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ABSTRACT  
   

The regulation of gene expression, timing, location, and amount of a given 

project, ultimately affects the cellular structure and function. More broadly, gene 

regulation is the basis for cellular differentiation and development. However, gene 

expression is not uniform among individuals and varies greatly between genetic males 

and females. Males are hemizygous for the X chromosome, whereas females have two X 

chromosome copies. Contributing to the sex differences in gene expression between 

males and females are the sex chromosomes, X and Y. Gene expression differences on 

the autosomes and the X chromosome between males (46, XY) and females (46, XX) 

may help inform on the mechanisms of sex differences in human health and disease. For 

example, XX females are more likely to suffer from autoimmune diseases, and genetic 

XY males are more likely to develop cancer. Characterizing sex-specific gene expression 

among human tissues will help inform the molecular mechanisms driving sex differences 

in human health and disease. This dissertation covers a range of critical aspects in gene 

expression. In chapter 1, I will introduce a method to align RNA-Seq reads to a sex 

chromosome complement informed reference genome that considers the X and Y 

chromosomes' shared evolutionary history. Using this approach, I show that more genes 

are called as sex differentially expressed in several human adult tissues compared to a 

default reference alignment. In chapter 2, I characterize gene expression in an early 

formed tissue, the human placenta. The placenta is the DNA of the developing fetus and 

is typically XY male or XX female. There are well-documented sex differences in 

pregnancy complications, yet, surprisingly, there is no observable sex difference in 

expression of innate immune genes, suggesting expression of these genes is conserved. In 
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chapter 3, I investigate gene expression in breast cancer cell lines. Cancer arises in part 

due to the disruption of gene expression. Here I show 19 tumor suppressor genes become 

upregulated in response to a synthetic protein treatment. In chapter 4, I discuss gene and 

allele-specific expression in Nasonia jewel wasp. Chapter 4 is a replication and extension 

study and discusses the importance of reproducibility.  
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PREFACE 

 
Misregulation of gene expression can profoundly affect the cellular structure and 

function of a cell and is the basis for many diseases (Lee & Young, 2013). Complicating 

this is that even among healthy samples, gene expression is not uniform and can vary 

significantly between genetic males (46, XY) and genetic females (46, XX) (Gershoni & 

Pietrokovski, 2017; Kassam, Wu, Yang, Visscher, & McRae, 2019; Lopes-Ramos, Chen, 

et al., 2020). Furthermore, many major diseases show differences in susceptibility and 

risk of mortality between the sexes that may be driven by differences in gene 

expression (Khramtsova, Davis, & Stranger, 2019; Lopes-Ramos et al., n.d.; Lopes-

Ramos, Quackenbush, & DeMeo, 2020). A major challenge in biology is determining the 

genetic and molecular mechanisms that underlie phenotypic differences between males 

and females (Khramtsova et al., 2019).  

Genetic males and genetic females have very different body morphology and 

biochemical processes; yet, males and females share highly similar genomes, only 

differing on the sex chromosomes X and Y ( 2001). Sexual dimorphisms arise in part due 

to differences in autosomal (1-22) and X chromosome gene expression between males 

(46, XY) and females (46, XX) (Isensee & Ruiz Noppinger, 2007; Rinn & Snyder, 2005). 

Furthermore, sex differences in gene expression may contribute to the observed sex 

differences in human health and disease (Gershoni & Pietrokovski, 2017). For example, 

genetic females (46, XX) are more likely to have autoimmune diseases and adverse 

reactions to vaccines (Angum, Khan, Kaler, Siddiqui, & Hussain, 2020; Klein, Marriott, 

& Fish, 2015). Genetic males (46, XY) are more likely to develop cancers and suffer 
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from neurological disorders (Dorak & Karpuzoglu, 2012; May, Adesina, McGillivray, & 

Rinehart, 2019; Zagni, Simoni, & Colombo, 2016). Additionally, there is evidence that, 

in adult tissue types, genetic female samples show greater innate and adaptive immune 

responses than males who are hemizygous for the X chromosome (Jaillon, Berthenet, & 

Garlanda, 2019; Klein et al., 2015). Jailon et al. 2019 argue that it is largely the sex 

chromosomes that drive these observed differences in innate immune response between 

males and females. Klein et al. 2015 suggest that it is a combination of both differences 

in the expression on the X chromosome and sex hormones. There is evidence, at least in 

chickens, of sex differences in gene expression before developing gonads (Ayers et al., 

2013), suggesting these differences arise via sex-specific and sex-biased gene regulation 

early in development. This dissertation helps expand our understanding of how 

differences in gene expression on the autosomes and the X chromosome contribute to sex 

differences in innate immune expression between genetic males and females.  

Characterizing sex differences in gene expression among human tissues focusing on the 

sex chromosomes and the role of immune-related genes will expand our understanding of 

the molecular mechanisms driving sex differences in human health and disease.  

The development of techniques that quantify transcript abundance in a high-

throughput way has led to advancements in studying gene expression. Ribonucleic acid 

sequencing (RNA-Seq) studies, in particular, have produced valuable classifications of 

differences in transcript levels among populations and individuals. These studies also 

show that inter-individual differences in gene expression are often highly heritable, 

making transcriptomic data a vital tool to better understanding gene expression as a 

measurable phenotype. Gene expression mechanisms are highly complex and tightly 
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regulated processes by which a gene's information is converted into structures and 

functions by producing a biologically functional molecule of either protein or RNA 

(ribonucleic acid). The phenotypes of an organism result from the expression of genes by 

the synthesis of proteins that control the organism's appearance and function; thus, 

regulation and control of the timing, location, and amount of gene expression can have 

profound effects on the functional phenotypes (Jobling, Hurles, & Tyler-Smith, 2013). 

The fundamental units of gene transcription (including polymerases) and transcriptional 

regulation (e.g., enhancers, promoters) are conserved across eukaryotes. Still, there are 

species-specific, tissue-specific, and sex-specific variations. This dissertation will 

investigate several questions about gene expression focusing on sex differences in gene 

expression in human tissues.  

In the first chapter, I review some of the technical and biological challenges to 

quantifying gene expression differences on the X and Y chromosomes. In the following 

chapters, I characterize and investigate questions relating to gene expression. 

Specifically, the lack of sex differences in immune gene expression among 

uncomplicated placentas will be described in chapter 2. Chapter 3 will shift gears from 

sex differences to quantifying gene expression patterns in breast cancer, a sex-biased 

disease. Finally, chapter 4 discusses the inheritance of gene expression patterns using the 

Nasonia jewel wasp as the model organism. Each chapter has either already been 

published, is under review, or in preparation for publication. In this introduction, I will 

provide an overview of each chapter.  

Chapter 1 will discuss the technical and biological challenges of studying gene 

expression on the X and Y chromosomes. The mammalian X and Y chromosomes were 
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once homologous autosomes that could undergo recombination (Charlesworth, 1991; 

Lahn & Page, 1999). Due to recombination suppression on the Y chromosome, they no 

longer recombine along the entire length except for the two pseudoautosomal regions 

(PARs), PAR1 and PAR2, located on the sex chromosomes, X and Y (Charlesworth, 

1991; Lahn & Page, 1999; Ross et al., 2005). During sequencing mapping, the shared 

sequence homology between the human X and Y chromosome will routinely cause mis-

mapping between these two chromosomes, reducing the accuracy of transcription 

estimates of sex-linked genes. To overcome this, I have helped develop a protocol for 

aligning XY and XX samples to a sex chromosome complement informed reference. We 

tested the effects of using reference genomes and reference transcriptomes informed by 

the sex chromosome complement of the sample's genome on the measurements of RNA-

Seq abundance and sex differences in expression using various alignment tools and 

human tissues. Employing a sex chromosome complement approach, we detect more sex 

differentially expressed genes that otherwise would have been missed (Olney, Brotman, 

Andrews, Valverde-Vesling, & Wilson, 2020). Additionally, we found that all scenarios 

showed higher expression estimates on the X chromosome when sequences were mapped 

to a sex chromosome complement reference  (Olney et al., 2020). This chapter was 

published in BMC Biology of Sex Differences in 2020 and has been cited by six published 

papers.  

In chapter 2, I characterize sex differences in an early formed tissue, the placenta. 

In humans, sex differences in gene expression occur prior to the development of gonads 

due to genetic differences between genetics males (46, XY) and genetic females (46, 

XX) (Mamsen et al., 2017; Rey, Josso, & Racine, 2020). The human placenta, which 
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shares the genotype of the fetus (Sood, Zehnder, Druzin, & Brown, 2006), forms within 

the first several days of gastrulation (Turco & Moffett, 2019) and plays a critical role in 

healthy fetal development by regulating nutrition and protecting the developing fetus 

from the mother's immune system (PrabhuDas et al., 2015). Poor placentation may lead 

to severe pregnancy complications, including preterm birth (Liu, Li, & Zhang, 2017; 

Melamed, Yogev, & Glezerman, 2010), intrauterine growth restriction (Broere-Brown et 

al., 2020), Preeclampsia (Global Pregnancy Collaboration: et al., 2017), and subchorionic 

hemorrhage (Liu et al., 2017), which show a sex difference in incidence. Here I have 

characterized gene expression from the late first trimester and full-term placentas from 

male and female offspring to comprehensively understand the molecular mechanisms of 

expression in uncomplicated pregnancies. We show that in uncomplicated placentas, gene 

expression for innate immune genes is conserved. The placenta is immunologically 

privileged (Kanellopoulos-Langevin, Caucheteux, Verbeke, & Ojcius, 2003); we, 

therefore, hypothesize that misregulation of immune genes may lead to pregnancy 

complications. This chapter is being prepared for submission.  

Chapter 3 switches focus from sex differences in gene expression to quantifying 

gene expression in a sex-biased disease, breast cancer (Greif, Pezzi, Klimberg, Bailey, & 

Zuraek, 2012; Rubin et al., 2020). Breast cancer arises due to the disruption of gene 

expression (Chial, 2008; Sørlie et al., 2001). This chapter examines breast cancer gene 

expression in response to treatment with a synthetic Polycomb-based Transcription 

Factor (PcTF). We hypothesized that the synthetic protein would up-regulate suppressed 

genes and improve the expression state of the breast cancer cells to show healthy 

expression levels as found in non-cancer breast cells. I determined which genes were 
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differentially expressed (both up-regulated and down-regulated) after the breast cell lines 

had been treated with PcTF compared to the untreated control cells. I intersected a list of 

known tumor suppressor genes (TSGene 2.0) (Zhao, Sun, & Zhao, 2013) with the genes 

identified as being up-regulated post-treatment across all three breast cancer cell lines. 

My research identified 19 tumor suppressor genes that become up-regulated in response 

to the synthetic protein (Olney, Nyer, Vargas, Wilson Sayres, & Haynes, 2018). I then 

computed a co-expression network analysis, which identified 15 transcription factors that 

are likely regulating the tumor suppressor genes. My research furthers our understanding 

of how the synthetic protein binds to transcription factors. Our results have implications 

for breast cancer treatment and have helped build our knowledge of gene regulation 

mechanisms. Our work led to a patent on the synthetic protein and a publication in the 

journal BMC Systems Biology, published in 2018 and has been cited by six publications.   

Chapter 4 focuses on gene expression in Nasonia jewel wasp, a haplodiploid 

species. Nasonia species have a sex-specific haploid-diploid system where males and 

females are haploid and diploid, respectively (Beukeboom & van de Zande, 2010). In 

diploid cells, the paternal and maternal alleles are, on average, equally expressed. There 

are exceptions from this in which some genes express the maternal or paternal allele copy 

exclusively (Reik & Walter, 2001). This phenomenon, known as genomic imprinting, is 

common among eutherian mammals and some plant species (Ishida & Moore, 2013; 

Lawson, Cheverud, & Wolf, 2013; Moore & Haig, 1991; Reik & Walter, 2001). We 

processed RNA-Seq transcriptome data from highly inbred jewel wasp species Nasonia 

vitripennis and Nasonia giraulti and the reciprocal F1 hybrids. I developed computational 

scripts to scan the genomes of F1 hybrids to identify allele-specific and biased allele 
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expression. Our results show that expression is primarily inherited in a species of origin 

manner in Nasonia, which furthers our understanding of the inheritance of allele-specific 

expression. Furthermore, this is a replication and extension study using previously 

reported data, replicating the results, and extending these findings using different 

individuals and sequencing technology. Our results from both datasets demonstrate a 

species-of-origin effect in Nasonia F1 hybrids. This work has been submitted for 

publication to PLOS Biology and is available as a preprint on BioRxiv. 

The final 5th chapter summarizes the previous chapters. Specifically, there is a 

discussion of the scientific impact and the future directions of this research. Overall, this 

dissertation covers a range of critical aspects in gene expression and highlights the 

importance of sex differences in gene expression in understanding human health.  
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CHAPTER 1 

Reference Genome and Transcriptome Informed by the Sex Chromosome 

Complement of the Sample Increase Ability to Detect Sex Differences in Gene 

Expression from RNA-Seq Data 

(Previously published as Olney, K.C., Brotman, S.M., Andrews, J.P., Valverde-Velsing, 

V.A., Wilson, M.A)  

Biol Sex Differ 11, 42 (2020). https://doi.org/10.1186/s13293-020-00312-9 

 

 

ABSTRACT 

Human X and Y chromosomes share an evolutionary origin and, as a 

consequence, sequence similarity. We investigated whether sequence homology between 

the X and Y chromosomes affects alignment of RNA-Seq reads and estimates of 

differential expression. We tested the effects of using reference genomes and reference 

transcriptomes informed by the sex chromosome complement of the sample’s genome on 

measurements of RNA-Seq abundance and sex differences in expression. The default 

genome includes the entire human reference genome (GRCh38), including the entire 

sequence of the X and Y chromosomes. We created two sex chromosome complement 

informed reference genomes. One sex chromosome complement informed reference 

genome was used for samples that lacked a Y chromosome; for this reference genome 

version, we hard-masked the entire Y chromosome. For the other sex chromosome 

complement informed reference genome, to be used for samples with a Y chromosome, 

we hard-masked only the pseudoautosomal regions of the Y chromosome, because these 
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regions are duplicated identically in the reference genome on the X chromosome. We 

analyzed transcript abundance in the whole blood, brain cortex, breast, liver, and thyroid 

tissues from 20 genetic female (46, XX) and 20 genetic male (46, XY) samples. Each 

sample was aligned twice; once to the default reference genome and then independently 

aligned to a reference genome informed by the sex chromosome complement of the 

sample, repeated using two different read aligners, HISAT and STAR. We then 

quantified sex differences in gene expression using featureCounts to get the raw count 

estimates followed by Limma/Voom for normalization and differential expression. We 

additionally created sex chromosome complement informed transcriptome references for 

use in pseudo-alignment using Salmon. Transcript abundance was quantified twice for 

each sample; once to the default target transcripts and then independently to target 

transcripts informed by the sex chromosome complement of the sample. We show that 

regardless of the choice of read aligner, using an alignment protocol informed by the sex 

chromosome complement of the sample results in higher expression estimates on the 

pseudoautosomal regions of the X chromosome in both genetic male and genetic female 

samples, as well as an increased number of unique genes being called as differentially 

expressed between the sexes. We additionally show that using a pseudo-alignment 

approach informed on the sex chromosome complement of the sample eliminates Y-

linked expression in female XX samples.  
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Author Summary 

The human X and Y chromosomes share an evolutionary origin and sequence 

homology, including regions of 100% identity; this sequence homology can result in 

reads misaligning between the sex chromosomes, X and Y. We hypothesized that 

misalignment of reads on the sex chromosomes would confound estimates of transcript 

abundance if the sex chromosome complement of the sample is not accounted for during 

the alignment step. For example, because of shared sequence similarity, X-linked reads 

could misalign to the Y chromosome. This is expected to result in reduced expression for 

regions between X and Y that share high levels of homology. For this reason, we tested 

the effect of using a default reference genome versus a reference genome informed by the 

sex chromosome complement of the sample on estimates of transcript abundance in 

human RNA-Seq samples from whole blood, brain cortex, breast, liver, and thyroid 

tissues of 20 genetic female (46, XX) and 20 genetic male (46, XY) samples. We found 

that using a reference genome with the sex chromosome complement of the sample 

resulted in higher measurements of X-linked gene transcription for both male and female 

samples and more differentially expressed genes on the X and Y chromosomes. We 

additionally investigated the use of a sex chromosome complement informed 

transcriptome reference index for alignment free quantification protocols. We observed 

no Y-linked expression in female XX samples only when the transcript quantification 

was performed using a transcriptome reference index informed on the sex chromosome 

complement of the sample. We recommend that future studies requiring aligning RNA-

Seq reads to a reference genome or pseudo-alignment with a transcriptome reference 
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should consider the sex chromosome complement of their samples prior to running 

default pipelines.  



  5 

Background  

Sex differences in aspects of human biology, such as development, physiology, 

metabolism, and disease susceptibility are partially driven by sex specific gene regulation 

(Arnold et al., 2012; Khramtsova et al., 2018; Raznahan et al., 2018; Traglia et al., 2017). 

There are reported sex differences in gene expression across human tissues (Gershoni & 

Pietrokovski, 2017; Goldstein et al., 2014; Shi et al., 2016) and while some may be 

attributed to hormones and environment, there are documented genome-wide sex 

differences in expression based solely on the sex chromosome complement (Arnold & 

Chen, 2009). However, accounting for the sex chromosome complement of the sample in 

quantifying gene expression has been limited due to shared sequence homology between 

the sex chromosomes, X and Y, that can confound gene expression estimates.  

The X and Y chromosomes share an evolutionary origin: mammalian X and Y 

chromosomes originated from a pair of indistinguishable autosomes ~180-210 million 

years ago that acquired the sex-determining genes (Charlesworth, 1991; Lahn & Page, 

1999; Ross et al., 2005). The human X and Y chromosomes formed in two different 

segments: a) one that is shared across all mammals called the X-conserved region (XCR) 

and b) the X-added region (XAR) that is shared across all eutherian animals (Ross et al., 

2005). The sex chromosomes, X and Y, previously recombined along their entire lengths, 

but due to recombination suppression from Y chromosome-specific inversions (Lahn & 

Page, 1999; Pandey et al., 2013), now only recombine at the tips in the pseudoautosomal 

regions (PAR) PAR1 and PAR2 (Charlesworth, 1991; Lahn & Page, 1999; Ross et al., 

2005). PAR1 is ~2.78 million bases (Mb) and PAR2 is ~0.33 Mb; these sequences are 

100% identical between X and Y (Aken et al., 2017; Charchar et al., 2003; Ross et al., 
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2005) (Figure 1A). The PAR1 is a remnant of the XAR Ross et al. 2005) and shared 

among eutherians, while the PAR2 is recently added and human-specific (Charchar et al., 

2003). Other regions of high sequence similarity between X and Y include the X-

transposed-region (XTR) with 98.78% homology (Veerappa et al., 2013) (Figure 1A). 

The XTR formed from an X chromosome to Y chromosome duplication event following 

the human-chimpanzee divergence (Ross et al., 2005; Skaletsky et al., 2003). Thus, the 

evolution of the X and Y chromosomes has resulted in a pair of chromosomes that are 

diverged, but still share some regions of high sequence similarity.  

To infer which genes or transcripts are expressed, RNA-Seq reads can be aligned 

to a reference genome. The abundance of reads mapped to a transcript is reflective of the 

amount of expression of that transcript. RNA-Seq methods rely on aligning reads to an 

available high quality reference genome sequence, but this remains a challenge due to the 

intrinsic complexity in the transcriptome of regions with a high level of homology (Piskol 

et al., 2013). By default, the GRCh38 version of the human reference genome includes 

both the X and Y chromosomes, which is used to align RNA-Seq reads from both male 

XY and female XX samples. It is known that sequence reads from DNA will misalign 

along the sex chromosomes affecting downstream analyses (Webster et al., 2019). 

However, this has not been tested using RNA-Seq data and the effects on differential 

expression analysis are not known. Considering the increasing number of human RNA-

Seq consortium datasets (e.g., the Genotype-Tissue Expression project (GTEx) (GTEx 

Consortium, 2015), The Cancer Genome Atlas (TCGA) (Cancer Genome Atlas Research 

Network et al., 2013), Geuvadis project (Lappalainen et al., 2013), and Simons Genome 

Diversity Project (Mallick et al., 2016)), there is an urgent need to understand how 
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aligning to a default reference genome that includes both X and Y may affect estimates of 

gene expression on the sex chromosomes (Khramtsova et al., 2018; Tukiainen et al., 

2016). We hypothesize that regions of high sequence similarity will result in misaligning 

of RNA-Seq reads and reduced expression estimates (Figure 1A & B).  

Here, we tested the effect of sex chromosome complement informed read 

alignment on the quantified levels of gene expression and the ability to detect sex-biased 

gene expression. We utilized data from the GTEx project, focusing on five tissues, whole 

blood, brain cortex, breast, liver, and thyroid, which are known to exhibit sex differences 

in gene expression  (Gershoni and Pietrokovski 2017; R. Li and Singh 2014; de Perrot et 

al. 2000; Melé et al. 2015; Mayne et al. 2016). Many genes have been reported to be 

differentially expressed between male and female brain samples (Gershoni & 

Pietrokovski, 2017; Goldstein et al., 2014; Shi et al., 2016) and differential expression in 

blood samples between males and females has also been documented (Gershoni & 

Pietrokovski, 2017; Goldstein et al., 2014). An analysis of all GTEx tissue samples 

reported that breast mammary gland tissues are the most sex differentially expressed 

tissue (Gershoni & Pietrokovski, 2017). It has also been reported that there are sex 

disparities in thyroid cancer (Rahbari et al., 2010) and liver cancer (Natri et al., 2019; 

Naugler et al., 2007) suggesting possible sex differences in gene expression. We used 

whole blood, brain cortex, breast, liver, and thyroid tissues from 20 genetic male (46, 

XY) and 20 genetic female (46, XX) individuals for a total of 200 samples evenly 

distributed among tissues. Male and female samples, for each tissue, were age-matched 

between the sexes and only included samples of age 55 to 70. We aligned all samples to a 

default reference genome that includes both the X and Y chromosomes and to a reference 
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genome that is informed on the sex chromosome complement of the genome: Male XY 

samples were aligned to a reference genome that includes both the X and Y chromosome, 

where the Y chromosome PAR1 and PAR2 are hard-masked with Ns (Figure 1C) so that 

reads will align uniquely to the X PAR sequences. Conversely, female XX samples were 

aligned to a reference genome where the entirety of the Y chromosome is hard-masked 

(Figure 1C). We tested two different read aligners, HISAT (Kim et al., 2015) and STAR 

(Dobin et al., 2013), to account for variation between alignment methods and measured 

differential expression using Limma/Voom (Law et al., 2014). We found that using a sex 

chromosome complement informed reference genome for aligning RNA-Seq reads 

increased expression estimates on the pseudoautosomal regions of the X chromosome in 

both male XY and female XX samples and uniquely identified differentially expressed 

genes.  

We additionally investigated the effect of transcriptome references on pseudo-

alignment methods. We quantified abundance using Salmon (Patro et al., 2017) in male 

and female brain cortex samples twice, once to a default reference transcriptome index 

that includes both the X and Y chromosome linked transcripts and to a reference 

transcriptome index that is informed on the sex chromosome complement of the sample. 

We found that using a sex chromosome complement informed reference transcriptome 

index for RNA-Seq pseudo-alignment quantification eliminated Y-linked expression 

estimates in female XX samples, that were observed in the default approach.  

Regardless of alignment or pseudo-alignment approach, we recommended 

carefully considering the annotations of the sex chromosomes in the references used, as 
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theses will affect quantifications and differential expression estimates, especially of sex 

chromosome linked genes.  
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Chapter 1. Figure  1. Homology Between the Human X and Y Chromosomes Where 
Misaligning Could Occur. (A)  High sequence homology exists between the human X 
and Y chromosomes in three regions: 100% sequence identity for the pseudoautosomal 
regions (PARs), PAR1, and PAR2, and ~ 99% sequence homology in the X-transposed 
region (XTR). The X chromosome PAR1 is ~ 2.78 million bases (Mb) extending from 
X:10,001 to 2,781,479 and the X chromosome PAR2 is ~ 0.33 Mb extending from 
X:155,701,383 to 156,030,895. The X chromosome PAR1 and PAR2 are identical in 
sequence to the Y chromosome PAR1 Y:10,001 to 2,781,479 and PAR2 Y:56,887,903 to 
57,217,415. (B) Using a standard alignment approach will result in reads misaligning 
between regions of high sequence homology on the sex chromosomes. (C) Using a 
reference genome that is informed by the genetic sex of the sample may help to reduce 
misaligning between the X and Y chromosomes. In humans, samples without evidence of 
a Y chromosome should be aligned to a Y-masked reference genome, and samples with 
evidence of a Y should be aligned to a YPAR-masked reference genome. 

 
Methods 

Building Sex Chromosome Complement Informed Reference Genomes. All 

GRCh38.p10 unmasked genomic DNA sequences, including autosomes 1-22, X, Y, 

mitochondrial DNA (mtDNA), and contigs were downloaded from ensembl.org release 

92 (Aken et al., 2017). The default reference genome here includes all 22 autosomes, 

mtDNA, the X chromosome, the Y chromosome, and contigs. For the two sex 

chromosome complement informed reference assemblies, we included all 22 autosomes, 

mtDNA, and contigs from the default reference and a) one with the Y chromosome either 

hard-masked for the “Y-masked reference genome” or b) one with the pseudoautosomal 

regions, PAR1 and PAR2, hard-masked on the Y chromosome for “YPARs-masked 

reference genome” (Figure 1C). Hard-masking with Ns will force reads to not align to 

those masked regions in the genome. Masking the entire Y chromosome for the sex 

chromosome complement informed reference genome, Y-masked, was accomplished by 

changing all the Y chromosome nucleotides [ATGC] to N using a sed command in linux. 

YPARs-masked was created by hard-masking the Y PAR1: 6001-2699520 and the Y 
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PAR2: 154931044-155260560 regions. The GRCh38.p10 Y PAR1 and Y PAR2 

chromosome start and end location was defined using Ensembl GRCh38 Y PAR 

definitions (Aken et al., 2017). After creating the Y chromosome PAR1 and PAR2 

masked fasta files, we concatenated all the Y chromosome regions together to create a 

YPARs-masked reference genome. After creating the GRCh38.p10 default reference 

genome and the two sex chromosome complement informed reference genomes, we 

indexed the reference genomes and created a dictionary for each using HISAT version 

2.1.0 (Kim et al., 2015) hisat2-build -f option and STAR version 2.5.2 (Dobin et al., 

2013), using option --genomeDir and --sjdbGTFfile. Reference genome indexing was 

followed by picard tools version 1.119 CreateSequenceDictionary (Broadinstitute/Picard, 

2014/2020), which created a dictionary for each reference genome (Pipeline available on 

GitHub, https://github.com/SexChrLab/XY_RNAseq).   

Building Sex Chromosome Complement Informed Transcriptome Index. 

Ensembl’s GRCh38.p10 cDNA reference transcriptome fasta consists of transcript 

sequences resulting from Ensemble gene predictions. Ensembl’s cDNA was downloaded 

from ensembl.org release 92 (Aken et al., 2017). The default transcriptome reference 

includes 199,234 transcripts which includes autosomal, mtDNA, X chromosome, Y 

chromosome and contig transcripts. The default Ensembl cDNA does not contain Y 

chromosome PAR linked transcript sequences, it only contains the X chromosome PAR 

sequence transcripts. For the sex chromosome complement informed reference 

transcriptome index, we included all 22 autosomes, mtDNA, X, and contigs from the 

default cDNA transcriptome and we hard-masked all available Y chromosome linked 

transcript sequences. Hard-masking the Y chromosome linked transcripts was 
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accomplished by changing all the Y chromosome nucleotides [ATGC] to N using a sed 

command in linux. After downloading the GRCh38.p10 default reference transcriptome 

and creating the Y-masked sex chromosome complement informed reference 

transcriptome fasta files, we then generated a decoy-aware transcriptome for each 

transcriptome reference. For generating the default decoy-aware reference transcriptome, 

we used the default genome as the decoy sequence. This was accomplished by 

concatenating the default genome fasta to the end of the default transcriptome fasta to 

populate the decoy file with the chromosome names, as suggested by Salmon (Patro et 

al., 2017). The default transcriptome fasta and the default decoy file were then used to 

create the mapping-based index using the Salmon version 1.2.0 index function (Patro et 

al., 2017). The Y-masked decoy-aware transcriptome fasta was generated by 

concatenating the Y-masked genome fasta to the end of the Y-masked transcriptome fasta 

to populate the decoy file with the chromosome names. The Y-masked transcriptome 

fasta and the decoy file were then used as inputs for generating the Y-masked mapping-

based index using the salmon index function. For both the default and the Y-masked 

mapping-based index, a k-mer of 31 was used as this was suggested to work well for 

reads of 75bp.  

In addition to the Ensembl reference, we investigated the effects of a sex 

chromosome complement reference transcriptome index using the gencode transcript 

reference fasta GRCh38.p12 that contains 206,694 transcripts which includes autosomal, 

mtDNA, X, Y and contigs. The gencode transcriptome reference includes both the X and 

Y PAR transcripts (J et al., 2012). Following the same parameters for the Ensembl decoy-

aware transcriptome, we created two gencode sex chromosome complement decoy-aware 
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transcriptome references, in addition to a default gencode decoy-aware transcriptome 

reference. The pipeline is available on GitHub, 

https://github.com/SexChrLab/XY_RNAseq. 

RNA-Seq Samples. From the Genotyping-Tissue Expression (GTEx) Project data, 

we downloaded SRA files for whole blood, brain cortex, breast, liver, and thyroid tissues 

from 20 separate genetic female (46, XX) and 20 separate genetic male (46, XY) 

individuals (Consortium, 2015; GTEx Consortium, 2015) that were age matched between 

the sexes and ranged from age 55 to 70 (Additional file 1 & 2). Age matching exactly 

was accomplished using the matchit function in the R package MatchIt  (Ho et al. 2011). 

The GTEx data is described and available through dbGaP under accession 

phs000424.v6.p1; we received approval to access this data under dbGaP accession #8834. 

GTEx RNA-Seq samples were sequenced to 76bp reads and the median coverage was 

~82 million (M) reads (Consortium, 2015). Although information about the genetic sex of 

the samples was provided in the GTEx summary downloads, it was additionally 

investigated by examining the gene expression of select genes that are known to be 

differentially expressed between the sexes or are known X-Y homologous genes: 

DDX3X, DDX3Y, PCDH11X, PCDH11Y, USP9X, USP9Y, ZFX, ZFY, UTX, UTY, XIST, 

and SRY (Figure 2; Additional file 3 & 4).  
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Chapter 1. Figure  2. Genetic Sex of RNA-Seq Samples. We investigated the gene 
expression, log2(CPM + 0.25/L), of XY homologous genes (DDX3X/Y, PCDH11X/Y, 
USP9X/Y, ZFX/Y, UTX/Y); XIST; and SRY in all samples from all tissues analyzed 
here from genetic males (blue squares) and genetic females (orange circles) a) when 
aligned to a default reference genome and b) when aligned to a sex chromosome 
complement informed reference genome, using HISAT as the read aligner. 

