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ABSTRACT

Navigation and mapping in GPS-denied environments, such as coal mines or

dilapidated buildings filled with smog or particulate matter, pose a significant challenge

due to the limitations of conventional LiDAR or vision systems. Therefore there

exists a need for a navigation algorithm and mapping strategy which do not use vision

systems but are still able to explore and map the environment. The map can further

be used by first responders and cave explorers to access the environments.

This thesis presents the design of a collision-resilient Unmanned Aerial Vehicle

(UAV), XPLORER that utilizes a novel navigation algorithm for exploration and

simultaneous mapping of the environment. The real-time navigation algorithm uses

the onboard Inertial Measurement Units (IMUs) and arm bending angles for contact

estimation and employs an Explore and Exploit strategy. Additionally, the quadrotor

design is discussed, highlighting its improved stability over the previous design.

The generated map of the environment can be utilized by autonomous vehicles to

navigate the environment. The navigation algorithm is validated in multiple real-time

experiments in different scenarios consisting of concave and convex corners and circular

objects. Furthermore, the developed mapping framework can serve as an auxiliary

input for map generation along with conventional LiDAR or vision-based mapping

algorithms.

Both the navigation and mapping algorithms are designed to be modular, making

them compatible with conventional UAVs also. This research contributes to the

development of navigation and mapping techniques for GPS-denied environments,

enabling safer and more efficient exploration of challenging territories.
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Chapter 1

INTRODUCTION & LITERATURE REVIEW

1.1 Introduction

Various methods have been used to achieve locomotion for autonomous robots

with knowledge of the environment but navigation in unknown environments is still

being explored. Exploratory path planning is a promising approach for exploring

unknown environments. The primary motivation for this thesis comes from the

DARPA SubTerrean Challenge [1]. Since there was a challenge in this competition is

to continue exploring even when perception systems fail. Additionally, the robot should

be able to synthesize an accurate map of the environment when conventional mapping

techniques, such as LiDAR [2] or vision systems [3], fail. Conventionally, exploration is

accomplished using Simultaneous Localization and Mapping (SLAM) techniques and

one of several path planning algorithms, such as A*, Dijkstra’s, RRT [4], etc. This

approach enables a robot to navigate through the environment while simultaneously

generating an accurate map of the environment. These algorithms are commonly

used in Unmanned Aerial Vehicles (UAVs), Unmanned Surface Vehicles (USVs), and

ground vehicles for autonomous navigation without human operators.

Mapping an environment using Light Detection And Ranging (LiDAR) or vision

systems and one of the Simultaneous Localization and Mapping (SLAM) algorithms

is an accurate method, but there are situations when these systems may fail. For

instance, in environments like caves, where there is smog or particulate matter, the

performance of LiDAR may be affected [5]. The particulate matter can obstruct the
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light rays and produce noisy data, resulting in an inaccurate map. Similarly, vision

systems may be hindered in environments with thick smog, making it challenging to

perceive the environment accurately. These inaccuracies may result in a flawed path

planner, causing the UAV to navigate through an undesired path, and in some cases,

it may lead to crashes.

The problem of crashing can be overcome by utilizing a collision-resilient or tolerant

UAV [6, 7, 8, 9], that can withstand collisions and can still continue its trajectory.

There are various novel designs that utilize a protective structure around the UAV [7]

or passive systems that can absorb the impact forces [6, 10]. The collision absorbing

systems can be either passive [7, 11, 12] or active [6, 13] which may use springs or

deformable structures. The protective structures can protect the UAV’s propellers

from contacting the environment[8, 14] or also consist of tactile sensors [11, 15] that

can detect contact. These types of collision-resilient UAVs are able to perform the

tasks of conventional UAVs but also are able to do special tasks such as contact

inspection [16], collision-based motion planning [17] or to carryout mapping [8, 18].

Contact inspection can be used to conduct Non-Destructive Testing or crack inspection

on structures. Apart from this as aforementioned use cases, these UAVs can be used in

search and rescue missions also. Interaction and contact scenarios such as end effector

force control and contact inspection are areas of growing interest and the performance

of these types of UAVs is comparatively higher than conventional multirotor UAVs.

The present research on collision-resilient UAVs aims to tackle the challenge

of environment navigation; however, the current approaches involve an element of

randomness, resulting in uncontrolled maneuvering of the UAVs. Instead of mapping

the obstacles in the environment, the drones tend to evade them. If the obstacles are

mapped, the information can be shared with other autonomous vehicles. Therefore,

2



the emphasis of this thesis is to design a collision-resilient quadcopter and develop an

exploration algorithm that can navigate through the environment while mapping all

obstacles.

1.1.1 Problem Statement

During rescue operations, rescue personnel often face multiple challenges, including

limited visibility, inaccessibility, unpredictable circumstances, and limited knowledge of

the environment. Figure 1 illustrates a collapsed and dilapidated building, which may

be a similar scenario where rescue personnel must navigate to explore or rescue people.

The collapse of a building can result from natural disasters, improper construction, or

the age of the building, with older buildings being more susceptible to environmental

conditions that could compromise their integrity. Even if the blueprint of the building

is available, the pathways and structure may become deformed and pose a risk of

further collapse.

Figure 1. Collapsed[19] and Dilapidated Buildings[20]

Cave exploration and rescue is another scenario where manual exploration is risky

and tedious. Figure 2 shows snippets from Tham Luang cave rescue which was carried
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out in one of the caves in Thailand where a group of 12 students got stuck and it

took 18 days to rescue them. One of the reasons was that the cave network was not

completely mapped and rescuers had to initially find the path, before starting the

rescue operation. There are approximately 38,991 abandoned mines in the USA, and

the availability of the maps of these mines is uncertain. So, exploration of this cave

system still is a tedious task and the need for an autonomous mapping system still

exists.

Figure 2. Cave Exploration[21] and Rescue[22]

The DARPA SubTerrean Challenge [1] served as a competitive ground to come

up with a solution for the mentioned problem. It aimed to advance technologies for

underground navigation, mapping, and search and rescue operations. The competition

involves teams from around the world who develop and deploy autonomous systems to

navigate through complex underground environments, including tunnels, caves, and

urban underground infrastructure. The competition is designed to test the ability of

autonomous systems to operate in GPS-denied environments, which are common in

underground environments. The systems must navigate through the environments,

identify objects, and map the surroundings in real-time. The challenge was split into

three different tracks: the Systems track, the Virtual track, and the Open Exploration
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track, which involve different levels of autonomy and complexity. The Subterranean

Challenge was seen as an important step towards developing technologies that can be

used in disaster response scenarios and other situations where humans cannot easily

access underground environments.

All the teams addressed the problem of navigating such complex environments

using visual sensors such as LiDAR or computer vision systems, the problem of

when these systems fail was not solved. Therefore, the proposed Navigation and

Mapping Algorithm serves as a solution to this problem and has been deployed in the

collision-resilient drone and validated for certain cases.

1.1.2 Challenges

Although the problem statement may appear akin to floor-cleaning robots, the

difficulty of implementing it on a quadcopter presented numerous challenges due to the

increased degrees of freedom that must be precisely controlled. Below, we discuss the

primary difficulties that were encountered during the quadrotor design and algorithm

development.

1. In-Plane propellers and Higher Centre of Gravity(CoG)

The present configuration of the quadcopter was initially inspired by

SQUEEZE[6], which had offset axes for the propellers, allowing it to nav-

igate through small spaces. However, in the context of exploration and mapping,

the quadcopter needs to have stable contact with the environment. Since the

adjacent propellers were off-axis, there was a singularity where the drone would

get stuck in ledges whose thickness was less than the off-axis distance. The
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center of mass of the previous design was also above the propellor axis leading

to the possibility of toppling upon contact.

