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ABSTRACT 

The climate-driven volumetric response of unsaturated soils (shrink-swell and 

frost heave) frequently causes costly distresses in lightly loaded structures (pavements 

and shallow foundations) due to the sporadic climatic fluctuations and soil heterogeneity 

which is not captured during the geotechnical design. The complexity associated with the 

unsaturated soil mechanics combined with the high degree of variability in both the 

natural characteristics of soil and the empirical models which are commonly 

implemented tends to lead to engineering judgment outweighing the results of 

deterministic computations for the basis of design. Recent advances in the application of 

statistical techniques and Bayesian Inference in geotechnical modeling allow for the 

inclusion of both parameter and model uncertainty, providing a quantifiable 

representation of this invaluable engineering judgement. 

The overall goal achieved in this study was to develop, validate, and implement a 

new method to evaluate climate-driven volume change of shrink-swell soils using a 

framework that encompasses predominantly stochastic time-series techniques and 

mechanistic shrink-swell volume change computations. Four valuable objectives were 

accomplished during this research study while on the path to complete the overall goal: 1) 

development of an procedure for automating the selection of the Fourier Series form of 

the soil suction diffusion equations used to represent the natural seasonal variations in 

suction at the ground surface, 2) development of an improved framework for 

deterministic estimation of shrink-swell soil volume change using historical climate data 

and the Fourier series suction model, 3) development of a Bayesian approach to randomly 
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generate combinations of correlated soil properties for use in stochastic simulations, and 

4) development of a procedure to stochastically forecast the climatic parameters required 

for shrink-swell soil volume change estimations. 

The models presented can be easily implemented into existing foundation and 

pavement design procedures or used for forensic evaluations using historical data. For 

pavement design, the new framework for stochastically forecasting the variability of 

shrink-swell soil volume change provides significant improvement over the existing 

empirical models that have been used for more than four decades. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Background 

The shrink-swell soil response to moisture changes, caused by seasonal weather 

variations or alterations to site drainage due to new development, is a leading cause of 

infrastructure damage. Puppala and Cerato (2009) reported that more than to $13 billion 

worth of infrastructure damage per year is caused by expansive (shrink-swell) soils in the 

United States, with one-third of the damage appearing in residential and commercial 

buildings. As such, research and improvements to design/building codes, residential and 

public infrastructure damage due to shrink-swell soils continue. 

The fundamental mechanics of SS soils has been researched extensively in recent decades 

and there is a common understanding that the soil composition, environmental factors, 

degree of variability in each parameter, and the non-linear behavior creates a highly 

complex analyses which must be conservatively simplified in practical applications.  

Current engineering practice for estimating the shrink-swell volume change (SSVC) 

primarily follows a deterministic approach of the extreme, long-term, (“worst-case”) 

scenario. The calculation procedures are commonly empirical based using simplified 

laboratory tests and correlations with index properties. Occasionally one-dimensional 

response to wetting tests are performed, slightly improving the confidence in the 

estimated volume change. However, the sporadic climatic fluctuations and soil 
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heterogeneity are hard to capture in the deterministic approach without being highly over 

conservative. Such practices can lead to misleading design solutions and as a result, 

distresses or over-design of foundations, pavements, and other structures on SS soils are 

common.  

The Post-Tensioning Institute’s (PTI) Design of Post-Tensioned Slabs-on-Ground 3rd 

Edition (2008) and the American Association of State Highway and Transportation 

Officials (AASHTO) Mechanistic-Empirical Pavement Design Guide (MEPDG) are two 

existing design standards in the United States that incorporate procedures for designing 

foundations and pavements, respectively, on shrink-swell soils. The PTI design of slabs-

on-ground encompasses a suction-based mechanistic framework for estimating time-

based volume change of SS soils developed by Lytton et al. (2005) as part of a study for 

the Texas Department of Transportation (TxDOT). The MEPDG procedure uses an 

empirical approach to quantify the effect of SS soils on pavement performance. The 

empirical approach includes a modification to the roughness condition based upon the 

site’s specific environmental conditions and subgrade index properties. The AASHTO 

MEPDG does not incorporate a mechanistic procedure to estimate soil volume change 

and evaluate the associated pavement distresses.  Neither standard, nor any other standard 

of the author’s knowledge, encompass stochastic techniques to estimate the expected SS 

soil volume change and quantify the uncertainty of the estimate based on the variability 

of the numerous input parameters. 
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1.2 Motivation 

The research work presented herein was motivated by potential implementation of the 

work to engineering practice and by the continual strive to include in interdisciplinary 

frameworks, specifically statistics/data analytics, into common geotechnical engineering 

analyses and concepts.   

1.2.1 Motivation by Implementation  

The primary motivation for the research efforts was to help fulfill the 

requirements set in the NCHRP 01-59 which includes the development of a useful 

computer program which addresses the variability of the International Roughness Index 

(IRI) caused by climate-driven volume change of the subgrade soils. The Arizona State 

University research team associated with the NCHRP 01-59 project (Dr. Claudia Zapata, 

Dr. Sandra Houston, and Dr. Mohammad Mosawi) and the author worked to produce 

useful models which could be implemented into the existing Pavement Mechanical-

Empirical Design (PMED), or commonly referred to as the MEPDG, which include 

stochastic versions of mechanistic unsaturated soil volume change analysis.  

1.2.2 Motivation by Advancement 

The compilation of the algorithmic procedures based on statistical theory and the 

stochastic simulations which produce both the expected outcome, and the associated 

variability is referred to herein as stochastic forecasting. The lack of quantifiable 

uncertainty in geotechnical analysis and the experienced-based engineering decision 
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making that is commonly required in practice today, is referred to herein as judgement 

forecasting. Although there have been considerable advancements in stochastic 

forecasting techniques in recent decades, implementation into geotechnical engineering 

practice has been minimal. Stochastic forecasting provides a formalized framework that 

can quantify parameter uncertainty, includes steps to estimate expected values and 

provides insight to the associated variability of the prediction error. 

Other professional sectors such as the insurance industry, the financial investment field 

and the marketing industry have provided substantial evidence that stochastic forecasts 

are generally more efficient and representative of the actual outcomes, compared to 

judgement forecasts. For example, recent significant events commonly influence people 

to bet in the direction of short-term trends. The formalization of statistical forecast 

procedures and algorithms help reduce the effects of this recency bias common in 

judgment forecasting. Standardizing processes for generating, optimizing, and revising 

stochastic forecasts provide reproducible frameworks with minimal user bias.  

Adopting analytical techniques for decision making does not mean that our engineering 

judgement goes unused. The development of analytical forecast tools requires insights 

and extensive knowledge of the natural mechanics of the system. One common mistake 

in statistical inference is the acceptance of correlation as causation. Although there may 

be statistical significance and/or patterns in a relationship, they may not necessarily 

represent the physical mechanics of that system. This interpretation error can occur 

during the statistical/engineering analysis stage, or by the client reviewing the work, and 

even by a legal team or jury.  
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However, these common statistical inference mistakes are avoidable. It is always 

recommended that the potential forecast errors are documented and relayed to all 

stakeholders to minimize over optimistic thinking that all potential variability, 

probabilities, and risks have been captured in the model. The judgement-based methods 

which are widely accepted in geotechnical practice today are rarely outlined in any 

official document. Although most clients care solely about the final products and not the 

path taken to get there, independent reviewers may wonder about this lack of proper 

documentation. Although it is likely that more time (money) will be required on the front 

end, the formalization of design procedures, which encompass high parameter uncertainty 

and engineering judgement, can improve efficiency and confidence in decision making.   

The development and implementation of stochastic forecasting frameworks can eliminate 

the inherent inconsistencies, biases, and the “lack of enough experience” argument 

associated with the human-brain-led judgement forecasts. Such a statement may be 

discredited in many geotechnical firms in the US today; however, as the success of other 

professional and technological industries continue to exponentially advance due to their 

adoption of Bayesian Inference techniques, artificial intelligence, and modern data 

analytics, the civil engineering practice will be pressured to follow suit to meet client 

requests and maintain competitor advantages.  

1.3 Purpose 

The climate-driven volumetric response of shrink-swell soils frequently causes 

costly distresses in lightly loaded structures (pavements and shallow foundations) due to 
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the sporadic climatic fluctuations and soil heterogeneity which is not captured during the 

geotechnical design. The complexity associated with the unsaturated soil mechanics 

combined with the high degree of variability in both the natural characteristics of soil and 

the empirical models which are commonly implemented tends to lead to engineering 

judgment outweighing the results of deterministic computations for the basis of design.  

Recent advances in the application of statistical techniques and Bayesian Inference in 

geotechnical modeling allow for the inclusion of both parameter and model uncertainty, 

providing a quantifiable representation of this invaluable engineering judgement. This 

research study will seek to continue this trend by implementing Bayesian techniques into 

characterization of common soil properties, the analysis of climate-driven shrink-swell 

volume change using unsaturated soil moisture flow mechanics.  

1.4 Organization 

The proposed research is organized into seven chapters which include this 

introductory section, the five key studies required to reach the overall project goal, and a 

concluding chapter. Chapter 2 through Chapter 5, summarized below, present key 

accomplishments identified by the author which have potential to provide beneficial 

advancements to the field of geotechnical engineering. Each of the chapters for these key 

studies include the relevant background and literature review required to effectively 

complete the objectives so that the chapter could act as standalone documents if needed. 

 Chapter 2 Soil Suction Profiles using a Fourier Series Approach presents the 

application of the Fourier Series for modeling monthly climate-driven soil suction 
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profiles.  A review of existing literature pertaining to suction-based methods for 

modeling moisture flow within the vadose zone of unsaturated soil is summarized. An 

algorithmic approach was developed, referred to as the Natural-Order Fourier Series 

(NOFS), which uses a selection criterion for the order of the Fourier Series. An 

evaluation of the NOFS suction profile approach is presented using two locations 

within arid and temperate climate regions for time periods of 5, 15, and 30 years.  The 

goodness of fit for increasing durations of analysis and increasing orders of the 

Fourier Series are evaluated.  

 Chapter 3 Bayesian Characterization of Common Soil Properties introduces a tool 

to generate estimates and variability of various soil parameters for use in stochastic 

shrink-swell analysis analyses. A brief review of the theory of statistical moments, 

correlation, and Beta distributions. A review of Bayesian Inference is also included 

which focuses on sources of uncertainty, likelihood functions, random variable 

generation, and techniques for simulating random processes.  A database of the 

necessary soil input variables was collected and used to generate updated statistical 

parameters for varying soil types. A Bayesian framework for randomly generating 

sets of each variable while accounting for high correlation between soil properties 

will be developed. A validation effort and discussion of potential implementation is 

also provided using prior data from three different soil groups. 

 Chapter 4 Stochastic Climate Forecast Model presents a brief overview of time-

series analysis techniques including autocorrelation, decomposition, forecasting, and 

the Fourier Series. Additional background on existing techniques for applying 
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Bayesian Inference to stochastically forecast time-series data is also included.  A 

method for stochastically forecasting the climate input parameter (TMI) on a monthly 

basis using a component-wise, transitional, Markov Chain Monte Carlo (MCMC) 

approach is proposed. A discussion of the optimization and validation of the proposed 

model using historical climate data from the National Oceanic and Atmospheric 

Administration (NOAA) is also included.  

 Chapter 5 Application of Stochastic Forecast Model for Shrink-swell Volume 

Change (SSVC) will bring together the deterministic shrink-swell soil volume 

change model and the stochastic TMI model to produce a new method for forecasting 

the monthly shrink-swell soil volume. A summary of the deterministic SSVC 

framework will be provided by the inclusion of a recent journal publication by the 

author and ASU research team which includes an improved framework for estimating 

the 1D shrink-swell volume change of soil exposed to time-varying climatic effects, 

as well as an evaluation of deterministic framework using the LTTP Seasonal 

Monitoring Program (SMP) database. The steps taken for the optimization and 

validation of the stochastic model are provided.  The potential implementation of the 

proposed stochastic shrink-swell volume change forecast model to foundation and 

pavement performance analysis/design is discussed. The uncertainty and sensitivity of 

the estimations using the proposed method will be compared to those generated using 

current engineering practice procedures. 
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A concluding chapter is also included which briefly summarizes the overall research 

accomplishments, discusses limitations pertaining to work, and identifies aspects of the 

work which can be improved through additional research efforts. 

1.4.1 Flow 

The organization of the chapters in the report represent the various steps in the overall 

procedure for stochastically simulating climate-driven volume change of shrink-swell 

soils.  Figure 1-1 provides a flow diagram for the process using the Chapter titles and 

sub-section titles.  

 

Figure 1-1 Flow of Documents Chapters  

1.5 Development of Computer Software 

As part of the NCHRP 01-59 requirements, the models and overall analysis procedure 

developed as part of the research efforts was to be programmed into a desktop application 

with a user interface (UI) and accompanied Manual of Practice so that the consideration 
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for implementation in to the existing MPED software (AASHTOware) can be efficiently 

evaluated by a party associated with the research team. As such, most of the algorithm 

procedures and resulting data/graphics were programmed using the MATLAB computing 

language. Unfortunately, this document precedes the review and publication of the 

software by NCHRP and therefore, referral to the program herein is limited to excerpts 

(partial screenshots) or the programs UI, and no source code is included. The author 

anticipates that a full report of the NCHRP 01-59 findings and final products (software) 

will be published by the National Academes of Sciences, Engineering, Medicine’s 

Transportation Research Board (TRB) following the research team’s final deliverable in 

late 2022 to early 2023.  
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CHAPTER 2 

2 SOIL SUCTION PROFILES USING A FOURIER SERIES APPROACH 

2.1 Introduction 

The quantification of the moisture flux at the ground surface and the transient state 

of the moisture flow through the vadose zone continues to be a challenging problem for 

geotechnical engineers.  In unsaturated soil mechanics, the near-ground-surface moisture 

flow is commonly evaluated using the 1-dimensional (1D) diffusion equation derived by 

Peter Mitchell in 1979, which is a closed form solution of the Richard’s unsaturated 

moisture flow differential equation studied (1965).  There have been several successful 

studies which sought to measure the parameters involved with the diffusion equation (i.e., 

equilibrium suction and the diffusion coefficient).  Perera et al. (2005) and Vann and 

Houston (2021) were able to correlate the magnitude and depth of equilibrium suction to 

the Thornthwaite Moisture Index (TMI). Aubeny & Long (2007) found that the diffusion 

coefficient had high uncertainty, low reproducibility, and significant discrepancies 

between lab and field measurements. The seasonal fluctuations of the suction at the 

ground surface have been commonly applied as an average long-term trend (PTI, 2008) 

or as a periodic function (Lytton et al., 2005); however, Mitchell (1979) proposed the use 

of a Fourier Analysis to better represent the irregular patterns in climate which would 

allow for prolonged durations of drying or wetting to be captured.  

This chapter presents the application of a Fourier Series approach for modeling monthly 

climate-driven soil suction profiles. Historically, the order of a Fourier Series was limited 
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by the increased complexity of capturing additional amplitudes which were atypical to 

the overall data set. To remove this limitation while maintaining computational 

efficiency, an algorithmic approach was developed, referred to as the Natural-Order 

Fourier Series (NOFS), which uses a selection criterion defined by the distribution of 

amplitudes of an infinite-order Fourier fit. The NOFS models the suction profiles using 

the diffusion equation which exhibits an exponential decay of the amplitudes with depth.  

The climate-induced change in soil suction at the ground surface and the long-term 

equilibrium state of the suction profiles are empirically estimated using the Perera et al. 

(2006) and Vann & Houston (2021) relationships, respectively. The knowledge of these 

boundary conditions allows for the back-calculation of the diffusion coefficient, 

removing the high uncertainty associated with measuring the parameter.  

2.1.1 Objectives 

The following objectives were accomplished as part of this study: 

 Development of an algorithm for an automated selection of the order of a Fourier 

Series fit to the climate-driven variation in suction at the ground surface.   

 An evaluation of the goodness of fit of the NOFS suction profile approach using two 

locations within arid and temperate climate regions for time periods of 5, 15, and 30 

years.   

 Development of a procedure for adjusting the NOFS suction profiles using measured 

data.  

 Comparison of the adjusted NOFS suction profiles to simple periodic suction profiles. 
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2.2 Relevant Background  

Trends in qualitative behavior of SS soils can be reasonably clear, the 

quantification of the magnitudes and time rate of shrink-swell can be complex.  In recent 

years, several models have been developed that can account for some of these behaviors.  

Methods for estimating shrink-swell soil volume change can be generally subdivided by 

empirical approaches using soil index properties such Atterberg Limits, particle size 

distribution, etc. and mechanistic approaches using engineering properties such as 

SWCCs, hydraulic conductivity, and results of 1-D oedometer tests.  

Several publications reviewed as part of this study which empirically relate soil index 

properties to shrink-swell soil volume change potential include but are not limited to: 

Seed et al. (1962), van der Merve (1964), Ranganatham and Satyanarayana (1965), 

Nayak and Christensen (1971), Schneider and Poor (1974), O’Neil & Ghazzally (1977), 

Chen (1975), Johnson & Snethan (1978), Weston (1980), Picornell and Lytton (1984), 

Dhowian (1990a, 1990b), Basma (1993).   

Direct laboratory measurements of the soil volume change potential help improve the 

estimation of potential volume change used for design. The 1-D oedometer “Response to 

Wetting Test” (ASTM D4546, 2014) is a common laboratory test for volume change 

determination. The following published studies include 1-D oedometer test-based 

relationships to unsaturated soil volume change: Jennings and Knight (1957), De Bruijn 

(1961, 1965), Sampson et al. (1965), Noble (1966), Sullivan and McCelland (1969), 

NAVFAC (1971), Wong & Yong (1973), Gibbs (1973) Jennings et al. (1973), Smith 
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(1973), Teng et al. (1972, 1973), Teng & Clisby (1975), Porter & Nelson (1980), 

Fredlund et al. (1980), Sridharan et al. (1986), Erol et al. (1987), Shanker et al. (1987), 

Nelson et al. (1998, 2001), Al-Shamrani & Al-Mhaidib (1999), Basma et al. (2000), 

Subba Rao & Tripathy (2003), Lopes (2007), Singhal (2010), and Olaiz (2017).  

One key difference from the laboratory oedometer test compared to the field conditions 

the unsaturated soil will experience is the final degree of saturation. The response to 

wetting test inundates the sample, driving to saturation.  However, with proper drainage, 

there is a reasonable probability that the soil will not reach this moisture level over the 

period of the pavement/structure design life. (Houston and Houston 2017). Suction-based 

volume change approaches can be used for the estimation of the unsaturated soil volume 

change at moisture levels below saturation.  

Several methods which account for the moisture/suction state of the soil include the 

Barcelona Basic Model (Alonso et. al., 1990), the Lytton et al. (2005) approach adopted 

by the Texas DOT and the Post-Tensioning Institute (PTI, 2004, 2008), the Sheng, 

Fredlund, Gens model (Sheng. et al., 2008), the Modified State Surface Approach 

(MSSA) first introduced by Zhang and Lytton (Zhang 2009a, 2009b), and the Surrogate 

Path Method (Singhal, 2010; Houston and Houston, 2018).  

The ability to estimate soil volume change as a function of time can be a valuable tool in 

the design of pavement structure as it allows for estimation of the cumulative 

International Roughness Index (IRI) impacted by environmental factors. Time-dependent 

estimations of shrink-swell soil volume change must quantify the changes in soil 
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moisture/suction due to the varying climate. For a relatively near-surface groundwater 

table, significant potential exists for capillary rise into subgrade soils. The conventional 

assumption that negative pore water pressures (i.e. soil suction) can be estimated by 

backward extrapolation above the groundwater table of a line of slope equal to the depth 

times the unit weight of water, appropriate in a thin region above the groundwater table, 

where soils are wetted to a degree of saturation of 85% or more (Houston et al. 2000). 

When the groundwater table is relatively deep, the environmental factors such as 

precipitation, temperature, wind speed, solar radiation, and relative humidity effect the 

moisture state of the soils near the surface, commonly referred to as the active zone 

(Nelson et al., 2001).  

Given the complexity and large number of climatic parameters affecting the climate-

driven flux boundary conditions, the Thornthwaite Moisture Index (TMI) (Thornthwaite, 

1948; Thornthwaite and Mather, 1955, Witczak et al., 2006) is commonly used by 

geotechnical engineers as an index which quantifies climate variability at a given location 

(McKeen and Johnson 1990). The TMI represents the aridity or humidity of a soil-

climate system by summing the effects of annual precipitation, evapotranspiration, 

storage, deficit and runoff. To a significant degree, the TMI index balances lateral 

infiltration and evapotranspiration for a particular region. Olaiz et al. (2017), reviewed 

the differing published procedures which attempt to simplify the TMI calculation from 

the original proposed by Thornthwaite in 1948, and concluded that the simplified 

equation by Witzcak et al. (2006) provides values similar to those determined by the 

original procedure (Thornthwaite, 1948).  
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The TMI has been used by geotechnical engineers to estimate soil suction envelope 

parameters, required for suction-based shrink-swell soil volume change estimations, such 

as the depth to stable (commonly referred to as equilibrium) suction, magnitude of stable 

suction, and total potential suction change at the surface. Published studies reviewed by 

the author that relate TMI to suction envelope parameters include but are not limited to: 

Mitchell (1979, 1980, 2008, 2013), McKeen & Johnson (1990), Fityus et al. (1998, 

2004), Fityus & Smith (1998), Fox (2000), Cameron (2001), Briaud et al. (2003), 

McManus et al. (2004), Aubeny & Long (2007), Chan & Mostyn (2008), Fityus & Buzzi 

(2008), Vanapalli & Lu (2012), Karunarathne et al. (2012, 2016), Li et al. (2013, 2015), 

Sun (2017), the Post-Tensioning Institute 2nd and 3rd Edition (2004, 2008), Lytton et al. 

(2005), Cuzme (2018), Singhar (2018), Vann (2019), Vann & Houston (2021), and Olaiz 

et al. (2021).   

2.2.1 Thornthwaite Moisture Index, TMI 

Thornthwaite Moisture Index, TMI, is a parameter that represents the balance 

between the infiltration and evaporation in the soil, based on climatic data collected from 

weather stations.  There have been many successful studies which have developed 

relationships between TMI and the climate-driven response of unsaturated soil, which 

will be discussed further herein.  

To determine yearly TMI for each month, first the potential evapotranspiration (PET) for 

each month must be calculated 
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Where, f1 is the fraction of the number of days in month divided by the average number 

of days in month, 30; f2 is the fraction of the number of hours in a day divided by the 

base of 12 h in a day; t is the mean monthly temperature in degrees Celsius; I is the 

annual heat index; and a is a coefficient. 
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Where, ti is the mean temperature for the ith month, and  

 3 7 3 5 26.75 10 7.71 10 1.792 10 0.49239a I x I x Ix      (3) 

The TMI (Witczak et al., 2006) can now be determined by 

 75 1 10
P

TMI
PET

    
 

 (4) 

Where, P is the sum of the monthly total rainfall over the previous 12 months. 

When the precipitation is greater than the evaporation, the TMI is positive, while 

negative TMI values represent arid and semi-arid regimes. As defined by Thornthwaite, 

the TMI represents an average annual condition; while the modified TMI equation can be 

used to represent monthly or annual conditions for any locations which weather data is 

available. Olaiz et al. (2017) and Singhar (2018) developed a geographic information 

system (GIS) tool which presented the TMI for all NOAA stations in the United States 

based on the 30-year monthly normal from approximately 1980 to 2010. 
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Karunarathne (2016) conducted a sensitivity study on the effects of the number of years 

of data, or averaging period, used in the calculation of the TMI. Figure 2-1 from the study 

illustrates how the variability in TMI significantly increases from a 25-year duration to a 

yearly duration.  

 

Figure 2-1 Sensitivity of Averaging Period on TMI (Karunarathne, 2016) 

 

2.2.2 TMI-Suction Model 

As part of the NCHRP 9-23 project entitled Environmental Effects in Pavement 

Mix and Structural Design, material samples were collected from beneath the highway 

pavement of two WesTrack cells, one MnRoad section, and 27 Long-Term Pavement 

Performance (LTPP) sites located throughout the United States (LTPP 2021, Houston et 

al. 2006). The sites were selected to represent an unbiased statistical distribution with 

respect to factors such as pavement type, depth to groundwater table, mean annual 
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temperature, precipitation, freezing conditions, soil type, and presence of cracking 

(Perera 2003, 2005, and Perera et al. 2004a). 

Perera (2003, 2005) studied the relationship between in-situ moisture content, suction, 

TMI, and index soil properties. Correlations were for two models: the TMI-P200 model, 

which is valid for granular base materials; and the TMI-P200/wPI model can used to 

estimate the equilibrium suction of subbase and subgrade materials (Rosenbalm, 2011). 

The two models are briefly explained in the following subsections. Note that the Perera 

study also included samples from sides of the pavement (uncovered) but the relationship 

between the in situ suction of the uncovered samples and the TMI consisted of relatively 

high uncertainty.  

2.2.2.1 TMI-P200 Model 

This model is used to find the equilibrium soil suction based on every aspect that 

affects water content, such as climate conditions (represented by TMI) and percent 

passing the #200 sieve. The following equation was presented: 

 
 101TMIe          (5) 

where, 𝛹 – the matric suction of the soil; and 𝛼, 𝛽, 𝛾 are regression constants. 

The values of P200 range between zero and sixteen percent. If more than 16% passes sieve 

#200, P200 is limited to 16%. The regression constants can be found in Table 2-1 and 

interpolation between values is allowed (Perera, 2003). 

 



 

20 

Table 2-1 TMI-P200 Regression Constants (Perera 2003) 

P200 𝜶 𝜷 𝜸 

0 3.649 3.338 -0.05046 

2 4.196 2.741 -0.03824 

4 5.285 3.473 -0.04004 

6 6.877 4.402 -0.03726 

8 8.621 5.379 -0.03836 

10 12.180 6.646 -0.04688 

12 15.590 7.599 -0.04904 

14 20.202 8.154 -0.05164 

16 23.564 8.283 -0.05218 

 

For programming purposes, Rosenbalm developed the following equations to estimate 

the regression constants (Rosenbalm, 2011): 

 3 2
200 200 2000.00157( ) 0.110566( ) 0.11352( ) 3.8218P Pa P     (6) 

 3 2
200 200 2000.0044713( ) 0.112094( ) 0.33636( ) 3.2358P P P       (7) 

 ( 5) 3 2
200 200 2002.87563 10 ( ) 0.00085( ) 0.006108( ) 0.04977x P P P      (8) 

2.2.2.2 TMI-P200/wPI model 

The TMI-P200/wPI model is of interest to this study. This model was developed 

for fine-grained material, which makes it suitable for expansive soils. For such materials, 

in addition to P200, the weighted plasticity index, wPI, property was added, where: 

 200

100

P
wPI PI

   
 

 (9) 
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The following equation is used to calculate suction based TMI, P200, and wPI (Perera et 

al., 2005). 

  = TMIe


     
 (10) 

where, 𝛹 is the matric suction of the soil; and 𝛼, 𝛽, 𝛾, 𝑎𝑛𝑑 𝛿 are regression constants. 

Table 2-2 presents the values of the regression constants for this model. In cases where 

the wPI value is less than 0.5 and P200 is less than 10, the TMI-P200 model should be used.  

Table 2-2 TMI-P200/wPI Regression Coefficients (Perera et al., 2005). 

P200 wPI 𝜶 𝜷 𝜸 𝜹 

10  0.3 419.07 133.45 15.0 

50 0.5 0.3 521.50 137.30 16.0 

 5.0 0.3 663.50 142.50 17.5 

 10 0.3 801.00 147.60 25.0 

 20 0.3 975.00 152.50 32.0 

 50 0.3 1171.2 157.50 27.8 

 

Equations for the regression constants were developed as part of the NCHRP 9-23 project 

(Rosenbalm, 2011). The regression constant for wPI < 0.5 are expressed as:   

  2002.56075 393.4625P    (11) 

  2000.09625 132.4875P    (12) 

  2000.025 14.75P    (13) 

The regression constant for wPI ≥ 0.5 are expressed as:   
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 3 20.006236( ) 0.7798334( ) 36.786486( ) 501.9512wPI wPI wPI     (14) 

 3 20.000395( ) 0.04042( ) 1.454066( ) 136.4775wPI wPI wPI      (15) 

 20.01988( ) 1.27358( ) 13.91244wPI wPI     (16) 

The Perera et al. (2006) TMI-P200/wPI Suction relationships were graphed to provide a 

visual representation and is provided in . 

 

Figure 2-2: TMI-P200/wPI Relationship with Soil Suction (Perera et al., 2005) 

 

2.2.3 Unsaturated Soil Suction Envelopes 

The key aspects which affect the volume change potential of soil are the climatic 

conditions of the site and the soil properties.  The two aspects directly affect the active 

zone, or depth of influence, of the soil profile, illustrated in the figure below. 
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The change in water content occurs in the unsaturated zone of the subsurface. However, 

at some depth, no dramatical change in water content occurs. In other words, the change 

in suction decreases with depth until reaching a point where it is almost zero, or the water 

content becomes nearly constant and does not change with depth (Figure 2-3 and Figure 

2-4) (Nelson and Miller, 1992; Bulut, 2001). The depth to the zero-suction-change is 

known as the depth of influence or the active zone. Other definitions can be found in the 

literature for the active zone such as the zone of seasonal moisture fluctuation, the depth 

of wetting, or the depth to constant/equilibrium suction. 

 

Figure 2-3 Water Content Profile in the Active Zone (After Nelson and Miller 1992) 

Other factors that influence the depth of the active zone are the site cover (i.e. structure, 

pavement, vegetation, etc., groundwater table and soil cracking pattern, and the amount 

of clay minerals within the soil profile.  
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Figure 2-4 Suction Profiles, Modified from Bulut (2001) (After Amer 2016) 

 

Based on those factors, it can be realized that activity in the active zone is in a transient 

state which leads to non-linear constitutive relationships. The depth of the active zone has 

a significant role in the estimations of potential shrink-swell soil volume change driven 

by seasonal climate/moisture variations. 

2.2.4 Suction-Based Diffusion Equation 

The diffusion of moisture through a soil proceeds from a state of low suction to a 

state of high suction. The moisture flow through unsaturated soil is represented as soil 

suction as function of location and time. The moisture flow at any location in saturated 

soil is represented by Darcys Law 
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d
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dx

    (17) 

Where:  = velocity of flow, k  = permeability, 
d

dx


= gradient of potential in x direction, 

and 

 tz h    (18) 

Where: z  = elevation above the datum and th  = total suction. 

For unsaturated soil, the permeability is not constant but rather suction dependent. In 

1967, LaLibere G.E. & Corey A.T. observed expressed the unsaturated soil permeability 

( unsatk ) as: 
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 (19) 

Where: oh  = total suction of approximately 100 cms of water (9.81 kPa), satk  = saturated 

permeability, and n  = positive constant close to 1 for clays and near 4 + for sands.  

The differential equation representing the suction variation in unsaturated soils is term the 

diffusion equation (Mitchell, 1979) which can be solved by implementation of known or 

estimated boundary and initial conditions. For an unsaturated clay, the exponent n  in Eq 

2. is set to 1 and then substituted into Eq. 1, resulting in the expression: 

 o t
sat

t

h dh
k

h dx
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Using the expression: 
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 log logd h e dh

dx h dx
  (21) 

And substituting into Eq. 3: 

 log
0.434

sat o
t

k h d
h

dx
    

 
 (22) 

Which can be simplified down to: 

 
0.434

sat ok hdu
p p

dx
      (23) 

Mitchell (1979) referred to the constant p  as the unsaturated permeability, which for 

clays with saturated permeabilities on the order of 10-8 to 10-6 cm/sec results in p  

ranging from 2x10-6 cm2/sec to 2x10-4 cm2/sec. 

The suction range moves between two profiles, one is when water enters the soil with a 

constant velocity, low suction due to wetting, and the other is when water exits the soil 

with constant velocity, high suction due to drying. 

Mitchell defines the constant c as the moisture characteristic which represents the change 

in moisture content per the change in soil suction. This term can be related to the slope of 

the moisture content soil water characteristic curve (SWCC) within the transition zone 

which is generally constant. Although the slope of the SWCC is affected by hysteresis, 

Mitchell assumes the hysteresis for clays is practically negligible and the value of c  can 

be used for wetting and drying scenarios.  
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Mitchell derived the diffusion equation using the moisture flow in and out of a 3D 

incremental unit of soil. The diffusion equation defines the variation in soil suction 

throughout a bod of soil with respect to space and time. The diffusion equation is like the 

well-established relation of consolidation for saturated soils and the heat flow equation in 

fluid dynamics. 

The general form of the diffusion equation defining moisture flow through unsaturated 

soil is expressed as: 

 
 2 2 2 , , , 1f x y z tu u u u

x y z p t
   

   
   

 (24) 

Where   = the diffusion coefficient of the soil and is assumed constant of a small 

suction change. The magnitude of the diffusion coefficient represents the rate of diffusion 

of soil moisture under changes in suction. Based on the range of suction changes in the 

laboratory soaking and evaporation tests, two tests used to measure the coefficient of 

diffusion, the magnitude of suction change that the diffusion coefficient is applicable to is 

2.75 pF (saturated) to 6.34 pF. 

Using the diffusion equation, the suction at any depth ( z ) and time in a 1-dimensional 

view provided that the surface is subjected to a periodic change in suction, is expressed 

as: 

  , cos 2
n

z
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n
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Where,  ,u z t  is the suction as a function of space, y, and time, t, in pF or kPa, z is 

depth , Ue is the equilibrium value of suction expressed as pF, U0 is the amplitude of pF 

(suction) change at the ground surface, n is the number of suction cycles per second (1 

year = 31.5×6 seconds), 𝛼 is the soil diffusion coefficient The 1D diffusion equation 

indicates that the amplitude of suction at any depth decreases exponentially as a function 

of the diffusion coefficient. If the suction at the surface and at any depth is measured, the 

coefficient of diffusion can be determined by the 1D diffusion equation.  Furthermore, 

the 1D diffusion equation captures the lag in suction change with depth and time. The 

suction at depth z  lags the suction at the surface ( 0z  ) by time: 

 
1

2

z
t

n
  (26) 

If the time lag in suction at a specific depth is measured, the diffusion coefficient can be 

back calculated using Eq. 9. 
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t n



  (27) 

The diffusion equation method can produce a suction envelope, which is asymmetric 

about the magnitude of constant suction value if the surface flux boundary condition is 

modeled as a time-series with varying amplitudes (e.g., Fourier series).  Aubeny & Long 

(2007) produced theoretical examples of how the skewness of a humid, semi-arid, and 

arid climates differ is depicted in the Figure 2-5.  
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Figure 2-5 Characteristic Suction Envelopes for Humid, Semi-Arid, and Arid Climates 
(Aubeny & Long, 2007) 

 

Alterations to the suction profile have also been studied and proposed.  Alterations 

include post-construction drainage changes such as a sloping grade, replacing the native 

expansive soil with imported granular soil, vegetation, and natural desiccation cracking. 

Lytton et al. (2005) developed changes to the Mitchell (1979) suction envelope method to 

encompass such scenarios. Figure 2-6 presents two example profiles from Lytton et al. 

(2005), which the natural suction profile is altered due to the addition of granular soil and 

the presence of deep roots from adjacent vegetation.  Efforts to simplify the development 

of the suction envelope have been a focus of the associated research in the past two 

decades. A triangular envelope, which linearly interpolates from the surface flux to the 

depth of equilibrium suction has been incorporated into AS2870 (2011).  
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Figure 2-6 Suction Profile versus Depth with Adding Stabilized Layer (left) for Fort 
Worth North Site and Case of No Moisture Control (right) at Atlanta US 271 Site (Lytton 

et al., 2005) 

 

TMI-Suction Envelope Relationships (Vann and Houston, 2021) 

The long-term limits of the soil suction variation within the active zone are referred 

to as the suction envelope. This envelope can be visualized by computer simulations of 

the soil diffusion equation or measured in the field through instrumentation and a long-
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term monitoring plan. The latter is much more expensive and no feasible for most 

practical situations, researchers have sought to build empirical correlations which can be 

used to validate or improve the input parameters required for the computer modeled soil 

suction diffusion analyses. 

The active zone or soil suction envelope can be modeled using Mitchell’s (1979) 

diffusion equation if the following key parameters are directly measured or empirically 

estimated: 

1) The variation of suction at the surface, commonly referred to as the surface flux 

boundary condition, which is directly affected by the climatic conditions and can 

be altered due to site cover, 

2) The depth which corresponds to a stable or negligible change in soil suction, 

referred to as the depth to equilibrium suction, 

3) The magnitude of equilibrium suction at the depth of equilibrium, 

4) The diffusion parameters of the suction envelope which provide the rate of 

diffusion and the triangular to trumpet shape of the long-term suction envelope.  

The diffusions parameters consist of the frequency of cyclic variations in surface 

suction and the diffusion coefficient.  

Olaiz (2017), Cuzme (2018), Vann (2019), and Houston and Vann (2020) published on 

an extensive study of suction envelopes which was part of the National Science 

Foundation (NSF) study (#1462358) on “Soil Suction Surrogates for Advancing 

Complete-Stress-State Solutions to Expansive Soils” at Arizona State University. 
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Specifically, Vann and Houston (2021) published updates to empirical relationships 

between TMI and the suction envelope parameters discussed above. The Vann and 

Houston (2021) TMI-suction envelope relationships were developed through a 

compilation of historical soil suction data gathered from an extensive literature, a data 

mining effort of professional geotechnical investigation reports, and significant drilling 

effort at sites in Texas, Oklahoma, Colorado, and Arizona. As such, the methods for 

obtaining the suction envelope parameters in this study will follow the Vann and Houston 

(2021) relationships with TMI as they encompass data from the previous major studies, 

have been validated with measured data, and are relatively simple (i.e., based on TMI 

only). Published literature of related studies are continuously reviewed by the author; 

however, will not be included herein unless there are aspects being directly applied to this 

study. The author recommends Vann (2019) be referenced for additional background as it 

includes a very extensive and clear literature review of the soil suction envelope 

parameters.  

The soil suction unit of pF (log to the base 10 of soil suction in centimeters of water) was 

used in the Vann and Houston (2021) study due to its extensive use in the geotechnical 

practice, with regards to unsaturated soils. Note that log of suction in kPa units is 

approximately equal to suction in pF units, minus 1 (i.e., 4.0 pF = 3.0 log (suction (kPa)). 

The pF units for soil suction will also be adopted in this document. 

Vann and Houston (2021) developed an improved relationship between the depth 

of equilibrium suction and the 30-year TMI through a comprehensive literature review 

search and the additions of several new drill sites (Figure 2-7). 
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Figure 2-7: Relationship Between TMI and the Depth to Equilibrium Soil Suction (Vann 
and Houston, 2021) 

 

The relationship between the Depth to Equilibrium Suction ( D ) [m] and 30-year TMI 

is expressed as: 

  2.36 0.1612

2.617
1.617

1e TMI
D

e
 

 


 (28) 

With an R = 0.90 and standard error = 0.315 m. 

The Vann and Houston (2021) study also developed a surrogate equation which uses a 

ratio of the field moisture content and the Liquid Limit to estimate soil suction. The 

surrogate suction equation (Figure 2-8), can be used to verify the estimated depth of 

equilibrium suction or to estimate the full in-situ suction profile.  
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Figure 2-8 Soil Suction Estimation using Moisture Content and Liquid Limit (Vann et al. 
2018) 

 

The relationship between the soil suction [pF] and the ratio of moisture content to the 

Liquid Limit is expressed as: 

   0.217
3.235 w

LL 
   (29) 

With an R = 0.61 and a standard error = 0.258 pF. 

The stable, or equilibrium, suction value is determined using the Vann and Houston 

(2021) model (Figure 2-9).  
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Figure 2-9: Equilibrium Suction vs. TMI with Literature Values (Vann and Houston, 
2021) 

 

The equation for the Equilibrium Suction (𝜓e) [pF] as a function of 30-year TMI is: 

 20.0002 0.0053 3.9771e TMI TMI     (30) 

With an R = 0.65 and a standard error = 0.196 pF. 

2.2.5 Variation in Suction at the Ground Surface 

The limits of the potential change in suction at the surface can be estimated using 

the Vann and Houston (2021) relationship presented in Figure 2-10. The relationship is 

only recommended to be used for 30-year TMI values in the range of -60 to +30. For 

TMI values greater than 30, which represents humid climate conditions, McManus et al. 

(2004) recommend the change is suction at the surface to not be less than 1 pF.  
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Figure 2-10: Limits of the Potential Change in Suction at the Surface vs. TMI with 
Literature Values (Vann and Houston, 2021) 

 

The relationship between the potential change in suction at the surface (𝜓) [pF] and the 

30-year TMI is expressed as: 

  0.0051.2109 TMIe    (31) 

With an R = 0.92 and a standard error = 0.18 pF. 

2.2.6 Diffusion Parameters 

A key soil parameter necessary for the suction envelope computation is the soil 

diffusion coefficient. In 2008, Mitchell performed a study, which resulted in the 

following relationship between TMI and the diffusion coefficient, shown below (Figure 

2-11). 
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Figure 2-11 Relationship between Diffusion Coefficient and TMI (Mitchell, 2008) 

The diffusion coefficient can also be back calculated for a given site if the surface flux, 

magnitude of equilibrium suction, depth to equilibrium suction and the variation of soil 

suction at the depth of equilibrium suction is assumed.  

Aubeny & Long (2007) also studied the uncertainty of the key variables required in the 

Mitchell’s equation (1979) for the change in soil suction with time. The study concluded 

that the diffusion coefficient (α) had significant ranges for a given soil, low 

reproducibility, and discrepancies between lab and field measurements, and was 

dependent upon the number of climatic cycles per year (n) when performing a back-

calculation from the depth of equilibrium suction.  

Aubeny & Long (2007) also presented illustrative suction envelopes, developed from the 

Mitchell (1980) diffusion equation to demonstrate that asymmetrical soil suction 
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envelopes are expected on due to variations is the climate-induced suction change at the 

ground surface and the hysteresis phenomena of unsaturated hydraulic conductivity.  

Aubeny & Long (2007) introduced a climate parameter, r, that is the percentage of the 

total anticipated change in soil suction at the surface, (𝜓), comprising the wet side of 

the suction envelope. The climatic parameter can be expressed in terms of the equilibrium 

suction and the minimum (wet) and maximum (dry) suction at the surface (z=0): 
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 (32) 

Houston and Vann created a relationship between the climatic parameter (r) and TMI 

(Figure 2-12). 

 

Figure 2-12: Relationship Between the Climate Parameter, r, and TMI (Vann and 
Houston, 2021) 
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The equation for the climatic parameter (r) as a function of TMI is expressed as: 

  0.0090.3725 TMIr e   (33) 

With an 𝑅 = 0.80 and a standard error = 0.11. 

Depending on the approach taken, knowledge of a portion of the suction envelope 

parameters allows for the back calculation of the other unknown parameters. The 

assumption that the depth of equilibrium occurs at the location where the seasonal 

fluctuations fall below 0.2 pF provides an additional boundary condition to aid in back-

calculation of unknown parameters (Naiser, 1997; Lytton, 1997).  

2.3 Proposed Climate-Suction Model for Uncovered Sites 

Perera et al. (2005) TMI-P200/wPI provides a useful relationship between TMI, wPI, 

and equilibrium suction for subgrade soils beneath pavements, which was developed 

from extensive testing at 44 sites across the US.  The model can relate the monthly 

variation in climate (TMI) to the variation in suction at the ground surface of a covered 

site by assuming that the subgrade suction will trend towards the equilibrium suction 

value estimated using the monthly TMI in the TMI-P200/wPI model. The climate-driven 

variation of suction at the ground surface for a covered profile is not expected to be as 

large as an uncovered profile with the same soil properties at the same location. Although 

Perera (2003) also studies subgrade soils outside of the pavement edge (uncovered) and 

statistically significant relationship could not be developed.   
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A study was conducted using the ASU-NSF database to attempt to relate the 

monthly climate data (average temperature, precipitation, and TMI) to the in situ suction 

at the ground surface. The ground surface was defined as the upper two feet and the in 

situ suction was estimated using the Vann and Houston (2021) surrogate suction 

relationship with in situ moisture content and Liquid Limit.  The ASU-NSF database was 

filtered to include only uncovered, undeveloped sites with groundwater greater than 8 

feet below the surface and the average wPI in the upper 2 feet greater than 10.  The 

filtering resulted in 75 data points from 50 different locations in Texas which had 30-year 

TMI values ranging from -46.68 to 36.33. Table 2-3 presents the ASU-NSF study sites in 

Texas used to develop the climate-suction relationship for uncovered sites. 

