simulation Is on the Kphx Arrivals from

Two Directions of Three Pseudo Pilots, with Flight Procedures Including 1 RNAV (HY-

DRR1) and 3 STARs (ARLIN4, BLYTHE5, SUBSS8). THe Pop-up Window Shows Ei-

ther a Workload Question or a Situational Question Every 3 Minutes. The Experiment Has

Three Working Scenarios, with Time Duration of 25 Minutes Each. After Label Interpo-

lation, the Collected Data Will Show the Workload Ratings and Corresponding Aircraft

Densities at Each Timestamp. I Also Obtain the Recurrence Plot (Rp) from Communica-

tion Transcripts as Indicators of System Tendency In Figure 5.2
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Table 5.1: A Short View of the Communication Transcripts Post-processed from Radio

Recordings in HITL Simulation. Three Cut-off Sections Are Listed Here, Which Corre-

spond to Off-nominal Events, (1) Turbulence Reported; (2) No Radio Communications;

(3) Landing Runway Switch. Indicator of Communication Deviations Is Also Shown in the

Right-most Column.

Speaker
Start

Time
Transcriptions

End

Time

Deviation

Indicators

... ...

Speed bird 281 05:26.9
apporach speed bird two eighty-one I am experiencing

motor turbulence at one three thousand
05:30.5 1

PHX approach

(Speed bird 281)
05:34.9 speed bird two eighty-one heavy, roger 05:37.7 1

... ...

PHX approach

(Cumpacity 250)
11:32.8

cumpacity two fifty descending maintain

four thousand one hundred
11:35.4 0

PHX approach

(Cumpacity 250)
11:38.8 cumpacity two fifty four thousand one hundred 11:40.5 1

Cumpacity 250 11:41.8 cumpacity two fifty dropping down to four one hundred 11:44.6 1

... ...

Local south 14:29.1
court this is local south I am switching to runway seven

left and right effect immediately
14:35.9 1

PHX approach

(Local south )
14:38.8 Ok. . . move to runway seven 14:40.7 1

PHX approach

(Ascer 4527)
14:49.8

shuttle forty-five twenty-seven expect dail is runway seven

left turn left in two seven zero maintain five thousand
14:55.1 1

... ...

The primary objective of the HITL experiment is to investigate the correlation between

communication patterns (such as content, volume, and flow patterns) and both controller

workload and human performance. Figure 5.1 gives the overview of the HITL simulation
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process. The simulation contains two arrival flows including four Phoenix in-bound Proce-

dures. The first arrival flow represents flights from the west coast (KLAX, KSFO, KSAN,

KONT, etc), with procedures HYDRR1, ARLIN4, and BLYTHE5. The second flow stands

for arrival flights from the southeast, including KTUS, KELP, and Mexico. SUNSS8 arrival

procedure is used here. The left panel of Figure 5.1 displays the layout of the simulation

environment. Each retired ATCo participant study employs a study within-subjects design

and measures performance across three simulation trials. Each trial spans 25 minutes and

varies in workload level by manipulating two variables, namely traffic density, and occur-

rence of off-nominal events.

Baseline: Baseline trials contain up to 6 aircraft in the airspace at a given timestamp.

There are no off-nominal events in baseline trials. Typically, a moderate workload is ex-

pected.

High Workload Nominal: High workload nominal trials can have up to 20 aircraft

showing up in the current simulation environment. Again, there are no off-nominal events.

High Workload Off-Nominal: In addition to the experimental setup in high workload

nominal trials, high workload off-nominal trials incorporate four off-nominal events during

the 25 min duration. I list the name of these off-nominal events here,

• Turbulence: Moderate turbulence is simulated in several arrival flows. In Table 5.1,

speed bird 281 reported experiencing turbulence at a certain altitude, starting from

05:26.9 of simulation time.

• No radio (NORDO): The pilot has no radio communication with the approach ATCo,

which can happen during a radio failure. In Table 5.1, the KPHX approach controller

repeated the order when the first order at 11:32.8 was not confirmed.

• Runway switch: In this simulation, the landing runway switch from KPHX 25L to

07R. The order is given by the local tower, as in Table 5.1 14:29.1.
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• Minimum fuel: At the end of each simulation trial, the aircraft encountered fuel

issues.

These corresponding timestamps t1, t2, t3, and t4 to apply these off-nominal events is

indicated in Figure 5.2, respectively.

5.3.2 Simulation Setup

HITL is conducted with eight air traffic management system Metacraft facilities located

at the Arizona State University TRACON Simulation Lab, which can be operated as either

ATC terminal radar positions or pseudo-pilot stations. The human controllers are retired

ATCos who have experience with civilian TRACON facilities within the past 15 years but

do not persist possess experience with Phoenix TRACON [240]. Six retired ATCos are

involved in this study. There are also three researchers who act as pseudo-pilots to fly

along the assigned arrival routes during each simulation scenario. Metacraft is the name

of the TRACON radar simulation computer cluster system. It provides ATC functions to

maneuver the aircraft in a simulation environment, including altitude, speed, and heading.

Metacraft collects and maintains data logs such as spatiotemporal tracks, LoS events, and

distance measures.

During each 25 minutes experiment trial, the pop-up window shows a questionnaire

probe every 3 minutes, asking either a question on workload rating or situational aware-

ness questions. Specifically, the workload rating questions are showing three times at exact

3 min, 12 min, and 21 min timestamps. Figure 5.1 right visualize the collected data for

one participant. Features include minimum separations (traffic conflict), number of aircraft

(traffic density), and workload ratings are reported. A recurrence plot indicating communi-

cation tendency is also provided, visually representing the communication efforts between

the tower controller and the pseudo-pilots.

The workload rating probe is designed based on the modified subjective workload as-
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sessment method (SPAM) [281]. The SPAM method is a subjective workload assessment

technique that is commonly used in human factors research. It involves participants rating

their perceived workload using various rating scales, such as the NASA task load index

(TLX) scale [282; 283]. The SPAM method also includes measures of mental effort and

task difficulty to provide a more comprehensive assessment of workload. The modified

SPAM is adopted following the related literature [284; 285; 286]. The workload probe

employs a two-step process for administering questions related to situation awareness or

workload. Participants first press a ready button, followed by selecting a response. The

timing of both actions is recorded, following the methods used in the aforementioned stud-

ies.