 
RNA-Seq Trimming and Quality Filtering. RNA-Seq sample data was converted 

from sequence read archive (sra) format to the paired-end FASTQ format using the SRA 
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toolkit (Leinonen et al., 2011). Quality of the samples’ raw sequencing reads was 

examined using FastQC (Andrews, n.d.) and MultiQC . Subsequently, adapter sequences 

were removed using Trimmomatic version 0.36 (Bolger et al., 2014). More specifically, 

reads were trimmed to remove bases with a quality score less than 10 for the leading 

strand and less than 25 for the trailing strand, applying a sliding window of 4 with a mean 

PHRED quality of 30 required in the window and a minimum read length of 40 bases. 

RNA-Seq Read Alignment. Following trimming, paired RNA-Seq reads from all 

samples were aligned to the default reference genome. Unpaired RNA-Seq reads were 

not used for alignment. Reads from the female (46, XX) samples were aligned to the Y-

masked reference genome and reads from male (46, XY) individuals were aligned to the 

YPARs-masked reference genome. Read alignment was performed using HISAT version 

2.1.0 (Kim et al., 2015), keeping all parameters the same, only changing the reference 

genome used, as described above. Read alignment was additionally performed using 

STAR version 2.5.2 (Dobin et al., 2013), where all samples were aligned to a default 

reference genome and to a reference genome informed on the sex chromosome 

complement, keeping all parameters the same (Pipeline available on GitHub, 

https://github.com/SexChrLab/XY_RNAseq).  

Processing of RNA-Seq Alignment Files. Aligned RNA-Seq samples from 

HISAT and STAR were output in Sequence Alignment Map (SAM) format and 

converted to Binary Alignment Map (BAM) format using bamtools version 2.4.0 (Li et 

al., 2009). Summaries on the BAM files including the number of reads mapped were 

computed using bamtools version 2.4.0 package (Barnett et al., 2011). RNA-Seq BAM 

files were indexed, sorted, duplicates were marked, and read groups added using 
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bamtools, samtools, and Picard (Barnett et al., 2011; Broadinstitute/Picard, 2014/2020; 

Li et al., 2009). All RNA-Seq BAM files were indexed using the default reference 

genome using Picard ReorderSam (Broadinstitute/Picard, 2014/2020), this was done so 

that all samples would include all chromosomes in the index files. Aligning XX samples 

to a Y-masked reference genome using HISAT indexes would result in no Y 

chromosome information in the aligned BAM and BAM index bai files. For downstream 

analysis, some tools require that all samples have the same chromosomes, which is why 

we hard-masked rather than removed. Reindexing the BAM files to the default reference 

genome does not alter the read alignment, and thus does not alter our comparison 

between default and sex chromosome complement informed alignment.  

Gene Expression Level Quantification. Read counts for each gene across all 

autosomes, sex chromosomes, mtDNA, and contigs were generated using featureCounts 

version 1.5.2 (Liao et al., 2014) for all aligned and processed RNA-Seq BAM files. 

Female XX samples when aligned to a sex chromosome complement informed reference 

genome will show zero counts for Y-linked genes, but will still include those genes in the 

raw counts file. This is an essential step for downstream differential expression analysis 

between males and females to keep the total genes the same between the sexes for 

comparison. Only rows that matched gene feature type in Ensembl 

Homo_sapiens.GRCh38.89.gtf gene annotation (Aken et al., 2017) were included for 

read counting. There are 2,283 genes annotated on the X chromosome and a total of 

56,571 genes across the entire genome for GRCh38 version of the human reference 

genome (Aken et al., 2017). Only primary alignments were counted and specified using 

the --primary option in featureCounts.  
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RNA-seq Quantification for Transcriptome Index. Transcript quantification for 

trimmed paired RNA-seq brain cortex samples were estimated twice, once to a default 

decoy-aware reference transcriptome index and once to a sex chromosome complement 

informed decoy-aware reference transcriptome index using Salmon with the –

validateMappings flag. Salmon’s –validateMappings adopts a scheme for finding 

protentional mapping loci of a read using a chain algorithm introduced in minimap2 (Li, 

2018).  Transcript quantification for female (46, XX) samples was estimated using a Y-

masked reference transcriptome index and male (46, XY) transcript quantification was 

estimated using a Y PAR masked reference transcriptome index when the Y PAR 

sequence information was available for the transcriptome build. This was repeated for 

both the Ensembl and the gencode cDNA transcriptome builds, keeping all parameters 

the same, only changing the reference transcriptome index used, as described above. 

DGEList Object. Differential expression analysis was performed using the 

limma/voom pipeline (Law et al., 2014) which has been shown to be a robust differential 

expression software package (Costa-Silva et al., 2017; Seyednasrollah et al., 2015) for 

both reference-based and pseudo-alignment quantification. Quantified read counts from 

each sample for the reference-based quantification were generated from featureCounts 

were combined into a count matrix, each row representing a unique gene ID and each 

column representing the gene counts for each unique sample. This was repeated for each 

tissue type and read into R using the DGEList function in the R limma package  (Love et 

al., 2014). A sample-level information file related to the genetic sex of the sample, male 

or female, and the reference genome used for alignment, default or sex chromosome 
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complement informed, was created and corresponds to the columns of the count matrix 

described above.  

 Pseudo-aligned transcript read counts from each brain cortex sample quantified 

using Salmon were combined into a count matrix using tximport (Soneson et al., 2015) 

with each row representing a unique transcript ID and each column representing the 

transcript counts for each unique sample. To create length scaled transcripts per million 

(TPM) values to pass into limma, tximport function lengthScaledTPM was employed 

(Soneson et al., 2015). The reference assembly annotation file was read into R using 

tximport function makeTxDbFromGFF. Following this, a  key of the transcript ID 

corresponding to the gene ID was created was created using the keys function (Soneson 

et al., 2015). Gene level TPM values were then generated using the tx2gene function. 

This was repeated for the Ensembl and the gencode default and sex chromosome 

complement informed transcriptome quantification estimates.  

Multidimensional Scaling. Multidimensional Scaling (MDS) was performed 

using the DGEList-object containing gene expression count information for each sample. 

MDS plots were generated using the plotMDS function in in the R limma package (Law 

et al., 2014). The distance between each pair of samples is shown as the log2 fold change 

between the samples. The analysis was done for each tissue separately using all shared 

common variable genes for dimensions (dim) 1 & 2 and dim 2 & 3. Samples that did not 

cluster with reported sex or clustered in unexpected ways in either dim1, 2 or 3 were 

removed from all downstream analysis (Additional file 5). MDS plots for each tissue 

containing the samples that were used for quality control are located in Additional file 6. 

Briefly, one male XY whole blood did not cluster with any of the other samples and was 
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removed. One female XX breast sample clustered with the opposite sex and was thus 

removed. In brain cortex, three male XY brain cortex samples didn’t cluster neatly with 

the other male XY samples in dim 1 & 2 were thus removed. Another male brain cortex 

sample, although clustered with other male samples, had the lowest number of 

sequencing remaining after trimming for quality, 23.9M, and thus was also removed. To 

keep the number of samples in each sex roughly equal, four female XX brain cortex 

samples were randomly selected for removal. For liver and thyroid tissue, no samples 

appeared to cluster in any unexpected ways and thus no liver or thyroid tissue samples 

were removed. For all aligners the first component of variation in the MDS plot is 

explained by the sex of the sample (Figure 3).  
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Chapter 1. Figure  3. Multidimensional Scaling for the Top 100 Most Variable Genes. 
We investigated multidimensional scaling for the top 100 common variable genes in the 
brain cortex samples. (A) Salmon pseudo-alignment with Ensembl transcriptome 
reference, (B) HISAT read aligner, and (C) STAR read aligner when quantifying using 
both the default and the sex chromosome complement informed references. Most 
variation in the data is explained by the sex of the sample.  

 
Differential Expression. Using edgeR (Robinson et al., 2010), raw counts were 

normalized to adjust for compositional differences between the RNA-Seq libraries using 

the voom normalize quantile function, which normalizes the reads by the method of 

trimmed mean of values (TMM) (Law et al., 2014). Counts were then transformed to 

log2(CPM+0.25/L), where CPM is counts per million, L is library size, and 0.25 is a prior 

count to avoid taking the log of zero (Robinson et al., 2010). For this dataset, the average 

library size is about 79.76 million, therefore L is 79.76. Thus, the minimum 

log2(CPM+0.25/L) value for each sample, representing zero transcripts, is 

log2(0+0.25/15) = -8.32.  

A mean minimum of 1 CPM, or the equivalent of 0 in log2(CPM+2/L), in at least 

one sex per tissue comparison was required for the gene to be kept for downstream 

analysis. A CPM value of 1 was used in our analysis to separate expressed genes from 

unexpressed genes, meaning that in a library size of ~79.76 million reads, there are at 

least an average of 79 counts in at least one sex. After filtering for a minimum CPM, 

53,804 out of the 56,571 quantified genes were retained for the whole blood samples, 

53,822 for brain cortex, 54,184 for breast, 53,830 for liver, and 53,848 for thyroid. A 

linear model was fitted to the DGEList-object, which contains the filtered and normalized 

gene counts for each sample, using the limma lmfit function which will fit a separate 

model to the expression values for each gene (Law et al., 2014).  
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For differential expression analysis a design matrix containing the genetic sex of 

the sample (male or female) and which reference genome the sample was aligned to 

(default or sex chromosome complement informed) was created for each tissue type for 

contrasts of pairwise comparisons between the sexes. Pairwise contrasts were generated 

using limma makecontrasts function (Law et al., 2014). We identified genes that 

exhibited significant expression differences defined using an Benjamini-Hochberg 

adjusted p-value cutoff that is less than 0.01 (1%) to account for multiple testing in 

pairwise comparisons between conditions using limma/voom decideTests vebayesfit 

(Law et al., 2014). A conservative adjusted p-value cutoff of less than 0.01 was chosen to 

be highly confident in the genes that were called as differentially expressed when 

comparing between reference genomes used for alignment.  Pipeline available on 

GitHub, https://github.com/SexChrLab/XY_RNAseq.  

GO Analysis. We examined differences and similarities in gene enrichment terms 

between the differentially expressed genes obtained from the differential expression 

analyses of the samples aligned to the default and sex chromosome complement informed 

reference genomes, to investigate if the biological interpretation would change depending 

on the reference genome the samples were aligned to. We investigated gene ontology 

enrichment for lists of genes that were identified as showing overexpression in one sex 

versus the other sex for whole blood, brain cortex, breast, liver, and thyroid samples 

(adjusted p-value < 0.01). We used the GOrilla webtool, which utilizes a hypergeometric 

distribution to identify enriched GO terms (Eden et al., 2009). A modified Fisher exact p-

value cutoff < 0.001 was used to select significantly enriched terms (Eden et al., 2009).  
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Results 

RNA-Seq Reads Aligned to Autosomes Do Not Vary Much Between Reference 

Genomes. We compared total mapped reads when reads were aligned to a default 

reference genome and to a reference genome informed on the sex chromosome 

complement. Reads mapped across the whole genome, including the sex chromosomes, 

decreased when samples were aligned to a reference genome informed on the sex 

chromosome complement, paired t-test p-value < 0.05 (Additional files 7 - 9). This was 

true regardless of the read aligner used, HISAT or STAR, or of the sex of the sample, XY 

or XX. To test the effects of realignment on an autosome, we selected chromosome 8, 

because of its similar size to chromosome X. Overall, there is a slight mean increase in 

reads mapping to chromosome 8 when samples are aligned to a sex chromosome 

complement informed reference genome compared to aligning to a default reference 

genome (Additional file 9). For female XX samples, the mean increase in reads mapping 

for chromosome 8 was 42.2 reads for whole blood, 50.25 for brain cortex, 109.9 for 

breast, 68.5 for liver, and 98.2 for thyroid (Additional file 9), which was significant using 

a paired t-test, p-value < 0.05 in all tissues (Additional file 9). Male XY samples also 

showed a mean increase in reads mapping for chromosome 8. The mean increase in reads 

mapping to chromosome 8 for male whole blood samples was 0.84, 2.38 for brain cortex, 

5.58 for breast, 3.2 for liver, and 5 for thyroid (Additional file 9). There was a significant 

increase, p-value < 0.05 paired t-test, for reads mapping to chromosome 8 for male brain 

cortex, breast, liver, and thyroid samples. There was no significant increase in reads 

mapping for male whole blood for chromosome 8 (Additional file 9).  
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Reads Aligned to the X Chromosome Increase in Both XX and XY Samples 

When Using a Sex Chromosome Complement Informed Reference Genome. We found 

that when reads were aligned to a reference genome informed by the sex chromosome 

complement for both male XY and female XX tissue samples, reads on the X 

chromosome increased by ~0.12% when aligned using HISAT. For all tissues and both 

sexes we observe an average increase of 1,991 reads on chromosome X. We observe an 

increase in reads mapping to the X chromosome for all tissues and for each sex, which 

was significant using a paired t-test, p-value < 0.05 (Additional file 9). Reads on the Y 

chromosome decreased 100% (67,033 reads on average) across all female XX samples 

and by ~57.32% (69,947 reads on average) across all male XY samples when aligned 

using HISAT (Additional file 7 & 9). Similar increases in X chromosome and decreases 

in Y chromosome reads when aligned to a sex chromosome complement informed 

reference were observed when STAR was used as the read aligner for both male XY and 

female XX samples (Additional file 8 & 9).  

Aligning to a Sex Chromosome Complement Informed Reference Genome 

Increases the X chromosome PAR1 and PAR2 Expression. We next explored the effect 

of changes in read alignment on gene expression. There was an increase in 

pseudoautosomal regions, PAR1 and PAR2, expression when reads were aligned to a 

reference genome informed on the sex chromosome complement for both male XY and 

female XX samples (Additional file 10 & 11). We found an average of 2.73 log2 fold 

increase in expression in PAR1 expression for female XX brain cortex samples and 2.75 

log2 fold increase in expression in PAR1 for male XY brain cortex samples using HISAT 

(Figure 4). The X-transposed region, XTR, in female XX brain cortex samples showed a 
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1.22 log2 fold increase in expression and no change in male XY brain cortex samples. 

PAR2 showed an average of 2.13 log2 fold increase for female XX brain cortex samples 

and 2.19 log2 fold increase in PAR2 for male XY brain cortex samples using HISAT, 

with similar results for STAR read aligner (Additional file 10 & 11). Complete lists of the 

log2(CPM+0.25/L) values for each X chromosomal gene and each gene within the whole 

genome for male XY and female XX samples are in Additional file 12 available on 

Dryad for download under  https://doi.org/10.5061/dryad.xksn02vbv.  

 

 

Chapter 1. Figure  4. X Chromosome RNA-Seq Alignment Differences in the Brain 
Cortex. We plot log2 fold change (FC) across (A) the entire X chromosome and (B) the 
first 5 million bases (Mb) and show (C) the average fold change in large genomic regions 
on the X chromosome between the aligning brain cortex using HISAT to the default 
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genome and aligning to a sex chromosome complement informed reference genome. For 
log2 FC, a value less than zero indicates that the gene showed higher expression when 
aligned to a default reference genome, while values above zero indicate that the gene 
shows higher expression when aligned to a reference genome informed by the sex 
chromosome complement of the sample. Samples from genetic females are plotted in 
orange circles, while samples from males are plotted in blue squares. Darker shades 
indicate which gene points are in PAR1, XTR, and PAR2 while lighter shades are used 
for genes outside of those regions. 

 

Regions Outside the PARs and XTR Show Little Difference in Expression 

Between Reference Genomes. Intriguingly, regions outside the PARs on the X 

chromosome were less affected by the choice of reference genome. Across the entire X-

conserved region, we observed practically no change in estimates of gene expression 

between the default and sex chromosome complement informed references (e.g., a 0.99 

log2 fold in male thyroid samples, and 1.00 log2 fold change in female brain cortex 

samples, essentially showing no difference (Additional file 10 & 11). Additionally, X and 

Y homologous genes (AMELX, ARSD, ARSE, ARSF, CASK, GYG2, HSFX1, HSFX2, 

NLGN4X, OFD1, PCDH11X, PRKX, RBMX, RPS4X, SOX3, STS, TBL1X, TGIF2LX, 

TMSB4X, TSPYL2, USP9X, VCX, VCX2, VCX3A, VCX3B, ZFX) showed little to no 

increase in expression when aligned to a sex chromosome complement informed 

reference genome compared to aligning to a default reference genome (Additional file 

13). PCDH11X showed the highest increase in expression for all tissues regardless of 

read aligner. The log2 fold increase in expression for PCDH11X for female samples when 

aligned using HISAT was 0.4, 0.28, 0.33, 0.16, and 0.16 for whole blood, brain cortex, 

breast, liver, and thyroid, respectively. Other X and Y homologous genes sometimes 

increased in expression depending on the tissue and sometimes there was no change in 

expression (Additional file 13). Next to PCDH11X, the most increase in expression in an 
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X and Y homologous genes was VCX3B, NLGN4X, and VCX3A. NLGN4X in whole 

blood showed a 0.14 log2 fold increase when aligned using HISAT. VCX3B showed a 0.2 

log2 fold increase in brain, NLGN4X showed a 0.04 log2 fold increase in breast, VCX3A 

showed a 0.07 log2 fold increase in liver, and VCX3B showed a 0.04 log2 fold increase in 

thyroid, when aligned using HISAT (Additional file 13).  

A Sex Chromosome Complement Informed Reference Genome Increases the 

Ability to Detect Sex Differences in Gene Expression. We next investigated how this 

would affect gene differential expression between the sexes. Generally, we find that more 

genes are differentially expressed on the sex chromosomes between the sexes when the 

sex chromosome complements are taken into account. The number of differentially 

expressed genes on the autosomes remained the same or increased. At a conservative 

Benjamini-Hochberg adjusted p-value of < 0.01 and aligning with HISAT, we find 4 new 

genes (3 Y-linked and 1 X-linked) that are only called as differentially expressed between 

the sexes in the brain cortex when aligned to reference genomes informed on the sex 

chromosome complement (Figure 5; Additional file 14). We observed similar trends in 

changes for differential expression between male XY and female XX for whole blood, 

breast, liver, and thyroid samples using either HISAT or STAR as the aligner (Additional 

file 14). For example, in whole blood, 3 additional genes are called as being differentially 

expressed between the sexes using HISAT, while 1 additional gene is called differentially 

expressed when aligned using STAR. Additionally, when taking sex chromosome 

complement into account, the number of genes called as differentially expressed between 

the sexes for the breast samples increased by 13 genes (8 autosomal, 3 X-linked and 2 Y-

linked) using HISAT and by 8 genes using STAR (6 autosomal and 2 X-linked) 
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(Additional file 14 & 15). For all tissues, no genes were uniquely called as being 

differentially expressed between the sexes when aligned to a default reference genome 

compared to a reference genome informed on the sex chromosome complement 

(Additional file 14 & 15). Rather, only when samples were aligned to a sex chromosome 

complement did, we observe an increase in the genes called as being differentially 

expressed (Figure 5; Additional file 14 & 15).  

 

 

Chapter 1. Figure  5. Sex Chromosome Complement Informed Alignment Calls More 
Sex-linked Genes as Being Differentially Expressed. (A) Sex differences in the gene 
expression, log2(CPM + 0.25/L), between the twenty samples from genetic males and 
females are shown when aligning all samples to the default reference genome (left) and a 
reference genome informed on the sex chromosome complement (right) for the brain 
cortex. Each point represents a gene. Genes that are differentially expressed, adjusted p 
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value < 0.01, are indicated in black for autosomal genes, blue for Y-linked genes, and red 
for X-linked genes. (B) We show the overlap between genes that are called as 
differentially expressed when all samples are aligned to the default genome, and genes 
that are called as differentially expressed when aligned to a sex chromosome complement 
informed genome. When samples were aligned to a reference genome informed on the 
sex chromosome complement, 27 genes were called as differentially expressed between 
the sexes, of which 4 were uniquely called in the sex chromosome complement informed 
alignment. There were no genes that were uniquely called as differentially expressed 
when aligned to a default reference genome.  

 

Increase in Gene Enrichment Pathways When Samples are Aligned to a Sex 

Chromosome Complement Informed Reference Genome. A sex chromosome 

complement informed reference genome increases the ability to detect genes as 

differentially expressed between the sexes and thus alters gene enrichment results. When 

the thyroid samples were aligned using a sex chromosome complement informed 

reference genome using HISAT, genes up-regulated in male XY samples still show 

enrichment for positive regulation of transcription from RNA polymerase II (found when 

aligning to a default reference genome), but additionally find postsynaptic membrane 

assembly, postsynaptic membrane organization, and vocalization behavior (Additional 

file 16). These additional GO enrichments in the male XY thyroid samples involve 

NRXN1 and NLGN4Y genes, both of these genes are located on the Y chromosome. GO 

enrichment analysis of genes that are more highly expressed in female liver compared to 

male liver samples, when samples were aligned to a default reference genome using 

HISAT, were genes involved in modification histone lysine demethylation (Additional 

file 16). However, when these samples were aligned to a sex chromosome complement 

informed reference genome, genes upregulated in females were enriched for histone 

lysine demethylation as well as negative regulation of endopeptidase activity, negative 
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regulation of peptidase activity, cytoplasmic actin-based contraction involved in cell 

motility (Additional file 16). These additional GO enrichments in the female XX liver 

samples include the involvement of KDM6A, DDX3X, and VIL1. KDM6A, DDX3X are X-

linked and VIL1 is on chromosome 2. Whole blood, brain cortex, male liver, and female 

thyroid samples showed no difference in GO enrichment pathways when using a default 

reference genome compared to a sex chromosome complement reference genome for 

alignment when using HISAT with similar results for STAR as the read aligner 

(Additional file 17). Thus, while there won’t always be a difference, aligning to a sex 

chromosome complement informed reference genome can increase ability to detect 

enriched pathways.  

Using Sex-linked Genes Alone is Inefficient for Determining the Sex 

Chromosome Complement of a Sample. The sex of each sample used in this analysis 

was provided in the GTEx manifest. We investigated the expression of genes that could 

be used to infer the sex of the sample. We studied X and Y homologous genes 

(DDX3X/Y, PCDH11X/Y, USP9X/Y, ZFX/Y, UTX/Y), XIST, and SRY gene expression in 

male and female whole blood, brain cortex, breast, liver, and thyroid (Figure 2; 

Additional file 3 & 4). Both males and females are expected to show expression for the 

X-linked homologs, whereas only XY samples should show expression of the Y-linked 

homologs. Further, XIST expression should only be observed in XX samples and SRY 

should only be expressed in samples with a Y chromosome. Using the default reference 

genome for aligning samples, we observed a small number of reads aligning to the Y-

linked genes in female XX samples, but also observed clustering by sex for DDX3Y, 

USP9Y, ZFY, and UTY gene expression (Figure 2). Male XY samples showed expression 
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for DDX3X, DDX3Y, USP9X, ZFX, and UTX (greater than 5 log2(CPM+2/L). Female XX 

samples showed expression for XIST (greater than 4.0 log2(CPM+2/L) and male XY 

samples showed little to no expression for XIST (less than 0 log2(CPM+2/L) with the 

exception of 2 male whole blood samples and 1 male liver sample, which showed greater 

than 5 log2(CPM+2/L) expression). In contrast to the default reference genome, when 

aligned to a sex chromosome complement informed reference genome, samples cluster 

more distinctly by sex for DDX3Y, USP9Y, ZFY, and UTY, all showing at least a 4 

log2(CPM+2/L) difference between the sexes (Figure 2; Additional file 3 & 4). SRY is 

predominantly expressed in the testis (Albrecht et al., 2003; Turner et al., 2011) and 

typically one would expect SRY to show male-specific expression. In our set, we did not 

observe SRY expressed in any sample, and so it could not be used to differentiate between 

XX and XY samples (Figure 2, Additional file 3 & 14). In contrast, the X-linked gene 

XIST was differentially expressed between genetic males and genetic females in both 

genome alignments (default and sex chromosome complement informed) for the whole 

blood, brain cortex, breast, liver, and thyroid samples with the exception of 3 male XY 

samples. XIST expression is important in the X chromosome inactivation process (Carrel 

& Willard, 2005) and serves to distinguish samples with one X chromosome from those 

with more than one X chromosome (Tukiainen et al., 2016). However, this does not 

inform about whether the sample has a Y chromosome or not. For X-Y homologous 

genes, we do not find sex differences in read alignment with either default or sex 

chromosome complement informed for the X-linked homolog. When aligned to a default 

reference genome, female XX samples showed some expression for homologous Y-
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linked genes, but only presence/absence of Y-linked reads alone is insufficient to 

determine sex chromosome complement of the sample (Figure 2, Additional file 3).  

No Y-linked Transcript Expression in Female XX Samples When 

Quantification was Estimated Using a Transcriptome Index Informed on the Sex 

Chromosome Complement. A pseudo-alignment shows similar effects of the reference to 

that of an alignment approach (Figure 5, Additional files 18 & 19). We observed no Y-

linked expression in female XX samples when transcript quantification was estimated 

using a Y-masked sex chromosome complement reference transcriptome index. This was 

true for both the Ensembl and gencode pseudo-alignment with a sex chromosome 

complement reference transcriptome index (Additional files 18 & 19). Interestingly, there 

was a large difference between the Ensembl and gencode reference files. The transcript 

IDs in the transcriptome cDNA fasta and the transcript IDs in the annotation file are not 

one-to-one for the Ensembl assembly (Shanrong Zhao & Zhang, 2015). There are 

190,432 transcript sequences in the Ensembl cDNA fasta file but there are 199,234 

transcripts in the Ensembl annotation file. Notably, Ensembl’s cDNA reference 

transcriptome fastas does not contain known transcripts such as the XIST transcripts 

(Eyras et al., 2004). The Ensembl reference transcriptome fasta also does not contain the 

Y PARs transcript sequences, it only contains the X PAR transcript sequences. In 

contrast, the gencode cDNA reference transcriptome fasta and annotation file both 

contain 206,694 sequences, including the Y PARs. Regardless of using an Ensembl or 

gencode transcriptome, female XX sample show Y-linked expression when using a 

default refence transcriptome index for pseudo-alignment, however the changes 
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necessary for making a sex chromosome complement informed reference are different for 

the two builds.  

 

Discussion 

For accuracy, the sex chromosome complement of the sample should be taken 

into account when aligning RNA-Seq reads to reduce misaligning sequences. Neither 

Ensembl or Gencode human reference genomes are correct for aligning both XX and XY 

samples. The Ensembl GRCh38 human reference genome includes all 22 autosomes, 

mtDNA, the X chromosome, the Y chromosome with the Y PARs masked, and contigs 

(Aken et al., 2017). The Gencode hg19 human reference genome includes everything 

with no sequences masked (Harrow et al., 2012).  

Measurements of X chromosome expression increase for both male XY and 

female XX whole blood, brain cortex, breast, liver, and thyroid samples when aligned to 

a sex chromosome complement informed reference genome versus aligning to a default 

reference genome (Figure 4). While we see increases in measured expression for PAR1 

and PAR2 genes in both males and females, we only observe a difference in measured 

XTR expression in females. This is because while the PARs are 100% identical between 

the X and Y and so one copy (here we mask the Y-linked copy) should be masked, the 

XTR is not hard-masked in the YPARs-masked reference genome. The XTR is not 

identical between the X and Y; it shares 98.78% homology between X and Y but no 

longer recombines between X and Y (Veerappa et al., 2013) (Figure 1A) and because of 

this divergence, is therefore not hard-masked when aligning male XY samples. Tukiainen 

et al., (2016) and others have shown that PAR1 genes have a male bias in expression 
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(Tukiainen et al., 2016). Our findings here support this regardless if the samples were 

aligned to a default or a sex chromosome complement reference genome (Additional file 

11 & 12). Differential expression results changed when using a sex chromosome 

complement informed alignment compared to using a default alignment. When aligned to 

a default reference genome, due to sequence similarity, some reads from female XX 

samples aligned to the Y chromosome (Figure 2; Figure 5). However, when aligned to a 

reference genome informed by the sex chromosome complement, female XX samples no 

longer showed Y-linked gene expression, and more Y-linked genes were called as being 

differentially expressed between the sexes (Figure 2; Figure 5; Additional file 12 & 15). 

This suggests that if using a default reference genome for aligning RNA-Seq reads, one 

would miss some Y-linked genes as differentially expressed between the sexes (Figure 

5). Furthermore, these Y-linked genes serve in various important biological processes, 

thus altering the functional interpretation of the sex differences (Additional file 16 & 17). 

Only when samples were aligned to a sex chromosome complement reference genome 

did we observe more genes called as differentially expressed between the sexes 

(Additional file 14). An increase in genes called differentially expressed additionally 

alters the GO analysis results (Additional file 16 & 17). When samples were aligned to a 

default reference genome we sometimes missed GO pathways or misinterpreted which 

were the top pathways.  

The choice of read aligner has long been known to give slightly differing results 

of differential expression due to the differences in the alignment algorithms (Conesa et 

al., 2016; Costa-Silva et al., 2017). Differences between HISAT and STAR could be 

contributed to differences in default parameters for handling multi-aligning reads (Kim et 
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al., 2015). We show that regardless of choice of read aligner, HISAT or STAR, we 

observe similar results. Sample size has also long been known to alter differential 

expression analysis (Ching et al., 2014; Lamarre et al., 2018; Shilin Zhao et al., 2018). 

We therefore additionally replicated our findings in a smaller sample size of 3 male XY 

compared to 3 female XX samples for whole blood and brain cortex tissue and where the 

samples were randomly selected and confirmed the results from the larger sample size 

(Additional file 20). 

In addition to reference-based quantification, we tested whether quantifying sex-

linked reads with a pseudo-aligner would be affected by using a sex chromosome 

complement reference. Previous studies have shown that reference-based alignment is not 

necessary for high-quality estimation of transcript levels (Zielezinski et al., 2017). 

However, we observed expression estimates for Y-linked transcripts in female XX 

samples when using a default reference transcriptome index for pseudo-alignment 

quantification estimates. In contrast, when a sex chromosome complement informed 

reference transcriptome index was used, we observed no Y-linked expression in female 

XX samples. Salmon, and other alignment-free tools such as Kallisto (Bray et al., 2015) 

and Sailfish (R et al., 2014), build an index of k-mers from a reference transcriptome. 

The k-mer transcriptome index is used to group pseudoalignments belonging to the same 

set of transcripts to directly estimate the expression of each transcript. A k-mer alignment 

free approach is faster and less demanding than alignment protocols (Zielezinski et al., 

2017); however, a sex chromosome complement informed transcriptome index should be 

carefully considered because even a k-mer approach is not sensitive to regions that are 

100% identical in sequence. Additionally, alignment-free methods are not as robust in 
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quantifying expression estimates for small RNAs and lowly-expressed genes (Wu et al., 

2018).  

