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ABSTRACT  

   

Recent findings in human interactions with complex objects, objects with unpredictable 

interaction dynamics, revealed predictability as an important factor when determining 

effective control strategies. The current study extended these findings by examining the 

role of predictability in the selection of control strategies in two scenarios: during initial 

interactions with a novel, complex object, and when intentional constraints are imposed. 

In Experiment 1, methods with which people can identify and improve their control 

strategy during initial interactions with a complex object were examined. Participants 

actively restricted their movements at first to simplify the object’s complex behavior, 

then gradually adjusted movements to improve the system’s predictability. In Experiment 

2, predictability of participants’ control strategies was monitored when the intention to 

act was changed to prioritize speed over stability. Even when incentivized to seek 

alternative strategies, people still prioritized predictability, and would compensate for the 

loss of predictability. These experiments furthered understanding of the motor control 

processes as a whole and may reveal important implications when generalized to other 

domains that also interact with complex systems. 
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CHAPTER 1 

INTRODUCTION 

Effective control of the human body’s multitude of degrees of freedom is a long-

standing question in motor control. Several competing theories attempted to explain how 

we can control our body’s movements with flexibility and stability. Recent studies 

highlighted the utility of studying interactions with external complex systems, many of 

which exhibit nonlinear, chaotic behaviors, to reveal generalized principles of motor 

control. What principles of control are utilized in interactions with complex systems? 

How do people apply these principles to control unpredictable objects? In this set of 

experiments, we examined the principle of predictable control in movement interactions 

with the fluid-in-a-cup system in two scenarios: when information about the system is 

limited, and when additional constraint is imposed.  

The degree of freedom problem in motor control 

 Bernstein (1967) highlighted the large number of degrees of freedom involved in 

movements as a key issue that must be addressed in theories of motor control. 

Specifically, movements depend on muscles (which differ in length, strength, orientation, 

type, level of fatigue, etc.), architecture (tendon length and elasticity), skeletal structure 

(joint angle, mechanical advantage of tendon-joint pairs) (Scott, 2004). This is further 

complicated by multiple control pathways to both local (spinal) and central (cortical) 

nervous systems. Finally, the amount of force each muscle group needs to apply also 

must take into account the current angle and velocity of the limb, the effect of gravity on 

the current limb orientation, as well as any additional constraints imparted by external 

forces or objects of interaction. In effect, an important part of the question of motor 
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control can be reframed as: how can a system’s degrees of freedom be reduced, and 

therefore converted into a controllable or predictable state? 

 Two main approaches have emerged as potential solutions to this question: 

centralized control and dynamical systems theory (Schaal, Mohajerian, & Ijspeert, 2007). 

One solution for the degree of freedom problem from the centralized control approach 

involves generalized motor programs (Schmitt, 1975, 1985), which account for the 

generativity of movement (the ability to replicate a movement under novel 

circumstances) by grouping movements into classes according to the relative timing of 

each movement segments. Abstraction and categorization of equivalent action classes 

effectively reduce the system’s degrees of freedom, while variable parameters allow for 

generalization of action classes to different execution scenarios. Action classes 

acquisition, selection, and parameter tuning are defined at the executive (top-down) level 

(Turvey, 1990).  However, critics have pointed out several areas where a centralized 

control approach may not be adequate in accounting for human movement behaviors. For 

example, while generalized motor programs alleviated the storage problem with its focus 

on relative characteristics of movement, itself an improvement on Adam’s (1971) closed-

loop motor control theory, it did not go far enough (Kugler & Turvey, 1978; Newell, 

2003; Shae & Wulf, 2005). Questions over the format as well as the need to rely on 

internal abstract models and programs were also regularly raised.  

  In an effort to move away from the centralized control approach, several 

alternative theories were proposed from a perspective where other aspects of the motor 

system potentially play a role in reducing the number of degrees of freedom. For 

example, Bernstein (1967) postulated that the motor system freezes degrees of freedom at 
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the biomechanical periphery upon encountering a novel situation (see Newell & 

Vaillancourt (2001) for a review of empirical evidence). Several researchers also 

emphasized consideration of the inherent dynamics of the peripheral systems and 

constraints imposed by external factors in solving the degree of freedom problem (Heuer, 

1994; Mitra, Amazeen, & Turvey, 1998; Newell & Vaillancourt, 2001). Evidence 

substantiating these theoretical considerations can be found in studies on joint 

coordination in writing and drawing (Lacquaniti, 1989), coordination dynamics in 

bimanual pendulum swing (Mitra et. al., 1998), uncontrolled manifold in postural control 

(Scholz & Schoner, 1999), muscle synergy in animal movement (d’Avella, Saltiel, & 

Bizzi, 2003; Ting & McKay, 2007), among others. Research from the dynamical systems 

approach shares a common thread: decentralizing reliance on internalized models and 

shifting explanatory power to the materials, structure, and coupling between the body and 

the environment. 

 Both centralized control and dynamical systems approaches led to a wealth of 

models that aim to capture motor behaviors. The general centralized control framework is 

consistent with the optimal control modelling approach. This approach assumes that 

people acquire and operate upon accurate internal models of the system. Parameters 

needed to execute an action can then be obtained by optimizing the model based on a 

general organizational principle such as minimizing expended energy or minimizing error 

(Schaal, Mohajerian, & Ijspeert, 2007). Similar to the theoretical discussion, efforts to 

implement centralized control perspective in modelling also ran into issues. One, given 

the large number of degrees of freedom, solutions for vectors of control parameters are 

either computationally expensive or intractable. Two, centralized models perform well in 
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static or fully predictable environments but poorly in situations where the environmental 

dynamic changes, or when deviations to the generated plan occurs and reactive control is 

needed (Desmurget & Grafton, 2000; Schaal et. al., 2007).  

Models within the dynamical systems perspective typically focused on relational 

(coupling) terms, which is inherently an exercise in reduction of degrees of freedom 

(Haken, Bunz, & Kelso, 1985; Kugler & Turvey, 1987; Rand, Cohen, & Holmes, 1988; 

Amazeen, Amazeen, & Turvey, 1998). This approach also allows for quantification of the 

evolution (dynamics) of the motor system over the time course of a movement, while 

taking into account both perceptual information (and thus feedback), innate 

biomechanical properties of the system, and external constraints. For example, Thelen 

and Smith (1993) incorporated memory processes (delay between stimulus presentation 

and action), motor control maturity (developmental age), and salience of visual stimuli 

(distance or color) into a unified dynamic field model that was able to accurately account 

for a wide range of behavioral data for toddler’s A-not-B errors (see also Thelen, 

Schoner, Scheier, & Smith, 2001). Both discrete movements (such as pointing or 

reaching) and more cyclic movements (such as walking) can be modeled as vectors of 

system state dynamics (that gravitate towards a single state or towards a series of 

bounded, recurring states, respectively, see discussion of attractors in Abraham & Shaw, 

1992). 

 Regardless of perspective, it is clear that the degree of freedom problem is an 

important, and still ongoing issue in motor control. This question is further complicated 

when we consider interactions with tools. Even simple tools come with unique physical 

characteristics and additional degrees of freedom. Yet most people are able to quickly 
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intuit the natural dynamics of novel tools or objects and learn to control and manipulate 

them without much difficulty. For instance, Mitra, Amazeen, and Turvey (1998) cited the 

example of learning to ride a bike. With five controllable parts, riding a bike requires 

users to understand the dynamics and simultaneously control ten degrees of freedom (one 

DOF to describe the part’s current state, and one more to describe its trajectory). The 

authors posed an interesting question: Is the intuition that a rider gain the same as the 

acquisition of a single (or a few) variable that fully accommodate all ten degrees of 

freedom? In light of the discussion thus far, this question can be reframed as: Is learning 

to control a tool utilizing the same principle of reducing degrees of freedom as learning to 

control the body? If so, experiments on tool use present a window of opportunity that can 

be utilized to examine principles of motor control in general. 

Degrees of freedom in control and manipulation of tools 

 Given that most tools have finite and easily identifiable degrees of freedom, most 

theories on tool use have favored a centralized control approach, with some extensions to 

consider peripheral and external effects. For example, the reasoning-based approach 

(Osiurak & Badets, 2016; Goldenberg, 2013) argued that properties of a tool are analyzed 

and obtained from sensory information, then stored in semantic memory. When an 

interaction with the tool is considered, knowledge of the tool is combined with abstract 

mechanical knowledge of the task and general knowledge of physics to form a mental 

simulation of possible outcomes. The result of this mental simulation then informs motor 

simulation, which then becomes action execution. Alternatively, the manipulation-based 

approach (Buxbaum, 2001; Thill, Caligiore, Borghi, Ziemke, & Baldassarre, 2013) 

attempted to account for the degrees of freedom problem by suggesting that stored 
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knowledge of a tool’s canonical use is retrieved to bias perceptual information about a 

tool being considered for action (for empirical examples, see Tucker & Ellis, 1998 and 

Symes, Ellis, & Tucker, 2007). This allows for past experiences to constrain possible 

control strategies for tool manipulation. Both the reasoning-based and the manipulation-

based approaches rely on centralized internal models and encoded knowledge for 

simulation and execution of interactions with tools. 

 A third view, the embodied approach, took the dynamical systems perspective and 

moved away from centralized control explanation by arguing that a tool’s physical and 

functional properties alter the parameters of our peripheral models (Martel, Cardinali, 

Roy, & Farnè, 2016; Osiurak & Badet, 2016). For example, Cardinali et. al. (2009) 

demonstrated in a series of experiments that after using a grabbing tool for a short period 

of time, participants perceived their arms to be longer than usual and exhibited 

kinematics similar to people with long arms (see also Pagano, 1993; Baccarini, Martel, 

Cardinali, Sillan, Farnè, & Roy, 2014). By encoding (in the body schema construct) the 

effects of tool use on the dynamics of movement at the periphery, this approach avoided 

requiring people to obtain and maintain an accurate internal model of the tool system. 

Furthermore, monitoring the combined effects of all degrees of freedom in a tool system 

on the effector may prove to be critical in solving the degree of freedom problem in 

interactions with tools and other external objects.  