The controller workload is self-evaluated by the workload question pop-up window,

and the human performance is indicated by the count of separation violations. To facilitate

this investigation, I have gathered preliminary data on three types of metrics: 1) aeronau-

tical separation violations, which are viewed as traffic conflicts existed in the airspace and

an indicator of ATCo performances; 2) real-time workload ratings, taken at three different

points in each 25-minute scenario; and 3) audio recordings of controller-pilot transmis-

sions during the workload ratings. These initial settings will serve as a foundation for

further analyses using additional measures, such as facial recognition, heart rate variability,

situation awareness probes, and operational efficiency. Ultimately, this research will guide

the development of real-time models for predicting human performance.
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Table 5.2: Description of Selected Features Recorded in the HITL Simulations. Traffic

Density Is Directly Obtained from the Metacraft. The Latency Variables Are Defined and

Collected Following Modified SPAM. Workload Ratings Are Collected from the Question

Probe. Additionally, There Will Be an Evaluation of ATCo Conditions Based on the Cor-

rectness of the Answers to Situation Awareness Questions.

Feature

Names

Feature

Descriptions

Feature

Values

traffic density Total number of aircraft under ATC participant’s control Integer: 0-23

ready latency
Time spent from screen appearing ”Ready?” to

participant pressing ”Ready?” on the pop-up questionnaire.
Decimal: 0.01-60.00 sec

query latency
Time spent from pressing ”Ready?” to selecting answers

on the pop-up questionnaire
Decimal: 0.01-60.00sec

wl rating Workload rating select from the pop-up window Integer: 1-7

sa correct
Evaluation of selected responses on situation awareness questions

from the pop-up window
0: no resp; 1: correct; 2: incorrect

In this chapter, I obtain the flight traffic recordings and the real-time workload ratings

from real-world human-in-the-loop simulations. The subjective workload rating is col-

lected from the question pop-up windows showing at 3 min, 12 min, and 21 min for each

trial. The originally collected data and adjusted workload rating score has been discussed in

the literature [287]. By doing this, I obtain realistic human workload levels, or the ground

truth, from participants’ honest ratings of their mental status. This is the most reason-

able data source for obtaining features and labels for building real-world machine-learning

pipelines.

5.3.3 Empirical Data Analysis

Communication transcription analysis is performed based on post-processed radio record-

ings. There are three major components in this part, (a) use a speech recognition tool or
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manual transcription tool to translate voice to text; (b) identify the named entity of each

communication transcript (i.e., controllers or pilots); (c) perform either statistical analysis

or keyword extraction [288; 289; 290]. As mentioned, the deviation indicator represents the

deviation in communications. A mark of ”0” if the ATCo communication followed a pilot’s

communication, and vice versa. On the other hand, ”1” will be noted if the communications

are not effective and are immediately followed between the ATCo and the pilot.

t1 t3t2 t4

Figure 5.2: Communication Transcription Visual Analysis: Recurrence Plot (RP). RP Is

Used to Quantify the Overall Tendency of Recurrence in the System. Vertical/Horizontal

Lines Indicate the Laminar States Don’t Change or Change Slowly over Time [4].

Figure 5.2 shows the recurrence plot (RP) of the communication deviation analysis.

RP was originally proposed to visualize the complexity of dynamical systems [291; 292],

where a detailed mathematical formulation can be found. In this work, I define the phase

vector as the communication deviations and build the recurrence matrix R as,

Ri,j =

 1, for x⃗i ≈ x⃗j

0, for x⃗i ̸≈ x⃗j

i, j = 1, ..., N (5.1)

where N indicates the number of current states. x⃗i ≈ x⃗j means that they are approxi-

mately equal up to an error round defined as ϱ. In general, the recurrent matrix R compares

the state and indicates the state similarity across the entire series [292]. The selection of
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(a) Number of Deviations that Happened in

Each Scenario. Showing First Three ATCs.

(b) Recurrence Quantification Analysis

(RQA).

Figure 5.3: Communication Data Analysis on Different Scenarios. In (a), I Show the His-

togram of the Frequency of the Communication Deviations for Each Scenario (up to 3

ATCos). As Discussed, the Number of Communication Deviations Indicates Communica-

tion Difficulties. In (B), I Show the QRA under Three Different Scenarios, Showing the

Scenario Complexities Obtained from Communications.

similarity threshold ϱ is critical. Researchers have investigated the selection criterion in the

literature based on the system states [293; 294; 295]. In Figure 5.2, I choose ϱ = 0.1 for the

visualization. Moreover, Figure 5.2 suggest a typical vertical and horizontal lines pattern,

which is suggested to be a laminar state or state idle case, while the sparse region indicates

lower system complexity and vice versa [292].

Beyond the visual approach, recurrence quantification analysis (RQA) is also widely

used to measure system-level complexity [294; 296; 297]. Typically, RQA is based on the

diagonal and vertical patterns of the RP. I use three types of complexity measures here.

Recurrence Rate (RR) is the simplest measure of RP, which is the averaged den-

sity of recurrence points in RP. RR represents the likelihood of a state returning to its ϱ-

neighborhood in the phase space [298]. It’s the measure of correlations between the ATCo

and pilot communications.
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Determinism (DET) refers to the degree of predictability or orderliness in a system’s

dynamics over time. A deterministic system is one in which future states can be precisely

predicted from knowledge of the present state and the system’s dynamics. In the context

of recurrence plots, a high degree of DET is indicated by the presence of diagonal lines

in the plot, which represent points in the system’s trajectory that are close to each other in

phase space and recur with a high degree of regularity. Conversely, a low degree of DET

is indicated by a more random or chaotic pattern in the recurrence plot, with fewer or no

diagonal lines. It indicates the predictability of ATCo and pilot interaction.

Maximum Line (MaxL) is a diagonal line that represents the longest connected se-

quence of recurrent points in the plot. It is the diagonal line that has the most points along

it, and it indicates the most persistent pattern of recurrence in the system’s dynamics. The

length and frequency of maximum lines can provide insights into the regularity and pre-

dictability of the system’s behavior over time. MaxL quantifies the stability of ATCo and

pilot interaction.

Figure 5.3 shows the histograms of communication deviations in (a), and the calculated

measures of complexity in (b). As shown in Figure 5.3(a), there is a notable rise in com-

munication challenges from the baseline scenarios to the high workload scenarios. The

prolonged occurrence of off-nominal events could contribute to a slightly heightened level

of complexity. Additionally, the deviations in communication patterns can differ across Air

Traffic Control Officers (ATCos), possibly due to variations in individual experience and

seniority. Therefore, it can be concluded that both airspace density and off-nominal events

contribute to an increase in communication complexity. As depicted in Figure 5.3(b), it is

evident that the correlation, predictability, and stability of the system all exhibit a decrease

from the baseline scenarios to the high workload scenarios. These findings provide valu-

able insights into understanding the behavior of different scenarios and guide our further

studies on workload prediction.
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5.4 Proposed ATC Workload Prediction Framework

In this section, I describe the proposed workload machine learning prediction frame-

work in Figure 5.4. I first demonstrate the formulation and basic concepts of the graph

learning problems in Section 5.4.1. The dynamical graph convolution learning algorithm

and conformal prediction setup are explained in Section 5.4.2 and Section 5.4.3, respec-

tively.