The choice of reference transcriptome or reference genome can also give slightly 

differing results of differential expression due to the difference in which transcripts are 

included in the transcriptome (Shanrong Zhao & Zhang, 2015). The Ensembl cDNA does 

not include the Y PAR linked transcripts whereas the gencode transcriptome fasta 

includes both the X and Y PARs. The Ensembl transcriptome does not include non-

coding RNAs, such as XIST transcripts. The XIST gene is called as being up-regulated in 

the female XX samples for all tissues and all comparisons except for when transcript 

expression was estimated using the Ensembl reference transcriptome (Additional file 15, 

18, & 19). Given the current builds, for RNA-seq projects interested in sex chromosome 

linked transcript expression, we suggest that researchers use a gencode sex chromosome 

complement informed reference transcriptome index. 

Ideally, one would use DNA to confirm presence or absence of the Y 

chromosome, but if DNA sequence was not generated, one would need to confirm the 

genetic sex of the sample by assessing expression estimates for X-linked and Y-linked 

genes. To more carefully investigate the ability to use gene expression to infer sex 

chromosome complement of the sample, we examined the gene expression for a select set 

of X-Y homologous genes, as well as XIST and SRY that are known to be differentially 

expressed between the sexes (Figure 2, Additional file 13). The samples broadly 

segregated by sex for Y-linked gene expression using default alignment. However, the 

pattern was messy for each individual Y-linked gene. Thus, if inferring sex from RNA-

Seq data, we recommend using the estimated expression of multiple X-Y homologous 
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genes and XIST to infer the genetic sex of the sample. Samples should be aligned to a 

default reference genome first to look at the expression for several Y-specific genes to 

determine if the sample is XY or XX. Then samples should be realigned to the 

appropriate sex chromosome complement informed reference genome. Independently 

assessing sex chromosome complement of samples becomes increasingly important as 

karyotypically XY individuals are known to have lost the Y chromosome in particular 

tissues sampled, as shown in Alzheimer Disease (Dumanski et al., 2016), age-related 

macular degeneration (Grassmann et al., 2019), and in the blood of aging individuals 

(Forsberg, 2017), but should not have XIST expression. However, XIST may not be a 

sufficient marker alone to infer sex chromosome complement, especially in cancer in 

samples from XX individuals, where the inactive X can become reactivated (Chaligné et 

al., 2015). Self-reported sex may not match the sex chromosome complement of the 

samples, even in karyotypic individuals. 

 

Conclusion 

Here we show that aligning RNA-Seq reads to a sex chromosome complement 

informed reference genome will change the results of the analysis compared to aligning 

reads to a default reference genome. We previously observed that a sex chromosome 

complement informed alignment is important for DNA as well (Webster et al., 2019). A 

sex chromosome complement informed approach is needed for a sensitive and specific 

analysis of gene expression on the sex chromosomes (Khramtsova et al., 2018). A sex 

chromosome complement informed reference alignment resulted in increased expression 

of the PARs of the X chromosome for both male XY and female XX samples. We further 



  38 

found different genes called as differentially expressed between the sexes and identified 

sex differences in gene pathways that were missed when samples were aligned to a 

default reference genome.  

 

Perspectives and Significance 

The accurate alignment and pseudo-alignment of the short RNA-Seq reads to the 

reference genome or reference transcriptome is essential for drawing reliable conclusions 

from differential expression data analysis on the sex chromosomes. We strongly urge 

studies using RNA-Seq to carefully consider the genetic sex of the sample when 

quantifying reads, and provide a framework for doing so in the future 

(https://github.com/SexChrLab/XY_RNAseq).  

 

Supplementary Information  

 Supplemental tables and figures are located in chapter 1. appendices A.  
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CHAPTER 2 

Sex Differential Gene Expression in the Late First Trimester and in Term Human 

Placentas is Replicated in Adult Tissues 

 

 

ABSTRACT 

Early life exposures during pregnancy may be predictive of lifelong health 

outcomes. Further, pregnancy complications vary based on the fetus's genetic sex, 

suggesting sex differences in the placenta function and gene expression. Yet, sex 

differences in gene expression within the placenta at different time points throughout 

pregnancy and comparisons to adult tissues remains poorly characterized. Here, we 

collect and characterize sex differences in gene expression in term placentas (term ≥ 36.6 

weeks; 23 male XY and 27 female XX). We then compare sex differences in term 

placentas with previously collected first trimester placenta samples and with 42 non-

reproductive adult tissues. We identify 268 and 53 sex differentially expressed genes, 

adjusted p-value < 0.05, in the uncomplicated late first trimester and term placentas, 

respectively. Genes more highly expressed in female placentas involve translational 

initiation, regulation of sister chromatid cohesion, histone lysine demethylation, and 

RNA binding. Genes more highly expressed in male placentas were identified to be 

involved in histone lysine demethylation, protein demethylation, and cellular 

glucuronidation regulation. Next, we found that sex differential gene expression in the 

term placenta is highly correlated with sex differences in gene expression in 42 non-

reproductive adult tissues (r ranged from 0.892 to 0.957, p-value < 0.01). Although the 



  40 

above observation is largely driven by sex-linked genes, we do observe some positivie 

significant correlations for sex differences in gene expression for autosomal genes 

between term placentas and adult brain regions. In general, we find that sex differences in 

expression are conserved in late first trimester and term placentas, as well as in adult non-

reproductive tissues.  
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Background 

Early life exposures during pregnancy may be predictive of lifelong health 

outcomes (Alur 2019). Additionally, there are sex differences in the incidence of adverse 

adult health outcomes correlated with sex differences during pregnancy (Alur 2019). For 

example, maternal obesity is associated with obesity in male offspring but not in females 

at one year of age (Bridgman et al. 2018). Pregnancy complicated by acute asthma led to 

intrauterine growth restriction (IUGR) status or preterm delivery when the pregnancy was 

carrying a male fetus, and if the pregnancy was with a female fetus, there was reduced 

growth but not to the extent of leading to IUGR (Clifton 2010). Preterm birth is a strong 

predictor of adverse health outcomes later in life (Farooqi et al. 2006), and pregnancies 

with a male fetus are more likely to be preterm than pregnancies with a female fetus 

(McGregor et al. 1992; Ito et al. 2017; Peacock et al. 2012).  

Pregnancy complications vary in incidence based on genetic sex of the developing 

fetus. Some pregnancy complications are more common in male-bearing pregnancies, 

such as subchorionic hemorrhage (Cuestas, Bas, and Pautasso 2009), delivery by 

cesarean section (Zeitlin et al. 2002), preterm birth (Zeitlin et al. 2002), and term 

preeclampsia (Vatten and Skjaerven 2004), while others are more common in female-

bearing pregnancies, such as intrauterine growth restriction (IUGR) (Sheiner 2007; 

Melamed, Yogev, and Glezerman 2010), and preterm preeclampsia (Global Pregnancy 

Collaboration: et al. 2017; Vatten and Skjaerven 2004). Pregnancy complications often 

involve improper placenta function, which may be driven by changes in gene expression 

(Kaartokallio et al. 2015; Oros et al. 2017; Lekva et al. 2016; Sheikh, Satoskar, and 

Bhartiya 2001). The placenta shares the genotype of the developing fetus, which is 
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typically XY male or XX female. Sex differences in placenta gene regulation may drive 

the observed sex differences in pregnancy complications (Gonzalez et al. 2018). For 

example, several studies have shown that placenta gene expression differs between 

healthy term placentas from those characterized by preterm birth (Kaartokallio et al. 

2015) and from placentas from offspring with IUGR (Sheikh, Satoskar, and Bhartiya 

2001).  

Male XY and female XX fetuses respond differently to the same intrauterine 

environment, regulated in part by placental gene expression (Gonzalez et al. 2018). 

Gonzalez et al. 2018 found 58 sex differentially expressed genes in the late first trimester 

(11.5 - 13.5 weeks) placentas, many of which are located on the sex chromosomes, X and 

Y. In adult tissues, Lopes-Ramos et al. 2020 showed that most autosomal genes that are 

sex differentially expressed are tissue-dependent, and sex differentially expressed genes 

common among many tissues were enriched for sex chromosome genes (Camila M. 

Lopes-Ramos et al. 2020). Here we examine sex differences in gene expression across 

the life span.  

We generate RNA and DNA from 30 male and 30 female term, ≥ 36.6 weeks, 

placentas from uncomplicated births. We compare sex differences in term uncomplicated 

placentas with late first trimester placenta samples (Gonzalez et al. 2018), and adult 

tissues, to better understand the development of sex differential expression across the life 

span. We find that sex differences in gene expression in term placentas are correlated 

with sex differences in the late first trimester placentas. Additionally, sex differences in 

gene expression on the sex chromosomes in the placenta show similar sex differences in 

expression in adult tissues.  
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Methods 

Samples. We collected 60 term, ≥ 36.6 weeks, placentas from uncomplicated 

pregnancies; 30 from assigned female at birth and 30 from assigned male at birth. The 

placenta samples here were carefully selected to represent the fetal component of the 

placenta. Three samples were obtained from each placenta, one for whole exome 

sequencing, and two tissue samples from opposing quadrants for RNA sequencing 

(RNAseq) for a total of 120 RNAseq placenta samples. The placentas were collected and 

sequenced at two different times, with 12 male and 12 female placentas in the first batch 

and 18 male and 18 female placentas in the second batch. All placenta samples were 

collected immediately following live birth via cesarean section (CS) except for one male 

placenta, which was collected following spontaneous vaginal delivery, (SVD), sample ID 

YPOPS0007M. However, the spontaneous vaginal delivery sample was removed from 

the study due to failed GC content (Additional Table 1).  

RNAseq Data Processing. RNAseq libraries were constructed using Illumina 

TruSeq reverse forward stranded RiboZero library prep to deplete cytoplasmic 

polyadenylated tails. Samples were sequenced to 50 million (M) 2 x 100 bp paired-end 

reads. Samples were checked for quality using FastQC version 0.11.8 (Andrews 2010) 

and aggregated using MutliQC version 0.9 (Ewels et al. 2016a). RNAseq data were 

trimmed to remove Illumina universal sequence adapters and to only include paired reads 

with a PHRED score of ≥ 30, minimum base-pair length of 75, and average read quality 

of 20 using bbduk as part of bbmap version 38.22 (Bushnell 2014). Post trimming quality 

was again checked using FastQC version 0.11.8 (Andrews 2010) and MutliQC version 
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0.9 (Ewels et al. 2016b). Post trimming samples had an average of 35.18M and median of 

35M reads (Additional Table 2).  

All RNAseq samples were aligned to Gencode GRCh38.p12 human reference 

genome informed on the sex chromosome complement of the sample (Olney et al. 2020a; 

Webster et al. 2019a) using HISAT2 version 2.1.0 for alignment (Kim, Langmead, and 

Salzberg 2015a) and SubRead FeatureCounts version 1.5.2 for quantification (Liao, 

Smyth, and Shi 2014a). Briefly, the sex chromosome complement of the sample was first 

checked by investigating the expression of five Y-linked and one X-linked genes 

EIF1AY, KDM5D, UTY, DDX3Y, RPS4Y1, and XIST. A sample with presence of a Y 

chromosome will show expression for EIF1AY, KDM5D, UTY, DDX3Y, and RPS4Y1 Y-

linked genes. Samples with at least two X chromosomes will show expression for XIST 

(Additional Figure 1). Samples with at least two X chromosomes will show expression 

for XIST. Samples with the presence of the Y chromosome will show expression for Y-

linked genes. Samples with no evidence of a Y chromosome were aligned to a reference 

genome with the entire Y chromosome masked with Ns to avoid mis-mapping of 

homologous X-Y sequence reads (Olney et al. 2020b). Samples with evidence of a Y 

chromosome were aligned to a reference genome with the Y chromosome 

pseudoautosomal regions (PARs) masked out as those regions are replicated 100% on the 

X chromosome PARs. We followed the XY_RNAseq readme (Olney et al. 2020) to 

utilize a Ymasked, and YPARs masked reference genome and HISAT -x index function 

to create two sex chromosome complement reference indexes used for alignment. 

HISAT2 alignment was performed with the following parameters, --dta for downstream 

transcriptome assembly, --rna-strandness RF to indicate the sequences are reverse 
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forward, --phred 33 encoding, and pair-end alignment. RNAseq alignment files were then 

sorted, read groups were added, duplicates were marked, and files were indexed using 

bamtools 2.5.1 (Barnett et al. 2011) and Picard 2.9.2 (“Picard Tools - By Broad Institute” 

n.d.). FeatureCounts was employed using --primary to only use primary alignments and -

p 2 to specify the minimum number of consensus reads from the same pair, suggested for 

paired-end read data (Liao, Smyth, and Shi 2014b). FeatureCounts uses the gene 

annotation file to infer exon-exon junctions from connecting each pair of neighboring 

exons from the same gene (Liao, Smyth, and Shi 2014). FeatureCounts was run for the 

gene level using -g gene_name. There are 57,133 genes in the Gencode GRCh38.p12 

human reference genome used in this analysis.  

Exome Data Processing. We used FastQC version 0.11.8 (Andrews 2010) and 

MutliQC version 0.9 (Ewels et al. 2016) for visualizing quality for whole-exome data. 

We trimmed adapters using bbduk as part of bbmap version 38.22 (Bushnell 2014) with 

the following parameters: qtrim=rl trimq=30 minlen=75 maq=20. We used bwa-mem 

version 0.7.17 (Li 2013) to align the whole exome samples. Samples were aligned to a 

sex chromosome complement reference; see RNAseq data processing for more details 

(Olney et al. 2020d; Webster et al. 2019b). Post alignment, PCR duplicates were marked 

using Picard version 2.18.27 (“Picard Tools - By Broad Institute” n.d.). To genotype 

variants, we used GATK version 4.1.0.0 (McKenna et al. 2010; DePristo et al. 2011; Van 

der Auwera et al. 2013). We first used GATK’s HaplotypeCaller to generate GVCF files. 

Second, we combined GVCF from 60 individuals, 30 male XY, and 30 female XX, using 

GATK’s CombineGVCFs.  
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Late First Trimester Placentas. Late first trimester, 10.5 - 13.5 weeks, human 

placenta RNAseq samples from Gonzalez et al. 2018 (Gonzalez et al. 2018) were 

downloaded from NCBI GEO Accession GSE109082 using fastq-dump -I --split-files 

(Leinonen et al. 2011). There are 17 female XX and 22 male XY placenta samples in this 

data set, all of which self-reported as white (Gonzalez et al. 2018). GSE109082 were 

processed similarly as the full-term uncomplicated placentas with one exception, 

trimming for quality. GSE109082 transcriptome samples before trimming had an average 

of 22.53M 2 x75 bp paired-end reads. GSE109082 paired-end reads were checked for 

quality using FastQC version 0.11.8 (Andrews 2010) and MutliQC version 0.9 (Ewels et 

al. 2016d). GSE109082 samples were then trimmed to remove Illumina sequence 

adapters and only included paired reads with a PHRED score of ≥ 25, a minimum base-

pair length of 40, and average read quality of 10 using bbduk 38.22 (Bushnell 2014). 

Post-trimming quality was checked using Fastqc and MutliQC. Post trimming samples 

had an average of 20.6M and a median of 18.8M reads (Additional Table 2). Reads were 

then aligned to a sex chromosome complement Gencode GRCh38.p12 reference genome 

using HISAT2 (Kim, Langmead, and Salzberg 2015b). Gene level counts were obtained 

using SubRead FeatureCounts (Liao, Smyth, and Shi 2014d). The first trimester placentas 

were reverse forward sequencing, the same as the term placentas presented here. The 

HISAT2 and FeatureCounts parameters were the same for both the late first trimester 

(Gonzalez et al. 2018) and the full-term placentas.  

Multidimensional Scaling. Multidimensional scaling (MDS) was employed on 

the expression data to determine expression similarity among samples. MDS of the 

expression counts following subRead FeatureCounts was generated using plotMDS of the 
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limma package (Law et al. 2014). PlotMDS is a slightly modified MDS that plots the 

transcript expression profiles on a two-dimensional scatterplot so that distances on the 

plot approximate the typical log2 fold changes between the samples. MDS plots were 

generated using the gene.selection parameter and selecting “common” for all shared 

genes. This was repeated for the top 100 genes that show the most extensive standard 

deviations between samples (Additional Figure 2). The full-term placentas were 

sequenced at two different time points in batch 1 and batch 2. Before clustering with 

MDS, we accounted for batch effects using the removeBatchEffect part of the limma 

package (Law et al. 2014b). This was for visualization purposes only. Batch was included 

as a covariant in the linear model downstream; see Differential expression.  

Excluding RNAseq Samples. Samples that failed quality control (QC) were 

removed from downstream analysis. Samples were removed that had less than 12.5M or 

higher than 90M sequences remaining after trimming. If more than 30% of the reads 

deviate from the sum of the deviations from the normal distribution of the per-sequence 

GC content as defined by the FASTQC report, then the sample was removed (Additional 

Table 3). Samples were also excluded that clustered with the opposite sex of the reported 

sex assigned at birth (Additional Figure 2 & Table 3). There are 23 male XY and 27 

female XX full-term placentas that passed QC and were included in the downstream 

analyses. All 17 female XX and 22 male XY first trimester placentas from Gonzalez et al. 

2018 passed QC and were kept for downstream analysis. 

Subject Demographic Analysis. All term, ≥ 36.6 weeks, samples in our data set 

have a self-reported race of either Asian, Black, White, or Unknown (Additional Table 

1). Additionally, we inferred population ancestry from the variants obtained from the 
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whole-exome data using Peddy (Pedersen and Quinlan 2017) (Additional Figure 3 & 

Additional Table 1). The resulting outputs of the PCA analysis in Peddy yielded principal 

components (PC) that were used to assign predicted ancestry. PC1 and PC2 were used 

later downstream as covariates in the linear model for the differential expression analysis. 

We did not infer population ancestry from the first trimester GSE109082 placentas as this 

data set only includes RNAseq data, and not DNA.  

Quantify Technical and Biological Variation in RNAseq Expression Data. 

Utilizing variancePartition (Hoffman and Schadt 2016), a linear mixed model was 

employed to quantify variation in each expression trait attribute. Variation within 

gestational age (GA), sequencing lane, sex, reported race, and birth weight was 

examined. Variation in placenta expression for maternal clinical data, including parity, 

gravidity, pre-pregnancy body mass index (BMI), and maternal age, were also examined 

(Additional Figure 4). We did not run variancePartition for the first trimester placentas as 

we lack clinical data for this sample set. We additionally examined sex differences for 

clinical information for full-term placentas for maternal age at delivery, pre-pregnancy 

BMI, gravidity and parity, gestational age, method of conception, self-reported race, and 

birth weight. Sex differences for continuous variables were tested using a t-test, p-value < 

0.05 (Additional Table 4 & Additional Figure 5).  

X and Y Gametolog Gene Expression. A list of X and Y gametology genes were 

curated from a combination of Skaletsy et al. 2003 and Godfrey et al. 2020 (Godfrey et 

al. 2020a; Skaletsky et al. 2003) (Additional Table 5). In samples determined to have a Y 

chromosome, the CPM value of the X-linked gametolog and the Y-linked gametolog 

were summed and included in a single value under the X-linked gametolog label. Then 
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we compared expression between XX female X-linked gametology gene expression to 

XY male X-linked plus Y-linked gametology gene expression using a Wilcox rank-sum, 

p-value < 0.05 (Additional Table 5).  

Differential Expression. Sex differential expression analysis between male XY 

and female XX placentas was performed using the limma/voom pipeline (Law et al. 

2014). Quantified read counts from each sample generated from the SubRead 

featureCounts were combined into a count matrix, with each row representing a unique 

gene id, and each column representing the gene counts for each unique sample. Using the 

DGEList function in the limma package the counts matrix and a tab-delimited file 

containing sample ID, sex, race, batch, lane, GA, parity, maternal age, gravidity, pre-

pregnancy BMI, birth weight, PC1 and PC2 from the whole exome data were read into R 

(Additional Table 1). Technical replicates from within a placenta were summed together 

using sumTechReps function in version 3.14.0 (Robinson, McCarthy, and Smyth 2010). 

Normalization factors were then calculated using the calcNormFactors function in EdgeR 

(Robinson, McCarthy, and Smyth 2010). After normalization for library and effective 

gene length, we filter out lowly expressed genes. A minimum of 1 Fragments Per 

Kilobase Million (FPKM) in at least one group being compared, was required for the 

gene to be kept for downstream analysis. Then we run Trimmed Means Method (TMM) 

to account for library size variation between samples (Robinson and Oshlack 2010). 

Counts were then transformed to log2(CPM+0.25/L), where CPM is counts per million, L 

is library size, and 0.25 is a prior count to avoid taking the log of zero (Law et al. 2014d). 

For each comparison of interest, a model was created to compare between the groups 

where each coefficient corresponds to a group mean. The model matrix with batch and 
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lane was generated before using voom, because voom uses variances of the model 

residuals (Law et al. 2014e). The model matrix for the term placentas included batch, 

birth weight, lane, PC1 and PC2. There were no covariances to add to the model matrix 

for the first trimester placentas. For each differential expression analysis, a linear model 

was fitted to the DGEList-object, which contained the normalization factors for each 

gene count for each sample, using the limma lmfit function which will fit a separate 

model to the expression values for each gene (Law et al. 2014f). Comparisons between 

groups were then obtained as contrasts of the fitted linear model. An empirical Bayes 

approach was applied to smooth the standard errors. Genes are defined as being 

differentially expressed between groups when the adjusted p-value is ≤0.05 using a 

Benjamini-Hochberg false discovery rate (Law et al. 2014g) (Figure 1). 

Quantifying Sex Differences for Innate Immune Gene Expression. Differential 

expression between male XY and female XX placentas for 979 innate immune genes, as 

defined by InnateDB (Breuer et al. 2012) (Additional Table 6), was performed using the 

limma/voom pipeline (Law et al. 2014h). We repeated this analysis for both the term, ≥ 

36.6 weeks, and late first trimester, 11.5 - 13.5 weeks, placentas. The model matrix for 

term placentas was the same when looking at the differential expression for the whole 

transcriptome. Only genes determined to be expressed in at least one sex were included in 

the analysis (see Methods). In addition to differential expression, we generated an MDS 

plot on the expression data for only the innate immune genes to determine expression 

similarity among samples (Figure 2).  

Gene Function and Enrichment Network Analysis. We examined differences 

and similarities in gene enrichment terms between the sex differentially expressed genes 
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obtained from the differential expression analyses of the samples from the term 

uncomplicated pregnancies and the samples from the late first trimester (Gonzalez et al. 

2018) (Additional Table 7). We used the GOrilla webtool, which utilizes a 

hypergeometric distribution to identify enriched GO terms (Eden et al. 2009, 2007), with 

an adjusted Fisher exact p-value cutoff < 0.05 to select significantly enriched terms. 

Additionally, we looked at each sex differentially expressed gene from the first trimester 

and term placenta comparisons using genecards.org and a literature review of genome-

wide association studies and expression quantitative trait loci (eQTL) to investigate if that 

gene is involved in known diseases or disorders, particularly with known pregnancy 

complications (Additional Table 7).  

Sex Differences in Adult GTEx Tissues. To determine if sex differences in gene 

expression within the placenta are correlated with sex differences in adult tissues, we 

computed the coefficient of correlation, r, of the log2 female-to-male expression ratios for 

sex differentially expressed genes found in the placenta to 42 non-reproductive adult 

Genotype-Tissue Expression (GTEx) tissues (Carithers et al. 2015) (Figure 3). For each 

of the 42 non-reproductive adult GTEx tissues, we computed the log2 female-to-male 

expression ratios from the reported Transcripts Per Kilobase Million (TPM) counts 

version 2017-06-06_v8(Carithers et al. 2015) (Additional Table 8). For each sex 

differentially expressed gene and all genes expressed in the placenta, we computed the 

correlation between the placenta log2 female-to-male expression ratios to each GTEx 

tissue (Figure 3).  

Data processing pipeline available on GitHub, 

https://github.com/SexChrLab/Placenta_Sex_Diff.  
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Results 

Multidimensional Scaling Reveals Outlier Samples. We identified outlier 

samples to remove from downstream analyzes using a modified Multidimensional 

Scaling plot for RNA and Principal component analysis for DNA. Multidimensional 

Scaling (MDS) analysis was accomplished for the term placentas and first trimester 

placentas, to determine if samples cluster by genetic sex. MDS of the term placentas 

show that the first dimension (dim) is explained by genetic sex. One female XX placenta 

clustered with the male XY placentas and was removed from the downstream analysis 

(Additional Figure 2 & Additional Table 3).  

Population Ancestry Inferred From Whole Exome Data. Principal component 

analysis of the term placenta whole exome data shows the samples separated by reported 

inferred ancestry, in many cases by not all (Additional Table 1). The self-reported race 

and ethnicity for the placenta samples included 14 Asian, 20 Black, 4 Hispanic, 20 White, 

and 2 unknown (Additional Table 1). The ancestry prediction estimates that the 

population ancestry of the samples is: 14 Asain (5 South Asain, 3 East Asain, 1 

European, and 2 unknown), 20 Black (17 African, 3 unknown), 4 Hispanic (1 European, 

3 unknown), 20 white (15 European, 1 American, 1 South Asain, 1 African, 2 unknown) 

and 2 unknown (1 American, 1 South Asain). To account for population ancestry 

differences among the samples, PC1, and PC2 from the whole exome data was included 

as covariances in the model for sex differential expression analysis (see Methods). 

Clinical Data Shows Little Difference Between the Sexes. There is no observable 

difference between the sexes for clinical data. Birth weight showed some differences 

between the sexes, with a female mean of 3318 grams and male mean of 3593 grams (t-
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test p-value =0.056; Additional Figure 5 & Additional Table 4). There was no significant 

difference in maternal age or pre-pregnancy body mass index (BMI) for women who 

carried a male XY versus women who carried a female XX (t-test p-values = 0.39, and 

0.73, respectively; Additional Figure 5 & Additional Table 4). Maternal age at delivery 

ranged from age 22 to 45 years old, and pre-pregnancy BMI ranged from 19.40 to 66.30 

(Additional Table 1). Gravidity, the number of pregnancies, and parity, the number of 

pregnancies reaching higher than 20 weeks did not show a significant difference in 

women that carried a male XY or female XX pregnancy (t-test p-value 0.43 and 0.61, 

respectively; Additional Figure 5 & Additional Table 4). Gravidity ranged from 1 to 9, 

and parity ranged from 0 to 4; the current pregnancy at the moment the data was collected 

was not included in the parity counts. Gestational age ranged from 36.6 to 41.1 weeks, 

with no difference between women who carried a male XY versus a female XX 

pregnancy (t-test p-value = 0.90). Nearly all of the term placentas collected for this study 

were spontaneous methods of conception, except one male placenta collected from an in 

vitro fertilization pregnancy and one female placenta collected from intrauterine 

insemination (Additional Table 1). Only birth weight between the male XX and female 

XX showed a slight difference (t-test p-value =0.056; Additional Figure 5 & Additional 

Table 4). Overall, we observe little sex difference in clinical characteristics among the 

samples collected for this study.  

Variation in the Data and Biological Characteristics Identified. Multiple 

sources of biological and technical variation in the term placenta transcriptome 

expression were examined. Variance Partitioner was performed for the term placenta 

RNAseq samples (see methods; Additional Figure 4). We include batch and lane as 
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covariance in the model for the placenta differential expression analysis. We do not 

observe other clinical characteristics driving variance between samples with the 

exception of birth weight which shows some difference between the sexes (Additional 

Figure 5 & Additional Table 4). Thus, we report the results from the model that includes 

batch, lane, PC1, PC2, and birth weight.  

Sex Differential Expression From Male XY and Female XX Term 

Uncomplicated Human Placentas. We observe 14,441 genes expressed with an FPKM > 

1 in at least all the male XY or all female XX placenta samples (Additional Table 9). 53 

genes are sex differentially expressed, with an adjusted p-value < 0.05 (Figure 1 & 

Additional Table 7). Thirty genes showed higher expression in the female XX placentas, 

and 23 genes showed higher expression in the male XY placentas. Of the 30 genes that 

are more highly expressed in the female XX placentas than the male placentas, these 

genes included 28 X-linked and two autosomal genes (EIF2S3B, and EIF1AXP1). 

Eighteen of the genes that are more highly expressed in the male XY placentas are Y-

linked, four are X-linked (CD99, RPS6KA6, VDAC1P1, VAMP7), and one is autosomal 

(PRKCE) (Figure 1 & Additional Table 7). 

Sex Differential Expression Within First Trimester Placentas. There are 13,502 

genes expressed with an FPKM > 1 in at least the male XY or female XX late first 

trimester placenta Gonzalez et al. 2018 samples that were reprocessed using new tools 

(see Methods) (Gonzalez et al. 2018). We identified 268 genes with a significant 

differential expression between male and female placentas with an adjusted p-value < 

0.05 (Figure 1 & Additional Table 7). One hundred eighty genes showed higher 

expression in the female XX placentas, and 88 genes showed higher expression in the 
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male XY placentas. Of the 268 sex differentially expressed genes observed in late first 

trimester placentas, 208 are located on the autosomes (1-22), 42 are X-linked and 18 are 

Y-linked. Gonzalez et al. 2018 reported 58 genes to be sex differentially expressed in the 

late first trimester placentas (Gonzalez et al. 2018). Of those 58 genes, 45 are also called 

as sex differentially expressed in the re-processing of the data using new tools 

(Additional Table 10).  