Most studies on tool use have focused on simple, rigid objects (Flanagan & Wing, 

1997; Maravita, & Iriki, 2004; Cardinali et. al., 2009; Slota, Latash, & Zatsiorsky, 2011) 

In the relatively few studies on complex objects (balancing stick/inverted pendulum in 

Cabrera & Milton, 2004; compressing buckling spring in Mosier, Lau, Wang, 
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Venkadesan, & Valero-Cuevas, 2011), the movements studied were often short and 

discrete, which limited our ability to examine the evolution of system dynamics over 

time. Complex, nonlinear systems operating in dynamic environment exhibit sensitivity 

to conditions and perturbations, which require flexibility in control strategies to produce 

online reactions (Schaal et al., 2007). Traditional models of tool use struggled to capture 

the dynamics of such systems.  

Overall, a parallel can be drawn between the literature on motor control and tool 

use. Both utilized models from either the centralized control approach or the dynamical 

systems approach to tackle the question of control. Studies on tool use have mostly 

focused on simple tools, thus avoiding the degree of freedom issue. However, recent 

studies provided some answers on how this issue can be solved in interactions with 

nonlinear, unpredictable tool systems, which more closely resemble the complexity of the 

body. 

Predictability as principle of control in the cart-pendulum model  

 A recent line of research focused on the principle of control of a complex, 

unpredictable tool system: a continuously moving cart-pendulum system (Wallace, Kong, 

Rodriguez, & Lai, 2021; Maurice, Hogan, & Sternad, 2018; Bazzi & Sternad, 2020). The 

system is modeled after the task of transporting a cup of water from point A to point B, 

something we do every day. As the cup moves, force is transferred to the liquid within, 

which reacts in an unpredictable manner and imparts force back against the cup. This, in 

turn, has an effect on the amount of force transferred to the liquid in the next instant. 

Thus, this system represents a class of objects that has nonlinear and chaotic interaction 
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dynamics. An understanding of interactions with this class of object can provide 

important insight on how people approach control of complex systems in general.  

Despite the complexity and diverse patterns of behavior of the fluid-in-a-cup 

system, most people have no problem interacting with this system daily. However, 

accurate modeling and simulation of this complex system have proven to be a slow and 

taxing task computationally. How, then, can we explain our ability to quickly grasp how 

to control this system, maintain stability for long periods of time, and fluidly react to 

sudden perturbation? Maurice et. al. (2018) provided an answer by showing that people 

opted for strategies with the highest amount of predictability instead of strategies that 

minimize traditional optimization goals such as force expenditure or jerkiness (Dingwell 

et. al., 2004; Svinin, Goncharenko, Kryssanov, & Magid, 2019; see also, Bazzi & 

Sternad, 2020). Even when the system’s complexity allowed for two distinct patterns of 

movement with high predictability (in phase with the pendulum, or anti-phase with the 

pendulum), people opted for one of the two strategies, while avoiding options in between. 

Bazzi and Sternad (2020) further found that participants gravitated towards highly 

predictable strategies over the course of the experiment, suggesting that participants were 

able to evaluate the predictability of a given movement strategy. 

Predictability is an oft discussed concept in dynamics systems theory and shares a 

close root to Bernstein’s notion of the degree of freedom problem. For example, 

Abraham and Shaw (1992) highlighted the utility of attractor reconstruction techniques in 

observing and characterizing patterns of behaviors in a system, thus enabling prediction 

of system dynamics over potentially extended time intervals. A system in a stable 

attractor rejects momentary noise or perturbations and does not overly rely on constant, 
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precise, and computationally heavy closed-loop control (Bazzi & Sternad, 2020). 

Experimentally, stability (one of many ways predictability is defined) is prominently 

featured in studies of motor control in posture and balance (Roerdink, De Haart, 

Daffertshofer, Donker, Geurts, & Beek, 2006; Stergiou & Decker, 2011; Gibbons, 

Amazeen, & Jondac, 2019). 

Control through predictability addresses the degree of freedom issue in 

interactions with complex objects in two ways. One, predictability quantifies the 

relationship between the input control vector and the output tool behavior, thus allowing 

us to use only one variable to describe the system’s behavior instead of two (one for the 

input, and one for the output). This parsimony is the inherent advantage in using 

relational terms to capture a system’s dynamics. Two, predictability simultaneously 

captures the dynamics of both complex systems under consideration: the body and the 

complex object. The input control vector is the product of the nested interactions of the 

body’s degrees of freedom, whereas the output tool vector is the product of interactions 

between the cart-pendulum system’s degrees of freedom. Predictability thus represents 

the dynamics of the whole agent-tool system with one parameter. Both the focus on 

relational terms and the combination of nested interactions into one order parameter are 

emblematic of the dynamical systems’ approach to solving the degree of freedom issue 

(Mitra et al., 1998; Amazeen, 2018; see also, Thelen & Smith, 1993). 

In this series of experiments, we examined whether the finding of predictability as 

a principle of control can be extended to two scenarios: when information about the 

system’s dynamics is limited (such as during initial interactions), and when additional 

constraint is imposed on the system. In Experiment 1, we examined participants’ control 
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strategies during early interactions with a complex, nonlinear object and assessed how 

participants adjusted control strategies to achieve higher predictability. In Experiment 2, 

we manipulated the psychological aspect of the task to examine whether a shift in 

intention can influence participants’ selection of control strategies. In both experiments, 

we utilized the cart-pendulum model to accurately quantify the control strategy selected 

during each trial and compare it with other possibilities. 

Implementation of the cart-pendulum model 

 The cart-pendulum model is a mechanical model of the fluid-in-a-cup system that 

simplifies the challenging task of modeling the state of a 3-dimensional liquid, while 

maintaining the two key characteristics of the original system: underactuation (the 

number of actuators or inputs is fewer than the number of degrees of freedom) and 

nonlinearity (recursive interactions can sometimes result in chaotic behavior) (Bazzi & 

Sternad, 2020). The cart-pendulum model consists of a single cart moving on a bounded 

2-dimensional track and a pendulum weight attached to the underside of the cart. When 

the cart is moved, force is transferred to the pendulum, which then swings in accordance 

with its own natural dynamics. The swinging motion imparts force back onto the cart, 

which changes the total amount of force transferred to the pendulum in the next instance 

of time. This process is allowed to recur over several cycles, providing us with a picture 

of the dynamic interactions between the input cart movement and the output pendulum 

movement. 

The cart-pendulum system has two degrees of freedom: the displacement of the 

cart and the angular displacement of the pendulum (Wallace et. al., 2021). Thus, we need 

four variables to describe these degrees of freedom: the current state (position) of the cart 
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and its rate of change (velocity), and the current state (position) of the pendulum and its 

rate of change (velocity). Furthermore, the cart-pendulum is being continuously driven by 

periodic force from the participants. Overall, the whole system requires five variables to 

completely describe. 

 The motion equations for the cart-pendulum system are given as a system of 

differential equations: 

𝑥̈ = (𝑚𝑝𝑑𝜃̇2 sin(𝜃) + 𝑚𝑝𝑔𝑠𝑖𝑛(𝜃) cos(𝜃) + 𝐹)/(𝑚𝑐 + 𝑚𝑝𝑠𝑖𝑛2(𝜃))  (1) 

𝜃̈ = −
𝑥̈

𝑑
cos(𝜃) −

𝑔

𝑑
    (2) 

where x denotes the position of the cart, θ denotes the angular position of the pendulum, 

mp is the mass of the pendulum, mc is the mass of the cart, d is the length of the 

pendulum swing, and g denotes the gravitational acceleration.  

 The F term denotes the input force provided by the human subject. Given the task 

constraints, the driving force closely follows a sinusoidal goal trajectory of the cart: 

𝑥𝑑𝑒𝑠(𝑡) = 𝐴𝑠𝑖𝑛(2𝜋𝑓𝑡 +
𝜋

2
)   (3) 

which results in an input force  

𝐹𝑖𝑛𝑝𝑢𝑡(𝑡) = (𝑚𝑐 + 𝑚𝑝)𝑥̈𝑑𝑒𝑠(𝑡)  (4) 

 Maurice, Hogan, and Sternad (2018) noted that this cart-pendulum model did not 

take into account the neuro-mechanical properties of the human subject. Therefore, an 

additional term was added to model the impedance of the hand interacting with the cart 

using a mass-spring model, where K represents spring stiffness and B represents damping 

or friction. 

𝐹 =  𝐹𝑖𝑛𝑝𝑢𝑡 − 𝐾(𝑥 − 𝑥𝑑𝑒𝑠) − 𝐵(𝑥̇ − 𝑥̇𝑑𝑒𝑠)   (5) 
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 Since the interactions between the cart and the pendulum can be fully captured by 

physics, the human participant’s control strategy while interacting with this system can 

be described by a vector of 4 parameters: A (amplitude of the cart movement), f 

(frequency of cart oscillation), K (hand stiffness), and B (hand damping). Of these four 

parameters, A and f can be observed and measured directly from movement data, while K 

and B are latent and have to be estimated. This model then allows us to efficiently 

describe participants’ chosen strategies. It also allows us to compare these strategies 

against alternative, unobserved strategies and evaluate their relative performance on a 

variety of objective functions. Since our objective is to investigate the role of centralized 

control processes while predictability is guiding interactions with the systems, we used 

predictability as our main objective function. 

 Predictability can be quantified as the amount of mutual information between two 

variables. Mutual information, a concept from Shannon’s (1948) information theory, 

refers to the statistical dependency between two variables, or how much observing one 

variable allows one to predict the other variable. If two variables have high mutual 

information, knowing one variable means there is less uncertainty about the other 

variable (Cover & Gopinath, 2012). Mutual information was used to quantify 

predictability in chaotic weather systems (Del Sole, 2004). 

For our purpose, in Experiment 1, we looked at several simplified versions of the 

cart-pendulum model to see if participants’ choices matched the simplified models’ 

solutions. In Experiment 2, we measured the difference in selected control strategies 

when the participants’ intention shifted to see how the predictability in selected strategies 

changed under additional system constraint. 
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CHAPTER 2 

EXPERIMENT 1 

 Bazzi and Sternard (2020) showed that the predictability of participants’ selected 

strategies during interactions with a complex object increased over time. That is, 

participants were able to adjust their control strategies and perform solutions with higher 

predictability. How was this process accomplished? 