Figure 5.4: Schematic Illustration of Conformalized EvolveGCN Set Prediction Frame-

work. I Formulate the ATC Workload Level Prediction as a Time-series Graph Classifi-

cation Task, Where Each Graph Node Represents Each Aircraft under the ATC’s Control.

The Number of Nodes and Weight (Distance) of Each Edge Can Change Across Different

Timestamps. On the Classifier Side, I Propose the Conformal Prediction Set for Improved

Ground Truth Coverage. Conformalization Acts as a Post-hoc Procedure to Post-process

the Prediction Labels, Where the Softmax Probability Threshold Is Inferred on the Calibra-

tion Set.

5.4.1 Problem Formulation

As mentioned, the ATCo workload prediction task is viewed as a time-series dynamical

graph classification task. In this chapter, I use subscript t ∈ {1, ..., T} to demonstrate the
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timestamp and superscript l ∈ {1, ..., L} to denote the layer index. Graph neural networks

(GNNs) are introduced to model the spatiotemporal layout of the airspace from the struc-

tured graph data with explicit message passing [133; 134]. I denote a graph at timestamp

t with vertices and edges, represented as Gt = (Vt, Et), where the number of nodes at

timestamp t is Nnodes
t = |Vt| and the number of edges at timestamp t is N edges

t = |Et|. The

adjacency matrix At ∈ RNnodes
t ×Nnodes

t . The constructed graph structure can be either di-

rected or undirected depending on whether the edges are directed from one node to another.

The dynamic graph is mentioned when the graph topology varies with time. Especially, the

graphs in our work are undirected dynamical graphs. The constructed graph inputs are

At ∈ RNnodes
t ×Nnodes

t and Xt ∈ RNnodes
t ×Nfeatures

t , where At is the adjacency matrix at each

timestamp t and Xt is the node feature matrix.
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Figure 5.5: Schematic Illustration of the Moving Window Approach. At Each Step, the

Moving Window Moves 1 Timestamp (5s) along the Temporal Dimension (Stride 1). Each

Series of Graphs Contains a Graph of κ Timestamps. The Workload Ground Truth Label

for the Graph Series Input Is the Workload Level (1-7) Reported at the Last Timestamp,

Collected from the Human-in-the-loop Experiment. This Setup Allows the Model to Cap-

ture Long-term Spatial Relationships and Result in a Prediction at Every Timestamp since

κ. For Abbreviation, the Graph Input Is Represented by a Radar Plot.

Graph structure represents the spatial layout of the airspace. However, the dynamical

graph constructed At is based on the geo-distance between two aircraft pairs, resulting in

geospatial graphs on a two-dimensional space. This type of graph construction is widely

adopted with acceptable complexity. Consequently, in this work, I adopt a scaling formula

described in minimum-spanning-tree-based workload prediction task [13] to scale the hor-

izontal and vertical distance between two aircraft pairs into one distance metric. Specifi-

cally, the graph is built by calculating the distance d̃ij between two aircraft pairs (i, j) at
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the same timestamp t. I use dt,ij to represent the horizontal distance and ht,ij to present the

vertical separation distance between aircraft pairs (i, j). The scaling function is described

in Equation (5.2).

˜dt,ij =
√

d2t,ij + s2h2
t,ij (5.2)

where s is the spatial scaling factor which equalizes the separation on the horizontal and

vertical dimension, as in Equation (5.3).

s =

 0.005, for alti ≤ 29, 000 and altj ≤ 29, 000

0.0025, for alti > 29, 000 or altj > 29, 000
i, j = 1, ..., N (5.3)

In this workload prediction task, I first obtain the constructed input Xt and At at each

timestamp t. In such a way, I obtain the series of graphs Gt, t ∈ {1, ..., T}. Then, I fill

the workload ratings into another time series based on the self-evaluated workload rating

during the HITL simulations, representing the prediction labels. Last, I use a moving win-

dow approach to build the correct input-output matching for supervised machine learning.

The schematic illustration of the moving window process is shown in Figure 5.5. I define

a window of size κ and move the window along the time axis of the series of inputs, with

a stride of 1. The time-series graph of size κ is denoted as {Gt}κ. Similarly, I move the

window function along the prediction labels and obtain the workload ratings by claiming

the last reported workload value within the current window. Then, if Yt denotes the ground

truth workload label at timestamp t, I mathematically formulate the problem into,

Yt = EvolveGCN({Gt}κ) (5.4)
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5.4.2 Evolving Graph Convolution Network

Spatial graph convolutional networks (GCN) [135] convolve the input At and Xt using

the derived compact form,

H l+1
t = σ(ÂtH

l
tW

l
t ), with H0

t = Xt (5.5)

where σ is the activation function (i.e., ReLU). Ât is a normalized version of At, to account

of numerical instability. Specially, Ât is defined as, Ât = D̃t
− 1

2 ÃtD̃t
− 1

2 , Ãt = At + It,

D̃t,ii =
∑

j Ãt,ij . It’s clear that Ht has the same dimension as Xt as Ht ∈ RNnodes
t ×Nfeatures

t .

Wt ∈ RNfeatures×Nfeatrues is the kernel parameters. For multiple graph convolutional layer

setup, H l+1
t stands for the updated graph embedding of convolutional layer l + 1 at times-

tamp t. Specifically, in classification problems, the activation function σ at the output layer

L is the softmax function.

Evolving Graph Convolution Network (EvolveGCN) improves GCN by introducing

recurrence layers to capture the dynamism underlying a time-series graph. Two types of

EvolveGCN are presented [299], depending on the recurrent updating architecture.

The first variant treats the GCN kernel parameter W l
t as the hidden state of recur-

rent learning function and updates W l
t with a gated recurrent unit (GRU), while the node

embeddings of node features are still contained within the GCN hidden state tensor H l
t .

EvolveGCN-H is used to denote this variant Equation (5.6). This requires a special design

of GRU computation flows as described in [299].