2. Compliance to the Obstacle

To ensure the stability and efficiency of the quadcopter, it is necessary for it to

conform to obstacles it encounters rather than trying to maintain its orientation.

Failure to conform can cause the drone to generate yaw about the point of

impact, requiring correction from the controller and leading to instability and

wasted control effort.

3. Arm Angle Estimation

The incorporation of the torsional spring introduces a new challenge for control-

ling the drone and creating a map of the environment. It is essential to estimate

the bending angle of each arm because it serves as an input parameter for both

the mapping framework and wrench estimation.

4. External Wrench Estimation

The measurement of the force acting on the drone is an essential parameter that

allows the algorithm to identify whether the drone has encountered an obstacle

or not. However, the deformable nature of the drone during a collision presents

a challenge because the forces acting on the controller do not fully represent

the actual force. This is because some of the force is absorbed by the torsional

spring. Additionally, while sliding on an obstacle, the drone also experiences a

frictional force that needs to be taken into account.

5. Concave and Convex Obstacles

The shape of obstacles is a significant challenge for the algorithm as the quad-

copter reacts differently to different curvatures and types of curvature. Therefore,

the algorithm was adapted to make sure all types of obstacles can be traversed
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and mapped. Convex obstacles or corners can cause the drone to yaw around

the point, which needs to be controlled systematically. For concave corners, the

drone can get stuck and may not be able to recover, which leads to singularity

cases.

6. Point Cloud Generation

The conventional method of generating a point cloud relies on input from the

visual sensor. However, for the mapping framework to generate the necessary

data, a new approach was needed. Additionally, the resulting map should

accurately depict the obstacle’s boundary layer so that it can be utilized by

other navigation algorithms.

1.2 Literature Review

A brief description of recent work related to collision-resilient UAVs, navigation

algorithms, and mapping techniques is discussed in this section. Drawbacks for each of

the works mentioned are detailed, and advancements that were made to address those

drawbacks are then explained. The concluding paragraph of this section describes the

significance and novelty of this thesis.

1.2.1 Collision-Resilient UAVs

Collision-resilient UAVs have been developed by multiple researchers as shown in [6,

7, 11, 23, 24, 25, 26] each of it has its own pros and cons. A protective rigid structure

is used to sustain collisions in [8, 11, 12] such that the propellers are protected from

getting into contact with the environment. The drawback with the approach is that
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the collision forces are directly transmitted to the drone which causes instability issues.

Authors of [13] propose a novel design where it consists of a shock absorber that helps

to take collision, the protective structure around the propeller is not complete hence

leading to the possibility of collision with vertical obstacles. An inflated flap-like

structure was used in [27] which was able to sense collisions and navigate across the

environment, the drawback with this is that when the collision forces are high it would

directly impact the inflated structure and might topple the drone. Torsional springs

were used in [6] which were mounted at the joint of the propeller arm and the body

assisted in absorbing the collisions and allowed the morphing of the drone to squeeze

through confined spaces. Another collision-resilient UAV is shown in [26] which also

utilizes a recovery controller which re-plans the post-collision trajectory by analyzing

the post-collision dynamics of the UAV. Authors of [28] proposed an adaptive attitude

controller for varying morphology UAV which was able to produce superior tracking

performance compared to the conventional geometric controller. The design part

of this thesis was inspired and developed on the design of [6], the drawback in the

design was that the drone was not stable for contact-enabled tasks, and the off-plane

propellers meant that there was a possibility of the drone getting stuck in between the

obstacles. The new design proposed in the further chapters overcomes these problems

but still uses the core design of using torsional springs for collision force mitigation.

Another novel collision-resilient drone is presented in [29] which is capable of taking

collisions in all six directions. This is enabled due to the body of the quadrotor being

fabricated with soft actuators instead of conventional plastic or metal parts.
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1.2.2 Contact-Based Navigation

Contact-based navigation is an area of research that multiple researchers have

worked on and have successfully exhibited its capabilities for various applications.

Contact sensing for these applications has been done using tactile sensors [11] or

inertial measurement units (IMUs) by authors of [18, 27, 30]. Upon collision detection,

the motion planners replan the trajectory to navigate about it. A novel contact-based

navigation planner was proposed in [31] which consists of two modes, namely sliding

and flying cartwheel. Unlike other approaches where obstacle avoidance is the main

motivation, the planner tries to track the obstacle and tries to be in contact with the

obstacle using either of those two modes. Normally upon encountering an obstacle,

the drone would slide across the obstacle and traverse around. It switches to the

cartwheel motion if there exists no feasible trajectory for sliding or if the drone stalls

due to map inconsistencies. The cons of this planner are that it has a knowledge

of the environment and the authors do state that the flying cartwheel mode has a

risk of high collision forces which compromise robust state estimation. Computer

vision is used for navigating man-hole-sized tubes in [27] along with flaps to sense

contacts. In [32], the map knowledge is available as point cloud data, on which the

authors use a motion planner to compute trajectories. In [17] a sampling bases method

was used for path-planning by exploiting collisions, similar to previous articles the

map knowledge is known. Navigation in an unknown environment is still fledgling.

Authors of [11] propose a random exploration algorithm, which is similar to a bee’s

behavior. Upon collision, the drone would start moving in the direction away from the

obstacle. The drawback with this approach is that due to the randomness, the coverage

rate is uncertain and reproducibility of the results is hard. There is a requirement
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for controlled trajectory planning while the vehicle is in constant contact with the

environment.

1.2.3 Tactile-Mapping

Mapping an environment whilst exploring has served as the foundation for SLAM.

The map generated is used for trajectory planning by the same vehicle or by other

autonomous vehicles. Traditionally map generation is done using the concept of

Structure from Motion (SfM) technique [33]. It is a computer vision technique that

aims to reconstruct the three-dimensional structure of a scene or object from a

series of two-dimensional images or video frames. It involves estimating the camera

motion and the 3D positions of points in the scene simultaneously. By analyzing

the correspondences between image features across multiple views, SfM can infer the

geometry and spatial relationships of the scene, allowing for the creation of a 3D

model or reconstruction. SfM can also be done using point cloud data obtained from a

LiDAR, authors of [34] proposed an algorithm that utilizes both LiDAR and a stereo

camera to generate a high-resolution map of the environment. The aforementioned

techniques are not real-time, they are used to process the data that was previously

recorded to generate maps. Eventually, as research and computation power progressed,

real-time map generation was achieved along with SLAM algorithms. Map generation

algorithms were proposed in [35, 36] which uses a monocular camera to achieve SLAM.

A 2-axis LiDAR was used in [37] to generate a map of the environment and localize the

vehicle. Sensor fusion was achieved in [38] using multiple sensors such as LiDAR, IMU,

and encoders to generate a high-resolution map of the environment. Another novel

multi-sensor fusion algorithm was proposed in [39] uses GPS for outdoor navigation
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and LiDAR or camera when GPS data is not available to navigate across a complex

environment. A novel map generation technique is presented in [18] which utilizes

collision detection to place obstacle blocks in the map and re-plan the trajectory.

However, the obstacle blocks are of constant dimension and do not represent the exact

obstacle dimensions, also the algorithm does obstacle avoidance and moves around

the environment.