 Naturally, the major issue with early interactions with any object is the fact that 

participants do not have full information about the system’s physical properties as well as 

its reaction to control input. This problem is especially true for complex objects, which 

have complicated interaction dynamics and are sensitive to small changes in the control 

vector. There are two potential solutions to this problem. One, participants can use initial 

interactions with the system to estimate its physical properties. This information can then 

be used to construct a more accurate model of the system, which can be used to generate 

control strategies with higher predictability (through motor simulation). Two, participants 

can restrict initial interactions with the system to observe its dynamics, then gradually 

adjust their control strategy until the predictability between their input and the system’s 

output improves. Participants may also utilize both methods to improve their control. 

The first method is consistent with both the reasoning-based theory (Osiurak et 

al., 2010; Goldenberg, 2013; Osiurak & Badets, 2016) as well as with manipulation-

based theory of tool use (Bauxbaum, 2001). Authors from these perspectives suggested 

that during interactions with novel tools, or with normal tools among patients with 

specific types of apraxia, new models of the tool systems are constructed from function 

knowledge, mechanical knowledge, as well as motor simulation (reasoning-based) or 
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representations (manipulation-based). These models are then used to generate, plan, and 

execute motor behaviors.  

The second method is consistent with the dynamical systems approach. Authors 

from this perspective suggested that a component of the process of attunement to and 

exploitation of a system’s dynamic in motor control involves a reduction in the system’s 

degree of freedom during the early stages of interaction (Bernstein, 1967; see Newell & 

Vaillancourt, 2001 for comprehensive review). For example, several studies reported 

arrest of joint segments during the initial learning stage of a movement task such as 

skiing (Vereijken, et. al., 1992), dart throwing (McDonald, Emmerik, & Newell, 1989) or 

prehension task (Steenbergen, Martennuik, & Kalbfleisch, 1995), followed by later 

relaxation of these restrictions in pistol shooting (Arutyunyan, Gurfinkel, & Mirskii, 

1968), racquetball forehand shooting (Southard & Higgins, 1987), and arm movement 

task (Schneider & Zernicke, 1989). Several researchers have also suggested that 

reduction of system complexity should be viewed at a higher (dynamical) level, instead 

of at the joint-muscle level (Mitra et. al., 1998; Newell & Vaillancourt, 2001). 

Authors from both perspectives clearly agreed that some forms of model 

simplification take place during early interactions with a novel system. For the 

centralized control approach, simple internal models of the systems are generated using 

logical rules and stored knowledge. For the dynamical systems approach, model 

simplification is achieved near the biomechanical periphery (joint-muscle level). In this 

experiment, we generated a series of simplified models of the cart-pendulum system 

using both approaches and examined whether participants’ chosen control strategies were 

informed by such models. That is, if participants employed the model building method, 
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we would expect to see their selected strategies clustered around regions of high 

predictability according to simplified models generated by using progressively more 

accurate physical measurements. If participants used the movement restriction method, 

we would expect to see their selected strategies clustered around high predictability 

regions according to simplified models with progressively less restrictive movements. 

Methods 

Participants 

 Human subjects (N = 14) were recruited from the Introductory Psychology 

student pool at Arizona State University to participate in the experiment. One subject 

dropped out during the experiment and was excluded from the analysis, resulting in a 

total sample size of 13. 

Apparatus 

 The experimental design closely followed the design of Bazzi and Sternad’s 

(2021) study 3 (section 6.1), with a few adjustments. A cart (mc = 20 g) was placed on a 

suspended single-rail track. The track restricted the cart’s movements to approximately 

20cm in both lateral directions (with clearance on both sides). Suspended from the cart 

was a pendulum (mp = 46 g) connected via wire of length 0.19 m. Movements of the cart 

and pendulum were tracked via two infrared-emitting diodes, with an Optotrak 3020 

motion-capture camera recording movements at a sampling rate of 100Hz. 

Procedure 

 Participants provided informed consent upon arrival at the lab. They were 

instructed to place their finger on top of the cart to oscillate the cart on the track so that 

the pendulum moved between two large target boxes. The target boxes were spaced so 
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that the amplitude of the pendulum was free to range between 4cm and 20cm. A 

metronome paced the subject’s movement so that each left-right, or right-left movement 

coincided with one beat. The frequency of the metronome beat was tuned to the resonant 

frequency of the cart-pendulum system (approximately 1Hz for this system). Participants 

were instructed that they could go faster than the metronome (to facilitate anti-phase 

strategies), but no slower (to avoid stationary strategies). Each subject performed 50 trials 

of 45 seconds each in one session. Participants performed in 5 blocks of 10 trials, with 15 

seconds of rest between trials, and several minutes of rest between blocks. Power analysis 

using GPower suggested N = 10 to achieve power of .8 (repeated measures, within 

subject effect for two groups with 50 measurements, moderate effect size f = .15, α = 

.05). Upon completion of the trials, participants provided demographic information, then 

were debriefed and dismissed. The experimental procedure was approved by the 

Institutional Review Board at Arizona State University. 

Modeling 

 Parameters of the cart-pendulum model can be separated into two categories: 

those controlled by the participants and those that were not. Parameters controlled by the 

participants all stemmed from the driving force term F (Eq. 5), which included K, B, A, 

and f. If participants restricted their movements to better grasp the system’s dynamics, 

they would modify one of these parameters. K and B were latent parameters driven by A 

and f through the xdes term (Equation 3 and 5). The f parameter was restricted during the 

experiment. As such, A is the parameter that participants had the most control over and 

was used to generate simplified models of the movement restriction method. 
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 Parameters that participants did not directly control specified the remaining four 

degrees of freedom of the cart-pendulum system: the cart’s position and velocity, and the 

pendulum’s position and velocity. The cart was a solid object that only moved in one 

dimension. As such, most participants should have ample experience to accurately model 

its behavior. The novel and unpredictable component of this system was the pendulum 

and its reaction to input forces generated by the participant. The reaction force between 

the cart and the pendulum is described by the equation (Bazzi & Sternad, 2021): 

𝐹𝑝𝑒𝑛𝑑𝑢𝑙𝑢𝑚 = 𝑚𝑝𝑙(𝜃̇2 sin(θ) − 𝜃̈cos (𝜃))         (6) 

 Within equation 6, only the mp and l parameters can be modified (the rest are 

relational terms). Whereas l (the length of the pendulum link) can be directly observed, 

mp (the weight of the pendulum) cannot be estimated without direct interaction. To a 

participant observing the physical model and attempting to construct a model of the 

system, mp represented the most impactful missing parameter and the most logical target 

to be used for model simplification. Therefore, we modified mp to generate simplified 

models for the model building method. 
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Figure 1. Predictability landscape at different pendulum weights (A = .03). The bottom 

layer represents predictability between input and out up if pendulum weight mp = 0. The 

top layer shows regions of high and low predictability that emerge as the dynamics of the 

system becomes stratified due to greater pendulum weight mp = .046. 

The experimental setup fixed frequency f to a constant, and initial pendulum 

phase and phase velocity were both set to 0 at the start of each trial. Thus, each subject’s 

selected strategy could be described using three variables: amplitude A, stiffness K, and 

damping force B. From participants’ observed movement data, amplitude A was 
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calculated based on recorded cart movement. K and B parameters were estimated by 

minimizing the root mean squared differences between model generated and observed 

data for four vectors: cart position, cart velocity, pendulum position, and pendulum 

velocity. The range for the A (from 0.01 to 0.03 meters), K (from 0 to 30 N/m), and B 

(from 0 to 3 N.s/m) parameters were obtained from empirical data. Finally, predictability 

was calculated between the input position vector and the output pendulum phase angle θ 

generated by the model.  

 To simulate all other unobserved movement strategies, simulated values for each 

of A, mp, K, and B parameters (within the described range) were fed into the model to 

generate simulated cart vector and pendulum vector (according to equation 1 and 2). 

Simulated values were generated by sampling the K and B parameter ranges at 100 

regular intervals, A at 3 levels (0.01, 0.02, and 0.03 meters), and mp at 5 levels (0, 0.012, 

0.023, 0.035, and 0.046kg). The calculated mutual information values were used to 

construct a state space where subjects’ chosen execution strategies were mapped (see 

Figure 1 for example). The center point of the region with highest mutual information 

was calculated as the averaged coordinates of all points with mutual information 

exceeding the 75th percentile. This point was calculated for the full model (global 

maximum), which used parameters that matched the physical apparatus, as well as for 

each of the simplified models (local maxima), which used reduced pendulum weight 

parameters mp or reduced amplitude A. 

To test whether state spaces of simplified models matched observed strategies 

over time, for the model building method, clusters of observed strategies in the first ten 

trials were mapped onto the state space portrait with simplest dynamics (mp = 0kg), 
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followed by the next set of ten trials mapped on to the next level of system complexity 

(mp = 0.012kg). This process was repeated until the model reached full complexity (mp = 

0.046kg) at the fifth quintile. For the movement restriction method, the first, third, and 

fifth quintiles were mapped onto the simplified models generated by using A at 0.01, 

0.02, and 0.03, respectively. 

Data processing and analysis 

 From the raw 3-D signals of cart and pendulum movements, the lateral and 

vertical vectors of each component were isolated and subjected to a 5-point smoothing 

function to remove minor instrument errors. The first 5 seconds of each 45-second trial 

was also trimmed to remove startup transients. After centering and standardizing, we 

calculated the velocity vectors from the position vectors of the cart and the pendulum. 

The lateral and vertical vectors for the pendulum were used to calculate the phase angle 

and phase angle velocity of the pendulum’s movements. A standard sine wave function 

was used to estimate the amplitude and frequency of oscillations in the cart position 

signal. An example fit between observed cart position and estimated sine wave fit is 

shown in Figure 2, panel B. Additionally, a Lissajous plot (mapping cart position against 

pendulum position), phase portrait (mapping cart velocity against pendulum position), 

and relative phase histogram (showing frequency of the phase angle difference between 

cart and pendulum phase positions) were also created. Preprocessing of data for each trial 

was visually inspected for adequate sine wave fit and classification of in-phase or anti-

phase patterns in relative phase between the cart and the pendulum. 

For each trial, the observed strategy’s absolute mutual information, relative (to the 

mutual information values in the state space that represented the majority of the observed 
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data) mutual information, as well as distance to the global and local maxima, were 

calculated based on best-fit model-generated position and velocity vectors, as well as 

model-generated parameter state space. Two repeated-measures ANOVAs were used to 

examine the differences in absolute and relative mutual information between quintiles of 

trials. For the model building method, a 2 (Maxima: Global or Local) by 5 (Quintile: 1 to 

5) repeated-measures ANOVA was used to look for differences in distances to local and 

global maxima at each quintile. For the movement restriction method, a 2 (Maxima: 

Global or Local) by 3 (Quintile: 1, 3, and 5) repeated-measures ANOVA was used 

instead. 