W l
t = GRU(H l

t ,W
l
t−1) (5.6)

H l+1
t = σ(ÂtH

l
tW

l
t ) (5.7)

Another variant of EvolveGCN is the -O version Equation (5.8), where the kernel pa-

rameter W l
t is treated as input of recurrent learning without considering the temporal cor-
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relations between node embeddings. The implementation of EvolveGCN-O is straightfor-

ward by extending dimensions.

W l
t = LSTM(W l

t−1) (5.8)

H l+1
t = σ(ÂtH

l
tW

l
t ) (5.9)

Either an EvolveGCN-H or EvolveGCN-O is denoted as an Evolving Graph Convolu-

tion Unit (EGCU), as shown in Figure 5.4. In both ways, the EGCU first updates the GCN

weights and then propagates the hidden states through the layers. Several layers of EGCU

form a GCN block in Figure 5.4. For a graph learning problem with large feature space,

EvolveGCN-H is more effective since the feature embedding recurrence is also consid-

ered. Otherwise, EvolveGCN-O is more focused on learning the graph topology structure

changes.

5.4.3 Conformal Prediction

In this section, I provide a brief overview of conformal prediction (CP). For the classi-

fication task mentioned above, I have EvolveGCN acted as the classifier C, which outputs

an estimated probability for each class, i.e., p ∈ [0, 1)κ for κ classes. I reserve a small

amount of data called calibration set to calculate the probability score threshold q̂ such that

the following condition holds on the test set,

1− α ≤ P(Ytest ∈ C(Xtest)) ≤ 1− α +
1

n+ 1
(5.10)

where the test dataset is the unused test set to evaluate model performance. α ∈ (0, 1] is the

pre-defined tolerated error rate. This is to guarantee that the model is 1−α confident that the

model prediction set contains the correct ground truth label. This equation is also known

as the marginal conformal coverage guarantee, which has been proved in the literature
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[300; 301]. Notably, the calibration is the key step to find q̂. Suppose I define the concept

of the conformal score by one minus the softmax probability of the true class, q̂ is defined

to be the ⌈(n+1)(1−α)⌉
n

quantile of the conformal scores. ⌈⌉ is the ceiling function to correct

the quantile. Then, the prediction of a new test sample will be all classes with a softmax

score higher than q̂. The prediction set will be larger if the model is uncertain about the

prediction labels or if the input is out-of-distribution. Intrinsically, the size of the prediction

set is the indicator of model uncertainty.

Conformal prediction (CP) has been studied from various angles by researchers. How-

ever, the classical CP method is susceptible to coverage issues due to its tendency to pro-

duce the smallest average size of prediction sets [302]. Specifically, CP tends to overcover

hard data samples while undercover simple ones. To address this issue, researchers have

proposed an approach called adaptive conformal prediction [303; 304]. The underlying

principle of this method is to compute the conformal threshold q̂ based on the cumulative

softmax score across κ classes.

It’s also noteworthy to discuss conformal evaluation methods, which are adopted in

evaluating our model. To determine the model’s performance, a straightforward method

is to examine the histogram of prediction set sizes visually. Essentially, a larger size of

the prediction set implies that the model is facing certain data quality problems, while the

variation in the set size can provide insights into the model’s ability to differentiate between

easy and difficult input samples.

P[Ytest ∈ C(Xtest)|Xtest] ≥ 1− α (5.11)

Conditional coverage is a feasible approach to evaluate the adaptivity of conformal

prediction. For instance, in a classification setting, I seek to find the prediction sets with

exactly 1 − α coverage for any input data sample, as in Equation (5.11). The conditional

coverage concept is a stronger metric than the marginal coverage mentioned above. Some
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literature mentioned that conditional coverage is impossible to achieve in most general

cases [305]. Size-stratified coverage (SSC) metric is a general metric to evaluate how

close the model is able to achieve Equation (5.11). SSC metric is a way to evaluate the

performance of conformal prediction models. It is based on the idea that prediction sets of

different sizes may have different properties and should be evaluated separately. The key

is to group test samples into different size strata based on the size of their prediction sets

and compute the averaged empirical coverage on each size strata. SSC metric can be useful

to diagnose specific issues, such as overcoverage or undercoverage, that may be related to

the size of the prediction sets. In addition, another conformal prediction evaluation method

has been proposed recently [306], where a calibration plot of the prediction error versus the

specified significance level (α) is used. Remarkably, In Section 5.5, I evaluate our model

with these metrics.

CP provides a rigorous way to measure the uncertainty associated with the predictions

made by a machine learning model and to express this uncertainty in the form of prediction

intervals or regions that can be used to guide decision-making. This can be particularly

useful in critical engineering applications where accurate prediction intervals or regions are

essential [307]. CP has been widely adopted in drug discovery [308], medical diagnosis

[309], and robotics [310]. CP is a unified post-hoc softmax score calibration process to

generate prediction sets for any classification model [311; 312; 313]. In this work, I propose

to use CP for aviation decision support. Specifically, the prediction set comes from CP

gives uncertain prediction label suggestions, i.e., workload rating of 3, 5, 7. While the

isolated classification label in workload prediction is not reasonable, I propose to fill the

intermediate workload ratings based on the minimum predicted rating and the maximum

predicted ratings.
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5.5 Experiments

In previous sections, I have introduced the HITL data collection process, the problem

definition, the machine learning model system design, and conformal prediction for better

ground truth label coverage Section 5.4. In this section, I present a comprehensive of

experiments to test and evaluate the proposed model. I first discuss several evaluation

metrics used for this classification task. Then I report the classification accuracy from the

machine learning model with a few implementation details. Lastly, conformal prediction

set results are reported with several conformal coverage evaluation methods mentioned in

Section 5.4.3. The validation set is used to tune hyper-parameters, and the testing dataset

results are evaluated based on the best validation epoch.

5.5.1 Evaluation Metrics

The F-score, or F-measure, is a binary classification metric used in statistical analysis

to assess the accuracy of test samples. It is computed using both precision and recall,

where precision measures the number of correctly identified true positive results relative to

all positive results (including incorrect ones), and recall measures the number of correctly

identified true positive results relative to all samples that should have been identified as

positive. Precision is also referred to as positive predictive value, while recall is also called

sensitivity in binary diagnostic classification.

Specifically, the F1-score is defined as the symmetrical harmonic mean of precision

and recall [314]. F1-score can also be used for multi-class classification by taking either

the micro-averaging (MicroF1) or the macro-averaging (MacroF1).
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Precision =
TP

TP+ FP
(5.12)

Recall =
TP

TP+ FN
(5.13)

MicroF1 = 2 ∗ Precision ∗ Recall
Precision+ Recall

(5.14)

(5.15)

where TP, FP, and FN stands for true positive, false positive, and false negative, respec-

tively. TP means the model predicted correctly for the positive class, FP means the model

predicted incorrectly for the positive class, and FN means the model predicted incorrectly

for the negative class. Equation (5.12) gives the mathematical formulation of MicroF1,

where each sample is considered independently without considering which class this sam-

ple belongs to. MicroF1 treats each data input equally but is biased on class frequency.