Sex Differential Expression Shared Between First Trimester and Term 

Placentas. We find more sex differences in gene expression in late first trimester 

placentas compared to term placentas. The first trimester (Gonzalez et al. 2018) and term 

placenta RNAseq samples were processed using the same tools and only differ in the min 

length for trimming and the covariant added to the linear model for computing sex 

differential expression (see Methods). Of the 268 genes that are sex differentially 

expressed in the first trimester placentas, 31 or 10.7% are shared with the genes identified 

sex differentially expressed in the term placentas (Figure 1). Although there are more 

genes called as sex differentially expressed in the late first trimester placentas given our 

adjusted p-value threshold < 0.05, the log2 female-to-male expression ratio for these 

genes is highly correlated between first trimester and term placentas (Figure 1C). For the 

237 genes that were uniquely called sex differentially expressed in the first trimester 

placentas, the correlation of coefficients, r, for the log2 female-to-male expression ratio 

between first trimester and term placentas is 0.879. There are 31 genes that are called sex 

differentially expressed in both the first trimester and the term placentas. The r for the 

log2 female-to-male expression ratio between the first trimester and term placentas for the 

31 genes shared between placenta datasets is r = 0.986. Twenty-two genes are uniquely 
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called sex differentially expressed in the term placentas compared to the first trimester 

placentas; again, the r for the log2 female-to-male expression ratio between the first 

trimester and term placentas for these genes is positive (r = 0.982). Although we observe 

more sex differential expression in late first trimester placentas, we also observe a high 

correlation in the log2 female-to-male expression ratio between first trimester (Gonzalez 

et al. 2018) and term placentas (Figure 1C).  
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Chapter 2. Figure 1. Sex Differential Gene Expression in the Late First Trimester and 
Term Placentas. Sex differences in gene expression, log2(CPM + 0.25/L), between 17 
female and 22 male late first trimester (10.5 - 13.5 weeks) placentas on the left and 27 
female and 23 male term (>= 36.6 weeks) placentas shown on the right (A). Each point 
represents a gene. Genes that are sex differentially expressed, adjusted p-value < 0.05, are 
indicated in purple for autosomal, orange for Y-linked, and green for X-linked. The 
number of unique sex differentially expressed genes and shared between the late first 
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trimester and the term placentas is shown in (B). More genes are sex differentially 
expressed in the later first trimester (10.5 - 13.5 weeks) than in the term (>= 36.6 weeks) 
placentas. There are 237 genes that are uniquely called as sex differentially expressed in 
the late first trimester placentas that are not called as sex differentially expressed in the 
term placentas; however, the log2 female-to-male expression ratio for those genes are 
highly correlated between the later first trimester (Y-axis) and the term (X-axis) 
placentas r2 = 0.879 (C). There is also a high correlation for the 31 sex differentially 
expressed genes that are called in both the late first trimester placentas and the term 
placentas, r2 = 0.986, and for the 22 genes uniquely called in the term placentas r2 = 
0.982.  

 
Gene Enrichment of Sex Differentially Expressed Genes in the Human 

Placenta are Driven by Sex-linked Genes. We investigated gene ontology enrichment for 

genes that were identified as showing overexpression in one sex versus the other sex. We 

did this for placentas collected from term uncomplicated pregnancies and from the late 

first trimester (Gonzalez et al. 2018) (adjusted p-value < 0.05) (Additional Table 7). 

Genes upregulated in male XY term placentas are involved in histone lysine and protein 

demethylation processes and histone demethylase activity, driven by Y-linked genes, 

including UTY and KDM5D. Genes upregulated in female XX term placentas are 

involved in translational initiation and regulation of sister chromatid cohesion, driven 

mainly by X-linked genes including RPS4X, DDX3X, NAA10 and HDAC8. In the late 

first trimester placentas, genes up-regulated in male placentas are involved in positive 

regulation of anoikis. Genes up-regulated in the female late first trimester placentas are 

involved in organonitrogen compound catabolic, branched-chain amino acid catabolic, 

and positive regulation of protein K63-linked ubiquitination processes. Additionally, the 

gene function for each sex differentially expressed gene was looked up using 

genecards.org and a literature review to investigate if that gene is involved in known 

pregnancy complications (Additional Table 7).  
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Lack of Sex Differences in Expression of Immune and Immune Modulator 

Genes. Expression of innate immune genes shows little to no difference in expression 

between the sexes in placentas from term uncomplicated pregnancies (Figure 2). To 

examine sex differences in immune expression among placentas, we obtained a list of 

979 innate immune genes from InnateDB, a publicly available database of the genes, 

proteins, experimentally-verified interactions, and signaling pathways involved in the 

innate immune response of humans (Breuer et al. 2012) (Additional Table 6). Of the 979 

innate immune genes reported from InnateDB, 628 are expressed in the term placentas. 

Unlike the MDS of all genes that show a clear cluster by sex (Additional Figure 2), the 

MDS of only the innate immune genes shows no distinguishable pattern (Figure 2A). 

Furthermore, sex differential expression of the 628 innate immune genes in term 

placentas, only DDX3X shows a difference in expression (adjusted p-value < 0.05) 

(Figure 2). However, DDX3X is a gametologous gene with a Y-linked copy, DDX3Y. To 

further investigate this, for samples determined to have a Y chromosome, the count value 

of the X-linked gametolog and the Y-linked gametolog were summed, then we re-ran the 

differential expression analysis. After summing expression of the gametologs in males, 

DDX3X still shows a difference in expression between male XY and female XX 

placentas, but the fold change decreases from a log2 female-to-male expression ratio of 

0.55 and to 0.23 (Additional Table 5 & Additional Figure 6). Although not significantly 

different in expression (adjusted p-value > 0.05), CXCL9 and LEP show a 3.99 and 2.27, 

respectively, fold change higher expression in female XX compared to males XY term 

uncomplicated placentas. With the exception of DDX3X, no innate immune genes show a 
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difference in expression between the sexes for term uncomplicated placentas (Figure 2 & 

Additional Table 6). 

 Unlike the term placentas that only show DDX3X as sex differentially expressed 

for innate immune genes, the late first trimester placentas show 37 innate immune genes 

as differentially expressed between the sexes (adjusted p-value < 0.05) (Additional Table 

6). Of the 979 innate immune genes reported from InnateDB, 626 are expressed in the 

late first trimester placentas (see Methods). There is no clear clustering of the samples for 

an MDS plot of the first trimester placentas samples when only examining innate immune 

genes (Figure 2A). Like the term placentas, DDX3X also shows a difference in expression 

between female and male late first trimester placentas (adjusted p-value < 0.05) and 

shows fold change of 1.23, even after summing the X and Y-linked expression for male 

samples (Figure 2B & Additional Table 5 & 6). Additionally, SERPING1 also shows a 

fold change in expression greater than one, log2FC 0.88 or 1.84 fold change, showing 

greater expression male XY than in female XX placentas (Figure 2B). Overall, we 

observe a lack of sex differences in expression for innate immune genes among term 

uncomplicated placentas but observe 37 innate immune genes to be sex differentially 

expressed in the late first trimester placentas (Figure 2 & Additional Table 6).  
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Chapter 2. Figure 2. Sex Differences in Gene Expression for Innate Immune Genes. Of 
the 979 innate immune genes from InnateDB, 625 genes are expressed in the late first 
trimester placentas, and 628 are expressed in the term placentas. (A) MDS plot shows no 
clustering by genetic sex in either the late first trimester (left) or term (right) placentas. 
(B) Volcano plot of the sex differential expression for late first trimester placentas (left) 
and term placentas (right). Each point represents a gene. Genes that are sex differentially 
expressed, adjusted p-value < 0.05, are indicated in purple for autosomal, orange for Y-
linked, and green for X-linked.  

 

Female-to-Male Gene Expression Ratios in the Placenta are Correlated with 

Adult Tissues. Sex differences in gene expression in the human placenta are correlated 
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with adult tissues. The correlation of the log2 female-to-male expression ratios for 243 

sex differentially expressed genes found in the placenta (late first trimester or term) 

adjusted p-value < 0.05 (Figure 1 & Additional Table 7) independently to 42 non-

reproductive adult GTEx tissues (Carithers et al. 2015) ranged from an r of 0.892 to 

0.982 (Figure 3). There are 290 genes sex differentially expressed in the placenta (late 

first trimester or term) adjusted p-value < 0.05 (Figure 1 & Additional Table 7), but we 

only have gene TPM count data from GTEx tissues for 243 of the 290 genes (Additional 

Table 8). We include sex differentially expressed found in either late first trimester or 

term placentas as the female-to-male expression ratio for these genes were already 

identified to be highly correlated among placentas (Figure 1C). For the 243 sex 

differentially expressed genes found in the placenta (late first trimester or term) adjusted 

p-value < 0.05 and has count data from GTEx, the tissue with the lowest correlation 

between term placentas and adult tissues is the minor salivary gland with an r = 0.892 

and p-value < 0.01 (Figure 3). The adult tissue with the highest correlation to that of term 

placentas in the log2 female-to-male expression is the frontal brain cortex with an r of 

0.957 and p-value < 0.01 (Figure 3). The log2 female-to-male expression ratio correlation 

for placenta sex differentially expressed genes between term placentas and adult tissue 

brain regions ranged from r of 0.923 to 0.957, p-value < 0.01 (Figure 3). We observe a 

positive correlation in the log2 female-to-male expression between term placentas and 

independently to 42 non-reproductive adult GTEx tissues for genes identified to be sex 

differentially expressed in the placenta (Figure 1).  

 The high r of the log2 female-to-male expression between term placenta to adult 

tissues for genes found to be sex differentially expressed in the placenta is largely driven 
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by sex-linked genes (Figure 3). We separated the 243 sex differentially expressed genes 

found in the placenta (late first trimester or term) adjusted p-value < 0.05 (Figure 1 & 

Additional Table 7) and included count information for GTEx tissues into autosomal (1-

22 & MT) and sex-linked (X or Y-linked) genes. Of the 243 sex differentially expressed 

genes in the placenta, 182 are autosomal or MT, and the remaining 61 are on the sex 

chromosomes, X or Y (Additional Table 7). When only looking at the 182 autosomal sex 

differentially expressed genes, the correlation of the log2 female-to-male expression 

ratios decreases between term and late first trimester placentas, and between term 

placentas independently to 42 non-reproductive adult GTEx tissues (Figure 3). The tissue 

with the lowest correlation for when only looking at the 182 autosomal sex differentially 

expressed genes found in the placenta between term placenta and adult tissues is the 

kidney with an r of -.041 p-value < 0.01 (Figure 3). The adult tissue with this highest 

correlation for looking at the 182 autosomal sex differentially expressed genes is the 

brain cortex, with an r of 0.472 with a p-value < 0.01 (Figure 3). When we repeat this for 

the 61 sex-linked sex differentially expressed genes, we observe an increase in the 

correlations in the log2 female-to-male expression between term placentas and 

independently to 42 non-reproductive adult GTEx tissues (Figure 3). The tissue with the 

lowest correlation is the minor salivary gland, r of 0.888, p-value < 0.01. The adult tissue 

with the highest correlation with term placenta is tied between the brain hippocampus and 

frontal cortex, each with an r of 0.955 & p-value < 0.01(Figure 3). In summary, all of the 

correlations between the term placenta and independently to 42 non-reproductive adult 

GTEx tissues are all positively correlated when only looking at the 61 sex differentially 

expressed genes that are on the sex chromosomes, X or Y, compared to looking at the 
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182 autosomal sex differentially expressed genes that range from negative to positive 

correlations (Figure 3). The high r of the log2 female-to-male expression between the 

placenta to adult tissues for all sex differentially expressed genes, autosomal and sex-

linked, 243 genes is driven by sex-linked genes (Figure 3). The above results are only for 

genes that are sex differentially expressed in the placenta (Additional Table 7); next, we 

investigated the overall log2 female-to-male expression ratio correlation between tissues 

for all expressed genes. 

The correlation of the log2 female-to-male expression ratio in term placentas for 

all genes expressed in both the late first trimester and the term placentas (11,179 genes) 

independently to 42 adult GTEx tissues shows some correlation but not as strong of a 

correlation when only looking at sex differentially expressed genes as described above 

(Figure 3 & Additional Table 8 & 9). The correlation for all expressed genes (11,179 

genes) shows a range of r of 0.499 to 0.797 between term placentas and independently to 

42 adult GTEx tissues (Figure 3). The tissue with the lowest correlation between term 

placentas and adult GTEx tissues is the bladder with an r of 0.499, p-value < 0.01 (Figure 

3). The highest correlation between term placenta and adult tissue for looking at all 

expressed genes is the nerve tibial with an r of 0.797, p-value < 0.01 (Figure 3). The 

correlation of the log2 female-to-male expression ratio for all placenta expressed genes is 

highest between term placentas and late first trimester placentas with an r of 0.808, p-

value < 0.01 (Figure 3). The correlation of the log2 female-to-male expression ratio for all 

genes expressed in both the late first trimester and the term placentas (11,179 genes) 

independently compared to 42 adult GTEx tissues are all positive and are all significant, 
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p-value < 0.01 (Figure 3). Next, we repeated this analysis by separating the 11,179 genes 

expressed in the placenta into autosomal and sex-linked.  

 Sex-linked genes primarily drive the high positive correlations in the log2 female-

to-male expression ratio for all genes expressed in the placenta between term placentas 

and independently to 42 non-reproductive adult tissues (Figure 3). When we separate the 

11,179 expressed genes found in the placenta and have count information from GTEx, 

into autosomal (1-22 & MT) and sex-linked (X and Y), there are 10,762 autosomal genes 

and 417 sex-linked genes (Additional Table 8 & 9). When only looking at the 10,762 

autosomal genes, the correlation in the log2 female-to-male expression ratio between term 

placentas and independently to 42 adult GTEx tissues ranges from an r of -0.042 to 0.192 

(Figure 3). Even when comparing term placentas to late first trimester placentas, the r is 

only -0.053 for the placenta's autosomal genes (10,762 genes). Interestingly, the log2 

female-to-male expression ratio correlation between term placentas to adult brain regions 

for only autosomal genes shows some significant positive correlations (Figure 3). The 

brain amygdala, anterior cingulate cortex, frontal cortex, hippocampus, and 

hypothalamus all show positive significant, p-value < 0.01, correlations in log2 female-to-

male expression independently to term placentas (Figure 3). When we look at only sex-

linked genes (417 genes), the correlations in the log2 female-to-male expression ratio 

between term placentas and independently to 42 non-reproductive adult tissues are all 

positive and significant, ranging from r of 0.882 to 0.942, p-value < 0.01 (Figure 3). 

Thus, sex differences in gene expression for sex-linked genes is correlated between term 

placenta and adult tissues (Figure 3). 
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Chapter 2. Figure 3. Coefficient Correlation, r, in the Log2 Female-to-male Expression 
Ratios Between Term Placenta, Late First Trimester Placentas, and 42 Non-reproductive 
Adult GTEx Tissues. (A) 243 sex differentially expressed genes in the placenta (late first 
trimester or term) adjusted p-value < 0.05 and contains count information for GTEx 
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tissues. Of the 243 sex differentially expressed genes, 182 are autosomal and 61 are sex-
linked. (B) 11,179 expressed genes in the placenta and contains count information in 
GTEx includes 10,762 autosomal genes, and 417 that are sex-linked. Black and bold 
indicates a significant correlation, p-value < 0.01. 

 
Sex Differences in Expression for X-linked Gametolog Genes. X-linked 

gametolog genes show a difference in expression between female and male placentas 

(Figure 4). However, when we consider the evolutionary history of sex-linked genes, the 

direction of bias either stays the same, is no longer sex differentially expressed, or the 

direction of bias flips (Figure 4 & Additional Table 5). A list of X and Y gametology 

genes was curated from Skaletsy et al. 2003 and Godfrey et al. 2020 for a total of 23 

gametolog genes (Godfrey et al. 2020b; Skaletsky et al. 2003) (Additional Table 5). Of 

the 23 gametolog genes, 14 are expressed in the late first trimester and term placenta 

samples (FPKM > 1 in at least all the male or all the female samples; see Methods) 

(Additional Table 9).  

In the late first trimester placentas, 7 out of the 14 X-linked gametolog genes 

show higher expression in females compared to males (DDX3X, ZFX, KDM6A, PRKX, 

PRS4K, EIF1AX) (Additional Table 5). When we take the sum expression of the X and 

Y-linked copy for male samples, we no longer see a sex difference in expression for ZFX, 

PRKX, and EIF1AX, Wilcoxon test p-value > 0.05 (Additional Table 5). Three sex 

differentially expressed genes, DDX3X, KDM5C, and RPS4X, continue to show higher 

expression in female compared to male late first trimester placentas. On the other hand, 

KDM6A flips direction and shows higher expression male compared to female late first-

trimester placentas when we take the sum X + Y-linked expression in males, Wilcoxon 

test p-value < 0.01 (Additional Table 5). Additionally, PCDH11X changed from showing 



  68 

no sex difference in expression to showing higher male expression compared to female 

late first trimester placentas, Wilcoxon test p-value < 0.01 (Figure 4 & Additional Table 

5). Of the 14 X-linked gametolog genes that have expression in uncomplicated late first 

trimester placentas, 3 continue to show higher expression in female placentas, 3 no longer 

show a sex difference in expression, 1 gene changes from showing no sex difference to 

showing higher expression in males, and 1 gene flips direction from showing higher 

expression in females to now showing higher expression in males (Additional Table 5). 

In term placentas, we observe a similar pattern when we sum the X and Y-linked 

expression for males.  

The same 7 X-linked gametolog genes that show higher expression in the female 

late first-trimester placentas also show higher expression in the female term placentas 

compared to male term placentas (Additional Table 5). When we take the sum expression 

of the X and Y-linked copy for male term samples, we no longer see a sex difference in 

expression for ZFX, PRKX, and RPS4X, Wilcoxon test p-value > 0.05 (Additional Table 

5). This differs from the late first trimester placentas that show higher expression in 

female placentas for RPS4X regardless if the analysis is compared to male X-linked 

expression or male X + Y-linked expression (Additional Table 5). In the term placentas, 

RPS4X is sex differentially expressed, showing higher expression in females, but 

compared to males X + Y-linked expression; we longer observe a sex difference in 

expression for this gene, Wilcoxon test p-value > 0.267 (Additional Table 5). Three sex 

differentially expressed genes, DDX3X, KDM5C, and EIF1AX, continue to show higher 

expression in female compared to male term placentas, Wilcoxon test p-value < 0.01 

(Additional Table 5). Like in the late first trimester placentas, KDM6A flips direction and 
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shows higher expression male compared to female term placentas when we take the sum 

X + Y-linked expression in males, Wilcoxon test p-value < 0.01 (Additional Table 5). 

Again, just like in the late first trimester placentas, PCDH11X changed from showing no 

sex difference in expression to showing higher expression in male compared to female 

term placentas when we sum the X and Y-linked expression for males, Wilcoxon test p-

value < 0.01 (Figure 4 & Additional Table 5). Of the 14 X-linked gametolog genes that 

have expression in uncomplicated term placentas, 3 continue to show higher expression 

in female placentas, 3 no longer show a sex difference in expression, 1 changes from 

showing no sex difference to showing higher expression in males, and 1 gene flips 

direction from showing higher expression in females to now showing higher expression 

in males (Additional Table 5). In summary, the directional bias of X-linked gametolog 

genes may change if the X and Y-linked expression values are summed for male XY 

samples (Figure 4 & Additional Table 5). 

 

 

Chapter 2. Figure 4. Sex Differences in Expression for X-linked Gametolog Genes. Top 
row is female X-linked expression compared to male X-linked expression. The bottom 
row is female X-linked expression compared to male X + Y-linked expression. There is a 
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significant difference in male XY to female XX expression for ZFX and KDM6A (UTX) 
when only looking at the X chromosome CPM expression value. When we add the Y 
chromosome-linked CPM expression count for these genes for male samples, there is no 
longer a difference in expression between males XY and females XX for ZFX. KDM6A, 
on the other hand, flips the bias; it now shows males as having significantly higher 
expression than females. PCDH11X, when adding Y-linked CPM expression, shows a 
significantly higher expression than females. T-test to see if there is a difference between 
the female CPM and the male CPM for each gene, p-value < 0.05. 

 
Discussion 

Sex Differences in Gene Expression in Term Placentas are Replicated Among 

Tissues. We observe a positive correlation in the log2 female-to-male expression ratio for 

sex differentially expressed genes between the late first trimester (Gonzalez et al. 2018) 

and term placentas, and between term placentas and 42 non-reproductive adult GTEx 

tissues (Figure 3). Previous work has compared first trimester and term placentas and 

found thousands of genes to be differentially expressed (Sitras et al. 2012). However, the 

study appeared to not separate the genes based on chromosomal location (Sitras et al. 

2012). When we look at all genes located on the sex chromosomes, X & Y, the log2 

female-to-male expression ratio is positively correlated between late first trimester and 

term placentas, as well as adult tissues (Figure 3). When this is repeated for only 

autosomal genes, 1-22 and MT, we do not observe the same positive correlation between 

late first trimester, term placentas, and adult tissues (Figure 3). These findings suggest 

that sex differences in gene expression for sex-linked genes develop early in embryonic 

tissue and are replicated in adult tissues. Sex differential expression for autosomal genes 

may be more tissue-dependent, as previously suggested by Lopes-Ramos et al. 2020. 

Lopes-Ramos et al. 2020 found that sex differentially expressed genes common among 

adult tissues were enriched for sex chromosome genes, and sex differences for autosomal 
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genes were tissue-specific (C. M. Lopes-Ramos et al. 2020). In summary, we observe a 

positive and significant correlation in the log2 female-to-male expression ratio for sex-

linked genes between term placentas and adult tissues (Figure 3).  

Gene Enrichment of Sexually Dimorphic Genes Reveals Genes that may be 

Involved in Pregnancy Complications. Sex differentially expressed genes may be 

involved in biological pathways related to pregnancy complications. In term placentas, 

genes upregulated in XY males are involved in histone lysine and protein demethylation 

processes and histone demethylase activity, driven by Y-linked genes, including UTY and 

KDM5D (Additional Table 7). A review of ruminant placenta gene targeting found 

histone lysine demethylase 1A and androgen signaling to be involved in gene networks 

for cell proliferation and angiogenesis (Hord et al. 2020). The authors also note previous 

studies that have examined exposure to testosterone during pregnancy leading to ovarian 

dysfunction and low-birth-weight for female offspring, suggesting that increased 

androgen signaling dysregulates fetal development, at least for female offspring (Hord et 

al. 2020). Further studies are needed to better understand the role of histone demethylase 

activity and androgen signaling in sex differences in human pregnancy health and 

complications. Genes upregulated in XX female term placentas are involved in 

translational initiation and regulation of sister chromatid cohesion, driven mainly by X-

linked genes including: NAA10. NAA10 is involved in the process of post-translational 

protein modifications and mutations in NAA10 are known to cause Ogden syndrome 

which may lead to growth failure (Lee et al. 2017) (Additional Table 7). In a Naa10 

mouse knockout study, the authors report placental insufficiency that contributed to 

embryonic and neonatal lethality (Lee et al. 2017). Additionally, Naa10 mouse knockouts 
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showed low birth weight and postnatal growth failure compared to control mice (Lee et 

al. 2017). Loss of NAA10 plays a role in developmental of cardiovascular and growth 

defects in humans and mice (Lee et al. 2017; Wu and Lyon 2018). In our study, NAA10 is 

upregulated in female compared to male term uncomplicated placentas (Additional Table 

7). More research is needed to understand if sex differences in expression for NAA10 are 

involved in sex differences in development.  

Using new tools, we replicated the Gonzalez et al. 2018 late first trimester 

placenta gene enrichment analysis (Gonzalez et al. 2018). We found genes upregulated in 

male XY compared to female XX late first trimester placentas are involved in positive 

regulation of anoikis. Genes upregulated in the female late first trimester placentas are 

involved in organonitrogen compound catabolic, branched-chain amino acid catabolic, 

positive regulation of protein K63-linked ubiquitination processes. NUDT10 was shown 

to be enriched in these biological processes and is upregulated in female XX late first 

trimester placentas and was previously reported in the Gonzalez et al. 2018 study as well 

(Gonzalez et al. 2018). The role of NUD10 in placenta function remains to be further 

explored. Additionally, of the 58 genes previously identified as sex differentially 

expressed in the late first trimester placentas from Gonzalez et al. 2018, we found 45 of 

those genes to also be sex differentially expressed in the samples using different tools to 

process the data. Overall, we replicate the findings from Gonzalez et al. 2018 and we 

identified 210 additional genes to be sex differentially expressed among the late first 

trimester placentas and we annotate if those genes have been reported in pregnancy 

complications (Additional Table 7 & 10).  
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Lack of Sex Differences in Immune Gene Expression. The placenta is an 

immune modulator in the uterine environment interacting with the maternal decidua cells 

to promote an immunosuppressive environment for maintaining fetal tolerance 

(PrabhuDas et al. 2015; Xin et al. 2014). The placenta promotes inflammation response 

with up-regulation of pro-inflammatory cytokines during early implantation (PrabhuDas 

et al. 2015). For example, placentas from preeclampsia pregnancies have been reported to 

show lower expression of immune protein CD74 and enrichment for IL-1-signaling 

pathway compared to uncomplicated placentas (Przybyl et al. 2016). Maymon et al. 2018 

showed that patients with preterm labor showed higher concentrations of the immune 

protein CXCR3 and its ligands CXCL9 and CXCL10 in amniotic fluid compared to term 

in labor and term not in labor (Maymon et al. 2018). Karjalainen et al. 2015 similarly 

found higher expression for CXCR3 in the preterm cord blood samples compared to term 

cord blood (Karjalainen et al. 2015). Immune gene expression within the placenta plays a 

role in maintaining pregnancy to term (PrabhuDas et al. 2015; Xin et al. 2014); we 

therefore sought to characterize sex differences in immune expression among late first 

trimester (Gonzalez et al. 2018) and term uncomplicated placentas to expand on 

previously reported sex differences among uncomplicated placentas such as those 

reported in Gonzalez et al. 2018 and Sood et al. 2006.  

We observe little sex differences for innate immune genes among uncomplicated 

term placentas. In the term placentas, when looking at sex differences for only innate 

immune genes, only DDX3X showed a difference in expression between the sexes with 

higher expression in females compared to males, adjusted p-value < 0.05 (Figure 2). 

DDX3X is essential in cell cycle control, and loss of Ddx3x in male mice resulted in early 
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post-implantation lethality (Chen et al. 2016). In female mice, inactivation of a paternal 

Ddx3x copy resulted in placental abnormalities and embryonic lethality (Chen et al. 

2016). Together with the findings reported here, suggest that expression of DDX3X in the 

placenta may be critical for proper placental development. DDX3X may show higher 

expression in female compared to male placentas because DDX3X escapes X 

chromosome inactivation in female uncomplicated placentas; showing expression for 

both the maternal and paternal gene copy (Phung et al., n.d.). Although not differentially 

expressed between the sexes, adjusted p-value > 0.05, CXCL9 and LEP show a fold 

change higher expression in females compared to male term placentas (Figure 2). In the 

term placentas, the female mean CPM is 10.38 and the male mean CPM is 3.86 for the 

immune protein CXCL9 (Additional Table 6). The observed fold change difference 

between females and males for CXCL9 among the uncomplicated term placentas appears 

to be largely driven by one female sample, OBG0178, with a CPM expression of 160 for 

CXCL9 (Additional Figure 7 & Table 6). CXCL9 is thought to be involved in T cell 

trafficking (Tokunaga et al. 2018; Ochiai et al. 2015) and the promotion of inflammation 

within the mater-fetal interface (Nancy and Erlebacher 2014). Maymon et al. 2018 

showed that patients with preterm labor showed higher concentrations of CXCR3 and its 

ligands CXCL9 and CXCL10 in amniotic fluid compared to term (Maymon et al. 2018). 

Higher expression of CXCL9 in female compared to male placentas in the samples 

analyzed here may be reflect sex differences in expression for inflammation response, 

though further investigation is needed. LEP additionally shows a fold change higher 

expression in female compared to male term uncomplicated placentas (Additional Table 

6). LEP plays a major role in regulating energy homeostasis; additionally, 
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hypomethylation of LEP in the placenta has been observed in early onset preeclampsia 

compared to controls (Hogg et al. 2013). There are known sex differences in the 

incidence of preeclampsia. Term preeclampsia is more common in male-bearing 

pregnancies compared to female-bearing pregnancies (Vatten and Skjaerven 2004), while 

preterm preeclampsia is more common in female compared to male-bearing pregnancies 

(Global Pregnancy Collaboration: et al. 2017; Vatten and Skjaerven 2004). Sex 

differences in expression for LEP may help to explain sex differences in incidence of 

preeclampsia, but we did not test this and further investigation is needed. Overall, with 

the exception of DDX3X, we observe a lack of sex differences in expression for innate 

immune genes among uncomplicated term placentas (Figure 2 & Additional Table 6) 

suggesting expression of these genes may be important for maintaining pregnancy to 

term.  

In the late first trimester placentas (Gonzalez et al. 2018), 37 innate immune 

genes are differentially expressed between the sexes, adjusted p-value < 0.05, including 

DDX3X (Additional Table 6). Of the 37 innate immune genes differentially expressed 

between the sexes, adjusted p-value < 0.05, one gene also showed a fold change 

difference in expression between the sexes, SERPING1. SERPING1 showed 1.84 fold 

change in higher expression in male XY compared to female XX placentas. SERPING1 

encodes for a highly glycosylated protein and is involved in inhibiting C1r and C1a of the 

complement component. Epigenetic alterations of genes in the SERPIN superfamily have 

been described in preeclampsia (Chelbi et al. 2007; Blanch et al. 2003). It has also been 

suggested that SERPING1 may be involved in the placental circulatory function, and 

misregulation of SERPING1 could lead to placental diseases (Vaiman et al. 2005). 
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Overall, we observe sex differences in expression for innate immune genes in the late 

first trimester placentas but not in the term placentas (Figure 2).  

Limitations of the Study. All term, late first trimester placentas (Gonzalez et al. 

2018), and adult tissues (Carithers et al. 2015) used in this study are from different 

research groups using different sequencing tools and approaches. Here we study sex 

differences in term placentas and compare with sex differences in late first trimester 

placentas (Gonzalez et al. 2018) and adult tissues (Carithers et al. 2015). The late first 

trimester (Gonzalez et al. 2018) and term placentas were collected at different times using 

different sequencing approaches; we, therefore, focus on sex differences in each data set 

separately to study replication of sex differences at different time points. 

 

Perspectives and Significance 

In summary, we find sex differences in gene expression in early developed 

placenta tissue. However, there is a lack of sex differences in gene expression for innate 

immune genes among uncomplicated term placentas, suggesting expression of these 

genes may be involved in sustaining a pregnancy to term. The expression ratio between 

females and males for sex differentially expressed in term uncomplicated placentas are 

replicated in adult tissues. Sex differences in gene expression develop early and are 

observed in adult tissues.  