We predicted that mutual information (both relative and absolute) of selected 

strategies would gradually increase to indicate gravitation towards higher mutual 

information solutions. If participants used the model building method to formulate and 

improve the predictability of their strategies, then we would expect to see selected 

strategies approach the maxima of the simplified models generated from inaccurate 

pendulum weights than to the maximum of the accurate model. Likewise, if participants 

used the movement restriction method, then we would expect selected strategies approach 

the maxima of simplified models generated using reduced amplitude than to the 

maximum of the accurate model.  

Results 

Trial-level analysis 

 Three main patterns of relative movements between cart and pendulum were 

observed in the data, reflecting an in-phase, an anti-phase, and a hybrid relative phase 

movement pattern.  
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 Figure 2 shows the raw input signal (placement of finger driving the cart) and raw 

output signal (phase position of pendulum), basic sine wave fit for raw input signal, 

Lissajous plot, phase portrait, and distribution of relative phase between input and output 

signals for a representative trial. Panel A shows the raw input signal overlaid with the raw 

output signal. An in-phase (where input and output move in tandem) pattern of 

coordination can be observed. The Lissajous plot in panel C traces changes in position of 

input and output over time. The observed positive slopes indicate an in-phase pattern. 

Likewise, a histogram of relative phase between input and output (panel E) shows a 

similar picture. The phase portrait (panel D) shows that this pattern of coordination was 

consistent throughout the trial. A standard sine wave function was fitted over the raw 

input signal to derive an estimate of the observed amplitude and frequency of the input 

signal (panel B).  

 In-phase movement patterns accounted for 326 out of 646 trials (50.5%). The 

average observed amplitude for in-phase trials was 1.84cm. Observed frequency of 

oscillations was 0.96Hz (with the pacing metronome fixed at 1Hz). The cart pendulum 

model was successful at generating well-fitted vectors for this pattern of movement in 

67.18% of trials. Figure 3 shows the model fit for the representative in-phase trial. A 

good fit can be observed for each of the four vectors included in the optimization 

function: cart position, cart velocity, pendulum phase angle, and pendulum phase 

velocity. 
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Figure 2. Raw data and preliminary analyses for Participant 5, Trial 2. (A) Raw data of 

the input signal (finger position - blue) and output signal (pendulum phase position - red) 

as a function of time. Includes mutual information (MI) between the two signals, 

estimated amplitude (in meters), and estimated frequency (in Hz). (B) Sine wave function 

fit of the input signal, used to estimate amplitude and frequency. (C) Lissajous plot 

showing relative deviations from the means of the input and output signals. (D) Phase 

portrait of the system, showing input velocity and output position. (E) Histogram of 

calculated relative phase at each time point in radians. 
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Figure 3. Model predicted output (theta), output velocity, input, input velocity signals 

overlaid with associated observed signals for participant 5, trial 2.  

 Figure 4 shows the data for a representative anti-phase trial. Here we observed a 

movement pattern where the cart moved in the opposite direction to the pendulum. We 

saw a different pattern in the Lissajous plot, where an increase in position in one vector 

was accompanied by a decrease in position in the other vector. The relative phase 

analysis confirmed this assessment by showing relative phase between the cart and the 

pendulum clustering around ± π, or ±180 degrees.  
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Figure 4. Raw data signals (A) for the input (blue) and output (red) of participant 14, trial 

34, with sine wave function fit for the input (B), Lissajous plot (C), phase portrait (D), 

and relative phase histogram (E). 

Anti-phase patterns were uncommon, appearing in 12 out of 646 (1.9%) trials. 

Since the antiphase strategy requires higher speed and has lower stability (Amazeen, 

Amazeen, & Turvey, 1998), we did not expect participants to adopt this strategy despite 

having the option. The observed average amplitude and frequency were 0.0215 meters 

and 1.12Hz, respectively. The cart pendulum model was able to provide a good fit for 

observed anti-phase data in 41.46% of the trials. Figure 5 showed a good model fit for the 

representative antiphase data. 
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Figure 5. Model predicted output (theta), output velocity, input, input velocity signals 

overlaid with associated observed signals for participant 14, trial 34. 

 Figure 6 shows the data for a representative trial exhibiting hybrid movement 

pattern. This movement pattern was distinct from the in-phase and antiphase pattern in 

that the cart and pendulum did not move in tandem or in opposite directions. Rather, the 

peak position of the cart coincided with the neutral position of the pendulum and vice 

versa. The Lissajous plot showed the participant alternating between in-phase and 

antiphase segments. The relative phase analysis revealed a similar result, showing 

relative phase in between in-phase and antiphase. 
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 The hybrid pattern of movement accounted for 308 out of 646 trials (47.7%). The 

observed average amplitude and frequency were 0.018 meters and 1.02Hz, respectively. 

The cart pendulum model had difficulty fitting this pattern of movement, producing well-

fitted vectors in only 14.94% of trials. Figure 7 shows an example of a poor fit of the 

hybrid movement pattern. Since hybrid trials made up a substantial number of trials in 

our data, we attempted several methods to improve model fit (see Appendix I) with 

inconclusive results. For the remainder of the analyses, we will only use trials where the 

model was able to produce a good fit. 
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Figure 6. Raw data signals (A) for the input (blue) and output (red) of participant 3 trial 

10, with sine wave function fit for the input (B), Lissajous plot (C), phase portrait (D), 

and relative phase histogram (E). 

 

Figure 7. Model predicted output, output velocity, input, input velocity signals overlaid 

with associated observed signals for participant 3, trial 10. Note that the cart pendulum 

model was unable to generate a good fit that matched the observed movement pattern. 

Parameter state space analysis 

 For the model building method, we created five parameter state spaces, each 

corresponding to a different weight level (see Figure 1). For each trial, the estimated K 

and B parameters associated with their observed movement were used as coordinates. 
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The coordinates from the first quintile (10 out of 50) of trials were averaged and mapped 

onto the parameter state space with lowest weight. This process was repeated, with 

subsequent quintile of trials mapped onto state spaces with successively higher weight. 

Figure 8 shows the location of each participant’s quintile averaged movement strategy, 

mapped onto the appropriate level of model complexity (with panel A being the simplest 

model at mp = 0). Additionally, we mapped the average location of all observed 

movement strategies in each quantile across all participants to represent the overall 

chosen movement pattern. The location of the local maximum was also indicated on each 

parameter state space.  

We hypothesized that if participants utilized the model building method, we 

would see selected strategies adhering closely to the maxima from each simplified model 

(magenta) instead of the global maximum. Visual inspection revealed that the distribution 

of chosen strategies did not always line up well with regions of high mutual information 

(brighter yellow color, see panel B and C). Despite clear changes in the size and shape of 

regions with high mutual information solutions, there was no clear shift in the distribution 

of chosen strategies over quintiles. This was apparent in the shift of local maxima 

(magenta points) and the relatively static positioning of averaged chosen strategies in 

each quintile. 
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Figure 8. Parameter state space showing mutual information at different values of K, B, 

and mp. Panels showing mutual information field at mp = 0 (A), 0.012 (B), 0.023 (C), 

0.035 (D), and 0.046 (E, actual weight). Red dots represent each participant’s chosen 
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strategy, averaged over 10 trials (one quintile). Black dots represent the average strategy 

across all participants in a given quintile. Magenta dots represent the center of regions 

with highest mutual information (all points with mutual information above 75th 

percentile). 

For the movement restriction method, we observed that movement amplitude 

increased over trials for some participants (see Figure 9). We generated the parameter 

state spaces at 3 movement amplitudes, A = 0.01, 0.02, and 0.03. Similar to our analysis 

of reduced pendulum weight, we mapped each participants’ averaged strategy over the 

first quintile onto the state space of the lowest amplitude. For A = 0.02, we used 

participants’ strategies in the third quintile. For A = 0.03, we used participants' strategies 

in the fifth quintile. Average strategy across participants and location of local maximum 

were also mapped onto each state spaces. Figure 10 shows these parameter state spaces. 
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Figure 9.  Line graph showing estimated movement amplitudes for each participant over 

trials. 

 

Figure 10. Parameter state space showing mutual information at different values of K, B, 

and amplitude A. Panels showing mutual information field at A = 0.01 (A), 0.02 (B), 0.03 

(C). Red dots represent each participant’s chosen strategy, averaged over 10 trials (one 
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quintile). Black dots represent the average strategy across all participants in a given 

quintile. Magenta dots represent the center of regions with highest mutual information 

(above 75th percentile). 

We hypothesized that if participants used the movement restriction method, we 

would see selected strategies adhering closely to the maxima from the simplified models 

instead of to the global maximum. Visual inspection of the parameter state spaces showed 

that participants’ selected strategies conformed well to regions of high predictability in 

these simplified models.  

As an additional analysis, we mapped each participants’ chosen strategies in the 

first and fifth quantiles onto the full model parameter state space to visualize the 

evolution of their strategies over time. This analysis resembles the analysis done by 

Nasseroleslami, Hasson, and Sternad (2014), but with a different set of parameters. 

Figure 11 shows the resulting quiver plot. We predicted that the mutual information of 

selected strategies would increase over trials, indicating participants’ gradual attunement 

to solutions with higher predictability. Here, we could see that the majority of 

participants moved from a region with relatively low mutual information to a region with 

higher mutual information. This indicated that their chosen strategies exhibited higher 

predictability over time. 

Overall, visual inspection of the parameter state spaces showed substantial shift in 

the landscape of possible control strategies due to modifications of the model from using 

reduced pendulum weights (for the model building method) and from using reduced 

amplitudes (for the movement restriction method). We found that participants’ selected 

strategies seemed to conform more closely to regions of high mutual information, 
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according to simplified models from the movement restriction method. We did not 

observe a clear clustering of selected strategies around each local quintile maximum for 

both methods. 

 

Figure 11. Quiver plot showing each participant’s average strategy during the first 

quintile of trials (beginning of arrows) and the fifth quintile of trials (the end of arrows). 