1.2.4 Congregation and Docking Applications

Another application where collision-resilient UAVs can be utilized is multi-robot

congregation and docking. Where multiple collision-resilient UAVs can be cohered

together and carry out various tasks. Visual sensing and docking are proposed by

authors of [40, 41] where the individual UAVs come together with the help of either

motion capture or camera sensing systems respectively. This type of multi-robot

coordination can be used to carry out various tasks. In this case, for docking purposes,

the UAV’s body consists of neodymium magnets to interlock with each other which

adds complexity to the design and undocking is harder since the motors would saturate

before generating enough thrust to detach. A multi-link robot is proposed in [27]

where the multi-linked robot is used to form different shapes and the whole system

is modeled which helps it to control. A similar multi-linked UAV is proposed in [42]

which also uses an external wrench estimator to estimate the forces and torques acting

on the body which is then utilized for collision detection. The same UAV is also

used in [43, 44] for applications such as pivoting and pick & place tasks. The UAV is

capable of sensing the force and the wrench estimator provides the external forces

acting on the UAV. Even though the UAV is a multi-linked body it is not capable of
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adding multiple links together in real-time. But a decentralized group of UAVs can

come together to accomplish such tasks. If a larger force is needed then multiple UAVs

together can act as a single UAV and perform the tasks. Even though this problem is

not addressed in this thesis, the current proposed collision-resilient quadcopter can be

employed for such tasks.

This thesis thus provides a collision-resilient quadcopter, XPLORER, and the

Simultaneous Navigation And Mapping (SNAM) algorithm which can be used for

environmental exploration, obstacle analysis, and other applications.

1.3 Organization of the Thesis

The thesis is divided into three modules. The first module, Module 1, provides

a brief overview of the literature review on contact-based navigation and mapping

techniques, as well as the drawbacks of current state-of-the-art technologies. The

second module, Module 2, comprises the work conducted for the thesis. Chapter 3

discusses the novelty of the design and upgrades from the previous design, including

the elimination of singularities and the modularity of the new design. Chapter 4

describes the navigation algorithm, including the state machine model and how it uses

the estimated Arm angles and External Wrench. Chapter 5 explains how multiple

input parameters such as the CAD model of the drone, odometry data, and arm

angles data are used to generate the point cloud and the C-Space of the obstacle. The

final module, Module 3, consists of the experimental results and validation of the

navigation algorithm, as well as a discussion of the accuracy of the map generated

and metrics for the pipeline. The thesis concludes with final remarks and an overview

of future work
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1.3.1 Research Objective and Contributions

The objective of this thesis is to redesign a collision-resilient UAV and come up

with a novel exploratory navigation algorithm and mapping pipeline for the same with

the following features -

• The design of the drone must be robust and avoid singularity cases or toppling

upon impact, while also allowing for modular construction that facilitates rapid

component replacement.

• The navigation algorithm should enable the drone to effectively explore obstacles

with convex or concave curvature, regardless of orientation, and should be

adapted for use on conventional drones equipped with propeller guards.

• The mapping pipeline’s modularity enables it to be implemented with minimal

modifications on any type of drone using CAD models and flight controller

parameters and to generate an accurate map of the obstacle.

• The whole thesis was developed with modularity and distributed processing

as the driving factor. So, that the algorithm and pipeline can be recreated by

fellow people for their own drones and reduce the computational load on the

onboard computer and offload it to a powerful computer.

With the above-mentioned features in mind, a reliable and robust exploratory

navigation algorithm and a mapping framework were developed and presented in this

thesis. The existing Collision-resilient drones address the problem of post-collision

stability but the design proposed in this thesis aims to achieve exploration capabilities

along with post-collision stability. The design also helps to perform tasks like contact

inspection and force application as shown in [10]. The navigation algorithm allows

the drone to be in contact even after collision and traverse along the obstacle, instead
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of navigating around it, which conventional navigation algorithms focus on. It is

analogous to a blind person moving around a room and was the motivation for this

algorithm. The navigation algorithm assists the mapping framework to generate a

precise map without any visual sensors. The mapping framework is not targeted

to be a standalone mapping strategy but instead to assist conventional mapping

methodologies when the effectiveness of the visual sensors fail and this can supplement

those methods.

1.3.2 Assumptions

The major assumptions that were made in the thesis are as follows.

1. The obstacle’s surface is smooth and not serrated. This was considered for

experiments since the propellor guards are made of PLA and wear and tear

might affect its integrity.

2. The odometry state estimation of the drone is significantly accurate. This was

done to limit the extensivity of the thesis as inertial odometry itself is a separate

topic to develop on.
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Chapter 2

DESIGN OPTIMIZATION

In this chapter, we will discuss the improvements made to the design of the

quadcopter to address the limitations of the previous design presented in [6]. The

initial section will outline the rationale for the new design, followed by a description of

the design modifications in subsequent sections. Lastly, we will highlight the modular

features of the new design.

Figure 3. Morphing capability of SQUEEZE [6]

2.1 Drawbacks and Need for Design Improvements

Figure 3 illustrates the original design, which was utilized in [6]. This unique

design features variable geometry that enables it to navigate cluttered environments,

and maneuver through narrow gaps and passages. The quadcopter is compliant and
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has passive morphing capabilities, achieved by incorporating torsional springs at every

arm hinge to facilitate rotation propelled by external forces. The arms are specifically

designed so that the adjacent motors and propellers are at varying heights, preventing

any physical interference between the arms during folding (refer to arm types 1 and 2

in Figure 4), this enables the arms to bend about 90 degrees.

Figure 4. Exploded View of the SQUEEZE [6]

The quadcopter’s design is effective for its intended purpose of navigating through

narrow spaces and confined areas. However, it poses a risk of instability upon colliding

with obstacles due to the varying heights of the adjacent propellers. As a result, the

contact plane formed in such situations is not perpendicular to the quadcopter’s body,

increasing the likelihood of it getting stuck. There is a possibility of crashing if the

obstacle’s thickness is less than the height difference between the propellers as shown

in Figure 5. Additionally, the design employs semi-circular propeller guards, creating

a potential for the propellers to collide with obstacles in the sagittal plane, in this

case, the propeller will hit the obstacle say the wall. Another drawback in the design
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was that the propellers were above the top plane of the propeller guards which again

poses the risk of crashing. These limitations are depicted in Figure 6.

The design also has a problem with the Center of Gravity (CoG) of the drone

being located above one of the propeller axes. This induces a moment upon contact

with an obstacle that can cause the drone to topple. While this was not a significant

issue for passage pass-through applications, it can lead to instability during higher

velocity impacts where the contact is only on one plane which is the focus of this

research.

The limitations mentioned above necessitate a revised design that addresses the

issues without adding any weight to the drone. The upcoming sections will describe how

the new design effectively overcomes these limitations and outperforms its predecessor.

Figure 5. The adjacent propellers are off-axis which causes SQUEEZE to slide in and
crash

2.2 Design Derivatives from Previous Design

XPLORER’s design language still follows the concept of passive adaptive morphol-

ogy similar to SQUEEZE, utilizing torsional springs for morphing. However, all four
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(a) Propeller above the frame (b) Obstacle in the Sagittal Plane

Figure 6. Drawbacks of SQUEEZE

arms now use stiffer springs compared to the previous design, which only used two

arms with these springs. The new design is set up in the ’X’ configuration to enable

two-point contact with obstacles, deviating from the previous ’+’ configuration. The

new design measures 43 cm in edge-to-edge distance compared to the initial design’s

37 cm, the total height is longer due to the three-stack design. Further sections will

discuss the design improvements implemented.

2.3 Design Refinements

The redesigned SQUEEZE is illustrated in Figure 7. The primary modification is

that all the propellers are now in the same plane, which allows for secure contact with

obstacles. In addition, the propeller plane is almost coincident with the top plate,

and the Center of Gravity (CoG) is below that plane, as depicted in Figure 8. This

prevents the drone from toppling since upon establishing contact it would require a

lot more effort to generate a moment and to topple. But since the adjacent propellers

are now in the same plane, the ability to squeeze and fly is limited. The arms can

now only deform up to 30 degrees before coming in contact with the adjacent one.
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Furthermore, since the scope of this thesis is to explore contact-based navigation

abilities and not showcase squeeze and fly abilities, we limit the linear velocities to

2m/s.

