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ABSTRACT

Intelligent transportation systems (ITS) are a boon to modern-day road infrastruc-

ture. It supports traffic monitoring, road safety improvement, congestion reduction,

and other traffic management tasks. For an ITS, roadside perception capability with

cameras, LIDAR, and RADAR sensors is the key. Among various roadside percep-

tion technologies, vehicle keypoint detection is a fundamental problem, which involves

detecting and localizing specific points on a vehicle, such as the headlights, wheels,

taillights, etc. These keypoints can be used to track the movement of the vehicles

and their orientation.

However, there are several challenges in vehicle keypoint detection, such as the

variation in vehicle models and shapes, the presence of occlusion in traffic scenarios,

the influence of weather and changing lighting conditions, etc. More importantly,

existing traffic perception datasets for keypoint detection are mainly limited to the

frontal view with sensors mounted on the ego vehicles. These datasets are not designed

for traffic monitoring cameras that are mounted on roadside poles. There’s a huge

advantage of capturing the data from roadside cameras as they can cover a much

larger distance with a wider field of view in many different traffic scenes, but such a

dataset is usually expensive to construct.

In this research, I present SKOPE3D: Synthetic Keypoint Perception 3D dataset,

a one-of-its-kind synthetic perception dataset generated using a simulator from the

roadside perspective. It comes with 2D bounding boxes, 3D bounding boxes, tracking

IDs, and 33 keypoints for each vehicle in the scene. The dataset consists of 25K frames

spanning over 28 scenes with over 150K vehicles and 4.9M keypoints. A baseline

keypoint RCNN model is trained on the dataset and is thoroughly evaluated on the

test set. The experiments show the capability of the synthetic dataset and knowledge

transferability between synthetic and real-world data.
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Chapter 1

INTRODUCTION

As the number of vehicles on the road continues to increase, the capacity of current

transportation networks and infrastructure is approaching saturation (Won et al.,

2016). This leads to traffic congestion, which is a major problem in many countries.

In response, researchers are developing intelligent transportation systems that incor-

porate traffic monitoring that enables smart decision-making by the authorities and

improves traffic scenarios. Traffic monitoring systems aim to improve the safety and

efficiency of our roads by detecting and identifying vehicles, pedestrians, and other

objects in real time using a variety of perception-based sensors like cameras, LIDAR,

and RADAR. Advanced computer vision algorithms analyze traffic scenes and pro-

vide real-time information to drivers and transportation agencies. Traffic cameras are

widely deployed today to monitor traffic conditions, particularly at intersections.

Deep learning has revolutionized the field of traffic monitoring, enabling advanced

research in classification, segmentation, localization, and scene understanding. It

allows the traffic monitoring systems to automate various tasks including vehicle and

pedestrian detection, tracking (Fedorov et al., 2019), and re-identification (Khan and

Ullah, 2019). These tasks are mostly performed in the 2D image space. Among them,

pose estimation and keypoint detection have emerged as active research areas in recent

years. These techniques can be applied to a wide range of use cases, including human

pose estimation (HPE) and vehicle pose estimation.

Human pose estimation is the process of detecting and localizing human body

parts such as arms, legs, and joints, in an image or video. This technology finds ap-

plications in various fields, including motion capture (Desmarais et al., 2021), gaming,
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and human-robot interaction. With recent advancements in deep learning, 2D pose

estimation has reached a detection rate above 90% for all human joints (Newell et al.,

2016). This is made possible by convolutional neural networks and access to large-

scale datasets with annotated human keypoints. However, human pose estimation

suffers from the significant challenge of handling keypoint occlusion.

Vehicle pose estimation, on the other hand, remains a complex and challenging

task, due to the diverse range of vehicle types, colors, shapes, and sizes(Gupta et al.,

2021). Vehicle detection (Felzenszwalb et al., 2009) (Girshick et al., 2014) (He et al.,

2017) (Ren et al., 2017), tracking (Choi, 2015) (Wang and Fowlkes, 2017) (Xiang

et al., 2015) (Zhang et al., 2008), and reconstruction (Zia et al., 2013) (Kar et al.,

2015) are heavily researched focus areas that have seen significant improvements due

to the advent of deep learning (Reddy et al., 2018). Particularly, the detection of

vehicle parts such as wheels, headlights, doors, etc. across various views is being

improved on a daily basis. However, precise regression of the vehicle’s pose remains

an outstanding challenge. One more reason for the inability of neural networks to

regress vehicle pose accurately is the lack of publicly available 3D keypoint datasets.

Existing datasets are mostly limited to frontal views captured from sensors mounted

on top of ego vehicles. These frontal view datasets mainly target autonomous driving

use cases. Another critical challenge is occlusion and partial occlusion, which limits

the generalization of keypoint detection. The frontal-view datasets are vulnerable

to occlusion and low perceptual range. On the contrary, datasets captured from

roadside cameras provide a promising solution to these challenges. The strength of

data captured from these roadside cameras comes from their robustness to occlusion

and their ability to predict long-term events with a wider field of view (Ye et al.,

2022).
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1.1 Motivation and Contribution

After an extensive exploration of numerous 3D datasets for vehicle perception, it

became apparent that the majority of these datasets suffer from either a lack of key-

point annotations or an inadequate annotation scheme. Numerous vehicle perception

3D datasets were explored and found that most of the datasets have various issues

related to keypoint detection. Notably, several datasets, such as KITTI (Geiger et al.,

2012), Lyft Level 5 (Kesten et al., 2019), A2D2 (Geyer et al., 2020), and ArgoVerse

(Chang et al., 2019), lack keypoint annotations altogether. Furthermore, datasets

such as CarFusion (Reddy et al., 2018), CityFlow (Tang et al., 2019), Apollocar3d

(Song et al., 2019), and VeRi-776 (Wang et al., 2017b), which do include keypoint

annotations, fail to provide a good roadside perspective of intersections. The limita-

tion results in challenges such as occlusion and a low field-of-view (FOV). Training

on such datasets is unlikely to lead to a model that can accurately generalize 3D

keypoint detection to a roadside traffic camera perspective. To address these short-

comings, 3D environment simulator CARLA (Dosovitskiy et al., 2017) was leveraged

to generate a large dataset that has various 3D/2D annotations, including 33 key-

points, 3D bounding box, 2D bounding box, and tracking ID for all the vehicles in

the scene.