Group-level analysis 

 We calculated relative mutual information between the cart and the pendulum in 

each trial as the value found at the associated K/B coordinates in the parameter state 

space that represented the majority of observed data (f = 1Hz, A = 0.03m, mp = 0.046kg). 

In contrast, absolute mutual information was calculated based on estimated parameters 
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specific to each trial. Distances to local and global maxima were only calculated based on 

distance in the shared parameter state space. 

 Two repeated-measures ANOVAs were used to examine the differences in 

absolute and relative mutual information between quintiles of trials. For absolute mutual 

information, the results showed a significant effect of Quantile, F (4,44) = 6.40, p < .001. 

A significant linear trend was also found, F (1,11) = 7.37, p = .02. Post hoc analysis 

indicated that absolute mutual information at the first and second quintiles were both 

significantly lower than that at the third, fourth, and fifth quintiles, while absolute mutual 

information of the third, fourth, and fifth quintiles were all similar to each other. Absolute 

mutual information increased linearly over quintiles, especially the first 30 trials. Figure 

12 shows the mean absolute mutual information for each quintile. 

 

Figure 12. Raincloud plot showing absolute mutual information for each quintile and 

each participant, as well as aggregated means across participants. 
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 For relative mutual information, the ANOVA test showed no significant effect of 

Quintiles, F (4,32) = 0.48, p = .750. Participants’ quintile-averaged relative mutual 

information did not significantly change over quintiles. Figure 13 shows relative mutual 

information for each quintile. 

 

Figure 13. Raincloud plot showing relative mutual information for each quintile and each 

participant, as well as aggregated means across participants. 

We hypothesized that relative and absolute mutual information would linearly 

increase over quintiles, reflecting participants gravitating towards control strategies with 

higher predictability over time. The results indicated that participants consistently 
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gravitated over time towards control strategies that had higher predictability, as indicated 

by the linear and significant increase in absolute mutual information over quintiles. 

 Next, we looked at data for the model building method. We compared the 

distance between participants’ selected strategies to the maxima of the simplified models 

versus the distance to the global maximum using a 2 (Maxima: Global or Local) by 5 

(Quintile: 1 to 5) repeated-measures ANOVA. The results showed no significant main 

effect of Quintiles on distance to maxima, F (4,32) = .84, p = .508. There was also no 

significant main effect of Maxima, F (1,8) = 3.97, p = .081. Marginal means suggested a 

trend towards lower distance to the local maxima (M = 48.02, SD = 3.61) than to the 

global maxima (M = 52.29, SD = 3.61). There was a significant interaction effect 

between Maxima and Quintile, F (4,32) = 2.95, p = .035. However, post hoc analysis 

revealed that the only significant pairwise difference was distance to local versus distance 

to global maxima in the first quantile (p = .020). Figure 14 shows distance to global 

versus local maxima per quantiles. 
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Figure 14. Line plot showing distance to local and global maxima per quantile. 

We hypothesized that if participants used the model building method, we would 

see shorter distance to the simplified maxima than to the global maximum, representing 

participants choosing strategies using simplified models rather than the accurate model of 

the system. However, the results showed no difference between the distance from 

participants’ selected strategies to the simplified maxima and to the global maxima, 

which suggested that the maxima of simplified models did not influence participants’ 

selection of control strategies.  

 Finally, we looked at the data for the movement restriction method. A 2 (Maxima) 

x 3 (Quintiles) repeated measures ANOVA was used to examine the differences between 

distance of chosen strategies to the simplified maxima and distance of chosen strategies 

to the global maximum. The results showed no significant main effect of Quintiles, F (2, 

20) = 1.92, p = .172. However, we found a significant main effect of Maxima, F (1,10) = 

39.87, p < .001. Distance to the simplified maxima (M = 46.94, SD = 11.32) was 

significantly lower than distance to global maximum (M = 51.31, SD = 11.32). The 

interaction between Quintiles and Maxima was also significant, F (2,20) = 17.42, p < 

.001. Post hoc test indicated that the differences between local and global maxima in the 

first and third quintiles were both significant (all p < .001), whereas this difference was 

not significant in the fifth quintile (see Figure 15).  

 We hypothesized that if participants used the movement restriction method, we 

would see shorter distance between participants’ selected strategies and the simplified 

maxima, compared to the global maximum. The results showed significantly shorter 

distance between selected strategies and simplified maxima, which suggested that 
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participants were relying on movement restriction to simplify the complexity of the 

system and find solutions with higher predictability. This result was also consistent with 

our observations of participants using lower amplitude during early trials of the 

experiment. 

 

Figure 15. Line graph showing mean distance to local (adjusted with movement 

amplitude) maxima versus distance to global maximum over quintiles and model 

complexity. 

Discussion 

In this first experiment, we extended recent findings suggesting predictability as 

the primary control policy when interacting with complex, nonlinear tool systems. Our 

contribution focused on the method with which participants generated and optimized 

control strategies for higher predictability. Recent findings revealed that people 

prioritized and gravitated towards solutions with higher predictability when interacting 

with complex tool systems (Wallace, Kong, Rodriguez, & Lai, 2021; Maurice, Hogan, & 
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Sternad, 2018; Bazzi & Sternad, 2020). How do people continually adjust control 

strategies to arrive at higher predictability solutions, especially during early interactions, 

when information about the system is limited? We focused our investigation on two 

methods. The first method, based on the reasoning-based and manipulation-based 

theories of tool use (Osiurak et al., 2010; Goldenberg, 2013; Bauxbaum, 2001), had 

participants estimate the physical measurements of the system, then use this information 

to construct an accurate model that can be used to simulate better control strategies. The 

second method, based on dynamical systems theory (Bernstein, 1967; Newell & 

Vaillancourt, 2001), had participants restrict their movements during initial interactions 

to observe the system’s dynamics, then gradually adjust their control strategy until the 

predictability between their input and the system’s output improves. To test whether 

participants employed one of these methods, we generated a series of simplified models 

based on each method, then compared participants’ selected strategies against the model 

predicted strategies with high predictability. 

First, our results replicated findings in the literature on control of complex 

objects. We found that the mutual information between the cart and the pendulum 

positions gradually increased over trials, indicating that participants were gravitating 

towards movement strategies that are highly predictable. This finding reinforced the 

notion that predictability is prioritized in selection of control strategies when interacting 

with complex objects (Maurice et al., 2018, Bazzi & Sternad, 2020). 

Second, we found that simplified models created by simulating lower pendulum 

weight did not accurately describe the evolution of participants’ chosen strategies over 

time. This finding did not support centralized control accounts of tool use, which argued 
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that internal models constructed from technical reasoning and functional knowledge are 

important in action planning and control of tool interactions (Osiurak & Badets, 2016; 

Goldenberg, 2013). However, it is possible that other methods of model simplification 

and simulation could more accurately account for participants’ observed behavior.  

In contrast, we found that simplified models created by reducing movement 

amplitude, which was utilized by some participants, were able to accurately describe 

participants’ chosen strategies at different stages of attunement with the complex system. 

This finding supported the dynamical systems approach, which argued for restriction of a 

peripheral degree of freedom during initial interactions with a novel, complex systems in 

order to simplify the system and discover its inherent dynamics (Bernstein, 1967; Newell 

& Vaillancourt, 2001; Mitra et al., 1998). We found that some participants restricted 

movement amplitude in early trials, and that participants’ selection of strategies were 

consistent with information provided by simplified models of the system that were 

generated by limiting amplitude. While amplitude is not itself a degree of freedom of the 

biomechanical system, it can be restricted by an adjacent joint-muscular degree of 

freedom. A follow up study examining the movement kinematics of arm joints during this 

task can shed light into how amplitude restriction was implemented. Participants’ reliance 

on simplified models achieved through physical manipulation of the system also aligned 

with the embodied approach (Martel et al., 2006; Baccarini et al., 2012), which eschewed 

model-based, centralized control in favor of enacting control at the periphery. 
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CHAPTER 3 

EXPERIMENT 2 

In the first Experiment, we demonstrated that the task of forming and optimizing 

control strategies can be accomplished by adjustments of interaction dynamics at the 

biomechanical periphery. Our finding showed that the principle of predictability still 

holds when information about the system is missing. In Experiment 2, we examined the 

role of predictability in controlling complex objects when there was a change in task goal 

or action intention. 

Intention occupied a prominent place in many theories of perception and action. 

Gibson (1979), whose theory contributed to the development of the dynamical systems 

perspective, described intention (or need in his terminology) as the agent-specific anchor 

in the perception action link between agent and environment (see also Shaw, Turvey, & 

Mace, 1982). Subsequent authors in the dynamical systems approach framed intention as 

contextual constraints on system dynamics (Newell, 2003; Newell & Valvano, 1998). 

However, this view was disputed. For example, Thill et al. (2013) argued that context 

should be limited to external factors that do not explicitly influence behavior (such as the 

presence of a distractor) whereas intention should be viewed as an internal 

representational state. In accordance with this view, centralized control theories on tool 

use likewise described intention as an internalized state against which action plans can be 

compared, filtered, or evaluated (Buxbaum, 2001; Borghi, 2004; Osiurak, 2013; Osiurak 

et al., 2016). 

Authors from both perspectives agreed that intention can influence motor 

behaviors. For example, Shaw et al. (1982) described a bench as sittable when the agent’s 
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intention was to find a place to rest. However, the same bench could be perceived as 

jumpable if the intention was to escape a threat. Rosenbaum et al. (1990) showed that 

people would use an awkward grip to transport an object because they intended to end the 

movement in a comfortable posture. Tipper et al. (2006) showed that people were faster 

to respond to a right-facing door handle with the right hand if the handle was depressed 

(i.e., active or with an action intention) than when the handle was at a neutral position 

(i.e., passive or without an action intention). Similarly, Costantini et al. (2010) found that 

people were faster to respond to the orientation of the handle on a mug if the mug was 

within reach (actionable), but not when the mug was out of reach (not actionable). 

