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ABSTRACT

Variation in living systems and how it cascades across organizational levels is central to

biology. To understand the constraints and amplifications of variation in collective systems,

I mathematically study how group-level differences emerge from individual variation in

eusocial-insect colonies, which are inherently diverse and easily observable individually

and collectively. Considering collective processes in three species where increasing degrees

of heterogeneity are relevant, I address how individual variation scales to colony-level

variation and to what degree it is adaptive. In Chapter 2, I introduce a Markov-chain

decision model for stochastic individual quorum-based recruitment decisions of rock-ant

workers during house hunting, and how they determine collective speed–accuracy balance.

Differences in the average threshold-dependent response characteristics of workers between

colonies cause collective differences in decision-making. Moreover, noisy behavior may

prevent drastic collective cascading into poor nests. In Chapter 3, I develop an ordinary

differential equation (ODE) model to study how cognitive diversity among honey-bee

foragers influences collective attention allocation between novel and familiar resources.

Results provide a mechanistic basis for changes in foraging activity and preference with

group composition. Moreover, sensitivity analysis reveals that the main individual driver for

foraging allocation shifts from recruitment (communication) to persistence (independent

effort) as colony composition changes. This might favor specific degrees of heterogeneity

that best amplify communication in wild colonies. Lastly, in Chapter 4, I consider diversity

in size, age, and task for nest defense in stingless bees. To better understand how these

dimensions of diversity interact to balance defensive demands with other colony needs, I

study their effect on colony size and task allocation through a demographic Filippov ODE

model. Along each dimension, variation is beneficial in a certain range, outside of which

colony adaptation and survival are compromised. This work elucidates how variation in
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collective properties emerges from nonlinear interactions between varying components

in eusocial insects, but it can be generalized to other biological systems with similar

fundamental characteristics but less empirical tractability. Moreover, it has the potential of

inspiring algorithms that capitalize on heterogeneity in engineered systems where simple

components with limited information and no central control must solve complex tasks.

ii



ACKNOWLEDGMENTS

My PhD position was supported by the Simon A. Levin Mathematical, Computational

and Modeling Sciences Center (SAL MCMSC), the School of Human Evolution and Social

Change (SHESC) and the Graduate Completion Fellowship from the Graduate College at

Arizona State University. The research for Chapter 4 was partially supported by contract

number W31P4Q18-C-0054 from the United States Defense Advanced Research Projects

Agency (DARPA).

iii



TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

CHAPTER

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Colonies as Models for Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Mathematical Models of Eusocial-Insect Behavior at Multiple Scales . 3

1.3 Individual Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Document Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 A MODEL FOR ANT QUORUM SENSING WITH BOUNDED LATENCY

FOR HARD DECISIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Two-Alternative Forced Choice Decisions in Ants . . . . . . . . . . . . . . . . . . 17

2.3 Markov-Chain Model of Decision-Making Dynamics . . . . . . . . . . . . . . . 18

2.3.1 Master Equation of Deliberation by Discrete Random Walk . . . . 21

2.3.2 Decision Probabilities (Limit Distribution) . . . . . . . . . . . . . . . . . . . 22

2.3.3 Decision Latency (Hitting Time) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Discussion: Counterbalancing Speed and Accuracy in Individuals and

Collectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.1 Assessing Speed and Accuracy in Individuals . . . . . . . . . . . . . . . . 26

2.4.2 From Individual Performance to Collective Performance . . . . . . 28

2.5 Summary, Conclusions, and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5.1 Contribution Relative to Related Work . . . . . . . . . . . . . . . . . . . . . . . 32

2.5.2 Caveats and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

iv



CHAPTER Page

3 FROM INDIVIDUAL PHENOTYPES TO COLLECTIVE BEHAVIOR IN

HONEYBEE FORAGERS: A MATHEMATICAL MODEL . . . . . . . . . . . . . . . 36

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Model Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.1 Previous Empirical Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.2 Model Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Mathematical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.1 Homogeneous Population . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4.1 Parameter Values and Experimental Data . . . . . . . . . . . . . . . . . . . . 50

3.4.2 Effect of Group Composition on Collective Preference . . . . . . . . 55

3.4.3 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 A MATHEMATICAL FRAMEWORK FOR ADAPTIVE COLLECTIVE

DEFENSE: CRISIS RESPONSE IN SOCIAL-INSECT COLONIES . . . . . . . 63

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Model Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2.1 Worker Types and Task Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2.2 Production of New Major and Minor Workers . . . . . . . . . . . . . . . . 68

4.2.3 Developmental Dynamics of Majors . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2.4 Developmental Dynamics of Minors with Behavioral Switching 71

4.2.5 Full Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3 Mathematical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3.1 Filippov System Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

v



CHAPTER Page

4.3.2 Positive Invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.3.3 Stability of the Extinction Equilibrium. . . . . . . . . . . . . . . . . . . . . . . 78

4.3.4 Interior Equilibria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3.4.1 Virtual and Regular Equilibria . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3.5 Dynamics on the Switching Boundary Σ . . . . . . . . . . . . . . . . . . . . . 85

4.4 Interacting Defense Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.4.1 Behavioral Plasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.4.2 Morphological Specialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.4.3 Maturation Time τ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.1 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.2 Broader Impacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

APPENDIX

A SUPPLEMENTARY MATERIAL FOR CHAPTER 2 . . . . . . . . . . . . . . . . . . . . . 124

B SUPPLEMENTARY MATERIAL FOR CHAPTER 3 . . . . . . . . . . . . . . . . . . . . . 130

C SUPPLEMENTARY MATERIAL FOR CHAPTER 4 . . . . . . . . . . . . . . . . . . . . . 134

vi



LIST OF TABLES

Table Page

1. Parameter Definitions and Dimensions for System ((3.1)) . . . . . . . . . . . . . . . . . . . . . . 44

2. Parameter Values for Simulations of System ((3.1)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3. Variable and Parameter Definitions for System ((4.5)) . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4. Parameter Values for T. angustula Stingless Bees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5. Summary of Model ((4.5)) Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

vii



LIST OF FIGURES

Figure Page

1. Variation Between Collectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2. Document Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3. Decision Probabilities and Latencies for Real Ants . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4. Diagram of Decision Process as a Markov Chain Model . . . . . . . . . . . . . . . . . . . . . . 20

5. Decision Curves and Latency as Functions of the Encounter Rate . . . . . . . . . . . . . . 24

6. Effect of Parameter Variation on Decision Outcomes and Latencies . . . . . . . . . . . . 28

7. Relation Between Latency and Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

8. Diagram of Model Transitions for System ((3.1)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

9. Phase Diagram for Symmetric 2D System ((3.3)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

10. Best Fit of Model ((3.1)) to Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

11. Time Series of Cumulative Number of Visits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

12. Bifurcation Diagram with Respect to Proportion of High-Attention Individuals . . 56

13. Average Cumulative Number of Visits to Novel and Familiar Feeders . . . . . . . . . . 57

14. Time Series of Preference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

15. Effect of Group Composition on Cumulative Number of Visits to Novel and

Familiar Feeders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

16. Local Sensitivity of Preference to Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 61

17. Model Diagram for System ((4.5)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

18. Allee Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

19. Model Behavior with Respect to ρ and θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

20. System Trajectories for “Non-Crisis”, “Pseudoequilibrium”, and “Crisis” Cases . 95

21. Proportion of Guards at Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

22. Effect of Maturation on Colony Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

viii



Figure Page

23. Bifurcation Diagram of Population Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

24. Model-Fitting Results Using Graphical Monte-Carlo Method . . . . . . . . . . . . . . . . . . 132

25. Linearity of Preference with Respect to Parameters in Model ((3.1)) . . . . . . . . . . . 133

ix



Chapter 1

INTRODUCTION

1.1 Colonies as Models for Variation

All biological systems, from genes to organisms, populations and ecosystems, exhibit

variation. Variation in nature underlies evolutionary change and allows biological systems to

adapt and persist in dynamic environments. Therefore, understanding the drivers of variation

is fundamental to study living systems. However, most biological research focuses only on

the average properties of populations, thus overlooking the effects of variation (McEntire

et al. 2022). Despite an increasing interest across biological disciplines in studying variation

and its consequences, most research considering variation focuses on a single level of

biological organization. Nonetheless, the effects of variation may cascade across scales of

biological organization (Mancinelli and Lodato 2018; Lemanski et al. 2019), like genetic

variation manifesting in phenotypic differences between individuals.

Given the multi-scale nature of living systems, determining the drivers of variation and

how it scales across levels of organization is central to all disciplines in biology. This is

especially true for collective systems where interactions between tightly interconnected

heterogeneous components give rise to highly nonlinear effects at the group level, like gene

regulatory networks, bacterial colonies or neural circuits. To account for these complex

cascading effects, the collection of empirical data must necessarily be complemented with

predictive quantitative models applicable to systems or levels that might be unfeasible to

observe experimentally (McEntire et al. 2022). To this end, this Dissertation undertakes

a mathematical study of how individual variation scales to collective variation using a
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biological model system that, while sharing fundamental characteristics with other collective

systems that are considerably difficult to manipulate, provide unique empirical tractability

at both the individual and collective levels: Eusocial-insects colonies.

Suzanne Batra introduced the term ‘eusocial’, or truly social, in 1966 (Batra 1966) to

describe the nesting behavior of certain bees. Today, the term includes all insect colonies

that share three characteristics (Wilson 1971):

• Reproductive division of labor: not all individuals are reproductive.

• Overlapping generations: multiple generations live together.

• Cooperative care of juveniles: individuals care for brood that is not their own.

All ants and termites, and some species of bees and wasps, are eusocial insects. Natural

selection acts on colony-level variation, since reproduction is hierarchical within groups.

Thus, the phenotypes of individual insects in colonies, freed from direct selective pressures,

can diverge and enable colony-level adaptive function.

Collectively, colonies acquire, store, process, and respond to environmental information

(learning, memory, decision-making), and they also become familiar with, value, and interact

productively with environmental features (exploring, exploiting) to meet existential needs

(survival, growth) (Navas-Zuloaga, Pavlic, and Smith 2022). In neuroscience, organisms

with such information-processing abilities are denoted “cognitive” (Shettleworth 2009;

Mazza et al. 2018). Thus, eusocial-insect colonies may be considered “collective brains”

emerging from interaction networks to process complex and dynamic environmental infor-

mation (Feinerman and Korman 2017; Sasaki and Pratt 2018; Couzin 2009; Solé, Moses,

and Forrest 2019). In fact, models developed to describe neural systems have been used to

understand the colony dynamics of decision making (Sasaki and Pratt 2018; Sasaki, Pratt,

and Kacelnik 2018; Marshall et al. 2009), foraging (Davidson et al. 2016), house-hunting

(Borofsky et al. 2020), task allocation (Gordon, Goodwin, and Trainor 1992), and activity
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propagation (Couzin 2009; Piñero et al. 2019). As this common framework suggests, the

benefits of studying the drivers of variation in eusocial-insect colonies extend beyond these

organisms to a variety of biological systems that comprise multiple units exchanging signals

to collectively acquire, store, and process information (Solé, Moses, and Forrest 2019). For

example, social bacteria (Dinet et al. 2021), slime molds (Vallverdú et al. 2018; Latty and

Beekman 2011), or immune systems (Piñero et al. 2019; Varela et al. 1988), which have

been classified as “liquid brains” because of their display of memory, search, or decision

making abilities (Solé, Moses, and Forrest 2019; Moses et al. 2019). Results from eusocial

insects may elucidate how variation in the collective information processing properties of

these systems emerges from the nonlinear interactions between their varying components.

1.2 Mathematical Models of Eusocial-Insect Behavior at Multiple Scales

Eusocial-insect colonies, like the other collective systems mentioned above, are complex

adaptive systems (Holland 2014; Mitchell 2009): The properties of their individual compo-

nents in isolation cannot describe their system dynamics, which are instead a product of the

non-linear interactions between units the properties that emerge from them (Solé, Moses,

and Forrest 2019; Camazine et al. 2003). Thus, understanding complex biological systems

requires both experimental biology, collecting measurements of system properties at differ-

ent scales in controlled conditions, and theoretical and computational models that integrate

these measurements into generalizable system descriptions allowing the identification of

emergent patterns that might be counterintuitive to predict a priori (Navas-Zuloaga, Pavlic,

and Smith 2022).

Models of eusocial-insect behavior cover a wide range of scales, from detailed brain

dynamics to colony-level population dynamics. At the level neural circuits, the same neural

3



network models used for human brains (Abbott and Kepler 2008) can be adapted to describe

sensory processing and decision making in the insect brain (Bazhenov, Huerta, and Smith

2013). These models provide insights about the neural mechanisms that drive behavioral

observations. However, this level of detail is not always fundamental to answer cognitive

questions or to predict behavior, which can be achieved by coarser models. For example,

drift–diffusion models, where brain dynamics are aggregated into a single decision variable,

are widely used for decision-making in human and non-human primates (Ratcliff et al. 2016),

and similar models have been applied to describe decisions by individual insects (Pavlic

et al. 2021; Robinson et al. 2011; Davidson et al. 2016). In these models, the decision

variable moves between decision thresholds as the subject accumulates evidence in favor of

each alternative, and a choice is made when a decision threshold is surpassed. Evidence

may be sampled directly from the environment, like honey bees or rock ants that only

initiate recruitment to a food source or potential nest if the quality of the site is high enough

(Robinson et al. 2011; Pratt 2019). Evidence might also come from interactions with

other insects, like harvester ants that start foraging only after enough encounters with other

incoming foragers (Pinter-Wollman et al. 2013), or rock ants that switch from slow to fast

recruitment after encountering enough nestmates evaluating a candidate nest (Pratt 2005b).

Thus, not unlike neurons in brains, insects in colonies integrate a variety of sensory inputs

to produce threshold-dependent signals, and individuals may differ in their thresholds and

sensitivities to stimuli (Navas-Zuloaga, Pavlic, and Smith 2022).

The exchange of signals within colonies generates networks of excitatory and inhibitory

interactions, which have been described through network models (Gordon, Goodwin, and

Trainor 1992; Miramontes, Sole, and Goodwin 2001) or agent-based models (Guo et

al. 2020; Mosqueiro et al. 2017; Pratt et al. 2005; Pavlic et al. 2021). While both approaches

describe colony dynamics at similar levels, modeling the characteristics and interactions
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of each individual in the group, the former incorporate no explicit representation of space,

while the latter facilitate the inclusion of spatial movement when relevant.

A coarser approach to modeling colony behavior is to divide the population into compart-

ments (e.g. workers of a specific age, task or cast Kang and Theraulaz 2016) and describe

changes in the average number of individuals in each compartment through mean-field

differential equations. These models generally offer analytical tractability compared to

agent-based models, which are computationally expensive to implement. Foraging and

house-hunting models of eusocial insects usually divide the colony into categories of workers

that are recruiting to a specific food source or candidate nest, or uncommitted and available

for recruitment (Marshall et al. 2009; Britton et al. 2002). Additional categories include

“searching” the environment or “following” a recruiter (Camazine and Sneyd 1991; Sumpter

and Pratt 2003; Pratt and Sumpter 2006). For binary decisions (e.g. between two nest

candidates), mean-field models of colony-level dynamics share the structure computational

neuroscience models of neural population activities in brains making two-alternative choices.

In both cases, two mutually inhibiting populations (either neural populations activated by

competing evidence (Usher and McClelland 2001) or groups of scouts recruiting for differ-

ent nests (Britton et al. 2002)) accumulate evidence for each option over time until some

threshold is reached (Marshall et al. 2009; Navas-Zuloaga, Pavlic, and Smith 2022). Thus,

similar decision models may be implemented at the level of single insects, as described

earlier in this section, or at the level of whole colonies as superorganismic decision-making

entities (Sasaki and Pratt 2018; Sasaki, Stott, and Pratt 2019; Sasaki, Pratt, and Kacelnik

2018).

5



Figure 1. Variation between collectives may arise from differences in the average properties
of their members (left) or from different mixtures of individuals belonging to different types
(right). Taken from (Navas-Zuloaga, Pavlic, and Smith 2022), with permission.

1.3 Individual Variation

The origins of variation between colonies and the mechanisms that maintain it are at the

basis of evolutionary change for eusocial insects (Pinter-Wollman 2012) because selection

acts at the level of the colony. Differences in the collective properties of colonies emerge

from the individual characteristics of their members in two broad ways: either the average

properties of workers vary between groups (Figure 1, left), or the mixture of different

types of individuals in the group (composition) changes between colonies (Figure 1, right)

(Pinter-Wollman 2012; Dussutour et al. 2009).

The first case, where colonies differ because of variation in the average properties of their

members, can be illustrated with two-alternative forced choice tasks in different species of

ants. Studies demonstrated that certain ant species have better decision-making performance

in dynamic environments than others, and this ability may arise from workers having a

relatively more random behavior regarding whether or not to follow the recruitment trail

(Dussutour et al. 2009). Thus, a higher level of behavioral noise in the workers of these

colonies compared to others can benefit species that exploit ephemeral food sources. In
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contrast, lower levels of noise are characteristic from species that exploit more permanent

food sources, and that also exhibit a decreased collective decision-making performance in

changing environments.

Similarly, differences in the average decision-making characteristics of rock-ant workers

between colonies affects collective decision performance during house-hunting. When

searching for a new nest, scouts will initiate a slow type of recruitment (tandem run) to

alternatives of high enough quality. However, if a scout encounters enough nestmates

evaluating a candidate nest, it switches to a fast type of recruitment (transport) (Pratt 2005b)

that quickly increases the quorum in the site and triggers further transports. Thus, a colony

where scouts have a very low quorum threshold to initiate transport might rush into a fast

migration to a nest that has not been evaluated by enough scouts, and might therefore be

a poor alternative. Evidence suggests that colonies decrease their recruitment quorum if

the migration is urgent and that colonies of different species have different prioritization

of speed and accuracy (Pratt 2005a; Franks et al. 2003). Thus, variation in the individual

decision parameters of workers across colonies determine collective success in different

environments where risks and nest availability are dynamic.

Individual variation within colonies is readily observable in terms of age, task or mor-

phology, but also present in less evident forms, like cognitive diversity between workers.