The main contributions of the thesis are below:

1. This thesis presents a one-of-its-kind synthetic perception dataset, named

SKOPE3D (Synthetic keypoint perception 3D dataset), which contains 3D key-

point annotations of vehicles from a roadside camera perspective. The scenes

in the dataset were carefully selected to include a range of weather conditions,

lighting scenarios, road types, and camera viewpoints (as shown in Figure 1.1).

• The dataset includes the following annotations - 33 3D keypoints, 3D and
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2D bounding boxes, model type (sedan, SUV, hatchback, etc.) and track-

ing ID for each car within a 70 m radius.

2. Additionally, data extension modules for CARLA Simulator have been devel-

oped, enabling the dataset to be extended with new scenes, vehicles, and anno-

tations.

3. KeyPoint RCNN, an extension of Mask R-CNN (He et al., 2017), has been

analyzed on the SKOPE3D dataset, exploring the transferability of knowledge

between synthetic and real-world datasets.

Figure 1.1: Snapshots of Scenes from the Skope3d Dataset
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Chapter 2

BACKGROUND

The field of autonomous driving and traffic monitoring has seen significant ad-

vances with the advent of deep learning and large-scale datasets. While significant

progress has been made in object detection, tracking, segmentation, and classifica-

tion tasks, keypoint detection for vehicle pose estimation remains an understudied

area. Unlike human pose estimation, keypoint detection for vehicle pose estimation

is still in its nascent stage, primarily due to the scarcity of datasets with keypoint

annotations for vehicles. Additionally, there is a lack of datasets from a roadside per-

spective, with most available datasets providing only a frontal-view perspective. This

gap in the availability of datasets for keypoint detection from different perspectives

has hindered progress in this area.

2.1 Deep Neural Networks

Deep learning has experienced a significant boost in recent years due to its ability

to recognize patterns and make predictions from vast amounts of data. Deep learning

models are built using artificial neural networks, which are designed to mimic the

structure and function of the human brain. Artificial neural networks (ANN) (Good-

fellow et al., 2016) consist of connected perceptrons, also called neurons, which enable

a series of mathematical operations such as summation, product, and activation func-

tions. By feeding data into an ANN model, it can recognize the patterns and adjust

its hyperparameters accordingly. ANNs can be arranged in various configurations to

optimize performance.
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2.1.1 Convolutional Neural Networks

The advances in computer vision tasks such as object detection and semantic

segmentation have been driven by the development of powerful neural networks like

Convolutional Neural Networks (CNN) (LeCun et al., 1998). CNNs are specialized

neural networks that are designed to automatically learn hierarchical representations

of image data by applying convolutional filters to the input image. These filters are

used to extract features, such as edges, corners, and textures, from the image at

different scales, which are then used to make predictions.

CNNs use a set of convolutional filters to scan the input image and extract mean-

ingful features, such as edges, corners, and textures. These filters are typically small

in size and are applied to the entire image using a sliding window approach. Multiple

convolutional filters are used to learn hierarchical representations, starting from low-

level features such as edges and gradually building up to higher-level features such as

object shape.

After the convolutional layers, the network uses pooling layers to reduce the di-

mensionality of the output. These layers reduce the size of the feature maps and

make the network more efficient. Common pooling operators include max pooling

and average pooling, which downsample the data by taking the maximum or average

of a local neighborhood patch, respectively.

CNNs have shown state-of-the-art performance on several computer vision tasks,

including image classification, object detection, and semantic segmentation. They can

be applied to various domains, including traffic monitoring, age/gender classification,

medical imaging, robotics, self-driving cars, and object re-identification, among oth-

ers. This is made possible due to the availability of large datasets, such as ImageNet

(Deng et al., 2009), NIH Chest X-ray (Wang et al., 2017a), and the KITTI dataset
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(Geiger et al., 2012), among others.

2.1.2 Region-CNN

Object detection is a computer vision task that involves identifying and localiz-

ing objects of interest in an image or a video. The objective is to output a set of

bounding boxes, each corresponding to the detected object in the scene along with its

class. There are various approaches to object detection, a popular one being Region-

CNN (R-CNN) (Girshick et al., 2014). RCNN combines a region proposal network

(RPN) with a CNN to generate candidate object proposals and classify them. An-

other approach is Single Shot Detector (SSD), which can directly predict the class

probabilities and bounding boxes for each object in the image.

R-CNN uses a selective search (Uijlings et al., 2013) to generate approximately

2000 region proposals or bounding boxes for image classification. Each of these pro-

posed regions is passed to the convolutional neural network for image classification.

Once the CNN classifies each patch, each bounding box can be refined using regres-

sion.

Several updates to this R-CNN model, such as Fast R-CNN (Girshick, 2015),

Faster R-CNN (Ren et al., 2015), and Mask R-CNN (He et al., 2017), have improved

upon R-CNN. These new approaches are conceptually intuitive, flexible, and robust,

with faster training and inference times.

2.1.3 Mask R-CNN

Mask R-CNN (He et al., 2017) is a variant of the Faster R-CNN model that enables

object detection and pixel-level mask generation for each detected object. This allows

for better object segmentation, making it a valuable task in instance segmentation

and object tracking. Mask R-CNN has a two-stage architecture (shown in Figure 2.1
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Figure 2.1: Mask R-CNN Architecture (Image Courtesy: Patil (2021))

taken from Patil (2021)) -

1. Region proposals - A Region Proposal Network (RPN) generates the region

proposals or candidates of possible objects in the image.
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2. Convolutional Neural Network - For each region proposal, the feature maps

proposed are RoI pooled according to the region and go through the remainder

of the network, extracting the class, bounding box, and the binary mask.

The key contribution of Mask R-CNN is the introduction of a new RoIAlign

layer, which addresses the misalignment problem between the feature map and the

object proposal caused by the RoIPool layer in Faster R-CNN. RoIAlign uses bilinear

interpolation to extract features from the feature map at pixel-level accuracy.

Mask R-CNN outperformed most state-of-the-art models in instance segmentation

tasks on COCO, Cityscapes, and Pascal VOC when it was introduced in 2017.

The authors also showed how Mask R-CNN can be extended to the Keypoint

R-CNN - a model that enables keypoint detection.