 

Supplementary Information  

 Supplemental tables and figures are located in chapter 2. appendices B.  
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CHAPTER 3 

The Synthetic Histone-Binding Regulator Protein PcTF Activates Interferon Genes 

in Breast Cancer Cells 

(Previously published Olney, K.C., Nyer, D.B., Vargas, D.A., Wilson, M.A., Haynes, 

K.A., The synthetic histone-binding regulator protein PcTF activates interferon genes in 

breast cancer cells. BMC Syst Biol 12, 83 (2018). https://doi.org/10.1186/s12918-018-

0608-4)  

 

ABSTRCT 

Mounting evidence from genome-wide studies of cancer show that chromatin-

mediated epigenetic silencing at large cohorts of genes is strongly linked to a poor 

prognosis. This mechanism is thought to prevent cell differentiation and enable evasion 

of the immune system. Drugging the cancer epigenome with small molecule inhibitors to 

release silenced genes from the repressed state has emerged as a powerful approach for 

cancer research and drug development. Targets of these inhibitors include chromatin-

modifying enzymes that can acquire drug-resistant mutations. In order to directly target a 

generally conserved feature, elevated trimethyl-lysine 27 on histone H3 (H3K27me3), we 

developed the Polycomb-based Transcription Factor (PcTF), a fusion activator that 

targets methyl-histone marks via its N-terminal H3K27me3-binding motif, and co-

regulates sets of silenced genes. Here, we report transcriptome profiling analyses of 

PcTF-treated breast cancer model cell lines. We identified a set of 19 PcTF-upregulated 

genes, or PUGs, that were consistent across three distinct breast cancer cell lines. These 

genes associated with the interferon response pathway. Our results demonstrate for the 
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first time a chromatin-mediated interferon-related transcriptional response driven by an 

engineered fusion protein that physically links repressive histone marks with active 

transcription.  
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Background 

In addition to DNA lesions, disruption of chromatin at non-mutated genes can 

support the progression of cancer. Chromatin is a dynamic network of interacting 

proteins, DNA, and RNA that organizes chromosomes within cell nuclei. These 

interactions regulate gene transcription and coordinate distinct, genome-wide expression 

profiles in different cell types. Chromatin mediates epigenetic inheritance (Margueron & 

Reinberg, 2010; Richards & Elgin, 2002) by regulating expression states that persist 

through cellular mitosis and across generations of sexually reproducing organisms 

(Cavalli & Paro, 1998; Roemer et al., 1997). Posttranslational modifications (PTMs) of 

histones within nucleosomes, the fundamental subunits of chromatin, play a central role 

in the epigenetic regulation of genes that control cell differentiation (Kim & Orkin, 2011; 

Sparmann & van Lohuizen, 2006). Several landmark studies have revealed that 

hyperactivity of the histone-methyltransferase enhancer of zeste 1 and 2 (EZH1, EZH2), 

which generates the histone PTM H3K27me3, is a feature shared by many types of 

cancer (recently reviewed in (Wang et al., 2015)). In breast cancer, elevated EZH2 has 

been linked to cell proliferation and metastasis (Alford et al., 2012; Chang et al., 2011) 

and a poor prognosis for breast cancer patients (Collett et al., 2006; Kleer et al., 2003; 

Niida et al., 2009; Peña-Llopis et al., 2016). In stem cells and cancer cells, EZH2 

generates H3K27me3 mark at nucleosomes (Fig. 1) near the promoters of developmental 

genes, represses transcription, and thus prevents differentiation to support the 

proliferative state in stem cells or neoplasia in cancer (reviewed in (Kim & Orkin, 2011)). 

Polycomb Repressive Complex 1 (PRC1, also known as PRC1.2 or PRC1.4(Gao et al., 

2012)) binds to the H3K27me3 mark through the polycomb chromodomain (PCD) motif 
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of the CBX protein to stabilize the repressed state. Silencing is reinforced by other 

chromatin regulators including histone deacetylase (HDAC) and DNA methyltransferase 

(DMT) (Easwaran et al., 2012) (Fig. 1). 

 

 

Chapter 3. Figure 1. Reversal of a Cancer-associated Epigenetic State Via the PcTF 
Fusion Protein. The lower half of the cartoon depicts the accumulation of repressive 
chromatin at a developmental gene. EZH2 generates H3K27me3, which is recognized by 
the PCD fold in the CBX protein of Polycomb Repressive Complex 1 (PRC1). Silencing 
is re-enforced by histone deacetylase (HDAC), and DNA methyltransferase (DMT) 
activity. The fusion protein PcTF contains an N-terminal PCD fold (cloned from CBX8) 
that binds H3K27me3 and stimulates transcription via its C-terminal activator domain to 
restore the active state (right side of the cartoon). A, acetylation; M, methylation; green 
circle, activation-associated PTM; orange or purple circle, repression-associated PTM; 
RFP, red fluorescent protein tag; TAD, transcriptional activation domain VP64. 

 

The PRC module is a group of genes that is regulated by H3K27me3 and 

Polycomb transcriptional regulators (Bracken & Helin, 2009; Jene-Sanz et al., 2013). 

Relatively high expression or upregulation of PRC module genes is associated with a 

non-proliferative state, cell adhesion, organ development, and normal anatomical 

structure morphogenesis (Jene-Sanz et al., 2013). Knockdown (depletion) of chromatin 

proteins (reviewed in (Bracken & Helin, 2009; Dawson & Kouzarides, 2012)) and 
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inhibition of Polycomb proteins with low molecular weight compounds (Simhadri et al., 

2014a; Stuckey et al., 2016a; Tabet et al., 2013a) and peptides (Simhadri et al., 2014b; 

Stuckey et al., 2016b; Tabet et al., 2013) stimulates expression of developmental genes 

and perturbs cancer-associated cell behavior. The interferon (IFN) pathway is often 

highly represented among silenced genes in cancer. IFN gene activity has been linked to 

apoptosis (Bouker et al., 2005; J. Lee et al., 2006) and triggers the body's immune system 

to attack cancer cells (Dunn & Rao, 2017; Ikeda et al., 2002). Decreased expression and 

increased levels of repressive epigenetic marks (e.g., DNA methylation) have been 

detected at IFN genes in Li–Fraumeni fibroblasts (39 of 85 silenced genes) (Kulaeva et 

al., 2003), colon carcinomas (McGough et al., 2008), and triple negative breast cancers 

(Teschendorff et al., 2007a; H. Xu et al., 2014a). Transgenic overexpression of IFN1 in 

MCF7 breast cancer xenografts perturbs tumor growth in nude mice (Bouker et al., 

2005). Treatment of cancerous cells with broad-acting epigenetic inhibitors of DNA 

methyltransferase (DNMTi) and histone deacetylase (HDACi) leads to activation of IFN 

genes which induces an arrest of cancer cell proliferation or sensitize cancer cells to 

immunotherapy (Dunn & Rao, 2017; Li et al., 2014; Stone et al., 2017).  

The use of the FDA-approved DNA methyltransferase inhibitors (e.g., 5-

azacytidine) to treat cancer, as well as the success of other epigenetic interventions in 

clinical trials (Biancotto et al., 2010; Mani & Herceg, 2010) demonstrates that chromatin 

is a druggable target in cancer. Certain limitations of epigenetic inhibitor compounds 

could encumber complete efficacy of epigenetic therapy. Inhibitors do not interact 

directly with modified histones, indirectly activate silenced genes by blocking repressors, 

generate incomplete conversion of silenced chromatin into active chromatin (McGarvey 
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et al., 2006, 2007), interact with off-target proteins outside of the nucleus (Su et al., 

2005), and do not affect resistant Polycomb protein mutants (Fujiwara et al., 2014; Ueda 

et al., 2014; B. Xu et al., 2015). These limitations could be addressed by technologies that 

directly target H3K27me3 within the chromatin fiber. H3K27me3 is a highly conserved 

feature in cancers (Wang et al., 2015). Even in cases where H3K27 becomes mutated to 

methionine in one allele (Schwartzentruber et al., 2012; Wu et al., 2012), methylation of 

the wild-type copy of H3K27 is still present at repressed loci in cancer cells(K.-M. Chan 

et al., 2013; K. M. Chan et al., 2013). 

Our group developed a fusion protein called Polycomb-based Transcription 

Factor (PcTF), which specifically binds H3K27me3 (Tekel et al., 2017) and recruits 

endogenous transcription factors to PRC-silenced genes (Fig. 1). In bone, brain, and 

blood-cancer derived cell lines, PcTF expression stimulates transcriptional activation of 

several anti-oncogenesis genes (Nyer et al., 2017). PcTF-mediated activation leads to the 

eventual loss of the silencing mark H3K27me3 and elevation of the active mark 

H3K4me3 at the tumor suppressor locus CASZ1.  

To explore the therapeutic potential of fusion protein-mediated epigenetic 

interventions, we sought to investigate the behavior of PcTF in breast cancer cells lines 

that have been established as models for tumorigenesis (Goodspeed et al., 2016; Lacroix 

& Leclercq, 2004; Neve et al., 2006). Here, we extend our investigation of PcTF activity 

to three breast cancer-relevant cell lines. First, we investigated the transcription profiles 

of predicted PRC module genes in drug-responsive (MCF-7, BT-474) and unresponsive 

triple negative (BT-549) breast cancer cell lines. Receptor-negative BT-549 cells have a 

transcription profile and histology similar to aggressive tumor cells from patient samples 
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(Lehmann et al., 2011; Tseng et al., 2017). Overexpression of PcTF in transfected breast 

cancer cells led to the upregulation of dozens of genes, including a common set of 19 

genes in the interferon response pathway, as early as 24 hours after transfection. The 

transcriptome of BT-549 (triple-negative) showed the highest degree of PcTF-sensitivity. 

We observed that PcTF-sensitive genes are associated with a bivalent chromatin 

environment and moderate levels of basal transcription. Interestingly, these PcTF-

sensitive genes do not overlap with very strongly repressed, PRC-enriched loci. This 

discovery provides new mechanistic insights into the state of genes that are poised for 

transcriptional activation via PcTF. 

 

Results 

Differential Regulation of Genes in Breast Cancer Cell Lines. To determine 

expression levels of predicted PRC module genes, we profiled the transcriptomes of three 

breast cancer cell lines and the non-invasive, basal B cell line MCF10A (Kenny et al., 

2007; Nagaraja et al., 2006) using next-generation deep sequencing of total RNA (RNA-

seq). MCF7, BT-474, and BT-549 represent luminal A, luminal B, and basal B subtypes 

of breast cancer, respectively (Table 1) (Neve et al., 2006). Previous studies have shown 

that gene expression profiles distinguish two major categories of cancer cell lines, 

luminal and basal, in patient-derived samples (T. Sorlie et al., 2001; Therese Sorlie et al., 

2003). The basal class exhibits a stem-cell like expression profile (Ben-Porath et al., 

2008), which is consistent with high levels of Polycomb-mediated repression at genes 

involved in development and differentiation (Boyer et al., 2006; T. I. Lee et al., 2006). 

Levels of the repressor protein EZH2 and the histone modification that it generates 
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(H3K27me3) are elevated in MCF7, BT-474, and BT-549 compared to non-metastatic 

cells such as MCF10A (Table 1). A mechanistic link between Polycomb-mediated 

repression and tumor aggressiveness has been supported by a study where stimulation of 

the  phosphoinositide 3-kinase (PI3K) signaling pathway, which induces a metastatic 

phenotype in MCF10A, is accompanied by increased H3K27me3 at several target genes 

(Lin et al., 2008; Zuo et al., 2011).  We hypothesized that known Polycomb-repressed 

genes (the PRC module) would be down-regulated in the cancerous cell lines compared 

to MCF10A.  

Chapter 3. Table 1. Descriptions of the Breast Tissue-derived Cell Lines Used in this 
Study. ATCC = American Tissue Culture Center ID. Molecular subtype and marker 
expression status are from Neve et. al 2006 (Neve et al., 2006): Estrogen receptor 
presence or absence (ER+/-), Progesterone receptor presence or absence (PR+/-), HER2 
overexpression (HER2+), and TP53 mutation (TP53M). EZH2 and H3K27me3 were 
shown to be elevated compared to non-metastatic fibroblasts (a) (Leroy et al., 2013), 
LNCaP (b) (Ren et al., 2012), MCF10A (c) (Chang et al., 2011; Derfoul et al., 2011; 
Dong et al., 2014), and HMEC (d). 

Cell line ATCC Sub-type Markers 

(Neve et al., 

2006) 

EZH2  H3K27me3  

MCF7 HTB-

22 

Luminal A ER+, PR+ Elevateda,b,c (Derfoul et 

al., 2011; Leroy et al., 

2013; Ren et al., 2012) 

Elevateda (Leroy 

et al., 2013; Zuo et 

al., 2011) 

BT-474 HTB-

20 

Luminal B ER+, PR+, 

HER2+ 

Elevatedc (Dong et al., 

2014) 

Elevatedd (Zuo et 

al., 2011) 
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BT-549 HTB-

122 

Basal B, 

claudin-

low 

ER-, PR-, 

TP53M 

Elevatedc (Chang et al., 

2011) 

Elevatedd (Zuo et 

al., 2011) 

MCF10A CRL-

10317 

Non-

invasive/ 

Basal B 

ER-, PR- n/a n/a 

 
Comparison of the expression profiles in untreated cells showed that the three-

breast cancer model cell lines were transcriptionally dissimilar to the control cell line 

MCF10A and that BT-549 and MCF7 were more similar to each other than either were to 

BT-474. Expression levels (FPKM values) across 63,286 gene protein coding transcripts 

(GRCh38 reference genome) were used to calculate Jensen-Shannon Divergence (JSD) 

(Methods and Fig. 2A). JSD values correspond to the similarity of the probability 

distributions of transcript levels for two RNA-seq experiments. Expression values for 

biological replicates showed the highest similarities (smallest distances) within cell types 

(Fig. 2A, upper grid). The largest distances were observed between MCF10A and the 

three cancer cell types: 0.461 for BT-549, 0.476 for MCF7, and 0.511 for BT-474 (Fig. 

2A, lower grid). A similarly high JS distance was observed for BT-549 versus BT-474 

(JSD = 0.464), suggesting that these cancer cell lines are transcriptionally distinct. BT-

549 and MCF7 showed the highest similarity, with a cumulative JSD of 0.357. This 

observation contrasts with other reports where BT-549 and MCF7 are described as 

transcriptionally and phenotypically different (Kenny et al., 2007; Seals et al., 2005). 
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Differences in transcription profiling methods, RNA-seq used here and the DNA 

oligomer microarray chip used by others, may underlie the different outcomes. 

 

 

Chapter 3. Figure 2. Comparisons of Transcription Profiles of Three Model Breast 
Cancer Lines (MCF7, BT-549, BT-474) and a Control Non-cancer Line (MCF10A). (A) 
Jensen-Shannon Divergence (JSD) values were calculated as the similarity of the 
probability distributions of expression levels (FPKM values) for 63,286 total transcripts, 
which include 22,267 protein-coding transcripts. In the lower grid, cummeRbund 
(Trapnell et al., 2012) was used to consolidate replicates and to calculate overall JSD 
between cell types. Solid border, BT-549 vs. MCF7, smallest JSD; dashed border, JSD’s 
for MCF10A vs. cancer cell lines. (B) The boxplots show gene expression values (center 
line, median; lower and upper boxes, 25th and 75th percentiles; lower and upper 
whiskers, minimum and maximum) for all protein-coding transcripts (22,267), 
H3K27me3-positive (1,146) or EZH2-positive (2,397) protein-coding loci. NS, no signal. 
(C) The Venn diagram includes HGNC symbols of genes that are H3K27me3-positive 
(middle box plot, panel B) and are silenced (FPKM < 2) in at least one cell type. GO term 
enrichment p-values are shown only for subsets where FDR < 0.1. 

 

Differential expression between cell lines for individual genes (Fig. S1) followed 

similar trends as those observed for the global JSD analysis. We used an expression 
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comparison algorithm (Cuffdiff (Trapnell et al., 2013)) to identify genes that were 

differentially expressed (2-fold or greater difference in expression, q value ≤ 0.05) or 

similarly expressed (less than 2-fold difference, q value ≤ 0.05) between cell types. 

Comparisons that included MCF10A showed the highest numbers of differentially 

expressed genes, as well as the lowest numbers of similarly expressed genes. This result 

further supports transcriptional differences between the cancerous cell lines and MCF10A 

(Fig. S1).  

Next, we determined expression levels within groups of predicted PRC-regulated 

genes and observed that expression within these subsets is lower in the three cancer cell 

types than in MCF10A. We used data from other breast cancer cell line studies of MCF7 

and MDA-MB-231 to classify a subset of PRC target genes based on H3K27me3 

enrichment or binding of EZH2, an enzyme that generates the H3K27me3 mark (see 

Methods). Only 245 gene IDs were shared between the H3K27me3 and EZH2 subsets. 

Although these two groups are mostly distinct, both showed low median expression 

values (FPKM < 2), which suggests epigenetic repression (Fig. 2B). Median expression 

levels of predicted PRC module genes were reduced in the cancer cell lines compared to 

the non-cancer cell line. The H3K27me3-marked subset showed median log10(FPKM) 

values for BT-474 (-1.66), MCF7 (-1.16), and BT-549 (-1.15) that were slightly lower 

than MCF10A (-1.10) (Fig. 2B, middle plot). The median FPKM values for EZH2 targets 

were dramatically lower (zero signal) in the cancer cell lines, while the median value was 

higher (-1.65) for MCF10A (Fig. 2B, right). Overall, H3K27me3 and EZH2 enrichments 

from two breast cancer cell lines (MCF7 and MDA-MB-231) correspond to relatively 
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low expression in all three breast cancer cell lines studied here. This result is consistent 

with the roles of H3K27me3 and EZH2 in cancer-associated gene silencing. 

To determine whether individual predicted PRC target genes were similarly 

regulated across cell lines, we compared two groups of genes that were categorized by 

expression level: silenced (FPKM < 2) (Gonzàlez-Porta et al., 2013; Rupp et al., 2017) or 

expressed (FPKM ≥ 2) (Fig. S2). In each cell type, genes with silenced expression levels 

included 70.2% - 79.3% of the H3K27me3-marked loci (Fig. S2) and 78.4% - 82.2% of 

the EZH2-enriched loci. About one quarter of the genes (17.8% - 29.8%) showed some 

expression (FPKM ≥ 2) and only 16.7% - 8.2% were expressed at FPKM ≥ 10. The set of 

45 H3K27me3-enriched repressed genes shared by the three cancer cell lines BT-474, 

BT-549, and MCF7 (Table S1) shows strong representation of the gene ontology 

processes “regulation of peroxidase activity” (GOrilla(Eden et al., 2009), p = 5.84E-6, 

FDR = 8.85E-2; Fig. 2C) and “ectoderm development” (Panther(Mi et al., 2017), p = 

1.07E-4, FDR = 2.61E-2). The silencing of lipoxygenase (ALOXE3) and inhibitor of 

peroxidase (LRRK2) may contribute to elevated pro-cancer COX-mediated peroxidase 

activity (Fürstenberger et al., 2006; Jardim et al., 2013). Low levels of ALOXE3, ADRB2, 

BNC1, BTC, CCNO, ETV4, MCIDAS, PID1, SPRR2D, and ZBTB16 are consistent with 

the epigenetic repression of pro-differentiation pathways in cancer cells.  We 

hypothesized that these PRC-module genes would become activated in the presence of 

the synthetic regulator PcTF, which interacts with the repressive H3K27me3 mark. 

PcTF-sensitive Interferon Response Genes are Shared Across Three Cancer 

Cell Types. We investigated changes in the transcriptomes of PcTF-expressing breast 

cancer cells over time. We transfected cells with PcTF-encoding plasmid DNA 
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(previously described (Nyer et al., 2017)) and allowed them to grow for 24, 48, and 

72 hours before extracting total RNA for sequencing. RNA-seq reads were aligned to a 

human reference genome GRCh38 that included the coding region for PcTF (see 

Methods). No reads aligned to the PcTF coding sequence in control, untransfected cells. 

In the transfected cells, PcTF expression levels were highest at 24 hours and decreased 

1.6 to 5.5-fold every 24 hours (Fig. 3A). We observed a similar trend with other cancer 

cell lines in a previous study (Nyer et al., 2017). One outlier sample, a replicate for BT-

474 cells expressing PcTF for 48 hours, had a markedly different PcTF expression level 

(Fig. 3A) and genome-wide transcription profile (Fig. S3) and was therefore omitted from 

further analyses.  

Nineteen genes were upregulated at least 2-fold (q value ≤ 0.05) at all time points 

in all three cell lines (Fig. 3B): C19orf66, DDX58, DTX3L, HERC6, IFI27, IFI44L, IFI6, 

IFIH1, ISG15, LGALS3BP, MX1, OAS1, OAS3, PARP9, PARP14, PLSCR1, SP100, 

UBE2L6, and XAF1. Here, we refer to this subset PcTF-upregulated genes, or PUGs. The 

most significantly enriched GO terms for this set include “defense response to virus” and 

“negative regulation of viral life cycle” (Fig. 3C). An investigation of regulator motif 

enrichment at the promoters of PUGs revealed significant overrepresentation of 

transcription factors involved in immune response and tissue development processes (Fig. 

3D). Fifteen of the 22 transcription factors showed detectable levels of expression in all 

three cell lines (Fig. S4). IRF1, IRF7, IRF9, and PRDM1 showed significant upregulation 

(FC ≥ 2, q ≤ 0.05) in PcTF-expressing cells. Promoter motifs for IRF1 and IRF3 were 

present at all 19 PUGs (Fig. 3E). Therefore, regulation of PUGs may be driven by PcTF-

mediated activation of IRF1. 
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Chapter 3. Figure 3. PcTF-expressing Breast Tissue-derived Cell Lines Show 
Upregulation of Interferon (IFN) Pathway Genes. (A) Charts show log10(FPKM) of 
PcTF for untransfected cells (UT) and at 24, 48, and 72 hours following transfection of 
each cell line. The outlier for BT-474 (48 hrs, replicate 1) was omitted from subsequent 
analyses. Dots, each replicate library; bars, mean of values from the two replicates. (B) 
Mean log10(FPKM) values are shown for 19 Polycomb-upregulated genes genes (PUGs; 
FC ≥ 2, q ≤ 0.05 at all time points in all three cell lines), sorted from lowest to highest 
average expression level in untreated cells. (C) Gene ontology (GO) Biological Process 
term enrichment for the 19 PUGs is represented the bubble chart. GO clusters and 
representative terms (black labels) are plotted based on semantic similarities in the 
underlying GOA database. (D) Overrepresentation of transcription factor (TF) binding 
motifs (Plaisier et al., 2016) at the promoters of PUGs (p-value < 0.05/19.0, Bonferroni 
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correction). (E) Transcription factors (outermost boxes) associated with promoter motifs 
from panel D are shown in the network graph. 

 

Different subsets of genes were up- or down-regulated at least two-fold (q value ≤ 

0.05) early, late, or across all time points during PcTF expression (Fig. 4). Of the genes 

that showed at least a two-fold change in either direction, the vast majority were up-

regulated (Fig. 4A). We also observed that depending on the cell line, two or three 

predicted regulators of PUGs, including IRF1, IRF7, IRF9, and PRDM1, became 

significantly upregulated (Fig. 4B). This result suggests that the IFN response might be 

mediated through upregulation of master regulators. Thus, PcTF may target silenced 

chromatin at IRF1, IRF7, IRF9, and PRDM1 and not necessarily at PUGs.  
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Chapter 3. Figure 4. PcTF-sensitive Genes Include Cell-type Specific Groups in Addition 
to PUGs. (A) The Venn diagrams show genes with expression levels that changed at least 
2-fold in either direction (q value ≤ 0.05) at one or more time points in PcTF-expressing 
cells versus untransfected cells. Red, up-regulated; blue, down-regulated. The heat maps 
show fold-change (log2(FC)) values for genes that significantly changed (q ≤ 0.05) at all 
three time points (center regions of the Venn diagrams). The lower left Venn diagram 
compares these genes between cell types. (B) Expression profiles (log10(FPKM)) of cells 
before (UT, untransfected), and 24, 48, or 72 hours after PcTF transfection for all genes 
with expression levels that changed at least 2-fold in either direction (see Venn diagrams 
in panel A). 

 

Our results also show that the PcTF-activated genes had virtually no overlap with 

the 45 H3K27me3-enriched, silenced genes (FPKM < 2) shared by the three cancer cell 

lines (Fig. 2C, Table S1). Only one of these 45 genes, PID1, became upregulated in any 

cell line (BT-549 at 48 and 72 hours). In this study we observed that the genes that were 

up-regulated came from the pool of low- to moderate-expressing genes. So far, our 

results suggest that PcTF-mediated activation requires a moderate level of basal 

expression at the target gene. This idea may be counterintuitive since H3K27me3 mark, 

the target of PcTF (Tekel et al., 2017), is essential for transcriptional repression according 

to the model for Polycomb-mediated regulation, which is supported by a wealth of data 

(Simon & Kingston, 2009). However, a recent study using genome-wide ChIP-seq and 

transcription profiles in murine cells showed that H3K27me3 was enriched at genes with 

low levels of expression and depleted at completely silenced genes, and highly expressed 

genes (Berrozpe et al., 2017). We were prompted to investigate whether the chromatin 

features at PcTF-activated genes might reflect a low to moderate expression state. 

PcTF-sensitive Loci Bear Repression- and Activation-associated Chromatin 

Features. To investigate the contribution of local chromatin states to PcTF-mediated 

gene regulation, we analyzed histone modifications and RNA polymerase II enrichment 
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at PcTF-upregulated genes in MCF7. Here, we utilized the extensive public ChIP-seq 

data that is available for the MCF7 cell line to investigate chromatin features. The 125 

genes that were significantly upregulated (FC ≥ 2, q ≤ 0.05) at one, two, or all time points 

in MCF7 (see Fig. 4B) showed a range of H3K27me3 mean enrichment values across 10 

kb centered around each transcriptional start site (Fig. 5A). Consistent with PUGs, the 

106 additional upregulated genes showed significant overrepresentation of interferon 

response-related processes (GO biological process “type I interferon signaling pathway,” 

p = 4.08E-28, FDR = 6.21E-24). 

 

 

Chapter 3. Figure 5. Comparison of Chromatin Features at PcTF-activated and Non-
activated Genes in MCF7. (A) Box plots show expression levels (center line, median; left 
and right boxes, 25th and 75th percentiles; left and right whiskers, minimum and 
maximum) in untreated and PcTF-treated cells (24, 48, and 72 hrs) for each of the 
following gene subsets: PcTF-upreg., 125  genes that are upregulated (FC ≥ 2, p ≤ 0.05) 
in MCF7-expressing cells at one or more time points; Low BC, 45 H3K27me3-enriched 
genes that are repressed (FPKM < 2) in all three cancer cell lines (see Fig. 2C); Low 
MCF7, 50 genes that are repressed (FPKM < 2) in MCF7. TSS plots show ChIP signals 
of silencing-associated (H3K27me3, H3K9me3) and activation-associated (H3K27ac, 
H3K4me3) histone modifications, as well as RNA Polymerase II. Genes within the top 
20% of mean values for H3K27me3-enrichment (within 10 kb) are highlighted (blue 
box). 
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Genes within the highest 20% of mean values for H3K27me3 included the 

predicted regulator IRF1 (Fig. 3D, E) and 5 of the 19 PUGs. Other PcTF-responsive 

genes that lack the H3K27 methylation mark might represent downstream targets of the 

products expressed from targets of PcTF. Mean enrichments of H3K9me3 (Fig. 5A), a 

modification that is frequently found at constitutive pericentric heterochromatin and non-

coding DNA (K. A. Haynes et al., 2004; Lachner et al., 2004; Nishibuchi & Déjardin, 

2017), showed no pattern that resembled H3K27me3. PcTF-responsive genes tended to 

be distributed along chromosome arms rather than concentrated near centromeres (Fig. 

S4). This suggests that PcTF target sites coincide more closely with the distribution of 

facultative chromatin and epigenetically-regulated cell development genes (Boyer et al., 

2006; Wiles & Selker, 2017). 

Enrichments for the features associated with active expression, H3K27ac, 

H3K4me3, and RNA Pol II were stronger at PcTF-responsive genes than at PcTF non-

responsive genes (Fig. 5B). Regions containing PcTF-activated genes include 

interspersed peaks of H3K27me3 and H3K4me3 (Fig. S5), which is characteristic of 

bivalent domains that are poised for activation (Easwaran et al., 2012; Zaidi et al., 2017). 

We conclude that under the conditions tested here, strongly repressed genes are resistant 

to PcTF-mediated activation while an intermediate regulatory state, where silent and 

active marks are present, supports PcTF activity. 

Two substantially different mechanisms might account for the results observed so 

far. First, target gene activation may depend upon PcTF’s interaction with and disruption 

of silenced chromatin. In previous work, we established that PcTF activity requires the 

histone-binding PCD domain (Karmella A. Haynes & Silver, 2011; Nyer et al., 2017) and 
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the presence of H3K27me3 near the target gene (Karmella A. Haynes & Silver, 2011) to 

disrupt epigenetic silencing. Work reported by others demonstrated activation of 

interferon networks through the disruption of chromatin-mediated repression with small 

molecule inhibitors. Treatment of breast cancer cell lines (including BT-474 and MCF7) 

with DNA methyltransferase (5-azacitidine) led to activation of DDX58, IFI27, IFI6, 

IFIH1, ISG15, MX1, OAS3, UBE2L6, XAF1 (9 of the 19 PUGs), and other genes (Li et 

al., 2014). Furthermore, inhibitors of histone deacetylase, a class of enzymes that support 

repressed chromatin, stimulate rapid activation of interferon (IFN) genes in human and 

mouse cells (Leonova et al., 2018). 

Second, introduction of foreign nucleic acids into the cells could have indirectly 

stimulated the interferon response via sequence non-specific effects (Fiszer-Kierzkowska 

et al., 2011; Huerfano et al., 2013; Jacobsen et al., 2009; Olejniczak et al., 2010; Sledz et 

al., 2003) without interaction of PcTF with chromatin. Microarray-based transcriptome 

profiling of MCF7 cells transfected with Lipofectamine-pM1-MT vector complexes 

showed upregulation of HERC6, IFIH1, ISG15, LGALS3BP, MX1, OAS3, PLSCR1, and 

UBE2L6 (Jacobsen et al., 2009), which represent 8 of the 19 PUGs. Small RNA-induced 

knockdown of GAPDH in renal carcinoma cells was accompanied by increased 

expression of IFI6, OAS3, and UBE2L6 (Sledz et al., 2003). MX1, IRF1 and IRF7 

became activated following electroporation (nucleofection) of NIH3T3 cells with control 

empty plasmids pcDNA3.1 (the origin of the plasmids used in our study), phGF, and 

pEGFP-N1 (Huerfano et al., 2013). To investigate nonspecific effects from foreign 

nucleic acids, we used reverse transcription followed by quantitative PCR to measure 
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expression levels of PcTF-responsive genes in cells that expressed a truncated version of 

PcTF as a control, as described in the following section. 