Table 2-3 ASU-NSF Study Sites in Texas for Development of Climate-Suction Model 

City (Texas) 
Drill 
Date 

NOAA Station 
ID USCS 

In situ 
Moisture 
Content  LL %-200 PI 

Suction* 
(pF)  

30-
year 
TMI 

Monthly 
TMI 
 (i-1) 

Monthly 
PRCP 
(i-2) 

Monthly 
PRCP 
(i-3) 

San Antonio 2/15/13 USW00012970 SC  0.16 70 42 51 4.46 -16.6 -33.84 0.47 1.32 

Killeen 3/20/14 USW00013959 CH  0.30 53 84 52 3.66 -4.99 -10.20 0.76 3.4 

Killeen 3/20/14 USW00013959 CH  0.15 75 84 41 4.59 -4.99 -10.20 0.76 3.4 

Killeen 3/20/14 USW00013959 CH  0.29 82 88 31 4.05 -4.99 -10.20 0.76 3.4 

Breckenridge 1/15/14 USC00411042 CH  0.19 52 86 31 4.02 -9.57 -18.34 1.65 4.16 

Carthage 5/1/10 USW00013972 CL  0.21 23 67 4 3.30 20.17 10.94 9.59 7.93 

Carthage 5/1/10 USW00013972 CL  0.14 23 53 4 3.60 20.17 10.94 9.59 7.93 

Frisco 4/16/14 USW00012917 CH  0.28 66 98 42 3.90 36.33 16.09 13.83 3.23 

The Woodlands 5/1/14 USW00012960 SC  0.10 23 48 12 3.88 14.36 13.74 6.23 6.08 

Fisco 4/1/14 USW00012917 CH  0.31 68 89 44 3.84 36.33 16.09 13.83 3.23 

Fisco 4/1/14 USW00012917 CH  0.29 69 86 45 3.90 36.33 16.09 13.83 3.23 

Fisco 4/1/14 USW00012917 CH  0.27 66 86 38 3.93 36.33 16.09 13.83 3.23 

College Station 3/1/13 USW00003904 CL  0.07 32 35 16 4.56 -0.01 -22.74 12.85 9.49 

College Station 3/1/13 USW00003904 CL  0.17 39 69 20 3.87 -0.01 -22.74 12.85 9.49 

La Grange 3/1/12 USW00013904 CH  0.31 70 89 49 3.86 -4.43 -21.99 18.57 12.42 

La Grange 3/1/12 USW00013904 CH  0.30 31 90 50 3.26 -4.43 -21.99 18.57 12.42 

La Grange 3/1/12 USW00013904 CH  0.31 67 88 46 3.82 -4.43 -21.99 18.57 12.42 

Abilene 1/21/14 USW00013962 CH  0.16 57 79 43 4.26 -18.09 -24.40 2.98 3.57 

Abilene 1/21/14 USW00013962 CH  0.14 58 80 37 4.40 -18.09 -24.40 2.98 3.57 

Hidalgo 12/5/12 USW00012959 CH  0.17 39 51 40 3.87 -37.64 -46.78 3.53 4.83 
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City (Texas) 
Drill 
Date 

NOAA Station 
ID USCS 

In situ 
Moisture 
Content  LL %-200 PI 

Suction* 
(pF)  

30-
year 
TMI 

Monthly 
TMI 
 (i-1) 

Monthly 
PRCP 
(i-2) 

Monthly 
PRCP 
(i-3) 

Bulverde 4/20/11 USW00012921 CH  0.25 82 43 48 4.19 -13.29 -25.88 1.27 6.75 

Bulverde 4/20/11 USW00012921 CH  0.20 81 43 46 4.38 -13.29 -25.88 1.27 6.75 

Crowly  9/12/06 USW00013961 CH  0.20 53 78 32 4.00 -0.5 -30.30 1.07 8.01 

Crowly  9/12/06 USW00013961 CH  0.21 53 77 33 3.95 -0.5 -30.30 1.07 8.01 

Burleson 1/1/14 USC00411246 CH  0.25 53 90 32 3.81 5.42 -11.62 4.98 9.58 

Burleson 1/1/14 USC00411246 CH  0.21 52 83 32 3.94 5.42 -11.62 4.98 9.58 

Castroville 4/1/13 USW00012962 CH  0.23 64 93 46 4.04 -20.88 -31.20 0.28 4.1 

Castroville 4/1/13 USW00012962 CH  0.19 57 93 39 4.11 -20.88 -31.20 0.28 4.1 

Denton 12/1/12 USW00013961 SC  0.15 38 46 22 3.96 -0.5 -15.83 4.11 5.89 

Segun 6/1/13 USW00012921 CH  0.31 64 80 38 3.79 -13.29 -5.42 7.04 2.41 

Kyle 4/1/12 USW00013904 CH  0.22 77 94 57 4.25 -4.43 -21.64 9.82 18.57 

Kyle 4/1/12 USW00013904 CH  0.22 67 94 48 4.12 -4.43 -21.64 9.82 18.57 

Cedar Park 10/14/11 USW00013958 CH  0.13 67 95 38 4.62 -10.09 -47.97 0 0.13 

Cedar Park 10/14/11 USW00013958 CH  0.08 51 51 35 4.84 -10.09 -47.97 0 0.13 

Baytown 3/5/12 USW00012918 CH  0.50 111 96 84 3.85 21.8 -14.93 13.66 10.68 

Baytown 3/5/12 USW00012918 CH  0.47 109 98 84 3.88 21.8 -14.93 13.66 10.68 

Baytown 3/5/12 USW00012918 CH  0.44 94 95 71 3.81 21.8 -14.93 13.66 10.68 

San Antonio 8/1/12 USW00012970 CH  0.15 58 86 42 4.34 -16.6 -27.19 0.59 12.59 

Fort Worth 7/1/14 USW00013961 CH  0.12 49 64 30 4.39 -0.5 -25.09 6.02 5.99 

Fort Worth 7/1/14 USW00013961 CH  0.16 48 78 29 4.11 -0.5 -25.09 6.02 5.99 

Kaufman 3/1/12 USW00053911 CH  0.24 44 69 26 3.69 9.37 -12.64 11.87 11.89 

Friendswood 4/1/13 USW00012975 CH  0.25 52 93 31 3.79 21.94 4.43 5.36 11.2 

Red Oak 7/1/14 USW00013960 CH  0.32 81 89 51 3.96 -2.24 -23.23 10.13 4.62 

Red Oak 7/1/14 USW00013960 CH  0.30 81 86 55 4.01 -2.24 -23.23 10.13 4.62 

Beamount 9/1/13 USW00012917 CL  0.14 40 68 24 4.06 36.33 20.55 7.6 8.05 

Beamount 9/1/13 USW00012917 CL  0.15 48 84 28 4.16 36.33 20.55 7.6 8.05 

San Antonio 12/1/12 USW00012970 CH  0.33 84 93 57 3.96 -16.6 -27.75 5.77 9.29 

San Antionio 12/1/12 USW00012970 CH  0.24 75 95 56 4.14 -16.6 -27.75 5.77 9.29 

San Antonio 6/1/12 USW00012970 CL  0.11 36 11 18 4.18 -16.6 -35.01 0.06 6.71 

San Antonio 6/1/12 USW00012970 CL  0.08 31 9 19 4.34 -16.6 -35.01 0.06 6.71 

San Antonio 6/1/12 USW00012970 CL  0.13 33 10 16 3.96 -16.6 -35.01 0.06 6.71 

El Paso 6/1/14 USW00023044 CL  0.03 19 14 9 4.83 -46.68 -49.04 1.14 0.46 

El Paso 6/1/14 USW00023044 CL  0.02 16 15 8 5.08 -46.68 -49.04 1.14 0.46 

Spring 10/1/14 USW00053910 CL  0.11 43 77 29 4.35 22.41 3.87 0.96 8.71 

Killeen 12/1/14 USW00013959 CH  0.36 80 91 42 3.85 -4.99 -11.30 12.73 3.26 

Converse 9/1/12 USW00012921 CH  0.17 94 87 59 4.69 -13.29 0.21 9.64 0.29 

Glenn Heights 7/1/14 USW00013960 CH  0.17 63 70 42 4.30 -2.24 -23.23 10.13 4.62 

Lubbock 12/1/14 USW00023042 CL  0.19 25 52 7 3.43 -45.46 -16.98 0.96 17.62 

McAllen 3/1/13 USW00012959 CL  0.10 38 59 23 4.32 -37.64 -53.91 2.5 0 

Weslaco 1/1/13 USW00012904 CH  0.15 63 82 42 4.42 -30.89 -46.18 0.9 1.32 

Austin 3/1/13 USW00013958 CH  0.30 69 80 50 3.88 -10.09 -29.53 7.32 0.8 

Tyler 6/1/13 USW00013972 SC  0.14 32 55 27 3.87 20.17 -9.17 5.62 7.4 
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City (Texas) 
Drill 
Date 

NOAA Station 
ID USCS 

In situ 
Moisture 
Content  LL %-200 PI 

Suction* 
(pF)  

30-
year 
TMI 

Monthly 
TMI 
 (i-1) 

Monthly 
PRCP 
(i-2) 

Monthly 
PRCP 
(i-3) 

Tyler 6/1/13 USW00013972 SC  0.08 32 37 17 4.37 20.17 -9.17 5.62 7.4 

Tyler 6/1/13 USW00013972 SC  0.16 32 49 17 3.76 20.17 -9.17 5.62 7.4 

New Carney 9/1/13 USW00012960 ML  0.07 32 76 19 4.50 14.36 -16.19 10.4 11.33 

New Carney 9/1/13 USW00012960 ML  0.05 33 79 21 4.87 14.36 -16.19 10.4 11.33 

New Carney 9/1/13 USW00012960 ML  0.06 39 74 25 4.86 14.36 -16.19 10.4 11.33 

McAllen 7/24/13 USW00012959 CL  0.07 30 93 16 4.44 -37.64 -54.01 2.79 3.37 

Houston 7/1/13 USW00012918 CL  0.15 33 74 17 3.84 21.8 -9.42 7.52 24.27 

Hewitt 10/14/13 USW00013959 CH  0.25 72 96 47 4.07 -4.99 -4.06 0.56 13.97 

Princeton 2/1/14 USW00053914 CH  0.38 89 98 59 3.89 11.09 -16.02 7.26 6.05 

Atascocita 11/1/13 USW00012960 CH  0.17 55 64 34 4.17 14.36 -1.14 12.94 8.46 

Houston 11/19/13 USW00012918 SM  0.15 17 45 2 3.32 21.8 9.04 15.12 3.73 

Texas City/ La Marque 1/31/11 USW00012918 CL  0.24 44 73 28 3.69 21.8 9.62 12.1 0.18 

Dallas 11/16/09 USW00003927 CH  0.29 66 89 42 3.87 -1.87 3.45 16.56 4.16 

*Estimated using in situ moisture content and Liquid Limit per Vann and Houston (2001) 

The Climate-Suction model for uncovered sites was developed using a similar approach 

as Perera et al., (2005).  The data was subdivided into groups by wPI (wPI < 15, 20, 25, 

30, 35, 40, 45, 50, 50+) and an iterative multi-variate regression (linear and non-linear) 

using the climate data associated with site was performed using the Minitab statistical 

software package.  The 30-year TMI, the monthly average temperature (Celsius), and the 

monthly rainfall (cm) were gathered using the nearest NOAA weather station and the 

drill date associated with the in situ moisture content measurements. The climate 

parameters for 12 months prior to the drill date were also gathered to explore the 

possibility of inherent lag in unsaturated soil moisture flow.  

After numerous iterations the following model was developed relating the soil suction 

near the ground surface ( ) to wPI, the 30-year TMI, the monthly TMI of the month 

previous to the drill date ( 1iTMI  ), and the precipitation (cm) during 2 and 3 months prior 

to the drill date ( 2iPRCP ) and  ( 3iPRCP ) respectively: 
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PRCP PRCP PRCP TMI

     

   

    

 
 (34) 

Where, the suction ( ) is in pF, and  ,  , and   are the regression coefficients 

presented in  based on the wPI of the soil.   

Table 2-4 Regression Coefficients for Proposed Climate-Suction Model for Uncovered 
Sites 

wPI <15 15-20 20-25 25-30 30-35 35-40 40-45 45-50 50+ 
  4.073 4.609 4.201 3.882 4.765 4.219 3.864 4.364 3.961 

  -0.0309 0.088 -0.0362 0.0308 -0.1115 0.064 0.0172 -0.0369 -0.005 
  -0.00466 0.00299 0.00516 0.01543 0.01538 0.00016 0.00204 0.029 -0.00776 

Note that the proposed climate suction model is in units of pF, while the TMI-P200/wPI 

model for covered profiles (Perera et al., 2006) is in units of kPa.  The model fit was able 

to explain 84.9% of the variation in the suction data (i.e. R2 = 84.9%). Figure 2-13 

presents the incremental impact of each variable to the overall regression, indicating that 

the subdividing the data by wPI had the most impact, with the rainfall from 3 months 

prior to the drill date having the second most impact. 

 

Figure 2-13 Incremental Impact of Predictor Variables to R2 of the Regression for the 
Developed Climate-Suction Model (Minitab Output) 
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2.4 Validation of the NOFS Suction Profile Approach 

Validation efforts were performed using measured suction profile data at two 

uncovered sites from the ASU NSF study (#1462358) on “Soil Suction Surrogates for 

Advancing Complete-Stress-State Solutions to Expansive Soils”, which the author was a 

co-investigator on (Olaiz, 2017; Cuzme, 2018; Vann 2019; Vann and Houston, 2020).  

2.4.1 Overview of ASU-NSF Expansive Soil Study In Situ Soil Data 

As part of those research efforts involved with the NSF #1462358 study, 19 

testing borings were performed at seven total locations within Arizona, Colorado, Texas, 

and Oklahoma extending to a depth of 30 feet below the ground surface using a CME-55 

drill rig.  The selected locations were representative of areas where shrink-swell soils 

were suspected to be prominent, based on prior experience of the local consultants. 

During the drilling efforts, relatively undisturbed samples were retrieved at various 

depths using a Modified California Split Ring Sampler consisting of 18.0” long split 

barrel sampler with 2.5” outer diameter, with a blunt nosed shoe (area ratio of 56%). Bulk 

(disturbed) samples were obtained at 1.0-foot intervals. Lab testing of the ring samples 

included 1D response to wetting tests (ASTM D4546), WP4-C total suction 

measurements (Decagon Devices, 2011), and Soil Water Characteristic Curves with 

strain measurements using an oedometer pressure plate device (OPPD) developed by 

Fredlund (GCTS, 2007). Lab testing of each bulk sample included Sieve Analysis, 

Atterberg Limits, moisture content, and Total Suction via the WP4-C.  
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Olaiz (2017) evaluated the applicability of the WP4-C as part of the same NSF study and 

concluded that: 

 the device produces very similar results to the filter paper suction test, 

 the disturbance of the sample does not significantly affect the precision of the 

measurement due to the relatively small sample size, and 

 developed a method for converting the total suction measurement of the WP4-C to 

the matric suction using an oedometer pressure plate device (OPPD) to measure the 

suction matric suction of a natural and relatively undisturbed sample. 

The extensive lab testing effort of 1-foot intervals provides a detailed picture of the field 

suction profile at the time of drilling. As such, data from four sites associated with 

covered and uncovered borings, as defined by Vann (2019), were used to explore and 

validate the proposed NOFS suction model. Applicable information gathered from the 

four of the studied sites is in summarized in Table 2-5. 

Table 2-5 Relationships Between TMI and Equilibrium Suction for ASU-NSF Study 
Sites (adapted from Vann, 2019) 

Test Boring ID Location 
TMI  

(30-Year) Date Drilled NOAA Station ID 
DEN-2-U-N Denver, CO -20.6 9/16/16 USW00023066 

DEN-3-U-N Denver, CO -20.6 9/16/16 USW00023066 

SA-2-U-I San Antonio, TX -13.3 9/23/16 USW00012921 

SA-4-U-I San Antonio, TX -13.3 9/23/16 USW00012921 

 

At the Denver site, one test boring was advanced in a covered area where there was at 

least 3.048 m (10 ft) to the edge of the covering (asphalt), and two test borings were 
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completed in uncovered areas. At the San Antonio site, two test borings were advanced in 

covered areas where there was at least 3.048 m (10 ft) to the edge of the covering 

(asphalt), one test boring in an uncovered area that was routinely irrigated, and one test 

boring in an uncovered area that was not irrigated.  

2.4.2 Denver, CO Climate-Suction Model Exploration 

The drill date for the Denver, CO ASU-NSF study site was 09/17/2016 and the 

local NOAA weather station is “DENVER-STAPLETON” (ID: USW00023066). Test 

borings performed at this location were uncovered and included all the necessary 

laboratory measurements for the validation.  Table 2-6 presents the Soil Properties for 

Upper 2 ft of Uncovered Borings at ASU-NSF Denver, CO Site (Vann, 2019) and Figure 

2-14 presents the monthly climate data from 30 years prior to the drill date. Average 

values up the upper two feet, and an average of both boring locations combined were also 

explored to help smooth potentially sporadic data.  

Table 2-6 Soil Properties for Upper 2 ft of Uncovered Borings at ASU-NSF Denver Site 

Boring ID 

Depth 
Interval 

(ft) 
p200 
(%) LL PI w (%) wPI 

WP4-C 
Suction 

(pF) 
DEN-2-U-N 0-1 71 40 24 10.9 17.0 4.59 

DEN-2-U-N 1-2 71 38 23 10 16.3 4.6 
DEN-3-U-N 0-1 75 39 22 9.4 16.5 4.8 
DEN-3-U-N 1-2 69 38 22 9.7 15.2 4.66 
DEN-2-U-N Avg.  71 39 24 10.45 16.7 4.60 
DEN-3-U-N Avg.  72 38.5 22 9.55 15.8 4.73 
Combined Avg. 71.5 38.8 22.8 10.0 16.3 4.7 
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Figure 2-14 Monthly Average Temperature (red), Total Rainfall (blue), and TMI at the 

NOAA Station (ID: USW00023066) from 07/1986 to 12/2020 

The measured soil index properties and the gathered climate data at the site, were used to 

estimate the suction near the ground surface during the drill date was estimated using the 

proposed Climate-Suction model for uncovered sites. Table 2-8 presents the estimated 

near the ground surface suction at the ASU-NSF Denver Site for the 7 data points 

summarized previously in Table 2-6 
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Table 2-7 Suction at ASU-NSF Denver Site using Proposed Climate-Suction Model 

Boring ID 

Depth 
Interval 

(ft) 

Drill 
Month 

(i) wPI 

PRCP (i-
2) 

(7/2016) 
(cm) 

PRCP (i-
3) 

(6/2016) 
(cm) 

Monthly 
TMI (i-

1) 
(8/2016) 

30-year 
TMI 

Estimated 
Suction 

(Proposed 
Uncovered 

Model) 
(pF) 

DEN-2-U-N 0-1 9/2016 4.59 1.89 3.69 -27.62 -20.6 4.50 
DEN-2-U-N 1-2 9/2016 4.6 1.89 3.69 -27.62 -20.6 4.50 

DEN-3-U-N 0-1 9/2016 4.8 1.89 3.69 -27.62 -20.6 4.50 
DEN-3-U-N 1-2 9/2016 4.66 1.89 3.69 -27.62 -20.6 4.50 
DEN-2-U-N Avg.  9/2016 4.60 1.89 3.69 -27.62 -20.6 4.50 
DEN-3-U-N Avg.  9/2016 4.73 1.89 3.69 -27.62 -20.6 4.50 
Combined Avg.  9/2016 4.7 1.89 3.69 -27.62 -20.6 4.50 

 

2.4.3 San Antonio, TX Climate-Suction Model Exploration 

The drill date for the San Antonio ASU-NSF study site was 09/23/2016 and the 

local NOAA weather station ID “SAN ANTONIO INTL AP” (ID: USW00012921). Only 

one of the test borings performed at this location was uncovered and included all the 

necessary laboratory measurements for the validation. Table 2-8 Soil Properties for 

Upper 2 ft of Uncovered Borings at ASU-NSF San Antonio Site  presents the Soil 

Properties for Upper 2 ft of Uncovered Borings at ASU-NSF Denver, CO Site (Vann, 

2019 and Figure 2-15 presents the monthly climate data from 30 years prior to the drill 

date. The average values up the upper two feet were also explored to help smooth 

potentially sporadic data. 
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Table 2-8 Soil Properties for Upper 2 ft of Uncovered Borings at ASU-NSF San Antonio 
Site 

Boring ID 

Depth 
Interval 

(ft) 
p200 
(%) LL PI w (%) wPI 

WP4-C 
Suction 

(pF) 
SA-4-U-I 0-1 79 58 43 18.7 34.0 4.24 
SA-4-U-I 1-2 90 58 43 18.4 38.7 4.14 
Combined Avg. 84.5 58.0 43.0 18.6 36.3 4.20 

 

 

Figure 2-15 Monthly Average Temperature (red), Total Rainfall (blue), and TMI at the 
NOAA Station (ID: USW00012921) from 01/1987 to 12/2017 
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The measured soil index properties and the gathered climate data at the site, were used to 

estimate the suction near the ground surface during the drill date was estimated using the 

proposed Climate-Suction model for uncovered sites. Table 2-9 presents the estimated 

near the ground surface suction at the ASU-NSF Denver Site for the 7 data points 

summarized previously in Table 2-8 

Table 2-9 Suction at ASU-NSF San Antonio Site using Proposed Climate-Suction Model 

Boring ID 

Depth 
Interval 

(ft) 

Drill 
Month 

(i) wPI 

PRCP (i-
2) 

(7/2016) 
(cm) 

PRCP (i-
3) 

(6/2016) 
(cm) 

Monthly 
TMI (i-

1) 
(8/2016) 

30-year 
TMI 

Estimated 
Suction 

(Proposed 
Uncovered 

Model) 
(pF) 

SA-4-U-I 0-1 9/2016 34.0 6.08 0.85 -8.05 -13.29 4.26 
SA-4-U-I 1-2 9/2016 38.7 6.08 0.85 -8.05 -13.29 4.29 
Combined Avg. 9/2016 36.3 6.08 0.85 -8.05 -13.29 4.29 

 

2.4.4 Evaluation of Proposed Climate-Suction Model 

The estimated suction at the ground surface at the ASU-NSF Denver site (Table 2-7) and 

the San Antonio site (Table 2-9) using the proposed climate-suction model for uncovered 

sites ( uncv ) were compared to the directly measured values form the Vann (2019) study (

4CWP ), the estimated values using the surrogate approach from Vann and Houston 

(2021) based on in situ moisture content and Liquid Limit ( srgt ), and the estimated 

values using the Perera et al. (2006) TMI-P200/wPI model for covered profiles ( cvrd ). 

The results of the comparisons for the Denver site and the San Antonio sire are presented 

in Table 2-10.  The residual (comparison differences) mean error (RME), the residual 

standard error (RSE), and the mean absolute error (MAE) are also presented. 
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Table 2-10 Comparison of Suction Estimates to Measured Values at the Denver Study 
Site 

Boring ID 

Depth 
Range 

(ft) 
4CWP

 (pF) 
srgt

 
(pF) 

cvrd
 

(pF) 
uncv

 
(pF) 

srgt
 

vs.

4CWP
 

cvrd
 

vs.

4CWP
 

uncv
 

vs.

4CWP
 

uncv
 

vs. 

srgt  

uncv
 

vs. 

cvrd
 

DEN-2-U-N 0-1 4.59 4.29 3.37 4.50 -0.30 -1.22 -0.09 0.21 0.83 
DEN-2-U-N 1-2 4.6 4.32 3.38 4.50 -0.28 -1.22 -0.10 0.18 0.82 
DEN-3-U-N 0-1 4.8 4.41 3.38 4.50 -0.39 -1.42 -0.30 0.10 0.82 
DEN-3-U-N 1-2 4.66 4.35 3.40 4.50 -0.31 -1.26 -0.16 0.15 0.81 

DEN-2-U-N Avg. 4.60 4.31 3.38 4.50 -0.29 -1.22 -0.09 0.20 0.83 
DEN-3-U-N Avg. 4.73 4.38 3.39 4.50 -0.35 -1.34 -0.23 0.13 0.81 

Avg. Avg. 4.7 4.3 3.38 4.50 -0.32 -1.28 -0.16 0.16 0.82 

SA-4-U-I 0-1 4.24 4.14 2.39 4.26 2.39 4.26 -0.10 -1.85 0.02 

SA-4-U-I 1-2 4.14 4.15 2.24 4.29 2.24 4.29 0.01 -1.90 0.15 

Avg. Avg. 4.2 4.14 2.31 4.29 2.31 4.29 -0.05 -1.88 0.10 

Residual Mean Error (RME) of Combined Data: -0.250 -1.448 -0.099 0.113 1.023 

Residual Standard Error (RSE) of Combined Data: 0.252 1.448 0.135 0.113 1.023 

Mean Absolute Error (MAE) of Combined Data: 0.277 1.472 0.156 0.139 1.072 

 

Based on the validation study using the Denver and San Antonio ASU-NSF expansive 

soil study site data, the proposed climate-suction model appears to provide reasonable 

approximations for estimating the climate-driven suction near the ground surface for 

uncovered sites based on the following evidence provided in Table 2-10. 

 The residual standard error between 4CWP  and uncv  (RSE = 0.135 pF) is less 

than that between 4CWP  and srgt  (RSE = 0.252 pF), indicating that for the two 

sites explored, the proposed model which incorporates only index properties and 

climate data produces a more accurate estimate of the measured suction than the 

surrogate approach (Vann and Houston, 2021), which requires knowledge of the 

in situ moisture content.   
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 The residual standard error between 4CWP  and uncv  (RSE = 0.135 pF) is similar 

to that between srgt  and uncv  (RSE = 0.113 pF), indicating that for the two sites 

explored, the proposed model produces similar suction values the surrogate 

approach (Vann and Houston, 2021). 

 The average of the residuals between 4CWP  and cvrd  (RME = -1.448 pF) 

indicate that the Perera et al. (2005) model significantly underestimates the 

suction at the ground surface for uncovered sites, which agrees with assumption 

that covered soils should experience less climate-driven variation than uncovered 

sites.  

 The average of the residual between uncv  and cvrd  (RME = 1.023 pF) indicates 

that the proposed climate-model for uncovered sites produces values that are on 

average approximately 1 pF greater than the Perera et al. (2006) model for 

covered sites.  

 For each comparison the RME and the MAE are approximately the same 

magnitude indicating that the model either underestimated or overestimated the 

measured value for all data points, the exception of the and uncv  to 4CWP  (RME 

= -0.099 and MAE = 0.135) which indicates the proposed model produces an 

average estimate similar to the average of the measured data.  

Based on this validation study, the proposed climate-suction model for uncovered 

sites will be implemented in this study of suction envelopes and volume change of 

shrink/swell soils.  
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2.5 Representation of Suction Profiles using Fourier Series 

To model the suction changes as a function of time and depth, an equation must be 

developed to represent the variation of suction at the surface.  Historically, a simple 

periodic (sinusoidal) fit has been used to represent the surface suction variation with time.  

However, The Mitchell (1979) formulation of the closed-form suction diffusion equation 

allows for a Fourier time series to be applied as the surface flux boundary conditions.   

2.5.1 Overview of Fourier Series Analysis 

Time series techniques like the autoregressive moving average (ARMA) or the 

more advanced autoregressive moving average (ARiMA) are effectives methods for 

modeling sporadic data. However, such methods represent the data in a discrete manner. 

When continuous functions of time series data are required, the Fourier Series analysis 

can be used to generate a representative equation. The Fourier Series (FS) decomposes, 

or transforms, the time series data into a summation of periodic sine and cosine terms 

with differing amplitudes.  

The Fourier approach takes advantage of orthogonality relationships of sine and cosine 

which is generally defined using two functions  f x  and  g x  over an interval between 

a and b: 

          | 0b
af x g x f x g x w x dx   (35) 
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Where  w x  is a weighting function used to normalize ( nN ) theorthogonal functions 

expressed as:  

    2

n nf x w x dx N      (36) 

Where subscript n is the number of terms in the data.  The computation of the Fourier 

series includes the following integral identities of a complete orthogonal system over the 

domain  ,  .  

    sin sin mnmx nx dx
    (37) 

    cos cos mnmx nx dx
    (38) 

    sin cos 0mx nx dx
   (39) 

  sin 0mx
   (40) 

  cos 0mx
   (41) 

Where, 0m  , 0n  , and mn  is the Kronecker delta.  

The general form of a Fourier Series equation  sf x  can be expressed as: 

      1
02

1 1
cos sins k k

k k
f x a kx b kx

 

 
     (42) 

Where k is the order (number of cosine/sine terms) used to represent the time series data, 

a is the Fourier cosine coefficient, b is Fourier sine coefficient. The Fourier coefficients 

are expressed as: 
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  1
0 sa f x dx

    (43) 

    1 cosk sa f t kx dx
    (44) 

    1 sink sb f t kx dx
    (45) 

For a data set defined by the domain  ,L L  rather than  ,  , a change of variables 

such that ' /x Lx   can be used to express the Fourier series as: 

      ' '1
02

1 1
' cos sinkx kx

s k kL L
k k

f x a b 
 

 
     (46) 

With the Fourier coefficients expressed as: 

  1
0 ' 'L

sL La f x dx   (47) 

  1 '
' cos 'L

k sL L

kx
a f x dx

L




    
 

 (48) 

  1 '
' sin 'L

k sL L

kx
b f x dx

L
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The Fourier series can also be represented using complex coefficients, which provides the 

most effective approach for transforming discrete data into a continuous function: 

   ikx
s k

k
f x A e




   (50) 

Where, 1i   , and,  

  1
2

ikx
k sA f x e dx

 


   (51) 

Which can be simplified down to a piece-wise equation based on k: 
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For a periodic domain  / 2, / 2L L , the Fourier series with complex coefficients is 

expressed as: 

    2 /i kx L
s k

k
f x A e 


   (53) 

    /2 2 /1
/2

L i kx L
k sL LA f x e dx

   (54) 

The general form of a Fourier Series equation as function of time  sf t , which will be 

incorporated herein is expressed as: 

      1
0 12

1 1
cos sins k k k

k k
f t a t b t  

 

 
     (55) 

k fk   represents multiples of the fundamental frequency of the time series data 

expressed as: 2
tf 

 . The order parameter k will represent half of the number of terms 

(N) in the discrete time series data minus 1 (i.e. 1
2 1k N  ). 

2.6 Fourier Series Suction Profile 

Aubeny & Long (2007) expressed the long term suction envelopes time:  ,u y t  

using the Fourier series expansion of the suction diffusion equation: 

        
1

, exp cose dry wet k
k

u y t U U U a k k k  



      (56) 
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Where: eU  is the equilibrium suction value, dryU  is the maximum value of the suction 

variation at the ground surface, wetU  is the maximum value of the suction variation at the 

ground surface, k  is the order of the series (i.e. k =1, 2, 3…), ka  is the coefficients of 

the Fourier series expressed as: 

    2 / sinka k k r   (57) 

  is the dimensionless time factor expressed as: 

 2 tn   (58) 

  is the dimensionless depth factor expressed as: 

 2 /y n    (59) 

  is the soil suction diffusion coefficient, and n  is the lowest frequency of cyclic 

suction variation at the ground surface.  Figure 2-16 from Aubeny & Long (2007) 

presents characteristic suction envelopes for humid, semi-arid, and arid climates with 

equilibrium suction values of 2, 2.5 and 3 log-kPa, respectively.  Note that the log-kPa 

unit is 1.008 units less than the pF units used in this study.  The variable r presented in 

the figure is the climate parameter which Aubeny & Long (2007) express as:  

 
 
 

e wet

dry wet

U U
r

U U





 (60) 
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Figure 2-16 Characteristic Suction Envelopes for Humid, Semi-Arid, and Arid Climate 

 

2.6.1 Adjustments to NOFS Suction Profiles using Measured Data 

The Fourier series diffusion equation incorporates the dimensionless depth factor 

into an exponential decay which indicates that both the diffusion coefficient and the 

frequency of suction at the ground surface affect the depth of equilibrium value that is 

interpreted from the analysis.   

The diffusion coefficient is a relatively difficult parameter to obtain as it requires in situ 

suction measurements up to and sometimes greater than 20 feet below the surface over a 

long period of time, which is generally not feasible for practicing engineers.  Although it 

could also be measured in a laboratory, it requires a specialized procedure which most 

commercial geotechnical laboratories are not equipped to perform.  Furthermore, Aubeny 

& Long (2007) performed an extensive study to evaluate the lab measured and the field 
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measured diffusion coefficient both separately and together. The study concluded that 

each method resulted in a high range of values, and that lab measured diffusion 

coefficients were significantly less than those calculated from in situ suction 

measurements in the field over a long period of time, which also had a large range of 

results.  As such, the quantifying the diffusion coefficient continues to be a focus of 

research in unsaturated soil mechanics, typically with state Department of Transportation 

(DOT) divisions partnering with the local universities like the Oklahoma DOT with 

Oklahoma State University (Bulut et al., 2013) and Texas DOT with Texas A&M 

University (Lytton et al., 2005). 

Additional uncertainty is incorporated into the dimensionless depth factor of the Fourier 

series diffusion equation via the selected value to represent the frequency of cyclic 

suction variation.  Although this parameter can be calculated from the Fourier fit of the 

time-series suction data, the value will be governed by the timeframe of the provided 

suction data.  If the time frame of the provided data for the variation in suction at the 

surface is relatively short (e.g., 1 to 10 years), the suction envelope and the depth of 

equilibrium suction value interpreted from the analysis may be erroneous, especially if 

the suction data was measured during a period of prolonged drying (drought) or 

prolonged wetting.  To obtain a more accurate representation of the depth of equilibrium 

suction interpreted from the Fourier series diffusion equation, suction data for longer time 

frames should be incorporated. Unfortunately, such data sets of directly measured suction 

data are very rare.  
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As such, the author recommends the climate-driven change in soil suction at the ground 

surface and the long-term equilibrium state of the suction profiles, both magnitude and 

depth to equilibrium suction, be empirically estimated using models like the Perera et al. 

(2005) and/or Vann and Houston (2021) which relate soil suction envelope parameters to 

soil index properties and the Thornthwaite Moisture Index.  The use of such models 

provides additional known boundary and initial conditions of the diffusion equation 

allowing for the highly variable and difficult-to-measure parameters like the diffusion 

coefficient and the frequency of cyclic suction variation at the surface to be back-

calculated. 

2.6.2 Order of the Fourier Series Fit 

Generally, the goodness of fit of a Fourier equation to the discrete time series data 

improves as the order (number of sine and cosine terms) increases.  However, for large 

data sets which do not have significantly different amplitudes throughout, it is generally 

more efficient to choose the minimum number of terms which represents the key features 

(large amplitudes, long periods, etc.) of the data to reduce the computation time and the 

complexity of applying the Fourier series fit to physical modeling.    

Figure 2-17 presents the 1st and 8th order Fourier fit to the Vann and Houston 

(2021) adjusted surface suction for the TX 48-1068. The 1st order fit closely represents 

the original approach to modeling the surface suction flux by Lytton et al. (2005) using 

Mitchell’s (1979) equation. The adjusted R2 for the 1st order Fourier fit to the suction data 

is 0.2903, while the 8th order Fourier fit increases the adjusted R2 to 0.7056.  
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Figure 2-17: 1st and 8th order Fourier fit to the Surface Suction Data for the TX 48-1068 
Section for the Date Range 3/1987 to 9/1997 

 

Note that the initial suction is a function of the TMI value for that month.  The initial 

suction (time = 0) can be adjusted using a phase shift of the Fourier equation.  Lytton et 

al. (2005), provided values of phase shifts for different initial conditions of the soil (wet, 

dry, and equilibrium).   

However, there is a significant limitation to applying a fixed order series fit to time series 

data; depending on the duration of the series and the number of natural frequencies 

significant amounts of terms may be required to encompass the extreme values 

(maximum and minimum) of the individual monthly data.  For infrastructure build upon 

or with unsaturated soils, the inclusion of the peak values allows for a more accurate and 

conservative representation of the soil’s response to extreme weather events.  As such, 
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the Fourier series for seasonal suction variation should be adjusted to include the extreme 

values by one of the following techniques: 

  Normalization of the Fourier series between the maximum and minimum values of 

the seasonal surface suction, 

 Inclusion of a phase shift that improves the representation of the extreme values, or  

 Improvement of the goodness of fit of the Fourier series at the extreme value data 

points by increasing the order of the series (i.e., number of terms).  

2.7 Natural Order Fourier Series (NOFS) Algorithm 

This study presents the application of a Fourier Series approach for modeling 

monthly climate-driven soil suction profiles. Historically, the order of a Fourier Series 

was limited by the increased complexity of capturing additional amplitudes which were 

atypical to the overall data set. To remove this limitation while maintaining 

computational efficiency, an algorithmic approach was developed, referred to as the 

Natural-Order Fourier Series (NOFS), which uses a selection criterion defined by the 

distribution of amplitudes of an infinite-order Fourier fit. The NOFS models the suction 

profiles using the diffusion equation which exhibits an exponential decay of the 

amplitudes with depth.   

2.7.1 Automating the Fourier Series Order Selection  

An algorithmic model for the Natural Order Fourier Series fit of time-varying 

surface suction data was developed as part of this study to improve the representation 
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(goodness of fit) of the quantification (equation) of the soil-climate interaction for 

unsaturated soils (TMI-Suction) while attempting to avoid overfitting of empirical 

estimated data (compounding errors) and improve computation time (increase efficiency).  

A selection process for the NOFS includes the following three statistical evaluations 

which compared various aspects of the Fourier series fit to the time-varying suction data.  

After several optimization cycles using the ASU-NSF expansive soil study sites as 

examples, the following three selection criteria were established.  

Note that, the criteria threshold presented herein were based on the evaluations performed 

in this study and should be taken as recommendations only by the author only.  The 

threshold values may require a site-specific sensitivity study prior to implementation.  

2.7.1.1 Natural Order Selection Criterion 1: Mean Absolute Deviation of the Fit 

The first check to optimize the order of the Fourier fit to the monthly variation of 

suction at the ground surface uses the Mean Absolute Deviation (MAD) of the Fourier fit 

equation to the monthly suction data.   

This threshold provides the goodness of fit of the Fourier series equation to the monthly 

suction data.  As expected, the rate of decrease in the MAD initially starts of high as the 

order of the Fourier series moves away from a periodic-like function (k < 4) to more 

asymmetrical representations.  Based on the iterative optimization process performed 

during this study, it appears that the MAD of the Fourier series fit tends to fall below 0.05 

pF once the order of the series has increase past approximately 25% of the maximized fit 

(i.e., order = ½ total months of data).  Furthermore, the order of the Fourier fit associated 
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with a 0.5 pF MAD threshold value did not govern the selection of the order of the fit for 

any of the locations explored as part of this study. As such, a MAD threshold value of 

0.05 pF is adopted herein.  

2.7.1.2 Natural Order Selection Criterion 2: Absolute Error at Initial Point 

The first check to optimize the order of the Fourier fit to the monthly variation of 

suction at the ground surface uses the Absolute Error of the Fourier fit to the suction data 

at the initial month (t = 0). 

Errors associated with the initial point of the equation representing the climate-driven 

variation in suction are commonly caused by high discrepancies in the initial point (t = 0).  

Others of sought to correct for this issue using a phase shit of the Fourier series equation.  

Although this correction process is not difficult to perform, it does introduce additional 

steps and threshold recommendations into the process. As such, a quick evaluation of the 

absolute error at t=0 (AEt=0) for each order of the Fourier fit is recommended. Similar to 

the MAD evaluation, the absolute error at t=0 generally tends to decrease with increasing 

order; however, there is much more sporadic behavior of this comparison compared to 

the MAD.  For the sites explored as part of this study, the AEt=0 generally falls below 

0.05 pF around 33% of the maximum order of the fit and falls below 0.1 pF around 20% 

of the overall fit.  Based on the iterative optimization effort performed as part of this 

study, along with the recommendations from Lytton (1997), and acceptable range for 

establishing equilibrium soil suction in the subsurface is 0.1 pF, although error ranges up 
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to 0.4 pF have been used. As such, the absolute error of the Fourier fit to the suction data 

at the initial month (t = 0) is recommended to be less than 0.1 pF. 

2.7.1.3 Natural Order Selection Criterion 3: Residual Error  

The first check to optimize the order of the Fourier fit to the monthly variation of 

suction at the ground surface uses the residual error of the Fourier series to the estimated 

suction at the Extreme Values. 

The difference, or residual error at the highest and lowest estimated suction data can be 

used to improve the representation of extreme climate values for locations associated 

with unsaturated soils. The residual error at the extreme values was quantified using the 

conservative direction which forces the Fourier equation fit to capture the extreme values 

(i.e. the FS fit at the maximum suction should be greater than the estimate suction for that 

month, and the FS fit at the minimum suction should be less than the suction for the 

month).  This approach reduces the possibility of missing the effects of extreme weather 

changes in the computation model.  Although the desired threshold was zero (i.e. the 

model either mimics or over predicts the variability in the climate, such results were not 

reproducible with the same size evaluated as part of this study. Therefore, a threshold 

value of less than 0.05 pF provides more practical solutions.  

2.7.1.4 Example of Automated NOFS Selection Algorithm 

The automated algorithm for the NOFS fit to the climate-driven variation in soil 

suction is explored using Denver ASU-NSF expansive soil study site, which contains 

data of soil properties with directly measured in situ moisture/suction data  An average of 
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the two uncovered borings DEN-2-U-N and DEN-3-U-N was used to generate this 

example (Refer to Table 2-6).  Thirty years of historical climate data (Figure 2-14) 

including the monthly average temperate (TAVG) and monthly rainfall (PRCP) were 

gathered from the nearby NOAA station (USW00023066).  The yearly-TMI was 

calculated on a monthly (running) basis and the previously proposed climate-suction 

model was used to generate empirical estimates of the time-varying suction at the ground 

surface (Figure 2-18).   

 

Figure 2-18 Monthly-TMI vs. Variation in Suction at the Ground Surface for the Denver 
Study Site. 

 

The selection criteria for the NOFS including the following: 

 Mean Absolute Deviation (MAD) of the FS fit to the suction data less 0.05 pF. 

 Absolute Error at the initial month (t = 0) less than 0.1 pF. 
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 The residual error at the extreme values less than 0.05 in the conservative direction 

(i.e. the estimate of the FS fit at the greatest suction value had to be greater than or no 

less than 0.05 pF and the estimate of the FS fit at the minimum suction had to be less 

than or no greater than 0.05 pF).  

 

Figure 2-19 Selection Process for NOFS Fit to Climate-Drive Suction Variation at the 
Ground Surface for the Denver Study Site  
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Figure 2-20 Comparison of NOFS Fit to Minimum and Maximum Order Fourier Series 
Fit to the Variation in Suction at the Ground Surface for the Denver Study Site.  

 

2.8 Validation of the NOFS Suction Profile Approach 

Validation efforts were performed using measured suction profile data from the Denver 

site from the ASU NSF Expansive Soil Study.  Applicable information gathered from the 

four of the studied sites is in summarized in Table 2-5. Note that the 30-year TMI values 

presented of -20.6 slightly differs from the -24 value tabulated in Vann (2019) due to the 

use of a different nearby NOAA weather stations and/or different time periods of 

historical data used.  Figure 2-21 presents the measured soil suction data using for the 

Denver and San Antonio sites which was measured using the WP4-C.   
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Table 2-11 Relationships Between TMI and Equilibrium Suction for Denver Study Site 
(adapted from Vann, 2019) 

Test 
Boring 

ID 

TMI 
(30-

Year) 
Date 

Drilled 
NOAA Station 

ID 

Measured 
Depth to 

Equilibrium 
Suction (m) 

Estimated 
Depth to 

Equilibrium 
Suction * 

(2021) (m) 

Measured 
Equilibrium 

Suction 
(pF) 

Estimated 
Equilibrium 

Suction 
(pF) 

DEN-2-
U-N 

-20.6 9/16/16 USW00023067 
3.66 

(12 ft) 
3.51 

(11.52 ft) 
4.31 4.1 

DEN-3-
U-N 

-20.6 9/16/16 USW00023067 
3.66 

(12 ft) 
3.51 

(11.52 ft) 
4.31 4.1 

* Parameters estimated per Vann and Houston (2021) relationship with the 30-year TMI 

  

Figure 2-21: Measured Soil Suction Data versus Depth for Three Test Borings in Denver 

 

2.8.1 Denver, CO NOFS Suction Profile Evaluation 

The Denver ASU-NSF expansive soil study site with directly measured soil 

properties within situ moisture/suction data, and quantifications of equilibrium suction 
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and depth to equilibrium suction.  The proposed model for NOFS suction profile 

estimates were compared to the in situ suction measurements of the two uncovered 

borings DEN-2-U-N and DEN-3-U-N.  The monthly-TMI and estimate the climate-

driven change in suction at the ground surface were estimated using thirty years of 

historical climate data gathered from the NOAA station (USW00023066).  Several 

scenarios using the studied for validation purposes.  Figure 2-22 presents the estimated 

climate-driven suction at the ground surface from 07/1986 to 12/2020 for the Denver 

study site using the proposed climate-suction relationship.  

 

Figure 2-22 Monthly-TMI vs. Variation in Suction at the Ground Surface for the Denver 
Study Site from 07/1986 to 12/2020 

 

Note the trend in climate data moving from a recent period of high TMI (wetting) from 

approximately 2013 to 2016, followed by a sharp transition to low TMI (drying) when 
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the date of interest of 09/2016 (boring drill date) occurs. Figure 2-23 presents the same 

estimated climate-driven suction at the ground surface with a duration “window” of 

analysis and three dates of interests (DOI) that will be used in the validation study: the 

drill date (09/2016), six months after the drill date (03/2017), and 12 months after the 

drill date (12/2017). The colors of the data points presented on Figure 2-23 and 

subsequent plots are used to visually link the estimated suction at the ground surface for a 

given month to the suction profiles for that same month. 

 

Figure 2-23 Variation in Suction at the Ground Surface for the Denver Study Site from 
09/2011 to 03/2019 with Dates of Interests  
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2.8.1.1 Validation Scenario #2.3:  

For the first validation scenario of the Denver study site, the depth of equilibrium 

suction of 3.66m and the magnitude of equilibrium suction of 4.31 pF of from the Vann 

(2019) were set as known parameters in the analysis.  Figure 2-24 suction profile 

estimations for Denver study site using the measured magnitude and depth of equilibrium 

suction from Vann (2019). The  two colored backgrounds in Figure 2-24 and subsequent 

suction profile plots are provided to help distinct the Climate-Driven suction at the 

surface as a function of time (sky blue background), which is essentially Figure 2-23 

rotated 90 degrees clockwise, and the suction profiles as a function of time within the 

subsurface (tan background). The dates of interests are emphasized on the plots with 

using heavier line weights; however, each month within the study window can observed 

via the link in colors.  Note that the suction envelope is plotted to a depth twice that of the 

depth to equilibrium suction value as the shape diffusion profile is based up the variation 

in the suction envelope (limits) being 0.1 pF off of the equilibrium suction value at twice 

the depth of equilibrium suction. This approach was based on the recommendations from 

Vann and Houston (2021) which provides envelopes with approximately 0.2 pF variation 

in suction at the depth of equilibrium. 

Based on a visual evaluation of the suction envelopes for this scenario, it appears that the 

suction profiles generated by the NOFS diffusion equation method sufficiently model the 

variation in the climate-driven suction at the ground surface as a function of time.  The 

generated profile adequately encompasses the measured depth of equilibrium value (4.31 

pF) at the measured depth of equilibrium (12 ft) with approximately 0.2 pF variation.  
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Figure 2-24 Suction Profile Estimations for Denver Study Site Validation Scenario #2.3 - 
Measured Magnitude and Depth of Equilibrium Suction from Vann (2019) 

 

The relatively wet period at the start of the analysis window from 03/2014 to 

approximately 03/2016 (colors fading from dark blue to light blue) generates suction 

profiles near the low suction (wet) side of the envelope. As the drying period begins at 

approximately 04/2016 (light blue to green), the upper portion of the suction profiles 
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move towards the high suction (dry) side of the envelope, while the lower portion of the 

envelope lags on the transition to the dry side.  This lag in suction changes within the 

subsurface is also apparent in the DOI 09/2017 profile which corresponds to a suction at 

the ground surface near the 30-year maximum value, however due to the quick transition 

from the wet side for the envelope just 12 months prior, there is significant decreases in 

the suction values with depth for that month.  During the time from approximately 

01/2018 to 12/2020 (light red to dark red), the suction variation at the surface is relatively 

stable for nearly 2 years and the corresponding profiles begin to appear linear with little 

variation in depth.  