While heterogeneity might bring benefits to colonies (O’shea-Wheller et al. 2017), there are

tradeoffs associated with it. For example, theoretical models show that group modularity

regarding interactions, which inherently causes information loss, may improve decision accu-

racy in complex environments (Kao and Couzin 2019). Similarly, a model of contact-based

information spread in ants shows that a well-mixed population has the best information

transmission, but a heterogeneous spatial distribution prevents the transmission of pathogens

and other deleterious elements (Guo et al. 2020).
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Colonies with different mixtures of individuals differ in their collective properties. In

honey bees, there is cognitive diversity between workers in the form of “high-attention” and

“low-attention” profiles (Smith and Cook 2020). Colony composition regarding the relative

presence of these cognitive phenotypes affects group-level attention patterns (i.e. allocation

of foragers across potential food sources) (Lemanski et al. 2019). In fact, prevalently low-

attention colonies dedicate equal attention to novel and familiar sources, while colonies with

more high-attention foragers preferentially exploit familiar sources (Cook et al. 2020). Thus,

group composition shifts the balance between collective exploration (attention distributed

over multiple sources) and exploitation (foraging form a single source), which determines

foraging success in different environments.

While cognitive diversity is one possible dimension of heterogeneity, group composition

may vary in multiple dimensions. The allocation of workers to defense in stingless bees

provides an example of how multiple dimensions of diversity within a colony can shape

collective adaptation to the environment. Some species of stingless bees produce a minority

of large-bodied workers (majors) that are more efficient at nest defense than their smaller

nestmates (minors) but also require more resources (Grüter et al. 2012; Jones et al. 2012;

Zweden et al. 2011). The size of new workers depends on the amount of food that they

receive as brood (Segers et al. 2015), so the proportion of majors in the colony can be

regulated by the nurse bees. In fact, colonies exposed to a higher frequency of threats

produce a larger proportion of majors (Segers, Zuben, and Grüter 2016). While the size

of majors remains fixed through their lifetime, they exhibit some degree of behavioral

flexibility: they perform mostly nest maintenance and brood care for the first part of their

lives and then transition to guarding tasks as older bees (about two weeks old). However,

crisis situations require a response within minutes. This need is addressed by minors

rapidly switching from their regular foraging tasks to guarding positions that they would not
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take under regular circumstances. Thus, heterogeneity over the timescales of reproduction

(morphological specialization), development (maturation of majors into guards) and behavior

(task switching by minors) all contribute to collective defense against threats, and variation

in group composition along any of those dimensions affects colony survival in a dynamic

environment.

1.4 Document Structure

Understanding the causes and consequences of variation within and between living

systems is central to biology because variation (1) is ubiquitous across biological disciplines;

(2) drives evolutionary change; (3) allows acclimation to dynamic environmental conditions;

and (4) may cascade across levels of biological organization (McEntire et al. 2022). The

degree to which heterogeneity is adaptive in a system can control how variation scales from

individuals to collectives and quantitative models are a valuable tool to study how much

variation a system requires or can tolerate (Scheiner and Holt 2012; Mosqueiro et al. 2017).

In this Dissertation, I present a mathematical approach for understanding the constraints and

amplifications of variation in collective systems as it cascades across organizational levels.

Specifically, I model how collective differences emerge from variation at the individual

level in eusocial-insect colonies, which are ideal biological model systems because they

(1) exhibit high inherent diversity between workers and (2) can be easily observed and

manipulated at the individual and colony levels. In the following chapters, I model the

behavior of three species of eusocial insects as they engage in different collective processes

where increasing degrees of heterogeneity are relevant (see Figure 2). For each case, I

address the following questions:

• How does colony-level variation emerge from individual variation?
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Figure 2. Document structure: This work comprises three projects where increasing levels
of heterogeneity are relevant. Chapter 2 illustrates how, during house-hunting in rock ants,
differences in the average threshold-dependent response characteristics of workers between
colonies cause collective differences in decision-making. In Chapter 3, the mixture of
cognitive phenotypes in honey bee colonies affects collective attention allocation between
novel and familiar resources. In Chapter 4, multiple dimensions of group heterogeneity in
stingless-bee colonies have collective impacts on task allocation and colony survival.

• To what degree is individual variation adaptive for the colony?

Chapter 2 regards collective decision-making during house-hunting in rock ants where,

despite low within-group heterogeneity, differences in the average threshold-dependent

response characteristics of workers between colonies cause collective differences in decision-

making. In Temnothorax ants, colony migration to the best available nest relies on scouts

switching between recruitment behaviors based on the number of nestmates encountered

in a candidate site. How scouts sense quorum attainment and what determines when they

stop acquiring encounter information remains unclear. Phenomenological drift–diffusion

models from cognitive psychology are a good qualitative match to ant dynamics, but these
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models also predict unbounded decision latency when evidence is ambiguous. Furthermore,

these models do not explicitly incorporate the discrete encounter events experienced by

ants and instead assume information arrives continuously over time. I propose a more

mathematically tractable finite-state model of evidence accumulation by a mobile ant that

explicitly accounts for discrete ant-to-ant interactions and predicts finite deliberation times.

This approach provides a new lens for examining how cognitive processes in ants under

different conditions balance speed and accuracy at the individual and collective levels.

In Chapter 3, I study how group composition in regard to cognitive phenotypes in honey

bee colonies affects collective attention allocation between novel and familiar resources.

Recent studies have shown that discrete heritable attention phenotypes in individual honey-

bee foragers drive their foraging decisions, thus affecting colony fitness. In particular,

individual and collective preference for familiar or novel resources is dependent on the

relative presence of high and low attention individuals in the colony. Previous models

of honey-bee foraging have not included this phenotype-dependent preference. In order

to understand how colony-level preferential exploitation of novel and familiar resources

emerges from the interaction of individuals with different preferences and behavioral

tendencies, I develop an ordinary differential equation model of self-organized foraging

based on the two different phenotypes found among honey-bee foragers and identify the

individual processes that have the most impact on collective preference. Thus, the model

can guide future experiments focusing on the collective implications of heterogeneity in

social insect colonies by determining the individual behaviors that most heavily impact

collective decisions in the context of group diversity.

In Chapter 4, I consider group heterogeneity in multiple dimensions using stingless bees

as model organisms in the context of nest defense allocation. For these colonies, several

layers of worker diversity have collective consequences for labor division that determine
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colony survival and adaptation in dynamic environments. Tetragonisca angustula stingless

bees employ a combination of defensive strategies found across other social insects and

colonial animals: 1) morphological specialization (distinct soldiers (majors) are produced

over weeks); 2) age-based polyethism (young majors transition to guarding tasks over days);

and 3) task switching (small workers (minors) replace soldiers within minutes under crisis).

To better understand how these timescales of reproduction, development, and behavior

integrate to balance defensive demands with other colony needs, I developed a demographic

model using a Filippov ODE system to study the effect of these processes on task allocation

and colony size. This work elucidates the demographic factors constraining collective

defense regulation in social insects while also suggesting new explanations for variation

at different timescales in the defensive dynamics of other biological systems that are more

difficult to observe.
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Chapter 2

A MODEL FOR ANT QUORUM SENSING WITH BOUNDED LATENCY FOR HARD

DECISIONS

2.1 Introduction

Collective decision making is a process that involves information processing acting

at multiple scales. In the brain, decisions emerge from local interactions inside large

populations of excitable neurons, which in turn are highly complex cells, sensitive to the

concentrations of a range of neurotransmitters and their molecular dynamics. Other systems

that function as collectives, such as insect societies, also rely on local interactions between

group members—with their own complex intrinsic dynamics—to produce decentralized

group decisions where no individual needs global information (Camazine et al. 2003). In all

cases, adaptive properties observable at the level of the collective emerge from the non-trivial

interactions of individuals in the group. Thus, understanding these complex group-level

properties requires a study of both the networks of interacting individuals as well as the

dynamics of the individuals themselves. However, scaling detailed models of complex

individual behaviors to models of group-level behavior often becomes mathematically or

computationally intractable as the group size increases (Dada and Mendes 2011; Chopard

et al. 2018). Thus, the study of how cognition emerges from collectives benefits from

simplified, coarse-grained models of individual behavior (such as models of neurons as

binary elements in neural networks) that allow the exploration of richer dynamics at higher

levels of integration.

In the context of analyzing how individual decisions scale up to group-level decisions,
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social insects lend themselves as an ideal model organism for collective cognition. They

process information and act accordingly as a group relying only on the interactions between

partially informed individuals (Sasaki and Pratt 2018; Marshall et al. 2009). Moreover,

ants are known to exhibit neuron-like excitable dynamics, in the sense that their probability

of engaging in an activity increases through accumulated contacts with other ants (Pinter-

Wollman et al. 2013; Pratt 2005b; Davidson et al. 2016) like the probability of a neuron firing

increasing with excitatory synaptic inputs. However, the relatively low level of integration

of colonies compared to brains (Sasaki and Pratt 2018) makes the observation of individual

components much easier in the former. Thus, ants provide a tractable model system for

studying how complex individual-level dynamics couple to generate cognition at higher

levels of organization. This paper focuses on better understanding how collective cognition

in ants could be built from excitable dynamics of individual ants akin to excitable neurons

in the brain.

House hunting is a well-studied instance of collective decision making in ants, where

brain-like colonies are capable of choosing the best-quality site among multiple candidates

and then collectively migrating to it without splitting (Pratt 2005a; Marshall et al. 2009; Pratt

2019). In species of Temnothorax ants where nest-site selection has been studied in detail,

this emergent ability relies on an individual-level quorum rule in which a scout assesses

a candidate nest and switches, as in the onset of an activation potential in a neuron, from

slow recruitment mode (tandem run) to fast nestmate transportation mode (transport) after

experiencing a sufficiently high nestmate encounter rate in the candidate site (Pratt 2005b).

Bio-inspired models of similar processes often depend on counting historical encounters

to estimate encounter rate numerically (Pavlic and Passino 2010; Musco, Su, and Lynch

2017), but studies of counting in social hymenoptera suggest counting beyond four may be

beyond the abilities of ants (Dacke and Srinivasan 2008). How scouts reliably determine
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that the decision quorum has been reached without counting a large number of previous

encounters remains unknown, and how the scout determines how much evidence is needed

to be gathered to make such an inference is less clear.

The first unknown—how ants integrate sequential encounters to sense a quorum—could

be addressed using drift–diffusion models (DDMs), a popular way to characterize individual

decisions without the need of including the detailed neural activity of the subject (Ratcliff

et al. 2016; Ratcliff 1978). For example, Davidson et al. (2016) used this approach to

analyze how harvester ants use encounters with incoming foragers to determine whether to

go out to forage or return to the nest. A DDM models the mental evidence-accumulation

process of an individual facing a forced binary choice as a continuous 1D random walk—a

diffusion process, equivalent to Brownian motion or a Wiener process—that starts between

between two absorbing decision thresholds. Evidence in favor of one of the choices acts as a

continuous drift that drives the process to the corresponding threshold while the randomness

of diffusion can hasten or prolong the decision and even generate errors in decision making.

Although diffusion models have classically been used to describe decision processes in

humans and other primates, they have also been employed to describe the decision-making

dynamics of social insects (including honeybees and ants) both at the level of the individ-

ual (Davidson et al. 2016) and in the aggregate dynamics of the colony (Marshall et al. 2009;

Sasaki, Pratt, and Kacelnik 2018; Ayalon et al. 2021). In the case of colony-level DDMs,

evidence typically accumulates not within some internal state of each individual but rather

in some external physical variable or the spatial demographics of the colony itself. In fact,

quorum sensing itself has been conceptualized as an absorbing threshold of such a physically

embodied DDM where the number of individuals accumulating at a particular candidate site

is analogous to a randomly walking decision variable (Sasaki and Pratt 2018).

The second unknown—how subjects determine when the accumulation of information
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stops and the deliberative decision should be made—cannot be fully explained by diffusion

processes. In most DDM cases, when the evidence is reasonably strong, a decision threshold

will be reached after a finite expected latency. However, when the evidence is ambiguous

(i.e., net drift is very low), the expected decision time (or hitting time) predicted by diffusion

models tends to infinity. This is consistent with the classical, stereotyped paradox of

Buridan’s Donkey, which starves to death after being unable to decide between equally

accessible food piles. Determinism has been said to be at the heart of the paradox because

there is no rational, deterministic way to decide between equivalent choices (Weinstein and

Pavlic 2017). However, even stochastic decision models like continuous random walks can

take an indefinite time to break symmetric cases. Thus, in this paper, I propose an alternative

to the classical DDM that retains the ability to explain decision-making accuracy while not

also predicting unbounded decision latency for comparisons of equally desirable options.

Taking a more physical perspective implicates continuity as the source of the paradox of

Burdian’s Donkey. It is impossible to ensure that a discrete decision based on an input in

a continuous range of values can be made in a bounded duration of time (Lamport 2012);

even random walks facing near-symmetric conditions can, with some probability, fail to be

absorbed by a decision boundary when evolving through a continuous space where the gap

between the walker and the boundary can always be halved. However, random walks over

discrete spaces (e.g., the classic Gambler’s Ruin problem (Feller 1968), which predicts how

many turns of a game of chance until a gambler will lose all her money) can be guaranteed

to be absorbed in a finite amount of time. Motivated by this property of discrete random

walks, I develop here a model of decision making in a mobile ant based on a Markov chain

model (Papoulis and Pillai 2002) that is equivalent to a discrete random walk over a finite

number of states. Although qualitatively similar in structure to the continuous DDM, this

discrete model is simpler in form than the stochastic differential equations of a DDM and
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has convenient closed-form analytical expressions for decision distributions and speed.

Furthermore, it predicts bounded deliberation times and reproduces the accuracy and latency

observed in real ants.

2.2 Two-Alternative Forced Choice Decisions in Ants

In laboratory assays of nest-emigration behavior of Temnothorax ant colonies, Pratt

(2005b) observed that individual scout ants would sometimes leave a candidate nest site and

perform one of two different recruitment behaviors – tandem running (where the recruited ant

followed behind the scout) or transporting (where the recruited ant was carried by the scout).

When either recruitment behavior was observed, the conditions within the candidate nest

immediately before that decision were studied, and it was determined that scout decisions

are well predicted by the encounter rate with ants in the candidate nest. The blue circles in

Figure 3 show individual decisions by scouts with respect to the average encounter rate in

the candidate nest at the time of the recording. The green triangles in Figure 3 represent the

duration of time that each scout remained in the candidate nest before leaving to perform a

recruitment behavior. It is clear that tandem running is more common at lower encounter

rates and transporting becomes prevalent as the encounter rate increases. Intermediate

encounter rates produce both recruitment types at higher latencies, which is consistent with

the speed–accuracy trade-off apparent in decision-making processes in mammalian brains;

when the evidence is ambiguous, subjects take longer to make decisions and make less

accurate choices (Roitman and Shadlen 2002; Ratcliff et al. 2016).

I have reproduced the best-fit Hill function from Pratt (2005b) in the inset in Figure 3.

This function, usually applied in biochemistry to describe ligand binding as a function of

ligand density (Goutelle et al. 2008), was selected as a convenient two-parameter sigmoid
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Figure 3. Decision probabilities and latencies for real ants. During a colony migration,
scout ants were recorded as performing tandem runs (0) or transports (1) as the encounter
rate at the new nest increased (blue circles). Green triangles represent decision latencies,
measured as the time spent by the ant in the new nest before returning to the old nest and
performing either type of recruitment. Data from Pratt (2005b).

with a built-in “half-saturation” threshold—in this case, 0.17 encounters per second—

that could be interpreted as the critical encounter rate that separates the two forms of

recruitment. Similar formulations have been used in social-insect models to describe the

probability of a decision as a saturating function of evidence strength (Camazine et al. 2003;

Detrain and Deneubourg 2008). However, beyond being a convenient two-parameter

characterization, the choice of Hill function was essentially arbitrary. Here, I show that

a simple finite-state Markov chain model for binary decisions coincidentally produces

precisely this mathematical form for the curve predicting decision probabilities.

2.3 Markov-Chain Model of Decision-Making Dynamics

I focus on modeling the quorum-sensitive process of deciding between recruitment

types that occurs after a scout has decided to recruit for a given candidate nest site (but
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before the scout has committed to transport ants to it). Consequently, I only model evidence

accumulated from social information about quorum attainment; I do not model the earlier

process of deciding to recruit based on physical information about the candidate nest site.

A similar model focused on the decision to start recruiting to a site has been developed by

Robinson et al. (2011).

Consider a scout that has decided to start recruiting for a candidate nest. At time t = 0,

she enters the chosen nest and starts exploring the space. After some time t = T , she will

exit and return to her old nest and choose either to recruit another ant by tandem running or

switch to transporting behavior. I assume that the tandem-run–transport decision is made

inside the candidate nest and does not change after the ant exits. We refer to the duration T

spent in the candidate site during the decision-making process as the decision latency.

I describe the mental state of an ant at time t using a discrete random variable Xt that

can take integer values from −n to n for some finite “radius” n ∈ {1, 2, . . .} of discrete

states, as depicted by the line of 2n + 1 states in Figure 4. That is, each random variable

Xt has the range RX = {i ∈ Z : |i| ≤ n}. As I will describe below, this discrete (and

finite) random variable will act analogously to the evidence variable in a DDM. That is,

more evidence for a transport decision will lead to faster increases, and more evidence for a

tandem-run decision will lead to faster decreases. An ant decision is modeled to occur at

any time t∗ when |Xt∗ | = n; at that point, the ant will leave the candidate nest (ignoring any

additional contacts along the way) and start transporting if Xt∗ = n or continue to recruit

by tandem running if Xt∗ = −n. Initially, at time t = 0, I configure the random process

{Xt, t ≥ 0} such that Xt=0 = 0 (i.e., the ant enters the nest without any bias toward either

decision to transport or continue tandem running).

To incorporate the effect of encounters in the decision-making process, I model the

mental state Xt of the ant as a continuous-time Markov-chain process with two opposing
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Figure 4. Diagram of decision process as a Markov chain model in continuous time. The
mental state Xt is 0 when t = 0, then decays continuously by one at a constant rate 1/τ and
increases by one at a constant rate λ equal to the encounter rate.

rates and two absorbing states (Figure 4). The two rates are chosen based on the assumption

that frequent encounters are a cue of quorum attainment and infrequent encounters are

a cue that quorum has not been reached. In particular, the mental state Xt increases by

one at a rate λ, equal in magnitude to the encounter rate (i.e., inter-encounter times are

exponentially distributed with an average time between ant encounters of 1/λ). This rate

models the assumption that ant-to-ant encounters tend to increase an ant’s motivation

toward transporting. The mental state Xt decreases by one at a rate 1/τ , which I call

a “decay” rate (with τ being the average of the exponentially distributed time between

spontaneous decreases in the mental state Xt). This decay rate models the assumption

that long waiting times will tend to decrease an ant’s motivation toward transporting and

increase her motivation toward tandem running. A decision has been made once |Xt| = n.