The propeller guard of SQUEEZE [6] measured 1 cm in width but the new design

measures 2 cm in width but is split into two 0.5 cm rings to enable better contact with

obstacles. The dual ring design enables a larger contact area and this was done to

reduce the weight and also reduce the contact area to reduce friction while traversing

across obstacles. From Figure 7 we can see that the propeller guards are now circular,

providing protection from all directions including the sagittal plane, and aiding in

stable obstacle contact.

Figure 7. Exploded View of the XPLORER
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2.4 Weight Optimization

From the initial stages, weight optimization was considered and incorporated into

the new design. The initial design had a weight of approximately 632 grams, whereas

the new design weighs approximately 635 grams without including the battery and

the onboard computer. This weight was achieved by using Nylon screws and nuts

instead of steel ones and by 3D printing the parts at 20% infill using PLA material.

The drone’s design was changed to a three-stack design from a two-stack design to

protect the battery from impacts while landing and all the electronics were enclosed

within a protective structure which can be seen in Figure 8. The propeller’s size was

also increased to 6 inches from 5 inches, resulting in increased thrust and a higher

thrust-to-weight ratio compared to the previous design. Even though the propeller

guards are larger the amount of material used to is less due to the design, since the

previous design used a two-piece split design, unlike the new unibody design.

Figure 8. Lateral View of the New Design.
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2.5 Modularity

The redesign prioritized modularity and repairability, and the drone can be divided

into two distinct modules: the center tower and the propeller module. The center

tower, shown in Figure 9(a) which is designed with a three-stack structure, encloses

the electronics and battery. The dimensions of the tower allow for the Raspberry Pi

and battery to align with the plate edges, and wiring can be routed within the tower

to prevent dangling except for the IMUs wiring.

The propeller module shown in Figure 9(b) consists of two parts, the arm, and

the propeller guard. The arm features multiple holes that allow for easy swapping of

springs of different stiffness. The propeller guard can also be replaced easily since it

is held by two screws and nuts. The propeller guards also have a slight amount of

flex which allows them to absorb some of the collision impacts, this also possess the

problem of the point of failure, and the modular design enables quick replacement.

While the propeller guard can take the forces in the lateral direction, the forces in

the vertical direction were also considered. Suppose the drone undergoes a free-fall and

crashes the electronics should be protected. The nylon screws act as shock absorbers

in this case and thereby shielding the electronics from any impact. When the drone

crashes, the screws absorb the forces and break apart, preventing the transfer of force

to the electronics. Moreover, the sandwich design of the towers helps to protect the

electronics from the environment, ensuring that they do not come into direct contact

with it upon crash.

21



(a) Tower Module (b) Propeller Module

Figure 9. Modules of XPLORER.

2.6 General Specifications

In accordance with the XPLORER design [10], this section provides an overview of

the electronics used. The design and assembly were performed using Autodesk Fusion

360 software. Polylactic acid (PLA) was utilized to print the parts using a Prusa i3

MK3S+ 3D Printer. The springs utilized in the design were made of spring steel and

wound in a clockwise direction. Each arm has a 9-DoF BNO055 inertial measurement

unit (IMU) attached to it to transmit its relative orientation with respect to the

body, which will be utilized for estimating the external wrench, which in turn will

be used by the navigation algorithm and mapping framework. The PIXHAWK4 is

employed as the flight controller with a Raspberry Pi serving as a high-level companion

computer. ROS2 is employed to establish communication between the flight controller,

the Raspberry Pi, and the local position system provided by Optitrack Systems, CO.

This chapter presents a novel design of a collision-resilient UAV, specifically tailored
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for exploration tasks. The proposed redesign prioritizes modularity and repairability

while maintaining an optimal weight distribution. XPLORER exhibits an increased

contact area with obstacles and a lowered center of gravity, resulting in enhanced

contact stability during exploration missions. The modular design facilitates effortless

component replacement, such as torsional springs, to adapt to varying operational

requirements. Moreover, all electronic components are integrated within the frame,

ensuring indirect collision and safeguarding their integrity. Although XPLORER

possesses a larger footprint compared to its predecessor, SQUEEZE, the overall weight

remains nearly identical, showcasing an effective weight optimization strategy.
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Chapter 3

NAVIGATION ALGORITHM AND MAPPING FRAMEWORK

This section gives the formulation for the exploratory navigation algorithm and

the mapping framework. It discusses the state machine model for the navigation

algorithm and the mapping strategy and the specifications of the map generated.

3.1 Navigation Algorithm

In this section, a navigation algorithm is introduced for exploring the environment.

The algorithm adopts a frontier-based explore-and-exploit approach, utilizing the

interaction controller [10] and collision-resilient design for tactile-based navigation. To

achieve this, the algorithm employs a state machine model. The necessary inputs for

the state machine to transition between states based on input data will be discussed.

Additionally, it will show how the algorithm overcame the challenges of effectively

navigating both convex and concave obstacles.

3.1.1 Requisites for the algorithm

The state machine relies on two primary input parameters to function effectively,

namely the external wrench acting on the drone and the odometry data from the flight

controller. The external wrench, represented by the symbol τ̂ , helps to determine the

direction of the collision in relation to the body frame, while the yaw speed, represented

by ψ̇, serves as a trigger for the tactile-turning state. Although the external wrench
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provides both force ˆ(f) and torque (m̂), only the forces acting on the X-Y planes are

utilized by the algorithm. The external wrench estimator from [10] is used to obtain

the wrench data for this scope of the thesis, but it is not limited and any validated

wrench estimation techniques can be used and given as input for the algorithm.

To utilize the forces obtained from the wrench estimator, it must first be trans-

formed to the body frame because the trajectory generation is done in this frame. To

perform the transformation, Equation (3.3) is employed, with b
wR(ψ) providing the

transformation from inertial to the body frame.

w
b R =


cosψ − sinψ 0

sinψ cosψ 0

0 0 1

 (3.1)

Equation (3.1) shows the transformation from the body frame to the inertial frame,

while the inverse transformation can be obtained by using Equation (3.2).

b
wR(ψ) =w

b R(−ψ) =


cosψ sinψ 0

− sinψ cosψ 0

0 0 1

 (3.2)

(bf̂) = [bwR(ψ)][f̂ ] (3.3)

The external wrench estimate is obtained at a rate of 50Hz from the wrench

estimator, and in order to mitigate the effects of noise, we employ a moving average

filter with a buffer size of 50 samples. The filtered data is subsequently utilized in

the state machine, where further processing occurs. The moving average filter can be

represented mathematically by Equation (3.4).
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y[n] = (1/50) ∗ (x[n] + x[n− 1] + x[n− 2] + ...+ x[n− 49]) (3.4)

where y[n] is the filtered output at sample n, x[n] is the input signal at sample n

and n is the current sample. The buffer is constantly updated with the First in, First

out(FIFO) buffer updation. The performance of the filter can be seen in Figure 10.

Similarly, a low-pass filter is employed to eliminate sensor data noise from the

yaw rate, ψ̇. The transfer function for the low pass filter is given by the Equation

(3.5) and the difference equation is given by the Equation (3.6). The time constant is

chosen to be a = 0.1 as it produces optimal filtering. The performance of the filter

can be seen in Figure 11.

H(z) = (1− z(−1))/(1 + a ∗ (1− z(−1))) (3.5)

y(n) = a ∗ y(n− 1) + (1− a) ∗ x(n) (3.6)

Figure 10. Moving Average Filter for Wrench Estimate
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Figure 11. Low Pass Filter for Yaw Rate

The flight controller outputs yaw angles in quaternion representation, but it

requires the yaw set point to be specified in Euler angles. One issue with Euler angles

is that they are susceptible to a problem known as “gimbal lock” when the angle is π

as it switches between −π and π at that point. To avoid this problem, the yaw set

points are first converted to the [0,+2π] range before being published to the flight

controller.