Foreign RNA from a PcTF-deletion Mutant is Insufficient for Sustained 

Expression of XAF1 in MCF7. We asked whether the presence of the PcTF transgene 

and its transcribed RNA were responsible for the consistent interferon response in breast 

cancer cells. Using transient transfections, we had established that PcTF-mediated 

activation of genes could be detected over background at multiple time points. However, 

in this experiment PcTF levels decreased over time (Fig. 3A), which prevents us from 

distinguishing time- versus dose-dependent effects on gene regulation. Therefore, we 

constructed stable transgenic cell lines to enable constant expression of the fusion protein 

over time. We were able to generate viable, transgenic lines from MCF7 cells. Expression 

of PcTF or a control fusion protein that lacks the histone-binding domain (PcΔTF) was 

placed under the control of the rtTA activator, which binds to the pTet promoter in the 

presence of doxycycline (dox) (Fig. 6A). Expression of rtTA was indicated by 

constitutive GFP expression, and inducible nuclear localization sequence-tagged PcTF 

was detected as an RFP signal after treatment with doxycycline (Fig. 6B). We used 

reverse transcription followed by quantitative PCR (RT-qPCR) to measure the expression 

levels of PcTF and a subset of PcTF-sensitive genes that were identified in the RNA-seq 

experiment. 
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Chapter 3. Figure 6. RT-qPCR Analysis of Gene Expression in Stable, Transgenic PcTF-
Expressing Cells. (A) SfiI-flanked PcTF or PcΔTF constructs (top) were cloned into the 
pSBtet-GP expression vector (bottom), resulting in the replacement of the luciferase 
reporter with fusion protein ORFs. (B) Fluorescence microscopy of the MCF7-PcTF 
transgenic cell line. (C) Time course RT-qPCR for PcTF. (D) Time course RT-qPCR for 
select genes. For all RT-qPCR experiments n = two cDNA libraries from independent 
transfections or dox treatments. FC, fold change relative to “no dox” controls, calculated 
as double delta Cp (see Methods). 

 

RT-qPCR using a universal mCherry-specific primer set confirmed that PcTF 

expression levels decreased over time in transiently transfected cells (Fig. 6C) as 

observed for FPKM values from the RNA-seq experiment (Fig. 3A). The stable 

transgenic cells showed low levels of fusion protein mRNA in the initial uninduced (-

dox) state compared to untransfected MCF7 cells. Exposure to 1 μg/mL dox increased 

PcTF and PcΔTF levels by an order of magnitude. These levels were slightly higher than 

the PcTF expression levels observed in transiently transfected cells at the 72-hour time 
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point, and remained relatively constant over time. Fold-change (compared to 

untransfected cells) remained within values of 67 - 192 at 24, 48, and 72 hours. 

For RT-qPCR analysis of PcTF-sensitive targets, we were able to design and 

validate specific assays for a subset of genes that were significantly upregulated at one or 

more time points in MCF7, including two PUGs (XAF1, SP100) and others. XAF1 was 

the most strongly upregulated across all three time points (18 to 36-fold) (Fig. 6D). The 

other five genes showed slight upregulation in response to dox-induced PcTF expression. 

The weaker response of these genes compared to XAF1 could be explained by a smaller 

dynamic range, where there is little difference between the basal versus activated 

expression level. Furthermore, these genes may have been slightly upregulated prior to 

dox treatment since PcTF was detected at low levels before induction (Fig. 6C).  

At the 24 hour time point, XAF1, SP100, and CEACAM1 became up-regulated in 

truncation-expressing cells, suggesting an initial nonspecific response to transgenic 

PcΔTF RNA. At 48 and 72 hours, gene expression decreased in the presence of PcΔTF. 

Over time, expression remained upregulated in the presence of PcTF compared to PcΔTF 

at XAF1, CEACAM1, and ARNT2. Overall, these results suggest that for certain genes 

(XAF1, CEACAM1, and ARNT2), maintenance of the PcTF-induced activated state 

requires interaction with chromatin through the H3K27me3-binding PCD motif. 

Tumor Suppressor and BRCA Pathway Genes Become Upregulated in PcTF-

Expressing Cells. To explore the clinical implications of PcTF-mediated transcriptional 

regulation, we determined the representation of known tumor suppressor genes amongst 

PcTF-responsive loci. For this analysis we used a tumor suppressor gene set that includes 

983 candidate anti-cancer targets that are down-regulated in tumor samples (Methods). 
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Of these, 589 include BRCA human tumor suppressor genes (TSGs) that are repressed in 

invasive carcinoma samples compared to normal tissue samples (Min Zhao Jingchun Sun, 

2013; Zhao et al., 2015). The genes were classified as tumor suppressors based on text-

mining of cancer research literature, and manual assessment of relevant cancer types and 

molecular pathways (TSGene 2.0) (Min Zhao Jingchun Sun, 2013; Zhao et al., 2015).  

To identify TSGs that are upregulated in response to PcTF, we compared the upregulated 

subset (FC ≥ 2, q ≤ 0.05) to the 983 candidate anti-cancer genes identified by TSGene 

2.0. Fifteen of the 983 TSGs were upregulated across all three time points in at least one 

of the cell lines (Fig. 7A). Information from genecards.org (Rebhan et al., 1997) further 

validated the association of these 15 genes with tumor suppressor activity. Of the fifteen 

upregulated TSGs, seven belong to the breast cancer susceptibility (BRCA) pathway: 

CDKN1A, PML, ANGPTL4, CEACAM1, BMP2, SP100, TFPI2.  

Cell line comparisons of RNA-seq FPKM values for the fifteen tumor suppressor 

genes showed that median expression was lower in untreated BT-474 and MCF7 than in 

the non-cancerous MCF10A cell line (Fig. 7B). This result is consistent with the idea that 

epigenetic repression of TSGs supports a cancerous cell phenotype. In PcTF-expressing 

cells, the median expression of the fifteen tumor suppressor genes was increased at all 

time points compared to the untreated samples for each cancer cell line (Fig. 7B). 

Interestingly, the median FPKM value for the 15 TSGs was higher in BT-549 than in 

MCF10A. Closer examination of the individual genes revealed that expression levels for 

BMP2, CEACAM1, CDKN1A, DSP are lower in BT-549 than in MCF10A (Fig. 7A). 

These genes become upregulated in PcTF-expressing cells. These results demonstrate 
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that PcTF stimulates conversion of the expression state of several tumor suppressor genes 

from silenced to active. 

 

 

Chapter 3. Figure 7. Tumor Suppressor Genes Show Increased Expression in PcTF-
Expressing Cancer Cell Lines. (A) Individual log10(FPKM) (color scale) for each of the 
tumor suppressor genes in A. Black boxes highlight BRCA pathway genes. Genes are 
sorted from lowest to highest expression in untreated MCF7 cells. Numbers in the PcTF-
treatment columns show log2 fold change values compared to UT. 15, infinite positive 
fold change where no expression was detected in untreated cells; -15, infinite negative 
fold-change where no expression was detected in treated cells. (B) Box plots show 
expression values (center line, median; lower and upper boxes, 25th and 75th percentiles; 
lower and upper whiskers, minimum and maximum) across three time points (24, 48, and 
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72 hours) for fifteen tumor suppressor genes where upregulation was at last two-fold (q ≤ 
0.05) relative to the untreated control (UT) in at least one of the cell lines. 

 
Discussion  

As the importance of global chromatin-mediated dysregulation in oncogenesis is 

coming to light, scientists are becoming more interested in using inhibitors to block 

master regulators of repressive chromatin (i.e., HDACs, DNMTs, HMTs(Dawson & 

Kouzarides, 2012; Dunn & Rao, 2017; Li et al., 2014; Mani & Herceg, 2010; Stone et al., 

2017)) to investigate and treat cancer. This approach has been recently described as 

“macrogenomic engineering”(Almassalha et al., 2017). A key advantage of broad 

epigenetic manipulation is that it is DNA sequence-agnostic; the therapeutic effect 

potentially does not require a priori knowledge of patient-specific sequence variations at 

a candidate target gene or genes. Cancer tissues often accumulate extensive DNA lesions, 

from small insertions and deletions to large chromosome rearrangements. Therefore, 

editing or activating single targets may not be effective in some cells. In this report we 

present a synthetic approach to macrogenomic engineering, a fusion protein that 

physically bridges a chromatin feature at silenced genes (H3K27me3) with proteins that 

drive gene activation. Our previous studies have established that PcTF specifically 

interacts with H3K27me3 in vitro (Tekel et al., 2017), and drives the activation of 

hundreds of repressed loci including master regulators and tumor suppressors in bone, 

blood, and brain cancer derived model cell lines (Nyer et al., 2017). In our current report, 

we discovered a core set of interferon-pathway-related genes that responded to PcTF in 

three distinct breast cancer cell lines. 
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 Several factors can contribute to transcriptomic variations in breast cancer 

subtypes, such as differences in the abundance of wild type or mutated transcription 

factors, mutations that impact the stability and turnover of RNA transcripts, and 

dysregulation of histone-modifying enzymes (Peña-Llopis et al., 2016). It is important to 

determine the relationship between phenotypic subclasses and transcription profiles (Guo 

et al., 2017; Jene-Sanz et al., 2013; Kenny et al., 2007; Seals et al., 2005) to elucidate 

cancer mechanisms and drug targets for more effective treatments. Establishing a link 

between transcriptomes and phenotypes may require further research. We observed that 

the transcription profile of BT-549 (invasive basal B) is more similar to MCF7 (luminal) 

than either were to BT-474 (luminal). In contrast, other reports have shown clear 

distinctions between the transcription profiles and phenotypes of BT-549 and MCF7 

(Kenny et al., 2007; Seals et al., 2005). Differences in transcript profiling methods, our 

RNA-seq and JSD analysis versus the DNA oligomer arrays used by others, may account 

for this conflicting result. Further, we acknowledge that the JSD may be driven by a few 

genes with high expression and high variance, which could account for some of the 

patterns.  

Diversity of breast cancer cell transcriptomes poses a formidable challenge for the 

development of drugs that target specific proteins, genes, and pathways. Our results 

demonstrate that activation of a common set of genes can be achieved by direct targeting 

of H3K27me3 with a fusion activator (PcTF) in three distinct model breast cancer cell 

lines that show distinct basal gene-expression levels. The 19 common PcTF-upregulated 

genes (PUGs) show significant overrepresentation of the GO biological processes 

“defense response to virus” and “negative regulation of viral life cycle.” A larger set of 
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125 genes that are upregulated at any time point in MCF7 (Fig. 4, 5) are associated with 

“type I interferon signaling pathway”. Enrichments of H3K27me3 signals near the 

promoters of five PUGs (XAF1, HERC6, IFI44L, PLSCR1, IFI27) and a predicted 

regulator of all 19 PUGs (IRF1), suggest that PcTF accumulates near these promoters and 

recruits transcriptional activation machinery as demonstrated for CASZ1 in a previous 

study(Nyer et al., 2017). Another potential mechanism for stimulation of the IFN 

pathway is epigenetic de-repression of endogenous retroviral dsRNA production, as 

observed during treatments with inhibitors against DNA methyltransferases histone 

deacetylases (Brocks et al., 2017; Chiappinelli et al., 2015; Roulois et al., 2015). It has 

been proposed that this process mimics a viral infection that makes the cancer cell a 

target for destruction by the immune system or immunotherapies (Classon et al., 2017).  

While many H3K27me3-enriched genes were upregulated in MCF7, many were non-

responsive under the conditions tested here (up to 72 hours of PcTF expression). At 

PcTF-responsive genes, levels of H3K4me3 and H3K27ac were higher than at silenced 

non-responsive genes. Therefore, the chromatin at PcTF-responsive genes may support a 

low or intermediate expression state. Berrozpe et al. recently reported that Polycomb 

complexes preferentially accumulate at weakly expressed genes rather than strongly 

silenced or strongly expressed genes (Berrozpe et al., 2017). In our experiments, specific 

PRC-regulated genes may have been expressed at low to intermediate levels and then 

further upregulated upon exposure to PcTF. Our analysis of PcTF-regulated genes and 

chromatin states paves the way for future studies to further resolve chromatin features 

that distinguish regulatable PRC-repressed genes in cancer cells. 
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So far, low molecular weight compounds are the predominant method for 

epigenetic research and interventions. Their ease of delivery, orally or intravenously, 

make these compounds a very attractive approach for in vivo studies and cancer 

treatment. However, small compounds have a very limited range of biological activity, 

e.g. as ligands for specific proteins, compared to macromolecules. Transgenic and 

synthetic transcription factors expand the repertoire of epigenetic drug activity by 

allowing selective control of therapeutic genes in cancer cells (Beltran et al., 2007; Falke 

et al., 2003; Kwilas et al., 2015; Lara et al., 2012). Protein expression often relies on 

inefficient and possibly mutagenic nucleic acid delivery, which poses a significant barrier 

for many potential synthetic biologics. Recent advances in large molecule carriers such as 

cell penetrating peptides (Akishiba et al., 2017; Essafi et al., 2011; Staahl et al., 2017) 

provide a positive outlook for cellular delivery of purified proteins.  

 

Conclusions 

In conclusion, we have demonstrated that PcTF stimulates broad changes in 

expression, reminiscent of the effects observed for small-molecule epigenetic drugs, that 

could disrupt the immune evasion phenotype of cancer. Activation of IFN pathways 

genes has important implications for cancer research and therapy. Other studies have 

linked high levels of expression from interferon pathway genes with a non-cancerous 

phenotype. In breast cancer, expression of an immune response gene subgroup, which 

includes ISG15, MX1, and other interferon genes, has been associated with improved 

prognosis in triple negative breast cancers (Teschendorff et al., 2007b; H. Xu et al., 

2014b). It will be eventually important to determine if PcTF proteins meet or exceed the 
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efficacy of low molecular weight epigenetic drugs in tumor and patient-derived models. 

At present, PcTF and its variants (Tekel et al., 2017) represent a new exploration space 

for rationally designed epigenetic interventions. 

 

Materials and Methods 

DNA Constructs. Plasmids were constructed to express fusion proteins either 

constitutively or in the presence of doxycycline. The plasmid for constitutive expression 

of PcTF, hPCD-TF_MV2 (KAH126), was constructed as previously described (Karmella 

A. Haynes & Silver, 2011). The doxycycline-inducible transgene PcTF_pSBtet-GP was 

constructed by ligating 50 ng of PCR amplified, SfiI-digested PcTF fragment with a SfiI-

linearized pSBtet-GP vector (Kowarz et al., 2015) (Addgene #60495) at a ratio of 5 insert 

to 1 vector in a 10 uL reaction (1 uL 10x buffer, 1 uL T4 ligase). The same procedure 

was used to build constructs for dox-inducible PcΔTF expression. Primers used for the 

PCR amplification step are as follows: Forward 5’-

tgaaGGCCTCTGAGGCCaattcgcggccgcatctaga, Reverse 5’-

gcttGGCCTGACAGGCtgcagcggccgctactagt. Template-binding sequences are 

underscored. Adjacent nucleotides were designed to add SfiI restriction sites (uppercase) 

to each end. The full annotated sequences of all plasmids reported here are available 

online at Benchling - Hayneslab: Synthetic Chromatin Actuators 

(https://benchling.com/hayneslab/f/S0I0WLoRFK-synthetic-chromatin-actuators/). 

Cell Culture and Transfection. MCF7 (ATCC HTB-22) cells were cultured in 

Eagle’s Minimal Essential Medium supplemented with 0.01 mg/mL human recombinant 

insulin, 10% fetal bovine serum, and 1% penicillin and streptomyicn. BT-474 cells 
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(ATCC HTB-20) were cultured in ATCC Hybri-Care Medium supplemented with 1.5 g/L 

sodium bicarbonate, 10% fetal bovine serum, and 1% penicillin and streptomycin. BT-

549 cells (ATCC HTB-122) were cultured in RPMI-1640 Medium supplemented with 

0.0008 mg/mL human recombinant insulin, 10% fetal bovine serum, and 1% penicillin 

and streptomycin. MCF-10A cells (ATCC CRL-10317) were cultured in Mammary 

Epithelial Cell Growth Medium (Mammary Epithelial Cell Basal Medium and BulletKit 

supplements, except gentamycin-amphotericin B mix), supplemented with 100 ng/mL 

cholera toxin. Cells were grown at 37 °C in a humidified CO2 incubator. PcTF-expressing 

MCF7, BT-474, and BT-549 cells were generated by transfecting 5x105 cells in 6-well 

plates with DNA/Lipofectamine complexes: 2 μg of hPCD-TF_MV2 plasmid DNA, 7.5 

μl of Lipofectamine LTX (Invitrogen), 2.5 PLUS reagent, 570 µl OptiMEM. Control 

cells were mock-transfected with DNA-free water. Transfected cells were grown in 

pen/strep-free growth medium for 18 hrs. The transfection medium was replaced with 

fresh, pen/strep-supplemented medium and cells were grown for up to 72 hrs.  

Generation of Stable Cell Lines. To generate doxycycline-inducible cell lines, 

MCF7 cells were transfected with the transposase-expressing plasmid SB100X and either 

hPCD-TF_pSBtet-GP or TF_pSBtet-GP (19:1 molar ratio of pSB to SB100X), under the 

same conditions as described above. After 24 hrs, the transfection medium was replaced 

with fresh, puromycin-supplemented medium (0.5 μg/mL). Cells were then grown until 

cell cultures were >90% GFP-positive as measured by flow cytometry. Total culture time 

was 2-3 weeks per cell line. 

Preparation of Total mRNA. Total messenger RNA was extracted from ~90% 

confluent cells (~1-2x106). Adherent cells were lysed directly in culture plates with 500 
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μl TRIzol. TRIzol cell lysates were extracted with 100 μl chloroform and centrifuged at 

12,000 xg for 15 min. at 4°C. RNA was column-purified from the aqueous phase (Qiagen 

RNeasy Mini kit 74104).  

Reverse Transcription PCR Followed by Quantitative PCR (RT-qPCR). 

SuperScript III (Invitrogen) was used to generate cDNA from 2.0 μg of RNA. Real-time 

quantitative PCR reactions (15 μl each) contained 1x LightCycler 480 Probes Master Mix 

(Roche), 2.25 pmol of primers (see Supplemental Table 1 for sequences), and 2 µl of a 

1:10 cDNA dilution (1:1000 dilution for GAPDH and mCh). The real time PCR program 

was run as follows: Pre-incubation, ramp at 4.4°C*sec-1 to 95°C, hold 10 min.; 

Amplification, 45 cycles (ramp at 4.4°C*sec-1 to 95°C, hold 10 sec., ramp at 2.2°C*sec-1 

to 60°C, hold 30 sec., single acquisition); Cooling, ramp at 2.2°C*sec-1 to 40°C, hold 30 

sec. Crossing point (Cp) values, the first peak of the second derivative of fluorescence 

over cycle number, were calculated by the Roche LightCycler 480 software. Expression 

level was calculated as delta Cp = 2^[Cp GAPDH - Cp experimental gene]. Fold change 

was determined as double delta Cp = delta Cp treated cells / delta Cp mock for PcTF 

expression levels (Fig. 3C), or as double delta Cp = Cp dox treated cells / delta Cp no dox 

for gene expression levels in the stable cell lines (Fig. 3D). 

Transcriptome Profiling with RNA-seq. RNA-seq was performed using two 

biological replicates per cell type, treatment, and time point for transiently transfected 

cells and three replicates for untransfected MCF10A. Total RNA was prepared as 

described for RT-qPCR. 50 ng of total RNA was used to prepare cDNA via single primer 

isothermal amplification using the Ovation RNA-Seq System (Nugen 7102-A01) and 

automated on the Apollo 324 liquid handler (Wafergen). cDNA was sheared to 
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approximately 300 bp fragments using the Covaris M220 ultrasonicator. Libraries were 

generated using Kapa Biosystem’s library preparation kit (KK8201). In separate 

reactions, fragments from each replicate sample were end-repaired, A-tailed, and ligated 

to index and adapter fragments (Bioo, 520999). The adapter-ligated molecules were 

cleaned using AMPure beads (Agencourt Bioscience/Beckman Coulter, A63883), and 

amplified with Kapa’s HIFI enzyme. The library was analyzed on an Agilent 

Bioanalyzer, and quantified by qPCR (KAPA Library Quantification Kit, KK4835) 

before multiplex pooling and sequencing on a Hiseq 2000 platform (Illumina) at the ASU 

CLAS Genomics Core facility. Samples were sequenced at 8 per lane to generate an 

average of 2.5E+07 reads per sample. Read values ranged from 5.7E+06 (minimum) to 

1.11E+08 (maximum) per sample.  

Transcriptome Analysis. RNA-seq reads were quality-checked before and after 

trimming and filtering using FastQC (Andrews, 2010).  TrimmomaticSE was used to clip 

bases that were below the PHRED-scaled threshold quality of 10 at the 5’ end and 25 at 

the trailing 3’ end of each read for all samples (Bolger et al., 2014). A sliding window of 

4 bases was used to clip reads when the average quality per base dropped below 30. 

Reads of less than 50 bp were removed. A combined reference genome index and 

dictionary for GRCH38.p7 (1-22, X, MT, and non-chromosomal sequences) (Harrow et 

al., 2012) that included the full coding region of the synthetic PcTF protein were created 

using Spliced Transcripts Alignment to Reference (STARv2.5.2b) (Dobin et al., 2013) 

and the picard tools (version 1.1.19) (Picard Tools, 2003). Trimmed RNA-seq reads were 

mapped, and splice junctions extracted, using STARv2.5.2b read aligner (Dobin et al., 

2013). Bamtools2.4.0 (Barnett et al., 2011) was used to check alignment quality using the 
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‘stats’ command. Mapped reads in BAM format were sorted, duplicates were marked, 

read groups were added, and the files were indexed using the Bamtools 2.4.0 package. 

CuffDiff, a program in the Cufflinks package (Trapnell et al., 2012), was used to identify 

genes and transcripts that expressed significant changes in pairwise comparisons between 

conditions. Fastq and differential expression analysis files are available at the National 

Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) 

database (Accession GSE103520, release date September 8, 2017). CummeRbund 

(Trapnell et al., 2012) was used to calculate distances between features and to generate 

graphs and charts (JSD plots). R ggplot2 (Harrow et al., 2012; Warnes et al., 2016) and 

VennDiagrams (Chen & Boutros, 2011) were used to generate heat maps and Venn 

diagrams respectively. The entire workflow is provided as a readme file at: 

https://github.com/WilsonSayresLab/PcTF_differential_expression  

Bioinformatics Analyses and Sources of Publicly Shared Data. Chromatin 

immunoprecipitation followed by deep sequencing (ChIP-seq) data: For the results shown 

in Figure 1B, H3K27me3 data for MCF7 cells was downloaded from the ENCODE 

project (accession UCSC-ENCODE-hg19:wgEncodeEH002922) (ENCODE Project 

Consortium, 2012). We classified genes with a ChIP-seq peak within 5000 bp up or 

downstream of the transcription start site as H3K27me3-positive (1,146 protein-coding 

transcripts). EZH2-enriched genes (2,397 protein-coding transcripts) for MDA-MB-231 

(Jene-Sanz et al., 2013) were provided as a list from E. Benevolenskaya (unpublished). 

For the results shown in Figure 5 and S6, MCF7 ChIP-seq data (from the P. Farnham, J. 

Stamatoyannopoulos, and V. Iyer labs) was downloaded from the ENCODE project 

(ENCODE Project Consortium, 2012): H3K27me3 (ENCFF081UQC.bigWig), 
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H3K9me3 (ENCFF754TEC.bigWig), H3K27ac (ENCFF986ZEW.bigWig), H3K4me3 

(ENCFF530LJW.bigWig), and RNA PolII (ENCFF690CUE.bam) and used to generate 

plots using DeepTools (Ramírez et al., 2016) (computeMatrix, plotProfile, plotHeatmap) 

in the Galaxy online platform at usegalaxy.org (Afgan et al., 2016). Prior to plotting, the 

RNA PolII data was converted to bigWig format using bamCoverage. Gene ontology 

term enrichment: GOrilla analysis used the following parameters: organism, Homo 

sapiens; mode, target and background ranked list of genes; ontology, process; p-value 

threshold = 10.0E-3)  (Eden et al., 2009). The background ranked list is available at 

https://github.com/WilsonSayresLab/PcTF_differential_expression. Panther analysis used 

the following parameters: analysis type, PANTHER Overrepresentation Test (Released 

20171205); annotation version, PANTHER version 13.1 Released 2018-02-03; reference 

List, Homo sapiens (all genes in database); annotation data set, PANTHER GO-Slim 

biological process. Figure 3C was generated using REViGO (Supek et al., 2011) and 

GOrilla. Unique differentially expressed genes were analyzed using GeneCards (Rebhan 

et al., 1997). Promoter motif analysis: The script TF_targets was downloaded from 

https://github.com/cplaisier/TF_targets and used to find enriched transcription factor 

target sites that were determined by empirical evidence from chromatin studies across 68 

cell lines(Plaisier et al., 2016). Tumor suppressor genes: The results in Figure 7 are based 

on human tumor suppressor genes (983 total) that are reported to show lower expressed 

in cancer samples of the Cancer Genome Atlas (TCGA) compared to the TCGA normal 

tissue samples was downloaded from https://bioinfo.uth.edu/TSGene/download.cgi. Of 

these 983 genes, 589 are breast cancer specific (Min Zhao Jingchun Sun, 2013; Zhao et 

al., 2015).  
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Supplementary Information  

 Supplemental tables and figures are located in chapter 3. appendices C.  
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CHAPTER 4 

Lack of Parent-of-Origin Effects in Nasonia Jewel Wasp: A Replication and 

Extension Study 

(Preprint as Olney, K.C., Gibson, J.D., Natri, H.M., Underwood, A., Gadau, J., Wilson, 

M.A)  

BioRxiv (2021). https://doi.org/10.1101/2021.02.11.430138 

 

ABSTRACT 

In diploid cells, the paternal and maternal alleles are, on average, equally expressed. 

There are exceptions from this: a small number of genes express the maternal or paternal 

allele copy exclusively. This phenomenon, known as genomic imprinting, is common 

among eutherian mammals and some plant species; however, genomic imprinting in 

species with haplodiploid sex determination is not well characterized. Previous work 

reported no parent-of-origin effects in the hybrids of closely related haplodiploid Nasonia 

vitripennis and Nasonia giraulti jewel wasps, suggesting a lack of epigenetic 

reprogramming during embryogenesis in these species. Here, we replicate the gene 

expression dataset and observations using different individuals and sequencing technology, 

as well as reproduce these findings using the previously published RNA sequence data 

following our data analysis strategy. The major difference from the previous dataset is that 

they used an introgression strain as one of the parents and we found several loci that resisted 

introgression in that strain. Our results from both datasets demonstrate a species-of-origin 

effect, rather than a parent-of-origin effect. We present a reproducible workflow that others 

may use for replicating the results. Overall, we reproduced the original report of no parent-
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of-origin effects in the haplodiploid Nasonia using the original data with our new 

processing and analysis pipeline and replicated these results with our newly generated data.  
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Introduction 

Parent-of-origin effects occur when there is a biased expression (or completely 

monoallelic expression) of alleles inherited from the two parents (Ishida & Moore, 2013; 

Reik & Walter, 2001). Monoallelic gene expression in the offspring is hypothesized to be 

primarily the result of genetic conflict between parents over resource allocation in the 

offspring (Isles, Davies, & Wilkinson, 2006; Moore & Haig, 1991). In mammals, the 

mechanism of these parent-of-origin effects occurs via inherited methylation of one allele 

(Lawson et al., 2013; Reik & Walter, 2001). In insects, the relationship between 

methylation of genomic DNA and the expression of the gene that it encodes is not as well 

characterized but studies of social insects showed that there is a positive correlation of 

DNA methylation of gene bodies and gene expression (Yan et al., 2015).  

Honey bees have been a focal group for investigation of parent-of-origin effects in 

insects due to differences in the kinship between queens, males, and workers (Haig, 1992; 

Queller, 2003). Multiple mating by queens results in low paternal relatedness between 

workers and should lead to intragenomic conflict over worker reproduction (laying 

unfertilized eggs to produce males), and ultimately should favor the biased expression of 

paternal alleles that promote worker reproduction (Galbraith et al., 2016). Utilizing a 

cross between European (Apis mellifera ligustica) and Africanized honey bees, Galbraith 

et al. 2016 identified genes exhibiting a pattern of biased paternal allele overexpression in 

worker reproductive tissue from colonies that were queenless and broodless, a colony 

condition that promotes worker reproduction (Galbraith et al., 2016). Smith et al. 2020 

found a similar pattern of paternal allele overexpression in diploid (worker-destined) eggs 

in a cross between two African subspecies, A.m. scutellate and A.m. capensis (Smith et 
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al., 2020). In reciprocal crosses of European (A.m. ligustica and A.m. carnica) and 

Africanized honey bees reared in colonies containing both brood and a queen, Kocher et 

al. 2015 instead found parent-of-origin effects in gene expression that were largely 

overexpressing the maternal allele in both directions of the cross (Kocher et al., 2015). 

These studies provide evidence for parent‐of‐origin effects in the honey bee, a eusocial 

Hymenoptera. The Kocher et al. 2016 dataset also exhibited asymmetric maternal allelic 

bias in which the paternal allele was silenced, but only in hybrids with Africanized 

fathers (Joshua D. Gibson, Arechavaleta-Velasco, Tsuruda, & Hunt, 2015). This set of 

biased genes was enriched for mitochondrial-localizing proteins and is overrepresented in 

loci associated with aggressive behavior in previous studies (Hunt, 2007; Hunt, Guzmán-

Novoa, Fondrk, & Page, 1998). Interestingly, these same crosses exhibit high aggression 

in the direction of the cross with the Africanized father but not in the reciprocal cross 

(Shorter, Arechavaleta-Velasco, Robles-Rios, & Hunt, 2012), and aggression and brain 

oxidative metabolic rate appears to be linked in honey bees (Alaux et al., 2009). This 

study points toward a potential role of allelic bias and nuclear-mitochondrial genetic 

interactions in wide crosses of honey bees.  

The parasitoid wasp genus Nasonia has emerged as an excellent model for 

studying genomic imprinting in Hymenoptera. Like honey bees and all Hymenoptera, 

Nasonia has a haplodiploid sex-determination system in which females are diploid, 

developing from fertilized eggs, and males are haploid, developing from unfertilized 

eggs. However, it serves as a strong contrast to studying parent-of-origin effects in the 

eusocial Hymenoptera as Nasonia is solitary and singly-mated, which should result in 

less genomic conflict and therefore less selective pressure for genomic imprinting based 
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on kinship. By studying allelic expression biases in this system, we can better assess 

genomic imprinting in the absence of kin selection and the potential contribution of 

nuclear-mitochondrial interactions to biased allelic expression. Nasonia is well-suited for 

these kinds of studies as two closely related species of Nasonia - N. vitripennis and N. 

giraulti - that diverged ~1 million years ago (Mya) and show a synonymous coding 

divergence of ~3% (Werren et al., 2010), can still produce viable and fertile offspring 

(Breeuwer & Werren, 1995). Highly inbred laboratory populations of N. vitripennis and 

N. giraulti with reduced polymorphism provide an ideal system for identifying parent-of-

origin effects in hybrid offspring (Wang, Werren, & Clark, 2016). However, the species 

do show genetic variation and incompatibilities, such that recombinant F2 males (from 

unfertilized eggs of F1 hybrid females) suffer asymmetric hybrid breakdown in which 

50% to 80% of the offspring die during development (Breeuwer & Werren, 1995). The 

mortality is dependent on the direction of the cross and those with N. giraulti maternity 

(cytoplasm) have the highest level of mortality. Nuclear-mitochondrial incompatibilities 

have been implicated in this and candidate loci have been identified (Gadau, Page, & 

Werren, 1999; J. D. Gibson, Niehuis, Peirson, Cash, & Gadau, 2013; Niehuis, Judson, & 

Gadau, 2008). Despite this high level of mortality in F2 males, there is no obvious 

difference in mortality of the F1 mothers of these males and non-hybrid females, further 

highlighting this as an excellent system in which to test the potential role of allelic 

expression bias in mitigating hybrid dysfunction. 