2.1.4 Keypoint R-CNN

Keypoint R-CNN is a classic keypoint detector introduced alongside Mask R-CNN

(He et al., 2017). The Mask R-CNN can be easily extended to the pose estimation

network using the keypoint detection module. The architecture (shown in Figure 2.2)

is exactly the same as Mask R-CNN, differing only in the output size and the way the

keypoints are encoded in the keypoint mask. It is mainly used for and excels at human

keypoint detection. MS-COCO (Lin et al., 2014) dataset offers various annotations of

everyday objects like image recognition, segmentation, and captioning. It also comes

with human keypoint annotations consisting of 17 keypoints for people, including the

head, neck, shoulders, elbows, wrists, hips, knees, and ankles (Figure 2.3 taken from

Patil (2021))). Keypoint R-CNN is extensively trained and studied on this dataset.

Keypoint R-CNN modifies the Mask R-CNN, by one-hot encoding a keypoint

instead of the whole mask of the detected object. The input of Keypoint R-CNN

differs from the Mask R-CNN as shown in figure 2.4.
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Figure 2.2: Keypoint R-CNN Architecture (Image Courtesy: Patil (2021))

Keypoint R-CNN incorporates an additional branch in the network that predicts

the keypoint locations for objects in addition to their bounding boxes and class pre-

dictions. This branch is a fully convolutional network that outputs a heatmap for
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Figure 2.3: Human Keypoint Annotation from MS-COCO Dataset (Image Courtesy:

Patil (2021))

each keypoint, which indicates the likelihood of the keypoint being present at each

location in the image.

2.2 Keypoint detection

Keypoints, also known as key features, are specific points or regions of an object

that are of interest and can be used to detect objects, recognize objects, or estimate

their pose. Keypoint detection is an essential building block for various computer vi-

sion tasks, such as pose estimation, simultaneous localization and mapping (SLAM),

structure from motion, and camera calibration. Keypoint detection has been used

even before deep learning became mainstream. There are various industry-wide ap-

plications that use keypoint detection algorithms, such as FAST, SIFT, and ORB,

among others. Additionally, keypoint detection has been researched using various

deep-learning techniques.

Huge advances have been made in human pose benchmarks. Human keypoint

detection can be used for a wide variety of applications, including Pose estimation
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Figure 2.4: Mask R-CNN Class-wise Output Feature Map (Top) and Keypoint En-

coding in Output Mask (Bottom) (Image courtesy: Patil (2021))

(Xiao et al., 2018), gender classification (Barra et al., 2019), violence recognition (Soli-

man et al., 2019), hand gesture recognition (Simon et al., 2017), face pose estimation

(Barra et al., 2020), and more.

Recently, vehicle pose estimation has also drawn some attention. Vehicle pose esti-

mation can be used in a variety of applications, such as pose detection (Sánchez et al.,

2020), enhancing instance segmentation (Murthy et al., 2017), vehicle tracking (Feng

et al., 2021), accurate speed estimation (Llorca et al., 2016), vehicle re-identification

(Wang et al., 2017b), 3D scene reconstruction, traffic surveillance (Zhang et al., 2020)

etc.
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Keypoint prediction methods can be divided into two different categories:

• Top-down approach: In this approach, first, all the instances are detected

in the given image with the help of an external object detector like Faster R-

CNN (Ren et al., 2015), Feature Pyramid Networks (Lin et al., 2017) or YOLO

(Redmon and Farhadi, 2018). Then keypoints locations are regressed on each of

the instances. There are various methods that follow this approach, including,

Mask R-CNN (He et al., 2017), Simple baseline for human pose estimation

(Xiao et al., 2018), CNN with deep supervision of hidden layers (Li et al., 2018),

Stacked hourglass (Newell et al., 2016), Occlusion-net (Reddy et al., 2019), etc.

• Bottom-up approach: In this approach, first, all the keypoints are detected

in the given image and then reconstruct each instance associates the detected

keypoints. There are various methods that use this approach for human pose

detection like PifPaf (Kreiss et al., 2019), Pose estimation using part affinity

fields (Cao et al., 2017), Associative embedding (Newell et al., 2017), Deepcut

(Pishchulin et al., 2016), Deepercut (Insafutdinov et al., 2016), etc.

2.3 Dataset overview

Due to active research in autonomous driving and traffic monitoring, there’s an

increase in the number of large-scale traffic scene datasets (Table 2.1). These datasets

are divided into two types -

1. Frontal-view autonomous driving datasets

2. Roadside perspective monitoring datasets

Frontal-view datasets are primarily used in autonomous driving use cases. The

KITTI Vision Benchmark Suite, released in 2012, was one of the first datasets for
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Table 2.1: Comparison of 3d Autonomous Driving and Traffic Monitoring Datasets.

The Datasets Are Divided Based on Their View Type: Frontal and Roadside. 2d

Boxes Indicate Datasets That Only Have 2d Annotations. ’Y’ Denotes Available, ’/’

Denotes an Unknown Value, While ’-’ Denotes That the Information Is Unavailable.

View Dataset RGB Frames Scenes LIDAR Keypoints 3D Boxes 2D Boxes RGB Resolution Year Diversity

Frontal

KITTI (Geiger et al., 2012) 15K 22 Yes - 80K 80K 1392x512 2013

ApolloScape (Huang et al., 2019) 144K / Yes - 70K 3384x2710 2019 Night

Lyft Level 5 (Kesten et al., 2019) 46K 366 Yes - 1.3M 1920x1080 2019

A2D2 (Geyer et al., 2020) 12K / Yes - 9K 1928x1208 2019 -

H3D (Patil et al., 2019) 27.7K 160 Yes - 1M 1920x1200 2019 -

Argoverse (Chang et al., 2019) 22K 113 Yes - 993K 1920x1200 2019 Rain, Night

CityScapes (Gählert et al., 2020) 5K 1150 Yes - 27K 2048x1024 2019 -

nuScenes (Caesar et al., 2020) 1.4M 1000 Yes - 1.4M 1600x900 2019 Rain, Night

Waymo Open (Sun et al., 2020) 230K 1150 Yes - 12M 9.9M 1920x1080 2020 Rain, Night, Dawn