MicroF1 is useful when the classification task is unbalanced, meaning that some classes

have many more instances than others. In this case, the MicroF1 gives equal weight to each

instance, regardless of its class.

MacroF1 =
F11 + F12 · · · ,+F1n

n
(5.16)

On the contrary, MacroF1 average the F1 score across all classes as in Section 5.5.1,

where n is the number of classes, and F11+F12 · · · ,+F1n are the F1 scores for each class.

MacroF1 treats each class equally regardless of the size of samples within each class thus,

it’s biased on the number of samples. MacroF1 is useful when the classification task is

balanced, meaning that each class has approximately the same number of instances. In this

case, MacroF1 gives equal weight to each class, regardless of its frequency.

In this work, I am encountering a highly-imbalanced classification problem Figure 5.1.

Thus, MicroF1 is a better indicator than MacroF1. It is noteworthy to mention that n in
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should be adjusted to exclude the class labels that are not presented in either ground truth

or predictions. I report both metrics in our studies.

5.5.2 Implementation Details

Although the commonly adopted node-level or link-level classification objective is

prevalent, the proposed workload prediction framework is instead a graph-level classifica-

tion task [299]. Thus, on the output layer, I take the aggregated class probability score

across each node to get a unified score of the entire graph. I adopted the grid-search

strategy to search for key parameters and fine-tuned the neural network model with the

data collected from three different scenarios. The key parameters used are the number of

EvolveGCN layers (EGCU layers), and the dimensions of these layers. Dropout is used

in the classifier to address overfitting. Table 5.3 lists the fine-tuned key model parameters

under three simulation scenarios. Other parameters, such as the dimension of classifiers,

are kept the same as the original implementation [299]. Parameter tuning on the classifiers

might be useful, but it’s beyond the scope of this study.

Table 5.3: List of Fine-tuned Model Parameters Used in EvolveGCN Training under Three

Different Simulation Scenarios.

Baseline

High

Workload

Nominal

High

Workload

Off-Nominal

Number of EGCU Layers 2 2 4

EGCU Layer Dimensions 64 128 64

Dropout Ratio 0.25 0.5 0.25

Learning Rate 0.001 0.0015 0.0005
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Moreover, as discussed in Section 5.3, the first reported workload rating starts at 3 min-

utes of the 25 minutes duration. This corresponds to the 36th timestamp with 5s interval in

the collected flight traffic data. Consequently, the moving window size κ in our experiment

is 36, with a stride of 1. I separate the data into train, validation, and test sets with a ratio of

[0.4, 0.3, 0.3]. The validation set is used for deep learning model hyper-parameter tuning.

Moreover, the validation set is also used as the calibration set to find the CP threshold q̂.

5.5.3 Experiment Results

Table 5.4: Workload Level Prediction: Comparison between Different Workload Prediction

Methods.

ATC Workload

Level Prediction

Baseline High Workload Nominal High Workload Off-Nominal

MicroF1 MacroF1 MicroF1 MacroF1 MicroF1 MacroF1

Simple LR

w/ Density
0.306 0.218 0.307 0.198 0.323 0.195

Simple LR

w/ Graph Feature
0.331 0.236 0.383 0.263 0.350 0.255

2-layer

MLP
0.364 0.283 0.455 0.386 0.459 0.367

GCN 0.404 0.218 0.580 0.401 0.526 0.352

EvolveGCN-O 0.545 0.277 0.740 0.632 0.695 0.472

EvolveGCN-H 0.413 0.221 0.593 0.474 0.581 0.414

In this work, I compare our model with both classical methods (i.e., linear regres-

sions (LRs)) and simple data-driven learning methods (i.e., fully-connected neural net-

works/multilayer perceptions (MLPs)). In [249], the authors also conducted high-fidelity

human-in-the-loop simulations to study the impact of traffic density features on controller

workload. They found that the workload rating of the enroute center controller is propor-
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tional to the number of aircraft with a slope of 0.306 and bias of −3.373. They also identi-

fied the primary sources of workload for controllers, including airspace and traffic manage-

ment, communication, and coordination tasks with workload management suggestions. In

[13; 253], the authors create graph-structured airspace data structure – minimum-spanning

trees but propose several handcraft features based on the histogram of node features. Then

a two-layer fully-connected neural network is used for prediction based on handcrafted

features and shows remarkable performance. However, the workload ratings are directly

generated from the traffic density, where thresholds of 7 and 17 separate workload rat-

ings into low, medium, and high scenarios. Likewise, inspired by this work, our proposed

method adopts a graph structure to represent the spatiotemporal layout. I utilize the re-

cent advancement in graph learning and learn from the graph structure without handcrafted

features.

In Table 5.4, comparing the first two rows, I first show that including additional graph

node features can achieve higher prediction accuracy, even for simple LRs. Despite the

traffic density features, additional graph node features are traffic conflict features (i.e., hor-

izontal/vertical minimum separation to nearby aircraft). For the MLP with handcraft fea-

tures, I generate second-order statistics of the sum and difference histograms introduced in

[13]. As a reference to EvolveGCN, I also conduct an experiment on vanilla GCN. This can

be easily achieved by removing the LSTM layer in Equation (5.8). I show that EvolveGCN

can achieve significantly higher MicroF1 and MacroF1 than LP, MLP, and GCN. More-

over, the -O variant EvolveGCN outperforms the -H variant. One of the major reasons is

the selection of top K indices reduces the hidden dimension of EGCU, due to the low node

feature dimensions and a small number of nodes in graphs (i.e., only one aircraft showing

up at the first timestamp) at certain timestamps.
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5.5.4 Conformal Prediction Results

As mentioned, I use conformal prediction to improve prediction accuracy further. In

Figure 5.6, the prediction on one test participant is shown. The conformal prediction set

coverage is the shaded region. The conformal prediction is generated with a tolerated error

rate of α = 5%. The blue solid lines show the real-time aircraft density (left axis) in the

simulation, and the red lines are the interpolated workload ratings. At 3 min, 12 min, and

21 min, the participants are required to submit their workload rating to the computer. The

ground truth workload ratings are colored in red (right axis). The conformal prediction

set covers most of the ground truth but is undercover at several spots. As discussed in

Section 5.4.3, I further evaluate the conformal prediction coverage.