Consequently, the range RX of the mental state is divided among two absorbing states, n

and −n, and 2n − 1 transient states only accessed during in-nest deliberation. This is a

discrete analog of a traditional DDM with two absorbing boundaries. However, whereas

a continuous DDM has an unbounded hitting time when there is no net drift, I will show

below that the analogous zero-drift case of τ = 1/λ will nevertheless have a bounded mean

hitting time.
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2.3.1 Master Equation of Deliberation by Discrete Random Walk

The model described above is effectively a random walk in continuous time over a

finite set of discrete sets. Consider some time t and mental state Xt. For any i ∈ RX , I

define vti ∈ [0, 1] to be the probability that the mental state Xt = i. I collect these 2n + 1

probabilities into a state vector

vt ≜ [vt−n, v
t
−n+1, . . . , v

t
0, . . . , v

t
n−1, v

t
n]

⊤ ∈ [0, 1]2n+1.

The continuous-time evolution of this state vector is governed by the master equation

dvt/ d t = Mvt, where M is the transition rate matrix

M ≜



0 0 0 0 ... 0

1
τ

−( 1
τ
+ λ) λ 0 ... 0

0 1
τ

−( 1
τ
+ λ) λ

... 0

0
. . . . . . . . . . . . 0

0 ... 0 1
τ

−( 1
τ
+ λ) λ

0 ... 0 0 0 0


,

and the initial probability vector v0 is such that

v0i ≡


1 if i = 0

0 if i ∈ RX \ {0}
.

Furthermore, if I focus only on the times of the discrete events where the state transitions

(i.e., due to an encounter or a decay), the corresponding embedded discrete-time jump
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Markov chain vk+1 = P⊤vk has a transition probability matrix

P ≜



1 0 0 0 ... 0

q 0 p 0 ... 0

0 q 0 p
... 0

0
. . . . . . . . . . . . 0

0 ... 0 q 0 p

0 ... 0 0 0 1


with p ≜

λ

1/τ + λ
and q ≜ 1− p =

1/τ

1/τ + λ
,

(2.1)

where Pij gives the probability of going from state i to state j at the transition instances (i.e.,

disregarding the holding time in state i).

2.3.2 Decision Probabilities (Limit Distribution)

To determine the probabilistic distribution of outcomes of the Markov-chain model

of ant decision making, I utilize the embedded jump chain described by Equation (2.1).

The jump-chain process is equivalent to a one-dimensional random walk in discrete time,

where in each discrete-event time k, the mental state Xk will increase with probability p

and decrease with probability q ≜ 1− p, where:

p =
λ

λ+ 1/τ
=

λτ

λτ + 1
and q ≜ 1− p =

1/τ

λ+ 1/τ
=

1

λτ + 1
. (2.2)

In the original continuous-time process, these steps are spaced apart by random, exponen-

tially distributed time intervals (i.e., holding/dwell times in each discrete state), but the

sequence of states in the original process and the discrete-time jump-chain processes is the

same.
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Finite-Time Convergence:

The discrete jump model described by Equation (2.1) effectively describes a classical

gambler’s ruin problem between two gamblers with a finite number of coins where, in each

round of play, one gambler gives the other gambler one of their coins. In the gambler’s ruin

problem, there is zero probability that such a game will continue for an infinite number of

rounds; there is unity probability that one gambler will be ruined. Similarly, in the discrete

jump model, a decision is guaranteed with unity probability to eventually be reached (for

details, see Supplementary Information).

Decision Distribution:

Given that the jump chain will reach an absorbing decision state (i.e., Tandem Run or

Transport) with unity probability, I next determine the probability distribution of the jump

chain reaching each of these two states. Using the jump chain, I can derive an expression

for the probabilities P T
i and PR

i for the probabilities that an ant in an initial state i ∈ RX

decides to recruit by transporting or tandem running, respectively. Trivially, P T
n = 1 and

P T
−n = 0 (and, likewise, PR

n = 0 and PR
−n = 1) because the ant starts in its terminal,

deciding state. For the cases where the initial state i is a transient state (i.e., |i| < n), the

probabilities can be expressed as the recurrence relationships:

P T
i = qP T

i−1 + pP T
i+1 and PR

i = qPR
i−1 + pPR

i+1.

Consequently, a closed-form solution for P T
i and PR

i can be found (for details, see Supple-

mentary Information). In particular, the probability that an ant starting in state i = 0 and
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Figure 5. Decision curves (left) and latency (right) as a function of the encounter rate λ. In
both graphs, n = 4 and 1/τ = 0.17.

then recruiting by transporting is:

P T
0 =

(p/q)n

(p/q)n + 1
=

(λτ)n

1 + (λτ)n
=

λn

(1/τ)n + λn
. (2.3)

Thus, this Markov-chain model yields the expected Hill function for the decision probability

curve identical to the one chosen to fit observations in Figure 3 with 1/τ = 0.17 and

n = 4.14. In the model, the “radius” n of the 2n+1 states is a whole number; consequently,

I plot Equation (2.3) with 1/τ = 0.17 and n = 4 in the left panel of Figure 5. For

low encounter rates, the probability of performing transports is low (purple curve), but it

approaches 1 as the encounter rate increases. When λ = λc ≜ 1/τ , there is an equal chance

of performing either recruitment type; thus, the average decay duration τ acts to set the

critical encounter rate while the number of states n shapes the sharpness of the decision

curve.

2.3.3 Decision Latency (Hitting Time)

The decision latency is the time spent in deliberation before making a decision. In the ant

data, I defined decision latency as the time an ant spends in the new nest before leaving and

recruiting by either tandem running or transporting. In this Markov-chain model, decision
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latency corresponds to the duration of time it takes for the system to reach an absorbing state

(i.e., the length of time the random walk takes to hit a decision barrier). As I have described

above, an infinite period of transience (i.e., avoiding an absorbing decision barrier) can only

occur with zero probability. Thus, I seek to describe the average decision latency (which

must itself be bounded).

Our approach to formulating the decision latency in the Markov-chain model is to scale

the expected number of transient steps before absorption by the average duration of time

between transitions. Let Si be the number of steps until absorption when starting from state

i = X0 ∈ RX . For the two absorbing states, S−n and Sn are both 0. After the first transition

occurs, the conditional expectation of the number of steps is Si+1 + 1 if the state increased

by one and Si−1 + 1 if it decreased. Consequently, expected value Si follows the recurrence

relation

Si = pSi+1 + qSi−1 + 1.

A detailed solution to this recurrence relation can be found in the Supplementary Information.

For the initial state i = X0 = 0, I obtain

S0 =


−

n
((

q
p

)n
− 1
)

(p− q)
((

q
p

)n
+ 1
) if p ̸= q,

n2 if p = q.

After substituting values for p and q and multiplying by the average holding time, 1/(λ+

1/τ), the decision latency from an initial neutral state i = X0 = 0 is

Lo ≜
S0

λ+ 1/τ
=


nτ (1− (λτ)n)

(1− λτ) (1 + (λτ)n)
if λτ ̸= 1,

τn2

2
if λτ = 1.

The latency curve L0 is a continuous function of the encounter rate, with a maximum

near λc ≜ 1/τ and lower values elsewhere (see Figure 5). In agreement with the finite
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convergence result from above, this expression for the expected decision latency does

not have infinite singularities; the expected latency value is always bounded. The shape

matches the experimental observations in Figure 3, with the lowest latency values for

very small or very large encounter rates and increased decision times near the threshold.

Furthermore, if the decay time τ is held constant, the peak latency occurs at an encounter

rate λmax ≤ λc. This effect results from the fact that reducing the encounter rate by a

small amount while keeping the decay rate constant effectively increases the residence time

1/(λmax + 1/τ) ≥ 1/(λc + 1/τ) while keeping a similar number of steps.

2.4 Discussion: Counterbalancing Speed and Accuracy in Individuals and Collectives

The best-fit parameters shown in Figure 3 are taken from a colony of one particular

species of Temnothorax ant during one migration event. However, the best-fit parameters

may vary even for the same colony in a different decision context. For example, it is known

that the population threshold required to trigger transport behavior (related to τ and λc) can

vary between species as well as with the urgency of the emigration conditions (Pratt 2005a).

Our discrete model provides novel insights into how speed–accuracy trade-offs at the level

of these individual parameters (τ and n) scale to speed–accuracy trade-offs at the level of

collectives.

2.4.1 Assessing Speed and Accuracy in Individuals

At the level of individuals, quorum-sensing speed is inverse to the decision latency.

Individual-level quorum-sensing accuracy could be defined in a number of ways, but for my

purposes I relate it to the sensitivity of the decision outcome to changes in the encounter
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rate near the critical value. In the probability curve P T
0 (λ) from Equation (2.3), the position

of the inflection point depends solely on the average decay time τ . So every value of τ

uniquely determines a critical encounter rate λc ≜ 1/τ where the decision maker is the least

accurate (i.e., the decision is most similar to random chance). Given a critical threshold λc,

a steeper slope at the inflection point implies a higher sensitivity to changes in the encounter

rate near the critical threshold. Decision makers that are more sensitive at this inflection

point will require a smaller move away from the inflection point to restore the same amount

of accuracy. In this sense, the decision process is more accurate when there is a sharper

transition from tandem running to transporting. I define sensitivity as the derivative of the

decision curve with respect to λ at the critical encounter rate λc ≜ 1/τ :

dP T
0 (λ)

dλ

∣∣∣∣
λ= 1

τ

=
nτ

4
.

Figure 6 shows the effect of parameter variation on the decision characteristics.

The main role of the average decay time τ is to fix the critical encounter rate λc ≜

1/τ (vertical dashed line in Figure 6) that separates decisions to recruit by tandem running

(encounter rates lower than λc) from decisions to begin transport behavior (encounter rates

higher than λc). However, this decay-based tuning of the critical encounter rate has a side

effect of also adjusting the mean decision latency for individuals at each encounter rate. In

particular, a smaller decay duration τ (solid lines in the right panels of Figure 6) not only

increases the encounter rate threshold λc, but it also reduces the peak latency for individual

decisions. That is, when an ant’s mental state intrinsically decays rapidly toward one

decision boundary, reaching the opposite decision boundary requires very high encounter

rates (and thus very high quorums in densely packed nest candidates). However, fast decay

rates (and the very fast encounter rates necessary to compensate for them) also correspond
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Figure 6. Effect of parameter variation on the decision outcomes (top) and latencies
(bottom) when n is varied (left) or τ is varied (right).

to fast decisions. Similarly, a high decay duration τ associated with a low critical encounter

rate λc also corresponds to longer decision times by individuals.

2.4.2 From Individual Performance to Collective Performance

The coupling between the critical encounter rate λc and the peak latency of individuals

suggests that λc (and, correspondingly, decay duration τ ) provides a potential mechanism

for trading speed and accuracy at the level of collective decisions. Quorum detection with

a high critical encounter rate λc requires the accumulation of many scouts in a candidate

nest, but the corresponding short decay duration τ means that scouts will leave nests early.

Because of the long time a tandem run takes to bring a new ant to a candidate nest, scouts

will be unlikely to significantly accumulate in nests in the high-λc case until there are

a large number of tandem-running ants recruiting to the same nest. Thus, as λc → ∞,
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collective decisions are resolved after longer periods of time and require a greater degree of

consensus among ants. Similarly, a low λc corresponds to a high decay duration τ , meaning

that ants will accumulate more readily. Furthermore, the low λc threshold only requires a

small number of ants to accumulate before triggering to transport. So, as λc → 0, colonies

effectively pick randomly as transporters simultaneously triggered for different nests race to

exhaust the supply of ants from the home nest to be transported. From this perspective, the

individual-level decay duration τ is a parameter that tunes a colony-level speed–accuracy

trade-off. That is, colonies made up of individuals with high critical encounter rates (low τ )

have long collective deliberation periods that are more likely to achieve consensus (if they

complete). Similarly, colonies made up of individuals with low critical encounter rates (high

τ ) effectively make random decisions among nest candidates.

Just as λc (or, equivalently, τ ) may be viewed as a parameter that tunes the collective-

level speed–accuracy trade-off, the “radius” n of the 2n + 1 mental states can adjust

the individual-level speed–accuracy trade-off and modulate the decision performance of

the collective. In particular, for any given critical encounter rate, n has the ability to

independently adjust the decision latency and accuracy. A larger n (solid lines in the left

panels of Figure 6) produces more accurate (i.e., steeper P T
0 ) but slower individual-level

decisions (i.e., larger Lo peak) with no effect on critical encounter rate λc. Thus, although

increasing critical encounter rate λc corresponds to decreased individual-level latency that

may prevent accumulation of a sufficient number of recruits to ever reach the threshold λc,

increasing n raises individual-level latencies, which increases both individual-level quorum-

detection accuracy and the chance of accumulation toward quorum. So although individuals

with high n spend longer deliberating in each nest at any encounter rate (Figure 7), the

chances of individuals accumulating in a nest are higher, and so the deliberation time of

the collective may be shorter. Similarly, because a small λc is generally associated with
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Figure 7. Characterization of the relation between latency and sensitivity of the decision
curve when the number of states n changes. In a, different curves i-v correspond to
different encounter rates λ, indicated as vertical lines i-v in panels b and c. Darker dots in a
and dotted lines in b and c correspond to low n values. Increasing n (ligther dots in a)
produces higher latencies and a sharper decision curve (solid lines in b and c). The trade-off
between sensitivity and speed is stronger for encounter rates close to λc (ii, iii) and
disappears for high values of λ (v).

a collective prioritization of speed and an individual prioritization of accuracy, n can be

reduced while still maintaining high individual-level accuracy. Thus, if λc (or, equivalently,

τ ) is viewed as a parameter that can be changed over short time scales to tune colony

speed–accuracy balance, then n may be viewed as a parameter that can be changed over

longer time scales to optimize performance for normal ranges of λc.
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2.5 Summary, Conclusions, and Future Work

In this paper, I proposed a simple discrete Markov-chain model for sequential evidence

accumulation during individual binary decisions and applied it to describe the choice

between recruitment types in Temnothorax ants. The model reproduced core features of

the latency and outcome characteristics from experimental observations of real ants while

providing a framework for examining how cognitive processes in ants under different

conditions balance speed and accuracy. Furthermore, because the model predicts bounded

decision latencies, it is the first, to my knowledge, to predict a logical connection between

critical encounter rate and worst-case decision latency. For small colonies, high critical

encounter rates may effectively eliminate transport as a plausible recruitment mode because

the concomitant low decision latencies will prevent those high encounter rates from ever

being met. Thus, this model helps to better understand the colony-level implications of

individual-level cognitive parameters of decision making. More generally, the finite-state

approach in this model suggests a novel path for characterizing neuron-like excitable

elements interacting in a group in order to understand collective cognition in multi-scale

cognitive systems.

The model’s discrete representation of the decision state space in continuous time

enabled the formulation of a bounded latency curve even for ambiguous evidence, where

previous continuous sequential-sampling models would predict infinite expected decision

times. This constraint on deliberation time regardless of the difficulty of the decision allows

the characterization of the trade-off between speed and accuracy for any possible level of

evidence (encounter rate) in the ant’s environment. The fact that only a region of the Time–

Sensitivity space in Figure 7 can be explored by the model is a representation of the latency

bound, and the shape of the region boundary describes the trade-off for hard problems.
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Optimality models have been proposed that suggest that apparent impulsiveness (i.e., a

favoring of rewards after shorter waiting times regardless of eventual rewards) can actually

be the outcome of behaviors that minimize opportunity costs in ecologically relevant

contexts (Pavlic and Passino 2010). The bounded latencies predicted by our model may

also be able to be viewed as heuristics for opportunity-cost minimization – forcing decision

makers to reach a decision quickly in order to avoid accumulating opportunity costs from

long-term deliberation.

2.5.1 Contribution Relative to Related Work

Our model is not the only one that can describe the features of the dataset in Figure 3.

In fact, there is a wide range of successful applications of continuous sequential-sampling

models to binary decisions in insects (Clemens, Krämer, and Ronacher 2014; DasGupta,

Ferreira, and Miesenböck 2014), colonies (Marshall et al. 2009), birds (Kacelnik et al. 2011)

and primates (Usher and McClelland 2001), among others (Ratcliff et al. 2016). My choice

of a discrete state space is based on the fact that encounters are discrete events that are

experienced in continuous time, but it also allows a characterization of symmetric cases that

are unbreakable by continuous-state methods. A commonly studied aspect of sequential-

sampling methods is their relation to the formulation of optimal decision-making behavior.

However, this model represents an individual decision process that is to be integrated with a

large number of other individual processes to produce an appropriate collective decision.

Furthermore, I demonstrate that patterns at the individual level can, when combined with

other ants in the same colony, counter-intuitively lead to qualitatively different patterns

in colony-level decision making. Thus, I have not characterized our model in terms of
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individual-level decision-making optimality because the net effect of setting individual-level

parameters on the cognitive characteristics of the colony is non-trivial.

The same Temnothorax nest-site selection data that inspired this study also recently

inspired a different quorum sensing model that incorporated excitable ants with finite

internal states (Pavlic et al. 2021). In that temporally discounted quorum sensing (TD-QS)

approach, ants are assumed to have only two states (quiescent or excited). Similar to our

model, encounter events move ants into the excited state, and long durations without an

encounter move ants back into the quiescent state. However, in that TD-QS model, there

are not absorbing decision states per ant. Instead, an ant’s random encounter with the exit

of the cavity forces a decision based on which of the two irreducible states is occupied.

Hypothetical ants whose decisions are described by this approach have finite decision

latencies (because of the certainty of an ant in a two-dimensional random walk in the planar

nest cavity encountering the exit of the cavity) and decision accuracy described by a Hill

function λ
1/τ+λ

where λ is the encounter rate and τ is the average dwell time in the excited

state. This accuracy is equivalent to the decision probability P T
0 when n = 1. In this case

in the model, an ant makes a decision after the first transition away from the initial state.

However, the parameter n available in my model allows for tuning of the steepness of

the transition region of the Hill function around the critical, half-saturation encounter rate.

Furthermore, unlike the TD-QS model, my approach provides analytical expressions for

average latency that explicitly depend upon the encounter rate within the cavity. Thus, this

analytically tractable model provides a better description (with n = 4) of the ant data from

Pratt (2005b) while also being able to mimic (with n = 1) the computational simplicity of

the event-triggered decision making of the other approach.
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2.5.2 Caveats and Future Work

Although the latency curves derived here have the desirable property of boundedness,

there are simple ways in which their quantitative estimation could be improved. On the one

hand, I did not account for an actuation time between decision and implementation, which

in this case corresponds to the gap between cognitively making a recruitment choice and

physically finding the nest exit. This could be estimated from the nest size and ant walking

speed and added to the predicted latency. On the other hand, I assumed a neutral initial state

between the two alternatives, whereas real ant scouts may have a bias towards a specific

recruitment modality. In fact, results from Pratt (2005a) suggest an initial bias toward

tandem running, given that ants seem to require a higher quorum for their first recruitment

act than they do for later ones. In the future, the effect of including asymmetric decision

boundaries could be analyzed by considering the initial mental state as an additional model

parameter.