Wang et al. 2016 used genome-wide DNA methylation and transcriptome-wide 

gene expression data from 11 individuals to test whether differences in DNA methylation 

drive the differences in gene expression between N. vitripennis and N. giraulti, and 
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whether there are any parent-of-origin effects (parental imprinting and allele-specific 

expression) (Wang et al., 2016). They used reciprocal crosses of these two species and 

found no parent-of-origin effects, suggesting a lack of genomic imprinting. Unlike the 

work in honey bees, however, there have not been multiple independent investigations of 

evidence for parent-of-origin effects in Nasonia.  

Reproducibility is a major concern in science, particularly for the biological and 

medical sciences (Baker, 2016; Casadevall & Fang, 2010). To replicate is to make an 

exact copy. To reproduce is to make something similar to something else. Reports have 

shown that significant factors contributing to irreproducible research include selective 

reporting, unavailable code and methods, low statistical power, poor experimental design, 

and raw data not available from the original lab (Baker, 2015, 2016; Freedman & Inglese, 

2014). In RNAseq experiments, raw counts are transformed into gene or isoform counts, 

which requires an in silico bioinformatics pipeline (Simoneau, Dumontier, Gosselin, & 

Scott, 2019). These pipelines are modular and parameterized according to the 

experimental setup (Simoneau et al., 2019). The choice of software, parameters used, and 

biological references can alter the results. In RNAseq, filters can also improve the 

robustness of differential expression calls and consistency across sites and platforms (Su 

et al., 2014). There is no, and there may never be, a defined optimal RNAseq processing 

pipeline from raw sequencing files to meaningful gene or isoform counts. Thus, the same 

data can be processed in a multitude of ways by the choice of software, parameters, and 

references used (Simoneau et al., 2019). Given the exact same inputs, software, and 

parameters, one can reproduce the analysis if the authors provide this documentation and 

make explicit the information related to the data transformation used to the RNAseq data 
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(Simoneau et al., 2019). In the case of the Wang et al. 2016, the methods and 

experimental design were exceptionally well documented, and the authors made available 

their raw data (Wang et al., 2016). 

To address whether the Wang et al. 2016 findings of lack of parent-of-origin 

effects in Nasonia may be replicated and reproduced, we conducted two sets of analyses. 

We first downloaded the raw data from 11 individuals (Wang et al., 2016) and replicated 

differential expression (DE) and allele-specific expression (ASE) analyses. This allowed 

us to characterize species differences in gene expression, hybrid effects relative to each 

maternal and paternal line, and possible parent-of-origin effects using new alignment 

methods and software. Second, we reproduced the experimental setup with new 

individuals, generated transcriptome-wide expression levels of 12 Nasonia individuals 

(parental strains and reciprocal hybrids), named here as the Wilson data using similar, but 

not identical strains as the Wang et al. 2016 samples, which we named as the R16A Clark 

data. The Wilson data, reported here, used the standard N. giraulti strain (RV2Xu). The 

R16A Clark N. giraulti differs from the RV2Xu strain in that it has a nuclear N. giraulti 

genome introgressed into a N. vitripennis cytoplasm which harbour N. vitripennis 

mitochondria. Both studies used the same highly inbred standard N. vitripennis strain, 

ASymCx. We completed the above analyses to test for robust reproducibility in biased 

allele and parent-of-origin effects in Nasonia. In this analysis, we processed both the 

R16A Clark and Wilson data using the same software and thresholds, starting with the 

raw FASTQ files. While we detect some differences in the specific differentially 

expressed genes between the two datasets, our study reproduces and confirms the main 

conclusions of the Wang et al. 2016 study: we observe similar trends in the DE and ASE 
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genes, and we detect no parent-of-origin effects in Nasonia hybrids, indicating a 

validation of the lack of epigenetic reprogramming during embryogenesis in this taxa 

(Wang et al., 2016). We make available the bioinformatics processing and analysis 

pipeline used for both the R16A Clark and Wilson datasets for easily replicating the 

results reported here: https://github.com/SexChrLab/Nasonia. Finally, during the process 

of reproducing these results, we extend them to show potential interactions between the 

mtDNA and autosomal genome that were not apparent in the original study.  

 

Results 

Samples Cluster by Species and Hybrid in R16A Clark and Wilson Datasets. We 

used Principal Component Analysis (PCA) of gene expression data to explore the overall 

structure of the two datasets, R16A Clark and Wilson. Although the reciprocal hybrids 

from the two datasets are slightly different Figure 1B, in both sets, samples from the two 

species (strains) form separate clusters, with the clustering of the hybrid samples between 

them Figure 2A. The first PC explains most of the gene expression variation in both 

datasets, with proportions of variance explained 58.17% in R16A Clark and 61.69% in 

the Wilson data. Further, despite differences in experimental protocols, the 

transcriptome-wide gene expression measurements across the different crosses and 

species are highly correlated between the R16A Clark and Wilson dataset, Figure 3. 

There is a difference in the mean RNAseq library size between the two datasets. The 

mean RNAseq library size for the R16A Clark samples is 48,893,872 base pairs (bp) 

(SD=11,603,536) and the Wilson samples is 16,518,955 bp (SD=3,205,303), 
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Supplemental 1 Table. Overall, we observe that most of the variation in the data is 

explained by species and hybrids.  
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Chapter 4. Figure 1. Experimental Design. A: A schematic illustration of the reciprocal 
F1 crosses. B: Schematic illustration of the hybrids nuclear and mitochondrial genomic 
make up. All hybrids are heterozygous at every nuclear locus for their two parent’s 
alleles. The R16A Clark hybrids have N. vitripennis mitochondria, regardless of maternal 
species. The Wilson hybrids have their maternal species mitochondria. C: Overview of 
the data processing and analysis workflow. 

 

 

Chapter 4. Figure 2. Multidimensional Scaling and Differential Expression. A: Gene 
expression PCA based on all expressed genes (mean FPKM ≥ 0.5 across three biological 
replicates in at least one sample group) in the R16A Clark and Wilson datasets when 
taking the average between the N. vitripennis and pseudo N. giraulti reference genomes. 
B: Volcano plots of differentially expressed genes between the two reciprocal hybrids in 
the R16A Clark and Wilson datasets. Significance thresholds of an FDR-adjusted p-value 
≤ 0.01 and an absolute log2FC ≥ 2 are indicated. A Venn diagram shows the overlap of 
the significant DEGs. 
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Chapter 4. Figure 3. Gene Expression Correlation. Gene expression correlation between 
the Wilson and R16A Clark datasets, as well as between species and between reciprocal 
hybrids within each dataset. Mean logCPM expression of each quantified gene in each 
cross and dataset is shown. Pearson’s correlation R2 is indicated. 

 

Species and Hybrid Differences in Gene Expression Between Closely Related N. 

vitripennis and N. giraulti. We detect more differentially expressed genes (DEGs) in the 

Wilson dataset despite the smaller library sizes, particularly in the comparison involving 

the hybrid samples (Figure 2B). We called DEGs, FDR ≤ 0.01, and absolute log2 fold 

change ≥ 2, between the different species and crosses within both datasets (Figure 2B and 

Supplemental 1 Figure). In the N. vitripennis (VV) x N. giraulti (GG) comparison, we 

identify 799 and 1,001 DEGs in the R16A Clark and Wilson datasets, respectively. We 

observe a 45.5% overlap of these DEGs between the datasets (Supplemental 1 Figure). 

As expected, we detect fewer DEGs in the comparisons involving the hybrids (Figure 

1B). We detect only small differences in the numbers of DEGs called in the R16A Clark 

and Wilson datasets when examining hybrid effects relative to each maternal line 

(Supplemental 1 Figure). However, these DEGs show little overlap between the datasets, 

with the proportions of overlapping DEGs in VVxVG, VVxGV, GGxVG, and GGxGV, 

comparisons being 24.1%, 16.2%, 39%, and 31.6%, respectively.  

There is a notable difference in the number of DEGs called between VG and GV 

hybrids between the R16A Clark and Wilson datasets. The R16A Clark data used an 

introgression strain of N. giraulti, R16A, that has a nuclear genome derived from N. 

giraulti but maintains N. vitripennis mitochondria, therefore the R16A Clark hybrids all 

have the same genetic makeup whereas the Wilson reciprocal hybrids have the same 

nuclear genome but different cytoplasms; yet, we do see eight genes called as 
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differentially expressed between the VG and GV hybrids in the R16A Clark data. Three 

of the eight genes in the R16A Clark data (LOC116416025, LOC116416106, 

LOC116417553) were only called as differentially expressed between the VG and GV 

hybrids in the R16A Clark dataset and weren’t called as differentially expressed in the 

Wilson dataset. The other five genes (LOC107981401, LOC100114950, LOC116415892, 

LOC103317241, LOC107981942) were called as differentially expressed between the 

VG and GV in both datasets. In the Wilson data, we called 116 DEGs, 111 of which are 

uniquely to the Wilson data set. The original Wang et al. 2016 publication did not 

investigate differential expression between the hybrids (Wang et al., 2016). Here we 

report a new way of looking at the data, and despite the same genetic makeup between 

the hybrids in the R16A Clark data, we do observe differential expression between the 

hybrids, and five of those eight genes are also called as differentially expressed in the 

Wilson data.  

Four (LOC107981401, LOC100114950, LOC116415892, and LOC103317241) 

out of the five DEGs shared between the data sets are uncharacterized proteins located on 

Chr 1, Chr 2, and Chr 4. To gain insight into the possible functions of these genes, we 

used NCBIs BLASTp excluding Nasonia (Johnson et al., 2008; NCBI Resource 

Coordinators & NCBI Resource Coordinators, 2017) to find regions of similarity between 

these sequences and characterized sequences. We observe several significant hits to 

different insects including Drosophila suggesting that these proteins have at least some 

conservation in insects over > 300 million years. The fifth shared DEG, LOC107981942, 

located on chromosome 1, is annotated as a zinc finger BED domain-containing protein 

1. An NCBI Conserved Domain Search 
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(https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) using these protein sequences 

uncovered no significant hits with LOC100114950, LOC116415892, and 

LOC103317241. However, LOC107981401 and LOC107981942 show significant hits 

for transposase domain superfamilies cl24015 and cl04853, respectively. The role of 

these proteins in Nasonia remains unclear.  

Lack of Parent-of-Origin Effects in Nasonia Hybrids. We used allele-specific 

expression (ASE) analyses to detect parent-of-origin effects — indicated by allelic bias 

— in Nasonia hybrids. The inference of genomic imprinting for each dataset was limited 

to those sites that meet our filtering criteria (see Methods). We find 107,206 and 115,490 

sites to be fixed and different between VV and GG samples, in the R16A Clark and 

Wilson datasets, respectively. Limiting the analysis to only fixed and different sites, there 

are 6,377 and 7,164 genes with at least 2 informative SNPs in the reciprocal hybrids in 

the R16A Clark data set and Wilson datasets, respectively. Using this approach, we find 

no evidence of genomic imprinting in whole adult female samples of Nasonia in the 

R16A Clark data (Figure 4A). But for the Wilson data we found two genes that show a 

pattern of expression consistent with genomic imprinting: CPR35 and LOC103315494. 

In the VG hybrid, CPR35 shows a bias towards the paternally inherited N. giraulti allele 

at an allele ratio of 65.3% and in the GV hybrid towards the paternally inherited N. 

vitripennis allele, with an allele ratio of 62% (Supplemental 2 Table). CPR35 is a 

cuticular protein in the RR family member 35. Similarly, LOC103315494 shows bias 

towards the paternally inherited allele with allele ratios of 65.26% and 61.58% in VG and 

GV, respectively (Supplemental 2 Table). Although both imprinted genes, CPR35 and 
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LOC103315494, fall below the mean depth and average number of SNPs per gene, both 

genes are above the thresholds applied here (Supplemental 3 Table).  
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Chapter 4. Figure 4. Lack of Parent-of-Origin Expression in F1 Hybrids. Scatterplots of 
the expression of the N. vitripennis alleles in the two reciprocal hybrids, VG (x-axis) and 
GV (y-axis), in the R16A Clark (A) and Wilson (B) datasets. Genes with at least two 
informative SNPs with a minimum depth of 30 were used (R16A Clark = 6,377, Wilson 
= 7,164). Genes exhibiting a significant difference in allelic bias between the hybrids 
(Fisher’s exact test, FDR-adj. p<0.05) are highlighted in red. Paternally imprinted genes 
are expected to appear in the upper left corner (light blue box), and maternally imprinted 
genes in the lower right corner (light pink box). Histograms of the N. vitripennis allele 
expression are shown for VG (blue) and GV (pink). 

 
Allele-specific Expression Differences in Nasonia Hybrids. We find three genes 

with higher expression of the N. vitripennis allele in both hybrids, in both datasets, 

indicative of cis-regulatory effects. The genes LOC100123729, LOC100123734, and 

LOC100113683 show consistent differences in allelic expression between VG and GV 

hybrids (FDR-p ≤0.05) in both datasets, but the ratio of the N. vitripennis allele differs 

between the hybrids (Supplemental 2 Table). In the R16A Clark dataset: LOC100123729 

in the VG hybrids the N. vitripennis allele accounts for 93% of the reads, whereas in the 

GV hybrids this ratio is 61%. In the Wilson dataset, both hybrids showed higher 

expression of the N. vitripennis allele. In the Wilson data, the N. vitripennis allele ratio 

was 61% in VG and 90% in GV. LOC100123729 is located on chromosome 2 and 

encodes the protein Nasonin-3, which plays a role in inhibiting host insect melanization 

(Tian, Wang, Ye, & Zhu, 2010). Also on chromosome 2 is LOC100123734, annotated as 

cadherin-23, which is involved in cell attachment by interacting with other proteins in the 

cell membrane. Both hybrids in both datasets show a higher expression for the N. 

vitripennis allele for LOC100123734. In the R16A Clark data, the ratio of the N. 

vitripennis allele in VG was 92% and in GV 65%. In the Wilson data, the VG hybrids 

showed less expression for the N. vitripennis allele than the GV hybrids, at a ratio of 64% 

and 84% of the reads, respectively. Finally, LOC100113683, which is located on 



  129 

chromosome 4, and is annotated as a general odorant-binding protein 56d also shows 

more expression for the N. vitripennis allele in both datasets and both hybrids (80.13% 

and 73.54% for VG and GV in R16A Clark, 78.22% and 72.57% in Wilson). Odorant 

binding proteins are thought to be involved in the stimulation of the odorant receptors by 

binding and transporting odorants which activate the olfactory signal transduction 

pathway (He et al., 2020). 

R16A Strain Retains N. vitripennis Alleles. R16A is a strain produced by 

backcrossing an N. vitripennis female to an N. giraulti male and repeating that for 16 

generations (Breeuwer & Werren, 1995). This should give a complete N. giraulti nuclear 

genome with N. vitripennis mitochondria. However, we identified two regions in the 

R16A strain that still show N. vitripennis alleles and named them R16A non-introgressed 

locus 1 and R16A non-introgressed locus 2 (Supplemental 4 Table). Each region is 

identified by a single marker that retains the N. vitripennis allele. Locus 1 contains 44 

genes and Locus 2 contains 14 genes. Both of these regions are found on Chromosome 1, 

and Locus 2 lies within the confidence intervals of the mortality locus for N. vitripennis 

maternity hybrids identified by Niehuis et al. 2008 (Niehuis et al., 2008) (i.e., F2 

recombinant hybrids with a N. vitripennis cytoplasm showed a significant transmission 

ratio distortion at this region favoring the N. vitripennis allele). R16 A non-introgressed 

locus 1 harbors a mitochondrial ribosomal gene (39 S ribosomal protein 38) which is a 

good candidate gene for causing its retention in R16A despite intensive introgression. It 

would also explain the observed nuc-cytoplasmic effect in F2 recombinant males in a 

vitripennis cytoplasm, despite the fact that R16A was used as a giraulti parental line in 

Gadau et al. (1999) (Gadau et al., 1999). Gadau et al. interestingly also mapped one of 



  130 

the nuc-cytoplasmic incompatibility loci to chromosome 1 (called LG1 in the manuscript) 

(Gadau et al., 1999). Mutations in mitochondrial ribosomal proteins in humans have 

severe effects (Sylvester, Fischel-Ghodsian, Mougey, & O’Brien, 2004). 

Expression of Genes in Regions Associated with Hybrid Mortality or Nuclear-

mitochondrial Incompatibility. We compared the location of genes with either 

significant differential gene expression or significant differences in allele-specific 

expression between VG and GV hybrids to the location of previously identified 

mortality-associated loci. Three of the five genes that were called as differentially 

expressed between VG and GV hybrids in both the R16A Clark and Wilson data sets 

(Supplemental 5 Table) are located within mortality associated loci. LOC103317241 is 

located within a locus on Chr 2 that is associated with mortality in VG hybrids, and 

LOC107981401 and LOC100114950 are within a locus on Chr 4 that is associated with 

mortality in GV hybrids. Moreover, two of the three genes showing consistent allele-

specific expression in the two data sets are located near one another in the mortality-

associated locus on Chr. 2 (LOC100123729 and LOC100123734). None of the genes that 

are differentially expressed or that exhibit allele-specific expression are located within 

the 2 loci that retain the N. vitripennis genotype in the R16A Clark strain, nor did we find 

any overlap of these gene sets with either the oxidative phosphorylation or the 

mitochondrial ribosomal proteins. 

 

Discussion 

We successfully replicate the findings from Wang et al. 2016, showing a lack of 

parent-of-origin effects in Nasonia transcriptomes (Wang et al., 2016). This replication 
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occurs independently in a different laboratory, with different Nasonia individuals derived 

from a slightly different cross, different bioinformatic pipelines, and sequencing 

technology. Our results from both the reanalyzed R16A Clark and Wilson datasets could 

only demonstrate a species-of-origin effect but no parent-of-origin effect within Nasonia 

F1 female hybrids, which may have explained the lack of mortality in the F1 females 

relative to the F2 recombinant hybrid males. The larger number of differentially 

expressed genes between the two parental species in our study relative to the Wang et al 

(2016) (Wang et al., 2016) (1001 vs 799) is most likely the result of using a standard N. 

giraulti strain (RV2Xu) rather than an introgression strain (R16A) where the nuclear 

genome of N. giraulti was introgressed into a N. vitripennis cytoplasm. Additionally, we 

found genomic regions that resisted introgression in the R16A Nasonia strains utilized by 

Wang et al. 2016 (Wang et al., 2016). Furthermore, we present a reproducible workflow 

for processing raw RNA sequence samples to call differential expression and allele-

specific expression openly available on the GitHub page: 

https://github.com/SexChrLab/Nasonia. 

Differences Between the R16A Clark and Wilson Datasets. The primary 

difference between the R16A Clark cross and the Wilson cross is the N. giraulti strain 

choice Figure 1B. The new crosses presented here used the strain Rv2X(u), which is a 

pure N. giraulti strain that was used for sequencing the genome (Werren et al., 2010). 

Wang et al. 2016 used an introgression strain, R16A, which has a largely N. giraulti 

nuclear genome with an N. vitripennis cytoplasm (Wang et al., 2016). This strain was 

produced by mating an N. vitripennis female with an N. giraulti male, and then 

repeatedly backcrossing the strain to N. giraulti males for a further 15 generations 
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(Breeuwer & Werren, 1995). Hence, both sets of hybrids should be heterozygous at every 

nuclear locus for species specific markers (though see above for two non-introgressed 

regions); however, both reciprocal R16A Clark hybrids have N. vitripennis mitochondria 

while the new hybrids have their maternal species’ mitochondria. This means that in 

addition to looking at parent-of-origin effects, our new crosses are uniquely suited to 

investigate allelic expression biases in the context of nuclear-mitochondrial 

incompatibility and hybrid dysfunction.  

Observed Differences in Hybrids Between Data Sets. We observe substantially 

more DEGs between the hybrids, VG and GV, in the Wilson data set compared to the 

R16A Clark data set. The smaller number of DEGs detected in the R16A Clark data in 

this particular comparison is likely partially due to the one excluded F1GV sample (see 

Materials and methods). Another likely contributing factor is the differences in one 

parental strain between the Wilson and R16A Clark data sets. The Wilson data presented 

here consist of inbred parental N. vitripennis (strain AsymCX) VV and N. giraulti (strain 

RV2Xu) GG lines, and reciprocal F1 crosses. This cross differs from the R16A Clark 

data, which used the same N. vitripennis strain but rather than a normal N. giraulti strain 

they used the introgression strain, R16A, that has a nuclear genome derived from N. 

giraulti and a cytoplasm/mitochondria derived from N. vitripennis (see R16A section). 

Despite these differences, of the eight genes that are differentially expressed between the 

VG and GV hybrids. five are shared between both data sets. Although we were not 

specifically looking for this, we found that three of the five genes showing differential 

expression in both data sets as well as two of the three genes showing allele (species)-

specific expression in both data sets are located in previously identified loci that are 
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associated with the observed F2 recombinant male hybrid breakdown from the same 

crosses (Gadau et al., 1999; Niehuis et al., 2008). These findings point towards an 

involvement of cis regulatory elements in the genetic architecture of the F2-hybrid male 

breakdown in Nasonia. The finding that, despite using different strains of wasps, we are 

still able to identify genes associated with these hybrid defects, which bolsters our 

confidence in further pursuing these genes in our investigation of the genetic architecture 

of hybrid barriers in Nasonia.  

The Choice of Reference and Tools Does Not Alter Main Findings. The authors 

of the Wang et al. 2016 paper used different computational tools for trimming and 

alignment than the current study (Wang et al., 2016). Additionally, in Wang et al. 2016, 

the RNAseq reads were aligned to both an N. vitripennis and N. giraulti reference 

genome (Wang et al., 2016); whereas here, we created a pseudo N. giraulti reference 

genome from the fixed and differentiated sites between the inbred N. vitripennis and N. 

giraulti parental lines. Often, different tools and statistical approaches result in different 

findings (Del Fabbro, Scalabrin, Morgante, & Giorgi, 2013; Schaarschmidt, Fischer, 

Zuther, & Hincha, 2020); however, despite different approaches, we observe the same 

pattern as what was originally reported in Wang et al. 2016 (Wang et al., 2016), a lack of 

parent-of-origin expression in Nasonia.  

A Reproducible Workflow for Investigating Genome Imprinting. Significant 

factors contributing to irreproducible research include selective reporting, unavailable 

code and methods, low statistical power, poor experimental design, and raw data not 

available from the original lab (Baker, 2016). We replicate a robust experimental design 

(current study) initially presented in the Wang et al. (2016) (Wang et al., 2016) and 
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present a new workflow for calling DE and ASE in those two independent but analog 

Nasonia datasets. Both datasets are publicly available for download on the short read 

archive (SRA) PRJNA260391 and PRJNA613065, respectively. In our analyses of the 

Wilson data and reanalysis of the R16A data, we corroborated the original findings from 

Wang et al. 2016 (Wang et al., 2016). There are no parent-of-origin effects in Nasonia. 

All dependencies for data processing are provided as a Conda environment, allowing for 

seamless replication. All code is openly available on GitHub 

https://github.com/SexChrLab/Nasonia.  

 

Materials and methods 

Nasonia vitripennis and Nasonia girualti Inbred and Reciprocal F1 Hybrid 

Datasets. RNA sequence (RNAseq) samples for 4 female samples each from parental 

species, N. vitripennis (VV) and N. giraulti (GG), and from each reciprocal F1 cross 

(F1VG, female hybrids with N. vitripennis mothers, and F1GV, female hybrids with N. 

giraulti mothers), as shown in Figure 1A, were obtained from a 2016 publication (Wang 

et al., 2016) from SRA PRJNA299670. We refer to the data from (Wang et al., 2016) as 

R16A Clark. One F1GV RNAseq sample from the R16A Clark dataset (SRR2773798) 

was excluded due to low quality, as in the original publication (Wang et al., 2016). 

The newly generated crosses consisted of 12 RNAseq samples of inbred 

isofemale lines of parental N. vitripennis (strain AsymCX) VV and N. giraulti (strain 

RV2Xu) GG lines, and reciprocal F1 crosses F1VG, and F1GV. (Figure 1A). Whole 

transcriptome for these samples is available on SRA PRJNA613065. This cross differs 

from the R16A Clark data, which used the same N. vitripennis strain but rather than a 
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standard N. giraulti strain used an introgression strain, R16A, that has a nuclear genome 

derived from N. giraulti and a cytoplasm/mitochondria derived from N. vitripennis (see 

R16A section below) Figure 1B. Total RNA was extracted from a pool of four 48 hour 

post-eclosion adult females using a Qiagen RNeasy Plus Mini kit (Qiagen, CA). RNA-

seq libraries were prepared with 2μg of total RNA using the Illumina Stranded mRNA 

library prep kit and were sequenced on a HiSeq2500 instrument following standard 

Illumina protocols. Three biological replicates were generated for each parent and hybrid, 

with 100-bp paired-end reads per replicate. Sample IDs, parent cross information, and 

SRA bioproject accession numbers for R16A Clark and Wilson datasets are listed in 

Supplemental 1 Table.  

Quality Control. Raw sequence data from both datasets were processed and 

analyzed according to the workflow presented in Figure 1C. The quality of the FASTQ 

files was assessed before and after trimming using FastQC v0.11 (Andrews, 2010) and 

MultiQC v1.0 (Ewels, Magnusson, Lundin, & Käller, 2016). Reads were trimmed to 

remove bases with a quality score less than 10 for the leading and trailing stand, applying 

a sliding window of 4 with a minimum mean PHRED quality of 15 in the window and a 

minimum read length of 80 bases, and adapters were removed using Trimmomatic v0.36 

(Bolger, Lohse, & Usadel, 2014). Pre- and post-trimming multiQC reports for the R16A 

Clark and Wilson datasets are available on the GitHub page: 

https://github.com/SexChrLab/Nasonia. 

Variant Calling. For variant calling, BAM files were preprocessed by adding read 

groups with Picard’s AddOrReplaceReadGroups and by marking duplicates with Picard’s 

MarkDuplicates (https://github.com/broadinstitute/picard). Variants were called using 
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GATK (DePristo et al., 2011; McKenna et al., 2010; Van der Auwera et al., 2013) and 

the scatter-gather approach: Sample genotype likelihoods were called with 

HaplotypeCaller minimum base quality of 2. The resulting gVCFs were merged with 

CombineGVCFs, and joint genotyping across all samples was carried out with 

GenotypeGVCFs with a minimum confidence threshold of 10. 

Pseudo N. giraulti Reference Genome Assembly. To create a pseudo N. giraulti 

reference genome, fixed differences in the homozygous N. giraulti and N. vitripennis 

variant call file (VCF) files were identified using a custom Python script, available on the 

GitHub page: https://github.com/SexChrLab/Nasonia. Briefly, a site was considered to be 

fixed and different if it was homozygous for the N. vitripennis reference allele among all 

three of the biological VV samples and homozygous alternate among all three of the 

biological GG samples. Only homozygous sites were included, as the N. giraulti and N. 

vitripennis lines are highly inbred. The filtered sites were then used to create a pseudo N. 

giraulti reference sequence with the FastaAlternateReferenceMaker function in GATK 

version 3.8 (available at: http://www.broadinstitute.org/gatk/). Reference bases in the N. 

vitripennis genome were replaced with the alternate SNP base at variant positions. 

Following a similar protocol for comparison, we now aligned reads in each sample to the 

pseudo N. giraulti genome reference with HISAT2 version 2.1.0, and performed identical 

preprocessing steps prior to variant calling with GATK version 3.8 HaplotypeCaller. 

RNAseq Alignment and Gene Expression Level Quantification. Trimmed 

sequence reads were mapped to the NCBI N. vitripennis reference genome (assembly 

accession GCF_009193385.2), as well as the pseudo N. giraulti reference using HISAT2 

(Kim, Langmead, & Salzberg, 2015). The resulting SAM sequence alignment files were 
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converted to BAM, and coordinates were sorted and indexed with samtools 1.8 (Li et al., 

2009). RNAseq read counts were quantified from the N. vitripennis as well as the custom 

N. giraulti alignments using Subread featureCounts (Liao, Smyth, & Shi, 2014) with the 

N. vitripennis gene annotation. 

Inference of Differential Gene Expression. Differential expression (DE) 

analyses were carried out by linear modeling as implemented in the R package limma 

(Ritchie et al., 2015). An average of the reads mapped to each gene in the N. vitripennis 

and the pseudo N. giraulti genome references were used in the DE analyses. Counts were 

filtered to remove lowly expressed genes by retaining genes with a mean FPKM ≤ 0.5 in 

at least one sample group (VV, GG, VG, or GV). Normalization of expression estimates 

was accomplished by calculating the trimmed mean of M-values (TMM) with edgeR 

(Robinson, McCarthy, & Smyth, 2010). The voom method (Law, Chen, Shi, & Smyth, 

2014) was then employed to normalize expression intensities by generating a weight for 

each observation. Gene expression is then reported as log counts per million (logCPM). 

Gene expression correlation between datasets and between species within each dataset 

was assessed using Pearson’s correlation of mean logCPM values of each gene. 

Dimensionality reduction of the filtered and normalized gene expression data was carried 

out using scaled and centered PCA with the prcomp() function of base R. Differential 

expression analysis with voom was carried out for each pairwise comparison between 

strains (VV, GG, VG, and GV) for each data set. We identified genes that exhibited 

significant expression differences with an adjusted p-value of ≤ 0.01 and an absolute log2 

fold-change (log2FC) ≤ 2. 
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Analysis of Allele-specific Expression in Reciprocal F1 Hybrids. Allele-specific 

expression (ASE) levels were obtained using GATK ASEReadCounter (McKenna et al., 

2010) with a minimum mapping quality of 10, minimum base quality of 2, and a 

minimum depth of 30. Only sites with a fixed difference between inbred VV and GG for 

both R16A Clark and Wilson datasets were used for downstream analysis of allele-

specific expression. Allele counts obtained from GATK ASEReadCounter were 

intersected with the N. vitripennis gene annotation file using bedtools version 2.24.0 

(Quinlan & Hall, 2010); the resulting output contained allele counts for each SNP and 

corresponding gene information. The F1 hybrids’ allele counts with gene information was 

read into R and then filtered to only include genes with at least two SNPs with minimum 

depth of 30. We counted the number of allele-counts for the reference allele (N. 

vitripennis) and alternative (N. giraulti) allele at polymorphic SNP positions. We 

quantified the number of SNPs in each hybrid replicate that 1) showed a bias towards the 

allele that came from the N. vitripennis parent, 2) showed a bias towards the allele that 

came from the N. giraulti parent, and 3) showed no difference (ND) in an expression of 

its parental alleles. The significance of allelic bias was determined using Fisher’s exact 

test. Significant genes were selected using a Benjamini-Hochberg false discovery rate 

FDR-adjusted p-value threshold of 0.05. As Nasonia are haplodiploid, all ASE analyses 

were carried out on the diploid female hybrids. 