Apollocar3D (Song et al., 2019) 5.5K 22 Yes Y 60K 3384x2710 2018 -

Roadside

BoxCars116K (Sochor et al., 2018) 116K 137 No - 116K 128x128 2020 -

Rope3D (Ye et al., 2022) 50K 26 Yes - 1.5M 1920x1080 2022 Rain, Night, Dawn

CarFusion (Reddy et al., 2018) 54K 13 No Y 100K 100K 1920x1080 2018 -

CityFlow-ReID (Tang et al., 2019) 50K 40 No Y 229K / 2019 -

VeRi-776 (Wang et al., 2017b) 50K 20 No Y 40K 133x152 2020 -

Roadside SKOPE3D (current) 25K 28 No 4.9M 151K 151K 1920x1080 2023 Rain, Night, Dawn, Evening

self-driving use cases. It provided multimodal data and opened up various challenges

in the field of autonomous driving. There are other large-scale datasets that took

inspiration from KITTI and improved the quality of autonomous driving datasets

like H3D, ApolloScape and ApolloCar3D, Waymo Open Dataset, Argoverse, Lyft

Level 5, A2D2, and many more. These datasets lead to advanced research in the field

of autonomous driving, but they were from an ego-vehicle view perspective.

Roadside perspective datasets, on the other hand, can help with 3D localiza-

tion from a roadside surveillance camera perspective (Altekar et al. (2021), Lu et al.

(2021)) . However, the availability of such datasets is limited. A few datasets in this

category are CAROM Air, BoxCars (Sochor et al., 2018), Rope3D (Ye et al., 2022),

and PASCAL3D+ (Xiang et al., 2014) dataset. Most of these datasets lack keypoint

annotations for the vehicles in the scene. The ApolloCar3D dataset has keypoint an-
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notations but it’s from a frontal-view perspective as shown in the right-side image in

Figure 2.5. The CarFusion (Reddy et al., 2018) dataset has keypoint annotations but

it was recorded by people holding their smartphones while walking on the sidewalk as

visible from the Top-Left side image in Figure 2.5. Therefore, it cannot be considered

a traffic monitoring dataset. The veri-776 dataset (Wang and Fowlkes, 2017) has

133x152 cropped image patches of vehicles from the CityFlow dataset (Tang et al.,

2019) with keypoint annotations (two still frames shown on Bottom-Left corner of

Figure 2.5). It doesn’t have annotations on the entire scene similar to ApolloCar3D.

Figure 2.5: Still Frames from Datasets with Keypoint Annotations

2.4 Unreal Engine 4

Unreal Engine 4 is a cutting-edge game engine developed by Epic Games that is

widely used in the video game industry, as well as in other fields such as architecture,

film and television, and virtual reality. It’s renowned for its real-time, ultra-realistic,

and high-fidelity synthetic simulations.

Unreal Engine supports C++ and its own visual scripting library called Blueprint,

which enables game developers to create complex game logic with ease.

Due to its high-quality immersive experiences, advanced graphics rendering, and

physics simulation, UE4 is increasingly being used in the autonomous industry for
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simulating scenarios, including designing and evaluating autonomous agents. A sam-

ple snapshot of UE4 is shown in Figure 2.6.

Figure 2.6: Unreal Engine 4 Showcasing a Sample Carla Map

2.5 CARLA Simulator

CARLA (Car Learning to Act) is an open-source simulator designed for research

in autonomous driving. It was developed at the Computer Vision Center (CVC) and

Intel Intelligent Systems Lab. CARLA supports the designing, studying, evaluation,

and validation of autonomous agents, which includes both perception and control.

CARLA has been built as an open-source layer over Unreal Engine 4, which provides

state-of-the-art rendering quality, realistic physics, NPC logic, and other plugins.

While commercial game simulation urban environments like Grand Theft Auto

V (Richter et al., 2016) (Richter et al., 2017) offer high-quality graphics rendering,

unlike CARLA, they lack high customization, control over the environment, and

sensor support. CARLA is used for generating the SKOPE3D dataset.

The CARLA simulation platform includes a wide range of maps with urban lay-

outs, a multitude of vehicle models, buildings, pedestrians, street signs, etc. which

were specially designed for the simulator. It also supports a wide range of sensors
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such as RGB camera, depth camera, RADAR, LIDAR, etc. It provides signals that

can be used to train driving strategies, such as GPS, speed, acceleration, and collision

details. These sensors can be used to collect data from the simulations and be used

for machine learning solutions.

The environmental conditions can be changed as needed, including weather and

the time of the day, providing a highly customizable simulation environment as shown

in Figure 2.7.

Figure 2.7: CARLA Simulator Screen Captures Showcasing Dynamic Weather and

Lighting Conditions (Row 1: Sunny, Rainy; Row 2: Evening, Noon)

Figure 2.8: Interaction Between Carla Simulator and User Scripts That Control the

Environment

There are various elements that build up a scene in CARLA -
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• Environment: The environment is composed of 3D models of static objects

such as vegetation, road infrastructure, buildings, and traffic signs. The envi-

ronment also includes dynamic objects such as vehicles and pedestrians. The

CARLA simulator comes with over 10 precompiled maps that follow the Open-

DRIVE standard, which is a well-established standard for defining a road net-

work’s logic.

• Traffic Manager: CARLA has a built-in Traffic Manager system that takes

control of the non-playing character (NPC) vehicles in the scene. These are

additional vehicles in the scene other than the one that is learning. It basically

acts as a conductor and tries to recreate realistic behaviors of NPC cars and

pedestrians. In this project, all the vehicles are controlled by the traffic manager,

since, there’s no need for an ego vehicle.

• Sensors: There are numerous sensors like RGB cameras, LIDAR, RADAR,

depth sensors, segmentation cameras, etc. that CARLA supports. In the case

of SKOPE3D, the RGB camera and depth sensor are the ones being used.

• Recorder: This module can record the entire simulation and play it step by

step for every actor in the world.

CARLA engine is controlled via Python scripts that can control the vehicles,

environment, and other low-level features of the maps as shown in 2.8.

The CARLA Simulator doesn’t support keypoint annotations as part

of its feature suite.

18



Chapter 3

METHODOLOGY

This section presents an overview of the data generation pipeline that leverages

an exclusive feature in CARLA. The CARLA simulator does not come with keypoint

annotation out-of-the-box; however, it provides a feature called ”wheel center of mass

location” from its physics engine. The data generation pipeline utilizes this feature

and extracts all 33 keypoints of a vehicle in 3D. These keypoints are then projected

onto a 2D image and utilized for training a keypoint detector.