Based on Figure 2-24, it also appears that the suction profiles generated by the NOFS 

diffusion equation approach provide an adequate estimation of the measured suction 

profiles (DEN-2-U-N and DEN-3-U-N) below the depth of equilibrium suction but 

portion above the equilibrium suction appears to lag behind the transition to the dry side. 

The profile for the drill date (DOI: 09/2016), displayed in light green, does not appear to 

be a good fit; however, the profile for 12 months after the drill date (DOI: 09/2017), 

displayed in orange, provides a significantly better representation of the measured 

profiles.  

2.8.1.2 Validation Scenario #2.4  

The second validation scenario of the Denver study site used the 30-year TMI of 

the site to develop the long-term suction envelope parameters (Magnitude and depth of 

equilibrium suction) using the Vann and Houston (2021) relationship with the 30-year 
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TMI equilibrium suction of 4.31 pF of from the Vann (2019) were set as known 

parameters in the analysis.   

Figure 2-25 presents the suction profile estimations for Denver study site using the 

estimated magnitude and depth of equilibrium suction from Vann and Houston (2021). 

Based on a visual evaluation of the suction envelopes for this scenario, it appears that the 

suction profiles generated by the NOFS diffusion equation method using the estimated 

magnitude (4.09 pF) and depth (11.5 ft) of equilibrium suction from Vann and Houston 

(2021) does not adequately encompass the measured depth of equilibrium value (4.31 pF) 

at the measured depth of equilibrium (12 ft).  This error is mostly likely caused by the 

difference in the estimated equilibrium suction and the measured equilibrium suction of 

0.22 pF.  The boundary condition assumption used in the NOFS diffusion profile method 

that the variation in suction at the twice the depth of equilibrium suction (23 ft) must be 

0.1 pF rather than 0.2 pF at the depth of equilibrium suction (11.5 ft) prohibits the profile 

from making drastic transitions when the input magnitude of equilibrium suction varies 

significantly from the 30-year average of the suction variation at the ground surface (4.44 

pF).  Although the 30-year average of the suction variation at the ground surface is 

generally not equivalent to the magnitude of equilibrium suction at depth, they are not 

typically that more than 0.2 pF different.  
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Figure 2-25 Suction Profile Estimations for Denver Study Site for Validation Scenario 
#2.4 - Empirically Estimated Magnitude and Depth of Equilibrium Suction from Vann 

and Houston (2021)  
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2.8.1.3 Validation Scenario #2.5 

A third scenario of the compared the proposed model for NOFS suction profile 

estimates to the in situ suction measurements of the two uncovered borings DEN-2-U-N 

and DEN-3-U-N.  The magnitude of equilibrium suction of 4.31 pF from Vann (2019) 

was set as a known parameter in the analysis.  The depth of equilibrium suction of 3.66m 

from the Vann (2019) was adjusted to 4.57m (15 feet) to better represent the depth of 

equilibrium suction of the two uncovered borings only.  Figure 2-26 presents the suction 

profile estimations for Denver study site adjusted depth of equilibrium suction using 

measured data of uncovered borings. 

Based on a visual evaluation of the suction envelopes for this scenario, it appears that the 

suction profiles generated by the NOFS diffusion equation using the depth of equilibrium 

form the two uncovered borings improves the over model performance relative to 

estimating the measured suction profiles.  The generated profile adequately encompasses 

the measured depth of equilibrium value (4.31 pF) at the adjusted depth of equilibrium 

(15 ft) with approximately 0.2 pF variation.  The suction envelope provides nearly 

completely encompasses the measured suction profiles below the depth of equilibrium 

suction but portion above the equilibrium suction still appears to lag behind the transition 

to the dry side.  
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Figure 2-26 Suction Profile Estimations for Denver Study Site for Validation Scenario 
#2.5 – Adjusted Depth of Equilibrium Suction using Measured Data of Uncovered 

Borings 

 

2.9 Implementation of NOFS Suction Profiles in Practice 

An evaluation of the NOFS suction profile approach is presented using two 

locations from the ASU-NSF expansive soil study.  The automated NOFS approach for 
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modeling suction envelopes provided significant increases in the goodness of fit of the 

suction variation at the ground surface, encompassed the extreme values, while 

minimizing the number Fourier series terms to do so. Significant differences in the 

goodness of fit between a standard periodic fit and the NOFS are observed as the duration 

of analysis increased to 30 years.   

The suction profiles and 30-year envelopes generated by the NOFS approach sufficiently 

model the climate-driven variation in suction at the ground surface as a function of depth 

and time.  The validation study using the Denver site indicated that the generated suction 

profiles lag approximately 12 months behind the measured profiles using directly 

measured inputs of the magnitude and depth of equilibrium suction. The profiles and 

envelope generated using the empirically estimated magnitude and depth of equilibrium 

suction did not compare well with the measured profiles.  

The proposed procedure can effectively be implemented in geo-forensic evaluations 

involving problematic unsaturated soils such as slope instabilities due to moisture driven 

reductions in shear strength or foundation distress caused by soil volume change. The 

Natural-Order Fourier Series provides an improved representation of the sporadic 

changes in soil suction by capturing the extreme climate periods which are generally 

missed with the standard periodic approach.  Direct measurements of the magnitude and 

depth of equilibrium suction at a given site will help produce the performance of the 

model to generate profiles of past suction data.  
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2.9.1 Limitations of the Proposed NOFS Suction Profile Model 

Although the findings of this study may indicate that the proposed Natural Order Fourier 

Series suction profile framework should improve any suction-based vadose-zone 

transient moisture flow models, one must be aware of the associated assumptions and 

limitations: 

 The empirical models developed by Vann and Houston (2020) used to define the 

equilibrium suction envelope parameters (equilibrium suction depth and 

magnitude) were generated using limited data from geotechnical investigation 

reports by various engineering firms across the United States. Furthermore, all the 

models which related TMI to soil suction parameters were developed from sites 

which the elevation of the groundwater table did not affect the moisture state 

within the typical depth from ground surface associated with the unsaturated soil 

“active zone”, which is generally 5 to 20 feet. As such, the proposed model 

should not be used to evaluate locations which have shallow groundwater. 

 The term covered is used herein when referring to pavement structures although 

there is still a two-dimensional lateral moisture flow movement which is not 

accounted for in the NOFS model. This lateral movement would be directly 

affected by the width of the roadway and distance/location of interest which is 

being analyzed (e.g. pavement edge, wheel paths, centerline).   

 The Perera (2005) model which relates long-term TMI values to soil suction 

under pavements was produced under the assumption that the soil suction 

measured below the pavement at the time of the field sampling corresponded to 
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the equilibrium state of moisture reached sometime after construction of the 

roadway.  

 The error of the regression fit of the empirical models were not included in this 

deterministic approach for modeling monthly changes in the soil suction profiles.  

 The validation studies of the NOFS model presented herein indicate that there is a 

time-lag effect which has yet to be accounted for, although the inclusion of 

additional validation sites may provide contrasting observations.  
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CHAPTER 3 

3 BAYESIAN CHARACTERIZATION OF COMMON SOIL PROPERTIES 

3.1 Introduction 

Geotechnical engineering analyses and designs commonly require knowledge 

parameters other than just soil/rock properties such as structural loads, traffic volumes, 

climate data, and manufactured material specifications (e.g., concrete, rebar, 

geosynthetics, etc.). For new designs, each of these parameters has an associated degree 

of uncertainty, with manufactured materials generally having minimal uncertainty and 

future climate data having the highest uncertainty. Such climatic inputs which are often 

required in geotechnical modeling can include temperature, rainfall, humidity, runoff, and 

solar radiation. 

Historically engineers have adopted a conservative estimate of a design parameter in a 

deterministic approach to account for uncertainty. To better represent the performance of 

a design, probabilistic/stochastic approaches can be applied which include consideration 

of parameter uncertainties (Phoon & Kulhawy, 1999; Fenton & Griffiths 2008). There 

has been tremendous advancement in the application of stochastic modeling to civil 

engineering in the recent decades. Couple this momentum in statistical modeling with the 

continued advances in parameter measurement technologies, and all the ingredients are 

present for engineers to develop powerful and reliable tools to simulate complex 

geological models. Such accomplishments in this field include, but are not limited to, the 

use of Bayesian inference to characterize soil uncertainty (Medina-Cetina and 
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Esmailzadeh, 2014; Gong et al. 2021; Zhang et al. 2022) and the implementation of 

advanced Markov models to simulate gaps in hydrological data (Zheng & Ham, 2015; 

Vrugt 2016). 

Randomization of the soil properties is required for the stochastic Monte Carlo volume 

change analyses. Random variables are generated from probability distributions. Beta 

distributions were generated for the required soil inputs for each hierarchal level of 

analysis: plasticity index (PI), liquid limit (LL), percent fines/percent passing the No. 200 

sieve (P#200), and percent clay/percent fine than 2 microns (Pclay), in situ moisture content 

(w), and dry unit weight (γd). The LTPP soil database (FHWA) and the NCHRP 9-23 

(2006) soil databases were used to develop the statistical parameters for new subsets of 

soil types for the shrink-swell analysis. 

The U.S. Department of Agriculture (USDA) Natural Resources Conservation Service 

(NRCS) Soil Survey Laboratory (SSL) soil database was used to explore correlations and 

relationships between required input soil index properties: PI, LL, P#200, and Pclay. Due to 

significant correlation between the input soil index properties, an algorithmic approach 

was developed to randomly generate each property.  

General laboratory investigations for a given project provide average values of 

geotechnical properties which are used as input into a deterministic solution in which 

only a mean value is produced. To obtain a stochastic answer, the dimensionless 

coefficient of variation (CV) is used to characterize the randomness and uncertainty in the 

measured properties. The coefficient of variation is generated through replicates of the 
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test results which can require either more time and money for sampling/testing, or 

historical project data variance. If the coefficients of variation for the required soil 

properties of a project are known, sampling/testing can be reduced while increasing or 

maintaining the same level of confidence in the analyses and designs (provided the 

engineering team is experienced in statistical/stochastic analyses). As such, the 

coefficients of variation for the soil properties are used as key soil inputs for the 

stochastic volume change analyses.  

This chapter introduces an updated approach to stochastically model the variability of the 

required soil properties. A database of the necessary soil input variables will be collected 

and used to generate updated statistical parameters for each variable. A Bayesian 

framework for randomly generating sets of each variable while accounting for high 

correlation between soil properties will be developed.   

3.1.1 Objectives 

The following objectives were accomplished as part of this study: 

 Review of the existing hierarchical levels of the descriptive statistics for the soil 

properties using the EICM and MEPDG.  

 Evaluation of the applicability of the existing models for use in the stochastic volume 

change models (shrink-swell). 

 Adjustment of the datasets used for the hierarchical levels of the descriptive statistics 

to better represent the common soil types susceptible to shrink-swell potential.    
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 Exploration of issues pertaining to correlation and fixed ranges of soil properties 

which arise during the random generation of input values required for stochastic 

modeling.  

 Development of an algorithmic process to produce random combinations of the 

required soil inputs within the natural ranges and correlations.  

 Validation of the algorithmic approach to produce natural combinations of 

randomized soil properties for input into the stochastic model.  

3.2 Relevant Background 

A Review of statistical theory with a focus on probability distributions, correlation, 

stochastic analyses. The literature review also includes the existing stochastic analyses 

implemented in the MEPDG and explores the recent advancements in probabilistic 

modeling in geotechnical engineering.  The overall goal of the literature review is to 

understand the current state of practice, explore recent research breakthroughs, and 

optimize the technical approach required to meet the research objectives.  

3.2.1 Review of General Statistical Theory 

The statistical moments, and statistical distributions used in this study are 

summarized herein. The descriptions of the statistical moments, hypothesis testing, and 

statistical distributions are referenced from Fenton and Griffiths (2008), Montgomery et 

al. (2009, 2011), and Benjamin and Cornell (2014). 
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The notation used for the mean, standard deviation, and variance depends on the sample 

size and how representative that sample is to the true population. In this study: 

 the sample mean ( x ) is assumed to represent the population mean (  ); 

 the sample standard deviation ( s ) is assumed to represent the population standard 

deviation ( ); 

 and the sample variance ( 2s ) is assumed to represent the population variance ( 2 ); 

 therefore, the notation representing the population adopted for simplicity.  

Furthermore, subscripts can be added to each of the variables to further denote what 

population the variable is representing.  

There are four statistical moments that are used to describe any distribution: mean, 

variance, skewness, and kurtosis. The mean and variance are heavily utilized in stochastic 

analyses and are defined herein. are parameters used to further define the shape of the 

distribution. The standard deviation and the coefficient of variation (CV) are also defined.  

The first statistical moment is referred to as the expected value (  E X ), or the mean 

value (  ).  

  
1

1 n

i
i

E X x
n




    
 

 (61) 

Where: n   = Number of point estimations and ix  = The ith observation of the random 

variable ( x ). 
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The second statistical moment is used to describe the scatter or dispersion in the data and 

is referred to as the variance ( 2E X    or 2 ). 

  22 2
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 (62) 

The standard deviation ( ) is defined by the positive square root of the variance and is in 

the same units as the random variable. 

 2   (63) 

The standard deviation can be used to define a range of data within a distribution. For 

example, Figure 3-1, depicts the percentage of a normal distribution represented by 

number of standard deviations from the mean.  

 

Figure 3-1. Percentage of Normal Distribution Represented by Number of Standard 
Deviations from the Mean. 

 

In a normal distribution, 66.6% (2/3) of the data is represented by 1 standard deviation 

away from the mean ( 1  to 1 ); and 95% of the data is represented by 2 standard 

deviations away from the mean ( 2  to 2 ). Six standard deviations ( 6 ) is often 
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referred to as the width of the normal distribution due 99.73% of the data being 

represented by 3 standard deviations away from the mean ( 3  to 3 ). 

The coefficient of variation (CV) is defined by the ratio of the mean to the standard 

deviation.  

 CV



  (64) 

The third and fourth statistical moment are referred to as skewness and kurtosis. The 

skewness represents how the mean of the distribution differs from a theoretical mean 

representing a normal distribution. The kurtosis helps define how much data is dispersed 

around the mean. The skewness and kurtosis are expressed in the following equations, 

respectively.  
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Continuous random numbers are most often represented using a normal distribution. The 

normal distribution, or the “Gaussian” distribution, follows a bell curve that is centered 

about the mean. The variance describes how dispersed or tight the tails of the distribution 

are from the mean. The probability density function (PDF) represents the shape of 

probability distributions. The PDF of the normal distribution is expressed as: 
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The normal distribution is not bound between any values (i.e. the left tail of the 

distribution will approach negative infinity and the right tail of the distribution will 

approach positive infinity). As such, issues can arise when generating random numbers 

for data sets which represent percentages or index values that must be greater than 1 

because there is a possibility of producing negative values. This scenario is applicable to 

the required soil index properties of PI, LL, p200, and pClay as each parameter is a 

percentage greater than 0%. The PI and LL parameters do not have an upper bound value 

but p200 and pClay cannot be greater than 100%. Furthermore, PI is computed from LL 

and pClay is a fraction of p200 (i.e. must be less than), resulting in high correlation 

between the parameters, which is discussed further herein. Albeit these limitations for 

application in stochastic analyses with natural soil properties, the normal distribution is 

still used as effective tool for preliminary screening of normality for input variable and 

residuals of regression fits.  

For scenarios where the data may be normally distributed but must be greater than zero, a 

lognormal distribution can effectively represent the data. If a continuous distribution is 

flexible and bounded on each end with a minimum and maximum value, the Beta 

distribution can be useful. The basic form of the Beta distribution is defined on an 

interval [0,1] with two shape factors, denoted as alpha (α) and beta (β), which will be 

referred to as the “Two-Parameter Beta Distribution” for clarity.  
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Where:  
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and   = the Gamma function expressed as, 

    1 !n n    (70) 

For “Two-Parameter Beta Distribution” with random variable (x), the mean and variance 

are expressed in terms of the shape factors alpha and beta: 

 x
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The ability of the Beta distribution to take on many shapes while staying within the 

defined limits makes it ideal for practical applications. If both shape parameters are 

greater than one (α > 1 & β > 1), the distribution will be bell-shaped, with the skewness 

to the right if alpha is less beta (α < β) or to the left if alpha is greater than beta (α > β), 

and with the mode representing the peak of the density expressed as: 
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Beta distributions meeting this criterion with a left-sided skewness can resemble a 

lognormal, Gamma, Weibull, or Rayleigh distributions. If alpha is less than one, and beta 

is greater than one (α < 1 & β > 1), the distribution will be “J-shaped” with the mode = 0 

and the tail heading towards one. Contrary, if alpha is greater than one, and beta is less 

than one (α > 1 & β < 1), the distribution will be “J-shaped” with the mode = 1 and the 

tail heading towards zero. Beta distributions that are “J-shaped” with mode = 0 resemble 

an Exponential distribution. However, recall that the Beta distributions are bounded by 

the specified minimum and maximum values, and the shapes can be flipped if needed the 

data requires it to be so. An example of this is depicted Figure 3-2 with the shape of the 

distribution with α = 1 and β = 3 appearing similar the shape of an Exponential 

distribution, and the shape of the distribution with α = 5 and β = 1 being very similar but 

in the opposite direction.  

 

Figure 3-2. Example of Beta Distributions Between [0,1] with Varying Shape Factors 
Alpha (α) and Beta (β) (Montgomery et al., 2011) 
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The shapes that mimic the listed distributions (and the reverse of) are ideal for 

representing distributions of soil properties. However, the Beta distribution can also take 

on shapes that may not represent the natural characteristics of most geological conditions 

which are defined within a reasonable limit (i.e. site-specific data, data grouped by 

general soil type, etc.). An example of an unnatural shaped distribution, with respect to 

this application of this study, is depicted in Figure 3-2 by the “U-shaped” distribution 

with α = 0.5 and β = 0.5. The distribution starts to become “U-shaped” if alpha is less 

than one and beta is less than alpha (α < 1 & β < α).  

As the values of the shape parameters increase, the kurtosis increases, and the distribution 

becomes more leptokurtic (i.e. the distribution becomes thinner and concentrates around 

the mode.  

The Beta distribution can also be defined between defined within a range of minimum (a) 

and maximum (b) values, commonly referred to as the “Four Parameter Beta 

Distribution”.  In this case, the two shape factors can be expressed in terms of the mean, 

standard deviation, minimum and maximum values (µ, σ, a, b). The shape factors, 

denoted as alpha ( ) and beta (  ), must be greater than 0. The beta distribution pdf is 

expressed by: 
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A simple linear relationship exists between a random variable (X) calculated with a Beta 

distribution within the range [0,1] and a random variable (Y) calculated using the “Four 

Parameter Beta Distribution” over the range [a,b]. 

  Y a X b a    (75) 

This linear relationship can be used to shift the mean and variance values between 

distributions with parameter space. For Beta Distributions of random variable (y) defined 

within the range [a,b], the mean and variance are expressed in terms of the shape factors 

alpha and beta: 

    y xa b a a b a
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The alpha shape parameter can be expressed as, 

  

 

 

2

2

1

1

a a
b a b aa

b a

b a

 




                        
   

 (78) 

or in terms of CV as: 
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and the beta shape parameters can be expressed as:  
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or in terms of CV as: 
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Multivariate distributions can be used to represent parameters that are influenced by one 

another or jointly influenced by separate factor.  In the simplest cast, a continues 

multivariate distribution of two random variables x  and y  is referred to a bivariate 

distribution and can be generally represented by  ,xyf x y .  

The influence of parameters on one another is other is referred to as covariance and can 

be expressed as: 

     , x yCov x y E x y       (82) 
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The covariance depends on the units and variability between two random variables. To 

obtain information about the strength and direction of a linear relationship, the 

normalized and nondimensional Pearson correlation coefficient ( xy ) can be used, which 

is expressed as: 

 
 ,

xy
x y

Cov x y


 
  (83) 

The correlation coefficient can range in value from −1 to +1. The sign of the coefficient 

indicates the direction of the correlation. If both variables tend to increase or decrease 

together, the coefficient is positive. If one variable tends to increase as the other 

decreases, the coefficient is negative. The larger the absolute value of the coefficient, the 

stronger the relationship between the variables. A correlation close to 0 indicates no 

correlation between the parameters. However, a correlation coefficient near zero does not 

always mean that no relationship exists between the variables; the variables may have a 

nonlinear relationship. 

The correlation coefficient is also used to express multivariate distributions. Normal 

distributions are commonly used to represent multivariate because they need only the 

mean and variance of each parameter to be defined. A continues multivariate normal 

distribution of two random variables x  and y  can be expressed as: 
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Probability density functions of bivariate distributions can represented in a three-

dimensional space as depicted in Figure 3-3 or in a two-dimensional space as depicted in 

Figure 3-4, which help visualize the effect of the correlation coefficient on the shape of 

the joint distribution. 

 

Figure 3-3. Example of Bivariate Normal Probability Density Function (Fenton and 
Griffiths, 2008) 
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Figure 3-4. Example Bivariate Probability Density Functions with x = y = 5, x = y

=1.5 and Correlation Coefficients ( xy ) Equal to (a) Zero and (b) 0.6 (Fenton and 

Griffiths, 2008) 

 

3.2.2 Review of Uncertainties in Geotechnical Engineering  

There are two types of uncertainties that can affect the accuracy of a geotechnical 

analysis, i.e., (a) the uncertainty in model input parameters due to the presence of test 

errors, insufficient number of tests and the inherent variability of soil properties and (b) 

the uncertainty associated with the geotechnical model due to the inability of the model to 

fully represent the actual geotechnical system. Figure 3-5 present a flow chart with the 

different aspects of uncertainty in soil property estimates. To explicitly consider the 

uncertainties and to control the risk in a geotechnical design, probabilistic methods have 

been widely studied in the past decades. In a rigorous probabilistic analysis, both the 

uncertainty in model input parameters and the model uncertainty should be considered. 

Extensive research has been conducted on how to assess the uncertainty in model input 
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parameters. In general, the uncertainty in model input parameters can be assessed using 

such methods as geotechnical testing, engineering judgment or a combination of them. 

 

Figure 3-5. Uncertainty in Soil Property Estimates (Kulhawy, 1992) 

 

To consider all such uncertainties systematically, the model uncertainty of a geotechnical 

model may be characterized using a Bayesian method. In this method, a model 

uncertainty factor is used to denote the magnitude of the model uncertainty, and the 

statistics of the model uncertainty factor are modelled as random variables. In addition, 

uncertain model input parameters and uncertain system performance of different 

geotechnical systems can also be modeled as random variables. The distributions of these 

uncertain variables can then be updated simultaneously with the observed system 

performance data using stochastic techniques such as Monte Carlo simulations.  
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3.2.3 Review of Bayesian Inference  

Bayesian statistics is an approach to applying probability to engineering and 

statistical problems. It can provide mathematical tools to update how outcomes based on 

about random events are inferred, with or without the inclusion of new data or evidence 

about those events. Bayesian statistics can produce realizations, insightful estimates of 

models which include the variability of parameters and quantify uncertainty of the 

estimates without being limited by the strict rules of conventional statistics, referred to as 

Frequentist statistics. Table 3-1 provides a brief comparison of Bayesian vs. Frequentist 

statistics. 

 

 

Table 3-1: Comparison of Bayesian vs. Frequentist Statistics (adopted from Amrhein et 
al., 2019) 

 Bayesian Statistics Frequentist Statistics  

Data Fixed - Non-random Uncertain – Random 

Parameters Uncertain - Random Fixed – Non-random 

Inference Uncertainty over parameter values 
Uncertainty over a sampling procedure 

from an infinite population 

Probability Subjective 
Objective (but with strong model 

assumptions) 

Uncertainty Credible Interval  Confidence Interval 

 

From a Bayesian perspective, such a process can be considered as a process of updating 

the prior knowledge using site observation data for a given project site, as shown in 

Figure 3-6. 
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Figure 3-6: Generalized Bayesian Framework for Geotechnical Characterization (Wang, 
2016) 

 

The notation and nomenclature used by Gelman et al. (2014) is adopted throughout this 

document when referring to variables or expressions pertaining to Bayesian Inference. 

The core rule which governs Bayesian Inference is referred to as Baye’s Rule and 

represents the probability of unobserved (posterior) data ( ) as the conditional joint 

probability distribution of   and observed (prior) data ( y ) : 
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Where  p y  and  p   is the marginal probability distributions of the observed and 

unobserved data and  |p y   is the conditional probability distribution of   given y , 

also referred to as the likelihood function. In Bayesian Inference, the likelihood principle 
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states that probability model with the same likelihood function will result in similar 

inferences of   for a given sample of data.  

 Bayesian methods provide useful tools for representing unobserved, or yet to be 

observed, data based on available data, which typically does not represent the full 

population of the data set. Probability functions of the prior data can be assigned using 

empirical data or implied based on plausible assumptions. Typically, the posterior 

distribution is of most interest, and is generated through a simulation of randomized 

draws and an acceptance criterion.  

3.3 Existing Hierarchical Soil Property Statistics used in MEPDG 

The approach for selecting or determining material inputs in the Pavement ME Design 

is a hierarchical (level) system. The hierarchical input concept or approach provides the 

designer engineer flexibility in obtaining the inputs for a project based on the criticality 

of the project, available resources, and knowledge of the input parameters. With regards 

to soil related properties, the Mechanistic-Empirical Pavement Design Guide (MEPDG) 

currently allows the engineer to design pavement cross-sections using the different 

hierarchical levels analyses for the unbound and subgrade material properties including 

resilient modulus, classification/volumetric properties, soil-water characteristic 

relationships, and the saturated hydraulic conductivity. The material properties are 

estimated by the Enhanced Integrated Climatic Model (EICM) within the program which 

calculates the resilient modulus at equilibrium for a given hierarchical level using various 
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models. Per MEPDG Manual of Practice (NCHRP, 2006; AASHTO 2008), the 

hierarchical level input is currently defined as: 

 Level 1 - —Input parameter is measured directly; it is site- or project-specific. This 

level represents the greatest knowledge about the input parameter for a specific 

project but has the highest testing and data collection costs to determine the input 

value. Level 1 should be used for pavement designs having unusual site features, 

materials, or traffic conditions that are outside the inference space used to develop the 

correlations and defaults included for input Levels 2 and 3. 

 Level 2 - Input parameter is estimated from correlations or regression equations. In 

other words, the input value is calculated from other site-specific data or parameters 

that are less costly to measure. Input Level 2 may also represent measured regional 

values that are not project specific. and 

 Level 3 – Input parameter is estimated from correlations or regression equations. In 

other words, the input value is calculated from other site-specific data or parameters 

that are less costly to measure. Input Level 2 may also represent measured regional 

values that are not project specific.  

The variances of the hierarchical levels will generally increase as the hierarchical level 

increases from Level 1 to Level 2 to Level 3, provided that the site-specific variance of 

the parameters (Level 1) is not greater than the assumed variance from not-site-specific 

historical data (Levels 2 and 3).  
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The MEPDG incorporates the statistical parameters for the necessary soil parameters for 

each hierarchical level of analyses developed by Rosenbalm (2011) using data obtained 

from the LTPP DataPave library and the NCHRP 9-23A database, which was a processes 

version of the U.S. Department of Agriculture’s (USDA) Natural Resources Conservation 

Service (NRCS) soil database (FHWA, 2010; Zapata et al., 2009).  

Rosenbalm (2011) further defines the process for generating Level 1 parameters as site 

specific data consisting of the average value and the coefficient of variation measured 

from extensive lab or in situ testing. In essence, the design engineer performing the 

analysis must have a high level of confidence that the statistical distributions of measured 

soil properties (sample) statistically represent nearly all conditions at the site 

(population). Rosenbalm (2011) extracted data from the LTPP SPS-1 for 28 granular 

soils and 28 fine grained soils from the seven states and developed pooled coefficients of 

variation to represent the variability in site-specific data. The existing MEPDG provides 

example values for coefficient of variation for Level 1 analysis for the user. 

Rosenbalm (2011) breaks down the Level 3 statistics into two subgroups, referred to as 

Level 3A and Level 3B. For Level 3B analyses, the descriptive statistics for each 

AASHTO classification, which are presented in Appendix D. 

In Level 3A, the AASTO classifications are divided into 5 groups defined as: granular 

base material, granular subbase/subgrade material, fine grained material, “clayey” fine 

grained material, and “silty” fine grained material which are presented in Table D-13 

through Table D-17, respectively. The granular base material is a grouping of the A-l-a 
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and the A-l-b soils. The granular subbase/subgrade material is a grouping of all of A-1, 

A-2, and A-3 soils. The fine-grained soils included all A-4, A-5, A-6, and A-7’s soils. 

The “clayey” fine grained group included only the A-6 and the A-7 while the “silty” fine 

grained group included only the A-4 and A-5 soils. 

Each table provides the data count (#) mean (μ), variance (σ2), standard deviation (σ), 

coefficient of variation (CV), minimum value (a), maximum value (b). Note that all 

parameters are in units of percent, with the exceptions of specific gravity (Gs) and wPI 

which are unitless and the particle diameter corresponding to 60% passing (D60) which is 

in millimeters (mm). The skewness (E[X3]) and kurtosis (E[X4]) parameters provided by 

Rosenbalm (2011) were not included in the summary tables as they are not applicable to 

the approach used in this study. The two Beta shape factors alpha (α) and beta (β) 

provided by Rosenbalm (2011) were also not included in the summary table for clarity 

because an updated method for estimating the shape factors was used in this study.  

3.4 Proposed Hierarchical Soil Parameter Statistics for SSVC Analysis 

The proposed hierarchical statistics groups for shrink-swell analyses were developed 

by: 

 further defining the process to obtain project related/site-specific coefficients of 

variation for Level 1 statistics, 

 adopting the descriptive statistics and classification groups defined by Rosenbalm 

(2011) for Level 2 and Level 3 statistics, 
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 updating Beta shape factors from Rosenbalm (2011) which do not represent natural 

distribution of the soil properties, 

 and by defining new groups of soil types which better represent the variations of 

shrink-swell susceptible soils. 

The soil parameters required as input for the shrink-swell analyses over the three 

hierarchical levels include the index properties of Plasticity Index (PI), Liquid Limit 

(LL), percent fines or passing the No. 200 sieve (P#200), percent clay (Pclay), the in situ 

properties of dry density (γd) and moisture content (w), and the engineering property used 

to relate soil suction changes to volumetric strain, referred to in this report as the suction 

compression index (SCI).  

3.4.1 Soil Property Statistics for Level 1 Analysis 

Although the existing MEPDG provides example values for coefficient of 

variation for Level 1 analyses, such values will not be provided for the proposed shrink-

swell analyses. There have been tremendous advancements in the recent decade on 

quantifying site-specific geotechnical uncertainty (Phoon and Kulhawy, 1999; Fenton and 

Griffiths 2008, Medina-Cetina and Esmailzadeh, 2014; Gong et al. 2021; Zhang et al. 

2022). As such, Level 1 analyses will be reserved for projects which have sufficient site-

specific information for the design engineer to produce representative distribution of the 

soil input parameters.  
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3.4.2 Soil Property Statistics for Level 2 Analysis 

If the design engineer does not have a high level of confidence that the project 

data adequately represents the site-specific variability, they may choose to apply the 

Level 2 or Level 3 coefficients of variation to their site-specific average values. If the 

site-specific coefficient of variation is greater than the provided Level 2 or Level 3 

values, it will be up to the design engineer’s judgement on which coefficient of variation 

to apply. Such scenarios should warrant additional field and lab investigations as the site 

conditions have higher variability than the pooled LTTP data from across the US, most 

likely indicating a complex geology at project site with a potentially substantial mix of 

coarse and fine-grained soils.  

A new set of groups of data were used to define the descriptive statistics for the 

Level 2 and Level 3 shrink-swell analyses. Soils with a propensity to exhibit shrink-swell 

behavior, defined by A-6 and A-7 soils with a wPI > 10, were extracted from the LTTP 

database and used as the dataset to represent the Level 3 analyses. This group of soils is 

similar to the “clayey” fine grained soil group defined by Rosenbalm (2011), but does not 

include A-6 and A-7 soils that may have a low PI and P#200; for example, a lean clay (CL) 

which is classified as an A-6 with 40% fines and a PI of 12 (i.e. wPI = 4.8) typically 

exhibits very low expansion potential. The grouping of material for the Level 2 analysis 

followed a similar idea of the Level 3A groups defined by Rosenbalm (2011) but instead 

of grouping by AASHTO classification, the soils were grouped by wPI in intervals of 10. 

Although this may result in a very similar arrangement of the data, the wPI criteria will 
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tend to group soils together that have similar expansion potentials, as wPI is considered 

to be an adequate correlation for expansion potential.  

The dry unit weight and the in situ moisture content statistical parameters had to be 

determined using the Perera (2003) soil database. Due to the lack of data points with high 

expansion potential, the data was with wPI > 10 was used for all Level 2 subgroups 

regardless of the wPI limits.  

The soil parameters required as input for the shrink-swell analysis for Level 2 and Level 

3 include the index properties of percent fines or passing the No. 200 sieve (P#200), percent 

clay (Pclay), the in situ properties of dry density (γd) and moisture content (w). The mean, 

variance, standard deviation, coefficient of variation, minimum, maximum, and the Beta 

distribution shape factors for the required index properties were calculated for Level 2 

and Level 3. The statistical parameters for the maximum dry density and the optimum 

moisture content were referenced from the Perera (2003) data. 

3.4.2.1 In situ dry density and moisture content for Level 2 and Level 3 analyses 

Unfortunately, the LTTP database lacks sufficient data to generate representative 

statistics for in situ dry unit weight and moisture content. This is issue is not new and was 

addressed in the EICM update summarized in the NCHRP 1-40D report (Witczak, 2006) 

by producing models that related in situ moisture and density to Proctor Compaction 

results and index properties using the Perera (2003) dataset which consisted of 30 sites 

corresponding to 143 soils. This database was used in this study to be used to represent 

the variance of the in situ dry density and moisture content parameters for Level 2 and 
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Level 3 inputs. The Perera (2003) dataset was divided into the same Level 3B groups as 

defined by Rosenbalm (2011) and the descriptive statistics for in situ dry density and the 

moisture content were calculated, which are presented in Table 3-2. 

Table 3-2. Descriptive Statistics for In Situ Dry Unit Weight and Moisture Content  

 A-1 A-1, A-2, & A-3 A-4, A-5, A-6 & A-7 A-4 & A-5 A-6 & A-7 

  w γd w γd w γd w γd w γd 

# 14 23 120 34 86 

μ 14 14 7.99 119.18 19.53 106.03 17.57 106.11 20.30 106.00 

σ2 6.62 127.60 7.88 604.59 27.47 83.82 32.11 95.80 23.86 80.15 

σ 1.22 75.59 2.81 24.59 5.24 9.16 5.67 9.79 4.88 8.95 

CV 1.10 8.69 35.13 20.63 26.84 8.63 32.24 9.22 24.06 8.45 

a 16.68 6.81 5.33 14.52 8.84 82.24 8.84 83.00 10.13 82.24 

b 5.33 108.46 14.87 141.14 35.21 126.11 31.76 124.36 35.21 126.11 

α 22.26 88.66 5.56 3.25 7.85 60.85 5.57 51.30 9.86 63.72 

β 37.79 62.73 14.38 0.68 11.51 51.37 9.05 40.51 14.45 53.95 

 

For Level 3 analyses, if the average (input) value of the in situ moisture content of the 

subgrade is unknown the user must assume that it is equivalent to the optimum moisture 

content, which is generally true for new construction. If the user is running an exploratory 

or preliminary analysis and the optimum moisture content of the subgrade is also 

unknown, the program will estimate an optimum moisture content using index property 

and correlation models from the EICM. 

3.4.2.1.1 Compaction Model for Granular Materials (wPI = 0) 

The maximum dry unit weight for compacted materials is expressed as: 

 d max comp mod

1

s water

opt s

opt

G
w G

S

 


 (86) 
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Where: d max comp mod = Maximum dry density by Modified proctor (pcf), Gs = Specific 

gravity, water = Unit weight of water (pcf), wopt = Optimum gravimetric moisture content 

by Modified proctor (%), and Sopt = Degree of saturation at optimum conditions (%). 

The relationship between optimum gravimetric moisture content and gradation data for 

granular materials is expressed as: 

 600.0389*
1.5" 60 40 60 120.14 0.06766 3.7269 0.167 0.117  1 42.53 D

optw P D P P e         (87) 

Where: P1.5" = Percent passing 1.5" (%), P40 = Percent passing #40 US sieve (%), P60 = 

Percent passing #60 US sieve (%), and D60 = Diameter corresponding to 60% passing 

material (mm). 

The relationship for saturation at optimum conditions given gradation data for granular 

materials is expressed as: 

 2" 1" 0.5"100.17 1.4991 0.56155 0.36755optS P P P      (88) 

 

Where: P2" = Percent passing 2" (%), P1" = Percent passing 1" (%), and P0.5" = Percent 

passing 0.5" (%). 

For compacted materials, the dry unit weight is assumed to be equal to the maximum dry 

unit weight found above. 

   d d maxcomp mod   (89) 
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3.4.2.1.2 Compaction Model for Plastic Materials (wPI > 0) 

 The relationship between the gravimetric optimum water content and soil index 

properties is expressed as:  

 0.30758.3932opt adjw wPI  (90) 

Where: wPIadj = an adjusted PI value applicable only to the empirical correlations for the 

optimum water content and the maximum dry unit weight for plastic soils presented in 

this section. 

The adjusted wPI is expressed as: 

 200

100
adj

adj

PI P
wPI   (91) 

Where: PIadj = an adjusted PI value. If wPIadj <1 then wPIadj = 1 

The adjusted PI value is expressed as: 

 
200 42.13

33.94

P

adjPI e


  (92) 

If PI > PIadj, then use PIadj and if PI ≤ PIadj, then PIadj = PI. 

For wPIadj values that are equal to 1, both the predicted optimum water content for low-

plasticity materials (equation above) and the water content predicted for non-plastic 

materials should be calculated and an average value used.  The maximum dry density for 

fine grained materials can be expressed in terms of the optimum moisture content as:  
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 max_ _ 142.115 1.959d comp std optw    (93) 

Where: d max comp std  = maximum dry density by Standard proctor (pcf). 

For uncompacted materials, the dry unit weight was related to the maximum dry unit 

weight from the the Standard proctor: 

   1.0156 – 2.464d d maxcomp std   (94) 

Note that user input is required for the expected value and coefficient of variation 

(or standard deviation) for the Level 1 analyses based on the site-specific data.  

The following tables summarize the statistics for the AASHTO soil classifications 

based on the LTTP and NCHRP database. To eliminate unnatural “U-shaped” 

distribution, the beta shape factor was corrected to 1 if both shape factors were initially 

less than 1, and the alpha shape factor was less than the beta shape factor.  

3.4.3 Proposed Soil Property Statistics  

To eliminate unnatural “U-shaped” distribution, the beta shape factor was corrected to 1 

if both shape factors were initially less than 1, and the alpha shape factor was less than 

the beta shape factor. For Level 3 analyses, if the average (input) value of the in situ 

moisture content of the subgrade is unknown the user must assume that it is equivalent to 

the optimum moisture content, which is generally true for new construction. If the user is 

running an exploratory or preliminary analysis and the optimum moisture content of the 

subgrade is also unknown, the program will estimate an optimum moisture content using 

index property and correlation models from the EICM.  
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Appendix D presents the descriptive statistics and the Beta distribution shape factors of 

the Level 2 and Level 3 soil groups defined by AASTHO soil classification and wPI 

ranges.  

3.5 Randomization of Soil Index Properties  

General laboratory investigations for a given project provide average values of 

geotechnical properties which are used as input into a deterministic solution in which 

only a mean value is produced. To obtain a stochastic answer, the dimensionless 

coefficient of variation (CV) is used to characterize the randomness and uncertainty in the 

measured properties. The coefficient of variation is generated through replicates of the 

test results which can require either more time and money for sampling/testing, or 

historical project data variance. If the coefficients of variation for the required soil 

properties of a project are known, sampling/testing can be reduced while increasing or 

maintaining the same level of confidence in the analyses and designs (provided the 

engineering team is experienced in statistical/stochastic analyses). As such, the 

coefficients of variation for the soil properties are used as key soil inputs for the 

stochastic volume change analyses.  

Randomization of the soil properties is required for the stochastic Monte Carlo volume 

change analyses. Random variables are to be generated from probability distributions. 

Beta distributions will be used for the required soil inputs for each hierarchal level of 

analysis: plasticity index (PI), liquid limit (LL), percent fines/percent passing the No. 200 

sieve (P#200), and percent clay/percent fine than 2 microns (Pclay), in situ moisture content 
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(w), and dry unit weight (γd). The LTPP soil database (FHWA) and the NCHRP 9-23 

(2006) soil databases will be used to develop the statistical parameters for new subsets of 

soil types for the shrink-swell analysis.  

It is well known that soil properties tend to be correlated within one another. Due to this 

high correlation between the soil properties, the random generation of each property 

cannot be performed individually on one another because there is a high potential that 

non-realistic soils will be generated. For example, the random generations of PI, LL, 

P#200, and Pclay separately can result in values of 55, 50, 10, and 20, respectively. It is 

impossible for PI to be greater than LL, and it is impossible for Pclay to be greater than 

P#200. Although constraints can be placed to limit these scenarios, there will still be a 

potential for non-realistic soils to be generated. For example, the random generations of 

PI, LL, P#200, and Pclay can result in values of 85, 50, 10, and 5, respectively. Although 

these values meet the constraints of LL greater than PI, and P#200 greater than Pclay, it is 

highly unlikely that a natural soil with a PI of 50 to only have 10% fines and 5% clay. 

More realistic soils can be randomly generated using regression equations for the 

correlated properties.  

The U.S. Department of Agriculture (USDA) Natural Resources Conservation Service 

(NRCS) Soil Survey Laboratory (SSL) soil database was used to explore correlations and 

relationships between required input soil index properties: PI, LL, P#200, and Pclay. Due to 

significant correlation between the input soil index properties, an algorithmic approach 

was developed to randomly generate each property.  
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3.5.1 Correlation Study using NRCS Soil Database 

The NRCS soil database was used to test for general correlations between the required 

soil index properties for the stochastic SS analysis: plasticity index (PI), liquid limit (LL), 

percent fines (P#200), and percent clay (Pclay). The wPI for each soil entry was also 

calculated per Zapata et al. (1999, 2000) and was included in the regression analyses. 

Correlations between index properties and in situ properties (density and moisture) were 

not explored. The NRCS soil database filtered using the following criteria in order: 

 Filtered out entries with missing P#200 (could not classify it) 

 Filtered out entries with Pclay > P#200 (non-realistic entry) 

 Filtered out entries with LL < PI, resulted in 0 entries (non-realistic entry) 

 Filtered out entries with all values the same (non-realistic entry) 

 Determined AASHTO classification for each entry based on P#200, PI, and LL. 

The total entry count after the filtering 28,323 soils. 

The software Minitab (2021), version 20, was used to perform the statistical analyses 

described herein. Table 3-3 presents the descriptive statistics of the explored parameters 

from the NRCS database.  

Table 3-3: Descriptive Statistics for Filtered NRCS Soil Data 

Variable N N* Mean StdDev Variance CV Minimum Median Maximum Mode 

p200 28323 0 56.085 25.788 665.029 45.98 0.000 57.500 100.000 85 

pClay 28013 310 22.128 13.698 187.638 61.90 0.0000 21.000 85.000 22.5 

pSilt 28013 310 34.084 19.746 389.902 57.93 0.000 32.500 95.500 35 
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LL 25264 3059 32.817 12.407 153.942 37.81 0.0000 30.000 200.000 30 

PI 28274 49 10.899 9.947 98.934 91.26 0.0000 7.500 70.000 0 

wPI 28274 49 7.7596 8.8222 77.8312 113.69 0.0000 4.6000 62.3000 0 

 

The correlation coefficient was to examine relationship between the soil properties PI, 

LL, P#200, and Pclay. Correlations between LL and PI are expected as PI is determined 

from the difference of the LL and the Plastic Limit (PL), however, PI was included in the 

correlation evaluation, as PL is not included in the input parameters for the stochastic soil 

volume change analyses. The wPI parameter was excluded from the correlation test as it 

is directly calculated from PI and P#200.The Pearson correlation coefficient (r) was used 

to examine relationship between the soil properties PI, LL, P#200, and Pclay. Figure 3-7 

illustrates the different patterns in the strength and direction of the relationships between 

the soil properties PI, LL, P#200, and Pclay from the NRCS soil database filtered with PI > 

0. 
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Figure 3-7: Correlation Plots for PI, LL, P#200, and Pclay from NRCS Soil Database 

Filtered with PI > 0 

 

Table 3-4 presents the Minitab output of the correlation coefficients matrix. The Pearson 

(linear) correlation coefficients indicate that the PI, LL, and Pclay properties are highly 

correlated, which is expected based on the nature of the geotechnical index properties. 

The P#200 parameter resulted in a low linear correlation. The PI resulted in the strongest 

correlation to LL and Pclay, which was used as the basis of the regression study 

summarized in the following section.  

Table 3-4. Correlation Matrix for PI, LL, P#200, and Pclay from NRCS Soil Database 
Filtered with PI > 0 

 PI LL P#200 

LL 0.930   

P#200 0.558 0.576  

Pclay 0.912 0.884 0.547 
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Nine regression trails have been performed with the goal of building statistically 

significant relationships. (p-value < 0.1). A summary of the adjusted r-square and 

standard deviation of the residuals of the regression fit is presented in Table 3-5 All of the 

regression relationships were determined to be statistically significant with all p-values < 

0.01. 

Table 3-5. Summary of Regression Analyses for LL, PI, P#200, and Pclay 

Trial 
No 

Dependent 
Variable 

Independent Variables Linear Quadratic (Q)/Multiple (M) 
[1] 

1 2 3 
R-squared 
(adjusted) 

Residual 
Standard 
Deviation 

R-squared 
(adjusted) 

Residual 
Standard 
Deviation 

1 LL PI   86.42 4.429 86.43 (Q) 4.427 
2 PI LL   86.42 3.569 86.52 (Q) 3.556 
3 Pclay PI   83.15 5.310 84.17 (Q) 5.148 
4 P200 PI   31.18 18.693 34.71 (Q) 18.207 
5 P200 PI Pclay    35.04 (M)  
6 P200 PI Pclay LL   37.93 (M)  
7 wPI PI   93.38 2.289 93.95 (Q) 2.187 
8 wPI PI Pclay    94.07 (M)  
9 wPI PI Pclay LL   94.25 (M)  

[1] Alternate quadratic model regression fits are automatically generated by Minitab when using the linear regression tool. 

Based on the correlation and regression study, the regression models for PI to LL, PI to 

Pclay, and PI to wPI explained a high percentage of the variation. There was not a 

significant difference in the adjusted R-squared values between the linear and 

quadratic/multiple regression models; therefore, thelinear regression models were chosen 

for implementation due to simplicity.  