While the model’s flexible structure allows straightforward modifications for improve-

ment, it also provides, in its present form, a simple framework to analyze how variation at

the individual level may cause groups to differ from one another. Variation across colonies

of social insects, arising from differences in the behavioral traits of their members, is at the

basis of evolutionary change (Jandt and Gordon 2016). There is evidence of interspecific

differences in the way that Temnothorax ant colonies balance speed and accuracy when

choosing a new nest, and there is also evidence that ant colonies may reduce their quorum

size under urgent emigration circumstances (Pratt 2005a; Franks et al. 2003). In the light

of the model, such observed collective differences can be mapped to individual decision

parameters, which can be verified experimentally by tracking the behavior of single ants

from different colonies. The model then provides a method to identify individual traits that
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are plastic enough to shift in response to unexpected environmental circumstances as well

as parameters that must be acted on by natural selection at evolutionary time scales.

This model is especially useful in the context of collective behavior, given its simple

structure and the fact that it provides a closed analytical formulation of individual deci-

sion characteristics. The expressions for decision probability and latency can be readily

implemented in colony-level mean-field or agent-based models as functions of the current

interaction rate without the need to simulate the complete Markovian process for single

decisions. Therefore, the accuracy and latency characteristics predicted by this model pro-

vide a path toward building new models of multi-scale phenomena that integrate individual

behaviors into collective decisions. Complex models of the brain are built from connecting

individual neuronal units that are modeled as coarse-grained switches that respond to rates

of interactions with other switches. Similarly, I have proposed a simple discrete-state model

of individual-level excitation that could be used as the basis for understanding the brain-like

collective cognition of interacting mobile ants.
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Chapter 3

FROM INDIVIDUAL PHENOTYPES TO COLLECTIVE BEHAVIOR IN HONEYBEE

FORAGERS: A MATHEMATICAL MODEL

3.1 Introduction

The emergence of collective behavior from local interactions between individuals is

common to a wide range of biological systems at many levels of organization, from bacteria

to superorganismic social-insect colonies (Piñero et al. 2019; Couzin 2007, 2009). Members

of such collectives can differ in many aspects, like their age, reproductive ability, or the

way they interact with others and the environment. However, quantitative models of

collective behavior generally assume a homogeneous population where every individual

follows the same behavioral rules (Seeley and Buhrman 1999; Couzin et al. 2002; Britton

et al. 2002; Marshall et al. 2009; Sumpter and Pratt 2003; Camazine and Sneyd 1991),

largely overlooking individual variation and its collective effects (Kao and Couzin 2019;

Valentini et al. 2020; Cook et al. 2020; Cook et al. 2019; Richardson et al. 2018; Delgado

et al. 2018; Mosqueiro et al. 2017; O’shea-Wheller et al. 2017; Pinter-Wollman 2012).

Social-insect colonies are exceptional model organisms to study how individual variation

scales up to collective behavior. Each colony can be conceived as a superorganism (Sasaki

and Pratt 2018; T. D. Seeley 1989; Behmer 2009), where local interactions between indi-

vidual insects and their environments produce a self–organized, decentralized system with

tasks distributed across different workers (Camazine et al. 2003; Beshers and Fewell 2001;

Borofsky et al. 2020). In these collectives, reproductive hierarchies cause natural selection to

act on the group level rather than the individual level (T. D. Seeley 1989; Thomas D. Seeley
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1997). Without direct individual selective pressures, there are more degrees of freedom

for individual phenotypes to diverge while maintaining group fitness, which enables the

emergence of heterogeneous social architectures. Moreover, colonies provide high empirical

tractability, where both individual and collective behavior can be experimentally observed

and manipulated. Thus, social-insect colonies constitute tractable collective systems of

naturally varying individuals (e.g. in age, genetics, morphology or cognitive properties) that

are experimentally accessible at multiple scales.

Particularly well studied among social insects are honey bees, which collectively perform

different tasks like brood care, nest maintenance or foraging. Empirical work has covered

multiple levels of organization, from the genetic basis of individual behavior to colony-level

function (Smith and Cook 2020; Lemanski et al. 2019). Recent studies have revealed distinct

heritable attention phenotypes among foragers, which manifest in their ability to learn to

ignore familiar, previously unrewarded stimuli (Bhagavan et al. 1994; Chandra, Hosler,

and Smith 2000; Chandra, Wright, and Smith 2010; Brandes 1991; Chandra et al. 2001).

Furthermore, the interaction between workers with different cognitive phenotypes drives

the division of labor in the colony (Cook et al. 2019). I focus on the effect of individual

cognitive variations on collective foraging and take a mathematical modeling approach

to guide future experimentation towards the most relevant individual processes regulating

collective decisions.

During collective foraging, colonies must allocate individuals to sample the environment

and exploit it in a way that guarantees sufficient resource intake (Thomas D Seeley 1995;

Hills et al. 2015). In honey bees, a small number of bees (called scouts) spontaneously

leave the hive in search for food and, once they find a source, they fly back to the hive and

may perform waggle dances to recruit other foragers to the patch they visited (T. D. Seeley

1989). In general, models of collective foraging dynamics assume that the population is
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homogeneous - every bee behaves according to the same rules, on average (Sumpter and

Pratt 2003; Camazine and Sneyd 1991). However, it is known that bees present behavioral

differences, and those impact the group foraging patterns. For example, individuals vary

in their tendency to collect nectar, pollen or both, as well as their propensity to explore

independently (scout) for new resources or follow the dance communication from other bees

that leads to already discovered resources.

Closely related to this task division are variations in the cognitive characteristics of

foragers. Cook et al. (Cook et al. 2019) found that scouting (independently leaving the

nest to search for food) is associated with high attention. Moreover, since attention profiles

are heritable in honey bees (Brandes 1991; Chandra, Hosler, and Smith 2000; Chandra

et al. 2001; Bhagavan et al. 1994), genetic lines for high- and low-attention bees can

be selected in the laboratory and functioning colonies can be assembled with arbitrary

mixtures of individuals from each line. These genotypes have been shown to have high

penetrance, that is, a bee genetically selected for high attention manifests high attention

behavior even when immersed in a social environment where the low attention phenotype

is predominant (and vice-versa) (Cook et al. 2020). This means that the distribution of

attention-related behaviors in the colony can be manipulated by altering the proportion of

bees from each line that constitute it, and thus the collective effects of individual phenotypic

variation can be observed. In fact, recent data (Cook et al. 2020) show that colonies display

preferential exploitation of familiar or novel resources according to their composition in

attention phenotypes. This poses the question of how genetically determined differences in

the attention profile of individual honey-bee forgers give rise to different collective foraging

preferences of the colony.

Previous models of honey-bee foraging have not included this phenotype-dependent

preference. Camazine, Seeley and Sneyd (Camazine and Sneyd 1991; Seeley, Camazine,
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and Sneyd 1991) proposed a model where every forager may initiate recruitment with

some probability dependent on the quality of the food source it found, and thus the colony

can keep track of variations in the profitability of known resources. The model matches

experimental data on visitation to different feeders, although it doesn’t include a mechanism

for the discovery of new resources or any form of individual heterogeneity. Later work

expanded on this model to include scouting (individual exploration for food sources), but

still considered a homogeneous population (Sumpter and Pratt 2003). The same holds

for models of honey-bee recruitment dynamics during house-hunting Britton et al. 2002;

Marshall et al. 2009 and recent work on collective foraging (Borofsky et al. 2020): in

general, all bees are modeled as behaviorally identical. A recent model of honey bee

foraging by Mosqueiro et al. (2017) included individual variation in the form of task fidelity,

or persistence. However, the focus of the model is colony performance in terms of overall

resource collection, rather than collective preference for certain resources in the form of

forager allocation.

In this paper, I study the effect of individual differences in the cognitive phenotypes of

honey-bee foragers on the colony tendency to exploit familiar resources or novel ones, using

a mathematical model of self-organized foraging based on attention profiles. I include the

new findings in characterizing individuals of different attention profiles and colonies with

different compositions of them. In particular, I study the following questions:

• How do colony-level differences in collective attention allocation (i.e. forager allo-

cation) to novel and familiar resources emerge from different group compositions in

relation to cognitive phenotypes?

• What are the individual processes that have the most impact on collective preference

for familiar or novel food sources?

In addressing these questions, the model suggest future research avenues for experimental
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methods focusing on the collective implications of heterogeneity in social insect colonies by

determining the individual behaviors that most heavily impact collective decisions in the

context of group diversity.

The paper is organized as follows. In Section 3.2, I provide a detailed derivation

of the differential equation model of honey bee foraging. In Section 3.3 I analyze the

properties of the model and provide theoretical results about its dynamics. In Section 3.4,

I describe the results from fitting the model to data to obtain parameter values, obtaining

bifurcation diagrams of forager allocation with respect to group composition, and performing

sensitivity analysis to determine which parameters have the most prominent impact on

colony preference for novel or familiar sources. Lastly, I summarize the results and indicate

directions for future work in Section 3.5.

3.2 Model Derivation

3.2.1 Previous Empirical Work

I base my model on the experiments conducted by Cook et al. (2020) regarding forager

allocation to Novel and Familiar feeders for different group compositions. Genetically

selected High and Low attention worker honey bees were grouped in different proportions

to form three types of colonies of 1300 individuals. In all colonies, half of the workers were

control bees that were not selected or tested for attention profiles. In “High” and “Low”

colonies, the other half consisted entirely of High and Low attention individuals, respectively.

In “Mix” colonies, the remaining bees were High and Low in equal portions. Control

colonies of equal size were used for comparison. Colonies were put in separate flight cages

and given two feeders to forage from each day: a “Familiar” one, and a “Novel” one. Visits
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to each feeder were recorded over time every day for three weeks. High colonies were found

to forage more than Low colonies and to preferentially visit the Familiar source, whereas

Low colonies exhibited no feeder preference. Low attention individuals within Low colonies

showed no preference, but those in Mix colonies preferentially visited the the Familiar

source. The data are publicly available ( https://doi.org/10.6084/m9.figshare.9775955.v6).

3.2.2 Model Equations

Suppose that a colony has two sources available: one that is familiar (some foragers have

visited it before) and one that is novel, like the experimental setting in (Cook et al. 2020).

I assume that all foragers in the colony can be in one of three possible states: Waiting in

the hive (W ), exploiting the Novel source (N ) or exploiting the Familiar source (F ). Every

forager has a “High attention” or “Low attention” profile that is genetically determined, and

that is indicated for each of the thee categories by the subscript h or l, respectively. Thus, I

have the six state variables shown in Table 1.

Consider a colony with P foragers, where a fraction α of them has a “High attention”

profile and the remaining (1 − α) is “Low attention”. I assume that the forager group

size remains fixed during the foraging day, so I have a closed population. Similarly, the

proportion α does not change over time since it is genetically determined.

I begin with a pool of W available foragers waiting in the hive. I denote Wh and Wl the

number of High and Low attention bees respectively, so that W = Wh +Wl.

Scouting: Available bees may spontaneously leave the nest to scout for new food

sources. Some of these searching bees might get lost and go back to waiting in the hive

(Sumpter and Pratt 2003). However, some of them will successfully find food and begin

foraging. I denote σh or σl the average rates at which High and Low attention bees scout
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and find resources, respectively. A fraction qi of the successful scouts of attention type

i ∈ {h, l} will exploit the familiar source, and the remaining (1− qi) will exploit the novel

one.

Recruiting: Bees that find a source may go back to the hive and recruit more foragers

to that source. I denote by N and F the number of bees committed to the Novel and Familiar

feeders respectively. In this model, all foragers committed to a source are recruiting for

it. This is not always the case: bees may exploit a source without performing recruitment

waggle dances (T. D. Seeley 1989)). Modeling this would require an additional “Dancing”

or “Recruiting” state (see (Seeley, Camazine, and Sneyd 1991; Sumpter and Pratt 2003)).

However, I stick to the simplest possible model of collective worker allocation (similar to

Marshall et al. (2009) and Britton et al. (2002)) to gain some insight about the interaction

of the two phenotypic groups. In an approach similar to Britton et al. (2002) model of

recruitment for house-hunting, foragers of type i committed to source X recruit waiting

foragers of type j at a rate

βixXiWj

where βix is the per capita rate of recruitment for type i bees.

Abandoning: Foragers exploiting a source will visit it repeatedly for some time before

abandoning it to go back to the hive. The rate at which foragers of type i leave source X is

δix, with 1/δix being the average time that the bee stays committed to the source.

A diagram of the resulting model can be observed in Figure 8 and is governed by the

equations in System (3.1)
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Figure 8. Diagram of the model transitions. Foragers become committed to a source by
either independent discovery (scouting) or recruitment, and eventually abandon the source
to go back to the hive.

High attention

dWh

dt
= δhnNh + δhfFh︸ ︷︷ ︸

abandoning

−Wh(βhnNh + βlnNl + βhfFh + βlfFl)︸ ︷︷ ︸
recruiting

−σhWh︸ ︷︷ ︸
scouting

(3.1a)

dNh

dt
= Wh(βhnNh + βlnNl)︸ ︷︷ ︸

recruiting

+σh(1− qh)Wh︸ ︷︷ ︸
scouting

− δhnNh︸ ︷︷ ︸
abandoning

(3.1b)

dFh

dt
= Wh(βhfFh + βlfFl)︸ ︷︷ ︸

recruiting

+σhqhWh︸ ︷︷ ︸
scouting

− δhfFh︸ ︷︷ ︸
abandoning

(3.1c)

Low attention

dWl

dt
= δlnNl + δlfFl︸ ︷︷ ︸

abandoning

−Wl(βlnNl + βhnNh + βlfFl + βhfFh)︸ ︷︷ ︸
recruiting

− σlWl︸︷︷︸
scouting

(3.1d)

dNl

dt
= Wl(βlnNl + βhnNh)︸ ︷︷ ︸

recruiting

+σl(1− ql)Wl︸ ︷︷ ︸
scouting

− δlnNl︸ ︷︷ ︸
abandoning

(3.1e)

dFl

dt
= Wl(βlfFl + βhfFh)︸ ︷︷ ︸

recruiting

+σlqlWl︸ ︷︷ ︸
scouting

− δlfFl︸︷︷︸
abandoning

(3.1f)

43



Name Definition Units
State Variables

Wh Number of waiting High attention bees ind.
Nh Number of High attention bees at novel feeder ind.
Fh Number of High attention bees at familiar feeder ind.
Wl Number of waiting Low attention bees ind.
Nl Number of Low attention bees at novel feeder ind.
Fl Number of Low attention bees at familiar feeder ind.

Parameters
α Proportion of High attention bees unitless
δhf Abandoning rate of the familiar source by High attention bees min−1

δhn Abandoning rate of the novel source by High attention bees min−1

δlf Abandoning rate of the familiar source by Low attention bees min−1

δln Abandoning rate of the novel source by Low attention bees min−1

σh Rate of successful scouting for High attention bees min−1

σl Rate of successful scouting for Low attention bees min−1

qh Fraction of successful High attention scouts going to familiar
source

min−1

ql Fraction of successful Low attention scouts going to familiar
source

min−1

βhf Recruiting rate by High attention bees to familiar source (ind. min) −1

βlf Recruiting rate by Low attention bees to familiar source (ind. min) −1

βhn Recruiting rate by High attention bees to novel source (ind. min) −1

βln Recruiting rate by Low attention bees to novel source (ind. min) −1

Table 1. Parameter definitions and dimensions for System ((3.1)). “ind.”= number of
individuals

In the following sections, I will perform mathematical analysis and simulations on this

model to address the following questions: (1) What is the effect of group composition (α) on

colony preference for novel or familiar sources? (2) What process in the foraging dynamics

(scouting, recruiting, abandoning) most heavily impacts colony preference?

3.3 Mathematical Analysis

I start by analyzing basic properties about Model ((3.1)) to ensure that it is biologically

meaningful. That is, all populations remain positive and finite. I will then analytically study
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the long-term behavior of the model in specific cases to understand how forager allocation

depends on the model’s parameters. This analysis will be complemented with numerical

simulations of the whole system under biologically realistic scenarios in Section 3.4.

Theorem 3.3.1. (Basic Dynamical Properties) Model (3.1) is positive invariant and bounded

in R6
+. Moreover, the population size P =

∑
i=h,l Wi + Fi +Ni is constant over time.

Proof. Let (Wh, Nh, Fh,Wl, Nl, Fl) ∈ R6
+. Then for i, j ∈ {h, l}, i ̸= j

dWi

dt

∣∣∣
Wi=0

= δinNi + δifFi ≥ 0

dNi

dt

∣∣∣
Ni=0

= Wh(βjnNj) + σi(1− qi)Wi ≥ 0

dFi

dt

∣∣∣
Fi=0

= Wi(βjfFj) + σiqiWi ≥ 0

since all parameter values are nonnegative and 0 ≤ qi ≤ 1. It follows that Model (3.1) is

positive invariant in R4
+ by Theorem A.4. in Thieme (2018).

Also note that the population P size remains constant over time, since

dWi

dt
+

dFi

dt
+

dNi

dt
= 0,

and therefore

dP

dt
=

d(
∑

i=h,l Wi + Fi +Ni)

dt
= 0

In particular, since all group sizes are positive and their sum is constant, the model is

bounded in R6.

Theorem 3.3.1 guarantees that the equations in System (3.1) model the population in a

biologically meaningful way, that is, no group size becomes negative or infinite. Moreover,
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the fact that the derivatives in System ((3.1)) add up to 0 ensures that a constant population

size P is maintained.

3.3.1 Homogeneous Population

First take a scenario where there is no phenotypic distinction inside the colony. This is

qualitatively equivalent to taking α = 1 in the model, thus virtually reducing it to the case

studied by Britton et al. (2002). For simplicity, I remove the attention subindex from the

variables and parameters. The equations are now

dW

dt
= −WβnN −WβfF + δfF − σsW + δnNh

dN

dt
= WβnN + σs(1− q)W − δnNh

dF

dt
= WβfF + σsqW − δfF

Since I assume that the colony size P does not change over time, then the system can be

reduced to two dimensions. For convenience, define also

Dn := σ(1− q) , Df := σq,

where Dn and Df are the rates at which scouts discover the Novel and Familiar sources,

respectively. Substituting,

dN

dt
= (P −N − F )βnN +Dn(P −N − F )− δnN (3.3a)

dF

dt
= (P −N − F )βfF +Df (P −N − F )− δfF. (3.3b)

The system may also be normalized, dividing both sides of the equations by P . The

resulting System (3.4) governs the change of the fractions x = N/P and y = F/P over

time:

46



dx

dt
= (1− x− y)β̃nx+Dn(1− x− y)− δnx (3.4a)

dy

dt
= (1− x− y)β̃fy +Df (1− x− y)− δfy. (3.4b)

where β̃i = βiP for i ∈ {x, y}.