In modeling, intention can be instantiated as either the objective function or as a 

bounded range on a model parameter (Schaal et al., 2007). For example, in the cart-

pendulum model, the intention to control the system without making mistakes was 

translated into an objective function that maximized predictability. Similarly, the 

minimum movement constraint was translated into a range of K and B values that 

produced excessively small oscillations, thus failing the task requirement. It is important 

to note that in the latter instance, nothing about the inherent dynamics of the cart-

pendulum system prevented a participant from executing a strategy that fails to meet the 

requirement. Rather, the restriction was translated from a verbal instruction into a system 

constraint, which participants used to reject control strategies during interactions with the 

complex object. To what extent can such constraints bias the selection of execution 

strategy? Are there instances where the principle of maximizing predictability is ignored 

in favor of other intentional goals? We examined these questions in the context of 

synchronization patterns between input and output of the cart-pendulum system. 
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 Synchronization is a common feature in many nonlinear dynamical systems, 

especially when coordination between components is the focus. The concept can be 

traced back to von Holst’s (1973) study on the coordination between fins of the Labrus 

fish, to Kelso’s (1984) on bimanual coordination (also Haken, Kelso, & Bunz, 1985), to 

coordination among team members (Gorman, Amazeen, & Cooke, 2010; Gorman, 

Cooke, Amazeen, & Fouse, 2012), as well as numerous physical, physiological, and 

chemical systems (Wallace et. al., 2021). Studies on synchronization often focus on 

nonlinear transitions between qualitatively distinct states. For instance, Maurice et. al. 

(2018) found two clusters of strategies in data of participants interaction with the cart-

pendulum system: a low-frequency strategy cluster, and a high-frequency strategy cluster. 

In the low frequency category, the relative phase between the cart position and the 

pendulum position stayed close to 0 degree, indicating in-phase synchronization. In the 

high-frequency group, the relative phase stabilized to 180 degrees, indicating anti-phase 

synchronization. High frequency strategies were also found to require significantly more 

energy to execute. In a follow-up study, Wallace et. al. (2021) found that both strategies 

were stable, and that transitions between these synchronous states could happen abruptly 

near the resonant frequency of the system. 

 Observing behavior at this equilibrium point allows us to tease apart the effect of 

action intention on the selection of strategy in complex object control. Based on previous 

findings on the effects of action intention, we hypothesize that intention, in the form of a 

speed incentive, can bias subjects into more active exploration of the state space and 

higher likelihood of selecting energy-demanding strategies. However, this bias would not 

interfere with the predictability principle, since losing control of the system would also 
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result in negative performance. That is, we predict that a change in intention would 

induce participants to shift from the slow but highly predictable in-phase pattern to the 

speedy but less predictable antiphase or hybrid patterns. This shift would be reflected in 

the parameter state space as closer clustering of selected strategies around region of 

antiphase solutions compared to the distribution of selected strategies in Experiment 1, 

when no speed incentive was imposed. However, participants would still adhere to the 

predictability principle and avoid unstable (chaotic) movement patterns. 

Methods 

Participants 

 A total of 21 human subjects were recruited from the Introductory Psychology 

student pool at Arizona State University to participate in the experiment. One subject 

failed to follow instructions and was removed from the data, resulting in a total sample 

size of N = 20.  

Apparatus 

 The apparatus used for Experiment 2 was identical to that of Experiment 1. A cart 

(mc = 20 g) was placed on a suspended single-rail track. The track restricted the cart’s 

movements to approximately 20cm in both lateral directions (with clearance on both 

sides). Suspended from the cart was a pendulum (mp = 46 g) connected via wire of length 

0.19 m. Movements of the cart and pendulum were tracked via two infrared-emitting 

diodes, with an Optotrak 3020 motion-capture camera recording movements at a 

sampling rate of 100Hz.  

Procedure 
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 The procedure for Experiment 2 was similar to that of Experiment 1. Participants 

(N = 20) were instructed to use their finger to oscillate a cart-pendulum system at a fixed 

starting frequency (1Hz). Participants were instructed that they could go faster than the 

metronome (to facilitate anti-phase strategies), but no slower (to avoid stationary 

strategies).  Each participant performed 50 trials of 45 seconds each, in 5 blocks of 10 

trials. However, unlike in Experiment 1, where the instructions were simply to control the 

system in a comfortable manner, Experiment 2 was framed in the context of an 

ecologically relevant scenario. Participants were told that they were training to be a 

server at a restaurant, and that their goal was to learn how to carry drinks to the customers 

in the most efficient manner. They were told that they would receive a higher score if 

they moved faster but would receive a penalty if the drink “spilled” (the pendulum went 

outside the boundary of the target boxes). During the rest periods between blocks, the 

instructions were repeated to reinforce the effect of the manipulation. After 50 trials, 

participants provided demographic information. Then they were debriefed and dismissed. 

Overall, the inherent dynamics of the physical system were the same as that of 

Experiment 1. However, the action intention of the task had changed to clearly favor high 

frequency strategy (i.e., anti-phase pattern) even when this was less energy efficient. The 

experimental procedure was approved by the Institutional Review Board at Arizona State 

University. 

Modeling 

 We used the same model described in Experiment 1 for Experiment 2. Estimates 

of K and B parameters that fit an observed movement pattern still represented the chosen 

strategy for that trial. Model-generated parameter state spaces were similar to those in 
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Experiment 1. To enable comparison with data from Experiment 1, quantile-averaged 

movement strategies were mapped onto the same global parameter state space used in 

Experiment 1 (A = .03m, f = 1Hz). Therefore, the location of the global maximum of 

mutual information remained unchanged. However, unlike in Experiment 1, instead of 

calculating local maxima based on different weight or amplitude levels, we calculated a 

single maximum representing the center of the anti-phase strategy cluster in this 

Experiment. The location of this maximum was calculated as the average coordinates of 

all strategies exhibiting anti-phasic movement patterns. The relative phase between the 

cart and the pendulum in model-generated movement vectors was determined based on 

the linear regression slope of the Lissajous plot of that movement pattern (negative slope 

indicated anti-phase relation). Figure 16 showed the location of this maximum against the 

Lissajous slopes of each K/B parameters pair. 
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Figure 16. Parameter state space showing the Lissajous linear regression slope for each 

K/B parameter pair. Red dot indicates the average coordinate of all points with slope 

below 0. 

Data processing and analysis 

There was no change to the data processing pipeline in Experiment 2 compared to 

Experiment 1. For each trial, the observed strategy’s absolute mutual information (using 

the estimated parameters specific to that trial), relative (to the global parameter state 

space) mutual information, distance to global maximum, and distance to anti-phase 

maximum were calculated. Looking at just data from Experiment 2, we used two 

repeated-measures ANOVAs to examine the differences in absolute and relative mutual 

information between quintiles of trials. Then, a 2 (Maxima: Global or Antiphase) by 5 
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(Quintile: 1 to 5) repeated-measures ANOVA was used to look for differences in 

distances to the antiphase maximum and the global maximum at each quintile. Next, we 

compared results from Experiment 1 and Experiment 2. Four 2 (Experiment) x 5 

(Quintiles) ANOVAs were used for each of the four dependent variables: absolute mutual 

information, relative mutual information, distance to global maximum, and distance to 

antiphase maximum. These analyses examined whether the change in action intention 

compelled participants to shift towards more anti-phasic strategies. 

We hypothesize that an intentional shift can influence participants’ selection of 

movement strategies, pushing them towards solutions that are more energy-demanding 

and less (but still highly) predictable. Therefore, we predict that mutual information (both 

relative and absolute) of selected strategies would gradually increase to indicate 

gravitation towards higher mutual information solutions. However, because the change in 

intentional context encourages lower predictability strategies, we predict that this 

increase would not be as pronounced, and that overall mutual information would be lower 

compared to results in Experiment 1. Likewise, we predict that selected strategies would 

be closer to the antiphase maximum and further away from the global maximum for 

participants from Experiment 2 than for participants from Experiment 1. 

Results 

Trial-level analysis 

 Similar to the data in Experiment 1, we found three main patterns of movement in 

the data: in-phase, antiphase, and hybrid. Refer to Figure 2, 4, and 6, respectively, for 

examples of these movement patterns. In-phase movement pattern accounted for 244/999 

trials, or 23.3%. The average observed amplitude was 4.86cm. The average observed 
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frequency was 0.95Hz. The cart-pendulum model was able to generate a good fit for 

80.33% of trials in this category. Antiphase trials accounted for 110/999 trials, or 10.5%. 

The average observed amplitude was 4.44cm. The average observed frequency was 

1.16Hz. The cart-pendulum found a good fit for 53.64% of trials of this type. Finally, the 

hybrid movement pattern accounted for 645/999 trials, or 61.4%. The average observed 

amplitude was 0.98cm. The average observed frequency was 1.07Hz. Similar to 

Experiment 1, the cart-pendulum was only able to generate a good fit for 15.5% of trials 

of this type. Refer to Appendix I for more information on our treatment of the model to 

accommodate these trials. For subsequent analyses, only trials with good model fits were 

included. 

 We hypothesized that a change in action intention would result in a shift in the 

selection of control strategies from the in-phase pattern to the antiphase and hybrid 

patterns. Compared to the distribution of movement patterns in Experiment 1, the trial-

level analysis revealed a drastic shift in selected strategies from the in-phase pattern to 

the antiphase and hybrid patterns. The percentage of trials with the in-phase pattern 

dropped from 50.5% in Experiment 1 to 23.3%. At the same time, the proportion of trials 

with antiphase pattern increased to 10.5% (from 1.9% in Experiment 1). Similarly, the 

proportion of hybrid trials increased to 61.4% (from 47.7% in Experiment 1). 

Parameter state space analysis 

 For each quintile, we mapped the quintile-averaged movement strategies, group 

averaged movement strategy, location of global maximum, and location of antiphase 

maximum onto the global parameter state space (K ranging from 0 to 30N/s in 100 
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intervals, B ranging from 0 to 3 N.s/m in 100 intervals, mp = 0.046kg, A = 0.03m, f = 

1Hz). Figure 17 showed the distribution of these data points in each quintile. 

 We hypothesized that the inclusion of an action intention would induce 

participants to select more control strategies in the antiphase region of the parameter state 

space. Visual inspection of Figure 17 showed no clear shift in participants’ movement 

strategies over trials. However, the distribution of selected strategies seemed more evenly 

spread, with more strategies being selected in the antiphase regions (green dot), compared 

to the distribution in Experiment 1. 
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Figure 17. Parameter state space showing mutual information at different values of K and 

B. Panels showing mutual information field each quintile (A-E ~ 1-5). Red dots represent 

each participant’s chosen strategy, averaged over 10 trials (one quintile). Black dots 
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represent the average strategy across all participants in a given quintile. Magenta dots 

represent the center of regions with highest mutual information (above 75th percentile). 