3.1.2 State Machine Model

The exploration algorithm employs a state machine to navigate across the envi-

ronment. The following subsections brief on the working of the state machine and

its states. The model uses an explore-and-exploit strategy, taking advantage of the

collision-resilient design and the interaction controller [10] to perform tactile-based

navigation Figure 12 shows the overview of the state machine. The state-machine com-
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prises three primary states, namely exploration, tactile-turning, and tactile-traversal

corresponding to Γ ∈ {1, 2, 3} respectively.

START END

Tactile-Turning Exploration

Tactile-Traversal

N

Y Y

N

Figure 12. State Machine Model

3.1.2.1 Exploration State

The Exploration State, denoted by Γ = 1, enables the drone to move freely in the

environment until it comes in contact with an obstacle. To achieve this, the drone

generates a trajectory along the positive X-axis in the body frame until it reaches a

threshold of f 0 in either axis or exceeds the limit of ψ0. The set points generated

are then converted into the world frame using Equation (3.10) and published to the

flight controller. Algorithm 1 provides an overview of the process. In this state, the

yaw admittance controller[6] generates the yaw set points, and the controller uses

the current yaw as input and generates the desired yaw to comply with external

disturbances and is given by the Equation (3.7) where ψ is the current yaw and

ψd is the desired yaw. This allows the drone to conform to the obstacle, which is

crucial since it is always desirable for the drone to make two-point contact with the

obstacle. Depending on the trigger condition of ψ̇0 or f 0, the drone switches to the

Tactile-Turning or Tactile-Traversal state, respectively.
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Mψψ̈d +Dψψ̇d +Kψψd = ψ (3.7)

Algorithm 1: Exploration
Input: ψ̇ & bf̂
Output: [xspbody

ψsp]
T & Γ

1 if |ψ̇| < ψ̇0 & |bf̂ | < f0 then
2 Xsp(k) = x+ dstep

Ysp(k) = Ysp(k − 1)
ψsp = ψdes(ψ)

3 else if |ψ̇| > ψ̇o then
4 Γ = 2

5 else
6 Γ = 3

3.1.2.2 Tactile Turning State

The Tactile Turning State, denoted by Γ = 2 depicted in Algorithm 2, performs

a controlled maneuver when its yaw rate exceeds ψ̇0. The algorithm continuously

monitors ψ̇ to detect when the threshold has been reached. Once this happens, the

state machine generates yaw set points at a fixed rate of ψ̇c, allowing the drone to

yaw about the point in a controlled manner and attempt to establish contact with an

adjacent obstacle. The threshold ψ̇0 is chosen high enough such that low yaw rates

do not trigger the control yaw generation. This situation can occur, for example,

when the drone slides along a wall and pivots around an edge. As the drone is in yaw

admittance, it can freely spin about that point and cause the yaw rate to spike.

The generation of yaw is limited to a rotation angle of approximately 180 degrees

to prevent indefinite yaw generation, which would cause the drone to spin indefinitely

around that point, which is not desirable. It is assumed that the drone will come into
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contact with an adjacent obstacle or the same obstacle from which it got released.

While in Tactile Turning State the f̂ is compared with fψ0 and upon reaching it, it

will switch to the Tactile-Traversal state and continue exploring the environment. fψ0

is set slightly higher than f 0 to ensure that the contact is registered in the direction

upon switching states. The primary objective of this state is to move around corners

and edges in a fluidic manner so it assists the map framework to generate a continuous

map without any discontinuities.

Algorithm 2: Tactile Turning
Input: ψ̇ & bf̂
Output: [xspbody

ψsp]
T & Γ

1 if |ψ̇| > ψ̇o & |bf̂ | < fψ0 then
2 xsp(k) = xsp(k − 1)

if ψ̇ > ψ̇o then
3 ψsp(k) = ψsp(k − 1) + ψ̇cdt

4 else
5 ψsp(k) = ψsp(k − 1)− ψ̇cdt

6 else
7 Γ = 3

3.1.2.3 Tactile Traversal State

The Tactile-Traversal state, which enables the drone to adhere to the obstacle and

move along it, is presented in Algorithm 3. The interaction controller[10] ensures that

the drone maintains contact with the obstacle, while the trajectory generator guides

the drone across the obstacle. This state is primarily used for traversing over flat

obstacles.

When there is contact with the obstacle (i.e.) if bf̂ is greater than either f 0 or

fψ0, the state-machine switches to this state. Once the threshold is reached, the
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drone must move perpendicular to the obstacle in either the left or right direction.

To maintain consistency, the algorithm defaults to the right-hand side of the surface

normal of the obstacle. The trajectory generation relies mainly on two parameters:

the Contact Normal Direction Cn and the Move Direction λ, which is updated based

on the direction of the collision. Cn is a 4x1 vector that indicates the direction of

contact and has four elements corresponding to the positive X, negative X, positive Y,

and negative Y directions respectively in the body frame. The vector is represented

by Equation (3.8).

Cn = [+X+,−X,+Y,−Y ] (3.8)

The binary value determines the elements of Cn based on the collision direction.

Subsequently, λ is updated based on Cn. As previously mentioned, λ points towards

the right side of the obstacle and is perpendicular to the obstacle’s normal direction.

λ is represented by 0, 1, 2, 3 which correspond to the movement directions positive

X, negative X, positive Y, and negative Y respectively. All the directions are in the

body frame since the computations are done in the body frame and then transformed

into the inertial frame. The trajectory generation is divided into two parts, where

the interaction controller generates trajectory set-points about the contact normal

direction to maintain contact with the obstacle and apply the desired force, fdes, and

the set-points about the λ direction are generated at intervals of dstep distance from

the current location. The interaction controller is given by the Equation (3.9).

Mxẍset +Dxẋset +Kxxset = fdes − f̂ (3.9)

If the drone experiences contact in two directions when the obstacle are adjacent

to each other, for example, the corners of a room, the algorithm updates Cn for the
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latest collision direction and then updates λ accordingly to generate the trajectory.

This prevents the drone from getting stuck at a point in such corner cases.

The algorithm is an example of frontier exploration since it explores the environment

by moving step by step and doesn’t have knowledge beyond the point of exploration.

So, we limit the trajectory generation also to the frontier region which is radially limited

by distance dstep from the current location, which is represented by the Equation

(3.11) and shown in Figure 13. Throughout the experiments, the height of the drone is

fixed as this work focuses on the 2D exploration of the environment, and the constant

set point is published to the flight controller.

Figure 13. Frontier Representation.

3.1.2.4 Trajectory Transformation

The state machine generates the trajectory in the body frame, this is done in order

to assist the frontier-based exploration. The frontier distance (dstep) is with respect

to the body center and the new trajectory should be generated respectively. This is
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Algorithm 3: Tactile Traversal
Input: ψ̇ & bf̂
Output: [xspbody

ψsp]
T & Γ

1 Function CollisionNormal():
2 if λ = +Xor −X then
3 if bf̂x > f0x then
4 Cn = [1, 0, 0, 0]

5 else if bf̂x < −f0x then
6 Cn = [0, 1, 0, 0]

7 else if λ = +Y or − Y then
8 if bf̂y > f0y then
9 Cn = [0, 0, 1, 0]

10 else if bf̂y < −f0y then
11 Cn = [0, 0, 0, 1]

12 return Cn
13 Function MoveDirection():
14 Cn ← ContactNormal()

if Cn == [1, 0, 0, 0] then
15 λ = +Y

16 else if Cn == [0, 1, 0, 0] then
17 λ = −Y
18 else if Cn == [0, 0, 1, 0] then
19 λ = −X
20 else if Cn == [0, 0, 0, 1] then
21 λ = +X

22 return λ

23 Function TrajectoryGeneration():
24 λ← MoveDirection()

ψsp = ψdes(ψ)
25 if λ = +X then
26 Xsp(k) = +dstep

Ysp(k) = Ydes(fdes)

27 else if λ = −X then
28 Xsp(k) = −dstep

Ysp(k) = Ydes(fdes)

29 else if λ = +Y then
30 Xsp(k) = Xdes(fdes)

Ysp(k) = +dstep

31 else if λ = −Y then
32 Xsp(k) = Xdes(fdes)

Ysp(k) = −dstep
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given by the Equation (3.10) and w
b R is the transformation matrix from Equation

(3.1).