3.1 Keypoint definition

For vehicle keypoints, CAROM Air’s (Lu et al. (2023)) keypoint definition was

utilized, which defines keypoints in groups of two (left or right) or four (front-right,

front-left, rear-right, rear-left) symmetrical key features. A total of 33 keypoints

were defined for SKOPE3D as illustrated in Table 3.1 and illustrated in the Figure

3.1. These keypoints are notable key features of a vehicle such as corners of the

windshield, corners of the bumper, headlights, taillights, wheel centers, and wheel

bottoms, among others. These keypoints enable the ability to provide accurate and

reliable information about the positioning and orientation of a vehicle.

At first glance, vehicle keypoint estimation might seem easier compared to humans

due to the rigid structure of vehicles that limits their pose and less complex occlusion,

but there are still various difficulties. Camera perspective plays a larger role in vehicles

than in humans, and intra-class variability is huge due to a large number of cars being

released every year with variable models, sizes, and types (Sánchez et al., 2020). A

fitting example of this would be the Tesla Cybertruck, which is unlike any other car
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Table 3.1: Definition of Vehicle Keypoints (Courtesy: Lu et al. (2023))

ID keypoint definition

0-3 corners of rooftop

4-7 corners of the front and rear windshield

8-11 centers of the front and read lights

12-15 corners of front and rear bumpers

16-19 centers of wheels

20-23 corners of chassis bottom surface

24-25 outermost corners of side mirrors

26-27 corners of the front door windows

28-31 wheel-ground contact point

32 center of the brand logo in the front

Figure 3.1: Vehicle Keypoints definition (Image Courtesy: Lu et al. (2023))

ever designed.

3.2 Data generation pipeline

CARLA simulator does not support keypoint annotations as part of its feature

suite. However, after exploring the CARLA simulator and its Python API, it was
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found that the simulator has a feature of getting the wheel’s center of mass, as shown

in Figure 3.2. This feature was utilized and extended to act as a reference point in

3D to extract keypoint annotations for all the vehicles in the scene.

A module was developed that allows the extraction of 33 keypoints for any vehicle

in the scene, which only requires annotating the 3D models of vehicles once.

Figure 3.2: Annotated 3d Model of Carla’s Mini Cooper Vehicle, Red Arrows Pointing

to the Wheel Centers.

Figure 3.3 shows the entire data generation pipeline.

There are three major steps in the data generation pipeline:

1. 3D labeling - The platform requires annotated 3D models of vehicles available

in CARLA. These annotated keypoints of each model are parsed and new key-

point separation data is generated that will be the input to the Trilateration

Algorithm.

2. Scene configuration - The scene is initialized with all necessary sensors and

annotated vehicles.

3. Image and annotation generation - Then during simulation, the wheel centers

are extracted which are then passed as reference points to the Trilateration
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algorithm that calculates the 3d location of all 33 keypoints in 3D. After check-

ing for occluded vehicles, data for a single frame is generated. This process is

repeated for each frame of an entire scene.

Figure 3.3: Skope3d’s Data Generation Pipeline

3.3 3D keypoint Annotation

For annotating the 3D keypoints, the game engine Unreal Engine 4 (UE4) was

used. While any 3D modeling software could have been used for this task, UE4 was

chosen because there would be no discrepancies in the scaling factor of the 3D models.

The models will be exactly the same scale as the models in the simulator environment.

A vehicle skeleton with 33 3D spheres, each numbered according to the keypoint

definition illustrated in table 3.1. Annotating a vehicle requires the following steps -

• Take the spheres marked for wheel center and place them at the center of each

wheel
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• Place all the other keypoints according to the vehicle’s shape

An example of the 3D annotations can be seen in figure 3.4

Figure 3.4: Mini Cooper Annotations. White Spheres on the Vehicle Are 3d Anno-

tation Points.

3.3.1 Unreal Parser

For this use case, a module called the Unreal Parser was developed. This parser

takes into the all 3D annotations aka the sphere’s metadata from Unreal Engine’s

object panel and parses the keypoint’s 3D location in the world coordinate frame. It

then encodes this information into a JSON file for use in downstream tasks.

3.3.2 Keypoint Separation Algorithm

After the 3D annotation is successful, the annotation data is extracted from Unreal

Engine and stored in JSON format. A simple Unreal Parser script is designed that

can easily parse the 3D objects and extract each keypoint’s 3D position from its

transform.

Once the keypoints have been parsed, they can be passed through the keypoint

separation algorithm, which calculates the Euclidean distance of all the keypoints
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from four reference points - the center of mass locations of the front right wheel, front

left wheel, rear right wheel, rear left wheel.

d =
√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

Each keypoint will have four distances - d1, d2, d3, d4, each with respect to the

reference points. The 3D world coordinate of each reference point is also stored in

the keypoint separation file.

3.3.3 Quality of annotation

To ensure the quality of the annotations, it was necessary to ensure that the anno-

tated wheel center of mass locations coincided with CARLA’s wheel center obtained

from the physics engine. This was achieved using simple distance formula between

the annotated wheel center and actual wheel center in a scene.

A demo scene was designed for this purpose, calculating the distance between

wheel centers in 3D using the following formula:

d =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

where (x1, y1, z1) and (x2, y2, z2) are the coordinates of any two wheel centers.

After calculating the distances between the wheels, the scale factor is calculated,

which determines the quality of the annotations, using the following formula:

annotated wheel distance = d 1

actual wheel distance = d 2

scale factor = d 2/d 1
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where annotated wheel distance is the Euclidean distance between manually anno-

tated points and actual wheel distance is the distance between the 3D points obtained

from CARLA’s API during simulation.

If scale factor equals 1, our annotations were perfect, if it’s less than 1, the distance

between the annotated points needs to be reduced, and if it’s more than 1, the distance

between the annotated points needs to be increased.

3.4 Scene configuration

After annotating the keypoints on the 3D models of vehicles, the next step in the

data generation pipeline is to configure the scene. A series of manually selected scenes

with unique viewpoints of the roads were chosen for data collection.