Green dots represent the antiphase maximum. 

Group-level analysis 

 We first performed a manipulation check to determine whether our intention 

manipulation had a significant effect on participants’ frequency in their trials. This 

manipulation check was performed on all trials, regardless of model fit. We used a 2 

(Experiment) x 50 (Trial) repeated measures ANOVA to look for the effect of 

Experimental manipulation on observed frequency. The results showed no significant 

main effects of Trial, F (49,1519) = 1.20, p = .163, or of Experiment, F (1,31) = 4.06, p = 

.053. There was a significant interaction effect between Trial and Experiment, F (49, 

1519) = 2.43, p < .001. Post hoc tests revealed significant differences in frequencies 

between Experiment 1 and 2 in the late trials (see Figure 18). The intention manipulation 

in Experiment 2 resulted in significantly higher movement frequencies in late trials 

compared to Experiment 1. 

 Looking first at the data from Experiment 2, we examined whether the mutual 

information of selected strategies exhibited linear increase over trials, as seen in 

Experiment 1. The repeated-measures ANOVA comparing absolute mutual information 

between Quintiles was not significant, F (4,68) = 0.19, p = .944. Likewise, the repeated-

measures ANOVA looking at differences in relative mutual information between 

Quintiles was also not significant, F (4, 52) = 0.52, p = .718. In both tests, no main effect 

of Quintiles was observed, indicating that the mutual information of selected strategies 

did not increase as a function of trial. 
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Figure 18. Line graph showing observed frequency in each trial for Experiment 1 and 

Experiment 2. 

 Next, we look at the relative differences in distance to the global maximum and to 

the antiphase maximum over Quintiles. Because the intention manipulation we 

introduced favored higher frequency strategies, we predicted that the distance between 

selected strategies and the antiphase maximum would be shorter than distance to the 

global (in-phase) maximum. The 2 (Maxima) x 5 (Quintiles) ANOVA showed no 

significant main effect of Maxima, F (1,13) = .83, p = .380, no main effect of Quintiles, F 

(4,52) = .70, p = .596, and no significant interaction effect, F (4,52) = .83, p = .510 (see 

Figure 19). Participants selected strategies that were of equal distance from the global 

maximum and from the antiphase maximum. 
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Figure 19. Line graph showing average distance to the global maximum and the 

antiphase maximum for selected strategies per quintiles. 

 Next, we compared the results from Experiment 1 with that of Experiment 2 to 

examine the effect of the intention manipulation. First, we looked at the differences in 

selected strategies’ absolute mutual information over quantiles between Experiment 1 and 

2. The 2 (Experiment) x 5 (Quintile) mixed ANOVA showed a significant main effect of 

Quintiles, F (4,108) = 5.83, p < .001. The mean absolute mutual information at the first 

quintile (M = 2.11, SD = .33) was significantly lower than that of the third (M = 2.22, SD 

= .33), fourth (M = 2.24, SD = .33), and fifth (M = 2.25, SD = .33) quintiles. There was a 

significant main effect of Experiment, F (1,27) = 6.51, p = .017. Absolute mutual 

information in Experiment 1 (M = 2.10, SD = .27) was significantly lower than that in 

Experiment 2 (M = 2.33, SD = .32). We also found a significant interaction effect 

between Experiment and Quintiles, F (4,108) = 6.55, p < .001. Differences in absolute 
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mutual information between Experiment 1 and Experiment 2 were greater in early trials 

compared to later trials (see Figure 20). 

 

Figure 20. Comparisons of absolute mutual information between Experiment 1 and 

Experiment 2. (A) Line graph showing absolute mutual information as a function of 

Quintiles and Experiment (1 and 2). (B) Line graph showing absolute mutual information 

as a function of Phase (In-phase, antiphase, and hybrid) and Experiment (1 and 2). 

 We predicted that the mutual information of selected strategies in Experiment 2 

would be lower than those in Experiment 1. However, the results showed that the 

absolute mutual information of selected strategies in Experiment 2 were consistently 

higher across trials. To further elucidate the source of this difference, we performed an 

additional 2 (Experiment) x 3 (Phase) mixed ANOVA comparing the mutual information 

of strategies between the first and second Experiment, according to the types of 

movement. We found that the mutual information of antiphase and hybrid trials were 

equal across Experiments. In contrast, the mutual information of in-phase trials was 

significantly higher in Experiment 2, t (2) = 6.55, p < .001. Overall, the results were in 

the opposite direction from what we had predicted. 
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 For relative mutual information, we used a 2 (Experiment) x 5 (Quintiles) mixed 

ANOVA. The test found no significant main effect of Quintiles, F (4,80) = .36, p = .840, 

nor a main effect of Experiment, F (1,20) = .34, p = .567. There was no significant 

interaction effect either, F (4,80) = .75, p = .561. Relative mutual information for 

participants’ chosen strategies was not influenced by intention manipulation or trial.  

 We next looked at the distance of selected strategies to the global maximum. The 

2 (Experiment) x 5 (Quintiles) mixed ANOVA indicated no significant main effect of 

Quintiles, F (4,80) = .18, p = .947, or a main effect of Experiment, F (1,20) = 2.39, p = 

.138. The interaction effect was also not significant, F (4,80) = .92, p = .457. The 

distance between participants’ chosen strategies and the global maxima was not 

influenced by intention manipulation or trial order. 

 We looked at the distance of selected strategies to the antiphase maximum. 

Results from the 2 (Experiment) x 5 (Quintiles) mixed ANOVA once again showed no 

significant main effect of Quintiles F (4,80) = .40, p = .810, or a main effect of 

Experiment, F (1,20) = .05, p = .835. There was also no significant interaction effect 

between Experiment and Quintiles, F (4,80) = .63, p = .641. Similar to distance to the 

global maximum, there was no indication that distance to the antiphase maximum was 

influenced by intention manipulation or trial order. 

 We predicted that participants’ selected strategies in Experiment 2 would be 

closer to the antiphase maximum and further away from the global maximum than 

strategies selected in Experiment 1. The results did not indicate a significant shift in the 
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distribution of selected control strategies towards the antiphase region of parameter state 

space. 

Discussion 

 Experiment 2 was designed to assess the extent to which a shift in intention can 

bias the selection of control strategies in interactions with complex systems. Findings 

from the literature demonstrated that the selection of stable control strategies relies on 

optimizing for predictability (Maurice et al., 2018; Bazzi & Sternad, 2020). However, we 

argued that additional goals, constraints, or action intentions, (e.g., “move the object so 

that it remains within this boundary”, or “move the object as quickly as you can”) can 

also influence the selection of control strategies. To examine whether intentional shift can 

influence interactions with a complex system, and whether such manipulation can cause 

participants to violate the predictability principle, we introduced a speed incentive to the 

task of controlling the cart-pendulum system.  We hypothesized that a shift in intention 

can encourage exploration of different control strategies, thus leading to more frequent 

discovery and execution of the high-frequency anti-phase control pattern. However, 

intention cannot push the system into control strategies that lack predictability, 

considering the traditional goals of such systems in regulating balance and locomotion of 

the body in daily scenarios.  

 The results showed some evidence suggesting that the shift in intention influenced 

interactions with the cart-pendulum system. The manipulation was successful in 

encouraging participants to perform at higher movement frequencies than they did in 

Experiment 1. Consistent with our prediction, the intention manipulation also caused a 

substantial increase in the proportion of trials that used the antiphase or hybrid strategies, 
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compared to the distribution in Experiment 1. However, we did not find significant shifts 

of selected strategies towards the antiphase region on the parameter state space. A 

possible explanation for this inconsistency is that a large proportion of trials with 

antiphase (46.36%) and hybrid (84.5%) were not included in the distance analyses due to 

poor model fits. The inclusion of these trials may lead to results that are consistent with 

our finding on the shift to antiphase and hybrid patterns.  

 We also predicted that the intention manipulation would only cause participants to 

shift selected strategies among stable patterns of control (as identified by Wallace et al., 

2021). That is, we predicted that participants would seek a compromise between high 

frequency and high predictability, rather than completely abandon predictability when 

frequency was prioritized. We also expected to see overall lower mutual information in 

Experiment 2 due to greater usage of the antiphase and hybrid movement patterns. We 

found that all trials fit into one of the three previously identified movement patterns. 

However, we did not find lower mutual information when comparing the selected 

strategies of Experiment 2 against those selected in Experiment 1. Rather, the mutual 

information of selected strategies in Experiment 2 were significantly higher across trials 

when compared to Experiment 1. Further analysis revealed that although mutual 

information in antiphase and hybrid trials were similar across Experiments, mutual 

information measured on in-phase trials in Experiment 2 was significantly higher than in 

Experiment 1. This result can be interpreted as a compensatory mechanism, where 

participants attempted to make up for losses in predictability due to higher movement 

frequencies by seeking higher mutual information strategies within each movement 

pattern. This interpretation is in line with discussion by van Orden et al. (2003) and 
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Likens et al. (2015), where pressure on a complex system from intention, environmental 

constraints, and control may give rise to more nested and highly coordinated behavioral 

patterns. 



  61 

CHAPTER 4 

CONCLUSION 

 Recent efforts in modeling human interactions with complex objects showed that 

people prioritize predictability over other optimization goals typically associated with 

centralized control models (Maurice et al., 2018; Bazzi & Sternad, 2020; Wallace et al., 

2021). Furthermore, people rely on the inherent constraints and dynamics of the system’s 

behaviors to find control strategies that are highly stable and predictable. This view is 

consistent with the dynamical systems approach (Bernstein, 1967; Mitra et al., 1998; 

Newell & Vaillancourt, 2001; van Orden et al., 2003). In this paper, we looked at the role 

of predictability in two instances: when information about the system is limited, and 

when additional constraint from intention is imposed on the system. 

 In Experiment 1, we considered the method that participants used to formulate 

and optimize for control strategies with high predictability during initial interactions with 

a novel, complex object. In this scenario, where information about the system’s 

properties and dynamics are missing, participants may make use of their pre-existing 

knowledge and gathered information to construct a rudimentary model of the system 

(Osiurak & Badets, 2016; Goldenberg, 2013; Buxbaum, 2001; Thill et al., 2013; Kawato 

& Wolpert, 1998, Dingwell et al., 2002, 2004; Danion et al., 2012), which can be used to 

generate a control vector. Alternately, participants could restrict a part of their 

movements to simplify the system’s reaction, then gradually adjust control strategy until 

predictability improves (Bernstein, 1967; Newell & Vaillancourt, 2001).  