[xsp ysp]
T =w

b R[xspbody yspbody ]
T (3.10)

As mentioned previously, the exploration algorithm is frontier based and the

generated trajectory horizon should be limited by the frontier distance. This preventive

check helps the drone to maintain a controlled trajectory and explore within a bounded

region. This is achieved by bounding the generated set-points as shown in the Equation

(3.11). Figure 13 shows the region where the set points would be generated with

respect to the current position of the drone.

[xspbody yspbody ]
T = [x± dstep y ± dstep]T (3.11)

3.2 Mapping Framework

In this section, we discuss the mapping framework and its requirements, which

enable the generation of a synthesized obstacle map by exploiting the ability of

XPLORER to explore the environment through contact. The synthesized map can

then be utilized for motion planning by the drone or other autonomous robots. The

generated map can also be used to estimate the dimensions and location of obstacles

and other applications. The generated map is almost analogous to the map generated

by LiDAR, which allows data fusion to synthesize an accurate map. The novelty of

the framework is it is not limited to collision-resilient drones but can be easily adapted

to rigid drones also to carry out tactile-mapping.
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3.2.1 Requisites for the algorithm

The mapping framework utilizes the CAD model of the drone, the wrench acting

on the body, and the pose of the drone as the predominant inputs to generate the

obstacle map. The CAD model of the drone is used to find the bounding box of the

drone which is in turn used to generate the obstacle boundary whilst in contact. In

the case of collision-resilient drones such as XPLORER, the CAD model is dynamic,

(i.e.) it incorporates the arm bending angles and bounding box changes upon collision.

Whereas for rigid drones the bending angles are constant throughout and don’t impact

the workflow. The external wrench, τ̂ comprises of both the force, f̂ and the torque,

m̂ but the algorithm only uses the force acting on the X-Y plane in the body frame.

Similar to the navigation algorithm described in Chapter 4 the forces need to be

transformed into the body frame using Equation (3.3) with b
wR(ψ). The state estimate

of the drone is directly obtained from the flight controller and used in the framework

for the map generation, the position information and yaw of the drone are the primary

states used since the scope of the work concentrates on the 2-D map generation of the

environment.

The assumption for the mapping framework is that the state estimate of the drone

is accurate. This is considered since inertial odometry by itself is a separate research

topic and is beyond the scope of this work. The modularity of this framework allows it

to be used with any state estimation algorithms as it is independent of the estimation

techniques, but it is to be noted that errors in the state estimation will propagate

into the generated map.
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3.2.2 Point Cloud Generation

The map generation uses point cloud data to generate the obstacle map. In order

to do that a predefined obstacle point cloud data is needed. The obstacle is a block

of size 0.25 m × 0.08m × 0.5 m is used in this case. The block was designed in

Autodesk Fusion 360 and the point cloud was generated using Cloud Compare. Based

on multiple iterations it was found that 10,000 points was optimal for the map size and

the resolution. This obstacle block will be used in the framework for map generation.

The framework also uses another block called the corner block, the reasoning will be

discussed in the later section, this block consists of 30,000 points because of the larger

size but the density is almost the same as the corner block.

The framework uses the Open 3D library[45] for point cloud processing. It is a

modern open-source library for 3D data processing, including 3D geometry processing,

3D visualization, and deep learning on point clouds. It is developed by a team of

researchers from around the world and provides a powerful and easy-to-use platform for

working with 3D data. Some of the key features of Open3D include support for a wide

range of 3D data formats, powerful visualization tools for exploring 3D data, efficient

algorithms for processing large-scale point clouds, and integration with popular deep

learning frameworks like TensorFlow and PyTorch. Open 3D was preferred over Point

Cloud Library since it has a better-integrated visualization, has better community

support, and is being actively developed. The complete point cloud map generated is

stored in Polygonal File Format (.ply) as per the ASCII formatting standards so that

it can be utilized by other libraries and software.
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3.2.3 Algorithm

The mapping framework uses a similar state-machine algorithm to generate the

obstacle boundary map. Algorithm 4 shows the overview of the working. As mentioned

previously the algorithm requires the pose, wrench in the body frame, and the CAD

model of the vehicle, apart from that it also requires the Contact Normal Direction,

Cn, and the Move Direction, λ. The mapping framework runs as a separate node and

subscribes to the topics from the flight controller and the Navigation State Machine.

We define the mapping wrench threshold as fmap, if the body wrench, bf̂ is greater

than the threshold, the mapping starts. fmap is taken slightly higher than fdes, this

is done to ensure that mapping is only started when the drone is in firm contact with

the obstacle. As an additional check is added, the mapping only initiates if the drone

is armed.

Algorithm 4: Mapping Framework
Input: [x, y, z]T , ψ , bf̂ , Cn & λ
Output: Point Cloud Data

1 if bf̂ > fmap then
2 if λprev ̸= λ then
3 Add Corner Block to Point Cloud

4 else
5 Add Obstacle to Point Cloud in Cn axis

6 else
7 Store Point Cloud Data

Once the mapping is started, Cn gives the direction of the obstacle. The obstacle

block is added to the point cloud in the direction of the obstacle at an offset of 0.21

m. The offset distance is derived from the CAD model, the edge of the bounding box

of the XPLORER is 0.21 m away from the center of gravity as shown in Figure 14.
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Figure 14. Offset Distance Representation.

There are cases when Cn changes to the adjacent direction, there would be a

discontinuity in the map generated if only the obstacle block is used for map generation.

For this particular case, we use a custom point cloud called the corner block. The

corner block is a right-angled block which is a combination of multiple obstacle blocks

and visually provides continuity in the map generated. As mentioned the corner block

is inserted in the direction bisecting the two contact normal directions. For example,

if Cn switches from positive X to positive Y, the corner block would be added in

between them at an offset distance of 0.417 m, it is represented in Figure 14.

For the scope of the thesis, the map generation is done in real-time, but it is not

utilized for any real-time path planning tasks. The map generated is stored upon the

termination of the algorithm in the .ply format. The map is used by Collision-Aware

TrAjectory plAnNer(CATAAN) [10] for generating collision-inclusive trajectories.
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Chapter 4

EXPERIMENTS AND RESULTS

The Navigation algorithm and the Mapping framework explained in the previous

chapter are implemented using XPLORER and tested in two different scenarios to

validate it. This chapter explains the hardware used for experiments, the experimental

setup for the two scenarios, and the accuracy of the generated map.

4.1 Hardware Setup

The experiment was conducted in an indoor motion capture space at Robotics and

Intelligent Systems Laboratory, ASU consisting of 10 cameras (OptiTrack, NaturalPoint

Inc, OR) for obtaining the localization data and 3D pose estimation of XPLORER.

Raspberry Pi 4 was used as a companion computer to communicate with the PIXHAWK

4. ROS2-RTPS bridge is used to communicate between the two devices, the ROS2’s

DDS middleware allows offloading the computation onto a powerful computer on the

network, which was configured with AMD Ryzen 5 CPU with 16 Gigabytes of RAM.