As portrayed in the correlation study, the regression models to estimate P#200 explained 

only 31.18% to 37.79% of the variation in P#200. Although the regressions to estimate 

P#200 indicated a statistically significant relationship (P < 0.001), the high scatter of 
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residuals and relatively low r-squared does not provide high enough confidence to 

implement the regression models into the stochastic analyses. 

3.5.1.1 Graphical Summary and Normality tests 

The Anderson-Darling (AD) statistic is used by Minitab to measure how well the 

data follows a particular distribution. The null hypotheses (H0) for the Anderson-Darling 

test when testing normality is that the data follows a normal distribution. 

If the p-value for the Anderson-Darling test is lower than the chosen significance level of 

0.05, it is concluded that the data does not follow a normal distribution (i.e. reject the null 

hypothesis). The graphical summaries and normality tests for each parameter are 

provided in Figure 3-8 through Figure 3-12. 

Based on the results of the normality test presented in Figure 3-8 through Figure 3-12, the 

five soil properties from the NRCS soil database filtered with PI > 0 are not normally  

distributed. Based on a visual evaluation of each property histogram, Beta distributions 

were chosen to represent the soil properties, following the existing approach of the 

MEPDG.  
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Figure 3-8. Normality Test and Descriptive Statistics for PI from NRCS Soil Database 

with PI > 0 

 

 
Figure 3-9. Normality Test and Descriptive Statistics for LL from NRCS Soil Database 

with PI > 0 
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Figure 3-10. Normality Test and Descriptive Statistics for Pclay from NRCS Soil Database 

with PI >0 

 

 
Figure 3-11. Normality Test and Descriptive Statistics for P#200 from NRCS Soil 

Database with PI >0 
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Figure 3-12. Normality Test and Descriptive Statistics for Pclay from NRCS Soil Database 

with PI >0 
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Figure 3-13. Minitab Summary of Linear Regression of PI to LL 
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Figure 3-14. Minitab Summary of Linear Regression of PI to Pclay 
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Figure 3-15. Minitab Summary of Linear Regression of PI to wPIAlgorithm for 

Randomizing Correlated Soil Index Properties 
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To improve the randomization process to produce more natural results, an algorithmic 

approach was developed to randomly generate the PI, LL, P#200, and Pclay inputs for the 

stochastic volume change analyses using beta distributions, linear regression equations 

for properties correlated to PI, standard deviations of the residuals of the regression 

models, and criteria for the minimum and maximum bounds of the beta distributions 

based on the nature of the soil properties.  

1) Randomly generated PI based on the beta distributions for the hierarchical level.  

2) Randomly generated p200 based on the beta distributions for the hierarchical level.  

3) Randomly generate LL based on regression model with PI 

a) Use linear regression model to estimate expected value of LL using PI (Eq. 8-25).  

b) Randomly generate LL using a beta distribution with: 

i) the mean equal to the expected value from the regression fit with PI, 

ii) the standard deviation equal to the standard deviation of the residuals of the 

regression fit, 

iii) the maximum equal to the expected value plus 3 times the standard deviation 

of the residuals from the regression fit, and 

iv) the minimum equal to the greater of the PI or the expected value minus 3 

times the standard deviation of the residuals from the regression fit 

4) Randomly generate Pclay based of regression model with PI 

a) Use linear regression model to estimate expected value of Pclay with PI (Eq. 8-26), 

b) Randomly generate Pclay using a beta distribution with: 

i) the mean equal to the expected value from the regression fit with PI, 



 

126 

ii) the standard deviation equal to the standard deviation of the residuals of the 

regression fit, 

iii)  the maximum equal to the expected value plus 3 times the standard deviation 

of the residuals from the regression fit, and 

iv) the minimum equal to the greater of zero or the expected value minus 3 times 

the standard deviation of the residuals from the regression fit 

Note that the engineering soil properties of in situ moisture content and dry unit weight 

are also required as inputs for the stochastic analyses but it assumed that these 

engineering properties act independently and are not correlated to any of the of the soil 

index properties or to one another. As such, the moisture content and dry unit weight can 

be randomly generated from the beta distributions without correlation concerns, 

described further herein. 

The normal distribution is not bound between any values (i.e., the left tail of the 

distribution will approach negative infinity and the right tail of the distribution will 

approach positive infinity). As such, issues can arise when generating random numbers 

for data sets which represent percentages or index values that must be greater than 1 

because there is a possibility of producing negative values. This scenario is applicable to 

the required soil index properties of PI, LL, p200, and pClay as each parameter is a 

percentage greater than 0%. The PI and LL parameters do not have an upper bound value 

but p200 and pClay cannot be greater than 100%. Furthermore, PI is computed from LL 

and pClay is a fraction of p200 (i.e., must be less than), resulting in high correlation 

between the parameters, which is discussed further herein. Albeit these limitations for 
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application in stochastic analyses with natural soil properties, the normal distribution is 

still used as effective tool for preliminary screening of normality for input variable and 

residuals of regression fits.  

Randomization of the soil properties is required for the stochastic Monte Carlo volume 

change analyses. To validate that the Beta random number generator function in 

MATLAB, histograms with increasing numbers of Monte Carlo simulations (nMC) can 

be generated and the predetermined Beta distributions for each input parameter can be 

visually checked for fit to the distribution, as shown in the example in Figure 3-16. 
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Figure 3-16. Example of Histograms and Fitted Beta Distributions for Randomly 
Generated Data Points PI, p200, pClay, LL, d_UW, and w.  

 

3.6 Implementation of Random Soil Properties Generator  

The hierarchical descriptive statistics with Beta distributions and the random soil 

properties algorithm are being considered for implementation in the Pavement 
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Mechanistic-Empirical Design (PMED) guide, also referred to as MEPDG, as part of the 

NCHRP Project 01-59.  As part of the work on that project, the author developed a 

computer program with a graphical user interface which allows users to perform most of 

the stochastic analyses presented herein.  Figure 3-17 through Figure 3-25 present 

excerpts (screenshots) from the developed software program which provide an example 

of the random soil index property model using a few different scenarios. 

Figure 3-17 presents the default descriptive statistics for the Level 3 “Clayey 

FGM” material soil group. Note that only the Mean, coefficient of variation (CV), 

minimum (Min), and maximum (Max) are displayed. The standard deviation and 

variance parameters are not necessary as they can be represented using CV, and the Beta 

shape factors were deemed by the author and the NCHRP 01-59 research group to not be 

allowed for direct user updating. Calculations of Beta shape factors are generally based 

on known statistical moments (mean and variance) and known/desired limits of the 

distribution (min and max). It is uncommon for the beta shape factors to be the known 

parameters requiring the statistical moments and limits of the distributions to be back 

calculated. As such, the program automates the calculation of the updated Beta shape 

factors/distributions based on the user input of either Mean, CV, Min, or Max. Not that 

the work “either” is not a mistake in the previous statement, as the develop random soil 

properties model uses a Bayesian type framework to update the default Beta Distribution 

based on any known (user-input) parameters and does not need all four to be input.  
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Figure 3-17 Default Descriptive Statistics for the Level 3 “Clayey FGM” Material Soil 
Group. 

 

 

Figure 3-18 Default Beta Distributions for the Level 3 “Clayey FGM” Soil Group  

 

The Beta distribution for the input soil properties percent fines (p200), Plasticity Index 

(PI), moisture content (w), and dry unit weight (d_UW) are displayed in Figure 3-18. 

Note that units for the dry unit weight is in pounds per cubic foot (pcf), and the other 
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three variables are in percent (%). The Beta Distributions of the additional parameters LL 

and pClay, are not defined by user input due to the high correlation with p200 and PI, but 

rather produced using the regression equations and algorithmic process proposed herein. 

Figure 3-19 presents the Beta Distributions for LL and pClay generated by fitting the 

histograms of the data produced using the randomized regression-based algorithm 

(although the actual histogram is not displayed on this portion of the interface). The 

number of randomized draws used to produce the distributions in Figure 3-19 was 1000.  

 

Figure 3-19 Default and Randomized Beta Distributions for the Level 2 “Clayey FGM” 
Soil Group using 1000 Monte Carlo draws 

 

This number of draws was chosen to present these examples as it generally provides a 

relatively good fit to the default distributions but not the most ideal fit.  One can expect 



 

132 

visually noticeable differences between the default distributions and the distributions fit 

to the randomly generated data when the number of draws is at or below 1000. Generally 

the number of draws is governed by the stability of the produced variance of the complete 

Monte Carlo analysis, which for the full shrink-swell volume change model presented in 

this study, the required number of simulations (draws) will need to be 10,000 at 

minimum, which is discussed further herein. As such, the randomized soil property 

algorithm will generally produce stable representations of the variability of the soil input 

properties. 

 The difference between the variability of the default hierarchical soil groups can 

be visually evaluated using Figure 3-20 and Figure 3-21 which present the default 

descriptive statistics and randomized distributions for the Level 2 A-7-6 soil which 

encompasses clayey soils as presented in the previous example of Level 3 “Clayey FGM” 

in Figure 3-19. Note that there is a difference in the x-axis scale for the Beta distributions 

for the different soil groups.  An example of the randomly generate Beta Distributions for 

the proposed soil groups for Shrink-Swell soils is presented in Figure 3-21 and Figure 

3-23.  

 

Figure 3-20 Default Descriptive Statistics for the Level 2 A-7-6 Soil Group. 
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Figure 3-21 Default and Randomized Beta Distributions for the Level 2 A-7-6 Soil Group 
using 1000 Monte Carlo draws 

 

 

Figure 3-22 Default Descriptive Statistics for the Level 2 “wPI 30-40” Soil Group 
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Figure 3-23 Default and Randomized Beta Distributions for the Level 2 “wPI 30-40” Soil 
Group using 1000 Monte Carlo draws 

 

The computer program developed by the author allows for the user to adjust any of the 

input descriptive statistics for the four input soil properties. This allows for the user to 

include any site-specific knowledge into the generation of the Beta distribution, which 

can either decrease or increase the overall variability of the parameter compared to the 

default soil group values. Figure 3-24 presents an example of user adjusted parameters 

(highlighted cells) for various, but not all, of the descriptive statistics of the input 

variables.  
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Figure 3-24 Example of Various User Adjusted Descriptive Statistics for the Level 3 
“Clayey FGM” Soil Group 

 

The program displays the default Beta Distribution along with the user defined Beta 

distribution and the randomized beta distribution based on the user adjusted descriptive 

statistics to allow for a visual comparison, as shown in the Figure 3-25 example. 

 

Figure 3-25: Example of the Randomized Beta Distributions (red) based on the various 
User Adjusted descriptive statistics (Figure 3-24) for the Level 3 “Clayey FGM” Soil 

Group 
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3.7 Implementation of Random Soil Properties Algorithm in Practice 

Randomization of the soil properties is required for the stochastic Monte Carlo 

volume change analyses. Random variables are generated from probability distributions. 

Beta distributions were generated for the required soil inputs for each hierarchal level of 

analysis: plasticity index (PI), liquid limit (LL), percent fines/percent passing the No. 200 

sieve (P#200), and percent clay/percent fine than 2 microns (Pclay), in situ moisture content 

(w), and dry unit weight (γd). The LTPP soil database (FHWA) and the NCHRP 9-23 

(2006) soil databases were used to develop the statistical parameters for new subsets of 

soil types for the shrink-swell analysis. 

This study introduced an updated approach to stochastically model the variability of the 

required soil properties. A database of updated statistical parameters for common soil 

index properties has been compiled for the AASHTO soil groups and for soils groups 

differentiated by wPI. A Bayesian framework for randomly generating natural 

combinations of highly correlated variables was developed.  Adjustment of the datasets 

used for the hierarchical levels of the descriptive statistics to better represent the common 

soil types susceptible to shrink-swell potential.  The ability for the engineer to use 

historical/prior data as a starting point to represent the variability of common soil 

properties provides a tool which can be used for preliminary sensitivity analyses prior to 

a site visit, which can provide insight to which soil properties need additional 

measurements via sampling and testing. Improvement to the overall level of confidence 

in the geotechnical produced output, and associated variability, can be increased using 

any site-specific adjustment to the default Beta distributions.  
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3.7.1 Limitations   

The limitations pertaining to the Bayesian characterization model for generating 

randomized inputs of common soil properties should be understood prior to consideration 

of implementation into engineering practice: 

 The NRCS and LTTP databases were used to generate descriptive statistics for the 

default variability characterization for the defined soil groups. Although these 

databases are considered by the field to adequately represent most soil types, there 

is always a chance for a location to consist of soils which exhibit characteristics 

away from the norm. It is always recommended that some site-specific data be 

obtained to gain an understanding of the material types at hand and rule out any 

potential unusual scenarios.  

 The proposed approach for characterizing the variability of common soil 

properties uses the general variability of the measured properties for a given soil 

type to represent the 2D variability at the subject site. As such, the proposed 

framework can be considered a pseudo-2D approach for characterizing soil 

variability but does not include the modern techniques of quantifying spatial 

variability.  
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CHAPTER 4 

4 STOCHASTIC CLIMATIC PARAMETER FORECAST MODEL 

4.1 Introduction 

Geotechnical engineering analyses and designs commonly require knowledge 

parameters other than just soil/rock properties such as structural loads, traffic volumes, 

climate data, and manufactured material specifications (e.g., concrete, rebar, 

geosynthetics, etc.). For new designs, each of these parameters has an associated degree 

of uncertainty, with manufactured materials generally having minimal uncertainty and 

future climate data having the highest uncertainty. Such climatic inputs which are often 

required in geotechnical modeling can include temperature, rainfall, humidity, runoff, and 

solar radiation. 

For geotechnical engineers designing with soil parameters that are subjected to moisture-

driven changes, rainfall and temperature data is crucial information. Although such data 

is readily available, forecasting rainfall events over the design life of common civil 

engineering structures is difficult due to the extremely random and nonstationary nature 

of the events. As such, the Thornthwaite Moisture Index (TMI) is commonly adopted by 

geotechnical engineers as a climatic parameter as it provides a quantitative representation 

of the historical monthly rainfall and temperature (Thornthwaite, 1948). More 

specifically in unsaturated soil applications, researchers have successfully related the 

TMI to geotechnical design parameters used to estimate seasonal moisture variations 
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within the subgrade (Mckeen and Johnson, 1990; Perera, 2003, Witczak et al. 2006; 

Australian Standard, 2011; Vann and Houston, 2021, and Olaiz et al. 2021).  

Understanding soil-climate interaction is crucial for geo-civil analysis due to the 

moisture-dependency of the soil shear strength, storage capacity, and volume change 

potential. The Thornthwaite Moisture Index (TMI) is commonly used by geotechnical 

engineers to represent both short- and long-term trends of the climate-driven soil-

moisture balance within the vadose zone. The long-term average TMI (20+ years) has 

correlated well with unsaturated soil moisture flow parameters but fails to characterize 

the extreme climate events which are crucial to the performance of civil infrastructure 

that have relatively short-term design lives (e.g., pavements).  However, the highly 

variable and the nonstationary nature of the short-term TMI hinders its usefulness in civil 

design. This study presents a Bayesian framework for stochastically forecasting a short-

term TMI using time-series analysis techniques and a component-wise transitional 

Markov Chain Monte Carlo (MCMC) approach.  A validation of the proposed framework 

is presented for three locations within different climate zones: arid, temperate, and alpine. 

This study presents a new Bayesian framework for stochastically forecasting monthly 

TMI values using time-series analysis techniques and a component wise transitional 

Markov Chain Monte Carlo (MCMC) approach (Hastings, 1970; Tierney, 1994). The 

proposed framework for stochastically forecasting monthly TMI is optimized and 

validated by comparing the forecasted monthly TMI to historic monthly TMI data. An 

example of the implementation of the proposed framework is also presented which 

correlates the forecasted monthly TMI to a time-varying soil suction surface boundary 
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condition used for simulations of seasonal soil moisture variations and shrink-swell 

volume change estimates.  

4.1.1 Objectives 

The following objectives were accomplished as part of this study: 

 Optimize time-series decomposition of monthly TMI data  

 Develop Markov Chain Monte Carlo process for stochastically forecasting monthly 

TMI 

 Optimize and Validate monthly TMI forecast model using historical climate data.  

 Perform sensitivity analyses for the stochastic forecast model 

4.2 Relevant Background 

A review of time-series analysis including stationarity, autocorrelation, trend 

analysis, regression, and forecasting was conducted and is summarized below.  Recent 

advancements in Bayesian Inference techniques such as Markov-Chains Monte Carlo 

(MCMC) methods for forecasting random time-series processes were also reviewed.  

4.2.1 Review of Time-Series Analysis 

The initial time series analysis gathered from the deterministic model must be 

decomposed into long-term/seasonal trends and the monthly deviations from those trends, 

referred to as noise (Montgomery et al. 2016). The time series decomposition includes 

stationarity tests, autocorrelation tests, determination of lag, and normality tests of the 
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residual values to determine the most efficient model to fit the data. The stochastic model 

proposed herein utilizes a second-order moving average (MA(2)) of the monthly change 

in TMI (difference) to fit the historic data. 

The first step of time series decomposition is to vary the stationarity of the data. 

Stationarity implies that the time series data moves around a relatively stable equilibrium 

or mean value. On the extreme side, strict stationarity indicates that the joint probability 

distribution at any time range within the series is equivalent to a different time range 

within the series. General stationarity can be judged visually using a time series plot. The 

stationarity can also be judged mathematically using an autocorrelation approach. It is 

common to study both the raw time series data as well as the smoothed/transformed time 

series data when determining stationarity, autocorrelation, and lag (time period associated 

with autocorrelated data).  

Time series data is often transformed or adjusted to remove seasonal/long-term trends 

and to obtain a more stationary data set. A common form of transformation, used in the 

proposed forecasting model is differencing. Differencing is simply calculating the change 

between time steps, which can be represented using TMI as follows: 

 1t t tTMI TMI TMI     (95) 

A second common transformation technique is to smooth the data using a moving 

average ( TM ). The moving average represents the mean of the time series of a specified 

span ( N ). The moving average of the TMI at time period (T ) is represented as: 
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    (96) 

The span of the moving average which provides the best fit to the data represents the lag 

term. The lag can be determined from a study of the autocorrelation functions. The 

covariance between the TMI at a given time ( t ) and the TMI a different time ( t k ) is 

the autocovariance at lag ( k ), expressed as: 

     ,k t t k t t kCov TMI TMI E TMI TMI          (97) 

Where E represents the expected value of the expression. The autocovariance at zero lag (

0k  ) represents the variance of the time series: 0( )tVar TMI  .  

Stationarity and lag can be visually interpreted from the ACF plot. Time series data, 

which exhibit stationary behavior, will have ACFs that decrease initially from 1 to 

approximately zero, and then will oscillate around zero, as both TMI and dTMI show, 

with minimal spikes above a specified significance level (not shown above). The lag for 

both TMI and dTMI were determined by selecting were the ACFs just passed the zero 

value (TMI lag = 12, dTMI lag = 3). Note that the developed ACF values and plots were 

validated by the authors using the commercial statistical software Minitab.  
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Figure 4-1 Autocorrelation Function Plot for Monthly TMI and Monthly Change in TMI 
(dTMI) 

 

Once stationarity of the time series data has been verified and the lag has been 

determined, the proper data transformation can be completed. Although there are several 

sophisticated time series data transformations (Montgomery et al., 2016), the TMI data 

has an inherent lag of 12 months due to its annual heat index, which allows a 12-span 

moving average to provide a reasonably good fit for most occasions. This phenomenon is 
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evident in the previously presented ACF plot. However, an algorithmic approach was 

include into the climate model which selected the lag associated with dTMI and TMI 

based on the calculated autocorrelation function. The lag was automated to be set at the 

point at which correlation to previous time-steps became negative.  

4.2.2 Review of Bayesian Forecasting Techniques 

Bayesian frameworks are a recent focus of study and implementation in 

geotechnical engineering (Zhang et al., 2004; Najjar and Gilbert, 2009; Ching et al., 

2010; Chiu et al., 2012; Juang et al., 2013; Medina-Cetina and Esmailzadeh, 2014; Wang 

et al., 2016). However, the mathematical and computational complexity have limited the 

speed of adoption by the overall field (e.g., Zhang et al., 2009).  

Prior knowledge and site/project specific data are used during geotechnical site 

characterization to estimate subsurface properties. The prior knowledge, or prior 

distribution, represents the estimation of the PDFs for the model parameters based on 

historical data/experience of similar parameters (e.g. the expansion potential of a fat clay 

at a new site is likely to be similar to other fat clays in the area or even around the world). 

The likelihood function is a key step in the Bayesian framework. The likelihood function 

is the PDF of site observation data for a given set of model parameters.  

Bayesian framework are already being studied and implemented in in geotechnical 

engineering (Najjar and Gilbert, 2009; Ching et al., 2010; Chiu et al., 2012; Juang et al., 

2013; Medina-Cetina & Esmailzadeh, 2014; Wang et al., 2016, Soltanpour, 2017). 
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However, the mathematical and computational complexity have limited the speed of 

adoption by the overall field (e.g., Zhang et al., 2009).  

It has been common practice to force normal distributions on prior and likelihood 

functions for the sole reason of convenience and simplicity. Although many geotechnical 

model parameters can pass a normality test, many will night and being able to represent 

the true variability of the model parameters (i.e. reflect the physical characteristics of the 

parameter) can have a significant effect of the model outcome.  

4.2.3 Markov Chain Monte Carlo (MCMC) Simulations 

One powerful tool in stochastic analyses and Bayesian Inference is the Markov-

Chain Monte Carlo (MCMC) simulation, which can produce forecast estimates of highly 

correlated, multi-parameter, time-series data. MCMC forecasts data based on the 

conditional probability of observed (prior) data. Several recent publications which 

applied MCMC techniques to analysis of time series data and/or analysis of engineering 

related problems were reviewed as part of this study: Valdivieso (2009), Chen and Liu 

(2011), Sengupta et al. (2016), Bentancourt (2018), Koch et al. (2020), and Li et al. 

(2021). 

A series of data is referred to as a Markov Chain is the conditional distribution of 

each time step is dependent or correlated to the previous time step. The general MCMC 

analysis approach involves a drawing proposal values unobserved data ( t ) which is 

dependent upon or corrected by the previous draws ( 1t  ) so that a better representation 

of the target distribution is produced. Markov Chains can be represented by the joint 
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distributions of the given/observed data, referred to as the marginal distribution. 

Transition probabilities, or jumping distributions express the joint probability of the 

proposed variable at the current time step ( * ) and the accepted variable at the previous 

time step ( 1t  ): 

    * 1| |t b a t tJ J      (98) 

Two common approaches are used in Bayesian inference to produce proposal variables 

and define criteria for acceptance and rejection of the proposed variables. One main goal 

of MCMC simulations are to create stationary Markov processes which results in the 

proposed variables falling within the distributions of the prior data for each sequential 

draw.  The variance of a Markov Chain differs from the typical Monte Carlo simulation, 

or the good old-fashioned Monte Carlo (GOFMC) as defined by Geyer ().  Due to the 

dependency on the previous data, the variance ( 2 ) of a MCMC simulation, lets say 

 g X , can be expressed as:  

        2

1
var 2 cov ,i i i k

k
g X g X g X






    (99) 

Where, i refers to the previous time current time step and k refers to either the previous or 

the future time steps (if the MCMC chain is reversible). Markov chains are not limited to 

representation of one variable at a time, but the general framework can apply to vectors 

and array variables as well. Furthermore, MCMC frameworks do not need to have 

stationary transition distributions; the variance and/or jumping distributions can be 

adaptive over time (Rosenthal, 2010).  
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4.2.3.1 Time-Series MCMC 

Transitional probabilities for MCMC can also be defined by the autocovariance function, 

which is a common explanatory technique for time series analysis.  The covariance 

function at any lag (k) can be expressed as: 

         
1

1
ˆ ˆcov ,

n k

k i i k i n i k n
i

g X g X g X g X
n

  


 


            (100) 

Where n represent the total number of observations, ˆn  is the mean of the Markov Chain 

for an assumed normally distributed prior data set: 

 
2

ˆ Normal ,n n

 
 

  
 

 (101) 

4.2.3.2 Metropolis-Hastings  

The key to performance of an MCMC simulation is the proposal mechanism and the 

acceptance/rejection process for the proposed sample.  A common method to the 

acceptance/rejection process is the Metropolis-Hasting (MH) approach.  The MH 

techniques can be and are commonly combined with Gibbs sampling techniques to 

improve efficiency, usefulness, and computation time of the MCMC simulation. 

Originally, the Metropolis algorithm was as follows: 

 Propose an unobserved data point ( * ) given the conditional probability between 

either the prior or the accepted posterior distributions.  

   * 1| | tp y or p     



 

148 

 Calculate the Hastings Ratio: 

        
   

   
   

* * 1

1 *

1 1 *
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| |

| |
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t t
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p y p y p p

   
  

   




 
    (102) 

 Accept the proposed move to the variable ( * ) if the   1 *min 1 |, tr u   .  

The Metropolis-Hasting algorithm provided an update to the rejection aspect of the 

process and included the generation of a uniform random variable (u) between [0,1] 

following the calculation of the Hasting ratio. 

4.2.3.3 Variance Estimation 

The approach to represent the variance in MCMC simulations is a key factor which 

affects the performance of the model, and can be represented/estimated in several ways.  

A batch sampling approach can be used which simply accounts for a finite amount of 

samples, less than the total amount of samples, and assumes stationarity within the batch 

sample. Similar to a moving average approach, the variance within the batch sample is 

calculated and assumed to represent the posterior data at that time step. Batch sampling 

can include overlapping or not overlapping ranges of the sample data.  

A second approach for defining the variance of time series data for MCM simulations is 

referred as the Initial Sequence Method and uses the autocorrelation function to represent 

dependency of the next time step on not only the typical lag data points, but also the 

period after the typical lag effect is negligible, and the period as the autocorrelation 

reverses to be opposite trend of the initial relationship.  
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4.2.3.4 Initiating a MCMC Simulation  

One unfortunate aspect of MCMC models is that most useful models are developed and 

optimized to provide insight for a specific scenario and the application of each MCMC 

framework to other applications is difficult.  

Generally, a “Burn-in” or “warm-up” period is implemented into a MCMC model to 

allow for the posterior distributions to stabilize at or near the target distributions. 

Common practice when developing MCMC models is to start with a warm-up period that 

is 50% of the total number of simulations (Gelman et al., 2014).  

This initial starting proposal point of an MCMC simulation can be chosen through a 

variety of approaches. The initial point can be a random draw from the prior distribution, 

or even the mean of the prior distribution can be used. The random draw of the posterior 

distribution can also be used, provided a warm-up period has been complete and the 

variance of the posterior distribution has stabilized. It there is a decent level of 

confidence in the prior distribution, or the prior data is highly correlated as with time-

series data, a Gibbs sampling approach can be used to generate an approximation of the 

first proposal point.  

4.3 Time Series Decomposition of Monthly TMI Data 

The initial time series analysis gathered from the deterministic model must be 

decomposed into long-term/seasonal trends and the monthly deviations from those trends, 

referred to as noise (Montgomery et al. 2016). The time series decomposition includes 
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stationarity tests, autocorrelation tests, determination of lag, and normality tests of the 

residual values to determine the most efficient model to fit the data. The stochastic model 

proposed herein, utilizes a second-order moving average (MA(2)) of the monthly TMI 

(moving average of the monthly change in TMI) to fit the historic data. 

The second order moving average (MA(2)) model of the differenced TMI (dTMI) is 

expressed as: 

 1 1 2 2t TMI t t tdTMI            (103) 

Where is the average value of the sampled dTMI and represents the ACF parameters 

for dTMI at the lag identified by the subscripts. To improve the fit, the average value of 

the sample can be replaced by the moving average of the terms prior with lag = 3, as 

presented in the figure below. Note that once the dTMI value is estimated, the TMI term 

for a given month is calculated adding the change to the previous term.  The dTMI model 

expressed in Eq. 104 will serve as the basis for the stochastic forecasting solution. 

However, the stochastic approach will incorporate the monthly statistics associated with 

each of the parameters in the equation (i.e., monthly means of dTMI, and autocorrelated 

monthly residual values). A visual example of the time series decomposition for using the 

MA(2) model of the monthly dTMI values is presented in Figure 4-2. 

dTMI
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Figure 4-2 Time Series Decomposition of TMI and dTMI (black) using Moving Average 
(MA in red) with lag = 12 and 3, respectively, and the Associated Monthly Residuals 

(blue). 

4.4 MCMC Framework for Stochastic Climate Parameter Forecasting 

The monthly parameterized prior distributions for the MCMC TMI forecast model are 

obtained using the procedures presented in the diagram in Figure 4-3. 
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Figure 4-3 Procedure for Obtaining Monthly Parameterized Prior Distributions for the 
TMI MCMC Forecast Model 

 

The overall framework of the MCMC algorithm using a Metropolis-Hastings acceptance 

criteria is presented in Figure 4-4. 
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Figure 4-4 Framework for monthly MCMC TMI forecast model using the Metropolis-
Hasting Acceptance criteria. 

4.4.1 Stability and Optimization of Stochastic Climate Parameter Forecasting Model 

The MCMC framework for stochastically forecasting the Thornthwaite Moisture Index 

went through numerous was optimized through numerous adaptations through iterations 

of trial and error until a useful model was obtained which could be efficiently applied to 

just about all locations in the US. The following concepts were incorporated into the 

analysis to help evaluate the stability and optimize the performance of the climate model.  

 The generation of the proposal point initially began with a randomly generated 

value from the monthly parameterized prior distributions. To improve the 

efficiency and acceptance rate of the MCMC algorithm, a multivariate random 
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number based on the posterior distributions within the lag period for dTMI is 

included final model. Frameworks which use Gaussian noise randomly generated 

number and the autocorrelation with the data points within the lag period was also 

explored but no benefit to the model performance was observed. 

 The acceptance rate of Metropolis Hasting algorithm was calculated and 

evaluated to see if it fell within the typically accepted value for multidimensional 

models of 24%.  

 A warm-up period was included in the algorithm which was set at 50% of the 

total simulations per recommendations by Gelman et al. (2014).  

 An adaptive Metropolis-Hastings algorithm was developed which updated the 

target variance after a user-defined number of iterations to help drive and 

maintain the acceptance criteria around 24%. The adjustment factor and the 

update period were initially chosen to be 0.2 and 50 simulations based on 

recommendations by Vrugt (2016), however, after a few  

 Bounds of the posterior forecasted data were implemented on the TMI values, the 

moving average of the TMI, and the moving average of the change in TMI. The 

bounds were defined as three standards deviations on each side of the mean for 

the monthly parameterized prior data. The bound checks occur at each sequential 

time step and include a “step-back” process if the current proposal point falls 

outside of the bounds. On the time scale, the step-back period was set to be the lag 

of dTMI or TMI depending on which parameter had failed the bound checks. The 

implementation of the bound check and the step-back process is a rough approach 
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to adding the benefit of a Hamilton Monte Carlo type algorithm without the direct 

inclusion of the energy expressions or the leapfrog algorithm.    

 The Metropolis-Hasting algorithm was updated to include the conditional 

probability of the proposal TMI to help drive the posterior distribution of TMI 

closer to the target distribution and help improve stability of the model by 

reducing the variance of the posterior distribution of TMI.   

4.5 Validation of Stochastic TMI Forecast Model 

Five locations within differing climate regions were used to evaluate the performance of 

the TMI forecast model. The simulated time period was from March 2017 to March 2022 

(5 years). By using a forecast window of historical data, a comparison can be made 

between the forecasted TMI and the actual TMI during that period. Note that the 

historical data during the comparison period was not included in the prior distributions. 

Thirty years of prior climate data from NOAA was collected and used to develop 

monthly distributions for TMI, dTMI, TMI_MA, and dTMI_MA. Using a monthly-based 

component-wise setup allows for the qualitative knowledge that weather data is typically 

similar in each month year after year; however, the monthly component-wise setup limits 

the number of data points for each component distribution to the number of years of 

historical data available at the site. The five locations used for evaluation of the proposed 

TMI forecast model are presented in Table 4-1 along with the NOAA weather station ID, 

the 30-year TMI, and the climate region as defined by AS2870 (2011).  
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Table 4-1. Sites for Validation Study of the Proposed Stochastic TMI Forecast Model 

Location NOAA Weather Station (ID#) 
30-Year 

TMI 
Climate Region* 

Arlington, VA 
Washington Reagan Airport 

(USW00013743) 
24 Wet Coastal / Alpine 

Dallas, TX 
Dallas FAA Airport 

(USW00013960) 
-5 

Wet Temperate to 
Temperate 

Denver, CO 
Denver Central Park 

(USW00023062) 
-19 Dry Temperate 

Salt Lake City, UT 
Salt Lake City International Airport 

(USW00024127) 
-26 Semi-Arid 

Tempe, AZ 
Phoenix Sky Harbor International Airport 

(USW00013743) 
-58 Arid 

* As defined by AS2870 (2011) based on TMI 

The autocorrelation functions, histograms and boxplots of the parameterized data of the 

monthly TMI time-series decomposition and the MCMC forecasted TMI for the five 

locations are presented in Appendix E. The results of the TMI forecast for Arlington, VA, 

categorized as a wet coastal/alpine climatic region, are presented in Figure 4-5. The 

results of the TMI forecast for Dallas, TX, categorized as a Temperate to Wet Temperate 

climatic region, are presented in Figure 4-6. The results of the TMI forecast for Denver, 

CO, categorized as a dry temperate climatic region, are presented in Figure 4-7 . The 

results of the TMI forecast for Salt Lake City, UT, categorized as a Semi-Arid climatic 

region, are presented in Figure 4-8. The results of the TMI forecast for Tempe, AZ, 

categorized as an arid climatic region, are presented in Figure 4-9. The figures present the 

prior data, the forecasted data, and the true data within the forecast period for 

comparisons and validation purposes.  
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Figure 4-5 Prior and Forecasted Monthly TMI from 03/2017 to 03/2022 for Arlington, 
VA (NOAA Station USW00013743) 
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Figure 4-6 Prior and Forecasted Monthly TMI from 03/2017 to 03/2022 for Dallas, TX 
(NOAA Station USW00013960) 
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Figure 4-7 Prior and Forecasted Monthly TMI from 03/2017 to 03/2022 for Denver, CO 
(NOAA Station USW00023062) 
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Figure 4-8 Prior and Forecasted Monthly TMI from 03/2017 to 03/2022 for Salt Lake 
City, UT (NOAA Station USW00024127) 
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Figure 4-9 Prior and Forecasted Monthly TMI from 03/2017 to 03/2022 for Tempe, AZ 
(NOAA Station USW00013743) 

 

Based on a visual evaluation of the forecasted TMI and monthly change in TMI of the 

five locations presented in Table 4-1, the following conclusions cans be made regarding 

the validation of proposed model.  
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 The prior TMI data (30 years) of the wet coastal/alpine location in Arlington, VA 

exhibited relatively high seasonal variation. The forecasted dTMI captures most of 

the true data within one standard deviation from the forecasted mean and nearly 

all of the extreme values of the true data are captured within two standard 

deviations from the forecasted mean. The individual forecasted chains of dTMI 

resulted in show that there were several forecasted chains which consisted of 

extreme values greater than both the prior data and the true data within the 

forecast period.  Although the dTMI forecast provides adequate representation of 

the true data and the variability of the prior data, the TMI forecast fails to 

encompass the extreme wetting period between 2017 and 2020 within two 

standard deviations of the mean, which is most likely caused by this period 

exhibiting TMI values higher than data from the 30 years of prior data.  

 The example forecast for the wet temperate to temperate location in Dallas, TX 

resulted in a relatively better fit to the true data. Although the dTMI forecast does 

not fully capture all extreme values within two standard deviations from the 

mean, the corresponding TMI forecast data does encompass the extreme events 

within 2 standard deviations. This improvement may be due to the four years of 

relatively dry (low) TMI values followed by a two-year period of wetter 

(increased) TMI values just before the start of the forecast period. Additionally, 

the period of wetting prior to the forecast period consists of higher TMI values 

that the true data within the forecast period. Overall, the Bayesian TMI forecast 

model for this example location in a wet temperate to temperate climate region 
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produces forecasted values which adequately represent the variability of the prior 

data and encompassed the potential extreme events 

 The example forecasts for the dry temperate and semi-arid locations of Denver, 

CO and Salt Lake City, UT, respectively, produced promising results for the 

forecasted dTMI and TMI data. The moving of the forecasted dTMI is similar to 

the true values within the forecast period with the exception of a few extreme 

values. The standard deviations of the forecasted dTMI data are much closer to the 

mean values, compared to the wet coastal/alpine and wet temperate to temperate 

examples. This reduction in forecasted variability is also observed on the 

forecasted TMI plots, without a noticeable reduction in the over forecast 

performance. Most of the true TMI data for both the dry temperate and the semi-

arid example are encompassed within one standard deviation from the forecasted 

mean with the exception of one extreme period in the Salt Lake City example 

from 2019 to 2020, which falls just outside two standard deviations from the 

forecasted mean.  

 The example forecast for the arid location of Tempe, AZ also produced a 

relatively good fit to the true data, although the variability and volatility in both 

TMI data for this climate region was minimal. 

4.5.1 Performance of the Bayesian TMI Forecast Model 

Overall, the visual evaluation of the Bayesian TMI forecast model for the five 

locations explored herein provide an adequate job of producing forecasted data which 

exhibit near the same seasonal averages and monthly variation as the prior and the true 
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data within the forecast period. The forecast model appeared to perform best for the dry 

temperate and semi-arid locations which is a promising outcome for the potential 

implementation for unsaturated soil shrink-swell volume change analysis as these climate 

regions are commonly associated with expansive soil related issues to infrastructure. The 

performance of the model in the arid region is tough to evaluate using the Tempe, AZ 

example as the variability of the prior data was minimal. It appears that the climate within 

this region is relatively stable which would indicate that the issues with shrink-swell soils 

would be governed by extreme events and not the natural seasonal moisture variations.   

To further evaluate the performance of the Bayesian TMI forecast model, the histograms 

of the monthly parameterized priors and posterior (forecasted) dTMI and TMI values 

were generated and are presented in Appendix E for each of the five locations used in the 

validation study. Figure 4-10 and Figure 4-12 present the dTMI and TMI prior and 

posterior histograms, fitted with normal distributions, for the Arlington, VA validation 

study location, respectively. Figure 4-11 and Figure 4-13 present similar data for the 

Dallas, TX validation study location.  
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Figure 4-10 Histograms of Prior and Posterior (forecasted) Monthly Change in TMI for 
the Arlington, VA Validation Study Site from 03/2017 to 03/2022. 
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Figure 4-11 Histograms of Prior and Posterior (forecasted) Monthly Change in TMI for 
the Dallas, TX Validation Study Site from 03/2017 to 03/2022. 
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Figure 4-12 Histograms of Prior and Posterior (forecasted) TMI for the Arlington, VA 
Validation Study Site from 03/2017 to 03/2022. 
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Figure 4-13 Histograms of Prior and Posterior (forecasted) TMI for the Dallas, TX 
Validation Study Site from 03/2017 to 03/2022. 

 

The dTMI histograms for the Arlington study location indicate that posterior data 

produced by the Bayesian TMI forecast model resulted in a reduction of variability of the 

monthly data compared to the priors, which can be observed by the narrower distribution 

fit and increased frequency of values near the mean (i.e., increased kurtosis). This is not a 

favorable result as the forecast model under predicts the variability of the historical data. 

The TMI histograms for the Arlington study site display another unfavorable outcome of 
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the forecasted data as the average of each monthly posterior distribution noticeably 

differs (more positive) than the average of the prior distributions. This indicates that the 

forecast model is not producing data which follows the mean of the historical prior data. 

These two lack of fits between the forecasted posterior data and the historical prior data 

may be what caused the lack of fit of the extreme event shown previously in Figure 4-5.  

In contrast, the prior and posterior histograms for the dTMI values for the Dallas, TX 

study location indicate that the Bayesian TMI forecast model is over predicting the 

variability of the prior data (decreased kurtosis) for most of the months; and the 

distruibtuions of the TMI prior and posterior data show that the model is producing 

nearly equivalent means for each of the monthly priors.  

4.5.2 Stability of the Bayesian TMI Forecast Model  

The stability of the Bayesian TMI Forecast Model was tested by performing forecast 

simulations for differing starting seasons/dates, over varying forecast durations (2 to 20 

years), for the five locations used in the validation study. The graphical results of the 

stability analyses are presented in Appendix F. In summary, the forecast model 

performed sufficiently and efficiently regardless of the initial conditions and the duration 

of the forecast period. However, the stability of the model was not tested using priors 

with limited or missing data, or at locations were the average TMI is near the limits of 

either -100 or 100.  
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4.6 Potential Future Improvements to the Bayesian TMI Forecast Model 

The research efforts produced useful frameworks for the stochastic forecast of the 

climatic parameter TMI using time-series and Bayesian Inference techniques Although 

the proposed model produced promising results for the sites explored in the validation 

study, which has potential for several further improvements.  

 The inclusion of multiple weather station data should be incorporated into both 

the deterministic and the stochastic models. For the deterministic model, a 

decision would have to be made to use the average monthly data, or another 

statistically representative monthly value. Although it is not a straightforward 

analysis, the most conservative approach would be to use the monthly data which 

results in the greatest monthly changes and/or seasonal variations, regardless of 

the location of the weather station (assuming only weather stations near the site 

that are chosen). 

 Improvement and optimization of the Bayesian forecast model for the climatic 

parameter TMI to include an adaptive Langevin Markov Chain (LMC) or a 

Hamiltonian Markov Chain (HMC) which incorporates a physics-based approach 

to control the stability and limit the random walk potential of the simulated time-

series by representing the MCMC framework as energy equations (potential and 

kinetic). The HMC framework also includes a leap-frog step which can 

significantly optimize the computation time of the MCMC simulation. 

 Evaluation of extreme climate events (in perspective of TMI) with the potential 

development of a Bayesian probability model which can force the forecasted TMI 
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values to include some percentage and probability of extreme events into the 

forecasted data.  

4.6.1 Limitations of the Bayesian TMI Forecast Model 

The author recommends that the models be treated as preliminary framework which 

needs further optimization, validation, and sensitivity analyses, the following efforts 

should be performed as part of future research work: 

 As displayed in the outcome of the Arlington, VA validation study, the proposed 

Bayesian TMI forecast model has potential to miss extreme events which were 

not characterized by the 30 years of prior climate data.  

 The Bayesian TMI forecast model presented herein is programmed to produce 

forecasts which sufficiently represent the variability and volatility of the prior 

data without “walking” too far from the prior distributions. If a more conservative 

approach is warranted which encompasses some pre-defined increase in the 

variability/volatility of the forecasted data, the tuning criteria can be increased by 

either increasing the initial tuning factor to be greater than 2.4. An additional 

stability study should be performed in such a case.    
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CHAPTER 5 

5 STOCHASTIC SHRINK-SWELL VOLUME CHANGE FORECAST MODEL 

5.1 Introduction 

This chapter brings together the deterministic shrink-swell soil volume change model and 

the stochastic TMI model to produce a new method for forecasting the monthly shrink-

swell soil volume. A discussion of potential implementation of the proposed stochastic 

shrink-swell soil volume change model to foundation and pavement performance 

analysis/design will also be included. The uncertainty and sensitivity of the estimations 

using the proposed method will be compared to those generated from current practice. 

5.1.1 Objectives 

The following objectives were accomplished as part of this study: 

 Review and choose the deterministic SSVC framework which is to be incorporated 

into the stochastic analysis. 

 Development of a framework for stochastically estimating the volume change on 

shrink-swell soils using the previously developed models for random soil property 

generation and monthly TMI forecasting.   

 Exploration of the stability and sensitivity of the proposed shrink-swell forecast 

model. 

 A comparison of the proposed models to the existing engineering practice including 

the differences in the uncertainty and sensitivity of the estimates.  
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 Exploration of the potential implementation of the proposed stochastic shrink-swell 

soil volume change model to foundation and pavement performance analysis/design.  

5.2 Deterministic Shrink-Swell Volume Change (SSVC)  

The ability to estimate soil volume change as a function of time is a valuable tool in 

the design of shallow foundations of pavement structures. Specifically pertaining to 

pavement design, estimating soil volume change as a function of time allows for the 

prediction of the potential cumulative International Roughness Index (IRI). The time-

varying volume change can also be a valuable tool in the forensic analysis of existing 

foundation movement of a lightly loaded structure on shallow footings. 

The author and members of the ASU research team (Zapata and Mosawi) published a 

paper in 2021 in the Soil and Rocks International Journal of Geotechnical and 

Geoenviromental Engineering titled “An Improved Framework for Volume Change of 

Shrink/Swell Soils Subjected to Time-Varying Climatic Effects”. The paper presents an 

improved framework for estimating the volume change of shrink-swell soils due to time-

varying climatic effects using the Lytton et al. (2005) approach with the suction envelope 

models created by Vann and Houston (2021). The proposed framework for estimating 

soil volume change of shrink-swell soils as a function of time is presented with an 

example calculation with data from an AASHTO Long-Term Pavement Performance 

(LTPP) Seasonal Monitoring Program (SMP) section TX 48-1068 (FHWA, 1995), which 

is located approximately 80 miles northeast of Dallas, Texas. The framework presented is 

applicable to uncovered sites where the groundwater table effects are negligible, but it 
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has been calibrated to account for covered areas and for the spatial variation between the 

pavement center and edges.  

Refer to Appendix B for the full paper which includes a detailed background, 

evaluation, and recommendations regarding suction-volume change analysis of Shrink-

Swell soils.  The following outline summarizes the steps of the improved framework for 

estimating the volume change of shrink-swell soils due to time-varying (monthly) 

climatic effects: 

1. Weather station identification and data extraction  

2. 30-year and monthly Thornthwaite Moisture Index per Witczak et al. (2006) 

3. Determination of equilibrium suction envelope parameters per Vann and Houston 

(2021): depth to equilibrium suction and magnitude of equilibrium suction 

4. Back-calculation of variables for Mitchell’s (1979) equation  

5. Development of long-term wet and dry suction profiles 

6. Initial estimation of monthly changes in suction at the surface per Perera (2003) 

7. Fourier equation fit to the monthly suction change at the surface  

8. Generation of monthly suction profile  

9. Suction profile adjustments for varying surface boundary conditions  

10. Calculation of net normal stress profile 

11. Estimation of suction compression index (assuming value is not directly 

measured) 

12. Calculation of strain on a monthly basis 

13. Calculation of volume change on a monthly basis 
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The above deterministic framework is used in the stochastic analysis presented herein. 

Figure 5-1 presents a flow chart for the deterministic SSVC procedure.  