A scene is selected from these predefined configurations for recording, and envi-

ronmental conditions are set by randomly choosing a weather configuration and time

of the day or by using one of the presets that have been defined.

The scene configuration presets comes with predefined locations for camera sensors

that are used to place the camera and depth sensors in the scene with default settings

(Size: 1920x1080; FOV: 110).

The next element in the scene configuration is the traffic manager which allows for

the control of traffic and vehicle spawning with auto-pilot configuration. Vehicles are

randomly spawned in close proximity to the camera with varying color configurations

to diversify the dataset.

A sample viewpoint is shown in figure 3.5

3.5 Annotation Generation

Once the scene has been set up, a Python client communicates with the simulator’s

server to start the simulation step-by-step. At each step, the data collection client

25



Figure 3.5: Sample Snapshot of a Scene after Setting up the Scene, Camera Sensor,

and Spawning Vehicles

queries the Physics Engine to get the wheel’s center of mass for all the vehicles. This

provides the (x, y, z) coordinates for the front left wheel, front right wheel, rear left

wheel, and rear right wheel for the vehicles in the scene in the world coordinate

frame. For each vehicle that has been annotated in 3D, the keypoint separation file

containing the distance of all the keypoint’s with respect to the center of mass of all

the wheels of the vehicle is read. Using these reference points and the distance of all

the keypoints, the Trilateration algorithm is used to calculate the position of all the

keypoints.

3.5.1 Trilatertion

Trilateration is a method used to determine the location of an object by measuring

its distance from three or more reference points. This algorithm is mainly used in the

Global Positioning System (GPS), it helps in determining someone’s location on the

planet.

It centers around finding someone’s position on Earth by knowing the location

of the orbiting GPS satellites and their distance from these satellites. At least three
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Figure 3.6: Trilateration Example That Uses Three Wheel Centers to Estimate the

Location of Left Headlight (Key Point 9, According to Our Definition)

known points are required for trilateration to work. In the case of SKOPE3D dataset,

four reference points are known for the vehicles.

Figure 3.6 shows how a single keypoint can be estimated using this algorithm.

Point P is the right headlight keypoint from the keypoint definition. The known

reference points are P1, P2, P3, and P4 which are the wheel’s center of mass locations

of the vehicle. The distance of point P from these reference points is also known -

d1, d2, d3, and d4.

The basic principle of trilateration is that the location of an object can be deter-

mined by finding the intersection of three or more circles, where each circle represents

the distance from a reference point.

Mathematically, this can be expressed as a system of equations:

(x− x1)2 + (y − y1)2 + (z − z1)2 = d12

(x− x2)2 + (y − y2)2 + (z − z2)2 = d22
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(x− x3)2 + (y − y3)2 + (z − z3)2 = d32

where (x, y, z) is the location of the object, (x1, y1, z1), (x2, y2, z2), and (x3, y3, z3)

are the locations of the reference points, and d1, d2, and d3 are the distances from the

object to each reference point. After using the trilateration algorithm, the location

of the keypoint is extracted in the format (x, y, z) in the world reference frame. All

33 keypoints for every vehicle in the scene are localized in the world-coordinate frame

using the Trilateration algorithm.

3.5.2 Occlusion Module

CARLA does not have a built-in occlusion detection engine, so vehicles that are

behind the buildings and are not visible by the camera sensors are still provided

by the simulator when querying all the vehicles, leading to wrong annotations. To

address this issue, an occlusion module was developed that is designed to find large

object occlusions like buildings and big trucks.

To remove occluded vehicles from the annotations, sample scenario is shown in

Figure 3.7:

• The Euclidean distance is calculated between the camera’s center (x1, y1, z1)

and the vehicle’s center (x2, y2, z2) using CARLA’s Python API. Suppose this

distance is d1.

• If an object in the scene, such as a building or large truck, is occluding the

target vehicle, its depth can be obtained using the depth camera. This depth

camera captures the scene depth at the time of capture, and thus provides the

depth of the object between the camera and the target vehicle. Suppose this

depth is d2.

• The difference between the depth d2 and the Euclidean distance d1 is then
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calculated, and compared against the occlusion threshold. If this difference

exceeds the threshold, the target vehicle is considered occluded and removed

from the annotations.

Figure 3.7: Occlusion Scenario, Depth Is 4 M, Euclidean Distance Is 10 M, the Grey

Car Is Occluded in Annotaitons.

3.6 Dataset format

The dataset structure is shown in figure 3.8. The dataset’s official split is heterol-

ogous, where the training and testing sets are divided based on the scene. Out of 25

scenes, 23 scenes will be used for training, while the remaining 2 unseen scenes from

Town 4 are used for validation. This enables us to test the generalization ability of

the keypoint detection approaches.

Each frame in SKOPE3D has two separate images as shown in figure 4.3 -

• RGB Frame 1920x1080

• Depth map 1920x1080

SKOPE3D has two types of annotations -

• Keypoint data

• 3D bounding box and tracking data
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Figure 3.8: Skope3d Dataset Structure

3.6.1 Keypoint data

Each detected vehicle in a frame will have its own keypoint CSV file, whose

structure is shown in table 3.2. Additionally, each vehicle will have its metadata

CSV file that contains the tracking ID of the vehicle, the model of the car, and

3D bounding box corners (in 2D). The 3D coordinates of the 3D bounding box can

be calculated using camera intrinsics and extrinsics. The structure of the file is in

table 3.3. The dataset’s earlier version includes two vehicle classes: Sedan and SUV.

However, more classes like pickup trucks, vans, and trucks will be added in later

versions of the dataset.
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Table 3.2: Keypoint Data File Format

Row Column Meaning

0 0 Keypoint coordinate offset x (origin of the patch in the image)

0 1 Keypoint coordinate offset y (origin of the patch in the image)

0 2 Vehicle type ID

1 0 bounding box x0

1 1 bounding box y0

1 2 rotation flag (not used)

2 0 bounding box x1

2 1 bounding box y1

2 2 mirror flag (not used)

3-36 0 Keypoint coordinate x

3-36 1 Keypoint coordinate y

3-36 2 Keypoint visibility flag

Table 3.3: 3d Bounding Box and Tracking Data

Row Column Description

0 0 Tracking ID for that scene

0 1 Name of the vehicle’s 3D model

1-9 0 Bounding box corner x coordinate in world coordinate frame

1-9 1 Bounding box corner y coordinate in world coordinate frame
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Figure 3.9: Sample Rgb Frame (Top) and Depth Map (Bottom) from a Scene
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Chapter 4

EXPERIMENTS

4.1 Problem Statement

To localize the 3D keypoints of vehicles given ambiguous images captured under

various settings and scenes, including different viewpoints and road configurations.