The motion capture computer, the Raspberry Pi, and the powerful computer were all

connected on the same network over the 5Ghz band or via Ethernet. The setup also

consists of four 9-DOF IMUs (BNO055, Adafruit, New York, NY) each on one arm of

XPLORER to estimate the arm angle. The overview of the hardware setup is shown

in Figure 15
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Figure 15. Hardware Setup.

4.2 Environment Setup

As aforementioned, the two distinct environments were constructed to validate

the Navigation algorithm and the Mapping framework. Figure 16 & 17 show the

environment with concave and convex corners and box-like structure respectively. The

walls are acrylic panels, and the reason for using acrylic panels is to assist in the

tracking of the drone by the motion capture cameras through the walls and also to

minimize friction. The acrylics were supported using wooden structures so that it

remains stable upon collisions.

The environment with concave and convex corners consists of three linear segments

and two corners. The longest wall measures 1.22 m and the other two walls measure

1.00 m each, and all three are 0.90 m high. One of the corners is a right-angled concave

corner and the other is at 120 degrees, which represents an obtuse-angled corner.

The environment with a box-like structure consists of four walls, each aligned
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perpendicular to the adjacent wall. The walls measured 1.22 m × 1.00 m and were

0.9 m high. The adjacent walls were interconnected using masking tapes to prevent

them from wobbling upon and release of contact.

Apart from these two environments, another test case was set up to validate the

resolution of mapping. This environment consisted of slots between walls, this was

done to study the behavior of the drone while encountering such scenarios. Three test

cases were considered, one where the slots are larger than the XPLORER’s width as

shown in Figure 18 (a), another one where the slot size was equal to the diameter of

the propeller guard as shown in Figure 18 (c), and finally a case where the slot size is

smaller than the diameter of the propeller guard as shown in Figure 18 (b). These

experiments help to understand the capability of the navigation algorithm and the

resolution of the mapping framework.

Figure 16. Environment with Concave and Convex Corners.
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Figure 17. Environment with Box-Like structure.

(a) (b)(b) (c)

Figure 18. Environment with Slot Gaps.
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4.3 Parameters Selection

There are several parameters that are used in the Navigation algorithm and the

Mapping framework, these need to be fine-tuned such that the optimal performance

is extracted. After extensive testing, the values for the parameters were selected and

can be seen in Table 1.

Based on a series of experiments carried out, the yaw rate registered when the

drone yaws about a corner is about 0.45 rad/s. So, to detect the yawing the threshold

is chosen to be 0.4 rad/s. For the Tactile-Turning state, the yaw generation is done at

0.26 rad/s to generate a controlled yaw. The force threshold for contact detection and

for the Tactile-Turning state is 1.5 N and 1.6 N respectively. In the Tactile-Traversal

state, the force required to be applied on the obstacle to maintaining contact is taken

to be 1.25 N, even though the XPLORER is capable of applying larger forces, we

limit it considering the flight time. As briefed in the previous chapter, the algorithm

used a frontier-based exploration approach, and the frontier distance is taken to be

0.25 m to restrict the movement in the environment. For the Mapping framework, the

force required to start the mapping is taken to be 1.51 N, this is slightly higher than

δ0 to ensure contact is established with the obstacle, and thereafter mapping starts.

Table 1. Parameters & Thresholds used in Experiments

Symbol Threshold Value
ψ̇0 0.4 rad/s
ψ̇c 0.26 rad/s
δ0 1.5 N
δψ0 1.6 N
dstep 0.25 m
fdes 1.25 N
δmap 1.51 N
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4.4 Environment with Concave and Convex Corners

This environment was constructed to validate the XPLORER’s ability to traverse

across straight, concave, and convex walls. This scenario is almost a representation

of an environment in which the drone could be deployed to carry out exploration

tasks. The right-angled concave corner represents a typical corner of a room, this

is important to be validated since most of the dilapidated buildings will have such

corners. The other corner is an obtuse-angled one and this is used to verify if the

drone is able to maintain contact in such scenarios, since it shouldn’t drift away upon

encountering such corners. The results of the Navigation algorithm and the maps

generated for this environment are discussed in the next section.

4.4.1 Experimental Results

XPLORER takes off and starts to hover at a height of 0.7 m, thereafter the state

machine switches to Exploration state(Γ = 1) and the drone starts to move forward

until it makes contact with the wall. The drone starts to experience a wrench in the

negative X direction and when the external wrench threshold, δ0 is reached it switched

to Tactile-Traversal state(Γ = 3). Also at this point once the mapping threshold,

δmap is reached the mapping is started. The interaction controller applies fdes in the

positive X direction to maintain contact with the obstacle and starts to move in the

positive Y direction till it reaches the right-angled corner. At that point, the wrench

starts to increase in the negative Y direction, once it reaches the threshold, the move

direction, λ switches to the negative X direction and the drone starts to apply force

in the negative Y direction. Whilst the drone is moving in negative X direction and
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reaches the obtuse-angled corner, the interaction controller ensures that the drone

maintains contact in the negative Y direction. As the drone reaches the end of the

environment, the flight is terminated. The motion of the XPLORER can be seen

in Figure 20 (a) indicated by the white arrows and Figure 20 (b) shows the map

generated for the environment. In this experiment, only two states corresponding to

Γ =1 and 3 are activated as it was sufficient to navigate the environment and it is

shown in Figure 19.

Triggers Tactile-
Traversal

State

Switches Direction

Figure 19. Experimental Results for the Environment with Concave & Convex
Corners.

4.5 Environment with Box Obstacle

This environment was designed to validate the XPLORER’s ability to turn across

corners and continue exploration and also to achieve loop closure (i.e.) the ability

to reach the starting point of the exploration. This scenario consists of right-angled

corners representing a box, the motive of this environment is to trace the box completely
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(a) (b)

0.5 m

Figure 20. Top View of the Environment with Concave & Convex Corners and the
Generated Map.

so that the dimensions of the box can be extracted. This also tests the ability of the

navigation algorithm to trigger the tactile-turning state and maintain contact with

the obstacle throughout the flight. The results of the Navigation algorithm and the

maps generated for this environment are discussed in the next section. It is to be

noted that the box’s edges are not parallel to the axes can be seen in Figure 21, this

was because while setting up the environment it was slightly difficult to exactly orient

the edges parallel to the axes.

4.5.1 Experimental Results

XPLORER takes off and hovers at a height of 0.7 m. It then transitions to the

Exploration state(Γ = 1), moving forward until it encounters a wall. Upon contact

with the wall, the drone experiences a negative X-direction wrench. When the external

46



wrench threshold, δ0, is reached, it switches to the Tactile-Traversal state(Γ = 3).

Additionally, once the mapping threshold, δmap, is reached, mapping is initiated. The

interaction controller applies fdes in the positive X direction to maintain contact with

the obstacle and begins moving in the positive Y direction until it reaches the corner.

Since the interaction controller is applying force and as soon as it reaches the corner

the XPLORER is released from contact and yaw about that point. The yaw rate

is greater than 0.4 rad/s which triggers the Tactile-turning state(Γ = 2), and the

drone exhibits a controlled yaw at a rate of 0.26 rad/s. The drone yaws about that

point and established contact with the adjacent wall and starts to exert force, upon

reaching the yaw wrench threshold(δψ0) it switches back to Tactile-Turning state, and

continues exploration. Similarly, the XPLORER traverses the other three corners

and navigates the environment. Upon reaching back to the initial point of contact

the navigation algorithm is terminated and so is the mapping. In this case, all three

states corresponding to Γ = 1, 2, 3 are activated to navigate across the environment

and it is shown in Figure 21. The generated map enables the measurement of the box

dimensions, which are computed as 1.231 m × 1.019 m, while the actual dimensions

are 1.22 m × 1.0 m. The accuracy for computing the area of the box is approximately

96.72%. For the storage metrics, the framework generated a map that was 1.1 Mb

large for a 1 minute and 22 seconds flight, which corresponds to 0.0134 Mb/second.