 

Figure 5-1 Flow of the Deterministic SSVC Analysis Procedure 

 

5.2.1 Suction-Volume Change Relationship 

Direct laboratory measurements of the volume change potential of a soil help 

improve the estimation of potential volume change in the field.  The 1-D oedometer 
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“Response to Wetting Test” as described in ASTM D4546 is the common type of 

laboratory test for volume change determination. One key difference from the laboratory 

oedometer test compared to the field conditions the soil will experience is the final degree 

of saturation. The response to wetting test inundates the sample, driving to almost full 

saturation.  However, it is the probability that the soil will reach this moisture level over 

the period of the structure/pavements design life is very low (Houston and Houston 

2017).  

A common method for volume change estimation is the Potential Vertical Rise published 

by the Texas Department of Transportation (TxDOT-12-E, 1978), which includes both 

empirical-based relationships and result from an oedometer test.  In 2005, the Texas DOT 

updated the approach to determining the volume change of expansive soils using the 

work by Lytton et al. (2005), which encompassed a suction-based approach. The study 

concluded that the previous empirical-based approach significantly over-estimated the 

soil heave and did not account for the shrinkage of the soil during dry climatic periods.   

A thorough literature review of volume change estimates of unsaturated soil (odometer-

based, or suction-based) was performed by Vann (2019). The authors of this paper have 

carefully reviewed this relative literature summary as part of the research leading up to 

this paper.  

The evaluation of moisture-driven volume change of unsaturated clay soil requires 

consideration of the net normal (p) and the matric suction (s) stress states. For clays under 

relatively light confinement, increases in s during drying will typically cause clays to 
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decrease in volume (compress or shrink) and reductions in s during wetting will cause 

increases in volume (expansion or swell). Clay soils at high net normal stress states can 

also reduce in volume (collapse) during wetting (Houston and Zhang, 2021; Nooray, 

2017). The volumetric response is commonly expressed in terms of changes in void ratio 

(e), and the general relationship between e, p and s for clay soils is represented using 

three-dimensional (3D) state surfaces (Alonso et al., 1994, 1999; Delage & Graham, 

1996;  Fredlund & Morgernstern, 1976; Gens & Alonso, 1993; Gens et al., 2016; 

Wheeler & Sivakumar, 1995; Vu & Fredlund, 2004; Wray et al., 2005; Zhang & Lytton, 

2009a, 2009b). For many foundation and pavement applications in engineering practice, 

vertical deformations govern the design which allow for the e-p-s relationship to be 

analyzed using one-dimensional (1D) at-rest (K0) conditions - or at least the 1-D analyses 

provide adequate information for decision making (Adem & Vanapalli, 2013; Fredlund et 

al., 1980; Houston & Houston, 2018; Lytton, 1997; Nelson & Miller, 1992; Nelson et al., 

2015; Overton et al., 2006). 

The author and research team (Zapata, Houston, and Mosawi) have produced a 

publication regarding this topic, titled “Suction-Volume Change Indices for Natural and 

Recompacted Clay Soils”, which will be published in the proceedings of the 2023 

American Society of Civil Engineer’s (ASCE) Geo-Institute’s (GI) annual national 

conference, GeoCongress 2023. The paper draft is included in Appendix C and should be 

considered the opinions of the authors only, until the expected publication by ASCE in 

2023. To minimize repetition, only a summary of the study is included herein.  
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The study presents a comparison of the matric suction-volume change indices (for 

1-D monotonic loading by wetting or drying) of intact clays (natural soil stress states) 

using relatively undisturbed specimens tested by Olaiz (2017), to those of 

reconstituted/compacted specimens measured by Singhal (2010) and Mosawi (2022) 

using OPPDs, including the Fredlund SWCC (SWC-150) developed by GCTS in Tempe, 

AZ. Singhal (2010) created a unique database from laboratory measurement of the 

mechanical response of clay soils under imposed conditions of both stress state variables 

using the OPPD, with attention on evaluation of a substantial portion of the void ratio 

state surface for clay soils. Olaiz (2017) and Mosawi (2022) continued the exploration of 

testing relatively intact and reconstituted soil specimens in the OPPD, respectively. The 

materials tested by Olaiz and Mosawi were obtained from locations associated with 

expansive soil areas in San Antonio, TX, and Denver, CO (same study sites previously 

analyzed in this document). The compilation of data from these extensive laboratory 

efforts was used to provide qualitative and quantitative comparisons of the mechanical 

response of reconstituted to relatively intact specimens.  

Refer to Appendix C for the full (draft) document which includes a detailed 

background, evaluation, and recommendations regarding suction-volume change analysis 

of Shrink-Swell soils. 

The comparison of the matric suction-volume change indices of the intact samples 

from Olaiz (2017) resulted in significantly lower magnitude volume change than those of 

the remolded samples tested by Singhal (2010) and Mosawi (2022) for similar range of 

wPI specimens and suction range. A brief statistical analysis using descriptive statistics, 
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box plots, and 1:1 comparison indicated that for the compiled dataset, wPI provides a 

useful indicator for volumetric response for remolded specimens under relatively light 

confining stress. The data also demonstrated the critical role of stress history in 

shrink/swell response of clays to changes in moisture state. The data from the two-stress 

state controlled OPPD results provides a substantial start for development of e-p-s 

relationships and correlations for expansive clay soils.   

5.2.2 2D SSVC Estimates for Pavements 

To account for covered areas, pavement or moisture barriers, a regression model 

was developed by Jayatilaka (1999) to estimate the vc movement using two programs 

developed by Gay (1994), MOPREC and FLODEF. The idea is to estimate the 

relationship between 1-D and 2-D vertical movement. Such analysis can be used to adjust 

suction profiles to consider boundary conditions, such as comparing the suction change at 

the edge of a covered area and the middle of the covered area, Figure 5-2, or using 

moisture barriers, Figure 5-3. Calibrated using data collected from ten sites located in 

Texas within three different climatic regions, the model is as follows: 

   32
1 2

1

expD d
D

D

VM

VM

   (104) 

Where, VM2D is the two-dimensional vertical movement from the FLODEF program, 

VM1D is the one-dimensional vertical movement from the MOPREC program, d is the 

distance from the center of the pavement to the point where the vertical movement needs 

to be calculated in m, D is half width of the pavement in m, and ξ1, ξ2 ,ξ3 are regression 

coefficients. 
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For pavement width less than 18.0 m: 
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For pavement width greater than 22.0 m: 
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Where, VM1D is the vertical movement from 1-D program in mm, Db is the depth of 

barrier in m, dam is the depth of available moisture in m, D is half width of the pavement 

in m, Sm is the mean suction at site in pF, and TMI is the Thornthwaite Moisture Index. 

For pavement widths between 18.0 m and 22.0 m: 
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Where, ξ is the parameter ξ1 ,ξ2 or ξ3 for a pavement width of D, ξ18 is the parameter ξ1 ,ξ2 

or ξ3 estimated from the equations for the pavement widths less than 18.0 m, and ξ22 is the 

parameter ξ1 ,ξ2 or ξ3 estimated from the equations for the pavement widths less than 22.0 

m.  

 

Figure 5-2 Volume Change Due to Change in Suction in Uncovered Area Compared to 
Different Locations under Covered Area 
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Figure 5-3 Typical Cross-Section of a Pavement with Vertical Moisture Barriers 

(Jayatilaka, 1999) 

 

Lytton describes the depth of available moisture as the “maximum depth of the moisture 

that may be stored within the rooting depth of the soil profile.” (Jayatilaka, 1992).  This 

definition was expanded upon by Gay in 1994: 

“The depth of available moisture is the maximum depth of moisture available for 

use by transpiring vegetation, which is assumed to be stored within the rooting 

depth of the soil profile. This depth is dependent on the type and texture of the 

soil and the rooting depth; it is not dependent on the type of vegetation. It 

therefore represents the maximum depth of moisture that is lost from a soil during 

a transition from its wet state at field capacity to its dry state at the root potential 

(pF 4.2 - 4.5) of resident vegetation. Typical values for this depth have been 

reported to be between 5 cm and 20 cm (Thornthwaite 1948, Penman 1963); 

however, values as high as 27 cm have been reported for heavy clays at sites in 

Texas (Richardson and Ritchie 1973) and the Netherlands (Bouma and de Laat 
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1981).” 

Gay (1994) also states that the depth of available moisture can be determined numerically 

by integrating a soil water characteristic curve (SWCC), over the root depth zone, 

between the saturation moisture content and the residual moisture content.  Jayatilaka 

(1999) expresses the simplified triangular integration used to determine the depth of 

available moisture. 

Gay (1994) and Jayatilaka (1999) state that if the soil-specific residual moisture content 

is unknown, the wilting point of vegetation (4.2 pF) or the air-dried state (5.7 pF) can be 

used depending on the general field conditions. 

5.2.2.1 Effect of Moisture Barriers on SSVC Estimations 

The depth of available moisture is a parameter used to determine the effect of vertical 

moisture barriers used in pavement design.  In order to determine the sensitivity of the 

depth of available moisture parameter with regards to vertical moisture barriers, the 

empirical relationship between 1D volume change and 2D (lateral) volume change must 

first be understood.  

The prediction of the vertical movement on expansive soils with the inclusion of vertical 

moisture barriers as a special provision will be based on previous studies reported in the 

literature. Jayatilaka (1999) suggested a regression model to estimate the relationship 

between one-dimensional and two-dimensional vertical movement including the effect of 

vertical moisture barrier depth, using the two programs MOPREC and FLODEF 

developed by Gay (1994). The one-dimensional model was based on the soil deformation 
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model proposed by Lytton (1977). The regression model was calibrated using data 

collected from ten sites located in Texas within three different climatic regions.  

A brief description of the required input parameters used in this model are shown in 

Table 5-1. All the needed parameters are available either as part of the AASHTOWare 

ME Pavement design procedure (i.e., pavement geometry) or from the one-dimensional 

model results from this project. Therefore, no additional parameters will be needed to 

implement the model.  

Table 5-1 Input Parameters Used in the Vertical Moisture Barrier Model 

Input Parameter Description 

VM1D (mm) Maximum vertical movement (sum of swell and shrink) 

Db (m) Depth of vertical moisture barrier 

dam (m) Depth of available moisture 

Sm (pF) Mean suction 

TMI Thornthwaite moisture index 

2D (m) Pavement width 

d (m) Horizontal distance from the center of pavement to point of interest 

 

5.2.2.2 Sensitivity Analysis of 2D SSVC Estimation 

A sensitivity analysis was conducted to recognize the most critical parameters of the 2D 

moisture barrier model. Fixed input values of 100 mm of maximum vertical movement, 

0.3 m of depth of available moisture, 3.5 pF of mean suction and 12 m of pavement width 

were used. Input varied in the analysis included TMI from -40 to 40; the depth of the 

vertical moisture barrier from 0 to 4 meters; and the mean suction value from 0 to 4 pF. 

These variables were compared and plotted against a normalized vertical movement. 
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Note that the pavement edge is located at a normalized distance of one (d/D =1). The 

results are presented in Figure 5-4 through Figure 5-6 below, show high sensitivity of the 

model to the three variables analyzed: TMI, moisture barrier depth and to the mean 

suction value. 

 

Figure 5-4 Normalized Vertical Movement as a Function of TMI 
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Figure 5-5 Normalized Vertical Movement as a Function of Depth of Vertical Moisture 
Barrier 

 

Figure 5-6 Normalized Vertical Movement as a Function of Mean Suction 

 

The normalized vertical movement at the edge of the pavement is shown in Figure 5-7 

and Figure 5-8 for different TMIs and Moisture barrier depths, respectively. 
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The research team is confident that this model will be extremely useful to 1) assess the 

vertical movement prediction away from the edge and towards the center of the pavement 

with and without moisture barriers; 2) as a surrogate path to calibration of the 1-D 

swelling predictions; and 3) to optimize design parameters. 

 

Figure 5-7 Normalized Vertical Movement at Different Thornthwaite Moisture Index at 
the Edge of the Pavement 

 

 

Figure 5-8 Normalized Vertical Movement for Different Depths of Vertical Moisture 
Barriers at the Edge of the Pavement 
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5.2.2.3 Sensitivity of the Depth of Available Moisture Parameter 

Note that Gay (1994) and Jayatilaka (1992, 1999) observed that the depth of 

available moisture typically does not exceed 30 cm. Therefore, the first analysis 

performed varied the depth of available moisture from 5 cm to 50 cm. The following 

table, Table 5-2, summarizes the necessary parameters used in the model.  Note that only 

the depth of available moisture was varied; all other parameters were kept constant.   

Table 5-2 Input Parameters Used in the Vertical Moisture Barrier Model 

Input Parameter Value 

VM1D (mm) 50 mm 

Db (m) 0.9 m 

dam (m) variable 

Sm (pF) 4.45 pF 

TMI -46.5 

2D (m) 18 m 

d (m) 9 m (pavement edge) 

 

The following figure, Figure 5-9, represents the sensitivity of the volume change at the 

edge of the pavement (d/D = 1) to the depth of available moisture parameter within the 

range of 5 to 50 cm.  
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Figure 5-9 Vertical Movement at Edge vs. Depth of Available Moisture with (d/D) = 1 

 

Note that empirical relationship results in negative volume change values (i.e. shrinkage) 

when the depth of available moisture is below approximately 12 cm (for this specific 

scenario).  It is also important to note that the maximum vertical movement (VM1D) of 50 

mm is exceeded at the pavements edge once the depth of available moisture reaches 

approximately 39 cm. Based on the work on Jayatilaka (1999) and previous sensitivity 

analyses performed as part of this study, the lateral location of the maximum vertical 

movement (VM1D) is typically outside the edge of the pavement and is affected by the 

TMI, mean suction, and depth of the vertical moisture barrier.  Therefore, the volume 

change at the edge of the pavement is expected to be less than the maximum potential 

vertical movement value which would require the depth of available moisture to be less 

than 39 cm (for this specific scenario). This outcome agrees with observed depths of 

available moisture by Lytton (Jayatilaka 1992, 1999; Gay, 1994). 
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To ensure that the lateral location chosen for the sensitivity analysis above (pavement 

edge) did not affect the results, the same sensitivity analysis was performed with the 

location varying from the center of the pavement (d/D = 0) to a distance equal to half the 

width of the pavement away from the edge (d/D = 2).   

 

Figure 5-10 Vertical Movement at Edge vs. Depth of Available Moisture with Varying 
Ratios of (d/D) 

 

It is clear from Figure 5-10 that the location chosen had no effect on the sensitivity 

analyses of the depth of available moisture.  The effect of the depth of available moisture 

on the estimation of the volume change is insensitive to the lateral location within 

pavement profile.  
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The concept of the depth of available moisture can be confused with the depth of the 

active zone and the depth to equilibrium/stable suction. It is important to note that the 

depth of available moisture, as defined by Gay (1994) and Jayatilaka (1992, 1999), is not 

equivalent to the depth of stable suction, as defined by Vann (2019). To determine if the 

result of using the depth to stable suction (Vann, 2019) in place of depth of available 

moisture in the empirical estimation of the lateral heave reduction due to the presence of 

vertical moisture barriers, the previous analysis was performed a second time with an 

increased range of the depth of available moisture from 0.05 m (5 cm) to 4.5 m. The 4.5 

m value represents an upper limit of the depth to stable suction observed by Cuzme 

(2018) and Vann (2019). Figure 5-11 represents the sensitivity of the Depth of Available 

Moisture parameter within the range of 0.05 m to 4.5 m.  
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Figure 5-11 Vertical Movement at Edge vs. Depth of Available Moisture with (d/D) = 1 

 

Once again, the results indicate that the magnitude of the volume change at the 

pavements edge is highly sensitive to the depth of available moisture parameter. If the 

depth to stable suction is used in-place of the depth of available moisture parameter in the 

analysis, the estimated volume change at the edge of the pavement will be significantly 

greater than the initial input of the maximum vertical movement (VM1D = 50 mm was 

used in the analysis).  

In summary, it has been observed that the location of the maximum vertical movement is 

directly affected by the depth of available moisture, provided all other parameters remain 

constant. 
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5.2.2.4 Back Calculation of the Depth of Available Moisture 

As previously discussed, the depth of available moisture is determined from the 

SWCC of the soil within the root zone and knowledge of the depth of the root zone. 

SWCC data from all soil types is readily available and is already incorporated in the 

current AASHTOware software.  However, data on the depth of the root zone if not 

readily available and may require site specific knowledge of the landscape adjacent to the 

roadway, which is subject to change as part of the roadway construction. 

In order to eliminate the uncertainty associated with the root depth, the depth of available 

moisture parameter can be determined numerically if the location of the maximum 

vertical movement is known or estimated during the design stage.  For example, a 

conservative assumption can be made that the maximum vertical movement will occur at 

the pavement edge regardless of when no vertical moisture barrier is present.   

Once the location of the maximum vertical movement is assumed, an iterative calculation 

equivalent to the sensitivity analysis performed previously can be conducted in order to 

determine the depth of available moisture required for that scenario.  

Table 5-3 summarizes an example scenario of a two-lane roadway with high-volume 

change soil, in a semi-arid climate, and variable vertical moisture barrier depth.   
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Table 5-3 Input Parameters Used in the Example Vertical Moisture Barrier Model. 

Input Parameter Value Comments 

VM1D (mm) 140 mm approximately 5.5 inches 

Db (m) (0, 0.5, 1, 1.5, 2, 2.5, 3) m Typical range or depths 

dam (m) Back calculated Based on selected location of VM_1D 

Sm (pF) 4 pF Per Vann (2019) with TMI = 10 

TMI 10 semi-arid climate 

2D (m) 19 m two-lane road 

 

Figure 5-12 presents the results of the volume change at the pavement edge based on the 

depth of available moisture with no vertical moisture barrier.  

 

 

Figure 5-12 Vertical Movement at Edge vs. Depth of Available Moisture with d/D = 1 
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The red dashed lines on Figure 5-12 indicate the expected maximum vertical movement 

at the pavement edge when there is no moisture barrier (VM1D) and the corresponding 

depth of available moisture.   

The reduction in soil volume change due only to the pavement cover (no moisture 

barrier) can now be modeled using the moisture barrier factor (MBF) approach. Figure 

5-13 represents the soil volume change due to the pavement covering alone. 

 

Figure 5-13 Volume Change Below Pavement with Vertical Moisture Barrier with Db=0 

 

Note that volume changed is still estimated to occur at the center of the pavement for the 

given scenario. 

The results above are commonly normalized by the maximum vertical movement and the 

pavement width as shown in Figure 5-14. 
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Figure 5-14 Normalized Volume Change Below Pavement with Vertical Moisture Barrier 

 

By presenting the results in this manner, the percentage of the volume change reduction 

due to the pavement covering can be obtained from Figure 5-14. For this example, the 

covering from the pavement, without the presence of a vertical moisture barrier, results in 

approximately 30% of the maximum vertical movement occur at the edge of the 

pavement.  

The effect of the depth of the vertical moisture barrier can now be determined using the 

back-calculated depth of available moisture and the parameters summarized in the table 

above. Figure 5-15 and Figure 5-16 present the raw and normalized results of the 

analysis. 
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Figure 5-15 Volume Change Below Pavement with Vertical Moisture Barrier 

 

 

Figure 5-16 Normalized Volume Change Below Pavement with Vertical Moisture Barrier 

 

Note that the estimated depth of stable suction (seasonal moisture fluctuation), for a site 

with a long term TMI = 10, is approximately 1.7 m (Vann, 2019).  The results above 



 

198 

indicate that a moisture barrier depth greater than the depth of stable suction (2 m) still 

results in vertical movements near the center of the pavement that are approximately 20% 

of the expected maximum vertical movement at the edge of the pavement when no barrier 

exists.  

5.3 Stochastic Framework for SSVC Forecasting   

This study presents an example calculation for a Level III analysis for the determination 

of volume change (shrink/swell) as a function of time.  A computer program was 

developed in order to explain the calculation due to the multiple algorithmic processes 

contained within.  Refer to Table 5-4, which summarizes the models used in the Level III 

analysis, along with the Level 1 and Level 2 analysis (not presented in this document). 

Table 5-5 indicates the necessary variables associated with the hierarchical level of 

analysis.  
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Table 5-4: Preliminary Plan to Estimate Volume Change Due to Swell/Shrink 
at Three Hierarchical Levels of Design 

Hierarc
hical 
Level 

Climatic 
Paramet

ers 

Depth to 
Equilibrium 

Suction 

Equilibrium 
Suction 

Time-Based 
Change in 

Suction on the 
Surface 

Suction-Strain Model 

1 
30-year 
average 

and 
yearly 

TMI per 
Witczak 

et al. 
(2006)  

User input of suction profile * 
Direct Measurement using 

OPPD (Olaiz 2017) 

2 
Vann and Houston (2020) 

with lab measurements of soil 
index properties NOFS Mitchell 

(1979) Diffusion 
Equation  

Surrogate Path Method (SPM) 
(Houston & Houston 2017) or 

similar oedometer-based 
methods 

3 Vann (2019) using TMI  
Covar and Lytton (2001) or 

similar empirical relationships 
with soil index properties 

*User input of depth of equilibrium suction and magnitude of equilibrium suction indicates that the user 
knows these values (with a high level of confidence) by direct suction measurements or through significant 
experience of suction profile measurements in the area. 
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Table 5-5: Listing of Input Variables for Hierarchical Shrink-Swell Analysis  

  Levels 

 Parameter 1 2 3 

Pavement 
Structure 

Parameters 
Pavement type and layer thicknesses Needed Needed Needed 

Parameters 
Related to 
Boundary 
Conditions 

(Environmental) 

NOAA Weather Station ID 
(Longitude & Latitude) 

Needed Needed Needed 

Groundwater Table Depth Needed Needed Needed 

Soil Index 
Properties 

Plasticity Index (PI) - Needed Needed 

Liquid Limit (LL) - Needed Needed 

Percent Passing No. 200 Sieve 
(P200) 

- - 
Needed 

Percent Passing 2-Micron (P02) - - Needed 

In Situ Soil 
Properties 

Water Content (w) - Needed Needed 

Density (  ) Needed Needed Needed 

Soil Suction (pF) Needed - - 

Strain Parameters 

Wetted Oedometer strain (ob) - Needed - 

Swell Pressure (cv) - Needed - 

Final Suction Profile Needed - - 

Suction Compression Index Needed - - 

 

The stochastic forecast of shrink-swell soil volume change is accomplished by: 

1) Obtaining sufficient historical monthly climate data (minimum of 5 years, 

recommended 30 years) 

2) Obtains site-specific soil data and/or use the best representation based on the 

historical/prior Beta distributions  

3) Perform 10,000 Monte Carlo simulations with each including: 

a. Randomization of input soil parameters using the proposed framework 



 

201 

b. Estimating the monthly TMI over the structure/pavement design life using 

the proposed MCMC monthly TMI forecast model 

c. Estimating the monthly volume-change for the given simulation using the 

proposed deterministic framework 

d. Repeating process for each simulation 

4) Calculating monthly and overall statistics for all the simulations combined. 

5.4 Example of the Stochastic SSVC Forecast Model 

The Denver study site previously presented herein was used to present an example of the 

performance of the stochastic SSVS Forecast Model. The results of the randomized input 

soil property variability and additional output from MCMC TMI climate model are 

presented in Appendix F. The example analysis was performed for 20 years to provide 

insight into the stability of the analyses for typical pavement design life periods. The 

Bayesian forecast for TMI and monthly change in TMI are presented in Figure 5-17.  The 

stochastically prodiced estimates and variability of the monthly SSVC and monthly 

change in SSVC are presented in Figure 5-18 and Figure 5-19, respectfully.  
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Figure 5-17 Bayesian Forecast of TMI at Denver Study, Including the True Values for 
Validation, from 03/2002 to 03/2022 
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Figure 5-18 Example Results of the Stochastic Shrink-Swell Analysis for the Monthly 
TMI and Monthly Volume Change for the Denver Study Site from 03/2002 to 03/2022 
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Figure 5-19 Example Results of the Stochastic Shrink-Swell Analysis for the Monthly 
Difference in TMI (dTMI) and Monthly Difference in Volume Change for the Denver 

Study Site from 03/2002 to 03/2022 
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5.5 Performance of the Proposed Stochastic SSVC Model 

The stochastic SSVC analyses presented herein provides a method for quantifying the 

potential volume change and its associated variability monthly based on the variability of 

the randomized model inputs: soil index properties and forecasted monthly TMI values. 

As the example output in Figure 5-18 and Figure 5-19 display, the variance of the 

estimated monthly values continued to oscillate on a seasonal basis as expected, but the 

overall average of the variance visually appears to stabilize after two to three years. This 

indicates that the optimal analysis period for scenarios where the model is being used as 

an indicator for potential shrink-swell issues would be approximately 4 years. However, 

the results of the example calculation show that the proposed model provides useful 

insights for analysis periods greater than 4 years, up to 20 years. Generally, the analysis 

would not cover the full pavement design life as analyses of shorter durations would 

provide a useful representation of the volume change susceptibility which would 

typically result in a redesign of the pavement section or possibly a soil improvement 

effort. Note that this model included 250 Markov chains over the 20-year period (i.e. 

60,000 MCMC simulations) with a burn in period of 25% that resulted in an Metropolis-

Hastings acceptance rate of approximately 24%. 

5.6 Implementation of the Proposed Stochastic SSVC Model  

The proposed framework for stochastically forecasting the SSVC on a monthly basis is 

being review and considered for implementation into the Pavement Mechanistic-

Empirical Design (PMED) design procedures and associated software as part of the 
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NCHRP 01-59 project which this research was funded by. A detailed report was 

generated by the author and the research team for NCHRP which includes a detailed 

performance evaluation and implantation examples of the stochastic Shrink-Swell 

forecast model using the computer program developed by the author. It is anticipated that 

report will be published by NCHRP in 2023; no drafts or excerpts of the report have been 

included herein.  

Note that the example analysis presented herein included a scenario which forecasted the 

potential climate-driven volume change. A forecast scenario will typically always result 

in the largest amount of variability in the resulting estimate. If new site-specific data is 

obtained (measured soil or climate parameters), they can be used to adjust and improve 

the forecast performance of the model. Furthermore, the model can be used in a forensic 

scenario if the variability of past SSVC needs to be understood.  

5.6.1 Limitations of the Stochastic SSVC Model 

Although the proposed Stochastic SSVC model displays preliminary indications that the 

stability and performance is sufficient for implementation in geotechnical engineering 

practice, there are several limitations that must be understood, including but not limited 

to: 

 The proposed stochastic SSVC model, and all of its contributing models 

(Bayesian characterization of general soil properties model and the MCMC TMI 

forecast model) should be considered preliminary frameworks with have 
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promising initial performance but lack an exhaustive sensitivity and stability 

evaluation.  

 The examples of the model use presented in this document were focused on just 2 

sites in the United States which the author and ASU research team had significant 

measured data at, which provided opportunities for model validation. The two 

study sites in Denver, CO and San Antonio, TX are located in dry temperate to 

semi-arid climate zones and the site soils exhibit relatively high susceptibility of 

SSVC, which make the study sites nearly ideal for the application of the proposed 

models. However, the study sites were also used to produce several of the 

empirical unsaturated soil parameter models used in the stochastic analysis. It is 

recommended that additional site-specific data from sites in differing climate 

regions be obtained for further validation studies of full stochastic SSVC model 

proposed herein.  
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CHAPTER 6 

6 CONCLUSIONS 

This research study focused on developing Bayesian techniques for the 

characterization of common soil properties, and the analysis of climate-driven shrink-

swell volume change using an unsaturated soil moisture flow mechanics. The overall goal 

achieved in this study was to develop, validate, and implement a new method to evaluate 

climate-driven volume change of shrink-swell soils using a framework that encompasses 

predominantly stochastic time-series techniques and mechanistic shrink-swell volume 

change computations. Three valuable objectives were also accomplished on the path to 

complete the overall goal: 1) development of an procedure for automating the selection of 

the Fourier Series form of the soil suction diffusion equation used to represent the 

climate-driven variation in suction, 2) development of a Bayesian approach to randomly 

generate combinations of correlated soil properties for input in stochastic simulations, 

and 3) development of a Bayesian forecast model for the Thornthwaite Moisture Index 

climate parameter. The models presented can be easily implemented into existing 

foundation and pavement design procedures or used for forensic evaluations using 

historical data. For pavement design, the new framework for stochastically forecasting 

the variability of shrink-swell soil volume change provides significant improvement over 

the existing empirical models that have been used for more than four decades. 
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6.1 Limitations of Research  

The limitations pertaining to each research achievement should be understood prior to 

consideration of implementation into engineering practice. Refer to the concluding 

subsections in each chapter of this document for an extensive list of limitations for each 

specific research achievement. The main limitations associated with the research findings 

presented in this document are, but not limited to, the following: 

 The empirical models developed by Vann and Houston (2020) used to define the 

equilibrium parameters (equilibrium suction depth and magnitude) for the NOFS 

suction envelope model were generated using limited data from geotechnical 

investigation reports by various engineering firms across the United States. 

Furthermore, all the models which related TMI to soil suction parameters were 

developed from sites which the elevation of the groundwater table did not affect 

the moisture state within the typical depth from ground surface associated with 

the unsaturated soil “active zone”, which is generally 5 to 20 feet. As such, the 

proposed model should not be used to evaluate locations which have shallow 

groundwater. 

 The NRCS and LTTP databases were used to generate descriptive statistics for the 

default variability characterization for the defined soil groups. Although these 

databases are considered by the field to adequately represent most soil types, there 

is always a chance for a location to consist of soils which exhibit characteristics 

away from the norm. It is always recommended that some site-specific data be 
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obtained to gain an understanding of the material types at hand and rule out any 

potential unusual scenarios.  

 The proposed approach for characterizing the variability of common soil 

properties uses the general variability of the measured properties for a given soil 

type to represent the 2D variability at the subject site. As such, the proposed 

framework can be considered a pseudo-2D approach for characterizing soil 

variability but does not include the modern techniques of quantifying spatial 

variability.  

 As displayed in the outcome of the Arlington, VA validation study, the proposed 

Bayesian TMI forecast model has potential to miss extreme events which were 

not characterized by the 30 years of prior climate data.  

 The Bayesian TMI forecast model presented herein is programmed to produce 

forecasts which sufficiently represent the variability and volatility of the prior 

data without “walking” too far from the prior distributions. If a more conservative 

approach is warranted which encompasses some pre-defined increase in the 

variability/volatility of the forecasted data, the tuning criteria can be increased by 

either increasing the initial tuning factor to be greater than 2.4. An additional 

stability study should be performed in such a case.   

 The examples of the model use presented in this document were focused on just 2 

sites in the United States which the author and ASU research team had significant 

measured data at, which provided opportunities for model validation. The two 

study sites in Denver, CO and San Antonio, TX are located in dry temperate to 
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semi-arid climate zones and the site soils exhibit relatively high susceptibility of 

SSVC, which make the study sites nearly ideal for the application of the proposed 

models. However, the study sites were also used to produce several of the 

empirical unsaturated soil parameter models used in the stochastic analysis. It is 

recommended that additional site-specific data from sites in differing climate 

regions be obtained for further validation studies of full stochastic SSVC model 

proposed herein.  

6.2 Future Work 

The research efforts produced useful frameworks for the stochastic characterization of 

common soil properties, the forecast of the climatic parameter TMI, and the stochastic 

analysis of SSVC. Although these models produced promising results for the study sites, 

the author recommends that the models be treated as preliminary frameworks only which 

needs further optimization, validation, and sensitivity analyses. Specifically, the 

following efforts should be performed as part of future research work: 

 Validation of the Bayesian characterization model through an extensive field 

sampling and laboratory testing program at sites associated with soil types 

ranging from coarse to fine-grained.  

 The inclusion of multiple weather station data should be incorporated into both 

the deterministic and the stochastic models. For the deterministic model, a 

decision would have to be made to use the average monthly data, or another 

statistically representative monthly value. Although it is not a straightforward 
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analysis, the most conservative approach would be to use the monthly data which 

results in the greatest monthly changes and/or seasonal variations, regardless of 

the location of the weather station (assuming only weather stations near the site 

that are chosen). 

 Improvement and optimization of the Bayesian forecast model for the climatic 

parameter TMI to include an adaptive Langevin Markov Chain (LMC) or a 

Hamiltonian Markov Chain (HMC) which incorporates a physics-based approach 

to control the stability and limit the random walk potential of the simulated time-

series by representing the MCMC framework as energy equations (potential and 

kinetic). The HMC framework also includes a leap-frog step which can 

significantly optimize the computation time of the MCMC simulation.  

 An updated calibration effort of the both the deterministic SSVC model and the 

stochastic SSVC model using the LTTP Seasonal Monitoring Program (SMP) 

sites should be performed. The initial calibration efforts presented by Mosawi 

(2022) resulted in improvements of the goodness of fit (R2) for prediction of IRI 

when the site factor parameter in the IRI equation was replaced with the 

variability of forecasted volume change for a given month.  

 Further evaluations of the use of the proposed SSVC framework to estimate the 

variability of the volume change in two dimensional should be studied using the 

empirical approach proposed by Lytton et al. (2005) as a starting point which 

could be improved with the inclusion of additional measured data.  
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 The stochastic soil and climate characterization should be used with the complete 

(not simplified) version of the unsaturated moisture flow partial differential 

equation. Although the performing Monte Carlo simulations on finite element 

model with randomized input parameters can be computationally slow, 

advancements in computer performance continues to exponentially improve, 

which may eliminate computation time as a limitation in the near future. The use 

of the full unsaturated moisture flow equation will allow for the inclusion of 

shallow groundwater sites, as the simplified Mitchell’s equation used in this study 

is based on the assumption of a steady suction boundary at depth.  
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Date PRCP TAVG hy_i Hy Py alpha pe_i N_i d_i PE_i PEy 

Monthly-
TMI 

(2006) 

Jul-86 4.29 23.03 10.10 47.73 33.57 1.25 11.36 31 1.27 14.88 69.34 -28.69 

Aug-86 1.36 22.29 9.61 47.65 34.22 1.24 10.91 31 1.18 13.30 69.18 -27.90 

Sep-86 1.1 15.91 5.77 48.19 29.39 1.25 7.14 30 1.04 7.43 69.58 -33.32 

Oct-86 4.58 9.61 2.69 47.86 32.01 1.25 3.82 31 0.96 3.79 69.11 -30.26 

Nov-86 2.72 3.86 0.68 48.53 31.66 1.26 1.20 30 0.83 1.00 70.10 -31.13 

Dec-86 0.79 0 0.00 48.53 30.77 1.26 0.00 31 0.81 0.00 70.10 -32.08 

Jan-87 1.76 0.08 0.00 47.65 31.97 1.24 0.01 31 0.84 0.01 68.73 -30.11 

Feb-87 3.08 2.28 0.30 47.65 33.39 1.24 0.64 28 0.83 0.50 68.71 -28.56 

Mar-87 3.4 3.8 0.66 46.13 35.69 1.22 1.26 31 1.03 1.34 66.65 -24.84 

Apr-87 2.62 11.02 3.31 46.68 31.74 1.23 4.60 30 1.11 5.11 67.42 -29.69 

May-87 11.81 15.35 5.46 47.53 40.23 1.24 6.87 31 1.16 8.24 68.43 -20.91 

Jun-87 8.89 20.64 8.56 47.14 46.40 1.24 9.93 30 1.25 12.40 67.99 -13.81 

Jul-87 1.94 23.53 10.43 47.47 44.05 1.24 11.68 31 1.27 15.29 68.40 -16.70 

Aug-87 5.08 21.49 9.09 46.95 47.77 1.23 10.45 31 1.18 12.74 67.84 -12.18 

Sep-87 1.79 16.87 6.30 47.49 48.46 1.24 7.72 30 1.04 8.03 68.44 -11.90 

Oct-87 3.15 10.9 3.25 48.06 47.03 1.25 4.46 31 0.96 4.42 69.07 -13.93 

Nov-87 4.13 4.4 0.82 48.20 48.44 1.25 1.43 30 0.83 1.19 69.26 -12.55 

Dec-87 3.3 0 0.00 48.20 50.95 1.25 0.00 31 0.81 0.00 69.26 -9.83 

Jan-88 1.01 0 0.00 48.20 50.20 1.25 0.00 31 0.84 0.00 69.25 -10.63 

Feb-88 1.54 1.16 0.11 48.01 48.66 1.25 0.27 28 0.83 0.21 68.97 -12.08 

Mar-88 3.25 3.63 0.62 47.96 48.51 1.25 1.13 31 1.03 1.20 68.83 -12.14 

Apr-88 1.65 10.13 2.91 47.57 47.54 1.24 4.09 30 1.11 4.55 68.26 -12.77 

May-88 10.82 14.98 5.27 47.37 46.55 1.24 6.67 31 1.16 8.00 68.03 -13.68 

Jun-88 3.26 22.13 9.51 48.32 40.92 1.25 10.79 30 1.25 13.47 69.10 -20.59 

Jul-88 5.57 23.41 10.35 48.24 44.55 1.25 11.58 31 1.27 15.17 68.98 -16.56 

Aug-88 4.67 23.12 10.16 49.30 44.14 1.27 11.38 31 1.18 13.87 70.11 -17.78 

Sep-88 2.29 16.83 6.28 49.28 44.64 1.27 7.60 30 1.04 7.91 69.99 -17.16 

Oct-88 0.16 12.23 3.87 49.90 41.65 1.28 5.03 31 0.96 4.99 70.56 -20.73 

Nov-88 1.2 4.78 0.93 50.01 38.72 1.28 1.51 30 0.83 1.26 70.63 -23.89 

Dec-88 2.65 0 0.00 50.01 38.07 1.28 0.00 31 0.81 0.00 70.63 -24.58 

Jan-89 2.9 0.82 0.06 50.08 39.96 1.28 0.16 31 0.84 0.14 70.77 -22.65 

Feb-89 1.69 0 0.00 49.97 40.11 1.28 0.00 28 0.83 0.00 70.56 -22.37 

Mar-89 1.43 6.26 1.41 50.76 38.29 1.29 2.10 31 1.03 2.23 71.59 -24.89 

Apr-89 2.53 10.57 3.11 50.95 39.17 1.29 4.12 30 1.11 4.57 71.61 -23.98 

May-89 9.74 15.02 5.29 50.97 38.09 1.29 6.48 31 1.16 7.78 71.39 -24.98 

Jun-89 5.19 18.56 7.28 48.75 40.02 1.26 8.64 30 1.25 10.77 68.70 -21.31 

Jul-89 4.17 24.35 10.99 49.38 38.62 1.27 12.15 31 1.27 15.92 69.44 -23.29 

Aug-89 3.26 22.03 9.44 48.67 37.21 1.26 10.72 31 1.18 13.07 68.64 -24.34 

Sep-89 3.93 16.9 6.32 48.71 38.85 1.26 7.68 30 1.04 7.98 68.71 -22.59 

Oct-89 2.06 10.69 3.16 47.99 40.75 1.25 4.35 31 0.96 4.32 68.04 -20.08 

Nov-89 0.38 6 1.32 48.38 39.93 1.26 2.10 30 0.83 1.75 68.52 -21.30 

Dec-89 2.06 0 0.00 48.38 39.34 1.26 0.00 31 0.81 0.00 68.52 -21.94 

Jan-90 1.89 2.43 0.34 48.65 38.33 1.26 0.67 31 0.84 0.58 68.97 -23.32 
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Date PRCP TAVG hy_i Hy Py alpha pe_i N_i d_i PE_i PEy 

Monthly-
TMI 

(2006) 

Feb-90 1.42 0.7 0.05 48.70 38.06 1.26 0.14 28 0.83 0.11 69.08 -23.68 

Mar-90 7.86 4.16 0.76 48.05 44.49 1.25 1.34 31 1.03 1.42 68.26 -16.12 

Apr-90 2.58 9.49 2.64 47.58 44.54 1.24 3.77 30 1.11 4.19 67.89 -15.79 

May-90 3.85 13.62 4.56 46.85 38.65 1.23 5.96 31 1.16 7.15 67.26 -21.90 

Jun-90 0.53 22.54 9.78 49.35 33.99 1.27 11.02 30 1.25 13.74 70.23 -28.70 

Jul-90 9.06 21.54 9.13 47.48 38.88 1.24 10.46 31 1.27 13.70 68.01 -22.13 

Aug-90 4.97 21.8 9.29 47.33 40.59 1.24 10.62 31 1.18 12.95 67.89 -20.16 

Sep-90 3.71 19.39 7.78 48.80 40.37 1.26 9.12 30 1.04 9.49 69.40 -21.37 

Oct-90 2.61 11.23 3.40 49.04 40.92 1.27 4.57 31 0.96 4.53 69.61 -20.91 

Nov-90 3.25 6.67 1.55 49.27 43.79 1.27 2.35 30 0.83 1.96 69.82 -17.96 

Dec-90 0.7 0 0.00 49.27 42.43 1.27 0.00 31 0.81 0.00 69.82 -19.42 

Jan-91 1.93 0 0.00 48.94 42.47 1.26 0.00 31 0.84 0.00 69.24 -19.00 

Feb-91 0.2 4.63 0.89 49.77 41.25 1.28 1.46 28 0.83 1.13 70.27 -20.97 

Mar-91 1.96 5.99 1.31 50.33 35.35 1.29 2.00 31 1.03 2.13 70.97 -27.64 

Apr-91 4.93 8.75 2.33 50.03 37.70 1.28 3.27 30 1.11 3.63 70.42 -24.85 

May-91 6.18 15.7 5.65 51.12 40.03 1.30 6.86 31 1.16 8.23 71.50 -23.01 

Jun-91 5.57 20.77 8.64 49.98 45.07 1.28 9.90 30 1.25 12.36 70.11 -16.79 

Jul-91 10.43 22.82 9.96 50.82 46.44 1.29 11.15 31 1.27 14.61 71.01 -15.95 

Aug-91 9.38 21.91 9.36 50.89 50.85 1.29 10.58 31 1.18 12.90 70.96 -11.25 

Sep-91 2 16.93 6.34 49.44 49.14 1.27 7.65 30 1.04 7.96 69.43 -11.92 

Oct-91 1.78 10.17 2.93 48.97 48.31 1.26 4.03 31 0.96 4.00 68.90 -12.41 

Nov-91 6.79 1.5 0.16 47.58 51.85 1.24 0.38 30 0.83 0.32 67.26 -7.18 

Dec-91 0.49 0.6 0.04 47.62 51.64 1.24 0.12 31 0.81 0.10 67.36 -7.50 

Jan-92 3.04 0 0.00 47.62 52.75 1.24 0.00 31 0.84 0.00 67.36 -6.27 

Feb-92 0.23 4.48 0.85 47.58 52.78 1.24 1.48 28 0.83 1.15 67.38 -6.25 

Mar-92 8.9 6.11 1.35 47.62 59.72 1.24 2.18 31 1.03 2.32 67.57 1.28 

Apr-92 1.36 12.66 4.08 49.37 56.15 1.27 5.29 30 1.11 5.88 69.81 -4.68 

May-92 2.87 15.87 5.75 49.46 52.84 1.27 7.05 31 1.16 8.46 70.04 -8.42 

Jun-92 5.14 18.92 7.50 48.32 52.41 1.25 8.87 30 1.25 11.06 68.75 -7.82 

Jul-92 5.69 21.39 9.03 47.39 47.67 1.24 10.37 31 1.27 13.59 67.73 -12.21 

Aug-92 5.92 20.21 8.29 46.32 44.21 1.22 9.71 31 1.18 11.84 66.68 -15.27 

Sep-92 0.03 18.44 7.21 47.19 42.24 1.24 8.64 30 1.04 8.99 67.70 -18.21 

Oct-92 1.3 12.02 3.77 48.03 41.76 1.25 5.04 31 0.96 5.00 68.70 -19.41 

Nov-92 3.71 1.04 0.09 47.97 38.68 1.25 0.24 30 0.83 0.20 68.58 -22.70 

Dec-92 1.71 0 0.00 47.93 39.90 1.25 0.00 31 0.81 0.00 68.48 -21.30 

Jan-93 0.64 0 0.00 47.93 37.50 1.25 0.00 31 0.84 0.00 68.48 -23.93 

Feb-93 2.69 0 0.00 47.08 39.96 1.24 0.00 28 0.83 0.00 67.33 -20.49 

Mar-93 2.27 5.84 1.27 46.99 33.33 1.23 2.09 31 1.03 2.23 67.23 -27.82 

Apr-93 5.29 9.15 2.50 45.40 37.26 1.21 3.74 30 1.11 4.15 65.50 -22.34 

May-93 2.39 14.9 5.22 44.88 36.78 1.20 6.77 31 1.16 8.12 65.17 -22.67 

Jun-93 4.25 19.14 7.63 45.01 35.89 1.20 9.15 30 1.25 11.41 65.52 -23.92 

Jul-93 2.32 22.78 9.93 45.92 32.52 1.22 11.26 31 1.27 14.74 66.68 -28.42 

Aug-93 1.65 21.11 8.85 46.48 28.25 1.23 10.24 31 1.18 12.48 67.32 -33.53 
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Date PRCP TAVG hy_i Hy Py alpha pe_i N_i d_i PE_i PEy 

Monthly-
TMI 

(2006) 