Theorem 3.3.2. The normalized System (3.4) for a homogeneous population with two

sources has no periodic orbits in the region [0, 1]× [0, 1]

Proof. Let

dx

dt
= f(x, y) = (1− x− y)β̃nx+Dn(1− x− y)− δnx (3.5)

dy

dt
= g(x, y) = (1− x− y)β̃fy +Df (1− x− y)− δfy. (3.6)

Now I use Bendixon-Dulac criterion to show that no periodic orbits exist. Let ϕ(x, y) =

1
xy

∈ C1. It remains to show that
∂(ϕf)

∂x
+

∂(ϕg)

∂y
does not change sign in the region

[0, 1]× [0, 1]:

f ∗ ϕ =
(1− x− y)β̃n

y
+

Dn(1− x− y)

xy
− δn

y

g ∗ ϕ =
(1− x− y)β̃n

x
+

Df (1− x− y)

xy
− δf

x

which yields

∂(ϕf)

∂x
= −βn

y
− Dn

xy
− Dn(1− x− y))

x2y
= −Dn + βnx

2 −Dny

x2y

∂(ϕg)

∂y
= −Df + βfy

2 −Dfx

y2x

and lastly

∂(ϕf)

∂x
+

∂(ϕg)

∂y
= Df (−1 + x)x+Dn(−1 + y)y − xy(βnx+ βfy)
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which is 0 at (0, 0) and negative elsewhere in [0, 1] × [0, 1], since all parameters are

non-negative. Thus, the existence of ϕ rules out the possibility of periodic orbits for System

(3.4).

Theorem 3.3.2 guarantees that a homogeneous population with two resource options,

governed by System (3.4), will not oscillate stably between the two resources but rather

assymptitically approach a stable allocation of foragers between resources. Simulations

suggest that the full system ((3.1)) has equilibrium dynamics as well, i.e., no oscillations.

Theorem 3.3.3. For identical sources (β̃n = β̃f =: β̃, Dn = Df =: D, δn = δf =: δ),

System (3.4) has a single equilibrium point

x∗ = y∗ =
1

4

(
1− A− 2R−

√
(1− A− 2R)2 + 8R

)
where A = δ/β̃, R = D/β̃. This equilibrium is Locally Assymptotically Stable (LAS).

Proof. The nullclines of the system can be found by setting dx
dt

= 0 and dy
dt

= 0:

x nullcline:

y = − Axx

Rx + x
− x+ 1

y nullcline:

x = − Ayy

Ry + y
− y + 1

where

Ai =
δi

β̃i

, Ri =
Di

β̃i

.

for i ∈ {x, y}. The equilibrium points of the system are at the intersections of the

nullclines. When the sources are identical (the bees behave the same with respect to both),

then I have

Ax = Ay = A , Rx = Ry = R
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and the nullclines are inverses. They intersect at a unique positive point along the line

y = x, and the equilibrium value is

x∗ = y∗ =
1

4

(
1− A− 2R−

√
(1− A− 2R)2 + 8R

)
The equilibrium is locally asymptotically stable. This can be seen by noting that the

eigenvalues of the Jacobian matrix have the form

λ1 = 1− A− 2R− 4x∗ , λ2 = 1− A− 2x∗

so they are both real for real values of x∗, and negative, since

λ1 < λ2 =
1

2
(1− A+ 2R−

√
8R + (−1 + A+ 2R)2 < 0.

The phase portrait in Figure 9 summarizes the dynamics for the symmetric case. Since

there is a unique equilibrium point in this case, Theorems 3.3.3 and 3.3.2 ensure that, for

any positive population size, the allocation of foragers will converge to that point regardless

of the initial conditions.

3.4 Numerical Results

The analysis in the previous section covered qualitative results about the general dy-

namics of the model. Now, in order to obtain quantitative conclusions about the system’s

behavior in realistic conditions, I perform parameter estimation using experimental data

from Cook et al. (2020). With the resulting values, I perform numerical simulations, build
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Figure 9. Phase diagram for the symmetric 2D system, with one stable equilibrium point.
The dashed line is the y nullcline, while the solid orange line is the x nullcline. Since the
system is symmetric, they are inverse functions and the equilibrium point lies in the line
x = y. Darker arrow colors represent smaller magnitudes in the vector field. For this
diagram, A = 0.7 and R = 1.

bifurcation diagrams of colony-level resource preference with respect to group composi-

tion, and perform sensitivity analysis to identify the main parameters that drive changes in

colony-level foraging preferences.

3.4.1 Parameter Values and Experimental Data

In order to perform simulations and compare the model outcomes to experi-

mental results, I determine parameter values by fitting the model to the time se-

ries data provided in Cook et al. (2020). The dataset is publicly available (

https://doi.org/10.6084/m9.figshare.9775955.v6). To prevent over-fitting due to the

large number of model degrees of freedom, I make some assumptions and reduce the

number of parameters to fit. Namely,

• Population size: I estimate the foraging group size from the data in Cook et al. (2020),

using an approach similar to Seeley, Camazine, and Sneyd (1991). I average the

number of new visitors that go to the feeders every day, and thus get an estimate of
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the number bees that participate in daily foraging. Based on this calculation, I set

P = 20 foragers per day.

• Abandoning: I assume that all bees have the same rate of abandoning sources δ =

δhf = δhn = δlf = δln. Mosqueiro et al. (2017) measured the average number of

return trips to a feeder that a bee would perform before abandoning it (persistence),

as well as the inter-visit time. From their values, I get

δ =
1

(Persistence)(Inter-visit time)
≈ 1

2.86 trips ∗ 3.462 min/ trip
= 0.101 min−1

(see SI for more details). I fix δ at this reference value to perform the fitting.

• Scouting: Cook et al. (2019) showed that scouts in honey bee colonies have higher

attention than other foragers. Since the population in the model is divided into two

discrete “High” and “Low” types and I am interested in the collective results of this

heterogeneity, I set σl = 0 and fit to the data for σh. This means that only High

attention individuals scout in the model. A similar approach was taken in Mosqueiro

et al. (2017), where a fixed proportion of bees performs scouting and recruiting,

while the rest exclusively follow dances to discovered resources. I also fit for qh, the

proportion of successful scouts that commit to the Familiar feeder. This allows us

to quantify individual bias or preference by High attention individuals towards the

Familiar source. Note that, since I set σl = 0, the value of ql is unused.

• Recruitment: I assume that all bees have the same rate of recruitment β = βhf =

βhn = βlf = βln and estimate its value through model fitting. Cook et al. (2020) found

that most recruitment and following acts are performed by Low attention individuals

in colonies where there is an equal number of High and Low attention individuals.

However, High attention bees dance more vigorously and more of their dances are

followed. This does not clearly indicate a difference in the overall recruitment rates by

High and Low individuals. Moreover, I don’t expect a difference between recruitment
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Name Value 1 SD interval Source
β 0.00576 (ind.min)−1 [0.00567 , 0.00583] Fitted
σh 0.00205 min−1 [0.00171 , 0.00246] Fitted
qh 0.663 [ 0.643 , 0.685 ] Fitted
δ 0.101 min−1 (Mosqueiro et al. 2017)
P 20 ind. Data from Cook et

al. (2020)
α 62.5%, 37.5%, 12.5%,

25%
(Cook et al. 2020), expert
elicitation

Table 2. Parameter values used in simulations. Note that I use δ = δhf = δhn = δlf = δln,
and β = βhf = βhn = βlf = βln. I also assume that only High attention scout, so σl = 0
and ql is not needed.

rates to Novel and Familiar sources by Low attention individuals because they attend

equally to novel and familiar information (Cook et al. 2019) and the feeders are

identical in quality. While there could be a difference in recruitment by High attention

bees to Novel and Familiar feeders, it has not been quantified in previous literature.

In order to fit the model to data, I first obtain the average daily time series of visits to

the Novel and Familiar feeders from Cook et al. (2020). I obtain four datasets, one for each

colony type: High, Mix, Low and Control. Each dataset stores two average time series, one

for each feeder. I fit the model to all four datasets simultaneously using the Graphical Monte

Carlo method. Since the observations are count data, I calculate the negative log-likelihood

statistic for each dataset and minimize the sum of the four. For this, I run the model with the

different α values corresponding to the estimated proportion of High attention individuals

in each of the four colony types. These values are α = 62.5%, 37.5%, 12.5% and 25%

for High, Mix, Low and Control colonies, respectively (see SI for details). The best-fit

parameters are shown in Table 2. Details on the fitting process can be found in the SI.

The value of qh quantifies the bias of individual High attention bees to commit to the

Familiar source. The estimate shows that about 66% of successful scouts will commit to
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the Familiar source instead of the Novel one. This might be interpreted as scouts finding

both sources and choosing to initiate recruitment for the Familiar one more often, or by

most scouts remembering the general location of the Familiar resource and flying straight

to it to initiate recruitment (without comparing both sources). In any case, the fact that the

estimate is multiple standard deviations away from random chance implies that scouts learn

to recognize the Familiar feeder and biasedly commit to it.

The results of simulations with the best-fit model parameters are shown in Figure 10.

Compared to High and Mix colonies, recruitment to both feeders is slower in Low and

Control colonies and it takes more time for the system to reach equilibrium, that is, for

distribution of foragers between the two feeders to stabilize. High and Mix colonies present

a fast build-up of foragers in both feeders, population at Familiar grows and stabilizes

quickly. Thus, the time for convergence increases with α. These transients suggests why it

might be adaptive for colonies to maintain a High attention proportion that is close to the

Control type (about 25%). Too many Low attention individuals can be disadvantageous if

resources are ephemeral, since recruitment to floral patches would be slow and flowers may

be available for only a portion of the day (Thomas D Seeley 1995). Conversely, too many

High attention individuals can lead the colony to allocate too many foragers to exploitation

of familiar resources too fast, and loose flexibility to explore novel resources that might be

better in quality. In fact, High attention individuals are characterized by high attention and

poor reversal learning, which is a liability for keeping track of quality changes. Thus, they

may lock the colony on exploiting a relatively poor source by fixating recruitment to a site

that is familiar but no longer profitable.

Figure 11 shows the time series of the cumulative number of visits to both feeders, as

an indicator of the average foraging activity in a day. In line with the experiments, High

colonies are more active than the others, and the foraging activity decreases when α does. It
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Figure 10. Best fit of the model to the four datasets for High, Mix, Low and Control
colonies. Circles and triangles represent the average number of visits to the Familiar and
Novel feeders, respectively, from the data in Cook et al. (2020). Bands represent one
standard deviation from the average. Solid lines show the best-fit model simulation for each
alpha value. The parameter values used are in Table 2
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Figure 11. Time series of the cumulative number of visits to both feeders.

seems reasonable to expect colonies that forage to more collect more resources, and thus

it may appear counter-intuitive to see that Control colonies (representative of small wild

colonies) present relatively low foraging activity. However, foraging is a risky activity for

workers, especially in extreme weather conditions (like the summer in Arizona, when the

experiments were conducted). Thus, it might be adaptive for the group composition to

yield moderate foraging activity, especially for small colonies that are less robust to loss of

workers.

3.4.2 Effect of Group Composition on Collective Preference

Figure 12 shows the bifurcation diagram of the system’s equilibirum with respect to the

proportion of High attention individuals in the group (α). The diagram shows that only a

very small proportion of High attention individuals with moderate individual preference

for the Familiar source is required for producing collective preference. Nothing in the

dynamics of Low attention individuals yields a distinction between the sources except

recruitment by High attention bees, so the difference between visits to the Familiar and

Novel feeders comes exclusively from the biased commitment of scouts to the Familiar
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Figure 12. Bifurcation diagram of the model’s equilibrium with respect to the proportion of
High attention individuals in the colony (α).

source. Thus, Low attention individuals amplify the individual bias of High attention scouts

to generate collective tendency to exploitation of Familiar sources. Note that the difference

between the equilibrium number of workers at the Familiar and Novel feeders, regardless of

their phenotype, also increases with α, and so does the total number of active foragers at

equilibrium.

The bifurcation diagram allows us to infer the behavior of the system at equilibrium

as α varies. However, in order to better compare these results to literature, I examine the

behavior or the cumulative number of visits to each feeder after an average day of foraging.

In fact, preference in Cook et al. (2020) is measured as the difference in the total visit count

to each feeder at the end of the day. Experimental results show preference for High and Mix

colonies, but not in Low or Control colonies. The model captures this trend of increasing

collective preference with α, although it over-estimates preference in Low and Control

colonies (see Figure 13). However, at the level of High and Low attention individuals within

colonies, the model deviates from experimental observations. According to the experiments,

preference among High attention individuals after 6 hours is extremely small and similar for

Low and Control colonies, while it is large and virtually indistinguishable between High and

Mix colonies (see left panel in Figure 14). In contrast, the model predicts a gradual increase

in preference among High attention individuals as α increases (see Figure 15). Moreover,
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Figure 13. Average cumulative number of visits to the Novel (in yellow) and Familiar (in
red) feeders after 6 hours of foraging for High, Mix, Low and Control colonies. The left
panel shows the model results. The right panel shows experimental results using the dataset
in Cook et al. (2020)

the data show no preference among Low attention individuals in Low colonies (see right

panel in Figure 14), but a marked preference for Low attention bees in Mix colonies. Instead,

the model shows the largest preference among Low attention individuals for low α values

and a comparatively lower preference for Low attention bees in Mix colonies (see left panels

in Figure 15)

However, notice that Low attention individuals in Control colonies exhibit an increased

preference for the Familiar feeder around the middle of the foraging day (see Figure 14),

which then decays to low values after 6 hours. This observation is relevant because, outside

the experimental setting where feeders are fixed and available for the whole day, floral

patches in the wild might only be available for a portion of the day. Thus, the initial portion

of the foraging dynamics in the data is worth studying separately. I examine the model

results for a shorter time interval (3h hours) and compare to experimental observations (see
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Figure 14. Time series of preference, defined as the difference in the cumulative average
number of visits to the Familiar and Novel feeders, in the experimental setup from Cook
et al. (2020). The left and right panels show preference over time for High and Low
attention individuals, respectively, in each of the four colony types.

right panels of Figure 15). The preference patterns of High and Low attention individuals

in different colonies are considerably better captured now. In both the data and the model,

preference among High attention individuals increases with α (see left panel in Figure 14

and right panel in Figure 15 ). Contrastingly, preference among Low attention individuals

is largest for Mix colonies in both experiments and the model (the maximum difference

in the model occurs at α =36%, near the estimated 37% for Mix colonies). However, the

model fails to predict the lack of preference in Low colonies and generally underestimates

the magnitude of preference values.

3.4.3 Sensitivity Analysis

I now aim to identify the processes within the foraging dynamics that impact collective

preference the most. In order to do this, I perform sensitivity analysis of preference, defined

as difference between total number of visits to Familiar and Novel feeders after 6 hours of
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Figure 15. Effect of group composition on the cumulative number of visits to the Familiar
and Novel feeders after 6 hours (left panels) or 3 hours (right panels). The horizontal axis
shows α, the proportion of High attention individuals in the colony. The top and bottom
panels show, respectively, the total number of visits to each feeder (top) and the difference
between visits to the Familiar and Novel feeders, or preference (bottom). A fraction of 36%
High attention yields the maximum preference among Low attention individuals after 3
hours.

foraging (following Cook et al. (2020)), to each of the model’s parameters. I calculate the

sensitivity indices by perturbing each parameter by 1% while keeping the others fixed and

computing the percent change in preference with respect to the base value with unperturbed

parameters (Cacuci, Ionescu-Bujor, and Navon 2005). The results are summarized in

Figure 16.

The High attention parameters (indexed by h) have the most impact in High colonies, but

this is reversed to Low attention parameters in all other colonies, where the majority of the

population is Low attention type. Preference is most sensitive to recruitment (β) for lower
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α (Low and Control colonies), but most sensitive to persistence (δ) for larger α (High and

Mixed colonies). Thus, as the number of High attention individuals increases, the principal

process driving preference switches from recruitment by Low attention bees to abandoning

by High attention bees (inversely proportional to persistence). This is consistent with the fact

that only High attention individuals have an individual bias or preference in the model, so

collective preference depends largely on amplification through recruitment by Low attention

individuals for Low and Control colonies. For High colonies, most of the population is

inherently biased to committing to the Familiar feeder, so collective preference relies on

maintenance of this commitment by the most abundant attention phenotype, represented by

δhf .

In addition, the scouting bias qh for High attention bees has a larger sensitivity index

with respect to other parameters in Low colonies than all other colony types. Since there is

only a small portion of High attention individuals, collective preference is mainly a product

of amplification, and changes in qh are consequently amplified more than in other colonies.

3.5 Conclusion

This paper presents the first mathematical model of self-organized foraging in honey

bees that explicitly incorporates their learning phenotypes and relates them to foraging

preferences. Results qualitatively reflect the observed increased foraging activity in colonies

with higher proportions of High attention foragers (Figure 11), as well as the preference

for familiar sources in such colonies (Figure 13). The model reproduced the preferences of

High and Low attention individuals within colonies for short foraging times (3 hours) but

deviated from the data for longer foraging times (6 hours) (Figure 15).

Towards answering my first question, about how colony-level differences in collective
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Figure 16. Local sensitivity analysis for preference with respect to the model parameters.
The sensitivity indices are approximated as the percent change in preference in response to
a 1% change in each of the model parameters, keeping all others fixed.

attention allocation emerge from different group compositions, this mechanistic model

validates the empirical hypothesis that even low individual preference or bias, amplified

by efficient communication, is enough to produce collective preference at the observed

levels in different colonies (see Figure 12 and Figure 15). A better understanding of how

collective differences emerge, however, is related to the second question: which individual

processes are the main drivers colony preference for familiar resources over novel ones

or viceversa? The sensitivity analysis in Section 3.4.3 revealed the processes to which

collective preference is most sensitive, and examined how group composition affects the

impact of different foraging parameters on preference. I found that recruitment is the main
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parameter driving collective preference for low proportions of High attention individuals,

but abandoning rates become more relevant for higher proportions (Figure 16). Thus, as

the proportion of High attention bees increases, the collective tendency to exploit familiar

resources becomes more sensitive to the individual decisions to stop exploiting a given

source than to the social interactions of recruitment.