(a) Baseline Condition (b) High Workload Nominal Condition

(c) High Workload Off-Nominal Condition

Figure 5.6: Visualization of Conformal Predictions on the Test Sample. For the Workload

Level Prediction Task, I Set Our Prediction as the Range Between the Lowest Predicted

Workload Level and the Highest Predicted Workload Level.
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5.5.5 Conformal Coverage Evaluation

I adopt different conformal coverage evaluation metrics to examine the performance of

our conformal set. Firstly, I plot the histogram of set sizes. A high average set size suggests

that the conformal prediction procedure is imprecise, which could indicate issues with the

score or underlying model. Secondly, the range of set sizes indicates whether the prediction

sets adapt properly to the complexity of examples. A wider range is typically preferred be-

cause it implies that the procedure accurately differentiates between simple and challenging

inputs. I show the histograms in Figure 5.7. The size of conformal prediction is typically

around 5. The spread for baseline and high workload nominal conditions looks reasonable.

The model is able to distinguish hard and easy samples. However, the spread for high

workload off-nominal conditions indicates potential scoring issues or simply difficult data

[301].
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(a) Baseline Condition (b) High Workload Nominal Condition

(c) High Workload Off-Nominal Condition

Figure 5.7: Histogram of Set Sizes on Test Set Predictions. The Spread of the Histogram

Shows the Difficulty of Making a Correct Prediction.
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Figure 5.8: Conformal Coverage Evaluation with Various Desired α Values Under Three

Workload Simulation Conditions. I Use the Size-stratified Coverage (SSC) Metric Better

to Represent the Adaptive Coverage of the Conformal Set Coverage.

Following the discussion in Section 5.4.3, I investigate the size-stratified coverage

(SSC) to evaluate the condition coverage and plot the figures in Figure 5.8. The dash

lines are desired coverage values. In this figure, I consider three desired error rates, α =

0.15, 0.1, 0.05, for three cognitive workload scenarios. I use two possible C(x) cardinali-

ties of two bins and five bins. In other words, I divide the predicted sets into different size

categories (e.g., sets of size 2, sets of size 5.) and calculate the percentage of times that

the true value falls within each category. I discover that the prediction coverage of baseline

158



conditions shows a good sign, but the two high workload scenarios tend to under-coverage.

Again, the reasons still come from the unsatisfactory of collect data, which leads to lower

reported F1 values.

To further look at the coverages, I adopt another recently proposed figure to better show

the prediction coverage violations [306]. In Figure 5.9, I show three figures for three sim-

ulation scenarios. The x-axis shows the tolerated error rate (the specified significant level),

and the y-axis shows the fractions of failed prediction sets (the number of prediction sam-

ples where the ground truth label is not in the conformal prediction set). This property

holds true in high workload scenarios but not in the baseline scenarios when the signifi-

cance level is lower than 0.4 or higher than 0.95. One of the key advantages of conformal

predictors is their ability to offer valid predictions even when new examples are indepen-

dently and identically distributed with the training examples. Additionally, in Figure 5.9,

I use Kolmogorov-Smirnov (K-S) test to test the distributions of predictions in the calibra-

tion set and test data under three conditions. In the K-S test, the null hypothesis is that the

calibration and test samples are drawn from the same data distribution. The corresponding

p-values obtained for three conditions are, (a) 1.98e − 12; (b) 3.68e − 48; (c) 2.18e − 55.

All three values below 5%, are considered two-sided statistically significant. Thus, the

hypothesis holds true.

159



(a) Baseline Condition (b) High Workload Nominal Condition

(c) High Workload Off-Nominal Condition

Figure 5.9: The Calibration Plot Illustrates the Observed Prediction Error, Which Is the

Proportion of True Labels That Are Not Included in the Prediction Set, Plotted Against the

Pre-specified Significance Level ε, or the Tolerated Error Rate. The Conformal Predictor

Is Deemed Valid Only When the Observed Error Rate Is Within the Limit of ε, I.E., The

Observed Error Rate Should Align Closely with the Diagonal Line Representing the Toler-

ated Error Rate for All Significance Levels.
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5.6 Conclusions

In this chapter, I investigate the workload prediction problem. I formulate the prob-

lem into a time-series dynamic graph classification task with changing graph topologies.

I demonstrate the effectiveness of this proposed method from real-world human-in-the-

loop air traffic control simulations, where participants are retired air traffic controllers. I

show that traffic density features and traffic conflict features have a positive influence on

workload predictions. Algorithm-wise, the graph-structured data-driven learning model

outperforms the existing practices in workload prediction research literature (i.e., simple

regressions, simple neural networks with handcrafted features).

5.6.1 Limitations

There are several limitations. Firstly, I only have limited resources to conduct the HITL

experiments in a simulation environment. Real-world scenarios can be immensely different

from simulation scenarios. Secondly, data quality is critical for developing a successful

machine-learning algorithm. In this work, I have to use the corrected workload rating data

due to the poor quality of the originally collected workload ratings. Only 6 out of 10 ATCos

HITL simulation data are considered valid for use in this work, and I also have to use the

manually adjusted workload ratings [287]. Another critical part is modeling the different

ATC strategies adopted by different controllers, which can result in a multi-modal machine

learning setup. The benefit of including ATCo strategies has also been discussed in the

literature [154]. Lastly, better algorithm development can help with improved workload

prediction performance. The single prediction label made by either EGCU-O or EGCU-H

can be improved, despite the data quality issue.
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5.6.2 Insights

This work is beneficial for the non-intrusive, uninterrupted executive controller work-

load prediction, and it is purely based on the flight traffic data. First, I show that both traffic

density and traffic conflict features contribute to higher prediction accuracy. Then, I show

that model of the spatiotemporal airspace layout as a dynamic time-series graph learning

problem has great potential for ATC workload level predictions. Additionally, I explore the

possibility of further accuracy improvement by introducing a post-hoc classification score

processing process, namely conformal prediction, which can be used to generate multiple

classification labels adaptively.

Based on these insights, I propose several research directions that might be interesting

to researchers,

• I am expecting a significant performance improvement by conducting more HITL

simulations or real-world ATC experiments, collecting additional high-quality data,

and data-driven model refinement. Spatiotemporal graph learning is a popular theo-

retical research direction, and better graph learning model architecture is expected,

which results in better workload prediction performances.

• The window function setup for input-output data matching is flexible for any practical

requirement in the real world. The length of the window determines the history length

to be considered, while the stride size defines the prediction horizon.