Sep-93 5.83 15.9 5.76 45.03 34.05 1.20 7.31 30 1.04 7.61 65.94 -26.27 

Oct-93 5.76 9.51 2.65 43.91 38.51 1.19 4.01 31 0.96 3.97 64.92 -20.51 

Nov-93 3.51 1.51 0.16 43.98 38.31 1.19 0.45 30 0.83 0.37 65.09 -20.86 

Dec-93 1.06 1.18 0.11 44.09 37.66 1.19 0.33 31 0.81 0.28 65.37 -21.79 

Jan-94 1.37 1.25 0.12 44.21 38.39 1.19 0.35 31 0.84 0.31 65.68 -21.16 

Feb-94 2.07 0.77 0.06 44.27 37.77 1.19 0.20 28 0.83 0.15 65.84 -21.97 

Mar-94 2.21 7.1 1.70 44.70 37.71 1.20 2.79 31 1.03 2.97 66.58 -22.52 

Apr-94 4.79 9.34 2.58 44.78 37.21 1.20 3.87 30 1.11 4.29 66.72 -23.17 

May-94 3.22 17.35 6.58 46.14 38.04 1.22 8.07 31 1.16 9.68 68.27 -23.21 

Jun-94 2.51 23.04 10.11 48.61 36.30 1.26 11.35 30 1.25 14.16 71.02 -26.67 

Jul-94 1.28 23.26 10.25 48.93 35.26 1.26 11.47 31 1.27 15.03 71.31 -27.91 

Aug-94 1.55 23.87 10.66 50.74 35.16 1.29 11.82 31 1.18 14.41 73.23 -28.99 

Sep-94 1.15 19.53 7.87 52.84 30.48 1.32 9.03 30 1.04 9.39 75.01 -34.53 

Oct-94 3.66 11.1 3.34 53.54 28.38 1.33 4.23 31 0.96 4.20 75.24 -36.71 

Nov-94 3.4 3.28 0.53 53.91 28.27 1.34 0.82 30 0.83 0.68 75.55 -36.94 

Dec-94 0.76 2.19 0.29 54.08 27.97 1.34 0.48 31 0.81 0.40 75.67 -37.28 

Jan-95 0.53 1.03 0.09 54.05 27.13 1.34 0.17 31 0.84 0.15 75.51 -38.05 

Feb-95 2.22 3.6 0.61 54.60 27.28 1.35 0.91 28 0.83 0.71 76.06 -38.10 

Mar-95 0.71 4.04 0.72 53.62 25.78 1.34 1.10 31 1.03 1.17 74.26 -38.96 

Apr-95 6.22 6.04 1.33 52.38 27.21 1.32 1.93 30 1.11 2.14 72.11 -36.70 

May-95 12.06 10 2.86 48.66 36.05 1.26 3.96 31 1.16 4.76 67.19 -24.76 

Jun-95 7.4 17.26 6.53 45.08 40.94 1.21 8.07 30 1.25 10.07 63.11 -16.34 

Jul-95 2.66 21.97 9.40 44.23 42.32 1.19 10.82 31 1.27 14.18 62.25 -14.01 

Aug-95 1.12 24.08 10.80 44.37 41.89 1.19 12.07 31 1.18 14.72 62.56 -14.78 

Sep-95 4.97 16.4 6.04 42.54 45.71 1.17 7.73 30 1.04 8.04 61.21 -8.99 

Oct-95 0.89 9.86 2.80 41.99 42.94 1.16 4.30 31 0.96 4.27 61.28 -12.44 

Nov-95 1.36 6.15 1.37 42.83 40.90 1.17 2.44 30 0.83 2.03 62.63 -16.02 

Dec-95 0.21 0.66 0.05 42.59 40.35 1.17 0.18 31 0.81 0.15 62.38 -16.49 

Jan-96 2.11 0 0.00 42.50 41.93 1.17 0.00 31 0.84 0.00 62.23 -14.47 

Feb-96 0.82 1.84 0.22 42.12 40.53 1.16 0.61 28 0.83 0.48 62.00 -15.97 

Mar-96 3.53 2.84 0.42 41.82 43.35 1.16 1.02 31 1.03 1.09 61.92 -12.49 

Apr-96 1.23 10.01 2.86 43.34 38.36 1.18 4.29 30 1.11 4.77 64.54 -20.43 

May-96 6.95 15.47 5.53 46.02 33.25 1.22 7.02 31 1.16 8.42 68.21 -28.44 

Jun-96 4.02 20.49 8.46 47.95 29.87 1.25 9.81 30 1.25 12.24 70.38 -33.17 

Jul-96 3.1 23.18 10.20 48.75 30.31 1.26 11.43 31 1.27 14.97 71.18 -33.06 

Aug-96 0.67 22.11 9.49 47.44 29.86 1.24 10.81 31 1.18 13.18 69.64 -32.84 

Sep-96 6.7 16.17 5.91 47.31 31.59 1.24 7.34 30 1.04 7.63 69.23 -30.78 

Oct-96 0.69 10.84 3.23 47.74 31.39 1.25 4.44 31 0.96 4.41 69.37 -31.06 

Nov-96 1.44 3.72 0.64 47.01 31.47 1.23 1.20 30 0.83 1.00 68.33 -30.46 

Dec-96 0.58 1.43 0.15 47.12 31.84 1.24 0.37 31 0.81 0.31 68.49 -30.13 

Jan-97 1.27 0 0.00 47.12 31.00 1.24 0.00 31 0.84 0.00 68.49 -31.05 

Feb-97 2.3 0 0.00 46.90 32.48 1.23 0.00 28 0.83 0.00 68.01 -29.18 

Mar-97 1.29 6.5 1.49 47.96 30.24 1.25 2.34 31 1.03 2.49 69.41 -32.33 
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Date PRCP TAVG hy_i Hy Py alpha pe_i N_i d_i PE_i PEy 

Monthly-
TMI 

(2006) 

Apr-97 7.52 5.76 1.24 46.34 36.53 1.22 2.09 30 1.11 2.32 66.97 -24.09 

May-97 3.33 14.31 4.91 45.72 32.91 1.22 6.40 31 1.16 7.68 66.22 -27.73 

Jun-97 6.37 20.36 8.38 45.64 35.26 1.21 9.83 30 1.25 12.26 66.24 -25.08 

Jul-97 15.63 23.14 10.17 45.62 47.79 1.21 11.48 31 1.27 15.04 66.31 -10.95 

Aug-97 10.45 21.13 8.86 44.99 57.57 1.20 10.30 31 1.18 12.56 65.69 0.73 

Sep-97 2.22 18.14 7.04 46.11 53.09 1.22 8.52 30 1.04 8.86 66.92 -5.50 

Oct-97 6.32 10.46 3.06 45.94 58.72 1.22 4.36 31 0.96 4.33 66.84 0.89 

Nov-97 2.07 2.21 0.29 45.59 59.35 1.21 0.66 30 0.83 0.55 66.40 2.04 

Dec-97 1.81 0 0.00 45.44 60.58 1.21 0.00 31 0.81 0.00 66.09 3.75 

Jan-98 0.3 1.27 0.13 45.57 59.61 1.21 0.34 31 0.84 0.30 66.38 2.35 

Feb-98 0.48 1.9 0.23 45.80 57.79 1.22 0.55 28 0.83 0.43 66.81 -0.13 

Mar-98 2.98 3.49 0.58 44.89 59.48 1.20 1.18 31 1.03 1.26 65.58 3.02 

Apr-98 6.12 7.8 1.96 45.61 58.08 1.21 3.07 30 1.11 3.41 66.67 0.34 

May-98 4.4 15.81 5.71 46.41 59.15 1.23 7.19 31 1.16 8.62 67.61 0.62 

Jun-98 2.59 17.65 6.75 44.78 55.37 1.20 8.31 30 1.25 10.36 65.71 -1.80 

Jul-98 17.75 23.47 10.39 45.00 57.49 1.20 11.69 31 1.27 15.32 65.99 0.34 

Aug-98 4.35 21.84 9.32 45.46 51.39 1.21 10.71 31 1.18 13.06 66.48 -7.02 

Sep-98 2.21 19.91 8.10 46.52 51.38 1.23 9.53 30 1.04 9.91 67.53 -7.94 

Oct-98 2.42 10.4 3.03 46.50 47.48 1.23 4.30 31 0.96 4.26 67.47 -12.22 

Nov-98 1.52 6.14 1.36 47.57 46.93 1.24 2.20 30 0.83 1.83 68.74 -13.80 

Dec-98 1.53 0 0.00 47.57 46.65 1.24 0.00 31 0.81 0.00 68.74 -14.10 

Jan-99 1.46 1.94 0.24 47.68 47.81 1.24 0.52 31 0.84 0.45 68.90 -12.96 

Feb-99 0.31 4.53 0.86 48.31 47.64 1.25 1.48 28 0.83 1.15 69.62 -13.68 

Mar-99 0.69 7.04 1.68 49.41 45.35 1.27 2.51 31 1.03 2.67 71.03 -17.12 

Apr-99 13.58 6.64 1.54 48.99 52.81 1.26 2.35 30 1.11 2.61 70.24 -8.61 

May-99 6.47 13.22 4.36 47.63 54.88 1.24 5.70 31 1.16 6.83 68.45 -4.87 

Jun-99 4.12 18.64 7.33 48.21 56.41 1.25 8.71 30 1.25 10.86 68.95 -3.64 

Jul-99 5.24 23.98 10.74 48.56 43.90 1.26 11.93 31 1.27 15.63 69.26 -17.46 

Aug-99 10.18 21.75 9.26 48.50 49.73 1.26 10.56 31 1.18 12.87 69.08 -11.01 

Sep-99 2.96 15.27 5.42 45.82 50.48 1.22 6.92 30 1.04 7.20 66.37 -7.95 

Oct-99 0.9 10.95 3.28 46.06 48.96 1.22 4.60 31 0.96 4.57 66.67 -9.92 

Nov-99 1.22 8.37 2.18 46.88 48.66 1.23 3.27 30 0.83 2.72 67.56 -10.98 

Dec-99 0.79 1.88 0.23 47.11 47.92 1.24 0.51 31 0.81 0.43 67.99 -12.14 

Jan-00 1.3 1.35 0.14 47.01 47.76 1.23 0.34 31 0.84 0.30 67.84 -12.20 

Feb-00 0.58 3.79 0.66 46.80 48.03 1.23 1.23 28 0.83 0.96 67.65 -11.75 

Mar-00 3.49 5.5 1.16 46.28 50.83 1.22 1.98 31 1.03 2.10 67.08 -8.17 

Apr-00 2.06 10.44 3.05 47.79 39.31 1.25 4.24 30 1.11 4.70 69.18 -22.38 

May-00 4.27 15.94 5.79 49.22 37.11 1.27 7.10 31 1.16 8.52 70.86 -25.72 

Jun-00 2.32 20.28 8.33 50.22 35.31 1.28 9.60 30 1.25 11.97 71.97 -28.20 

Jul-00 3.73 24.94 11.39 50.88 33.80 1.29 12.51 31 1.27 16.38 72.72 -30.14 

Aug-00 9.77 23.78 10.60 52.22 33.39 1.31 11.73 31 1.18 14.30 74.16 -31.23 

Sep-00 3.99 16.97 6.36 53.16 34.42 1.33 7.48 30 1.04 7.78 74.74 -30.46 

Oct-00 1.15 10.58 3.11 52.99 34.67 1.33 4.00 31 0.96 3.97 74.14 -29.93 
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Date PRCP TAVG hy_i Hy Py alpha pe_i N_i d_i PE_i PEy 

Monthly-
TMI 

(2006) 

Nov-00 1.92 0 0.00 50.81 35.37 1.29 0.00 30 0.83 0.00 71.42 -27.86 

Dec-00 0.72 0 0.00 50.58 35.30 1.29 0.00 31 0.81 0.00 70.99 -27.71 

Jan-01 1.47 0 0.00 50.44 35.47 1.29 0.00 31 0.84 0.00 70.69 -27.37 

Feb-01 1.51 0 0.00 49.78 36.40 1.28 0.00 28 0.83 0.00 69.73 -25.85 

Mar-01 1.93 4.51 0.86 49.49 34.84 1.27 1.42 31 1.03 1.51 69.14 -27.21 

Apr-01 3.35 9.66 2.71 49.15 36.13 1.27 3.77 30 1.11 4.18 68.62 -25.51 

May-01 9.07 14.13 4.82 48.18 40.93 1.25 6.16 31 1.16 7.38 67.49 -19.51 

Jun-01 3.56 20.78 8.64 48.49 42.17 1.26 9.97 30 1.25 12.44 67.95 -18.45 

Jul-01 8.48 24.73 11.25 48.35 46.92 1.25 12.41 31 1.27 16.25 67.82 -13.11 

Aug-01 5.41 22.79 9.94 47.69 42.56 1.24 11.22 31 1.18 13.68 67.19 -17.49 

Sep-01 2.57 18.54 7.27 48.60 41.14 1.26 8.63 30 1.04 8.98 68.39 -19.88 

Oct-01 0.5 10.76 3.19 48.68 40.49 1.26 4.35 31 0.96 4.31 68.73 -20.82 

Nov-01 1.66 6.16 1.37 50.05 40.23 1.28 2.09 30 0.83 1.74 70.47 -22.18 

Dec-01 0.69 0.9 0.07 50.13 40.20 1.28 0.18 31 0.81 0.15 70.61 -22.30 

Jan-02 1 0 0.00 50.13 39.73 1.28 0.00 31 0.84 0.00 70.61 -22.80 

Feb-02 0.46 0.8 0.06 50.19 38.68 1.28 0.15 28 0.83 0.12 70.73 -23.99 

Mar-02 1.88 1.78 0.21 49.54 38.63 1.27 0.43 31 1.03 0.46 69.68 -23.42 

Apr-02 0.23 10.69 3.16 49.99 35.51 1.28 4.23 30 1.11 4.70 70.20 -27.06 

May-02 3.44 13.83 4.67 49.84 29.88 1.28 5.89 31 1.16 7.07 69.88 -32.93 

Jun-02 2.8 22.49 9.74 50.94 29.12 1.29 10.94 30 1.25 13.65 71.10 -34.28 

Jul-02 2.64 25.18 11.56 51.25 23.28 1.30 12.66 31 1.27 16.58 71.42 -40.55 

Aug-02 1.84 22.31 9.62 50.93 19.71 1.29 10.83 31 1.18 13.20 70.95 -44.16 

Sep-02 4.73 17.74 6.80 50.46 21.87 1.29 8.07 30 1.04 8.39 70.37 -41.69 

Oct-02 2.02 7.49 1.84 49.12 23.39 1.27 2.73 31 0.96 2.71 68.76 -39.49 

Nov-02 0.59 3.02 0.47 48.21 22.32 1.25 0.89 30 0.83 0.74 67.77 -40.30 

Dec-02 0 1.1 0.10 48.24 21.63 1.25 0.25 31 0.81 0.21 67.83 -41.08 

Jan-03 0 3.02 0.47 48.70 20.63 1.26 0.88 31 0.84 0.76 68.59 -42.44 

Feb-03 1.29 0 0.00 48.64 21.46 1.26 0.00 28 0.83 0.00 68.47 -41.49 

Mar-03 12.22 4.55 0.87 49.30 31.80 1.27 1.45 31 1.03 1.54 69.55 -30.71 

Apr-03 5.16 10.95 3.28 49.42 36.73 1.27 4.40 30 1.11 4.88 69.73 -25.50 

May-03 5.69 14.01 4.76 49.51 38.98 1.27 6.01 31 1.16 7.21 69.88 -23.16 

Jun-03 4.85 17.68 6.77 46.53 41.03 1.23 8.23 30 1.25 10.27 66.50 -18.73 

Jul-03 1.19 25.48 11.77 46.74 39.58 1.23 12.89 31 1.27 16.89 66.81 -20.57 

Aug-03 7.87 23.69 10.54 47.66 45.61 1.24 11.77 31 1.18 14.35 67.96 -14.67 

Sep-03 1 19.8168 8.04 48.90 41.88 1.26 9.37 30 1.04 9.75 69.32 -19.69 

Oct-03 0.15 13.54 4.52 51.58 40.01 1.30 5.63 31 0.96 5.59 72.20 -23.44 

Nov-03 0.46 2.21 0.29 51.40 39.88 1.30 0.53 30 0.83 0.44 71.90 -23.40 

Dec-03 0.95 0.85 0.07 51.37 40.83 1.30 0.15 31 0.81 0.13 71.82 -22.36 

Jan-04 0.97 0.07 0.00 50.90 41.80 1.29 0.01 31 0.84 0.01 71.06 -20.88 

Feb-04 1.4 0 0.00 50.90 41.91 1.29 0.00 28 0.83 0.00 71.06 -20.77 

Mar-04 0.46 7.85 1.98 52.02 30.15 1.31 2.74 31 1.03 2.92 72.45 -33.79 

Apr-04 5.41 9.03 2.45 51.19 30.40 1.30 3.34 30 1.11 3.71 71.28 -33.01 

May-04 3.59 14.92 5.23 51.66 28.30 1.31 6.39 31 1.16 7.66 71.73 -35.41 
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Date PRCP TAVG hy_i Hy Py alpha pe_i N_i d_i PE_i PEy 

Monthly-
TMI 

(2006) 

Jun-04 4.51 17.64 6.74 51.64 27.96 1.31 7.95 30 1.25 9.92 71.37 -35.62 

Jul-04 6.27 21.55 9.13 49.00 33.04 1.26 10.42 31 1.27 13.64 68.13 -28.63 

Aug-04 12.56 19.58 7.90 46.36 37.73 1.22 9.34 31 1.18 11.39 65.17 -21.58 

Sep-04 3.41 16.81 6.27 44.59 40.14 1.20 7.85 30 1.04 8.16 63.58 -17.65 

Oct-04 2.5 10.39 3.03 43.09 42.49 1.18 4.50 31 0.96 4.47 62.46 -13.98 

Nov-04 2.23 3.33 0.54 43.34 44.26 1.18 1.17 30 0.83 0.98 62.99 -12.30 

Dec-04 0.33 1.45 0.15 43.43 43.64 1.18 0.44 31 0.81 0.37 63.23 -13.23 

Jan-05 1.57 0.59 0.04 43.47 44.24 1.18 0.15 31 0.84 0.13 63.35 -12.63 

Feb-05 0.13 2.2 0.29 43.76 42.97 1.19 0.71 28 0.83 0.55 63.90 -14.57 

Mar-05 1.96 4.45 0.84 42.61 44.47 1.17 1.68 31 1.03 1.79 62.77 -11.87 

Apr-05 6.06 7.98 2.03 42.20 45.12 1.16 3.35 30 1.11 3.72 62.79 -11.10 

May-05 2.6 13.7 4.60 41.56 44.13 1.15 6.33 31 1.16 7.59 62.71 -12.22 

Jun-05 8.36 18.79 7.42 42.24 47.98 1.16 9.07 30 1.25 11.32 64.11 -8.87 

Jul-05 1.35 24.56 11.13 44.24 43.06 1.19 12.36 31 1.27 16.19 66.66 -16.55 

Aug-05 6.53 21.26 8.95 45.29 37.03 1.21 10.37 31 1.18 12.64 67.91 -24.10 

Sep-05 0.59 18.46 7.22 46.24 34.21 1.22 8.70 30 1.04 9.04 68.80 -27.71 

Oct-05 6.38 10.94 3.27 46.49 38.09 1.23 4.57 31 0.96 4.53 68.87 -23.52 

Nov-05 0.74 6.12 1.36 47.30 36.60 1.24 2.20 30 0.83 1.83 69.72 -25.63 

Dec-05 0.77 0 0.00 47.15 37.04 1.24 0.00 31 0.81 0.00 69.35 -24.94 

Jan-06 0.84 3.46 0.57 47.68 36.31 1.24 1.07 31 0.84 0.93 70.16 -26.18 

Feb-06 0.46 0 0.00 47.40 36.64 1.24 0.00 28 0.83 0.00 69.61 -25.52 

Mar-06 2.15 3.59 0.61 47.16 36.83 1.24 1.14 31 1.03 1.22 69.03 -24.99 

Apr-06 1.58 10.79 3.20 48.34 32.35 1.25 4.38 30 1.11 4.86 70.17 -30.42 

May-06 1.56 15.69 5.65 49.39 31.31 1.27 6.95 31 1.16 8.34 70.92 -31.89 

Jun-06 0.08 22.04 9.45 51.41 23.03 1.30 10.64 30 1.25 13.28 72.88 -41.30 

Jul-06 5.65 23.68 10.53 50.82 27.33 1.29 11.70 31 1.27 15.32 72.00 -36.53 

Aug-06 6.91 21.76 9.27 51.14 27.71 1.30 10.47 31 1.18 12.77 72.13 -36.19 

Sep-06 2 14.4 4.96 48.87 29.12 1.26 6.26 30 1.04 6.51 69.60 -33.62 

Oct-06 4.63 9.65 2.71 48.31 27.37 1.25 3.81 31 0.96 3.78 68.85 -35.18 

Nov-06 0.84 5.15 1.05 47.99 27.47 1.25 1.75 30 0.83 1.45 68.47 -34.91 

Dec-06 5.45 0.02 0.00 47.99 32.15 1.25 0.00 31 0.81 0.00 68.47 -29.78 

Jan-07 2.6 0 0.00 47.42 33.91 1.24 0.00 31 0.84 0.00 67.54 -27.34 

Feb-07 0.91 0 0.00 47.42 34.36 1.24 0.00 28 0.83 0.00 67.54 -26.84 

Mar-07 3.45 7.32 1.78 48.60 35.66 1.26 2.68 31 1.03 2.85 69.17 -26.34 

Apr-07 4.94 7.83 1.97 47.36 39.02 1.24 2.98 30 1.11 3.31 67.62 -21.72 

May-07 11.47 14.51 5.02 46.73 48.93 1.23 6.45 31 1.16 7.74 67.02 -10.24 

Jun-07 1.47 19.75 8.00 45.29 50.32 1.21 9.49 30 1.25 11.84 65.58 -7.45 

Jul-07 1.42 24.11 10.82 45.58 46.09 1.21 12.07 31 1.27 15.81 66.07 -12.68 

Aug-07 8.95 23.23 10.23 46.54 48.13 1.23 11.51 31 1.18 14.04 67.33 -11.39 

Sep-07 3 17.78 6.83 48.41 49.13 1.26 8.20 30 1.04 8.53 69.34 -11.86 

Oct-07 2.71 11.8 3.67 49.37 47.21 1.27 4.84 31 0.96 4.80 70.36 -14.68 

Nov-07 0.46 5.3 1.09 49.42 46.83 1.27 1.75 30 0.83 1.46 70.37 -15.09 

Dec-07 2.96 0 0.00 49.42 44.34 1.27 0.00 31 0.81 0.00 70.36 -17.74 
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Date PRCP TAVG hy_i Hy Py alpha pe_i N_i d_i PE_i PEy 

Monthly-
TMI 

(2006) 

Jan-08 0.54 0 0.00 49.42 42.28 1.27 0.00 31 0.84 0.00 70.36 -19.93 

Feb-08 1.29 0.76 0.06 49.48 42.66 1.27 0.15 28 0.83 0.11 70.48 -19.60 

Mar-08 1.4 4.27 0.79 48.48 40.61 1.26 1.36 31 1.03 1.45 69.08 -20.91 

Apr-08 0.79 7.27 1.76 48.27 36.46 1.25 2.67 30 1.11 2.97 68.73 -25.22 

May-08 4.1 13.04 4.27 47.52 29.09 1.24 5.61 31 1.16 6.73 67.72 -32.78 

Jun-08 1.8 19.46 7.83 47.35 29.42 1.24 9.23 30 1.25 11.51 67.40 -32.26 

Jul-08 0.38 24.23 10.91 47.43 28.38 1.24 12.11 31 1.27 15.86 67.46 -33.45 

Aug-08 7.67 21.54 9.13 46.32 27.10 1.22 10.50 31 1.18 12.80 66.22 -34.31 

Sep-08 3.97 16.03 5.83 45.33 28.07 1.21 7.37 30 1.04 7.66 65.36 -32.79 

Oct-08 2.62 10.5 3.07 44.74 27.98 1.20 4.45 31 0.96 4.42 64.98 -32.70 

Nov-08 0.94 6.27 1.41 45.05 28.46 1.21 2.38 30 0.83 1.98 65.51 -32.42 

Dec-08 2.03 0 0.00 45.05 27.53 1.21 0.00 31 0.81 0.00 65.51 -33.48 

Jan-09 0.71 1.33 0.13 45.19 27.70 1.21 0.37 31 0.84 0.32 65.82 -33.44 

Feb-09 0.21 3.45 0.57 45.70 26.62 1.21 1.14 28 0.83 0.88 66.59 -35.02 

Mar-09 1.62 5.45 1.14 46.05 26.84 1.22 1.97 31 1.03 2.09 67.23 -35.06 

Apr-09 7.5 7.16 1.72 46.01 33.55 1.22 2.74 30 1.11 3.05 67.31 -27.62 

May-09 8.8876 11.8296 3.68 45.43 38.34 1.21 5.10 31 1.16 6.11 66.70 -21.89 

Jun-09 9.39 17.36 6.58 44.18 45.93 1.19 8.17 30 1.25 10.20 65.38 -12.32 

Jul-09 7.85 20.97 8.76 42.04 53.40 1.16 10.32 31 1.27 13.51 63.04 -1.47 

Aug-09 2.34 20.74 8.62 41.53 48.07 1.15 10.20 31 1.18 12.44 62.67 -7.48 

Sep-09 2.21 16.38 6.03 41.73 46.31 1.15 7.76 30 1.04 8.07 63.08 -9.94 

Oct-09 4.07 5.73 1.23 39.88 47.76 1.13 2.41 31 0.96 2.39 61.05 -6.33 

Nov-09 1.67 5.91 1.29 39.76 48.49 1.13 2.50 30 0.83 2.08 61.15 -5.53 

Dec-09 1.73 0 0.00 39.76 48.19 1.13 0.00 31 0.81 0.00 61.15 -5.90 

Jan-10 0.23 0 0.00 39.63 47.71 1.12 0.00 31 0.84 0.00 60.83 -6.18 

Feb-10 1.64 0 0.00 39.06 49.14 1.11 0.00 28 0.83 0.00 59.95 -3.52 

Mar-10 3.25 4.41 0.83 38.74 50.77 1.11 1.85 31 1.03 1.97 59.82 -1.35 

Apr-10 6.65 8.8 2.35 39.37 49.92 1.12 3.94 30 1.11 4.37 61.15 -3.77 

May-10 3.12 12.02 3.77 39.46 44.15 1.12 5.58 31 1.16 6.69 61.72 -11.35 

Jun-10 4.52 20.35 8.37 41.25 39.28 1.15 9.99 30 1.25 12.47 63.99 -18.96 

Jul-10 4.28 22.75 9.91 42.41 35.71 1.17 11.33 31 1.27 14.84 65.32 -24.00 

Aug-10 2.74 22.93 10.03 43.82 36.11 1.19 11.40 31 1.18 13.90 66.78 -24.44 

Sep-10 0.18 18.97 7.53 45.32 34.08 1.21 9.03 30 1.04 9.40 68.10 -27.47 

Oct-10 1.43 12.46 3.98 48.08 31.44 1.25 5.27 31 0.96 5.22 70.93 -31.76 

Nov-10 1.33 3.76 0.65 47.44 31.10 1.24 1.20 30 0.83 1.00 69.85 -31.61 

Dec-10 0.51 1.63 0.18 47.62 29.88 1.24 0.42 31 0.81 0.35 70.20 -33.08 

Jan-11 1.14 0 0.00 47.62 30.79 1.24 0.00 31 0.84 0.00 70.20 -32.11 

Feb-11 1.35 0 0.00 47.62 30.50 1.24 0.00 28 0.83 0.00 70.20 -32.42 

Mar-11 0.66 5.75 1.24 48.03 27.91 1.25 2.00 31 1.03 2.13 70.37 -35.25 

Apr-11 2.77 8.93 2.41 48.08 24.03 1.25 3.47 30 1.11 3.85 69.85 -39.20 

May-11 9.31 10.84 3.23 47.54 30.22 1.24 4.46 31 1.16 5.35 68.51 -31.92 

Jun-11 3.45 19.57 7.89 47.05 29.15 1.24 9.31 30 1.25 11.61 67.65 -32.68 

Jul-11 17.65 23.94 10.71 47.85 42.52 1.25 11.92 31 1.27 15.62 68.43 -18.39 
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Date PRCP TAVG hy_i Hy Py alpha pe_i N_i d_i PE_i PEy 

Monthly-
TMI 

(2006) 

Aug-11 0.18 23.97 10.73 48.55 39.96 1.26 11.93 31 1.18 14.54 69.07 -21.61 

Sep-11 4.11 16.75 6.24 47.25 43.89 1.24 7.67 30 1.04 7.97 67.65 -16.34 

Oct-11 3.86 10.77 3.20 46.46 46.32 1.23 4.49 31 0.96 4.45 66.87 -13.05 

Nov-11 1 4.38 0.82 46.63 45.99 1.23 1.48 30 0.83 1.23 67.11 -13.60 

Dec-11 2.49 0 0.00 46.45 47.97 1.23 0.00 31 0.81 0.00 66.76 -11.11 

Jan-12 0.6 2.09 0.27 46.72 47.43 1.23 0.59 31 0.84 0.52 67.27 -12.12 

Feb-12 2.42 0 0.00 46.72 48.50 1.23 0.00 28 0.83 0.00 67.27 -10.93 

Mar-12 0 9.02 2.44 47.92 47.84 1.25 3.52 31 1.03 3.75 68.89 -12.92 

Apr-12 2.54 11.55 3.55 49.07 47.61 1.27 4.73 30 1.11 5.25 70.29 -14.20 

May-12 2.95 15.62 5.61 51.45 41.25 1.30 6.79 31 1.16 8.15 73.09 -22.67 

Jun-12 0.95 23.14 10.17 53.73 38.75 1.34 11.28 30 1.25 14.07 75.55 -26.53 

Jul-12 5.1 25.44 11.74 54.77 26.20 1.35 12.79 31 1.27 16.76 76.69 -39.38 

Aug-12 0.51 23.22 10.23 54.26 26.53 1.35 11.32 31 1.18 13.80 75.95 -38.80 

Sep-12 5.75 18.6 7.31 55.33 28.17 1.36 8.34 30 1.04 8.68 76.65 -37.44 

Oct-12 2.06 9.32 2.57 54.70 26.37 1.35 3.29 31 0.96 3.26 75.47 -38.79 

Nov-12 0.91 6.26 1.41 55.29 26.28 1.36 1.89 30 0.83 1.58 75.81 -39.00 

Dec-12 0.55 0.21 0.01 55.30 24.34 1.36 0.02 31 0.81 0.02 75.83 -40.93 

Jan-13 0.61 0 0.00 55.03 24.35 1.36 0.00 31 0.84 0.00 75.31 -40.75 

Feb-13 1.7 0 0.00 55.03 23.63 1.36 0.00 28 0.83 0.00 75.31 -41.47 

Mar-13 3.64 2.75 0.40 52.99 27.27 1.33 0.67 31 1.03 0.71 72.27 -36.70 

Apr-13 2.79 5.48 1.15 50.59 27.52 1.29 1.77 30 1.11 1.97 68.99 -35.08 

May-13 3.14 14.12 4.82 49.80 27.71 1.28 6.06 31 1.16 7.26 68.11 -34.48 

Jun-13 1.05 21.28 8.96 48.58 27.81 1.26 10.27 30 1.25 12.81 66.84 -33.80 

Jul-13 8.87 23.04 10.11 46.95 31.58 1.23 11.39 31 1.27 14.92 65.00 -28.56 

Aug-13 4.02 22.81 9.95 46.68 35.09 1.23 11.25 31 1.18 13.72 64.93 -24.47 

Sep-13 35.28 19.11 7.61 46.98 64.62 1.23 9.04 30 1.04 9.40 65.65 8.82 

Oct-13 1.57 8.52 2.24 46.66 64.13 1.23 3.35 31 0.96 3.33 65.71 8.19 

Nov-13 0.51 4.76 0.93 46.18 63.73 1.22 1.66 30 0.83 1.38 65.52 7.95 

Dec-13 0.69 0 0.00 46.17 63.87 1.22 0.00 31 0.81 0.00 65.50 8.13 

Jan-14 1.63 0 0.00 46.17 64.89 1.22 0.00 31 0.84 0.00 65.50 9.30 

Feb-14 0.66 0 0.00 46.17 63.85 1.22 0.00 28 0.83 0.00 65.50 8.11 

Mar-14 2.06 5.02 1.01 46.77 62.27 1.23 1.75 31 1.03 1.86 66.65 5.07 

Apr-14 3.28 9.33 2.57 48.19 62.76 1.25 3.66 30 1.11 4.06 68.74 3.47 

May-14 8.82 14.32 4.92 48.30 68.44 1.25 6.25 31 1.16 7.50 68.98 9.41 

Jun-14 4.19 18.93 7.51 46.84 71.58 1.23 8.94 30 1.25 11.16 67.33 14.74 

Jul-14 8.56 22.83 9.97 46.70 71.27 1.23 11.27 31 1.27 14.76 67.17 14.58 

Aug-14 2.6 20.98 8.77 45.52 69.85 1.21 10.20 31 1.18 12.43 65.88 14.52 

Sep-14 5.45 18.02 6.97 44.87 40.02 1.20 8.51 30 1.04 8.85 65.33 -19.06 

Oct-14 1.7 12.38 3.95 46.58 40.15 1.23 5.31 31 0.96 5.27 67.27 -20.24 

Nov-14 2.37 2.18 0.28 45.93 42.01 1.22 0.65 30 0.83 0.54 66.43 -17.57 

Dec-14 1.3 0 0.00 45.93 42.62 1.22 0.00 31 0.81 0.00 66.43 -16.88 

Jan-15 0.88 0.87 0.07 46.00 41.87 1.22 0.21 31 0.84 0.18 66.61 -17.86 

Feb-15 5.24 1.01 0.09 46.09 46.45 1.22 0.25 28 0.83 0.19 66.81 -12.85 
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Date PRCP TAVG hy_i Hy Py alpha pe_i N_i d_i PE_i PEy 

Monthly-
TMI 

(2006) 

Mar-15 1.45 6.36 1.44 46.53 45.84 1.23 2.35 31 1.03 2.50 67.45 -14.03 

Apr-15 5.96 9.09 2.47 46.43 48.52 1.23 3.65 30 1.11 4.05 67.43 -11.03 

May-15 12.77 11.17 3.38 44.89 52.47 1.20 4.79 31 1.16 5.75 65.68 -5.08 

Jun-15 18.73 20.46 8.44 45.82 67.01 1.22 9.88 30 1.25 12.33 66.85 10.18 

Jul-15 3.07 22.07 9.47 45.32 61.52 1.21 10.85 31 1.27 14.21 66.30 4.59 

Aug-15 1.48 22.5 9.75 46.30 60.40 1.22 11.08 31 1.18 13.51 67.37 2.24 

Sep-15 0.49 20.15 8.25 47.59 55.44 1.24 9.63 30 1.04 10.01 68.53 -4.33 

Oct-15 4.66 13.71 4.61 48.25 58.40 1.25 5.92 31 0.96 5.88 69.14 -1.65 

Nov-15 4.42 4.4 0.82 48.79 60.45 1.26 1.40 30 0.83 1.17 69.77 -0.02 

Dec-15 2.11 0 0.00 48.79 61.26 1.26 0.00 31 0.81 0.00 69.77 0.85 

Jan-16 0.94 0.24 0.01 48.73 61.32 1.26 0.04 31 0.84 0.03 69.62 1.06 

Feb-16 1.9 3.62 0.61 49.25 57.98 1.27 1.08 28 0.83 0.84 70.26 -3.11 

Mar-16 4.18 5.67 1.21 49.02 60.71 1.27 1.92 31 1.03 2.05 69.81 0.22 

Apr-16 5.79 8.75 2.33 48.88 60.54 1.26 3.34 30 1.11 3.71 69.47 0.36 

May-16 4.83 12.05 3.79 49.29 52.60 1.27 4.98 31 1.16 5.97 69.69 -8.39 

Jun-16 3.69 22.09 9.48 50.33 37.56 1.29 10.71 30 1.25 13.36 70.72 -25.17 

Jul-16 1.89 24.79 11.29 52.15 36.38 1.31 12.39 31 1.27 16.23 72.74 -27.49 

Aug-16 1.69 22.21 9.56 51.96 36.59 1.31 10.73 31 1.18 13.08 72.32 -27.05 

Sep-16 0.16 19 7.55 51.26 36.26 1.30 8.78 30 1.04 9.13 71.44 -26.93 

Oct-16 0.69 14.26 4.89 51.54 32.29 1.30 6.03 31 0.96 5.98 71.55 -31.15 

Nov-16 1.12 8.03 2.05 52.77 28.99 1.32 2.79 30 0.83 2.32 72.70 -35.09 

Dec-16 1.59 0 0.00 52.77 28.47 1.32 0.00 31 0.81 0.00 72.70 -35.63 

Jan-17 1.31 0 0.00 52.76 28.84 1.32 0.00 31 0.84 0.00 72.67 -35.23 

Feb-17 0.29 5.07 1.02 53.17 27.23 1.33 1.50 28 0.83 1.17 72.99 -37.02 

Mar-17 1.79 8.56 2.26 54.21 24.84 1.34 2.96 31 1.03 3.15 74.09 -39.86 

Apr-17 3.17 9.55 2.66 54.54 22.22 1.35 3.41 30 1.11 3.78 74.17 -42.53 

May-17 12.15 13 4.25 55.01 29.54 1.36 5.14 31 1.16 6.17 74.37 -35.21 

Jun-17 2.22 21.48 9.09 54.61 28.07 1.35 10.18 30 1.25 12.70 73.71 -36.44 

Jul-17 2.03 24.56 11.13 54.45 28.21 1.35 12.20 31 1.27 15.98 73.46 -36.20 

Aug-17 3.79 22 9.42 54.32 30.31 1.35 10.52 31 1.18 12.83 73.21 -33.95 

Sep-17 2.68 18.49 7.24 54.01 32.83 1.34 8.34 30 1.04 8.67 72.75 -31.16 

Oct-17 2.75 10.16 2.93 52.05 34.89 1.31 3.85 31 0.96 3.82 70.59 -27.93 

Nov-17 0.72 7.34 1.79 51.79 34.49 1.31 2.52 30 0.83 2.10 70.37 -28.24 

Dec-17 0.51 1.04 0.09 51.88 33.41 1.31 0.20 31 0.81 0.16 70.53 -29.47 

Jan-18 0.84 0.93 0.08 51.96 32.94 1.31 0.17 31 0.84 0.15 70.68 -30.05 

Feb-18 0.98 0 0.00 50.94 33.63 1.29 0.00 28 0.83 0.00 69.51 -28.71 

Mar-18 4.07 6.09 1.35 50.03 35.91 1.28 2.06 31 1.03 2.19 68.55 -25.71 

Apr-18 3.25 8.6 2.27 49.64 35.99 1.27 3.22 30 1.11 3.58 68.35 -25.51 

May-18 5.59 16.27 5.97 51.36 29.43 1.30 7.17 31 1.16 8.60 70.78 -33.82 

Jun-18 1.82 23.01 10.09 52.36 29.03 1.32 11.23 30 1.25 14.01 72.10 -34.80 

Jul-18 3.66 23.97 10.73 51.95 30.66 1.31 11.86 31 1.27 15.53 71.65 -32.91 

Aug-18 3.96 21.98 9.41 51.94 30.83 1.31 10.59 31 1.18 12.91 71.72 -32.76 

Sep-18 2.29 19.53 7.87 52.57 30.44 1.32 9.04 30 1.04 9.40 72.45 -33.49 
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Date PRCP TAVG hy_i Hy Py alpha pe_i N_i d_i PE_i PEy 

Monthly-
TMI 

(2006) 

Oct-18 2.2 9.57 2.67 52.31 29.89 1.32 3.54 31 0.96 3.51 72.15 -33.93 

Nov-18 0.84 3.69 0.63 51.16 30.01 1.30 1.05 30 0.83 0.87 70.92 -33.26 

Dec-18 0.08 0.58 0.04 51.10 29.58 1.30 0.10 31 0.81 0.08 70.84 -33.68 

Jan-19 3.13 0 0.00 51.02 31.87 1.30 0.00 31 0.84 0.00 70.69 -31.19 

Feb-19 2.1 0 0.00 51.02 32.99 1.30 0.00 28 0.83 0.00 70.69 -30.00 

Mar-19 4.18 1.98 0.25 49.92 33.10 1.28 0.49 31 1.03 0.52 69.02 -29.03 

Apr-19 1.53 9.9 2.81 50.46 31.38 1.29 3.81 30 1.11 4.23 69.67 -31.22 

May-19 8.03 10.62 3.13 47.62 33.82 1.24 4.34 31 1.16 5.21 66.27 -26.73 

Jun-19 1.65 18.72 7.38 44.92 33.65 1.20 8.91 30 1.25 11.12 63.38 -25.18 

Jul-19 2.34 24.43 11.04 45.23 32.33 1.21 12.27 31 1.27 16.07 63.91 -27.06 

Aug-19 2.74 23.95 10.72 46.54 31.11 1.23 11.95 31 1.18 14.57 65.58 -29.42 

Sep-19 1.07 20.65 8.56 47.23 29.89 1.24 9.94 30 1.04 10.33 66.51 -31.30 

Oct-19 2.63 7 1.66 46.22 30.32 1.22 2.66 31 0.96 2.64 65.64 -30.35 

Nov-19 2.3 2.95 0.45 46.04 31.78 1.22 0.93 30 0.83 0.77 65.54 -28.63 

Dec-19 0.49 1.24 0.12 46.12 32.19 1.22 0.32 31 0.81 0.27 65.73 -28.27 

Jan-20 0.03 1.61 0.18 46.30 29.09 1.22 0.44 31 0.84 0.38 66.11 -32.00 

Feb-20 2.8 0 0.00 46.30 29.79 1.22 0.00 28 0.83 0.00 66.11 -31.20 

Mar-20 4.61 6.09 1.35 47.40 30.22 1.24 2.18 31 1.03 2.32 67.91 -31.63 

Apr-20 1.71 7.77 1.95 46.54 30.40 1.23 3.00 30 1.11 3.33 67.02 -30.98 

May-20 4.37 15.46 5.52 48.94 26.74 1.26 6.85 31 1.16 8.21 70.03 -36.36 

Jun-20 4.74 21.56 9.14 50.70 29.83 1.29 10.36 30 1.25 12.93 71.84 -33.86 

Jul-20 0.92 24.34 10.98 50.63 28.41 1.29 12.12 31 1.27 15.88 71.65 -35.26 

Aug-20 0.77 24.53 11.11 51.03 26.44 1.30 12.24 31 1.18 14.92 72.00 -37.46 

Sep-20 1.99 17.67 6.76 49.23 27.36 1.27 8.09 30 1.04 8.42 70.08 -35.72 

Oct-20 0.43 9.77 2.76 50.32 25.16 1.28 3.75 31 0.96 3.72 71.17 -38.48 

Nov-20 1.06 6.73 1.57 51.44 23.92 1.30 2.27 30 0.83 1.89 72.28 -40.18 

Dec-20 1.14 1.5 0.16 51.48 24.57 1.30 0.32 31 0.81 0.27 72.28 -39.51 

Dec-20 1.14 1.5 0.16 51.48 24.57 1.30 0.32 31 0.81 0.27 72.28 -39.51 
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An improved framework for volume change of shrink/swell 

Austin H. Olaiz1# , Mohammad Mosawi1 , Claudia E. Zapata1 

1. Introduction

The ability to estimate soil volume change as a function
of time is a valuable tool in the design of shallow foundations 

design, estimating soil volume change as a function of 
time allows for the prediction of the potential cumulative 
International Roughness Index (IRI). The time-varying 
volume change can also be a valuable tool in the forensic 
analysis of existing foundation movement of a lightly loaded 
structure on shallow footings.

This paper presents an improved framework for estimating 
the volume change of shrink/swell soils due to time-varying 

Lytton et al. (2005) approach with 
the suction envelope models created by Vann & Houston 
(2021). The proposed framework for estimating soil volume 
change of shrink/swell soils as a function of time is presented 
as an example calculation with data from an AASHTO Long-
Term Pavement Performance (LTPP) Seasonal Monitoring 
Program (SMP) section TX 48-1068 (FHWA, 1995), which 
is located approximately 80 miles northeast of Dallas, Texas. 

The SMP study includes measured data from 1/1994 to 
9/1997 for the TX 48-1068 section. The construction date 
of the TX48-1068 section is 3/1987. As such, the example 
calculation will use the time frame of 3/1987 to 9/1997 so 
that a comparison of predicted and measured volume change 
can be performed.

2. Volume change of shrink/swell soils

The determination of the magnitude of potential soil
volume change is a key focus of geotechnical engineering as 

have been published, which empirically relate soil index 
properties (Atterberg limits, gradation, mineralogy, etc.), 
along with soil engineering properties (density, moisture 
content, swell pressure, etc.), to volume change.

Direct laboratory measurements of the volume change 
potential of a soil helps improve the estimation of potential 

to Wetting Test” as described in ASTM D4546 (ASTM, 
2021) is the common type of laboratory test for volume 

Abstract
The ability to estimate soil volume change as a function of time is a valuable tool in the 
design or forensic analysis of shallow foundations and pavement structures. This paper 
presents an improved framework for estimating the volume change of shrink/swell soils 
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to wetting test inundates the sample, driving to almost full 
saturation. However, it is the probability that the soil will 
reach this moisture level over the period of the structure/
pavements design life is very low (Houston & Houston, 2017).

A common method for volume change estimation is the 
Potential Vertical Rise published by the Texas Department 
of Transportation (TxDOT, 1978), which includes both 
empirical-based relationships and result from an oedometer 
test. In 2005, the Texas DOT updated the approach to 
determining the volume change of expansive soils using the 
work by Lytton et al. (2005), which encompassed a suction-
based approach. The study concluded that the previous 

soil heave and did not account for the shrinkage of the soil 
during dry climatic periods.

A thorough literature review of volume change estimates 
of unsaturated soil (oedometer-based, or suction-based) was 
performed by Vann (2019). The authors of this paper have 
carefully reviewed this relative literature summary as part 
of the research leading up to this paper.

The suction-based approach by Lytton et al. (2005) for 
estimating the volume change of shrink/swell soils which 
was adopted by the Texas DOT and the Post-Tensioning 
Institute for the design of slabs on ground (PTI, 2004, 2008), 

including: Lytton (1977), McKeen & Hamberg (1981), Holtz 
& Gibbs (1956), Covar & Lytton (2001), Lytton et al. (2004). 
The approach encompasses the volumetric strain caused by 
changes in both stress states of the soil (matric suction and 
net normal stress) and uses the closed-form solution of the 

Bear, 1972) 
developed by Mitchell (1979) to estimate the soil volume-
change as a function of time when no groundwater table is 
present. The relationship between the change in each stress 
state and the volumetric strain, referred to as the compression 
indices, must be directly measured or empirically determined.

the Lytton et al. (2005) framework is that the climate boundary 
condition is assumed and modelled to be a sinusoidal pattern. 
Aubeny & Long (2007) proposed an improvement to this 

of climate data to be captured and allows for the development 
Aubeny & Long (2007) also 

was dependent upon the number of climatic cycles per year 
(n) when performing a back-calculation from the depth of

Vann & Houston (2021) developed correlations between 
the 30-year Thornthwaite Moisture Index (Thornthwaite, 
1948; Witczak et al., 2006) and soil suction envelopes using 
measured data from over 40 geotechnical studies (Vann, 2019). 
The suction envelope correlations to the TMI allow for key 
aspects of the Aubeny & Long (2007) approach to estimating 
volume change of shrink/swell soils as function of time to 
be determined without the need to measure or estimate the 

This paper presents an improved framework for 
estimating the volume change of shrink/swell soils due to 

work presented by Lytton et al. (2005) and incorporates the 
latest suction envelope models proposed by Vann & Houston 
(2021). The framework presented is applicable to uncovered 

it has been calibrated to account for covered areas and for 
the spatial variation between the pavement center and edges.