We generated two series of simplified models based on these principles, then 

compared the model-recommended solutions with strategies selected by participants. The 
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results indicated that participants were not sensitive to the dynamics of our internally 

constructed, simplified models. That is, participants’ selected strategies did not gravitate 

towards regions of high mutual information within these simplified models. However, 

when we mapped participants’ strategies onto models with restricted movement, we 

found that the selected strategies adhered closely to regions of high mutual information. 

Taken as a whole, these findings suggested that the complexity of the system is mitigated 

at the biomechanical periphery to allow for the inherent interaction dynamics to unfold. 

This finding is consistent with a wealth of evidence from studies in the dynamical 

systems perspective which showed similar peripheral restrictions during early learning of 

novel movement patterns (Vereijken et al., 1992; Mcdonald et al., 1989; Steenbergen et 

al., 1995), as well as from studies of embodied tool use (Martel et al., 2006). 

 In Experiment 2, we considered the role of predictability alongside that of 

intention in controlling complex objects.  Thill et al.’s (2013) defined intention as an 

internal state, distinct from environmental context, that can be altered by instructions. 

However, intention can also be considered to be a system constraint that restricts the 

range of possible control strategies to only those that satisfy the task requirements 

(Newell, 2003). Although the effect of intention on interactions with simple objects was 

well-documented (see Tipper et al., 2006; Costantini et al., 2010), its influence on 

interactions with complex objects is less clear. Furthermore, what will happen if verbal 

instructions compete with the predictability principle? Will the principle of predictability 

be eschewed in favor of the new intentional state, or will people seek compromises that 

accommodate the new constraint? Our findings suggested that a shift in intention (in the 

form of an incentive to speed up movement frequency) can cause people to find and 
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adopt more unstable but higher performing control strategies. In addition to this tradeoff 

between performance and control, we also found that people were compensating for the 

potential loss of predictability by seeking control strategies with higher predictability in 

easier movement patterns. 

 Across two Experiments, we examined two specific instances where the role of 

predictability in control of complex objects was unclear. Looking at the big picture, it is 

evident that the selection and execution of control strategies rely on optimization for 

predictability, and that such optimization can be achieved by adjustments at the 

biomechanical periphery. Furthermore, predictability remains an important goal in 

control of complex objects, even when additional constraints or goals may prioritize other 

qualities in a control strategy.  

 These findings may also have broader implications for our understanding of 

interactions with similarly complex systems, most notably of our own body. One of the 

central impetuses for studying complex objects is the fact that their nested, interaction-

dominant dynamics resemble that of the body, itself a complex dynamical system (Bazzi 

& Sternad, 2020). Solving problems of control for such complex objects then requires us 

to consider many of the same difficulties that researchers face when studying motor 

control (Schaal et al., 2007). The natural extension of this line of research is then to make 

explicit this potential link. 

Limitations and Future Directions 

 One of the main issues with our data is that a large proportion of the data followed 

the hybrid movement pattern, a pattern that was previously not reported in studies using 

the same model. This movement pattern contains aspects of both in-phase and antiphase 
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patterns. Its relative phase oscillates between these two states, and its observed frequency 

falls between the observed frequency for in-phase and antiphase. During data collection, 

we observed several participants independently adopted this strategy and successfully 

maintained it over multiple trials. Because our model frequently failed to generate an 

adequate fit for this pattern, a large number of trials in this pattern were excluded from 

the data. Because this movement pattern both exhibits higher movement frequency 

(which aligns with our intention manipulation) and lies between in-phase and antiphase 

patterns, exclusion of these trials can potentially influence the results of Experiment 2.  

 The prevalence and performance of this movement pattern suggest that this is a 

stable and high performing strategy. However, we have only found one mention of this 

pattern in simulation data (Wallace et al., 2021), not in data collected in experimental 

settings. One possible explanation is the fact that the apparatus used in the current series 

of experiments involved physical objects, whereas previous studies using this model 

employed robotic manipulandum, which removed both friction and movement along the 

longitudinal axis (Maurice et al., 2018; Bazzi & Sternad, 2021). The conditions under 

which the hybrid movement pattern becomes the favored pattern of movement could be 

an interesting topic for future research. For now, one of our main goals moving forward 

is to look at model modifications that account for this pattern of data. Refer to Appendix I 

for our current attempt at improving the model. 

 Another limitation of the current study involves the calculation of relative 

distances. Current calculations of relative distances used K and B values that were 

specific to each trial. However, due to constraints on time and computational power, all 

other parameters were fixed to a common, averaged value. This results in relative 
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distances that were potentially incorrect. Since the methods used in this paper can be 

readily extended to multi-dimensional matrices, one of our next steps is to allocate 

resources to calculating the mutual information values for each combination of K, B, f, 

and A, (instead of just K and B currently) in order to obtain accurate measures of relative 

distance between different strategies selected by participants. 

Conclusion 

 The findings presented in this paper reinforced predictability as an important 

principle in control of complex objects. Generalizing these techniques and findings across 

domains may prompt beneficial development in our understanding of interactions with 

other complex systems. Considering the potential impact that a better understanding of 

some complex systems (such as self-driving vehicles, climate, or social media) may have 

on our society, further research utilizing this paradigm may prove to be crucial to our 

ability to find solutions for modern issues. 
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APPENDIX A 

IMPROVEMENTS TO CART-PENDULUM MODEL TO ACCOMMODATE HYBRID 

MOVEMENT PATTERN 
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A large proportion of trials across both Experiment 1 (47.7%) and 2 (61.4%) 

exhibited the hybrid movement pattern. However, the cart-pendulum model was only 

able to generate good fits for a small percentage (14.94% for Experiment 1, 15.5% for 

Experiment 2) of trials with this movement pattern. Here, we outlined the different 

methods attempted to improve model fit for the hybrid movement pattern. 

General model fitting procedure 

 Following the procedure outlined in Maurice et al. (2018), we used the following 

settings to search for parameters that would generate the best fit with the observed data. 

From the 45-second movement signals, a 20-second segment was selected, starting from 

15 seconds from the beginning of the trial to 10 seconds before the end of the trial. This 

was performed on all four vectors that specified the cart-pendulum system’s state: cart 

position, cart velocity, pendulum phase angle, and pendulum phase angle velocity (see 

Figure 7 for an example, and Figure A1 for a zoomed in cut of a similar trial). These data 

segments were subjected to a 5-point moving average smoothing function to remove 

potential instrument noise. Then, we tasked the model to search for the pair of K and B 

parameters that would produce the best fitting vectors to the observed data. Fit was 

calculated as the average of the root mean square residuals between the four model 

generated vectors and observed data. The K and B parameter values were randomly 

picked between 0 and 30 for K, and between 0 and 3 for B. We used MATLAB’s 

MultiStart function to generate 50 random starting values of K and B, and allowed the 

model to search for 1000 iterations per starting point.  
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Figure A1. Raw data signals for and preliminary analyses for Participant 3, trial 5. The 

top left panel shows the input cart position vector (blue) and output pendulum phase 

angle (red).  

Smoothing 

 By default, a 5-point moving average smoothing function was applied to the raw 

movement signals. We noticed smaller troughs at the peaks of each movement cycle, 

which can often also be found at the endpoints of simple movements. Such instances of 

“double-peaking” can be corrected using higher number of points for the smoothing 

function. Smoothing functions with moving average of up to 20 points were attempted, 
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which noticeably washed out the smaller troughs at peak movements (see Figure A2). We 

found no improvement to the model fit.  

Window of observation 

 We attempted to shift the window of observation (from between 15 seconds and 

35 seconds) to several other starting and ending points. However, because participants 

who performed the hybrid pattern did so consistently throughout their trials, this method 

did not yield noticeable changes to the model fit. 

Parameter range 

 We attempted to expand the search range for the K and B parameters to values 

beyond 30 N/m (for K) and 3 N.s/m (for B). Search range for up to 300 N/m (the 

equivalent to 30 kilograms-force) and 30 N.s/m was used. Not only were these amounts 

of force far beyond what should be expected in the experiment, given the nature of the 

task, but the increase in value also did not fundamentally change the relative dynamics 

between the cart-pendulum parts. As such, increases of parameter range was not a viable 

strategy to improve model fit. 

Increasing frequency 

 Wallace et al. (2021) mentioned a pattern similar to the hybrid pattern we 

observed in our experiment. This pattern was found in parameter regions between the 

common in-phase and antiphase patterns. The authors created this pattern in their 

simulation of the model by altering the oscillatory frequency of the input cart vector. 

Although frequency was fixed in our experiment with the help of a metronome, if we 

consider the small troughs at each movement peak as an additional cycle, an increase in 

frequency could be justified. We gradually increased the frequency of the input vector 
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and monitored the model-generated output. At between 3.4 to 3.8Hz (about 3 to 4 times 

the original estimated frequency), we obtained model solutions that were closer to the 

observed data (see Figure A3). However, closer inspection of the input position vector 

revealed that an increase in frequency was not sufficient due to the additional asymmetry 

of the observed data (for example, Figure A3, observed position vector at time 350 and 

450). Despite a better fit, there were still significant deviations from the observed data. 

 

Figure A3. Model fit for the hybrid movement pattern, obtained by increasing frequency 

f. 

Non-linear escapement terms 

 Asymmetry in the position vector can be implemented in the model by changing 

equation 5 to include nonlinear escapement terms. We attempted to adapt two nonlinear 
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modifications to the standard mass spring model: Rayleigh and Van der Pol (Abraham & 

Shaw, 1992). However, both modifications did not alter the dynamics of the model-

generated vectors in the direction of the observed data. See example of the Rayleigh 

modification (Figure A4) and the Van der Pol modification (Figure A5).  

 

Figure A4. Comparison of observed input vector (top left) and input phase portrait 

(bottom left) against the Rayleigh input vector (top right) and Rayleigh input phase 

portrait (bottom right). 
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Figure A5. Comparison of observed input vector (top left) and input phase portrait 

(bottom left) against the Van der Pol input vector (top right) and Van der Pol 

input phase portrait (bottom right). 

 