The framework introduced by this model can be used to study several aspects of individ-

ual variation and how it affects collective decisions. I showed here a scenario with variations

in individual tendency to scout and likelihood of commitment to different sources. However,

the same model could be used to to analyze differences in persistence across workers, like

in Mosqueiro et al. (2017), (changing the abandonment rates), or recruitment. Variation

exists across all of those processes, and that the observed colony-level variation is a product

the interaction between all of them. Using the general framework presented here, different

mechanisms could be studied in order to support or discard hypotheses about the origin of

the collective variation in activity and preference. Modeling efforts in identifying the most

relevant parameters in the collective decision–making process, in hand with experimental

observations determining the scale at which they vary, are fundamental to understand how

individual behaviors are integrated into collective cognition.
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Chapter 4

A MATHEMATICAL FRAMEWORK FOR ADAPTIVE COLLECTIVE DEFENSE:

CRISIS RESPONSE IN SOCIAL-INSECT COLONIES

4.1 Introduction

Efficiently allocating resources to tasks is an important function for any biological or-

ganism. At a fundamental level, resources necessary for biological function are both limited

and have a bounded replenishment rate (Caetano-Anollés et al. 2022). Consequently, there

are significant opportunity costs concomitant with any over-supply of resources to a task.

Furthermore, resource deficits can spontaneously occur with previously balanced allocations

if surrounding conditions suddenly change. These potential problems are amplified when

allocated resources are inflexible or unable to be quickly reallocated from one task to another.

Eusocial-insect colonies are valuable models to study these fundamental problems as their

size (relative to other biological collectives) allows individuals to be directly observed

and they can exhibit high degrees of diversity in worker specialization and must shape

worker demographics in a completely decentralized manner (Camazine et al. 2003; Gordon

2002; Beshers and Fewell 2001). Intricate adaptive colony dynamics and sophisticated

division of labor emerge exclusively from local interactions between individuals without

global information and result in a highly complex, distributed organization that is in certain

ways superior to hierarchical organizations with central control (Fewell 2003; Holbrook

et al. 2009).

The efficient allocation of finite resources to the task of colony defense is an important

problem to eusocial insects, which accumulate resources internally that can become targets
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for kleptoparasitic robbing and raiding behavior by other insects (Baudier et al. 2019).

Insect societies in general often exhibit some degree of specialization; for example, tasks

are commonly determined by age, which is known as age-based polyethism and corre-

sponds to specialization inside an age group (Baudier et al. 2019; Thomas D. Seeley 1982).

As with any other task, increased use of specialized workers for defense is subject to a

flexibility–specialization trade-off. On the one hand, specialization can increase group-level

energetic efficiency in the long term (Jeanne 1986), but it also slows reactions to sudden

changes (Dornhaus 2008), like unexpected threats (e.g., large raids from other colonies).

For the case of social insects, extreme specialization takes the form of morphologically

distinct individuals that perform a narrow range of tasks very efficiently but can be costly to

produce. On the other hand, individuals that can flexibly switch between tasks according to

demand allow a colony to quickly adapt to emergency needs, manifested in acute changes in

task demand (Dornhaus 2008; Jongepier and Foitzik 2016), but these flexible generalists

are individually less capable for some or all of the tasks in their repertoire. In this work,

I examine how a hierarchy of mechanisms in eusocial-insect colonies can regulate task

allocation to maintain colony growth and reproduction while dedicating sufficient workforce

to group defense in response to emergent threats posed by their dynamic environment.

Tetragonisca angustula stingless bees, which employ a combination of defensive strate-

gies found across other social insects and colonial animals: 1) morphological specialization

(distinct soldiers (majors) are produced over weeks); 2) age-based polyethism (young ma-

jors transition to guarding tasks over days); and 3) task switching (small workers (minors)

replace soldiers within minutes under crisis). To better understand how these timescales of

reproduction, development, and behavior integrate to balance defensive demands with other

colony needs,

The stingless bee Tetragonisca angustula is an ideal model organism to study the
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flexibility–specialization trade-off in collective defense as colonies employ multiple task-

allocation mechanisms ranging over different timescales and degrees of flexibility (Baudier

et al. 2019). Although worker morphological specialization is very rare among bees,

T. angustula colonies produce a minority of large-bodied workers (majors) that are more

efficient at nest defense than their smaller nestmates (minors) but also require more resources

to be produced (Grüter et al. 2012; Jones et al. 2012; Zweden et al. 2011). The size and

future developmental trajectory of adult bees at eclosion (i.e., emerging in adult form from

the pupal case) depends on their earlier feeding schedule while larval brood, which in

turn is determined by their rearing location and the feeding behavior of nurse bees (Segers

et al. 2015). Moreover, colonies exposed to a higher frequency of threats produce a larger

proportion of majors (Segers, Zuben, and Grüter 2016), likely due to adaptive changes in

how those brood are reared in response to the increased threat. In addition to morphological

specialization, age-based polyethism is also present in the form of age-dependent task

allocation. Young workers of all sizes perform mostly brood care and nest maintenance

whereas older bees (about two weeks old) tend to work outside the nest, either foraging in

the case of minors or guarding in the case of majors (Hammel et al. 2015). While age-based

polyethism provides the colony some degree of flexibility, crisis situations that require a

fast response are addressed through a third mechanism involving behavioral plasticity of

minors. In response to guard loss, minor workers replace guards within minutes (Baudier

et al. 2019), which provides a temporary defensive reinforcement to the colony during the

relatively longer developmental period while new major guards are produced.

Several quantitative models of task allocation have been studied for eusocial in-

sects (Beshers and Fewell 2001), but very little work has focused on the balance between

colony growth and defense mechanisms. Kang and Theraulaz (2016) developed a multi-

compartment differential-equation model for division of labor in social insect colonies that,
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although not focusing on defense, included age-based polyethism and task switching as

mechanisms regulating worker allocation. Their model does not account for morphological

specialization and assumes that all tasks contribute equally to the eclosion of new adults. In

a different study, Aoki and Kurosu (2003) explicitly modeled the production of morpholog-

ically distinct, non-reproductive soldiers based on their productivity for the colony. That

model does focus on the balance between defense and reproduction, but the chosen organism

has no allocation flexibility in terms of age-based polyethism or task switching. Recent

work by Strickland et al. (2019) uses stingless bees as inspiration to develop an algorithm

for allocation of guarding tasks in robots. Their study explores the value of a heterogeneous

guarding force with different defense tasks for both robotic swarms and stingless bees in

terms of performance, but it is not concerned with group growth or reproduction.

In order to better understand how social insects regulate colony growth and defense

efficiently, I have designed a demographic model of task allocation in T. angustula colonies.

The proposed model uses a system of differential equations that explicitly reflects pro-

cesses occurring at three distinct timescales (i.e., morphological specialization, age-based

polyethism, and behavioral plasticity) in relation to colony defense and growth. I use the

model to study plausible conditions under which the studied defense mechanisms work in

tandem to improve collective defense. Specifically, I address the following questions:

1. How do the parameters regulating morphological specialization, age-based polyethism,

and behavioral plasticity impact the colony size and task allocation within the colony?

2. What degree of behavioral plasticity allows the colony to transiently compensate for

loss of defenses without maintaining an unnecessary population of inefficient minor

guards?

The remainder of the paper is organized as follows. In Section 4.2, I derive an ordinary-

differential-equation model to describe the population dynamics and task allocation within
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T. angustula stingless bee colonies. In Section 4.3, I provide a theoretical analysis of the

model’s dynamical properties. In Section 4.4, I study the interaction between morphological

specialization, age-based polyethism, and behavioral plasticity for colony survival, growth

and task allocation through bifurcation analysis and simulations in biologically realistic

scenarios. Lastly, I include concluding remarks and future work in Section 4.5.

4.2 Model Derivation

In this section, I derive a dynamical model of task allocation in stingless bee colonies that

includes: 1) morphological specialization, 2) age-based polyethism, and 3) task switching.

4.2.1 Worker Types and Task Types

I assume that all adult bees in a colony are either large-bodied majors (i.e., specialized

for defense tasks) or smaller minors according to their body size at eclosion. This accounts

for the morphological specialization observed by Grüter et al. (2012) and Segers et al. (2015).

Because my focus is defense regulation, I consider only two types of tasks that majors and

minors may perform: guarding or non-guarding. Both majors and minors begin their lives

doing non-guarding tasks, but majors mature twice as fast as minors and spend the last half

of their lives as defensive “soldiers” in guarding tasks (guards herein). However, minors

only transition to guarding when there are sudden deficits in guarding and otherwise perform

only non-guarding tasks. Thus, at any time, all adult individuals can be divided among four

possible compartments:

• Major Non-guard (W ): large-bodied bee performing non-guarding tasks

• Major Guard (G): large-bodied bee performing guarding tasks
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• Minor Non-guard (w): smaller-bodied bee performing non-guarding tasks

• Minor Guard (g) smaller-bodied bee performing guarding tasks

Based on context, the variables (W,G,w, g) will refer to either the number of adult bees

in each compartment or the name of the compartment itself. With this nomenclature, the

population size P , subject to demographic changes, can be written as

P := W +G+ w + g.

Next, I describe the dynamic fluxes into and out of these four compartments, which are
summarized in Figure 17.

4.2.2 Production of New Major and Minor Workers

The queen lays eggs at an average rate Λ; however, I assume that the G+ g adult bees

performing guarding tasks do not contribute to brood care. This assumption is based on

the experimental observation that guards (G and g) mainly patrol, hover, or stand near the

nest entrance (Hammel et al. 2015). So the fraction of eggs that successfully eclose to

adults depends on the size of the working non-guard population, W + w. Consequently, a

colony consisting entirely of guards (i.e., P = G + g) and no workers (i.e., W = w = 0)

will not have a positive growth rate in this model, and so there is a trade-off between

growth and defense that manifests through devoting resources to guards or workers. To

describe the ecolsion rate of new adults, I follow Kang and Theraulaz (2016) and use a Hill

function (Goutelle et al. 2008):

Λ
(W + w)2

(W + w)2 + b2
=

1

1 +

(
b

W + w

)2

where the half-saturation constant b represents the number of non-guarding workers (W +w)

required for the eclosion rate to be half of the egg-laying rate Λ. The Hill exponent of 2
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Figure 17. Model diagram. Eggs are laid at a constant rate Λ by the queen and a fraction of
those, dependent on the non-guarding population, successfully eclose as adults (see text for
more details). A percent ρ of the newborns are majors, the rest are minors. Young majors
are workers inside the nest and transition to guarding tasks after a maturation time τ . Then
they die at a rate µG. Minors usually perform non-guarding tasks and die at a rate µw, but if
the proportion of guards in the colony drops below a threshold θ, they replace them as
guards at a rate δ. Minor guards die at a rate µg. The Iverson (1962) bracket [·] is 1 when its
predicate argument is true and 0 otherwise.

provides a type-III functional response where eclosion rate accelerates at low numbers of

non-guard workers (i.e., when there is a high demand for nurses and foragers) but then has

diminishing marginal returns at high numbers of workers (i.e., as brood-rearing demand is

met).

Experimental studies have shown that the size of the adult bees is determined before

eclosion by the feeding schedule that they experience as larvae (Segers et al. 2015) and

that colonies exhibit two distinct body sizes corresponding to major and minor bees (Grüter

et al. 2012). Guided by these facts, I assign a proportion ρ ∈ (0, 1) of the newly emerged
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adults to be majors (large-bodied bees, specialized for defense) and the remaining 1− ρ to

be minors (smaller-bodied bees, primarily taking part in non-guarding tasks).

Evidence suggests that colonies can regulate the proportion of majors produced in the

long term according to environmental threats (Segers, Zuben, and Grüter 2016). However,

bees need approximately 5–6 weeks from egg to eclosion plus an additional 2 weeks of

maturation to become guards, which means that rearing a new generation of guards requires

7–8 weeks (Segers, Zuben, and Grüter 2016). Thus, changes in the proportion of majors

take approximately 2 bee lifespans to have an effect. In this model, I assume a constant

proportion ρ and manipulate this parameter to observe its effect on system trajectories.

4.2.3 Developmental Dynamics of Majors

Majors perform in-nest tasks or foraging when they are young and transition to guarding

when they reach middle age (Hammel et al. 2015). Once they start guarding, going back

to non-guarding tasks is rare (Baudier et al. 2019). Recall that W and G represent the

number of majors performing non-guarding and guarding tasks, respectively; I let τ be the

average W -to-G maturation time for majors to start guarding after eclosion. Because majors

transition into guarding at a relatively young age, I have omitted a mortality rate for major

non-guards for simplicity. Mature major guards (G) die at a rate µG (see Figure 17). Thus,

the life of majors is modeled by the system:

dW

dt
= Λ

(W + w)2

b2 + (W + w)2
ρ︸ ︷︷ ︸

eclosion

−1

τ
W︸ ︷︷ ︸

maturation

dG

dt
=

1

τ
W︸︷︷︸

maturation

−µGG︸ ︷︷ ︸
death

(4.1)

The parameter τ implements age-based polyethism in the model, which is the correlation of

age and task within insect colonies. It determines the time needed to raise a new generation
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of guards, and thus it delays the effect of changing the proportion of majors produced, ρ, on

colony defense. I will study how τ interacts with ρ in determining the availability of guards

for the colony and how these two parameters relate to the process of guard replacement by

minors in case of emergency.

4.2.4 Developmental Dynamics of Minors with Behavioral Switching

Under normal conditions, minor workers perform in-nest tasks during young and middle

age and switch to foraging when they reach old age (Hammel et al. 2015). I denote by w

the number of working minors in all of those tasks and µw their average mortality rate. The

nominal life of a worker is therefore represented by:

dw

dt
= Λ

(W + w)2

b2 + (W + w)2
(1− ρ)︸ ︷︷ ︸

eclosion

−µww︸ ︷︷ ︸
death

. (4.2)

However, in the absence of guards G (e.g., due to a crisis where guards are lost after a raid

by an invading colony), minors adopt guarding behavior. When guards were removed from a

natural colony by Baudier et al. (2019), tracked minors were observed replacing guards just

a few hours later. Thus, non-guarding minors w can transition to guarding minors g under

the right conditions. To model this behavioral switch in minors, I assume that replacement

occurs only when the total number of guards G + g in the colony drops below a fraction

θ of the total population P (i.e., when (G + g)/P < θ). This characteristic models the

scaling of guard demand with colony size. Furthermore, eusocial insects are known to

exhibit density-dependent behaviors that are responsive to changes in local encounter rate .

Consequently, the guard density (G+g)/P may be able to be inferred by individual workers

using only local encounter information. Thus, I assume that the rate of replacement is a

function of the per-capita probability of finding a guard among all nestmates ((G+ g)/P ).
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Based on the typical fraction of guards in wild colonies (Hammel et al. 2015), the nominal

value of this ratio is between 1 and 6%; I assume that workers have the ability to detect

drops in guard ratio to below this value.

For simplicity, and to emphasize the difference of timescales between the behavioral

replacement and developmental maturation processes, I also assume that replacement is

binary and instantaneous; it is non-existent while
G+ g

P
> θ, and it happens at a rate δ

when
G+ g

P
≤ θ. So the behavioral w-to-g replacement rate is:

δ

[
G+ g

P
≤ θ

]
(4.3)

where [·] : {T, F} 7→ {0, 1} denotes the Iverson bracket (Iverson 1962). That is,

[
G+ g

P
≤ θ

]
=


1,

G+ g

P
≤ θ

0, otherwise
.

Thus, combining ((4.2)) and ((4.3)), the general population dynamics of minor work-

ers (guarding and non-guarding) facing potential crisis situations is the Variable Structure

System (VSS) (Young and Özgüner 1999):

dw

dt
= Λ

(W + w)2

b2 + (W + w)2
(1− ρ)− µww−

[
G+ g

P
≤ θ

]
δw︸ ︷︷ ︸

replacement

dg

dt
=

[
G+ g

P
≤ θ

]
δw︸ ︷︷ ︸

replacement

−µgg︸ ︷︷ ︸
death

. (4.4)

In this system, the switching behavior acts as a bang–bang control (Bellman, Glicksberg,

and Gross 1956) on w-to-g replacement so as to regulate the guard ratio (G+ g)/P toward

threshold parameter θ ∈ (0, 1). The magnitude of this threshold parameter represents how

tolerant minors are to guard loss. In the ecologically relevant case where minor workers are

responsible for most in-nest non-guarding work, the value of θ corresponds to an inherent
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trade-off in task allocation. If minors are too tolerant to guard loss (low θ), their failure

to replace lost guards may leave the colony vulnerable for a long time before the next

generation of guards is mature. However, for high values of θ, minors switch to guarding

tasks even when a relatively high proportion of the colony is already guarding, and so they

will not contribute much to defense and will instead fail to fulfill other tasks needed by the

colony. In the coming sections, I will study how the replacement threshold (θ) interacts with

the slower processes of maturation and production of majors to keep colony defense and

growth balanced.

4.2.5 Full Model

Combining ((4.1)) and ((4.4)) results in an autonomous ODE VSS that governs the

general population dynamics of the colony:

dW

dt
= Λ

(W + w)2

b2 + (W + w)2
ρ− 1

τ
W

dG

dt
=

1

τ
W − µGG

dw

dt
= Λ

(W + w)2

b2 + (W + w)2
(1− ρ)− µww −

[
G+ g

P
≤ θ

]
δw

dg

dt
=

[
G+ g

P
≤ θ

]
δw − µgg,

(4.5)

where a complete list of variables and parameters is summarized in Table 3. The reference

parameter values that will be used throughout the analysis are in Table 4. Most values are

taken from the literature from T. angustula stingless be colonies, but some are not found

directly and must therefore be assumed. More details can be found in Section C.3.

The proposed model incorporates all three mechanisms involved in colony defense

by T. angustula stingless bees: production of major guards, adjustable over generations
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Name Definition Units
State variables

W number of non-guarding majors nbr
G number of guard majors nbr
w number of non-guarding minors nbr
g number of guard minors nbr
P total population size nbr

Parameters
Λ egg-laying rate of queen nbr/day
b nbr. of non-guarding workers for Λ/2 eclosion rate nbr
ρ fraction of newborn majors -
τ maturation time of bees days
µG death rate of guarding majors 1/days
µg death rate of guarding minors 1/days
µw death rate of non-guarding minors 1/days
δ guard replacement rate for minors 1/days
θ replacement threshold for fraction of guards nbr

Table 3. Variable and parameter definition

and mediated by the fraction ρ; maturation of such majors from non-guarding tasks to

defensive guarding tasks (age-based polyethism), reflected in the maturation time τ ; and

quick replacement of guards by minor bees in case of emergency, where replacement rate δ

is triggered when the guard ratio falls below threshold θ. This is the first mathematical model

to include all three mechanisms in relation to colony defense in polymorphic eusocial insects,

and specifically in bees, where morphological castes (Grüter et al. 2012) and replacement

behavior (Baudier et al. 2019) have been described only recently.