3. Framework outline

The following outline summarizes the steps of the
improved framework for estimating the volume change of 
shrink/swell soils due to time-varying (monthly) climatic 

2. 30-year and monthly Thornthwaite Moisture Index
per Witczak et al. (2006)

3. Determination of suction envelope parameters per
Vann & Houston (2021)

a. Depth to stable suction
b. Magnitude of stable suction
c. Limits of suction variation at the surface
d. Climatic parameter (r)

4. Back-calculation of variables for Mitchell (1979)

5. Development of long-term wet and dry suction

6. Initial estimation of monthly changes in suction at
the surface per Perera (2003)

7. Adjustment to estimation of monthly changes in
suction using limits of suction variation at the surface
from Vann & Houston (2021)

at the surface per Aubeny & Long (2007)
Aubeny 

& Long (2007)

boundary conditions

12. Estimation of suction compression index (assuming
value is not directly measured)

13. Calculation of strain monthly
14. Calculation of volume change monthly
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3.1 Step 1: climate data

A Season Monitoring Program (SMP) pavement section 
approximately 80 miles northwest of Dallas, Texas (TX 
48-1068) is used to provide an example for the proposed 
framework (FHWA, 2021). For the purposes of this example 
calculation, the climate data was gathered from the weather 

Thornthwaite Moisture Index (TMI) GIS map developed by 
Olaiz (2017), which uses the National Oceanic and Atmospheric 
Administration’s (NOAA) 30-year climate normal database 
for the United States. Figure 1 presents an excerpt for the 
GIS map, which has the Paris, TX weather station selected.

Figure 1 (USC00416794) is the only data needed for the 
purposes of this study. However, the remaining data shown 
may be helpful to get an understanding of the general climatic 
conditions at the site.

The NOAA climate data associated with each station 
in the country can be extracted from the online NOAA FTP 
site. It is recommended that the extracted weather data be 

of the Thornthwaite Moisture Index (Witczak et al., 2006):
• Year
• Month
• Monthly Precipitation (cm)
• Monthly Average Temperature (Celsius)

Note that the Vann & Houston (2021) models used in the 
proposed analysis correlate the suction envelope parameters 

to a 30-year TMI value. As such, the climate data from the 
NOAA database for station USC00416794 was extracted for 
the date range of 9/1967 to 9/1997 (the last date of measured 
data from the SMP study for the TX 48-1068 section).

3.2 Step 2: monthly and 30-year Thornthwaite 
Moisture Index (TMI) (Witczak et al., 2006)

To determine yearly TMI
potential evapotranspiration (PET) for each month must 
be calculated:

1 2
10

( ) 1.6
a

t
PET cm f f

I (1)

where, f
1
 is the fraction of the number of days in month 

divided by the average number of days in month, 30; f
2
 is the 

fraction of the number of hours in a day divided by the base 
of 12 h in a day; t is the mean monthly temperature in degrees 
Celsius; I is the annual heat index; and a

1.51412

1
5
i

i

t
I (2)

where, t
i
 is the mean temperature for the ith month, and

3 7 3 5

2

6.75 10 7.71 10

1.792 10 0.49239

a I x I x

Ix
(3)

The TMI (Witczak et al., 2006) can now be determined by:

75 1 10
P

TMI
PET

 (4)

where, P is the precipitation for the given month.
To visualize the climate data over time, the monthly 

average temperature, monthly rainfall, and the calculated 
TMI can be plotted (Figure 2). For the example calculation 
at the TX 48-1068 SMP section, the 30-year weather data 
was analyzed (9/1967 to 9/1997). For the comparison of 
measured versus predicted data, measured elevation change 
data was also extracted from the LTPP-SMP database between 
3/1987 and 9/1997.

The 30-year TMI value (Witczak et al., 2006) calculated 
from the NOAA data set for the USC00416794 station is 

previously shown on the TMI GIS map (Figure 1) due to 
Olaiz (2017) study.

3.3 Step 3: suction envelope parameters (Vann & 
Houston, 2021)

suction values at the surface and within the subsurface to a 
depth of stable suction. The suction envelopes are established 

e , 
Figure 1. Paris (Texas) weather station (NOAA ID USC00416794) 
data from online TMI GIS map (Olaiz, 2017).
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 D
e

, (3) change in suction
, and (4) climate parameter, r.

using the Vann & Houston (2021) model (Figure 3) relatively 

conditions:

( D 
e 

) versus TMI regression shown above is:

2.36 0.1612

2.617
1.617

1
e TMI

D
e

(5)

With an R2 = 0.9045 and standard error = 0.3147 m.

the Vann & Houston (2021) model (Figure 4). The soil suction unit 

of pF (log to the base 10 of soil suction in centimeters of water) 

was used in the Vann & Houston (2021) study due to its extensive 

Figure 2. Monthly average temperature and rainfall data for NOAA weather station USC00416794 with the calculated yearly TMI 
(Witczak et al., 2006) between (a) 9/1967 and 9/1997 and (b) 3/1987 and 9/1997.
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use in the geotechnical practice, with regards to unsaturated soils. 

suction in pF units, minus 1 (i.e., 4.0 pF = 3.0 log (suction (kPa))).

e
) as a 

function of TMI is:

20.0002 0.0053 3.9771e pF TMI TMI  (6)

With an R2 = 0.6539 and a standard error = 0.1959 pF.

change in suction at the surface, is determined using the 
Vann & Houston (2021) model (Figure 5).

) as a function of TMI, as shown above is:

0.0051.2109 TMIpF e (7)

With an R2 = 0.9184 and a standard error = 0.1835 pF.
Aubeny & Long (2007) presented illustrative suction 

(Mitchell, 1980), to demonstrate that asymmetrical soil 
suction envelopes are expected, depending on the climate 

(TMI). Aubeny & Long introduced a climate parameter, r, 
that is the percentage of the total anticipated change in soil 

), comprising the wet side of the 
suction envelope. The climatic parameter can be expressed 

e
) and the minimum 

wet dry
) suction at the surface (z = 0):

0 0

0 0

z z

z z

e wet e wet

dry wet

r (8)

Houston & Vann created a relationship between the 
climatic parameter and TMI (Figure 6).

r) as a function
of TMI as shown above is:

0.0090.3725 TMIr e (9)

With an R2 = 0.7998 and a standard error = 0.1132.
Table 1 presents the suction envelope parameters for 

the SMP TX 48-1068 section which had 30-year TMI of 29.6.

Figure 3. Relationship between TMI and the depth to constant soil 
suction for uncovered and non-irrigated sites (Vann & Houston, 2021).

Figure 4. TMI with Literature Values 
(Vann & Houston, 2021).

Figure 5. Limits of the potential change in suction at the surface 
vs. TMI with literature values (Vann & Houston, 2021).

Figure 6. Relationship between the Climate Parameter, r, and TMI 
(Vann & Houston, 2021).
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3.4 Step 4: back calculation of variables for Mitchell’s 
equation (1980)

The suction envelope can now be generated using the 

Aubeny & Long 
(2007) for asymmetrical suction envelopes has also been 
incorporated into this study.

The Mitchell (1979)
Naiser, 1997) to consider only 

the extreme suction cases (wet and dry), by taking the time 

n
z

ez e (10)

where,  is units of pF and z, n and  are in consistent units, 
(z) is the suction value at any depth z, n

of suction cycles, and 
The suction change with depth is a function of change 

in suction at the surface (    in pF units

suction ( e ).

for any given TMI Mitchell 
(1980)

be back-calculated (Vann, 2019). The n
Mitchell (1980)

 
e

D , change in suction at surface, , 
Lytton et al., 2005; Vann, 2019), 

2
0.2

ln

e

pF

n

D
(11)

10 and 11 and the previously computed components of the surrogate 
suction, where suction is in pF units and depth is in meters.

3.5 Step 5: development of the wet and dry suction 
envelope

ground surface, the minimum (wet) and maximum (dry) suction 
values can be determined using the following expressions:

0zwet e r (12)

0 0z zdry wet (13)

The minimum (wet) and maximum (dry) suctions for 
the TX 48-1068 section are 3.54 and 4.58, respectively.

The step size, or thickness of depth intervals (dz) must 
be determined. A sensitivity analysis should be performed to 
determine the number of steps ( sn ) needed for the analysis; 

for the volume change calculation performed in this study. 
The step size is computed by:

1
e

z

D
dz

n
(14)

The step size for the SMP TX 48-1068 section is 8.526 cm 

The wet and dry limit suction curves are iteratively 
calculated as the depth (z) is increased from 0 (ground 

i
n

z

i ewet
z r e

(15)

1
i

n
z

i edry
z r e

(16)

The suction for the SMP TX 48-1068 section is shown 
in Figure 7.

3.6 Step 6: initial estimate of monthly changes in 
suction at the surface (Perera, 2003)

It is important to note that the following steps for 

to a deterministic approach for estimating historic ground 
movements. Such approach can be used for a case study, 

data. The suction at the surface over time can also be modeled 
using a stochastic analysis with randomly generated monthly 
TMI values based on the historic averages and standard 
deviations. The second type of analysis can be used for 
designs of future structures; however, an example of such 
analysis is not presented in this paper.

In 2003, Perera studied the relationship between in-situ 
moisture content, suction, TMI, and index soil properties. 
He developed correlations for two models: the TMI-P

200
 model, 

which is valid for granular base materials; and the TMI-P
200

/wPI 

and subgrade materials (Rosenbalm, 2011). The two models 

Table 1. Suction envelope parameters for the SMP TX 48-1068 
per Vann & Houston (2021) with a TMI = 29.6.

Suction Envelope Parameter Value

Øe
D ) 1.62 m

e
) 3.84 pF

) 1.044 pF
Climatic parameter (r) 0.2854
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The TMI-P200/wPI model is of interest to this study. 

makes it suitable for expansive soils. For such materials, in 
addition to P

200
, the weighted plasticity index, wPI, property 

was added, where:

200

100

P
wPI PI (17)

The wPI for the example in Paris, TX site is 18.4 based 
on the percent passing the #200 sieve of 74% and a PI of 20.

based TMI, P
200

, and wPI (Perera 2003).

0.3 TMIe (18)

where,  is the matric suction of the soil; and , ,  and  are 
regression constants.

wPI is less than 
0.5 (Rosenbalm, 2011):

2002.56075 393.4625P  (19)

2000.09625 132.4875P  (20)

2000.025 14.75P  (21)

wPI  0.5:

3 2
0.006236 0.7798334

36.786486 501.9512

wPI wPI

wPI

(22)

3 2
0.00395 0.04042

1.454066 136.4775

wPI wPI

wPI
(23)

2
0.01988 1.27358 13.91244wPI wPI  (24)

3.7 Step 7: adjustment to the estimation of monthly 
changes in suction at the surface (Vann & Houston, 
2021)

It has been observed by the authors that the suction at 
the surface calculated using the Perera (2003) model typically 
will not reach the long-term minimum and maximum suction 
values observed by Vann & Houston (2021). This may not 

short (e.g., less than ten years), however; for the purpose 
of pavement design, which typically incorporates a design 
life of 20+ years, it is recommended that the surface suction 
values determined from the Perera model be adjusted so 
that they will reach the limits observed by Vann & Houston 
(2021). This can be conducted by normalizing the maximum 
and minimum suction values from the Perera model to the 
previously computed potential change in suction at the 

).

0

min

max min

i wetnorm z

i Perraz o

Perra Perra

(25)

After iterating the process for each month, the adjusted 
surface suction values can be plotted to help visualize 
adjustment (Figure 8).

suction (Aubeny & Long, 2007)

In order to model the suction changes as a function of 

the variation of suction at the surface. Typically, a simple 

variation with time. However, Aubeny & Long (2007), 
proposed that a Fourier transform can be used to improve 

th degree Fourier series is 

surface suction data.
In general, the Fourier series is a sum of sine and cosine 

functions that describes a periodic signal. It is represented 
in either the trigonometric form or the exponential form.

0
1

cos( ) sin
n

i i
i

y a a iwx b iwx (26)

Figure 7. Suction envelope for the SMP TX 48-1068 section using 
the Vann & Houston (2021) models.
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where, x represents time (for this analysis), a
0
 models a 

constant (intercept) term in the data and is associated with 
the i = 0 cosine term, w
signal, n is the number of terms (harmonics) in the series, and 

n a
i
 and b

i

background information on the Fourier series can be found 
on MathWorks help center (MathWorks, 2021).

Figure 9 presents the 1st and 8th

the Vann & Houston (2021) adjusted surface suction for 
the TX 48-1068. The 1st

by Lytton et al. (2005) using Mitchell (1979)
The adjusted R2 for the 1st

data is 0.2903, while the 8th

adjusted R2 to 0.7056.

able to encompass the maximum and minimum values of the 
individual monthly data. For purposes of the shrink/swell volume 
change analysis, the inclusion of the peaks of the surface suction 
can provide more accurate and conservative representation of 

can be normalized between the maximum and minimum values 
of the surface suction; however, this additional step was not 
performed as part of the example analysis presented in this paper. 

Note that the initial suction is a function of the TMI value 
for that month. The initial suction (time = 0) can be adjusted 

Lytton et al. (2005), 

this report does not include the phase shift for the initial conditions.

Aubeny & Long, 2007)

time using Aubeny & Long’s (2007) adjusted 1979 Mitchell 

Figure 8. Monthly TMI, Perera (2003) surface suction, and the Vann (2019) adjusted surface suction for the TX 48-1068 section for 
the date range 3/1987 to 9/1997.

Figure 9. 1st and 8th

for the TX 48-1068 section for the date range 3/1987 to 9/1997.

248



Olaiz et al.

Olaiz et al., Soils and Rocks 44(3):e2021065621 (2021)

1

,

exp cos

e dry wet

k
k

u y t U U U

k k k

(27)

where, y is the depth, 2 / ky n , 2 tn , n  = lowest 
2 /k k sin k r

with k = 1,2,3…

using the Aubeny & Long approach. Figure 10 presents the 
estimated suction at time = 1 month for the TX 48-1068 SMP 
site. Note that the long-term or extreme boundaries of the 

Vann (2019) correlations 
with the 30-year TMI value previously presented herein.

The monthly change in suction at each depth can be 

this ongoing change in soil suction with time that drives the 
volume change of shrink/swell soils. Figure 11 shows the 

t = 1 month, and t = 2 months, for the 
TX 48-1068 SMP site. Figure 12
for month 1 through month 12.

Figure 13
the date range 3/1987 to 9/1997 life for TX 48-1068 SMP 

9/1997, can be observed. The monthly change in suction 

this model.

wetting and drying of soil, it is important to record if the 

Figure 10.
for TX 48-1068 section.

Figure 11.
for TX 48-1068 section.

Figure 12.
for TX 48-1068 SMP section.
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soil is wetting or drying at each depth and time during the 
iterative analysis. This information will be used during the 
strain calculation discussed later in this report.

varying boundary conditions

It is possible that the project site has a variable 
groundwater table, nearby vegetation, or is constructed using 
a moisture barrier. If any of these boundary conditions are 

groundwater table depth). No variable boundary conditions 
were included in this example calculation.

The net normal, or overburden stress, is a key component 
of shrink/swell volume change determination as it will 
help reduce potential soil swelling and can increase soil 

the conventional total stress approach.

z soil z (28)

Note that the water content is subject to change over 

magnitude of the net normal stress. However, for purposes 

content on the net normal stress is negligible and is not 
included in the analysis.

If there are foundation loads or increases overburden 
stresses due to pavement layers above the subject soil 

3.12 Step 12: suction compression index (Covar & 
Lytton, 2001)

The most widely accepted method for estimating 
volumetric strain is the one developed for the Texas DOT and 
the Federal Highway Administration, FHWA, by Lytton et al. 
(2005), which is as follows:

log log log
f f f

h
i i i

hV

V h
 (29)

where, 
V

V
 is the volumetric strain (volume change with respect 

to initial volume); h  is the the matric suction compression 
index;  is the mean principal stress compression index; 

 is the osmotic suction compression index; ih  is the 
initial matric suction; fh i  is the 
initial mean principal stress; f

stress; i  is the initial osmotic suction; and f

osmotic suction.
Although, total suction is the sum of matric suction and 

at the ground surface. Osmotic suction in the soil does not 
appear to be highly sensitive to modest changes in the water 
content of the soil. As a result, a change in the total suction 

(Fredlund et al., 2012
matric suction that generates the heave and shrinkage, while 
osmotic suction rarely changes appreciably.” (Lytton et al., 
2005). Thus, the change in matric suction is responsible to 

enough to be concerned (Lytton et al., 2005; Fredlund et al., 
2012

log logf f
h

i i

hV

V h
(30)

is added if the soil is wetting (swelling) and subtracted if the 
soil is drying (shrinking).

The Suction compression index, 
h
, is a parameter used 

to relate total suction to volume change to predict heave 
or shrinkage in expansive soils. This value can either be 
measured or estimated using soil index properties (Atterberg 
limits and gradation) as described in Covar & Lytton (2001).

First, the mineralogical zone is determined using 
Figure 14 with soils plasticity index (PI LL).

The zone for the TX 48-1068 SMP section site is Zone 
2, using a LL = 60% and a PI = 40%.

Figure 13.
to 9/1997.
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(%fc) is then calculated using 
the percent passing #200 sieve (P

200
) and the percent clay 

(%clay) obtained via hydrometer testing.

200

%
%

clay
fc

P
(31)

The %fc for the example site is 21.05%, using a %clay = 20% 
and P

200
 = 95%.

The average suction compression index ( 0 ) can now 
be determined using the charts developed by Covar & Lytton 
(2001), which are separated by mineralogical zones (Figure 15).

The average suction compression index for the 
TX 48-1098 SMP section is 0.051 using Zone 1, %fc = 43.78%, 
LL = 38%, and PI = 20%.

The adjusted suction compression index ( h ) is now 
determined by:

0 %h fc (32)

The adjusted suction compression index for TX 48-1098 SMP 
section site is 0.0223.

PTI (2008) Manual. The wetting 
and dying suction compression indices must be calculated 
for each depth and time of the analysis using the recorded 
wetting/drying information from Step 9.

h
swell he (33)

h
shrink he (34)

Figure 15. Covar & Lytton, 2001).

Figure 14. Mineralogical zones for soil (Covar & Lytton, 2001), 
units in %.
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3.13 Step 13: monthly strain calculation

The mean principal stress compression index, , can 
be calculated using its relation to the compression index, C

c
, 

and void ratio, e, as follows (Lytton et al., 2005):

01
cC

e
(35)

where, C
c
 is the compression index; and e

0
 is the void 

ratio. For purposes of this example calculation, the mean 
principal stress compression index was assumed to be 
10% of the suction compression index as recommended 
by Lytton et al. (2005).

The mean principal stress must be iteratively determined 
at each depth and time step, as it is a function of the net 
normal stress and the wetting/drying condition.

01 2

3 z
K

(36)

where, z  is the previously calculated vertical stress at a 
point below the surface in the soil mass; and 0K  is the 1-D 

0
1 sin( ') 1 sin( ')

1 sin( ') 1 sin( ')

n
d

K e
k

(37)

e, d, k, and n
conditions are given in Table 2.

The angle of internal friction, ’, can be estimated from 
its empirical correlation with plasticity index, PI, based on 
triaxial compression tests.

2' 0.0016 0.3021 36.208PI PI  (38)

The internal angle of friction for the TX 48-1068 SMP 
site is 30.8o using a PI = 20.

Using the data developed from the iterative steps 
discussed above, and the suction-overburden-strain 
relationships, the volume change over time can be estimated. 
Figure 16 presents the volume change estimation for the 
Paris, TX site.

4. Estimated volume change comparison to
measured data

The estimated volume change from the proposed 
framework for the TX 48-1068 site was compared to the 
measured data gathered from the LTPP SMP database. 

measurement. Figure 17 presents the measured and estimated 
volume change for the TX 48-1068 SMP section.

A preliminary analysis of the proposed framework 
presented in this paper was performed on eight more sections 
from Alabama, Colorado, Montana, Nebraska, South Dakota 
and Texas from the LTPP SMP program. The resulting 
comparison, presented in Figure 18, of the estimated volume 

Figure 16. Volume change over time for the TX 48-1068 site.

Figure 17. Measured vs. estimated volume change normalized to 
the initial measurement for the TX 48-1068 SMP Section.

Table 2.

Conditions K
0

e d k n

Cracked 0 0 0 0 1

Drying (Active) 1/3 1 0 0 1
1/2 1 1 0 1

Wetting 
(within movement active zone)

2/3 1 1 0.5 1

Wetting (below movement active 
zone)

1 1 1 1 1

Swelling near surface 
(passive earth pressure)

3 1 1 1 2
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5. Conclusions

This paper presented a preliminary mechanistic-
empirical framework for the estimation of volume change. 
The models are universal and can be used in any part of the 
world provided measured data is available to calibrate for 

LTPP SMP sections will allow obtaining calibration factors 
for the proposed framework that will improve the estimation 
of the volume change predictions under pavements and 
facilitate the implementation into current design procedures.
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List of symbols

a

0a  constant (intercept) term, associated with the i=0  
cosine term

a
i

b
i

cC  compression index

e
D

dz  thickness of depth intervals

e void ratio

f
1
 fraction of the number of days in month divided  

by the average number of days in month, 30

f
2
 fraction of the number of hours in a day divided  

by the base of 12 h in a day

ih initial matric suction

fh

I annual heat index

K
0

n
n

zn  number of steps needed for the analysis

P  precipitation for the given month

P
200

  percent passing #200 sieve

PI  plasticity index

t  mean monthly temperature in degrees Celsius

t
i
  mean temperature for the ith month

r climate parameter

w

wPI  weighted plasticity index

x time of the analysis

z  depth 

, , regression constants 

/V V volumetric strain

h matric suction compression index

soil unit weight of the soil 

mean principal stress compression index

osmotic suction compression index

angle of internal friction

i initial osmotic suction

f

f

i initial mean principal stress

z net normal, or overburden, stress

change in suction at the ground surface

matric suction

e

0zwet minimum (wet) suction at the surface (z = 0) 

0zdry maximum (dry) suction at the surface (z = 0)

(z) suction value at any depth z

%fc

Figure 18. Measured vs. estimated volume change normalized to 
the initial measurement for the eight SMP sections.
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ABSTRACT 

The mechanical response of unsaturated soil is controlled by the two stress state variables of matric 
suction and net normal stress. Modern geotechnical laboratory devices allow for the direct 
measurement of unsaturated soil volumetric response under controlled conditions of both stress 
state variables. The oedometer pressure plate device (OPPD) is one apparatus that can impose 
suction-induced partial wetting conditions under constant or varying vertical stress conditions 
while measuring vertical deformations. This study brings together three extensive laboratory 
investigations of the mechanical response of fine-grained soil specimens to variations in both 
matric suction and net normal stress: Singhal (2010), Olaiz (2017), and Mosawi (2022), which 
were conducted using a series of OPPDs located at Arizona State University’s Geotechnical 
Laboratory. The effects of differing soil index properties, sample preparation, and stress path 
history on the moisture-driven volumetric response is evaluated. A comparison between the
suction-volume change indices of reconstituted clay specimens measured by Singhal (2010) and 
Mosawi (2022) and those of relatively intact clay specimens measured by Olaiz (2017) is also 
included. 

INTRODUCTION 

Evaluation of moisture-driven volume change of unsaturated clay soil requires consideration of 
the net normal (p) and the matric suction (s) stress states. For clays under relatively light 
confinement, increases in s during drying will typically cause clays to decrease in volume 
(compress or shrink) and reductions in s during wetting will cause increases in volume (expansion 
or swell). Clay soils at high net normal stress states can also reduce in volume (collapse) during 
wetting (Houston and Zhang, 2021; Nooray, 2017). The volumetric response is commonly 
expressed in terms of changes in void ratio (e), and the general relationship between e, p and s for 
clay soils is represented using three-dimensional (3D) state surfaces (Alonso et al., 1994, 1999; 
Delage & Graham, 1996;  Fredlund & Morgernstern, 1976; Gens & Alonso, 1992; Gens et al., 
2016; Wheeler & Sivakumar, 1995; Vu & Fredlund, 2004; Wray et al., 2005; Zhang & Lytton, 
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2009a, 2009b). For many foundation and pavement applications in engineering practice, vertical 
deformations govern the design which allow for the e-p-s relationship to be analyzed using one-
dimensional (1D) at-rest (K0) conditions - or at least the 1-D analyses provide adequate information 
for decision making (Adem & Vanapalli, 2013; Fredlund et al., 1980; Houston & Houston, 2018; 
Lytton, 1997; Nelson & Miller, 1992; Overton et al., 2006). 

Modern laboratory testing equipment like oedometer pressure plate device (OPPD) allows 
for the direct measurement of the unsaturated soil volume change at controlled matric suction and 
net normal stress conditions (Gens et al. 1995; Romero et al., 1995; Lins & Schanz, 2004; Pham 
et al., 2005, and Perez-Garcia et al., 2007). The OPPD merges the performance of oedometer-type 
apparatus for 1D volume change measurements with a suction-controlled pressure chamber using 
the axis translation technique Hilf (1956) and is thus limited to maximum matric suction values of 
1500 kPa. Delage, et al. (2008) discuss the use of salt solution to control suction in oedometer 
devices, thus extending the suction range, although equilibration times tend to be very long using 
salt solution suction control methods. There are currently no standardized procedures for the OPPD 
that the authors are aware of. The testing procedures associated with the OPPD are governed by 
the engineering property/constitutive relationship that needs to be explored, the soil type (coarse 
vs. fine-grained), and the stress history of the soil specimens to be tested (reconstituted or intact). 
Perez-Garcia et al (2007), Singhal (2010), Fredlund & Houston (2013), and Olaiz (2017), provide 
excellent summaries of the laboratory procedures and limitations associated with testing remolded 
soil samples in the OPPD.  

This study presents a comparison of the matric suction-volume change indices (for 1-D 
monotonic loading by wetting or drying) of intact clays (natural soil stress states) using relatively 
undisturbed specimens tested by Olaiz (2017), to those of reconstituted/compacted specimens 
measured by Singhal (2010) and Mosawi (2022) using OPPDs, including the Fredlund SWCC 
(SWC-150) developed by GCTS in Tempe, AZ. Singhal (2010) created a unique database from 
laboratory measurement of the mechanical response of clay soils under imposed conditions of both 
stress state variables using the OPPD, with attention on evaluation of a substantial portion of the 
void ratio state surface for clay soils. Olaiz (2017) and Mosawi (2022) continued the exploration 
of testing relatively intact and reconstituted soil specimens in the OPPD, respectively. The 
materials tested by Olaiz and Mosawi were obtained from locations associated with expansive soil 
areas in San Antonio, TX, and Denver, CO. The compilation of data from these extensive 
laboratory efforts is provided herein and is used to provide qualitative and quantitative 
comparisons of the mechanical response of reconstituted to relatively intact specimens.  

UNSATURATED SOIL VOLUMETRIC RESPONSE TO VARYING STRESS STATES 

Numerous breakthroughs in constitutive modeling have allowed geotechnical engineers to 
represent all volume change mechanisms of unsaturated soils (shrink-swell and collapse) due to 
changes in both stress state variables. However, typical practice of estimating shrink-swell soil 
volume change due to seasonal moisture changes encompasses simplified approaches using soil 
index with empirical correlations, significant engineering judgment, and 1D response to wetting 
tests (ASTM D4546). Many of the existing practical approaches for estimating unsaturated soil 
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volume change assumed a fully saturated final stress state. However, with proper control of water, 
the probability that a soil in an arid environment can reach a fully saturated (s = 0) state over the 
period of the structure/pavement design life is relatively low in the absence of groundwater table 
rise (Houston & Houston 2018). As such, knowledge of the suction-driven changes in volume 
(void ratio change) is necessary to adequately estimate the magnitude of potential volume change 
of shrink-swell soils.

A shrink-swell soil’s volumetric response to increases in s (drying) and decreases in s 
(wetting) at any constant state of p is referred herein as the suction-volume change indices. For 1D 
K0 conditions, the suction-volume change indices Cm and Cms represent the change in e per change 
in s at a constant p due to drying and wetting, respectively (Vu & Fredlund, 2004): 

for for
log loglog log

or
f f

i i

f i f i

m f i ms f is s

s s

e e e ee e
C s s C s s

s s
 (1) 

Where the subscripts i  and f represent the initial and final states of stress.  

Figure 1 illustrates two different approaches to interpreting the suction-volume change 
index from the e-log(s) plot for a given p, which represents one plane within the void ratio
constitutive surface with log(s) and log(p). The Cm or Cms can be interpreted from the e-log(s) plot 
in an incremental manner (Figure 1a) which helps adequately capture the nonlinearity of the 
relationship and can be implemented into numerical modeling. The e-log(s) plot generally 
experiences a distinct change in slope, likely around the air entry value (AEV), which is also 
depicted on Figure 1 and referred to herein as the inflection point of the e-log(s) plot. 

Figure 1: Interpretation of suction-volume change parameters using a) an incremental 
approach of e-log(s), and b) a representative value of the linear portion e-log(s)

The volumetric response of an unsaturated clay soils to changes in stress state will be 
dependent on the stress path history, as observed by many laboratory studies (Justo et al., 1984; 
Alonso, 1993; Pham & Fredlund, (2011). For reconstituted lab specimens, the effects of the natural 
stress path history are essentially lost as the soil structure is broken down. The stress path history
prior to testing is from the sample preparation process, which for most specimens of this study 
likely reduced the maximum past stress compared to field conditions for both p and s. The 
reconstituted soils evaluated in this study were prepared using a common process which starts with 
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breaking down dried clay material from a bulk sample, mixing in an amount of water required to 
reach the targeted moisture content (e.g., optimum moisture conditions), and then recompacting in 
the testing mold (brass ring for oedometer testing) to the target dry density.  

In geotechnical practice associated with pavement and shallow foundation design, which 
are highly susceptible to distresses caused by shrink-swell soils, driven ring samplers or pushed 
Shelby tubes are commonly used to obtain relatively undisturbed samples which are used to help 
improve the representation of the natural soil conditions in the laboratory. For relatively 
undisturbed clay specimens, the natural stress state can be sufficiently maintained using proper 
sampling techniques, sealing the sample to minimize potential moisture changes during transport 
and storage, and allowing the specimen to equilibrate under an imposed p corresponding to the 
estimated in situ stress state prior to any additional loading (Houston, 2014). This process is an 
attempt to return the soil, as close as possible, to in situ state of p-s after one p unload-reload cycle, 
assuming negligible changes in s and negligible effects of transport-related vibrations on the soil 
structure; however, there will always be irreversible effects from the sampling process (Fredlund 
et al., 2012; Nelson et al., 2015). 

The imposed stress path followed in the three laboratory investigations evaluated herein 
was to initially induce a net normal stress through application of vertical load under K0 conditions, 
then wet or dry the sample via induced matric suction into the OPPD chamber while maintaining 
the net normal vertical stress constant. As such, the e-s relationship of the complied OPPD dataset 
presented herein differ from the suction compression indices (SCI, h) obtained from: the 
unconfined (p = 0) Coefficient of Linear Extensibility (COLE) tests documented by the United 
State Department of Agriculture National Resources Conservation Service (USDA-NRCS) Soil 
Survey Laboratory, which were used by Covar and Lytton (2001) to develop the empirical shrink-
swell volume change models for the Texas Department of Transportation (Lytton et al., 2005) and 
the Post-Tensioning Institute Design of Slabs-on-Ground (PTI, 2008). 

OPPD TESTING OF RECONSTITUTED SPECIMENS 

In 2010, Singhal conducted an experimental laboratory investigation on a highly plastic expansive 
soil from Prescott, Arizona, referred to as “PL clay”. Sample preparation included air-drying the 
soil and then breaking down with a mortar and pestle prior to compacting in a mold to 10% below 
optimum moisture content (35%) and 118% of the theoretical maximum dry density (12.82 kN/m3) 
obtained from the Standard Proctor test (ASTM D689A). The specimens were exposed to several 
drying and wetting cycles (between 20% and 28%) over several weeks to reduce the effects from 
(the lack of) stress history. At the start of the OPPD testing, the moisture content and matric suction 
(measured using the filter paper method) was approximately 20% and 13,000 kPa, respectively.  

Hysteresis effects on e-s were explored by conducting adsorption (wetting) and desorption 
(drying) OPPD tests at three p stages of 1 kPa, 25 kPa, and 150. The concept of “twinned” samples 
was used to test the response at varying normal stress states. The wetting tests were performed first 
by decreasing s on the OPPD apparatus from 1200 kPa, to 500 kPa, 100 kPa, and ending at a nearly 
saturated state of the sample (referred to as 1 kPa) when there was no additional detectable 
absorption of water by the specimen. The desorption portion of the test followed immediately after 
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the sample equilibrated at the fully wetted (near saturated) stage using s stages of 300 kPa, 600 
kPa, and 1200 kPa. The stress path for the samples tested by Singhal can be characterized as 
loading then wetting from an initially dry state, followed by drying with no additional changes in 
vertical load. Singhal’s 2010 measured e-s relationships for the reconstituted clay soil using the 
OPPD are presented on Figure 2. 

The “weighted plasticity index” (wPI), defined by Zapata et al. (2000) as a product of the 
percent passing the #200 sieve (in decimal form) and the Plasticity Index, is identified in Figure 2
for the “Prescott Clay” material (wPI = 50.6). Mosawi (2022) used wPI as a categorical variable 
to represent the expansion potential of the material being tested. Mosawi (2022) targeted fine-
grained soils with three different wPI values (approximately 10, 30, and 50) to explore how the 
suction-volume change indices change with increasing expansion potential. The soils used in the 
study were the same as those used by Olaiz (2017) and Vann (2019). Sample preparation included 
air-drying the soil and then breaking down with a mortar and pestle prior to compacting in a mold 
to neat the optimum moisture content and 90% of the theoretical maximum dry density obtained 
from the Standard Proctor test (ASTM D698A). Sample molds were then placed on porous stones 
and partially submerged to induce a saturated state (s = 0) as the initial conditions for the OPPD 
testing. Drying tests were performed at five different p stages: 1, 10, 20, 40, and 60 kPa. The 
concept of “twinned” samples was used to test the response at varying normal stress states. The 
stress path for the samples tested by Mosawi can be characterized as loading then drying from an 
initially saturated state with no additional changes in vertical load. Mosawi’s 2022 measured e-s
relationships for the reconstituted clay soil using the OPPD are also presented on Figure 2. 

Figure 2: e-s plots from OPPD testing on Reconstituted Samples at various constant s
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Note that both Singhal (2010) and Mosawi (2022) indicate that the final wetting stage of 
the OPPD testing corresponded to s=1 kPa. In this data set, the saturated state of the OPPD testing 
is considered to be the state at which the sample no longer absorbs additional water and there are 
no further changes in volume when the induced s in the pressure cell is turned off. Based on 
additional experience using the OPPD apparatus to test highly plastic clays, Olaiz (2017) noted 
that is extremely difficult to fully saturate a fine-grained soil using only the axis-translation 
technique associated with the OPPD. Hence, it is almost certain that the actual s value associated 
with the saturated stage of the OPPD testing on fine-grained material are greater than 1 kPa, 
although still quite low. In this study, a matric suction of 10 kPA was considered to be fully wetted 
and was used as the matric suction corresponding to the saturated stages of Singhal and Mosawi’s 
OPPD data. 

OPPD TESTING OF NATURAL CLAY SPECIMENS 

In 2017, Olaiz tested the volumetric response of clay specimens to changes in s under field 
p using OPPDs. The study included 21 relatively intact clay specimens (10 from Denver, CO and 
11 from San Antonio, TX) extracted from boreholes using a modified California Ring Sampler. 
Olaiz (2017) provides an extensive discussion regarding potential sample disturbance of intact 
unsaturated fine-grained soils. The soil index properties, and in situ moisture content, were 
measured for each specimen using trimmings from the ring samples. The in situ soil suction was 
also estimated using the WP4-C (Meter Group, Pullman, Washington). The specimens were 
transferred from the sealed tubes to the OPPD chamber as quickly as possible to reduce potential 
moisture changes, then vertically loaded to the estimated field p state. After allowing for 
equilibrium to be reached, a matric suction was imposed into the OPPD chamber corresponding 
the initial total suction measured by the WP4-C (if less than 1450 kPa). A tedious technique was 
used to find the matric suction state corresponding to zero changes in volume under the field p 
state, which was considered to be the best approach to returning the soil to the in situ field 
conditions. For samples which had initial total suctions greater than 1450 kPa, the initial field 
conditions were assumed to be when the specimen equilibrated under the field p load, prior to any 
imposed changes in suction. This in situ suction was assumed to correspond to the initial void ratio 
of the samples and is included as a data point in the OPPD results. The wetting tests were 
performed initially on each specimen using various intervals of suction depending on the initial 
stress states. Four of the 21 tests included a drying cycle and additional wetting cycle to explore 
the effects of hysteresis on the intact specimens. Olaiz’s 2017 OPPD results of e-log(s) on intact 
clay soils are presented on Figure 3.  

INDEX PROPERTIES, STRESS PATH HISTORY, AND HYSTERESIS EFFECTS  

The effect of stress history on the volumetric response of unsaturated soils to changes in s under 
constant p can be further explored through a comparison of the reconstituted samples from Singhal 
(2010) and Mosawi (2022) to the relatively intact samples from Olaiz (2017). This stress history 
effect is visually evident when comparing the e-log(s) plot of the reconstituted samples from 
Singhal (2010) and Mosawi (2022) in Figure 2 to the e-log(s) plot of the intact samples from Olaiz 
(2017) in Figure 3.  
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Figure 3: e-s Plots from OPPD Testing on Intact Samples at Various Constant s

The slopes of e-log(s) for intact samples appear to be relatively flat when plotted on the 
same scale as the e-log(s) for reconstituted samples, indicating that the suction-volume change 
indices of the intact samples are significantly less than the reconstituted samples, which consistent 
with reduced swell with added cycles of wetting and drying effects observed by Alonso & Gens 
(1999) and Rosenbalm (2013), and likely related to intact specimens remaining primarily in the 
elastic (rather than elastoplastic) range of soil response. However, when comparing Singhal’s 
results (Figure 2a) to Mosawi’s sample with nearly the same wPI (Figure 2c), the laboratory 
wetting and drying cycles imposed by Singhal prior to testing do not appear to noticeably reduce 
the volumetric response. This may be due to the relatively high initial density and low moisture 
content targeted during the sample preparation in Singhal’s work. 
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In general, for both intact and reconstituted specimens, the volumetric response during 
drying for a given soil specimen was less than the wetting-induced response. For the remolded 
samples by Mosawi (2022), the magnitude of the suction-volume change indices tended to increase 
with increasing wPI, which provides additional evidence that wPI provides a useful quantitative 
relationship between soil index properties and volume change potential (Zapata et al., 2006). This 
trend is not as apparent for the intact specimens, which have reduced slopes (Cm or Cms) compared 
to similar wPI reconstituted specimens. 

To further evaluate the effects of index properties and the net normal stress states, the suction-
volume change indices were calculated for each test in the dataset using the 2 points corresponding 
to the highest suction range, targeting the steeper log-linear portion of the plot beyond the infection 
point. This approach generally provides the most conservative calculation of the suction-volume 
change indices for clay soils as the slope of e-log(s) generally continues to increase up until it 
approaches the residual suction range, although it may appear more or less linear on the semi-log 
plot. This two-point interpretation approach generally results in higher indices than when using an 
average of the data it reduces the potential for inclusion of data points past the inflection point on 
the log-linear portion of e-log(s) (Figure 1). For the remolded samples in this data set, the apparent 
inflection point, based on the visual analysis of the change in slope of e-log(s), is relatively low, 
perhaps in the range of 300 to 500 kPa. The inflection point may be significantly higher in very 
fat clays due to the larger AEVs related to the tendency of fat clays to remain near saturation at 
substantial suction levels. 

Figure 4 presents categorized box plots of the interpreted suction-volume change indices 
categorized by intact or remolded specimens, p ranges (0 to 10 kPa, 10 to 50 kPa, 50 to 100 kPa, 
and 100 to 150 kPa), and wPI ranges (10 to 20, 20 to 40, and 40 to 55). The box plots indicate that 
the volumetric response of the intact samples at low ranges of p (10 kPa or approximately 2 ft of 
overburden pressure and 50 kPa or approximately 10 ft of overburden pressure), is still less than 
the remolded samples at much higher overburden pressures of 100 to 150 kPa. This observation is 
supportive of the thought that the remolded specimens are more likely to exhibit elastoplastic swell 
response compared to intact specimen due to differences in stress history.  

Although, the trend that increasing wPI tends to increase the suction-volume change indices 
appears to apply to the intact samples when grouped together. However, the overall magnitude of 
the indices for the intact samples at high wPI range (40 wPI<55) is approximately one-third of 
the magnitude of the mean indices for the reconstituted samples at the low wPI range (10 wPI<20), 
demonstrating that an undisturbed fat clay may experience significantly less volume change upon 
wetting than a sandy clay (SC) or lean clay (CL) which has been disturbed and recompacted. These 
results demonstrate the dramatic impact of specimen stress history and brings into question the 
use, beyond empirical, of remolded specimens in laboratory response-to-wetting tests for 
estimation of natural (intact) soil response. Although this dataset is limited and each field 
circumstance if different, this stark discrepancy between the volume change potential of 
undisturbed fat clays to remolded lean clays shows that it is at least plausible that recompaction of 
near-surface soils prior to construction could cause greater expansive soil-related stress on 
pavement and shallow foundations compared to leaving soils in their undisturbed state.  
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Figure 4: Box plots of suction-volume change indices for intact (blue) and remolded (red) 
specimens categorized by a) p and b) wPI

CONCLUSIONS

This study presents a complied data set for oedometer pressure plate device testing for the 
volumetric response of unsaturated reconstituted and intact samples due to changes in matric 
suction under constant net normal stresses. The comparison of the matric suction-volume change 
indices of the intact samples from Olaiz (2017) resulted in significantly lower magnitude volume 
change than those of the remolded samples tested by Singhal (2010) and Mosawi (2022) for similar 
range of wPI specimens and suction range. A brief statistical analysis using descriptive statistics, 
box plots, and 1:1 comparison indicate that for the compiled dataset, wPI provides a useful 
indicator for volumetric response for remolded specimens under relatively light confining stress.
The data also demonstrate the critical role of stress history in shrink/swell response of clays to 
changes in moisture state. The data from the two-stress state controlled OPPD results provides a 
substantial start for development of e-p-s relationships and correlations for expansive clay soils. 
With the addition of similar data in the future, empirical relationships may emerge that will 
improve and simplify current procedures for estimation of shrink/swell volume change of clays. 

DATA AVAILABILITY STATEMENT

The raw OPPD laboratory data from Singhal (2010), Olaiz (2017), and Mosawi (2022) is currently 
available from the first author by request and has been submitted for publication in the Arizona 
State University Research Data Repository and available for future access, pending current review.

264



ACKNOWLEDGEMENT  

This work is based in part of research funded by the National Science Foundation (NSF) under 
Award No. 1462358, and the National Academies of Science, Engineering, and Medicine 
Transportation Research Board’s (TRB) National Cooperative Highway Research Program 
(NCHRP) Project 01-59. The opinions, conclusions, and interpretations are those of the authors 
and not necessarily of NSF or NCHRP.  

REFERENCES 

Adem, H.H., & Vanapalli, S.K. (2013). Constitutive modeling approach for estimating 1-D 
heave with respect to time for expansive soils. International Journal of Geotechnical 
Engineering, 7(2), 199-204. http://dx.doi.org/10.1179/1938636213Z.00000000024. 

Alonso, E. E. (1993). Constitutive modelling of unsaturated soils, Unsaturated soils: Recent 
Developments and Applications, Civil Engineering European Courses. Universitat 
Polit`ecnica de Catalunya, Barcelona, Spain. 

Alonso, E.E, Gens, A., & Gehling, W.Y.Y. (1994). Elastoplastic model for unsaturated 
expansive soils. Proceedings of the 3rd European Conference on Numerical Models in 
Geotechnical Engineering. 11-18, Rotterdam. 

Alonso, E. E., Lloret, A., Gens, A., and Yang, D. Q. 1995. Experimental behaviour of highly 
expansive double-structure clay, Proceedings of the First International Conference on 
Unsaturated Soils (UNSAT-95), Paris, pp. 11–16. 

Alonso, E.E., Vaunat, J., & Gens, A. (1999). Modelling the mechanical behaviour of expansive 
clays. Engineering Geology, 54(1-2), 173-183. http://dx.doi.org/10.1016/S0013-
7952(99)00079-4. 

Amer, O. M. I. (2016). Determining Suction Compression Index of Expansive Soils Based on 
non-linear suction-volumetric strain relationship. PhD Dissertation. Oklahoma State 
University.  

American Society for Testing and Materials (ASTM). (2007) Standard Test Methods for 
Laboratory Compaction Characteristics of Soil Using Standard Effort. ASTM International, 
West Conshohocken, ASTM International, West Conshohocken, PA.  

American Society for Testing and Materials (ASTM). (2014) Standard test methods for one-
dimensional swell or collapse of soils. ASTM International, West Conshohocken, ASTM 
International, West Conshohocken, PA.  

Covar, A., and Lytton, R. (2001). Estimating soil swelling behavior using soil classification 
properties. Proceedings of Geo-Institute Shallow Foundation and Soil Properties Committee 
Sessions at the ASCE 2001 Civil Engineering Conference. 44-63. Houston, Texas: ASCE. 

Delage P. & Graham J. 1996. Mechanical behaviour of unsaturated soils. Proceedings of the 1st 
International Conference on Unsaturated Soils (UNSAT), 3, 1223-1256, Paris: Balkema. 

Delage, P., Romero, E., Tarantino, A. (2008) Recent developments in the techniques of 
controlling and measuring suction in unsaturated soils. Proceeedings of the First European 
Conference on Unsaturated Soils. 33-52. Durham. CRC Press. 
https://doi.org/10.48550/arXiv.0810.3221 

Fredlund, D., and Houston. (2013). Interpretation of SWCCs when volume change occurs as soil 
suction is changed. 1st Pan-American Conference on Unsaturated Soils, PanAmUNSAT 
2013, (pp. 15-31). Cartegena de Indias, Colombia. 

265



Fredlund, D.G., & Morgenstern, N.R. (1976). Constitutive relations for volume change in 
unsaturated soils. Canadian Geotechnical Journal, 13(3), 261-276. 
http://dx.doi.org/10.1139/t76-029. 

Fredlund, D. G., Rahardjo, H, and Fredlund, M. D. (2012). Unsaturated Soil Mechanics in 
Engineering Practice. John Wiley & Sons, Inc. Hoboken, NJ. 

Fredlund, D. G. and Pham, H., (2006). A volume-mass constitutive model for unsaturated soils 
in terms of two independent stress state variables. Proceeedings of the Fourth International 
Conference on Unsaturated Soils. 105-134. Carefree, AZ. ASCE. 