4.2 Evaluation Metrics

There are multiple evaluation metrics for keypoint detections. The chosen metrics

are proposed by Sanchez et al. (Yang and Ramanan, 2012) and include:

• Percentage of Correct Keypoints (PCK): The metric measures the num-

ber of labeled keypoints that are correctly predicted. It’s a keypoint simi-

larity metric that says that a predicted keypoint is correct if its distance to

the given ground-truth keypoint is equal to or less than α ∗ L where L =

max(height, width) (basically L is the bigger dimension of the instance’s bound-

ing box) and 0 < α < 1. α = 0.1 is used (Sánchez et al., 2020).

• Precision Recall of the bounding boxes: Precision measures the proportion

of predicted bounding boxes that are correct. Recall measures the proportion

of actual bounding boxes that are correctly detected. We analyze the value on

different values of IoU thresholds.

• Precision Recall of the keypoints: Similarly, precision measures the pro-

portion of predicted keypoints that are correct, while recall measures the pro-

portion of actual keypoints that are correctly detected. This work extends the
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keypoint similarity metric with α = 0.1 to calculate precision-recall. Recall in

the current case is not a feasible metric for keypoint evaluation because the

visibility parameter is set to 1 and there will be rarely any false negatives in

the prediction.

4.3 Experimental Setup

The SKOPE3D dataset contains 25K images with the training and validation ratio

set to 9:1. To analyze the capability of the dataset, a subset of the dataset with 13.5K

frames was extracted, with the training and validation ratio set to 8:2. This split is

heterologous in nature. The training set has 10.4K images from various different

scenes and the validation set has the remaining 2.9K images from three unseen scenes

of the dataset. This helps in validating the generalization ability of the keypoint

detector as well as the synthetic dataset.

The test set consists of three distinct scenes with varying difficulty levels, namely

easy, medium, and hard. The difficulty level of each test set was determined based on

factors such as adverse weather conditions, low vehicle visibility, and partial occlusion.

The Easy scene has good visibility, sunny weather, and fewer partially occluded ve-

hicles, and the medium scene has average visibility, rainy weather, and a few partially

occluded vehicles as depicted in Figure 4.1. The test set also includes a challenging

scene (hard) with adverse weather conditions and low visibility. A sample frame from

this scene is depicted in Figure 4.2, demonstrating the difficulty of the task at hand.

4.3.1 Baseline Implementation Detail

The architecture used is the one proposed by (He et al., 2017): Keypoint R-CNN.

The implementation is based on PyTorch. This architecture consists of an ImageNet

pre-trained ResNet50-FPN as its backbone network. The feature Pyramid Network
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Figure 4.1: Samples Frames from the Test Set: Top - Easy Scene, Bottom - Medium

Scene

fuses feature maps at multiple scales to preserve information at multiple levels.

The input to the model is a list of tensors, each of shape [4, 1080, 1920], one for

each image and in the 0-1 range. It expects the annotations to be in targets (list of

dictionaries), containing:

• Boxes (FloatTensor[N, 4]) the ground-truth 2D boxes in [x1, y1, x2, y2] format,

with 0 ≤ x1 < x2 ≤ w and 0 ≤ y1 < y2 ≤ h

• Labels (Int64Tensor[N ]): the predicted labels for each instance

• Keypoints (FloatTensor[N,K, 3]): the K keypoints location for each of the

N instances, in the format [x, y, visibility], where visibility=0 means that the
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Figure 4.2: Sample Frame from the Hard Scene (Low Visibility, Muddy Road, Rainy

Weather, Vehicles Partially Occluded Due to Viewpoint)

keypoint is not visible.

In inference mode, the model requires only the input tensor and returns the pre-

dictions as a List[Dict[Tensor]], for each image. The content of Dict is as follows,

where N is the number of detected instances:

• Boxes (FloatTensor[N, 4]): the predicted boxes in [x1, y1, x2, y2] format, with

0 <= x1 < x2 <= W and 0 <= y1 < y2 <= H.

• Labels (Int64Tensor[N ]): the predicted labels for each instance

• Scores (Tensor[N ]): the scores or each instance

item keypoints (FloatTensor[N,K, 3]): the locations of the predicted keypoints,

in [x, y, v] format. K = 33 in this case

As for the learning rate parameters, the following parameters were tested and

achieved good results on the test set:

• Learning rate: 0.001
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• Step size: 3

• Gamma: 0.2

The model was trained for 10 epochs, which took around 11.5 hours on an NVIDIA

TITAN X GPU.

4.4 Main Results and Analysis

In order to evaluate how well synthetic data generalizes to new, unseen scenes,

several experiments were conducted. The evaluation was performed on three distinct

scenes with varying difficulty levels, namely easy, medium, and hard. The difficulty

level of each test set was determined based on factors such as adverse weather condi-

tions, low vehicle visibility, and occlusion. After updating the learning rate parame-

ters, the loss converged to a reasonable extent. While the classification loss converged

to 0.0138 in 10 epochs, the keypoint loss did not go below 0.42. All experiments used

the keypoint predicted score to be 0.9 and above.

Continuing with the experiments, the model was first evaluated with scene 4’s

1000 frames test set (easy difficulty). A sample prediction can be seen in Figure 4.4.

The use of a deeper backbone model ResNet50 has helped in keypoint detection. All

backbone layers were set to be trainable, and pre-trained weights from ImageNet were

used.

As shown in Table 4.1, the model performed well on the easy scene. On PCK, a

value of 98.65% was obtained (prior to hyperparameter tuning, it was 96.4%) on a

0.9 IoU threshold. The bounding box precision was 0.408 and the recall was 0.345.

The keypoint precision and recall do not vary much with the IoU threshold. The

bounding box precision improved drastically when the IoU threshold was reduced, as

expected.
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Figure 4.3: Classification Loss Converged Well and Keypoint Loss Struggled to Go

Below 0.42

As shown in table 4.2, The model performed well on the medium scene, which

featured rain but comparatively better visibility conditions than the hard scene. On

a 0.9 IoU threshold, PCK was 94.56%, with fairly good precision and recall for both

bounding boxes and keypoints.