One factor contributing to the mapping error is the imperfect position estimation,

which includes small errors from the motion capture system used in our experiment.

These errors propagate through the state estimation process and affect the accuracy

of the point cloud data.
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Triggers Tactile-
Traversal

State

Triggers Tactile-
Turning
State

Figure 21. Experimental results for the Environment with Box-like Structure.

(b)(a)

0.5 m

Figure 22. Top View of the Environment with Box-like Structure and the Generated
Map.

4.6 Environment with Slots of Different Widths

These sets of test cases were constructed to check the ability of the navigation

algorithm to traverse across gaps in the environment. For this, a parameter is
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introduced named dn, which is the width of the gap. There are three cases considered,

d1 where the width of the gap is larger than the XPLORER’s width, this is a

typical scenario that represents XPLORER escaping from a room or navigating a

passageway. The next case d2 is when the width is smaller than half the diameter of

the XPLORER’s propeller guard, this is to emulate small gaps that might present in

dilapidated buildings. The final test case d3 is where the width of the gap is equal to

that of the propeller guard’s diameter, this case is done to validate the behavior of

the XPLORER and the navigation algorithm in such cases.

4.6.1 Experimental Results

Similar to previous experiments the XPLORER would take off at the initial

location. Upon reaching the hover height it would switch to the Exploration state(Γ =

1) and starts to move in the positive X-direction. Upon making contact with the wall

a force is registered in the negative X-direction. Upon reaching the wrench threshold

δ0, it switches to the Tactile-Traversal state(Γ = 3) and starts to move in the positive

Y-direction. Based on the slot width dn the motion of XPLORER was different and

can be seen in Figure 23, 24 and 25.

For the first case where the slot width d1 is larger than the width of the XPLORER,

this scenario is almost a subset of the previous experiment. This is done to see how it

would behave when encountering corners. This setup also shows a typical scenario

where it would explore a room and reaches the exit passageway. The experimental

results can be seen in Figure 23, where XPLORER’s path is shown. Upon encountering

the corner, it starts to yaw and triggers the Tactile-turning state(Γ = 2) and starts

to yaw about that point until it hits the yaw wrench threshold(δψ0). Thereafter, it
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switches back to the Tactile-Traversal state(Γ = 3) and starts moving in the positive

Y-direction in the body frame. This case clearly shows that the navigation algorithm

is capable of exiting a room into a passageway and continuing exploration. The map

generated whilst exploration is also shown in Figure 23.

(a) (b)

0.5 m

Figure 23. Slot size larger than the width of XPLORER.

The next case is where the slot width d2 is smaller than half the diameter of the

XPLORER’s propeller guard. This case is to emulate small gaps that are present

in environments. This would represent small gaps present in dilapidated buildings

or caves. The experimental results can be seen in Figure 24. Similar to previous

experiments XPLORER would take off and would move towards the wall and switches

to the Tactile-Traversal state(Γ = 3) and starts to traverse across the wall. When it

encounters the gap, it continues to traverse since the propeller guard is larger than

the slot width. Even though the gap is smaller than the propeller guard, XPLORER

continues to move effortlessly. The gap is registered in the point cloud map and is
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shown in Figure 24. It can be inferred from this that even though there is a small kink

registered in point cloud data, it does not correspond to an actual gap in the map.

This is one of the drawbacks of tactile mapping, the current mapping framework does

not localize the collision instead it assumed that there is constant contact between

the two propeller guards.

0.5 m

Slot in Point Cloud

(a) (b)

Figure 24. Slot Size Smaller than the Radius of Propeller Guard.

The final case that is considered is when the slot width d3 is equal to the diameter

of the XPLORER’s propeller guard. This case was taken into account to study the

behavior of XPLORER while encountering such slots. When the XPLORER switches

to the Tactile-Traversal state(Γ = 3) it moves across the wall. When it encounters the

gap, XPLORER slides in the gap and the arm gets stuck. When it enters the gap,

it triggers the Tactile-turning state(Γ = 2) and XPLORER starts to yaw when it is
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stuck in the slot. These experimental results are shown in Figure 25. It can be seen

that XPLORER slides and yaws and gets stuck in the slot. This shows the drawback

of the current navigation algorithm and this is something that needs to be developed

upon.

Figure 25. Slot Size Equal to Diameter of Propeller Guard.
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Chapter 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

To conclude, this thesis presents a complete package including a collision-resilient

quadcopter, XPLORER, and a Simultaneous Navigation and Mapping algorithm

developed for the same. The navigation algorithm and the mapping framework were

deployed in XPLORER to validate and the results were discussed.

The design of the quadcopter focuses on modularity and repairability, it consists

of modules that can be easily swapped out when the drone crashes or any parts need

to be replaced. The use of stiffer torsional springs allows the quadcopter to undergo

collisions and also does not require modification of the control allocation matrix within

the flight controller since the bending of arms is limited to 30 degrees. The enclosed

tower module also helps to protect the electronics from encountering direct collisions

hence preventing failure.

The navigation algorithm is developed in such a way it can be deployed in rigid

drones also if there is a robust wrench estimate is available. The validation experiments

prove the robustness of the algorithm and address most of the corner cases. The

frontier-based exploration helps the drone to navigate environments with no prior

map of the same since the algorithm does not use the generated map for navigation it

reduces the computational complexity.

The mapping framework is designed in such a way as to assist the conventional

mapping process. The framework generates point cloud data of the boundaries of the
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obstacle, which is similar to the maps generated with LiDAR. This map also helps us

to carry out dimensional inspection of the objects as demonstrated in the previous

chapter. The accuracy of the map generated turns out to be 96.72% and the storage

consumed by the map is also minimal at 30 Hz. The above data demonstrated how

the framework can be used for real-time applications.

5.2 Future Work

Currently, the Navigation algorithm and the Mapping Framework heavily rely

on the odometry data from the flight controller. The current local position of the

drone is obtained from the motion capture system which is significantly accurate

compared to other state estimation techniques. Visual inertial odometry[46] is being

extensively researched and would be the optimal approach to start with. But, the

effect of collisions on such techniques still is a topic to be explored. Contact inertial

odometry is done for ground vehicles in [30], a similar approach can be carried out

for drones. The development of a novel collision-inclusive state estimation technique

would help present a complete product solution along with the Navigation Algorithm

and the Mapping Framework.

The mapping framework currently only generates the tactile map of the environ-

ment, as mentioned the goal of the framework is to supplement the current state-of-

the-art mapping techniques. The generated tactile map can be utilized along with

current SLAM algorithms. Authors of [39] present a multi-sensor fusion algorithm to

carry out navigation in both indoor and outdoor environments, the presented mapping

framework can also be added to a similar algorithm to carry out navigation. This
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would be particularly useful when the performance of other visual sensors deteriorates

due to the presence of fog or particulate matter.

One major drawback with the current navigation algorithm is shown in Figure 25

where XPLORER gets stuck in singularity when it traverses walls with gaps that are

larger than the diameter of the propeller guard. A countermeasure for this case needs

to be developed to overcome such scenarios. For instance, if XPLORER is stuck in a

position for a long time then it should replan the exploration trajectory and should

navigate across.

In the current state even though the Navigation algorithm and the Mapping

Framework are capable of being used in any type of drone, validation experiments are

required to compare the performance analytics. Since the behavior of conventional

drones would be different upon collision and the parameters have to be tuned for each

drone.
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