Identifying Loci Associated with Hybrid Mortality. Nasonia recombinant F2 

hybrid males (haploid sons of F1 female hybrids) suffer mortality during development 

that differs between VG and GV hybrids (Breeuwer & Werren, 1995). Niehuis et al. 2008 

identified four genomic regions associated with this mortality (i.e., regions in which one 
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parent species’ alleles are underrepresented due to mortality during development); three 

are associated with mortality in hybrids with N. vitripennis maternity and one is 

associated with hybrids with N. giraulti maternity (Niehuis et al., 2008). Gibson et al. 

2013 later identified a second locus related to mortality in the hybrids with N. giraulti 

maternity (J. D. Gibson et al., 2013). Given that the F2 hybrid females analyzed here 

experience far less mortality than their haploid male offspring, we hypothesized that 

these diploid females may use biased allelic expression to rescue themselves from the 

mortality. To compare our results with these previous studies, we had to map the previous 

loci to the latest Nasonia assembly (PSR1.1, (Benetta et al., n.d.)). Niehuis et al. 2008 

defined their candidate loci based on the genetic distance along the chromosome 

(centimorgans) (Niehuis et al., 2008). The physical locations of the markers along the 

chromosomes were later identified by Niehius et al. 2010 (Niehuis et al., 2010). Using the 

genetic distances between these markers in both the 2008 and 2010 Niehuis et al. studies 

(Niehuis et al., 2010, 2008), we calculated the conversion ratio between the genetic 

distances in these two studies (Supplemental 6 Table). We then converted those 2008 

genetic distances that correspond to the 95% Confidence Intervals for these loci to the 

genetic distances reported by Niehuis et al. 2010 (Niehuis et al., 2010), which used an 

Illumina Goldengate Genotyping Array (Illumina Inc., San Diego, USA) to produce a 

more complete and much higher resolution genetic map of Nasonia. This array uses 

Single Nucleotide Polymorphisms (SNPs) to genotype samples at ~1500 loci, which 

allowed us to identify SNP markers that closely bound the mortality loci from the 2008 

study. Gibson et al. 2013 used the same genotyping array, so this conversion was 

unnecessary for converting the second mortality locus in N. giraulti maternity hybrids (J. 
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D. Gibson et al., 2013). We used the 100bp of sequence flanking each SNP marker to 

perform a BLAST search of the PSR1.1 assembly and to identify their positions. We then 

used all of the PSR1.1 annotated genes within these loci to look for enrichment of genes 

showing biased expression. Mortality loci and genomic location are reported in 

Supplemental 4 Table.  

Additional Gene Categories of Interest. Previous work has identified potential 

classes of genes that may be involved in nuclear-mitochondrial incompatibilities in 

Nasonia, the oxidative phosphorylation genes (Joshua D. Gibson, Niehuis, Verrelli, & 

Gadau, 2010) and the mitochondrial ribosomal proteins (Burton & Barreto, 2012). We 

used the annotated gene sets from these studies to test for enrichment of genes with 

biased allelic expression. Lists of the genes of interest and their genomic location is 

reported in Supplemental 4 Table.  

Analysis of R16A Strain. In order to assess whether the introgression of the N. 

giraulti nuclear genome into the R16A Clark strain is complete, we analyzed two samples 

of the R16A strain using the Illumina Goldengate Genotyping Array used in Niehuis et 

al. 2010 (Niehuis et al., 2010). We searched for SNP markers that retained the N. 

vitripennis allele and only considered markers that consistently identified the proper 

allele in both parent species controls and that were consistent across both R16A samples, 

leaving 1378 markers. We defined a locus as all of the sequences between the two 

markers that flank a marker showing the N. vitripennis allele (Supplemental 2 Table). As 

above, we performed a BLAST search of the PSR1.1 assembly to identify the positions of 

these markers. We identified all genes from the PSR1.1 assembly that lie between the 

flanking markers and further analyzed their expression patterns. 
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Scripts and gene lists used to analyze these data are publicly available on GitHub, 

https://github.com/SexChrLab/Nasonia.  

 

Supplementary Information  

 Supplemental tables and figures are located in chapter 4. appendices D.  
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CHAPTER 5 

Conclusions 

 
Major Contributions of Dissertation 

Chapter 1. A Sex Chromosome Complement Alignment Approach. We inferred 

if an RNAseq sample has Y chromosome expression by aligning the reads to a reference 

genome that includes both the X and Y chromosome. If a sample was determined to not 

have a Y chromosome, we aligned that sample to a reference with the Y chromosome 

hard masked with Ns. Sample’s determined to have a Y chromosome were aligned to a 

reference with the Y PARs hard masked. Using the sex chromosome complement 

approach compared to a default alignment that includes both the X and Y chromosomes, 

we observe an increase in X chromosome expression estimates in both female XX and 

male XY samples. We urge studies using RNA-Seq to carefully consider the genetic sex 

of the sample when quantifying reads and we provide a framework for doing so in the 

future (https://github.com/SexChrLab/XY_RNAseq). 

Chapter 2. Characterization of Sex Differences in Gene Expression in Human 

Placentas. We find that there are sex differences in gene expression in uncomplicated 

term placentas. However, we observe that gene expression for innate immune genes is 

not significantly different between the sexes in term (greater than or equal to 36.6 weeks), 

uncomplicated placentas. We show that most sex differentially expressed genes in term 

placentas are located on the sex chromosomes, X and Y. Further, we find that the female-

to-male expression ratio for sex differentially expressed genes, autosomal and sex-linked 

genes, is correlated between term placentas, late first trimester placentas, and adult 
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tissues. Finally, we show that the correlation of female-to-male expression ratio between 

term, late first trimester placentas, and adult tissues is strongest for sex-linked genes. This 

suggests that sex differences in gene expression on the sex chromosomes, X and Y, are 

replicated across the life span. Code available at: 

https://github.com/SexChrLab/Placenta_Sex_Diff. 

Chapter 3. Breast Cancer in Response to Synthetic Histone-binding Regulator 

Protein. We observe 19 tumor suppressor genes become up-regulated in response to the 

treatment across three distinct breast cancer cell lines. We demonstrate a chromatin-

mediated transcriptional response driven by an engineered fusion protein that physically 

links repressive histone marks with active transcription. Our results have implications for 

breast cancer treatment by up-regulating tumor suppressor genes. Code available at: 

https://github.com/WilsonSayresLab/PcTF_differential_expression. 

Chapter 4 Lack of Parent-Of-Origin Expression in Nasonia Jewel Wasp: a 

Replication and Extension Study. We show a lack of parent-of-origin expression within 

Nasonia hybrids. Nasonia hybrids do not show expression bias for the maternal or 

paternal derived allele, instead we observed species-of-origin expression. We replicate 

the results initially presented in Wang et al. 2016 that show a lack of parent-of-origin 

expression within Nasonia hybrids and we extend the findings using similar but different 

Nasonia hybrids to look at gene expression differences between hybrids. We offer a 

reproducible workflow for investigating genomic imprinting 

(https://github.com/SexChrLab/Nasonia). 
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APPENDIX A 

CHAPTER 1. SUPPLEMENTAL TABLES AND FIGURES. 

Any operating systems (e.g., MAC or Windows) should be sufficient to view the 
materials in this appendix.   
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Chapter 1 supplemental tables and figures are in the zipped folder “APPENDIX A.” 

Additional file 1: Sample IDs. RNA-Seq whole blood, brain cortex, breast, liver, 

and thyroid tissue samples from 20 genetic female (46, XX) and 20 genetic male (46, 

XY) individuals were downloaded from the Genotype-Tissue Expression (GTEx) project 

[19] for a total of 200 RNA-Seq tissue samples.(41K, txt) 

Additional file 2: Histogram of sample reported age. For each tissue, whole blood, 

brain cortex, breast, liver, and thyroid, male XY and female XX samples were age 

matched perfectly between age 55 to 70. Females are shown in blue and males are shown 

in lime green. Since the samples were aged perfectly the histogram bars show only the 

overlap of female and male samples is a mix color of the blue and lime green.(22K, pdf) 

Additional file 3: Genetic sex of RNA-Seq samples when aligned using STAR. 

Gene expression log2(CPM + 0.25/L) for select XY homologous genes (DDX3X/Y, 

PCDH11X/Y, USP9X/Y, ZFX/Y, UTX/Y) and XIST and SRY when reads were aligned 

to a default reference genome A), and for B) when reads were aligned to a sex 

chromosome complement informed reference using STAR. Male XY whole blood, brain 

cortex, breast, liver, and thyroid samples are shown in blue squares and female XX in 

orange circles.(5.2M, pdf) 

Additional file 4: Genetic sex of RNA-Seq samples per tissue. Gene expression 

log2(CPM + 0.25/L) for select XY homologous genes (DDX3X/Y, PCDH11X/Y, 

USP9X/Y, ZFX/Y, UTX/Y) and XIST and SRY when reads were aligned to a default 

reference genome A), and for B) when reads were aligned to a sex chromosome 

complement informed reference using HISAT and C) and D), for when the reads were 
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aligned using STAR. Male XY whole blood, brain cortex, breast, liver, and thyroid 

samples are shown in blue squares and female XX in orange circles.(47M, pdf) 

Additional file 5: List of samples that were removed from downstream analysis. 

Samples that did not cluster with the reported sex or clustered in unexpected ways were 

removed from the differential expression analysis. One male XY whole blood, 4 female 

XX and 4 male XY brain cortex, and one female XX breast sample were removed.(9.0K, 

xlsx) 

Additional file 6: Multidimensional Scaling plots. We investigated 

multidimensional scaling for all shared common variable genes for dimensions 1 and 2, 

and for dimensions 2 and 3 in each tissue. The most variation in each tissue is explained 

by the aligner C.aligner. The second most variation in each tissue is explained by the sex 

of the sample A.sex.(1.2M, pdf) 

Additional file 7: HISAT mapped reads bar plot. Mean difference in expression 

for average total reads mapped for each tissue and each sex when aligned to a sex 

chromosome informed versus a default reference genome. Paired t-test to test for 

significant difference in total reads mapped for the whole transcriptome, chromosome 8, 

and chromosome X. Nonparametric Wilcox single rank sum test was used to test for 

significant difference in total reads mapped on the Y chromosome for male samples in 

each tissue separately. Red * indicate a significant, p-value <0.05, difference in average 

mapped reads, NS is no significant differences.(4.2M, pdf) 

Additional file 8: STAR mapped reads bar plot. Mean difference in expression for 

average total reads mapped for each tissue and each sex when aligned to a sex 

chromosome informed versus a default reference genome. Paired t-test to test for 
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significant difference in total reads mapped for the whole transcriptome, chromosome 8, 

and chromosome X. Nonparametric Wilcox single rank sum test was used to test for 

significant difference in total reads mapped on the Y chromosome for male samples in 

each tissue separately. Red * indicate a significant, p-value <0.05, difference in average 

mapped reads, NS is no significant differences.(3.7M, pdf) 

Additional file 9: Paired t-test for mapped reads in default compared to sex 

chromosome complement reference genome. Mean difference in expression for average 

total reads mapped for each tissue and each sex when aligned to a sex chromosome 

informed versus a default reference genome. Paired t-test to test for significant difference 

in total reads mapped for the whole transcriptome (WT), chromosome 8, and 

chromosome X. Nonparametric Wilcox single rank sum test was used to test for 

significant difference in total reads mapped on the Y chromosome for male samples in 

each tissue separately.(13K, xlsx) 

Additional file 10: X chromosome expression differences between default and sex 

chromosome complement informed alignment. X chromosome gene expression 

differences between default and sex chromosome complement informed alignment. 

Increase in expression when aligned to a sex chromosome complement informed 

reference genome is a log2 fold change (FC) > 0. A decrease in expression when aligned 

to a sex chromosome complement informed reference genome is log2 FC < 0. Female 

XX samples are indicated by red and pink circles for PAR1, XTR, PAR2 genes, and for 

all other X chromosome genes respectively. Blue and light blue squares represent male 

XY samples. Blue squares indicate which gene points are in PAR1, XTR, and PAR2, and 

light blue squares are for genes outside of those regions. Differences in X chromosome 
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expression between reference genomes default and sex chromosome complement for 

male XY and female XX samples aligned using HISAT for the whole X chromosome and 

the first 5 Mb are shown for the whole blood (A and B, respectively), brain cortex (E and 

F, respectively), breast (I and J, respectively), liver (M and N, respectively), and thyroid 

(Q and R, respectively). Differences in X chromosome expression between reference 

genomes for male XY and female XX samples aligned using STAR for the whole X 

chromosome and the first 5 Mb are shown for the whole blood (C and D, respectively), 

brain cortex (G and H, respectively), breast (K and L, respectively), liver (O and P, 

respectively), and thyroid (S and T, respectively).(1.3M, pdf) 

Additional file 11: X chromosome regions mean and median expression values. X 

chromosome regions PAR1, PAR2, XTR, XDG, XAR, XCR mean and median CPM 

expression for male XY and female XX samples for each tissue separately when aligned 

to a default or sex chromosome complement informed reference genome using either 

HISAT and STAR. Paired t-test was used to test for significant differences in expression. 

XTR and XAR show a significant increase, p-value <0.05, in female expression for each 

tissue type. XTR and XAR additionally show a significant increase, p-value <0.05, in 

male expression for liver and thyroid. PAR2 shows a significant increase, p-value <0.05, 

in female liver expression. Additionally reported fold change in mean expression when 

using a sex chromosome complement informed compared to a default reference genome. 

The mean fold change in expression either increased or stayed the same ranging from 2.8 

to 0.999 fold increase in expression. Finally, mean male over mean female expression 

was reported for each X chromosome region for each tissue. Mean male over mean 
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female expression decreases for XTR when using a sex chromosome complement 

reference genome for each tissue.(44K, xlsx) 

Additional file 12: Whole genome gene expression values per sample, aligner and 

reference genome used for alignment. CPM values for male XY and female XX whole 

blood, brain cortex, breast, liver and thyroid samples when aligned to a default and sex 

chromosome complement informed reference genome for the whole genome (1-22, 

mtDNA, X, Y and non-chromosomal).(16K, docx) 

Additional file 13: Gene expression for XY homologous genes. X chromosome 

expression for 26 X and Y homologous genes (AMELX, ARSD, ARSE, ARSF, CASK, 

GYG2, HSFX1, HSFX2, NLGN4X, OFD1, PCDH11X, PRKX, RBMX, RPS4X, SOX3, 

STS, TBL1X, TGIF2LX, TMSB4X, TSPYL2, USP9X, VCX, VCX2, VCX3A, VCX3B, 

ZFX). Difference in gene expression for when male XY and female XX samples were 

aligned to a default and sex chromosome complement informed reference genome for 

each tissue. Little to no difference in gene expression between default and sex 

chromosome complement informed reference genome alignment was observed for 25 of 

the 26 X and Y homologous genes for both male XY and female XX samples using either 

HISAT or STAR. The log2 fold increase in expression for PCDH11X when aligned using 

HISAT was 0.4, 0.28, 0.33, 0.16, and 0.16 for whole blood, brain cortex, breast, liver, 

and thyroid, respectively. The greatest increase in expression was observed for 

PCDH11X in female whole blood at a log2 fold increase of 0.4.(86K, xlsx) 

Additional file 14: Differentially expressed genes between the sexes that were 

uniquely and jointly called between reference genomes. Genes that are differentially 

expressed between the sexes, male XY and female XX, for whole blood, brain cortex, 
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breast, liver, and thyroid samples. Differentially expressed genes that are uniquely called 

when using either the default or sex chromosome complement informed reference 

genome and differentially expressed genes that were jointly called between the reference 

genomes.(28K, xlsx) 

Additional file 15: Gene expression differences between male XY and female XX 

samples. Sex differences in gene expression for whole blood, brain cortex, breast, liver, 

and thyroid samples for when samples were aligned to a default reference genome and to 

a reference genome informed on the sex chromosome complement. Showing sex 

differences in gene expression between reference genomes used for alignment and for 

when samples were aligned using HISAT and STAR.(70M, pdf) 

Additional file 16: GO analysis of differentially expressed genes in female and 

male samples with HISAT aligner. Gene enrichment analysis of genes that are more 

highly expressed in one sex versus the other sex for each tissue, whole blood, brain 

cortex, breast, liver and thyroid, when samples were aligned to a default or sex 

chromosome complement informed reference genome using HISAT.(661K, txt) 

Additional file 17: GO analysis of differentially expressed genes in female and 

male samples with STAR aligner. Gene enrichment analysis of genes that are more 

highly expressed in one sex versus the other sex for each tissue, whole blood, brain 

cortex, breast, liver and thyroid, when samples were aligned to a default or sex 

chromosome complement informed reference genome using STAR.(708K, txt) 

Additional file 18: Sex chromosome complement informed transcriptome 

reference eliminates Y-linked expression in female XX samples. A) Sex differences in 

gene expression, log2(CPM + 0.25/L), between the sixteen samples from genetic males 
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and females are shown when aligning all samples to the default Ensembl reference 

transcriptome (left) and a reference transcriptome informed on the sex chromosome 

complement (right) for brain cortex. Each point represents a gene. Genes that are 

differentially expressed, adjusted p-value <0.01 are indicated in black for autosomal 

genes, blue for Y-linked genes, and red for X-linked genes. B) We show overlap between 

genes that are called as differentially expressed when all samples are pseudo-aligned to 

the default transcriptome, and genes that are called as differentially expressed when 

pseudo-aligned to a sex chromosome complement informed transcriptome reference. 

When samples were aligned to a reference transcriptome informed on the sex 

chromosome complement, 14 genes were called as differentially expressed between the 

sexes. PLCXD1 was uniquely called as differentially expressed when aligned to a default 

reference genome. Ensembl sex chromosome complement informed transcriptome 

reference eliminates Y-linked expression in female XX samples. A) Sex differences in 

gene expression, log2(CPM + 0.25/L), between the sixteen samples from genetic males 

and females are shown when aligning all samples to the default Ensembl reference 

transcriptome (left) and a reference transcriptome informed on the sex chromosome 

complement (right) for brain cortex. Each point represents a gene. Genes that are 

differentially expressed, adjusted p-value <0.01 are indicated in black for autosomal 

genes, blue for Y-linked genes, and red for X-linked genes. B) We show overlap between 

genes that are called as differentially expressed when all samples are pseudo-aligned to 

the default transcriptome, and genes that are called as differentially expressed when 

pseudo-aligned to a sex chromosome complement informed transcriptome reference. 

When samples were aligned to a reference transcriptome informed on the sex 
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chromosome complement, 14 genes were called as differentially expressed between the 

sexes. PLCXD1 was uniquely called as differentially expressed when aligned to a default 

reference genome.(6.2M, pdf) 

Additional file 19: Gencode sex chromosome complement informed 

transcriptome reference eliminates Y-linked expression in female XX samples. A) Sex 

differences in gene expression, log2(CPM + 0.25/L), between the sixteen samples from 

genetic males and females are shown when aligning all samples to the default gencode 

reference transcriptome (left) and a reference transcriptome informed on the sex 

chromosome complement (right) for brain cortex. Each point represents a gene. Genes 

that are differentially expressed, adjusted p-value <0.01 are indicated in black for 

autosomal genes, blue for Y-linked genes, and red for X-linked genes. B) We show 

overlap between genes that are called as differentially expressed when all samples are 

pseudo-aligned to the default transcriptome, and genes that are called as differentially 

expressed when pseudo-aligned to a sex chromosome complement informed 

transcriptome reference. When samples were aligned to a reference transcriptome 

informed on the sex chromosome complement, 17 genes were called as differentially 

expressed between the sexes. ZBED1 was uniquely called as differentially expressed 

when aligned to a default reference genome.(6.0M, pdf) 

Additional file 20: 3 male XY and 3 female XX brain cortex and whole blood 

differential expression analysis. Replicated analysis in a smaller sample size of 3 male 

XY compared to 3 female XX samples for whole blood and brain cortex tissue. Samples 

were randomly selected, and confirm the results from the larger sample size.(5.2M, docx) 
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APPENDIX B 

CHAPTER 2. SUPPLEMENTAL TABLES AND FIGURES. 

Any operating systems (e.g., MAC or Windows) should be sufficient to view the 
materials in this appendix.   
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Chapter 2 supplemental tables and figures are in the zipped folder “APPENDIX B.” 

 Additional Figure 1. Sample sex check. Violin jitter plot of counts per million 

(CPM) expression for each placenta sample for EIF1AY, KDM5D, UTY, DDX3Y, and 

RPS4Y1 Y-linked genes, and XIST, X-linked gene. Samples with at least two X 

chromosomes will show expression for XIST. Samples with the presence of the Y 

chromosome will show expression for Y-linked genes.  

Additional Figure 2. Multidimensional scaling plots reveal outlier samples.  

Multidimensional scaling (MDS) for all genes (left) and top too genes on the (right) for 

(A) late first trimester placentas (Gonzalez et al. 2018), (B) term placentas, (C) term 

placentas excluding failed samples.  

Additional Figure 3. Population ancestry inference.  Population ancestry was 

inferred from whole-exome sequencing for each term placenta.  

Additional Figure 4. Variation in expression trait attributes. Variation within 

gestational age (GA), sequencing lane, sex, reported race, and birth weight was 

examined. Variation in placenta expression for maternal clinical data, including parity, 

gravidity, pre-pregnancy body mass index (BMI), and maternal age, were also examined.  

Additional Figure 5. Sex differences for clinical attributes. Sex differences for 

clinical information for term placentas for maternal age at delivery, pre-pregnancy BMI, 

gravidity and parity, gestational age, and birth weight. Sex differences for continuous 

variables were tested using a t-test, p-value < 0.05.  

Additional Figure 6. Sex differences in expression for gametolog genes. There is a 

significant difference in male XY to female XX expression for ZFX and KDM6A (UTX) 

when only looking at the X chromosome CPM expression value. When we add the Y 
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chromosome-linked CPM expression count for these genes for male samples, there is no 

longer a difference in expression between males XY and females XX for ZFX. KDM6A, 

on the other hand, flips the bias; it now shows males as having significantly higher 

expression than females. PCDH11X, when adding Y-linked CPM expression, shows a 

significantly higher expression than females. T-test to see if there is a difference between 

the female CPM and the male CPM for each gene, p-value < 0.05. 

Additional Figure 7. Sex differences in expression for innate immune genes.  

Additional Table 1. Sample clinical information. Clinical and sequence 

information for each full-term placenta sample.  

Additional Table 2. Post-trimming sample sequence information. Million 

sequences, percent of duplicate sequences, and percent QC content remaining after 

quality trimming.  

Additional Table 3. Samples removed from downstream analysis. Samples were 

removed that had less than 12.5M or higher than 90M sequences remaining after 

trimming. If more than 30% of the reads deviate from the sum of the deviations from the 

normal distribution of the per-sequence GC content as defined by the FASTQC report, 

then the sample was removed. If a sample clustered with opposite sex from the reported 

sex for that sample, than that sample was removed.  

Additional Table 4. Sex differences for clinical attributes. Sex differences for 

clinical information for term placentas for maternal age at delivery, pre-pregnancy BMI, 

gravidity and parity, gestational age, and birth weight. Ratio of variances in the female 

and male samples is reported. Female mean and male mean for each clinical attribute is 
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additionally reported. Sex differences for continuous variables were tested using a t-test, 

p-value < 0.05.  

Additional Table 5. X and Y gametology gene list. A list of X and Y gametology 

genes were curated from a combination of Skaletsy et al. 2003 and Godfrey et al. 2020 

(Godfrey et al. 2020; Skaletsky et al. 2003). FPKM expression for X-linked copy and Y-

linked copy for all samples. In samples determined to have a Y chromosome, the FPKM 

value of the X-linked gametology and the Y-linked gametology were summed. 

expression between XX female X-linked gametology gene expression to XY male X-

linked plus Y-linked gametology gene expression using a Wilcox rank-sum, p-value ≤ 

0.05.  

Additional Table 6. Sex differences in innate immune genes. 979 innate immune 

games from InnateDB. Placenta CPM expression values for expressed innate immune 

genes in the late first trimester and term placentas. Sex differences in late first trimester 

and term placentas, adjusted p-value ≤ 0.05.  

Additional Table 7. Sex differentially expressed genes. Sex differentially 

expressed genes in the late first trimester and term placentas, adjusted p-value < 0.05.  

Additional Table 8. GTEx female and male mean TPM expression values. Female 

and male mean TPM expression for 42 non-reproductive adult GTEx tissues. TPM 

expression for each gene obtained from counts version 2017-06-06_v8 (Carithers et al. 

2015). 

Additional Table 9. Gene FPKM and CPM values for late first trimester and term 

placentas.  
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Additional Table 10. Overlap in sex differentially expressed genes in Gonzalez vs 

reprocessing.  
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APPENDIX C 

CHAPTER 3. SUPPLEMENTAL TABLES AND FIGURES. 

Any operating systems (e.g., MAC or Windows) should be sufficient to view the 
materials in this appendix.   
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Chapter 3 supplemental tables and figures are in the zipped folder “APPENDIX C.” 

Figure S1. Comparisons of gene sets that are differentially or similarly expressed 

in BT-474, MCF7, BT-549, and MCF10A.  

Figure S2. Comparisons, by cell line, of expressed and silenced genes within 

PRC-modules. 

Figure S3. Jensen Shannon divergence analyses of transcription profiling data 

(RNA-seq) for all PcTF-treated and untreated cell samples.  

Figure S4. Detailed view of the transcription factor (TF) binding motif 

overrepresentation plot from Figure 3D. 

Figure S5. Expression levels of putative regulators of PUGs.  

Figure S6. Chromosome plot of PcTF-responsive genes that were identified in the 

RNA-seq experiment. 

Figure S7. Detailed view of MCF7 ChIP-seq signals.  

Table S1. The set of 45 H3K27me3-enriched, repressed (FPKM < 2) genes shared 

by the three cancer cell lines. 

Table S2. TF motif enrichment analysis results for the data shown in Figure 3D. 

Table S2. Primers used to generate the RT-qPCR results shown in Figure 6. 
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APPENDIX D 

CHAPTER 4. SUPPLEMENTAL TABLES AND FIGURES. 

Any operating systems (e.g., MAC or Windows) should be sufficient to view the 
materials in this appendix.   
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Chapter 4 supplemental tables and figures are in the zipped folder “APPENDIX D.” 

Supplemental 1 Figure. Volcano plots for differential expression and venn diagram 

of DEGs between the datasets when taking the average of the counts when aligned to N. 

vitripennis and to pseudo N. giraulti reference genome. Volcano plots of DEGs detected 

between the different comparisons involving N. vitripennis, N. giraulti, and the two 

reciprocal F1 hybrids in the R16A Clark (left side) and Wilson (right side) datasets. Venn 

diagrams of the overlap of significant DEGs in each comparison is shown. 

Supplemental 1 Table. Sample identifiers. The samples for each dataset used in the 

project are provided here. Samples from this study are uploaded at 

https://www.ncbi.nlm.nih.gov/sra/PRJNA613065. 

Supplemental 2 Table. Allele-specific expression differences between hybrids. The 

number of allele-counts for the reference allele (N. vitripennis) and alternative (N. giraulti) 

allele at polymorphic SNPs within a gene. Minimum of two SNPs for a gene to be included. 

The significance of allelic bias was determined using Fisher’s exact test. Significant genes 

were selected using a Benjamini-Hochberg false discovery rate FDR-adjusted p-value 

threshold of 0.05.  

Supplemental 3 Table. Mean and median allele and gene depth for Wilson dataset. 

Mean and median allele and gene depth for each GV and VG sample in the Wilson data 

set. Number of SNPs for all genes, CPR35, and LOC103315494. 

Supplemental 4 Table. Genomic location of mortality loci and gene sets of interest. 

Previously reported loci associated with mortality in Nasonia hybrids. 95% Confidence 

Intervals of loci identified in Niehuis et al. 2008 were converted to genetic distances along 

the chromosomes and the closest SNP markers from Niehius et al. 2010 were identified 
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(Niehuis et al., 2010e, 2008). SNP markers for the locus identified in Gibson et al. 2013 

were used directly (J. D. Gibson et al., 2013). The SNP marker locations in the PSR1.1 

assembly were found via BLAST and all genes within the bounds of these markers are 

included. The two non-introgressed regions from the R16A strain are included as well as 

genes from two mitochondria-associated pathways, the oxidative phosphorylation pathway 

(Joshua D. Gibson et al., 2010) and the mitochondrial ribosomal proteins (Burton & 

Barreto, 2012). 

Supplemental 5 Table. Directional bias of differentially expressed genes between 

VG and GV in Clark and Wilson datasets. Five genes that were called as differentially 

expressed between VG and GV hybrids in both the Clark and Wilson data sets. 

Supplemental 6 Table. Locus conversion calculations. Calculations for converting 

the genetic map positions (centimorgan, cM) of mortality loci identified by Niehuis et al. 

2008 to the physical chromosomal positions of the latest genome assembly (PSR1.1) 

(Niehuis et al., 2008). 
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APPENDIX E 

PERMISSION FROM CO-AUTHORS. 
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The chapter titled “Reference Genome and Transcriptome Informed by the Sex 

Chromosome Complement of the Sample Increase Ability to Detect Sex Differences in 

Gene Expression from RNA-Seq Data” was published earlier – 2020 - in the journal 

BMC Biology of Sex Differences. The paper had five contributing authors. C. Kimberly 

Olney was the first author. The original publication can be found at: 

https://doi.org/10.1186/s13293-020-00312-9. Brotman, S.M., Andrews, J.P., Valverde-

Velsing, V.A., Wilson, M.A have all consented for the publication to be included in this 

dissertation by C. Kimberly Olney.  

The chapter titled “The Synthetic Histone-Binding Regulator Protein PcTF 

Activates Interferon Genes in Breast Cancer Cells” was published earlier – 2018 - in the 

journal BMC Systems Biology. The paper had five contributing authors. C. Kimberly 

Olney was the first author. The original publication can be found at: 

https://doi.org/10.1186/s12918-018-0608-4. The corresponding author, Haynes, K.A. has 

consented for the publication to be included in this dissertation by C. Kimberly Olney.  

The chapter titled “Lack of Parent-of-Origin Effects in Nasonia Jewel Wasp: a 

Replication and Extension Study” was published earlier – 2021 on BioRxiv. The paper 

had six contributing authors. C. Kimberly Olney was the first author. The original 

publication can be found at: https://doi.org/10.1101/2021.02.11.430138. All co-authors, 

Gibson, J.D., Natri, H.M., Underwood, A., Gadau, J., Wilson, M.A, have consented for 

the publication to be included in this dissertation by C. Kimberly Olney.  

 