The hard scene was the most challenging from the test set, and the model’s per-

formance suffered. As shown in table 4.3, the percentage of correct keypoints did

not surpass the 64.74% mark, and precision and recall also suffered due to visibility

conditions. Figure 4.5 shows a sample prediction for this scene. The model Failed to

Predict the Keypoints Accurately on a Hard Scene, as Demonstrated by the Two Ve-
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hicles on the Left. The Poor Visibility and Occlusion Caused the Model to Consider

the Two Vehicles as a Single Object, Resulting in Inaccurate Predictions.

Figure 4.4: Sample Good Prediction on Easy Scene, Although It Missed to Detect a

Few Vehicles at a Distance from the Camera

Figure 4.5: Model Failed on the Hard Scene

4.5 Model Generalizability

In addition to testing on the SKOPE3D dataset, the model was also evaluated on

real-life images. While quantitative results could not be obtained due to a lack of a

similar dataset for testing that has 33 keypoints, qualitative results were shown in
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Table 4.1: Easy scene evaluation: PCK with α = 0.1, BB Precision-recall and KP

Precision-recall with Varying IoU Threshold. All Runs with Resnet-50 Backbone and

Input Size 1920x1080

IoU Threshold PCK %
Bounding box Keypoint

Precision Recall Precision Recall

0.9 98.65 0.408 0.345 0.462 0.931

0.8 95.59 0.793 0.641 0.488 1.0

0.7 95.01 0.951 0.775 0.486 1.0

0.6 95.51 0.952 0.776 0.488 1.0

Table 4.2: Medium scene evaluation: PCK with α = 0.1, BB Precision-recall and KP

Precision-recall with Varying IoU Threshold.

IoU Threshold PCK %
Bounding box Keypoint

Precision Recall Precision Recall

0.9 94.56 0.635 0.537 0.433 0.894

0.8 93.77 0.941 0.776 0.475 0.983

0.7 95.75 0.951 0.785 0.477 0.987

0.6 93.67 0.962 0.795 0.479 0.992
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Table 4.3: Hard scene evaluation: PCK with α = 0.1, BB Precision-recall and KP

Precision-recall with Varying IoU Threshold.

IoU Threshold PCK %
Bounding box Keypoint

Precision Recall Precision Recall

0.9 45.183 0.123 0.19 0.146 0.553

0.8 63.046 0.382 0.615 0.366 0.99

0.7 64.743 0.513 0.809 0.385 1.0

0.6 64.575 0.568 0.882 0.386 1.0

Figure 4.6. The top-left frame displays an accurate keypoint regression on a sedan,

along with a false positive. The top-right frame demonstrates the ability to detect

multiple types of vehicles. The bottom-left frame showcases keypoint detection on

an SUV, while the bottom-right frame demonstrates keypoint detection on a pickup

truck, despite the latter not being part of the training dataset.

This shows the extraordinary capabilities of keypoint R-CNN and the power of

synthetic data. A model trained on the synthetic dataset is able to predict keypoints

on the real dataset, showing the knowledge transferability between synthetic and

real-life images.
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Figure 4.6: Sample Frames Were Extracted from a Smartphone Video of the Mill

Avenue Intersection, Tempe, Az.
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Chapter 5

CONCLUSION AND FUTURE WORK

This chapter summarizes the thesis, the limitations of the study and shows the

potential future research directions.

Figure 5.1: Skope3d Dataset: Different Scenes in the Dataset

5.1 Summary

The thesis proposes a unique high-diversity synthetic keypoint perception 3D

dataset (Figure 5.1), SKOPE3D, which includes 33 keypoint annotations for each

vehicle and is collected from a roadside view using the CARLA simulator. This fea-

ture makes SKOPE3D distinct from previously released traffic monitoring datasets.

Additionally, as the dataset is simulated, it can be extended using publicly released

data extension scripts. Furthermore, SKOPE3D cannot be utilized for illegal surveil-
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lance as it does not include any sensitive information such as license plates, human

faces, roads, and buildings.

Traffic monitoring datasets with keypoint annotations and 3D/2D annotations are

valuable for traffic analysis, autonomous driving, and 3D scene reconstruction, and

have the potential for use in a wide variety of studies.

Moreover, the thesis presents an evaluation of a classic keypoint detector on the

dataset, Keypoint R-CNN. Performance was measured using widely accepted metrics,

such as PCK and precision-recall, and the experiments demonstrated the real value

of such a synthetic dataset as it achieved good prediction accuracies.

The study represents a step towards bridging the gap between synthetic and

real-world data, as training a keypoint detector on a synthetic dataset allows the

model to generalize on real-world images to some extent. This demonstrates the

knowledge-transferability between synthetic and real-world data and highlights the

value of SKOPE3D.

5.2 Delimitations

As the dataset is synthetically generated using a simulator, certain delimitations

were imposed in order to fulfill the objectives. Every constraint was established to

enable the work presented in this thesis to serve as a foundation for future extensions,

with fewer imposed limitations. The following are the delimitations in the work:

1. The keypoint visibility parameter is set to 1 as the occlusion module was not

producing accurate results for keypoint depth. The occlusion module identifies

occlusions caused by buildings and other large structures but not partial occlu-

sions caused by other vehicles. Future versions of the dataset could address this

limitation.
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2. All vehicles are assumed to move on a perfectly flat horizontal plane, and no

vertical movement is considered.

3. The position of the camera and depth sensor is fixed in a particular scene with

no motion or rotation during recording.

4. The Unreal Engine is used to simulate weather, but it may not perfectly replicate

actual weather scenarios such as rain.

5.3 Future work

The study has a lot of scope for future work that can improve the value and

capabilities of the dataset. Several future works may involve:

1. Occlusion module can further be extended to keypoints in future versions.

2. Adding real-world annotated images to the dataset and fine-tuning the key-

point detector using a combination of synthetic and real datasets may result in

improved real-world performance.

3. The data extension scripts will be released to the research community, enabling

others to extend the dataset by adding new scenes, vehicles, and more annota-

tions such as LIDAR and instance segmentation.
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