• The workload prediction problem formulation can be alternated from workload rat-

ing classification to workload rating regression task. This setup is algorithm-wise

more reasonable for uncertainty calibration with conformal prediction but requires

significant experiment setup change. For instance, the current rating-based question

prob in modified SPAM and NASA TLX will be modified to continuous variables. A
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considerable modification of the HITL simulations is desired.

• There are still several important questions that remain unanswered, such as how to

incorporate real-time data and feedback into the prediction model and how to adapt

the model to different types of air traffic control systems. Future research in this area

could also explore the impact of other factors, such as weather conditions and aircraft

type, on controller workload and safety.

• Several works of literature quires the validity of only using traffic-related factors to

predict mental workload, where a significant part of pilot-controller interactions and

feedback are missing [154]. In further studies, I propose to build a predictive model

that can consider reciprocal feedback interactions (i.e., the communication deviations

[234] in Section 5.3) from a learning perspective.

• Further studies can also combine trajectory prediction models such that the task de-

mands can be predicted first and then perform workload forecast in real-time. In

such a way, either deterministic or probabilistic trajectory prediction models can act

as moderators of workload models [256; 95; 103; 175].

I believe the above discussions have practical implications for aviation authorities, air-

lines, and air traffic management providers. Specifically, our workload prediction model

could be used to inform scheduling and staffing decisions, optimize resource allocation,

and support proactive safety management. However, it is important to note that success-

fully implementing such interventions will require collaboration and communication across

stakeholders.
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Chapter 6

CONCLUSION

Throughout its history, aviation has been a pioneer in innovation, driving significant ad-

vancements in passenger comfort, efficiency, and safety. The introduction of jet engines in

the 1950s and fly-by-wire in the 1980s were two notable milestones that revolutionized air

transportation. Today, as we enter the 2020s, we stand on the cusp of another unprecedented

evolution in the industry. With the exponential growth in computer processing power and

emerging data storage facilities, the possibilities of AI in aviation are endless, with the

potential to enable multiple sectors of aviation, including autonomous flights, predictive

maintenance, air traffic management, etc. AI is a fairly old concept that stands for any tech-

nology that is trying to emulate human behaviors and performances, meaning a mature AI

model has cognitive inference capabilities to generate existing knowledge to a new phase.

This stands in contrast to statistical models, which are merely numerical fittings based on

historical data. Lifelong learning remains an essential principle, although adapting to new

technologies can be challenging and push individuals out of their comfort zones. The fu-

ture will be shaped by open-minded outstanding multidisciplinary researchers, through the

integration of AI technologies, paving the way for a safer, more efficient, and sustainable

aviation industry.

6.1 Contributions

This thesis has demonstrated the significant potential for AI to improve various sectors

of aviation, to address the increasing challenges faced by the ATFM. In this study, I inves-

tigate trajectory prediction capabilities for TBO, environmental impacts, flight operations,

and aviation human factors. A detailed literature review is conducted along with each of
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these topics mentioned, and presented in the chapter. Also, the itemized contributions of

each work have been discussed at the beginning or end of each chapter. Here, I want to

highlight the most important ones.

• Chapter 2 investigates the convective weather impacts on trajectory prediction mod-

els. I propose a modular-designed probabilistic deep neural network structure, which

is a scalable and flexible architecture for handling complex spatial-temporal correla-

tions between aircraft trajectory and weather conditions. Variational Inference-based

Bayesian Deep Neural Network is shown to be a robust probabilistic method com-

pared to MCDropout for BNN, and the proposed method shows variance reduction

for both small and large flight deviation cases. This work reveals the relationships

between convective weather, flight plans, and flight trajectories. The performance is

validated with convective weather forecasts and flight recording data from the Sher-

lock data warehouse. Effective data processing is essential for successful machine

learning problem-solving. This includes proper data filtering and feature engineer-

ing, which should be informed by domain knowledge and expertise in order to extract

relevant and meaningful features from the raw data.

• Chapter 3 aims to further reduce trajectory prediction deviations in the near-terminal

airspace, where weather-related is no longer a dominating factor. I propose a novel

multi-agent trajectory prediction model called B-STAR that can quantify uncertain-

ties in flight track data without relying on pre-defined parameters or randomized

inputs. The model incorporates aviation regulations on aeronautical separation by

estimating the Haversine distance to select silent neighbors and building a graph en-

coding. A sensitivity study is also conducted on separation assurance distance to

evaluate the impact on the proposed framework. The chapter also presents a module-

based machine learning framework that utilizes advanced computer software and
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hardware tools for data analysis. Open-source toolsets for data pre-processing and

web-based interactive visualization are integrated with the B-STAR framework to

enable efficient and effective data analysis.

• Chapter 4 examines several arrival delay scenarios in historical flight data and gains

insights into the multimodal distribution of aircraft arrival times conditioned on flight

events, the occurrence of go-around events at approximately 100 nautical miles from

the terminal, and suboptimal landing scheduling preferences made by human con-

trollers. The statistics of minimum safe times are predicted using a tree-based proba-

bilistic machine learning algorithm and incorporated as safety constraints to the time-

constrained traveling salesman problem. A conditional machine learning predictor

based on event counts within a certain distance of the target aircraft is proposed to im-

prove prediction performance, and multiple factors including geographical location,

speed profiles, flight event counts, and airspace complexity measures are integrated

for probabilistic prediction of arrival time. The proposed framework shows a re-

duction in total aircraft landing time compared to the FCFS rule, even in extended

airspace, where early adjustment of aircraft speed profiles can be issued to avoid

holding patterns.

• Chapter 5 proposes a novel approach for predicting executive controller workload

during approach scenarios using graph neural networks (GNNs). The task is for-

mulated as a dynamical time-series graph classification problem, and the Evolving

Graph Convolutional Network (EvolveGCN) is shown to achieve higher prediction

accuracy compared to statistical and classical learning methods. The use of a mov-

ing window approach to build the correct input-output matching from the collected

sparse workload data is proposed, with the window size representing the temporal

length of the historical information used in workload prediction. The data struc-
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ture formulation transfers complex structured traffic features into a lucid format for

research and development purposes. The chapter also explores conformal predic-

tion to expand predictions as set predictions, which has better ground truth label

coverage and can indicate prediction uncertainties. The results suggest that GNNs

have great potential for predicting controller workload with varying spatiotemporal

airspace layouts and that conformal prediction is a valuable machine learning post-

hoc processing tool to boost performance and indicate prediction uncertainties.