4.3 Mathematical Analysis

I now analyze the model described in Section 4.2.5 to study how stingless bee colonies

regulate colony growth and defense through mechanisms acting on three different timescales.
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Name Value/Range Source

Λ 154 ind./day (Koedam, Brone, and Van Tienen 1997)

b 700-1300 Assumed

ρ 1-6% (Hammel et al. 2015)

τ 20 days (Hammel et al. 2015)

µG [
1

6.9
,
1

2.9
] days−1 (Grüter, Kärcher, and Ratnieks 2011)

µg [
1

6.9
,
1

2.9
] days−1 (Grüter, Kärcher, and Ratnieks 2011)

µw [
1

35
,
1

20
] days−1 (Grüter, Kärcher, and Ratnieks 2011; Hammel et al. 2015)

δ ≥ 4 days−1 (Baudier et al. 2019)

θ 0.2− 1.2% Assumed

Table 4. Parameter values for T. angustula stingless bees. For Λ, I use the average value of
6.41 eggs laid per hour reported by Koedam, Brone, and Van Tienen (1997) and multiply by
24 hours to get an approximate daily rate. For b, I know that newly founded colonies have
about 500-1000 workers Van Veen and Sommeijer (2000) and I assume the Allee threshold
Eb

− must be well below this range. I take an interval around b=1000, which, for
Λ = 154, τ = 20, µG = 1/5.4, µg = 1/3, µw = 1/28, δ = 4, ρ = 0.06, yields an Allee
threshold of 250 individuals. For θ, I assume that it must be below γb for natural colonies,
since they have no minor guards. With the same parameter values, I calculated the range for
θ corresponding to ρ between 0.01 and 0.06.
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Specifically, I will study how the maturation time of majors and replacement behavior of

minors affects the impact of major production on guard availability and colony size.

4.3.1 Filippov System Description

The Full Model ((4.5)) is a Filippov system Filippov 1988; Meza et al. 2005; Silveira

Costa and Meza 2006; Boukal and Kivan 1999 which can be converted to a generalized

form. Let H(Z) := (G+ g)− θP with vector Z = (W,G,w, g)T , and

FSc(Z) =



Λ
(W + w)2

b2 + (W + w)2
ρ− 1

τ
W

1

τ
W − µGG

Λ
(W + w)2

b2 + (W + w)2
(1− ρ)− µww − δw

δw − µgg,


, (4.6)

FSb
(Z) =



Λ
(W + w)2

b2 + (W + w)2
ρ− 1

τ
W

1

τ
W − µGG

Λ
(W + w)2

b2 + (W + w)2
(1− ρ)− µww

−µgg


, (4.7)

Then System ((4.5)) can be rewritten as the following generalized Filippov system

Ż =


FSc(Z), Z ∈ Sc,

FSb
(Z), Z ∈ Sb,

(4.8)

where Sc =
{
Z ∈ R+

4 | H(Z) < 0
}
, Sb =

{
Z ∈ R+

4 | H(Z) > 0
}

are two regions divided

by the discontinuity manifold

Σ =
{
Z ∈ R+

4 | H(Z) = 0
}
.
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I denote System ((4.5)) defined in region Sc as Crisis Mode with Replacement and Sys-

tem ((4.5)) defined in region Sb as Non-Crisis Mode without Replacement. Definition 4.3.1

defines two types of equilibria relevant to this context Di Bernardo et al. 2008; Kuznetsov,

Rinaldi, and Gragnani 2003.

Definition 4.3.1. A point Z∗ is called a regular equilibrium of System ((4.5)) iff

FSc(Z
∗) = 0, H(Z∗) < 0 or FSb

(Z∗) = 0, H(Z∗) > 0.

Alternativelty, a point Z∗ is called a virtual equilibrium of System ((4.5)) iff

FSc(Z
∗) = 0, H(Z∗) > 0 or FSb

(Z∗) = 0, H(Z∗) < 0.

In the following sections, I will prove that System ((4.5)) is positive invariant (Sec-

tion 4.3.2) with a trivial Extinction Equilibrium (Section 4.3.3), and use the definitions

above to analyze the model dynamics in each mode, with and without replacement (Sec-

tion 4.3.4).

4.3.2 Positive Invariance

Toward validating the biological plausibility of ((4.5)), I first prove Theorem 4.3.1 (in

Appendix C.2.1), which states that none of the population variables become negative over

trajectories of the system.

Theorem 4.3.1. (Basic Dynamical Properties) System ((4.5)) is positive invariant and

bounded in R4
+. [Proof in Appendix C.2.1]
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4.3.3 Stability of the Extinction Equilibrium

The Full System ((4.5)) has a trivial extinction equilibrium at the origin; that is:

Ee := (W ∗, G∗, w∗, g∗) = (0, 0, 0, 0).

By linearizing the system around the origin, I can study the stability of Ee (i.e., whether

a small population would grow and persist or instead decline back to extinction). In

Appendix C.2.2, I prove Theorem 4.3.2, which gives sufficient conditions for when Ee is

globally stable.

Theorem 4.3.2. (Extinction equilibrium) Model ((4.5)) always has the extinction equi-

librium Ee := (W ∗, G∗, w∗, g∗) = (0, 0, 0, 0). which is always locally stable. Let

µu = min{1/τ, µw} and Λ < 2µub. Then Ee is globally stable. [Proof in Appendix C.2.2]

The condition for global stability of Ee is not dependent upon the initial population

size; it only depends on model parameters. In particular, the condition of an upper bound

on egg-laying rate (Λ < 2µub) is equivalently a condition that the outflow of non-guarding

workers must be greater than the inflow of non-guarding workers at the half-saturation

population b; that is:
Λ

2
< µub

In words, by definition of half-saturation population b, when there are b non-guarding

workers, the eclosion rate that generates new non-guarding workers is Λ/2. However, each

of those workers either dies (at rate µw) or transitions to guarding (at rate 1/τ ) out of

non-guarding work at a rate of at least µu. Consequently, if the inflow Λ/2 is dominated by

the outflow µub, then the incipient population will decline over time.
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However, even when the conditions for global stability of the extinction equilibrium Ee

are not met, Ee is always locally stable by Theorem 4.3.2. Consequently, if an incipient

population is not sufficiently large to escape the basin of attraction of Ee, the population

will always go extinct. In fact, in the following sections, I will show that the system exhibits

a strong Allee Effect (Stephens and Sutherland 1999); the system has both a upper, stable

equilibrium as well as a lower, unstable equilibrium akin to a minimum-population threshold

below which population growth is negative and ultimately evolves toward extinction.

4.3.4 Interior Equilibria

Now I analyze the system in search for positive attractors of FSc and FSb
, that is,

demographic equilibria towards which the population evolves when it does not go extinct.

Note that FSb
can be studied as a special case of FSc where the replacement rate is zero

(δ = 0). Thus, I start the analysis with the Crisis Mode with Replacement, governed by FSc ,

and then draw analogous conclusions for the Non-Crisis Mode without Replacement (FSb
).

In the case when there is an insufficient number of guards (i.e., H(Z) ≤ 0, or (G +

g)/P ≤ θ), the minor-worker w-to-g replacement mechanism activates. In this state, the Full

Model ((4.5)) behaves as the system Ż = FSc defined in Equation ((4.6)). Any equilibrium

Ec = (W ∗, G∗, w∗, g∗) of FSc must satisfy the following relations:
µGG

∗ =
1

τ
W ∗

ρ(µw + δ)w∗ =
1− ρ

τ
W ∗

µgg
∗ = δw∗

(4.9)

The relations in System ((4.9)) allow us to establish the condition for an equilibrium point

to lay in the region of the state space where replacement occurs (Sc), that is, in order to be a

regular equilibrium of the Full System ((4.5)). Define γc as the guard ratio
G∗ + g∗

P ∗ at Ec,
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that is

γc :=
ρ(µw + δ) + µGδ(1− ρ)/µg

ρ(µw + δ)(1 + τµG) + (1− ρ)(1 + δ/µg)µG

. (4.10)

Then Ec is a regular equilibrium of Full System ((4.5)) if and only if H(Ec) ≤ 0 or,

equivalently, γc ≤ θ.

Furthermore, the equilibrium number of major workers W ∗ must satisfy:

Λ

W ∗ +

w∗︷ ︸︸ ︷
(1− ρ)W ∗

τρ(µw + δ)


2

b2 +

W ∗ +
(1− ρ)W ∗

τρ(µw + δ)︸ ︷︷ ︸
w∗


2ρ =

1

τ
W ∗.

which simplifies to the quadratic equation

ΛW ∗
(
1 +

(1− ρ)

τρ(µw + δ)

)2

ρ =
1

τ
b2 +

1

τ
(W ∗)2

(
1 +

(1− ρ)

τρ(µw + δ)

)2

. (4.11)

The roots of Equation ((4.11)) are the non-trivial, interior equilibria of FSc ((4.6)), whose

stability follows from Theorem 4.3.3.

Theorem 4.3.3. (Existence and Stability of the Crisis Interior Equilibria)

Define condition

Cc :
Λ

2b

(
ρτ + (1− ρ)

1

µw + δ

)
≥ 1. (4.12)

Then the Crisis System defined by FSc ((4.6)) has two interior equilibria, Ec
+ and Ec

−, if

and only if Cc holds. Both have the form

(W ∗, G∗, w∗, g∗) = (W ∗,
1

τµG

W ∗,
1− ρ

ρτ(µw + δ)
W ∗,

δ

µg

1− ρ

ρτ(µw + δ)
W ∗)

where

W ∗ =
1

2

Λρτ ±

√√√√√√√(Λρτ)2 −

 2b(µw + δ)τ
1− ρ

ρ
+ (µw + δ)τ


2
 (4.13)
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Moreover,

1. The interior equilibrium Ec
+ is Locally Asymptotically Stable, and Ec

− is unstable.

2. Both Ec
+ and Ec

− are regular equilibria of the Full System ((4.5)) if and only if

γc < θ

for γc defined in Equation ((4.10)).

[Proof in Appendix C.2.3]

In the special case when replacement rate δ = 0, the vector field FSc ((4.6)) reduces to

FSb
((4.7)). This allows us to analyze the Non-Crisis Mode without Replacement governed

by FSb
((4.7)). Define Cb := Cc|δ=0 and

γb := γc|δ=0 =
ρµw

µG(1− ρ) + ρµw(1 + µGτ)
, (4.14)

which can also be written as

γb =

fraction
of majors︷︸︸︷

ρ

guarding time
for majors︷ ︸︸ ︷
1/µG

(1− ρ)/µw + ρ(1/µG + τ)︸ ︷︷ ︸
average bee lifespan

Now I provide conditions for the existence and stability of interior equilibria in the Non-

Crisis System FSb
((4.7)).

Theorem 4.3.4. (Existence and Stability of the Non-Crisis Interior Equilibria)

Define condition

Cb :
Λ

2b

(
ρτ + (1− ρ)

1

µw

)
≥ 1. (4.15)

Then the Non-Crisis System defined by FSb
((4.7)) has two interior equilibria Eb

+ = Ec
+|δ=0

and Eb
− = Ec

−|δ=0 if and only if Cb holds.

Moreover,
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1. The interior equilibrium Eb
+ is Locally Asymptotically Stable, while Eb

− is unstable.

2. Both Eb
+ and Eb

− are regular equilibria of the Full System ((4.5)) if and only if

γb > θ

for γb defined in Equation ((4.14)).

[Proof in Appendix C.2.4]

As with Theorem 4.3.3 in the crisis mode, Theorem 4.3.4 (in the non-crisis mode)

provides a sufficient condition for the existence of an interior regular attractor Eb
+ when the

proportion of guards (G + g)/P in the colony is above the replacement threshold θ (see

Table 5 for a summary of the results from Theorems 4.3.3–4.3.4).

By Theorem 4.3.2, the extinction equilibrium Ee is always a local attractor of the full

System ((4.5)). Theorem 4.3.4 provides a sufficient condition when the no-replacement

Model ((4.7)) has a second attractor, Eb
+, separated from Ee by an unstable node Eb

−.

Figure 18 illustrates such an example where the colony can survive if: (1) Condition Cb is

satisfied, and (2) the initial population is above certain threshold related to Eb
− (see figure

caption for parameter values).

From condition Cb of Theorem 4.3.4 for non-crisis System ((4.7)) without replacement,

the non-trivial stable equilibrium Eb
+ can only exist when Λ/2 ≥ b/(ρτ + (1 − ρ)/µw);

otherwise, the colony will collapse. That is, when there are b workers, the spontaneous

regeneration rate due to eclosion (Λ/2) must be at least the average rate of attrition due to

guard maturation or worker death (b/(ρτ + (1− ρ)/µw)) in order to allow for the colony to

grow to the non-trivial, stable equilibrium Eb
+ from a sufficiently large initial population

size is sufficiently large. Furthermore, because of the ever-present local stability of the

extinction equilibrium Ee, even when Cb is satisfied, if the population suddenly drops below

a critical number (related to Eb
−), the colony can still go extinct.
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Figure 18. The system exhibits an Allee Effect. Thick blue lines represent trajectories with
the same parameter values but different initial conditions. If the initial population is below
the unstable equilibrium (dashed horizontal line) the population collapses. Otherwise, it
establishes at the stable equilibrium (solid horizontal line). Parameter values:
Λ = 154, b = 1000, ρ = 0.06, τ = 20, µG = 1/5.4, µg = 1/3, µw = 1/28, θ = 0.01, δ =
4,W (0) = G(0) = g(0) = 0.w(0) = 200, 500, 4500, respectively.

Assuming that Cb is satisfied and the initial population size is sufficiently large, the

colony population will arrive at the stable equilibrium Eb
+, and the total population size will

be:

W ∗
(
1 +

1− ρ

ρµwτ
+

1

τµG

)
. (4.16)

At Ec
+ and Eb

+ , the value of W ∗ given in ((4.13)) (with δ = 0 for Eb
+) is increasing with

Λ, the egg-laying rate, and decreasing with b, the non-guarding population for eclosion

half-saturation. This means that the higher the queen’s egg-laying rate and the smaller the

number of non-guarding workers needed to ensure brood survival to eclosion, the larger a

mature colony can become. However, if the population suddenly falls, the colony may move

into the basin of attraction of extinction equilibrium Ee (discussed above); alternatively,

the colony may move into crisis, guard-replacement mode if the guard ratio falls below

threshold θ.

Remark 4.3.1. Note that, when δ > 0, condition Cc automatically satisfies condition Cb
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because

ρτ + (1− ρ)
1

µw + δ︸ ︷︷ ︸
∗

≤ ρτ + (1− ρ)
1

µw︸ ︷︷ ︸
†

.

That is, the average time for a non-guarding worker to transition to guarding in the

crisis mode (∗ above) is less than in the non-crisis mode († above). Consequently, by

Theorem 4.3.3, persistence of the colony in crisis mode requires a faster egg-laying rate Λ

or a reduction in the number of non-guarding workers necessary to ensure a high probability

of development of eggs to eclosion.

4.3.4.1 Virtual and Regular Equilibria

As noted in Theorem 4.3.3 and Theorem 4.3.4, the fraction
G+ g

P
of guards in the colony

determines whether the equilibria are virtual or regular. Because only regular equilibria can

be approached by the system’s trajectories, a complete analysis of the system’s dynamics

requires further characterizing the guard ratios γc and γb.

Theorem 4.3.5. (Characterization of the Equilibrium Guard Ratios)

1. The ratio

γb =
ρµw

µG(1− ρ) + ρµw(1 + µGτ)

is monotonically increasing with respect to ρ, while the ratio

γc =
ρ (µw + δ) + µG(1− ρ) δ

µg

µG(1− ρ)
(

δ
µg

+ 1
)
+ ρ (µw + δ) (1 + τµG)

is monotonically decreasing with respect to ρ if µg ≤ δτµG and monotonically

increasing otherwise

2. Moreover, I always have

γb ≤ γc.
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Therefore, two regular attractors cannot coexist in the Full System ((4.5)).

[Proof in Appendix C.2.6]

The fact that the base ratio of guards γb is increasing with respect to ρ is natural given

that, without replacement, all guards are majors and therefore increasing ρ directly increases

the proportion of guards in the colony. However, in the crisis system, the effect of increasing

ρ on the guard proportion depends on the parameter values since the guard population is a

mix of both minors and majors. The condition µg ≤ δτµG or, equivalently,

1/τ

µG

≤ δ

µg

can be interpreted as follows: majors mature at a rate 1/τ into the guard group G and

perform defense tasks for an average time 1/µG. Analogously, minors are recruited into the

guard group g at a rate δ and perform the task for 1/µg time units. If
1/τ

µG

≤ δ

µg

, this means

that there are more recruitment events in a guard’s lifespan for minors than for majors, and

therefore increasing the proportion of majors ρ ultimately decreases the total proportion

of guards in the colony (γc is decreasing with respect to ρ). Conversely, if
1/τ

µG

>
δ

µg

then

the majors have more recruitment events per guard lifespan, and thus increasing major

production (ρ) increases the fraction of guards in the colony γc.

4.3.5 Dynamics on the Switching Boundary Σ

I have studied the dynamics of the crisis mode FSc ((4.6)), where minors adopt guarding

tasks in response to a lack of soldiers, and the non-crisis mode FSb
((4.7)) (without replace-

ment by minors). Each of these systems has two interior equilibrium points, one stable and

one unstable, which may both be virtual or regular according to the value of the replacement

threshold theta. It remains to analyze the system behavior on the switching boundary Σ.
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Trajectories of the Full System ((4.5)) may remain in one of the regions Sc and Sb, cross

the switching surface Σ or slide along it. In order to investigate the crossing and sliding

dynamics, I first determine the existence of a crossing set and a sliding set on Σ Filippov

1988; Silveira Costa and Meza 2006; Boukal and Kivan 1999; Tang, Liang, et al. 2012;

Xiao, Zhao, and Tang 2013; Tang, Xiao, et al. 2012.

Let

σ(Z) := ⟨Hz(Z), FSc(Z)⟩⟨Hz(Z), FSb
(Z)⟩, (4.17)

where ⟨·⟩ denotes the standard scalar product and HZ(Z) is the non-vanishing gradient

of smooth function H on Σ. Define the crossing set ΣC ⊂ Σ as

ΣC = {Z ∈ Σ | σ(Z) > 0} ,

and the sliding set ΣS ⊂ Σ as

ΣS = {Z ∈ Σ | σ(Z) ≤ 0} ,

where ΣS = Σ \ ΣC . For System ((4.5)), I can obtain that

σ(Z) = θ2
(

Λ(W+w)2ρ
(b2+(W+w)2)

−W/τ
)2

+ (1− θ)2(W/τ − µGG)2

+ θ2
(

Λ(W+w)2(1−ρ)
(b2+(W+w)2)

− µww
)2

+ (1− θ)2(gµg)
2

+ δw
(
−θ2

(
Λ(W+w)2(1−ρ)
(b2+(W+w)2)

− µww
)
− (1− θ)2gµg

)
for all

Z ∈ Σ =
{
Z ∈ R+

4 | H(Z) = 0
}
=
{
Z ∈ R+

4 | (G+ g)− θ(G+ g +W + w) = 0
}
.