Gens, A., & Alonso, E.E. (1992). A framework for the behaviour of unsaturated expansive clays. 
Canadian Geotechnical Journal, 29(6), 1013-1032. http://dx.doi.org/10.1139/t92-120. 

Gens, A., Alonso, E. E., Suriol, J., and Lloret, A. (1995). Effect of structure on the volumetric 
behaviour of a compacted soil, Proceedings of the First International Conference 
Unsaturated Soils, UNSAT-95, Paris, Vol. 1, pp. 83–88. 

Gens, A., Alonso, E.E., & Delage, A. (1996). Constitutive modelling: application to compacted 
soils. Proceedings of the 1st International Conference on Unsaturated Soils (UNSAT). 3, 
1179-1200. Paris: Balkema. 

Geotechnical Consulting and Testing Services (GCTS). (2007). SWC-150: Fredlund Soil Water 
Characteristic Device. 1.3. Tempe, AZ. 

Hilf, J. W. (1956). An investigation of pore-water pressure in compacted cohesive soils, PhD 
thesis, Technical Memorandum. No. 654, U.S. Department of the Interior, Bureau of 
Reclamation, Design and Construction Division, Denver, CO. 

Houston, S., and Houston, W. (2018). Suction-Oedometer Method for Computation of Heave 
and Remaining Heave. Proceedings of the 2nd Pan-American Conference on Unsaturated 
Soils. 93-116. Dallas, TX: ASCE. http://dx.doi.org/10.1061/9780784481677.005. 

Houston, S. and Zhang, X. (2021) Review of expansive and collapsible soil volume change 
models within a unified elastoplastic framework. (F. M. T.M.P. Campos, Ed.) Soil and 
Rocks, 44(3). doi:10.28927/SR.2021.064321 

Justo, J.L., Delgado, A., & Ruiz, J. (1984). The influence of stress-path in the collapse-swelling 
of soils at the laboratory. Proceedings of the 5th International Conference on Expansive 
Soils. 67-71. Adelaide: Institution of Engineers. 

Lins, Y., and Schanz, T. (2004). Determination of hydro-mechanical properties of sand. 
Proceedings from the International Conference “From Experimental Evidence towards 
Numerical Modeling of Unsaturated Soils,”. 15–31. Weimar, Germany.  

Lytton, R., Aubeny, C., and Bulut, R. (2005). Design procedure for pavements on expansive 
soils. Austin, TX: Texas Department of Transportation (TxDOT). 

Nelson, J.D., Chao, K.C., Overton, D.D., & Nelson, E.J. (2015). Foundation Engineering for 
Expansive Aoils. New York: Wiley Press. http://dx.doi.org/10.1002/9781118996096. 

Noorany, I. (2017). Soil tests for prediction of one-dimensional heave and settlement of 
compacted fills. Proceedings of the 2nd Pan-American Conference on Unsaturated Soils. 90-
99. Dallas: ASCE. https://doi. org/10.1061/9780784481707.010. 

Olaiz, A.H. (2017). Evaluation of testing methods for suction-volume change of natural clay 
soils. Doctoral dissertation. Arizona State University. Tempe, AZ. 

Overton, D.D., Chao, K.C., & Nelson, J.D. (2006). Time rate of heave prediction for expansive 
soils. GeoCongress 2006: Geotechnical Engineering in the Information Technology Age. 1-6. 
Atlanta: ASCE. http://dx.doi.org/10.1061/40803(187)162. 

266



Perez-Garcia, N. Houston, S.L., Houston, W.N., Padilla, J.M. (2007). An Oedometer-Type 
Pressure Plate SWCC Apparatus. Geotechnical Testing Journal. 31(2). ASTM. 

Pham, H., & Frendlund, D. (2011). A volume-mass volume–mass unsaturated soil constitutive 
model for drying-wetting under isotropic loading-unloading conditions. Canadian 
Geotechnical Journal, 48, 280-313. Ottawa, Canada. 

Post-Tensioning Institute, (2008). Design & construction of post-tensioned slabs-on-ground, 3rd 
edition. Post Tensioning Institute, Phoenix. 

Rosenbalm, D. C. (2013). “Volume change behavior of compacted expansive soil due to wetting 
and drying cycles.” Ph.D. Dissertation, Arizona State Univ., Tempe, AZ. 

Sheng, D., Fredlund, D.G., & Gens, A. (2008a). A new modelling approach for unsaturated soils 
using independent stress variables. Canadian Geotechnical Journal, 45(4), 511-534. 
http://dx.doi.org/10.1139/T07-112. 

Singhal, S. (2010). Expansive soil behavior: property measurement techniques and heave 
prediction methods. PhD Dissertation, Arizona State University, Tempe, AZ. 

Tu, H. (2015). Prediction of the variation of swelling pressure and 1-D heave of expansive soils 
with respect to suction. Thesis, University of Ottawa, Ottawa, Canada. 

U.S. Department of Agriculture, Natural Resources Conservation Service (USDA-NRCS). 
(1999). Soil taxonomy. 2nd ed., Gov. Print. Office, Washington, DC. 

Vann, J. (2019) “A soil suction-oedometer method and design soil suction profile 
recommendations for estimation of volume change of expansive soils.” Ph.D. dissertation. 
State University. Tempe, AZ. 

Vu, H. Q.,     Fredlund, D. G. 2000. Volume change predictions in expansive soils using a two-
dimensional finite element method, Proceedings of the Asian Conference in Unsaturated 
Soils, UNSAT ASIA 2000, Singapore, pp. 231–236. 

Vu, H. Q. and Fredlund, D. G. (2004) The prediction of one-, two-, three-dimensional heave in 
expansive soils. Canadian Geotechnical Journal, 41, 713-737. Ottawa, Canada. doi: 
10.1139/T04-023 

Wray, W.K., El-Garhy, B.M., & Youssef, A.A. (2005). Three-dimensional model for moisture 
and volume changes prediction in expansive soils. Journal of Geotechnical and 
Geoenvironmental Engineering, 131(3), 311-324. http://dx.doi.org/10.1061/(ASCE)1090-
0241(2005)131:3(311). 

Wheeler, S. J., and Sivakumar, V. 1995. An elasto-plastic critical state framework for 
unsaturated soil, Geotechnique, Vol. 45, No. 1, pp. 35–53. 

Zapata, C., Houston, W., Houston, S., and Walsh, K. (2000). Soil-water characteristic curve 
variability. Advances in Unsaturated Geotechnics, 99, 84-124. 

Zapata, C., Houston, S., Houston, W., and Dye, H. (2006). Expansion Index and Its Relationship 
with Other Index Properties. Proceeedings of the Fourth International Conference on 
Unsaturated Soils. 2133-2137. Carefree, AZ. ASCE. 

Zhang, X., & Lytton, R.L. (2009a). Modified state-surface approach to the study of unsaturated 
soil behavior. Part I: basic concept. Canadian Geotechnical Journal, 46(5), 536-552. 
http://dx.doi.org/10.1139/T08-136. 

Zhang, X., & Lytton, R.L. (2009b). Modified state-surface approach to the study of unsaturated 
soil behavior. Part II: general formulation. Canadian Geotechnical Journal, 46(5), 553-570. 
http://dx.doi.org/10.1139/T08-137. 

267



 

268 

APPENDIX D 

HIERARCHICAL DESCRIPTIVE STATISTICS FOR GROUPS BY AASHTO 
CLASSIFICATION AND WPI 

  

  



 

269 

Table D-1 A-1-a Soil Properties (Rosenbalm, 2011) 
 P2.0" P1.5" P1.0" P0.5" P#40 P#60 P#200 PI Gs D60 wPI 

# 1213 1213 1213 1213 2175 2175 2175 2175 489 1271 2175 

μ 97.9 96.0 90.91 71.34 19.6 15.5 8.72 0.75 2.702 9.15 0.08 

σ2 43.8 80.5 144.40 188.82 38.72 26.05 14.14 2.19 0.01 42.34 0.03 

σ 6.62 8.97 12.02 13.74 6.22 5.10 3.76 1.48 0.11 6.51 0.17 

CV 6.8 9.3 13.2 19.3 31.7 32.9 43.1 195 4.0 71.1 206.4 

a 30.0 28.0 25.0 8.0 0.0 0.0 0.0 0.0 2.243 2.4 0.000 

b 100 100 100 99.0 30.0 25.9 15.0 6.0 3.152 72.2 0.894 

 

Table D-2 A-1-b Soil Properties (Rosenbalm, 2011) 

  P2.0" P1.5" P1.0" P0.5" P#40 P#60 P#200 PI Gs D60 wPI 

# 1033 1033 1033 1033 2610 2610 2610 2610 472 1939 2610 

μ 99.1 98.1 95.1 83.99 35.50 28.51 16.52 1.492 2.661 2.824 0.308 

σ2 7.17 13.39 32.90 80.26 59.61 46.47 39.35 3.59 0.01 4.70 0.17 

σ 2.68 3.66 5.74 8.96 7.72 6.82 6.27 1.89 0.10 2.17 0.41 

CV 2.7 3.7 6.0 10.7 21.8 23.9 38.0 127 3.7 76.8 132 

a 74.0 73.0 69.0 57.0 7.5 5.6 0.2 0.0 2.243 0.6 0.000 

b 100.0 100.0 100.0 100.0 50.0 44.2 25.0 6.0 3.025 13.9 1.500 

 

Table D-3. A-2-4 Soil Properties (Rosenbalm, 2011) 

  P2.0" P1.5" P1.0" P0.5" P#40 P#60 P#200 PI Gs D60 wPI 

# 1683 1683 1683 1683 4218 4218 4218 4218 691 3282 4218 

μ 99.5 99.1 98.0 93.9 56.08 46.03 26.7 4.24 2.677 1.34 1.16 

σ2 8.81 13.2 24.9 94.5 401 195.40 46.64 10.48 0.00 6.53 0.84 

Σ 2.97 3.64 4.99 9.72 20.03 13.98 6.83 3.24 0.07 2.56 0.92 

CV 3.0 3.7 5.1 10.4 35.7 30.4 25.6 76.4 2.6 191 78.9 

a 54.0 44.0 36.0 31.0 8.0 6.6 2.8 0.0 2.445 0.1 0.000 

B 100.0 100.0 100.0 100.0 99.0 98.3 35.4 10.0 2.975 54.9 3.500 
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Table D-4. A-2-5 Soil Properties (Rosenbalm, 2011) 

  P2.0" P1.5" P1.0" P0.5" P#40 P#60 P#200 PI Gs D60 wPI 

# 561 561 561 561 1219 1219 1219 1219 5 1186 1219 

μ 100 100 99.9 99.8 69.0 55.0 22.06 0.075 2.835 0.431 0.021 

σ2 0.00 0.00 0.50 3.07 189.9 85.85 39.76 0.39 0.00 0.34 0.03 

σ 0.00 0.00 0.71 1.75 13.78 9.27 6.31 0.62 0.05 0.58 0.18 

CV 0.0 0.0 0.7 1.8 20.0 16.8 28.6 828 1.8 135 848 

a 100 100 92.0 81.0 30.0 27.8 10.5 0.0 2.781 0.2 0.000 

b 100 100 100.0 100.0 97.5 74.8 35.0 10.0 2.877 4.8 3.250 

 

Table D-5. A-2-6 Soil Properties (Rosenbalm, 2011) 
 P2.0" P1.5" P1.0" P0.5" P#40 P#60 P#200 PI Gs D60 wPI 

# 209 209 209 209 729 729 729 729 77 330 729 

μ 99.6 98.4 95.6 85.2 41.1 36.16 26.99 14.15 2.653 3.003 3.839 

σ2 2.76 11.29 36.79 173.7 256.9 139.46 44.63 6.42 0.00 12.41 1.60 

σ 1.66 3.36 6.07 13.18 16.03 11.81 6.68 2.53 0.05 3.52 1.26 

CV 1.7 3.4 6.3 15.5 39.0 32.7 24.8 17.9 2.0 117 32.9 

a 90.0 78.0 67.0 45.0 10.0 9.3 2.8 10.5 2.507 0.1 0.448 

b 100 100 100.0 100.0 99.0 78.8 35.4 25.0 2.780 19.4 8.073 

 

Table D-6. A-2-7 Soil Properties (Rosenbalm, 2011) 

  P2.0" P1.5" P1.0" P0.5" P#40 P#60 P#200 PI Gs D60 wPI 

# 28 28 28 28 174 174 174 174 1 46 174 

μ 96.8 94.9 89.25 76.89 35.7 33.4 28.4 24.66 2.767 5.758 7.026 

σ2 22.54 43.83 124 254 52.08 40.91 31.21 47.11 N/A 23.36 6.28 

σ 4.75 6.62 11.12 15.95 7.22 6.40 5.59 6.86 N/A 4.83 2.51 

CV 4.9 7.0 12.5 20.7 20.2 19.2 19.6 27.8 N/A 83.9 35.7 

a 86.0 82.0 70.0 50.0 15.0 13.2 8.6 12.5 2.767 0.4 1.892 

b 100 100.0 100.0 100.0 60.0 51.0 35.3 50.0 2.767 18.4 16.95 
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Table D-7. A-3 Soil Properties (Rosenbalm, 2011) 

  P2.0" P1.5" P1.0" P0.5" P#40 P#60 P#200 PI Gs D60 wPI 

# 508 508 508 508 689 689 689 689 92 689 689 

μ 99.96 99.90 99.68 98.94 75.40 50.67 6.75 0.0 2.665 0.351 0.0 

σ2 0.31 0.61 1.70 8.66 237.25 200.87 5.41 0.0 0.00 0.03 0.0 

σ 0.56 0.78 1.30 2.94 15.40 14.17 2.33 0.0 0.06 0.17 0.0 

CV 0.6 0.8 1.3 3.0 20.4 28.0 34.5 0.0 0.02 49.2 0.0 

a 88.0 85.0 84.0 75.0 51.0 22.0 0.3 0.0 2.445 0.1 0.0 

b 100.0 100.0 100.0 100.0 100.0 96.2 10.4 0.0 2.884 2.0 0.0 

 

Table D-8. A-4 Soil Properties (Rosenbalm, 2011) 

  P2.0" P1.5" P1.0" P0.5" P#40 P#60 P#200 PI Gs D60 wPI 

# 1211 11002 465 11002 

μ 99.6 99.4 98.6 95.96 78.46 73.00 60.17 5.99 2.677 0.30 3.704 

σ2 2.81 3.98 8.30 32.4 215 215 295 7.96 0.00 0.51 4.85 

σ 1.68 1.99 2.88 5.69 14.65 14.67 17.18 2.82 0.07 0.71 2.20 

CV 1.7 2.0 2.9 5.9 18.7 20.1 28.6 47.1 0.03 239 59.5 

a 86.0 83.0 79.0 64.0 36.0 36.0 35.5 0.0 2.494 0.0 0.00 

b 100 100 100 100 100 99.3 99.0 10.0 2.935 10.8 9.76 

 

Table D-9. A-5 Soil Properties (Rosenbalm, 2011) 

  P2.0" P1.5" P1.0" P0.5" P#40 P#60 P#200 PI Gs D60 wPI 

# 31 31 31 31 332 332 332 332 14 330 332 

μ 99.5 99.1 98.1 94.8 78.3 71.5 55.23 2.054 2.749 0.260 1.302 

σ2 2.92 8.69 17.66 48.47 184 179 278 8.42 0.00 0.26 3.68 

σ 1.71 2.95 4.20 6.96 13.6 13.38 16.68 2.90 0.07 0.51 1.92 

CV 1.7 3.0 4.3 7.3 17.3 18.7 30.2 141 0.03 195 147 

a 92.0 87.0 81.0 69.0 40.0 39.3 36.3 0.0 2.620 0.0 0.000 

b 100 100 100 100 100 99.3 97.5 10.0 2.869 4.8 9.250 
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Table D-10. A-6 Soil Properties (Rosenbalm, 2011) 

  P2.0" P1.5" P1.0" P0.5" P#40 P#60 P#200 PI Gs D60 wPI 

# 926 926 926 926 6860 6860 6860 6860 251 6740 6860 

μ 99.83 99.59 99.06 97.26 84.69 79.94 69.06 14.81 2.686 0.171 10.29 

σ2 0.89 1.94 4.81 19.0 167 178 269 8.83 0.00 0.32 11.50 

σ 0.94 1.39 2.19 4.36 12.92 13.35 16.39 2.97 0.06 0.57 3.39 

CV 0.9 1.4 2.2 4.5 15.3 16.7 23.7 20.1 0.02 331 33.0 

a 91.0 89.0 85.0 71.0 37.5 37.5 35.6 10.5 2.507 0.0 3.885 

b 100 100 100 100 100 99.4 98.2 29.0 3.089 8.8 24.36 

 

Table D-11. A-7-5 Soil Properties (Rosenbalm, 2011) 

  P2.0" P1.5" P1.0" P0.5" P#40 P#60 P#200 PI Gs D60 wPI 

# 58 58 58 58 683 683 683 683 17 487 683 

μ 99.2 98.8 98.2 96.4 91.2 88.83 83.37 28.92 2.666 0.08 24.60 

σ2 15.41 25.29 37.47 53.15 109 122 176 83.33 0.00 0.17 95.71 

σ 3.93 5.03 6.12 7.29 10.44 11.05 13.26 9.13 0.07 0.41 9.78 

CV 4.0 5.1 6.2 7.6 11.5 12.4 15.9 31.6 0.03 517 39.8 

a 79.0 73.0 67.0 63.0 40.0 39.3 37.0 10.5 2.605 0.0 5.52 

b 100 100 100 100 100 100 100 55.0 2.875 4.8 52.25 

 

Table D-12. A-7-6 Soil Properties (Rosenbalm, 2011) 

  P2.0" P1.5" P1.0" P0.5" P#40 P#60 P#200 PI Gs D60 wPI 

# 618 618 618 618 4935 4935 4935 4935 141 4617 4935 

μ 99.6 99.2 98.7 97.3 88.75 86.18 80.09 28.496 2.676 0.086 23.06 

σ2 3.81 7.91 14.75 31.46 138 146 193 63.06 0.00 0.20 69.70 

σ 1.95 2.81 3.84 5.61 11.75 12.09 13.88 7.94 0.06 0.44 8.35 

CV 2.0 2.8 3.9 5.8 13.2 14.0 17.3 27.9 0.02 516 36.2 

a 83.0 75.0 70.0 66.0 40.0 39.3 36.4 14.0 2.550 0.0 6.630 

b 100 100 100 100 100 99.4 99.0 75.0 2.884 8.7 66.24 
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Table D-13. Granular Base Material Soil Properties (Rosenbalm, 2011) 

  P2.0" P1.5" P1.0" P0.5" P#40 P#60 P#200 PI Gs D60 wPI 

# 2272 4785 961 3210 4785 

μ 98.5 97.0 92.9 77.4 28.3 22.59 12.97 1.159 2.682 5.330 0.206 

σ2 27.0 50.24 96.9 182 1123 79.2 42.98 3.08 0.01 29.18 0.12 

σ 5.20 7.09 9.85 13.51 10.62 8.90 6.56 1.76 0.10 5.40 0.34 

CV 5.3 7.3 10.6 17.4 37.6 39.4 50.5 152 0.04 101 166 

a 30.0 28.0 25.0 8.0 0.0 0.0 0.0 0.0 2.243 0.6 0.00 

b 100 100 100 100 50.0 44.2 25.0 6.0 3.152 72.2 1.50 

 

Table D-14. Granular Subbase and Subgrade Material Soil Properties (Rosenbalm, 2011) 

  P2.0" P1.5" P1.0" P0.5" P#40 P#60 P#200 PI Gs D60 wPI 

# 3062 7029 866 5533 7029 

μ 99.7 99.4 98.4 95.2 58.16 46.70 24.00 4.632 2.675 1.158 1.272 

σ2 5.41 8.96 19.82 85.62 420 197 76.38 33.30 0.00 5.47 2.77 

σ 2.33 2.99 4.45 9.25 20.49 14.03 8.74 5.77 0.07 2.34 1.66 

CV 2.3 3.0 4.5 9.7 35.2 30.0 36.4 125 0.03 202 131 

a 54.0 44.0 36.0 31.0 8.0 6.6 0.3 0.0 2.445 0.1 0.00 

b 100 100 100 100 100 98.3 35.4 50.0 2.975 54.9 16.95 

 

Table D-15. Fine Grained Material Soil Properties (Rosenbalm, 2011) 

  P2.0" P1.5" P1.0" P0.5" P#40 P#60 P#200 PI Gs D60 wPI 

# 11206 23814 888 23814 

μ 99.9 99.9 99.7 99.2 82.75 78.16 67.45 13.80 2.680 0.214 10.18 

σ2 0.78 1.38 2.84 9.64 201 218 330 104 0.00 0.39 83.61 

σ 0.88 1.17 1.68 3.11 14.17 14.75 18.17 10.18 0.07 0.63 9.14 

CV 0.9 1.2 1.7 3.1 17.1 18.9 26.9 73.7 0.02 292 89.8 

a 79.0 73.0 67.0 63.0 10.0 36.0 35.5 0.0 2.494 0.0 0.000 

b 100 100 100 100 100 100 100 75.0 3.089 10.8 66.24 
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Table D-16. “Clayey” Fine Grained Material Soil Properties (Rosenbalm, 2011) 

  P2.0" P1.5" P1.0" P0.5" P#40 P#60 P#200 PI Gs D60 wPI 

# 1604 12480 409 12480 

μ 99.7 99.4 98.9 97.3 86.65 82.89 74.21 21.0 2.682 0.134 16.12 

σ2 2.55 5.11 9.84 25.0 157 173 266 81.07 0.00 0.27 80.84 

σ 1.60 2.26 3.14 5.00 12.54 13.17 16.32 9.00 0.06 0.52 8.99 

CV 1.6 2.3 3.2 5.1 14.5 15.9 22.0 42.9 0.02 386 55.8 

a 79.0 73.0 67.0 63.0 37.5 37.5 35.6 10.5 2.507 0.0 3.885 

b 100 100 100 100 100 100 100 75.0 3.089 8.8 66.24 

 

Table D-17. “Silty” Fine Grained Material Soil Properties (Rosenbalm, 2011) 

  P2.0" P1.5" P1.0" P0.5" P#40 P#60 P#200 PI Gs D60 wPI 

# 4606 11334 479 11334 

μ 99.9 99.8 99.6 98.9 78.46 72.95 60.02 5.873 2.679 0.298 3.63 

σ2 0.79 1.17 2.68 12.11 214 214 295 8.41 0.01 0.50 4.98 

σ 0.89 1.08 1.64 3.48 14.62 14.64 17.19 2.90 0.07 0.71 2.23 

CV 0.9 1.1 1.6 3.5 18.6 20.1 28.6 49.4 0.03 238 61.4 

a 86.0 83.0 79.0 64.0 10.0 36.0 35.5 0.0 2.494 0.0 0.00 

b 100 100 100 100 100 99.3 99.0 10.0 2.935 10.8 9.76 

 
Table D-18. Level 2 A-1-a Soil Properties  

 PI P#200 w γd 

# 2175 23 

μ 0.75 8.72 7.99 123.33 

σ2 2.19 14.14 7.88 92.54 

σ 1.48 3.76 2.81 9.62 

CV 197.33 43.12 35.13 7.80 

a 0 0 5.33 108.46 

b 6 15 14.87 141.14 

α 0.10 1.67 5.56 89.12 

β 1* 1.20 14.38 106.74 
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Table D-19. Level 2 A-1-b Soil Properties  

  PI P#200 w γd 

# 2610 23 

μ 1.492 16.52 7.99 123.33 

σ2 3.57 39.31 7.88 92.54 

σ 1.89 6.27 2.81 9.62 

CV 126.68 37.95 35.13 7.80 

a 0 0.2 5.33 108.46 

b 6 25 14.87 141.14 

α 0.22 1.72 5.56 89.12 

β 1* 0.89 14.38 106.74 

 
Table D-20. Level 2 A-2-4 Soil Properties  

  PI P#200 w γd 

# 4218 23 

μ 4.24 26.7 7.99 123.33 

σ2 10.50 46.65 7.88 92.54 

Σ 3.24 6.83 2.81 9.62 

CV 76.42 25.58 35.13 7.80 

a 0 2.8 5.33 108.46 

B 10 35.4 14.87 141.14 

α 0.56 3.35 5.56 89.12 

β 1* 1.22 14.38 106.74 

 
Table D-21. Level 2 A-2-5 Soil Properties  

  PI P#200 w γd 

# 1219 23 

μ 0.08 22.06 7.99 123.33 

σ2 0.38 39.82 7.88 92.54 

σ 0.62 6.31 2.81 9.62 

CV 828.00 28.60 35.13 7.80 

a 0.00 10.50 5.33 108.46 

b 10.00 35.00 14.87 141.14 

α 0.01 5.99 5.56 89.12 

β 1.00 6.70 14.38 106.74 
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Table D-22. Level 2 A-2-6 Soil Properties  
 PI P#200 w γd 

# 729 23 

μ 14.15 26.99 7.99 123.33 

σ2 6.40 44.62 7.88 92.54 

σ 2.53 6.68 2.81 9.62 

CV 17.90 24.80 35.13 7.80 

a 10.50 2.80 5.33 108.46 

b 25.00 35.40 14.87 141.14 

α 23.10 3.45 5.56 89.12 

β 68.67 1.20 14.38 106.74 

 
Table D-23. Level 2 A-2-7 Soil Properties  

  PI P#200 w γd 
# 174 23 
μ 24.66 28.40 7.99 123.33 
σ2 47.06 31.25 7.88 92.54 
σ 6.86 5.59 2.81 9.62 

CV 27.80 19.60 35.13 7.80 
a 12.50 8.60 5.33 108.46 
b 50.00 35.30 14.87 141.14 
α 8.42 5.99 5.56 89.12 
β 17.54 2.09 14.38 106.74 

 
Table D-24. Level 2 A-3 Soil Properties  

  PI P#200 w γd 

# 689 23 

μ 0.00 6.75 7.99 123.33 

σ2 0.00 5.43 7.88 92.54 

σ 0.00 2.33 2.81 9.62 

CV 0.00 34.50 35.13 7.80 

a 0.00 0.30 5.33 108.46 

b 0.00 10.40 14.87 141.14 

α 0.00 2.40 5.56 89.12 

β 0.00 1.36 14.38 106.74 

 

  



 

277 

Table D-25. Level 2 A-4 Soil Properties  

  PI P#200 w γd 

# 11002 34 

μ 5.99 60.17 17.57 106.11 

σ2 7.95 295.15 32.11 95.80 

σ 2.82 17.18 5.67 9.79 

CV 47.08 28.55 17.86 7.03 

a 0.00 35.50 8.84 83.00 

b 10.00 99.00 31.76 124.36 

α 1.21 7.11 19.02 88.72 

β 0.81 11.19 30.90 70.06 

 
Table D-26. Level 2 A-5 Soil Properties  

  PI P#200 w γd 

# 332 34 

μ 2.05 55.23 17.57 106.11 

σ2 8.41 278.22 32.11 95.80 

σ 2.90 16.68 5.67 9.79 

CV 141.00 30.20 17.86 7.03 

a 0.00 36.30 8.84 83.00 

b 10.00 97.50 31.76 124.36 

α 0.19 7.26 19.02 88.72 

β 1* 16.22 30.90 70.06 

 
Table D-27. Level 2 A-6 Soil Properties  

  PI P#200 w γd 

# 6860 86 

μ 14.81 69.06 20.30 106.00 

σ2 8.82 268.63 23.86 80.15 

σ 2.97 16.39 4.88 8.95 

CV 20.05 23.73 24.06 8.45 

a 10.50 35.60 10.13 82.24 

b 29.00 98.20 35.21 126.11 

α 18.84 7.73 9.86 63.72 

β 62.03 6.73 14.45 53.95 
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Table D-28. Level 2 A-7-5 Soil Properties  

  PI P#200 w γd 

# 683 86 

μ 28.92 83.37 20.30 106.00 

σ2 83.36 175.83 23.86 80.15 

σ 9.13 13.26 4.88 8.95 

CV 31.57 15.91 24.06 8.45 

a 10.50 37.00 10.13 82.24 

b 55.00 100.00 35.21 126.11 

α 5.47 9.70 9.86 63.72 

β 7.74 3.48 14.45 53.95 

 
Table D-29. Level 2 A-7-6 Soil Properties  

  PI P#200 w γd 

# 4935 86 

μ 28.50 80.09 20.30 106.00 

σ2 63.04 192.65 23.86 80.15 

σ 7.94 13.88 4.88 8.95 

CV 27.86 17.33 24.06 8.45 

a 14.00 36.40 10.13 82.24 

b 75.00 99.00 35.21 126.11 

α 9.58 9.36 9.86 63.72 

β 30.74 4.05 14.45 53.95 

 
Table D-30. Level 2 Shrink-swell Soil with 10 < wPI < 20 

  LL PI P#200 Pclay w γd 

#  55 

μ 46.49 23.48 66.31 30.92 22.18 103.09 

σ2 25.60 17.81 184.14 73.79 15.68 52.56 

σ 5.06 4.22 13.57 8.59 3.96 7.25 

CV 10.89 17.96 20.47 27.77 17.86 7.03 

a 41.00 14.00 36.40 10.00 14.19 82.24 

b 64.00 35.00 98.00 52.60 35.21 121.39 

α 63.96 16.56 11.79 6.11 19.05 94.05 

β 203.99 20.12 12.49 6.33 31.07 82.55 
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Table D-31. Level 2 Shrink-swell Soil with 20 ≤ wPI < 30 

  LL PI P#200 Pclay w γd 

# 101 55 

μ 52.17 29.61 76.98 36.58 22.18 103.09 

σ2 105.68 102.21 281.57 152.52 15.68 52.56 

σ 10.28 10.11 16.78 12.35 3.96 7.25 

CV 19.71 34.13 21.80 33.76 17.86 7.03 

a 25.00 11.00 30.20 5.70 14.19 82.24 

b 102.00 75.00 99.00 75.50 35.21 121.39 

α 16.31 5.80 6.05 4.45 19.05 94.05 

β 29.90 14.14 2.85 5.61 31.07 82.55 

 
Table D-32. Level 2 Shrink-swell Soil with with 30 ≤ wPI < 40 

  LL PI P#200 Pclay w γd 

#  55 

μ 61.13 39.11 88.74 46.41 22.18 103.09 

σ2 67.24 37.33 91.39 114.28 15.68 52.56 

σ 8.20 6.11 9.56 10.69 3.96 7.25 

CV 13.41 15.61 10.77 23.03 17.86 7.03 

a 50.00 31.00 60.60 15.50 14.19 82.24 

b 85.00 61.00 99.00 75.50 35.21 121.39 

α 37.61 29.67 22.30 8.63 19.05 94.05 

β 80.65 80.09 8.13 8.12 31.07 82.55 

 
Table D-33. Level 2 Shrink-swell Soil with 40 ≤ wPI < 50 

  LL PI P#200 Pclay w γd 

#  55 

μ 70.50 47.36 92.86 58.98 22.18 103.09 

σ2 69.89 27.46 29.05 87.42 15.68 52.56 

σ 8.36 5.24 5.39 9.35 3.96 7.25 

CV 11.85 11.07 5.80 15.85 17.86 7.03 

a 57.00 41.00 79.40 40.70 14.19 82.24 

b 83.00 61.00 98.90 68.80 35.21 121.39 

α 33.72 55.34 91.39 13.26 19.05 94.05 

β 31.22 118.67 41.01 7.12 31.07 82.55 
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Table D-34. Level 2 Shrink-swell Soil with wPI ≥ 50 

  LL PI P#200 Pclay w γd 

#  55 

μ 87.20 65.40 89.48 57.52 22.18 103.09 

σ2 89.68 50.84 16.89 31.92 15.68 52.56 

σ 9.47 7.13 4.11 5.65 3.96 7.25 

CV 10.86 10.90 4.59 9.81 17.86 7.03 

a 77.00 59.00 82.40 51.00 14.19 82.24 

b 102.00 75.00 92.60 64.00 35.21 121.39 

α 49.79 50.10 144.49 51.29 19.05 94.05 

β 72.24 75.15 63.68 50.98 31.07 82.55 

 
Table D-35. Level 3 Granular Material Properties (A-1, A-2 & A-3) 

  PI P#200 w γd 

# 7029 23 

μ 4.632 24.00 7.99 123.33 

σ2 33.29 76.39 7.88 92.56 

σ 5.77 8.74 2.81 9.62 

CV 124.57 36.42 35.13 7.80 

a 0 0.3 5.33 108.46 

b 50 35.4 14.87 141.14 

α 0.49 1.77 5.56 89.10 

β 4.82 0.85 14.38 106.74 

 
Table D-36. Level 3 Fine Grained Material Properties (A-4, A-5, A-6, &, A-7) 

  PI P#200 w γd 

# 23814 120 

μ 13.8 67.45 19.53 106.03 

σ2 103.63 330.15 27.47 83.82 

σ 10.18 18.17 5.24 9.16 

CV 73.77 26.94 26.84 8.63 

a 0 35.5 8.84 82.24 

b 75 100 35.21 126.11 

α 1.32 6.46 7.85 60.85 

β 5.83 6.58 11.51 51.37 
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Table D-37. Level 3 “Silty” Fine Grained Material Properties (A-4 & A-5) 

  PI P#200 w γd 

# 11334 34 

μ 5.873 60.02 17.57 106.11 

σ2 8.41 295.50 32.11 95.80 

σ 2.9 17.19 5.67 9.79 

CV 49.38 28.64 32.24 9.22 

a 0 35.5 8.84 83.00 

b 10 99 31.76 124.36 

α 1.11 7.10 5.57 51.30 

β 0.78 11.28 9.05 40.51 

 
Table D-38. Level 3 “Clayey” Fine Grained Material Properties (A-6 & A-7) 

  PI P#200 w γd 

# 12480 86 

μ 21 74.21 20.30 106.00 

σ2 81.00 266.34 23.86 80.15 

σ 9 16.32 4.88 8.95 

CV 42.86 21.99 24.06 8.45 

a 10.5 35.6 10.13 82.24 

b 75 100 35.21 126.11 

α 4.40 7.68 9.86 63.72 

β 22.60 5.13 14.45 53.95 

 
Table D-39. Level 3 Shrink-swell Soil (A-6 & A-7 with wPI > 10) 

  LL PI P#200 Pclay w γd 

#  55 

μ 45.68 25.53 77.16 33.50 22.18 103.09 

σ2 151.04 105.27 239.94 124.10 15.69 52.53 

σ 12.29 10.26 15.49 11.14 3.96 7.25 

CV 26.92 40.17 20.07 33.25 17.86 7.03 

a 25.00 11.00 30.20 0.00 14.19 82.24 

b 102.00 75.00 99.00 75.50 35.21 121.39 

α 9.82 4.56 7.20 4.59 19.05 94.05 

β 26.76 15.54 3.35 5.75 31.07 82.55 
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APPENDIX E 

CLIMATE MODEL FIGURES 
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CLIMATE MODEL OUTPUT FOR ARLINGTON, VA FROM 03/2017 TO 03/2022  

 

Figure D-1 NOAA Station USW00013743 Climate Data Extract and Calculated TMI 
from 03/1988 to 03/2022 
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Figure D-2 ACF and PACF for TMI and dTMI for NOAA Station USW00013743 from 
03/1988 to 03/2022 
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Figure D-3 Time Series Decomposition Using 1st differenced Moving Average for 
NOAA Station USW00013743 from 03/1988 to 03/2022 
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Figure D-4 Histograms for Decomposed TMI and dTMI for NOAA Station 
USW00013743 from 03/1988 to 03/2022 

 



 

287 

 

Figure D-5 Box Plots for Monthly Parameterized TMI and dTMI for Decomposed TMI 
and dTMI for NOAA Station USW00013743 from 03/1988 to 03/2022 
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Figure D-6 Histograms for Monthly Parameterized TMI for NOAA Station 
USW00013743 from 03/1988 to 03/2022 
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Figure D-7 Histograms for Monthly Parameterized dTMI for NOAA Station 
USW00013743 from 03/1988 to 03/2022 
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Figure D-8 Histograms of Prior and Posterior (forecasted) dTMI for NOAA Station 
USW00013743 from 03/1988 to 03/2022 
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Figure D-9 Histograms of Prior and Posterior (forecasted) TMI for NOAA Station 
USW00013743 from 03/1988 to 03/2022. 
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Figure D-10 Example of Single Simulation Results of dTMI and TMI for NOAA Station 
USW00013743 from 03/1988 to 03/2022. 
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CLIMATE MODEL OUTPUT FOR DALLAS, TX FROM 03/2017 TO 03/2022  

 

Figure D-11 NOAA Station USW00013960 Climate Data Extract and Calculated TMI 
from 03/1988 to 03/2022 
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Figure D-12 ACF and PACF for TMI and dTMI for NOAA Station USW00013960 from 
03/1988 to 03/2022 
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Figure D-13 Time Series Decomposition Using 1st differenced Moving Average for 
NOAA Station USW00013960 from 03/1988 to 03/2022 



 

296 

 

Figure D-14 Histograms for Decomposed TMI and dTMI for NOAA Station 
USW00013960 from 03/1988 to 03/2022 
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Figure D-15 Box Plots for Monthly Parameterized TMI and dTMI for Decomposed TMI 
and dTMI for NOAA Station USW00013960 from 03/1988 to 03/2022 
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Figure D-16 Histograms for Monthly Parameterized TMI for NOAA Station 
USW00013960 from 03/1988 to 03/2022 
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Figure D-17 Histograms for Monthly Parameterized dTMI for NOAA Station 
USW00013960 from 03/1988 to 03/2022 
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Figure D-18 Histograms of Prior and Posterior (forecasted) dTMI for NOAA Station 
USW00013960 from 03/1988 to 03/2022 
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Figure D-19 Histograms of Prior and Posterior (forecasted) TMI for NOAA Station 
USW00013960 from 03/1988 to 03/2022. 
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Figure D-20 Example of Single Simulation Results of dTMI and TMI for NOAA Station 
USW00013960 from 03/1988 to 03/2022. 
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CLIMATE MODEL OUTPUT FOR DENVER, CO FROM 03/2017 TO 03/2022  

 

 

Figure D-21 NOAA Station USW00023062 Climate Data Extract and Calculated TMI 
from 03/1988 to 03/2022 
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Figure D-22 ACF and PACF for TMI and dTMI for NOAA Station USW00023062 from 
03/1988 to 03/2022 
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Figure D-23 Histograms for Decomposed TMI and dTMI for NOAA Station 
USW00023062 from 03/1988 to 03/2022 
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Figure D-24 Box Plots for Monthly Parameterized TMI and dTMI for Decomposed TMI 
and dTMI for NOAA Station USW00023062 from 03/1988 to 03/2022 
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Figure D-25 Time Series Decomposition Using 1st differenced Moving Average for 
NOAA Station USW00023062 from 03/1988 to 03/2022 
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Figure D-26 Histograms for Monthly Parameterized TMI for NOAA Station 
USW00023062 from 03/1988 to 03/2022 
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Figure D-27 Histograms for Monthly Parameterized dTMI for NOAA Station 
USW00023062 from 03/1988 to 03/2022 
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Figure D-28 Histograms of Prior and Posterior (forecasted) dTMI for NOAA Station 
USW00023062 from 03/1988 to 03/2022. 
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Figure D-29 Histograms of Prior and Posterior (forecasted) TMI for NOAA Station 
USW00023062 from 03/1988 to 03/2022 
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Figure D-30 Example of Single Simulation Results of dTMI and TMI for NOAA Station 
USW00023062 from 03/1988 to 03/2022. 
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CLIMATE MODEL OUTPUT FOR SALT LAKE CITY, UT FROM 03/2017 TO 

03/2022  

 

Figure D-31 NOAA Station USW00024127 Climate Data Extract and Calculated TMI 
from 03/1988 to 03/2022 
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Figure D-32 ACF and PACF for TMI and dTMI for NOAA Station USW00024127 from 
03/1988 to 03/2022 
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Figure D-33 Histograms for Decomposed TMI and dTMI for NOAA Station 
USW00024127 from 03/1988 to 03/2022 
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Figure D-34 Box Plots for Monthly Parameterized TMI and dTMI for Decomposed TMI 
and dTMI for NOAA Station USW00024127 from 03/1988 to 03/2022 
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Figure D-35 Time Series Decomposition Using 1st differenced Moving Average for 
NOAA Station USW00024127 from 03/1988 to 03/2022 
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Figure D-36 Histograms for Monthly Parameterized dTMI for NOAA Station 
USW00024127 from 03/1988 to 03/2022 
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Figure D-37 Histograms for Monthly Parameterized dTMI for NOAA Station 
USW00024127 from 03/1988 to 03/2022 
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Figure D-38 Histograms of Prior and Posterior (forecasted) dTMI for NOAA Station 
USW00024127 from 03/1988 to 03/2022. 
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Figure D-39 Histograms of Prior and Posterior (forecasted) TMI for NOAA Station 
USW00024127 from 03/1988 to 03/2022 
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Figure D-40 Example of Single Simulation Results of dTMI and TMI for NOAA Station 
USW00024127 from 03/1988 to 03/2022. 
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CLIMATE MODEL OUTPUT FOR TEMPE, AZ FOR 03/2017 TO 03/2022  

 

 

Figure D-41 NOAA Station USW00023183 Climate Data Extract and Calculated TMI 
from 03/1988 to 03/2022 
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Figure D-42 ACF and PACF for TMI and dTMI for NOAA Station USW00023183 from 
03/1988 to 03/2022 
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Figure D-43 Histograms for Decomposed TMI and dTMI for NOAA Station 
USW00023183 from 03/1988 to 03/2022 
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Figure D-44 Time Series Decomposition Using 1st differenced Moving Average for 
NOAA Station USW00023183 from 03/1988 to 03/2022 
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Figure D-45 Box Plots for Monthly Parameterized TMI and dTMI for Decomposed TMI 
and dTMI for NOAA Station USW00023183 from 03/1988 to 03/2022 
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Figure D-46 Histograms for Monthly Parameterized TMI for NOAA Station 
USW00023183 from 03/1988 to 03/2022 
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Figure D-47 Histograms for Monthly Parameterized TMI for NOAA Station 
USW00023183 from 03/1988 to 03/2022 
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Figure D-48 Histograms of Prior and Posterior (forecasted) dTMI for NOAA Station 
USW00023183 from 03/1988 to 03/2022 
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Figure D-49 Histograms of Prior and Posterior (forecasted) TMI for NOAA Station 
USW00023183 from 03/1988 to 03/2022. 
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Figure D-50 Example of Single Simulation Results of dTMI and TMI for NOAA Station 
USW00023183 from 03/1988 to 03/2022. 
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CLIMATE MODEL OUTPUT FOR DALLAS, TX FOR 09/2017 TO 09/2022  

 

 

Figure D-51 NOAA Station USW00013960 Climate Data Extract and Calculated TMI 
from 09/1988 to 09/2022 
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Figure D-52 ACF and PACF for TMI and dTMI for NOAA Station USW00013960 from 
09/1988 to 09/2022 
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Figure D-53 Histograms for Decomposed TMI and dTMI for NOAA Station 
USW00013960 from 09/1988 to 09/2022 
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Figure D-54 Time Series Decomposition Using 1st differenced Moving Average for 
NOAA Station USW00013960 from 09/1988 to 09/2022 
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Figure D-55 Box Plots for Monthly Parameterized TMI and dTMI for Decomposed TMI 
and dTMI for NOAA Station USW00013960 from 09/1988 to 09/2022 
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Figure D-56 Histograms for Monthly Parameterized TMI for NOAA Station 
USW00013960 from 09/1988 to 03/2022 
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Figure D-57 Histograms for Monthly Parameterized dTMI for NOAA Station 
USW00013960 from 09/1988 to 03/2022 
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Figure D-58 Histograms of Prior and Posterior (forecasted) dTMI for NOAA Station 
USW00013960 from 09/1988 to 09/2022. 
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Figure D-59 Histograms of Prior and Posterior (forecasted) TMI for NOAA Station 
USW00013960 from 09/1988 to 09/2022 
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Figure D-60 Example of Single Simulation Results of dTMI and TMI for NOAA Station 
USW00013960 from 09/1988 to 09/2022. 
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CLIMATE MODEL OUTPUT FOR DALLAS, TX FOR 03/2012 TO 03/2022  

 
Figure D-61 NOAA Station USW00013960 Climate Data Extract and Calculated TMI 

from 03/1983 to 03/2022 
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Figure D-62 ACF and PACF for TMI and dTMI for NOAA Station USW00013960 from 
03/1982 to 03/2022 
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Figure D-63 Histograms for Decomposed TMI and dTMI for NOAA Station 
USW00013960 from 03/1982 to 03/2022 
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Figure D-64 Time Series Decomposition Using 1st differenced Moving Average for 
NOAA Station USW00013960 from 03/1982 to 03/2022 
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Figure D-65 Box Plots for Monthly Parameterized TMI and dTMI for Decomposed TMI 
and dTMI for NOAA Station USW00013960 from 03/1982 to 03/2022 
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Figure D-66 Histograms for Monthly Parameterized TMI for NOAA Station 
USW00013960 from 03/1982 to 03/2022 
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Figure D-67 Histograms for Monthly Parameterized dTMI for NOAA Station 
USW00013960 from 03/1982 to 03/2022 
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Figure D-68 Histograms of Prior and Posterior (forecasted) dTMI for NOAA Station 
USW00013960 from 03/1982 to 03/2022 
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Figure D-69 Histograms of Prior and Posterior (forecasted) TMI for NOAA Station 
USW00013960 from 03/1982 to 03/2022 
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Figure D-70 Example of Single Simulation Results of dTMI and TMI for NOAA Station 
USW00013960 from 03/1982 to 03/2022. 
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APPENDIX F 

STOCHASTIC SHRINK-SWELL ANALYSIS OUTPUT 
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STOCHASTIC SHRINK-SWELL ANALYSIS OUTPUT FOR DENVER, CO 

 

Figure D-71 Example of Single Simulation Results of dTMI and TMI for NOAA Station 
USW00023062 from 03/1988 to 03/2022. 
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Figure D-72 Histograms of Prior and Posterior (forecasted) dTMI for NOAA Station 
USW00023062 from 03/1988 to 03/2022 
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Figure D-73 Histograms of Prior and Posterior (forecasted) TMI for NOAA Station 
USW00023062 from 03/1988 to 03/2022. 
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Figure D-74 Example Results of the Stochastic Shrink-Swell Analysis for the Monthly 
Difference in TMI (dTMI) and Monthly Difference in Volume Change for the Denver 

Study Site from 03/2002 to 03/2022 
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Figure D-75 Example Results of the Stochastic Shrink-Swell Analysis for the Monthly 
TMI and Monthly Volume Change for the Denver Study Site from 03/2002 to 03/2022 

 