6.2 Future Works

At the conclusion of each chapter, I identified the limitations of my work and presented

several potential areas for future research on each individual task. In light of the broader

scope of this thesis on AI-enabled aviation studies, I now wish to discuss some high-level

aviation research topics that merit further investigation to advance the digitalization of avi-

ation. To this end, the future plans consist of two main objectives: (i) continue exploring

AI applications to enhance aviation safety and efficiency, and (ii) investigate research di-

rections to improve the robustness and trustworthiness of aviation systems-level assurance.

6.2.1 AI Application Directions

Air Traffic Management Automated decision-making assistance tools have served as

essential features of air traffic management systems for several decades. The degree of

automation directly influences the mental workload of air traffic controllers. Additional

automated decision support systems can assist pilots and controllers in prioritizing safety-

critical tasks while also facilitating the seamless exchange of information and promoting

collaboration among all stakeholders, including those involved in airborne operations. No-

tably, there are two distinct definitions of automation that are recognized by domain experts.

Some focus on developing pattern matching or service discovery algorithms to identify the
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best operational procedures for specific scenarios from an in-house operation database,

typically using semantic web services. Such systems provide ATCos of any seniority level

with a wealth of real-world operational experience and ensure regulatory compliance. The

second type of automation leverages the generalization capabilities of AI models, which

are mostly recognized by the general AI community. The decision recommendations gen-

erated by such systems do not guarantee regulatory compliance and have been criticized for

their trustworthiness. However, as mentioned, AI models are designed to emulate human

intelligence, and the decision recommendations should not be limited by human perfor-

mance. The author believes this track will eventually overcome manpower and thus has

greater potential. Future research directions include enhancing strategic planning capa-

bilities for safety and efficiency, improving trajectory prediction accuracy by proposing

more powerful models, enabling ATC operation matching capabilities, increasing opera-

tional efficiency with data-enhanced optimization models, as well as many other research

directions.

Autonomy Cockpit automation and autonomous flights are considered as types of au-

tonomous operations. Cockpit automation refers to the use of automated systems and tech-

nology in the cockpit to assist with various tasks and processes, including navigation, com-

munication, flight control, and monitoring. This technology aims to replace or at least

human co-pilots with computer-dominant decision-making processes, which is why it is

considered autonomous. Autonomous flight, on the other hand, is one of the most promi-

nent applications of machine learning, with the drone industry leading the way. The in-

creasing demand for urban air mobility (UAM) has increased interest in developing air taxi

systems. However, autonomous vehicles will require highly complex systems to make deci-

sions, such as ensuring safe flight and landing, as well as managing the separation between

air vehicles, which may involve reduced distances compared to current air traffic manage-

ment (ATM) practices. To achieve full autonomy, advanced algorithms will be necessary to
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perform information fusion and agent-to-agent interactions. Research in this area includes

corporate multi-agent planning and task completion, UAM path planning, and human-AI

teaming, among others. Despite the potential of autonomous flight, the author notes that

achieving full autonomy still has a long way to go considering the difficulties of earning

the public trust of commercial air transport systems and meeting the aviation standards,

and will require a collaborative effort from multiple stakeholders, including manufacturers,

operators, and regulatory agencies.

6.2.2 AI Model Trustworthiness

Safety and Risk Management Safety and risk investigations are critical for ensuring

the safe and reliable operation of autonomous systems that use AI models. These investiga-

tions aim to evaluate, detect, and monitor the risks associated with AI models in real-time

to minimize potential harm. To mitigate these risks, extensive testing is necessary to ensure

that the AI models are at least as safe as traditional airborne systems that use existing safety

assessment tools. Regulatory agencies are currently working on developing standards for

testing and validating AI-based air traffic management (ATM) systems. Research into real-

time risk assessment and detection, risk control techniques such as event classification,

information leaking risks, AI model performance metrics, and off-nominal event risk miti-

gation are essential areas to investigate. Additionally, the uncertainties involved in the risk

assessment step cannot be ignored. Probabilistic machine learning can be highly useful

in these situations, leading to research topics such as identifying sources of uncertainty,

reducing variance, and estimating failure probabilities.

Verification and Validation Verification and validation (V&V) are crucial processes

to guarantee that any system satisfies regulatory standards and design requirements. In the

field of critical engineering systems, such as flight control systems, formal methods play a

vital role in ensuring safety, reliability, and performance. Three significant branches of for-
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mal methods, namely model checking (exhaustive testing), static analysis (error analysis),

and theorem proving (logical inference), require exploration to enhance the verification

and validation of these systems. Mathematical developments, such as advanced sampling

algorithms and temporal logic, are promising directions.

Aviation Cybersecurity Aviation cybersecurity involves securing both ground-based

and airborne systems, which include communication networks, navigation systems, air traf-

fic control, flight control systems, and avionics. Integrated space-air-ground ATM systems

rely on communication, which is prone to malicious activities. Information security assur-

ance has been a research area for decades, and game theory provides insights into effective

security measures by modeling adversarial interactions. Threats such as ADS-B false data

injection, data tempering, location information spoofing, and DDoS attacks can affect both

AI model training and inference processes, necessitating extensive data transmission. Pro-

tection techniques on data access such as firewalls and Intrusion Detection and Prevention

Systems (IDPS) can enhance data integrity. Federated learning is a promising technique

for collaboratively training AI models, allowing each party to train the model on their lo-

cal server, reducing data transmission needs, and associated cybersecurity concerns. On

the model inference side, adversarial robustness is critical to defend against unforeseen

information security threats. Bayesian neural networks have shown excellent robustness

against attacks and have the potential to defend against adversarial attacks. Possible re-

search directions include data access protection, federated learning, adversarial robustness,

and Bayesian neural networks.

6.3 Closure

AI is a fast-evolving technique, that demands constant awareness and in-depth thinking

from highly multidisciplinary researchers. Aviation research is a typical system engineer-

ing branch, requiring solid knowledge basis on aerospace, AI, meteorology, remote sensing,
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ergonomics, dynamics, and flight operations build upon math and computer engineering

skills. While adapting to new technologies can be challenging and push individuals out of

their comfort zones, lifelong learning is an essential principle that every researcher should

embrace. As the aviation industry continues to evolve and become more complex, it will

require a group of open-minded, outstanding, and multidisciplinary researchers to integrate

AI technologies and pave the way for safer, more efficient, and sustainable practices. With

continued investment in research and development along the track, we can unlock the full

potential of AI for aviation and create a brighter future for the aviation industry and human

beings. I firmly believe that this thesis has provided valuable insights that can inform and

guide future research in this area. I hope that my work can serve as an initiative for further

exploration and contribute to the technological advancement in the evolution of aviation

digitalization.
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