The boundary Σ may also contain particular points, called “pseudoequilibria” (Di

Bernardo et al. 2008), that act as equilibria within the sliding set ΣS . In order to characterize

them, I assign a vector field g(Z), which is a linear combination of the vector fields FSc(Z),

and FSb
(Z), to each point Z ∈ ΣS:

g(Z) = λFSc(Z) + (1− λ)FSb
(Z) (4.18)
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where λ : Σ → [0, 1].

Definition 4.3.2. A point Z ∈ ΣS is a pseudoequilibrium if g(Z) = 0 .

The system g(Z) can be expressed as below:

dW

dt
= Λ

(W + w)2

b2 + (W + w)2
ρ− 1

τ
W

dG

dt
=

1

τ
W − µGG

dw

dt
= Λ

(W + w)2

b2 + (W + w)2
(1− ρ)− µww − (1− λ)δw

dg

dt
= (1− λ)δw − µgg.

(4.19)

It follows that a pseudoequilibrium Ep = (W ∗, G∗, g∗, w∗) must satisfy the relations

G∗ =
1

τµG

W ∗,

g∗ =
1− ρ

ρτ(µw + δ(1− λ∗))
W ∗, and

w∗ =
δ(1− λ∗)

µg

1− ρ

ρτ(µw + δ(1− λ∗))
W ∗,

(4.20)

where λ∗ = λ(Ep). From this relations, I can find the ratio of guards at pseudoequilibria.

Define γp as the ratio G∗+g∗

P ∗ for G∗, g∗ and P ∗ = W ∗+w∗+G∗+g∗ as in Equation ((4.20))

above, that is,

γp :=
ρ(µw + δ(1− λ∗)) + µGδ(1− λ∗)(1− ρ)/µg

ρ(µw + δ(1− λ∗))(1 + τµG) + (1− ρ)(1 + δ(1− λ∗)/µg)µG

. (4.21)

Note that, to be contained in Σ, the pseudoequilibrium must satisfy the condition

γp = θ.

From this equality I can find the value of λ∗ = λ(Ep) as

λ∗ =
µGµgθ(δτρ+ 1− ρ+ µwρτ)− (1− θ)(δ(µG(1− ρ) + µgρ) + µgµwρ)

δ(µGµgρτθ − (1− θ)(µG(1− ρ) + µgρ))
(4.22)

87



These relations yield the following Theorem 4.3.6, which establishes the existence of

two pseudoequilibria on Σ when the Full System ((4.5)) has no regular equilibria.

Theorem 4.3.6. Define condition

Cp :
Λ

2b

(1− θ)(µgρ+ µG(1− ρ) + µGµwτρ)

µG(θµg + µw(1− θ))
≥ 1. (4.23)

Then System ((4.5)) has two pseudoequilibria Ep
+ and Ep

− on the switching surface Σ if and

only if Cp holds and γb ≤ θ < γc. The pseudoequilibria have the form

(W ∗, G∗, g∗, w∗) =

(
W ∗,

1

τµG

W ∗,
(1− θ)(µG(1− ρ)− µgρ) + θµGµgρτ)

µGρτ(θµg + µw(1− θ))
W ∗,

−µwρ+ θ(µG(1− ρ) + µwρ(1 + µGτ))

µGρτ(θµg + µw(1− θ))
W ∗
)

with

W ∗|Ep
±
=

1

2
ρτ

Λ±

√
Λ2 −

(
2bµG(θµg + (1− θ)µw)

(1− θ)(µG(1− ρ) + µgρ+ µGµwρτ)

)2


[Proof in Appendix C.2.5]

The pseudoequilibrium existence condition Cp can be derived from the crisis existence

condition Cc (4.3.4) by substituting the value of δ for δ(1− λ∗). Indeed, Cp can be written

as
Λ

2b
(ρτ + (1− ρ)

1

µw + δ(1− λ∗)
) ≥ 1

which, like Cc and Cb, sets a minimum egg-laying rate Λ to ensure that there are enough

individuals contributing to egg eclosion (W and w compartments) despite major maturation

and worker death (see discussion of Theorems 4.3.3-4.3.4). For γb ≤ θ ≤ γc, condition Cp

is met automatically when

Cc :
Λ

2b
(ρτ + (1− ρ)

1

µw + δ
) ≥ 1
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holds, since λ∗ takes values between 0 and 1 and thus

Λ

2b
(ρτ + (1− ρ)

1

µw + δ(1− λ∗)
) ≥ Λ

2b
(ρτ + (1− ρ)

1

µw + δ
).

Similarly, condition Cp implies condition Cb from Theorem 4.3.4 since

Λ

2b
(ρτ + (1− ρ)

1

µw

) ≥ Λ

2b
(ρτ + (1− ρ)

1

µw + δ(1− λ∗)
).

Therefore, I have

Cc =⇒ Cp =⇒ Cb.

4.4 Interacting Defense Mechanisms

Now I study the interaction between the three mechanisms determining guard allocation,

namely the major production regulated by ρ, the age-based polyethism regulated by the

maturation time τ , and the replacement by minors that occurs when the guard proportion

drops below θ. In particular, I am interested in determining

1. The effect of these three parameters on colony size and task allocation

2. The parameter combinations keep the system out of crisis, that is, governed by the

Non-Crisis System ((4.7)).

4.4.1 Behavioral Plasticity

The parameter θ is the threshold fraction of guards in the colony below which minors

will adopt guarding tasks. It can be interpreted as the colony demand for guards (the higher

θ, the higher the demand), or as the degree of plasticity of minors (the higher θ, the more

likely minors are to switch to guarding tasks). Because, as noted in Theorem 4.3.5, the
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equilibrium ratio of guards γc in the crisis regime (with replacement) is always greater than

the corresponding ratio γb in the non-crisis regime (without replacement), there are only

three possible alternatives for the threshold ratio θ and they determine the system’s behavior,

as illustrated in Figure 19.

1. γb ≤ γc ≤ θ

By Theorem 4.3.6, there are no pseudoequilibria. Then I have the following cases

based on condition Cc:

a) Cc holds: Crisis (Ec
+)

• Condition Cc implies the existence of the Crisis Attractor Ec
+, which is

a regular equilibrium of the Full System ((4.5)) because γc ≤ θ (Theo-

rem 4.3.3);

• Condition Cc =⇒ Cb, so the Non-Crisis Attractor Eb
+ exists, but as a vir-

tual equilibrium of the Full System ((4.5)) because γb ≤ θ (Theorem 4.3.4);

Thus, because of the Allee Effect, trajectories either converge to Ec
+ or collapse

to Ee if the population drops below a critical size.

b) Cc does not hold (¬Cc): Extinction (Ee)

• There is no Crisis Attractor Ec
+;

• The Non-Crisis Attractor Eb
+ exists as a virtual equilibrium of the Full

System ((4.5)) if Cb holds and does not exist otherwise;

It follows that the only attractor is the extinction equilibrium Ee.

The ratio of guards at equilibrium, even with replacement, is less than θ. Then the

model converges to the Crisis Attractor Ec
+ (like the orange “Crisis” trajectories in

Figure 20) or extinction Ee. Biologically, this would represent a situation where
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Figure 19. Model behavior with respect to ρ and θ. Top panels: In different regions of the ρ
vs θ space, the system may have a crisis attractor, a pseudoequilibrium, a non-crisis
attractor (with no minor guards), or only an extinction equilibrium. The crisis and
non-crisis guard ratios, γc and γb, separate the regions. By Theorem 4.3.5, γc might be
increasing (top left panel) or decreasing (top right panel). Bottom panels: Below each of the
top panels, the corresponding bifurcation diagram for colony size with respect to ρ is shown
for a fixed value of θ. In the bottom left panel, θ = 0.25 and as ρ increases, the system
transitions from crisis to pseudoequilibrium, to non-crisis, where the population decreases
until it suddenly drops to extinction. In the bottom right panel, θ = 0.01 and the system
transitions from pseudoequilibrium, with an increasing population, to non-crisis, where the
colony size decreases but does not reach an extinction state. Parameter values: (left panels)
Λ = 50, b = 300, τ = 10, µG = 1/15, µg = 1/7, µw = 1/28, δ = 0.03; (right panels)
Λ = 154, b = 1000, τ = 20, µG = 1/5.4, µg = 1/3, µw = 1/28, δ = 4. The parameters in
the right panels are approximated values for real T. angustula colonies (see Table 4 and
Section C.3).
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minors keep transitioning to guarding even when all the major and replacement guards

that the colony can produce are defending the nest. This is typically not observed in

real colonies, where the guarding population consists mainly of major bees.

2. θ < γb ≤ γc

By Theorem 4.3.6, there are no pseudoequilibria. Then I have the following cases

based on condition Cb:

a) Cb holds: Non-crisis (Eb
+)

• Condition Cb implies the existence of the Non-Crisis Attractor Eb
+, which

is a regular equilibrium of the Full System ((4.5)) because θ ≤ γb (Theo-

rem 4.3.4);

• The Crisis Attractor Ec
+ exists as a virtual equilibrium of the Full System

((4.5)) if Cc holds and does not exist otherwise;

Thus, trajectories either converge to Eb
+ or collapse to Ee if the population drops

below the Allee threshold.

b) Cb does not hold (¬Cb): Extinction (Ee)

• The Non-Crisis Attractor Eb
+ does not exist;

• Since ¬Cb =⇒ ¬Cc, there is no Crisis Attractor Ec
+;

It follows that the only attractor is the extinction equilibrium Ee and the popula-

tion collapses.

The ratio of guards at equilibrium is greater than θ, even without replacement. Then the

model converges to the Non-Crisis Attractor Eb
+ (like the blue “Non-crisis” trajectories

in Figure 20) or extinction Ee. This is the typical situation for colonies in the field:

enough guards are produced such that minor replacement is not required. Replacement

would be activated upon guard removal, and would accelerate the recovery of the base
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guard proportion in the colony, γb. However, even without replacement, the original

proportion of guards would be eventually reached.

3. γb ≤ θ < γc

The Crisis and Non-crisis Attractors Ec
+ and Eb

+ exist as virtual equilibria of the Full

System ((4.5)) if their respective existence conditions Cc and Cb are met, and do not

exist otherwise. Then I have the following cases based on condition Cp:

a) Cp: Regulating (Ep
+)

• Condition Cp implies the existence of pseudoequilibrium Ep
+ ∈ Σs because

γb ≤ θ < γc (Theorem 4.3.6);

Thus, trajectories either converge to the pseudoequilibrium Ep
+ or collapse to

Ee if the population drops below a critical size.

b) Cp does not hold (¬Cp): Extinction (Ee)

• No pseudoequilibria exist.

It follows that the only attractor is the extinction equilibrium Ee and the popula-

tion collapses.

This would represent a colony where the natural production of major guards is too low,

which triggers replacement by minors, but the mixed guarding population resulting

from replacement is large enough to prevent further replacements. If the existence

condition is not satisfied, the population collapses to extinction, like in the previous

cases (see gray “Extinction” trajectories in Figure 20). However, convergence to a

pseudoequilibrium in this case implies a persistent population of minor guards (see

purple “Pseudoequilibrium” trajectories in Figure 20), which is not typically observed

in real colonies.

The simulations in Figure 20 illustrate system trajectories converging to the “Crisis”,
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“Pseudoequilibrium”, “Non-crisis”, and “Extinction” attractors. The parameter values are

typical values for Tetragonisca angustula stingless bee colonies (see Table 4), the same

values used in the top right panel of Figure 19. Note how there are no minor guards at

equilibrium in the “Non-crisis” attractor, but there is a persistent population of them for the

“Crisis” and “Pseudoequilibrium” attractors. This is not efficient, since minor guards have

a lower performance at defense tasks and thus are meant to be a back-up for exceptional

situations where major guards are missing. In fact, although real colonies in the field present

a mixed guard population after guard removal (Baudier et al. 2019), they usually have major

bees defending the nest.

The value of θ must be less than γb in order for the system to operate in non-crisis mode.

The maximum value of γb, the fraction of guards without replacement, is at ρ = 1, with an

all-major colony. Thus, θ must be less than γb|ρ=1 =
1

1+µGτ
= 1µG

τ+1/µG
, which is the fraction

of their lives that majors spend as guards. If θ is greater than this proportion, then the colony

is guaranteed to either go extinct or maintain a persistent population of minor inefficiently

allocated to guarding tasks. Moreover, if the colony is in a crisis state (orange regions in

Figure 19), decreasing θ will always lead the system to a non-crisis mode (blue regions in

Figure 19) but increasing θ will not force the colony into extinction. However, increasing

θ from a non-crisis state may lead to either crisis mode, with a persistent population of

minor guards, or directly to extinction, without ever transitioning to a crisis mode. That

is, a colony that can sustain itself in the crisis attractor, with a stable population of minors

dedicated to guarding, will not collapse because of demographic factors if the demand for

guards increases or minors become exceedingly plastic (meaning that they would adopt

guarding tasks even if the whole population was already guarding). This is because, in

crisis, the colony is simply unable to meet its demand for guards (γc < θ), so increasing

this demand makes no difference for task allocating or colony size (the colony is already
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Figure 20. System trajectories illustrating the “Non-crisis”(ρ = 0.06, θ = 0.01),
“Pseudoequilibrium” (ρ = 0.01, θ = 0.01) and “Crisis” (ρ = 0.8, θ = 0.3) and
“Extinction”(ρ = 0.06, θ = 0.2) attractors. Each trajectory has a different combination of ρ
and θ corresponding to one of the four regions in the 2-parameter bifurcation in the top
right panel of Figure 19. Note the persistent population of minor (replacement) guards in
the “Crisis” and “Regulating” cases.
(Λ = 154, b = 1000, τ = 20, µG = 1/5.4, µg = 1/3, µw = 1/28, δ = 4)

producing all the major and replacement guards it can). However, it may become exposed

to higher environmental risks, like robbery and attacks.

4.4.2 Morphological Specialization

The fraction ρ represents the proportion of eggs that eclose into majors, which mature

into soldiers. As seen in Figure 19, for sufficiently small values of θ, increasing ρ can

keep the system in non-crisis mode, without replacement guards. However, as shown in

the bottom panels of Figure 19, increasing ρ may also reduce colony size and even lead to
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Figure 21. Proportion of guards at equilibrium for different combinations of ρ and θ. The
system converges to the “Crisis” mode ((4.6)), “Sliding” mode ((4.19)) or “Non-Crisis”
mode ((4.7)) as the proportion of majors ρ changes. ρC and ρB are the values of ρ, if any,
such that γc|ρ=ρC = θ and γb|ρ=ρB = θ, respectively. In all panels, b = 100, µg = 1/10,
µw = 1/28, Λ = 100, δ = 1/14. In the left column γc is increasing, with τ = 10 and
µG = 1/(28− τ) so that majors and minors have an average lifespan of 28 days, and the θ
values are 0.7 in the first row, 0.5 in the second and 0.08 in the third. The right column
shows decreasing γc, with τ = 20, µG = 1/(28− τ). The θ values are 0.7 in the first row,
0.35 in the second and 0.08 in the third

colony extinction. The effect of modifying the production of majors ρ depends on the value

of θ and whether γc is increasing or decreasing. There are six possible cases illustrated in

Figure 21.

Define ρC as the value of ρ, if any, such that γc|ρ=ρC = θ. Correspondingly, define ρB

as the value of ρ, if any, such that γb|ρ=ρB = θ.

1. Increasing γc (γb|ρ=0 < γc|ρ=0 < γc|ρ=1 = γb|ρ=1)

a) High value of θ:

θ ≥ γc|ρ=1 = 1/(1 + µGτ)
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The system is in the “Crisis” state for all values of ρ, but increasing ρ increases

the proportion of guards at equilibrium.

b) Intermediate value of θ:

δ/(δ + µg) = γc|ρ=0 < θ < γb|ρ=1 = 1/(1 + µGτ)

As ρ increases, the system transitions from the “Crisis” state (0 < ρ < ρC) to

the “Regulating” state ( ρC < ρ < ρB) and the “Base” state (ρ > ρB). In this

case, increasing the production of majors is a long-term solution for keeping the

system out of crisis.

c) Low value of θ:

0 < θ < γc|ρ=0

As ρ increases, the system transitions from the “Regulating” state (0 < ρ < ρB)

to the “Base” state ( ρB < ρ < 1). In this case, increasing the production of

majors is a long-term solution for increasing the guard proportion.

2. Decreasing γc (γb|ρ=0 < γc|ρ=1 = γb|ρ=1 < γc|ρ=0)

a) High value of θ:

θ ≥ γc|ρ=1

The system is in the “Crisis” state for all values of ρ, but increasing the proportion

of majors ρ decreases the proportion of guards in the long term.

b) Intermediate value of θ:

γc|ρ=1 < θ < γc|ρ=0

As ρ increases, the system transitions from the “Regulating” state (0 ≤ ρ ≤ ρC)

to the “Crisis” state ( ρC < ρ ≤ 1). In this case, increasing the production of

majors decreases the guard proportion in the long term.

97



c) Low value of θ:

0 < θ < γc|ρ=1

As ρ increases, the system transitions from the “Regulating” state (0 ≤ ρ < ρB)

to the “Base” state ( ρB ≤ ρ ≤ 1). In this case, increasing the production of

majors is a long-term solution for increasing the guard proportion.

These cases reveal the situations where the colony can function normally, in the “Non-

Crisis” regime, and where an increment in the major production is actually beneficial for

colony defense. For example, if major and minor guards live equally long on average and

replacement happens at a faster rate than maturation (decreasing γc), then increasing the

production of majors enhances colony defense only if the proportion of guards can drop very

low without triggering replacement (case 2c). In fact, cases 2a-2c show that the minimum

proportion of guards required to defend the colony without replacement (θ) must be less

than γb|ρ=1, that is the equilibrium proportion of guards if all bees are majors. If θ is greater

than this value, then increasing the production of majors ρ actually decreases the fraction

the population dedicated to guarding.

The colony size bifurcation diagrams in the left and right bottom panels of Figure 19 are

examples of cases 1b and 2c, respectively. They have the same parameters as the top panels

directly above them, and shows colony size with respect to ρ for a fixed θ value of 0.25 (left)

and 0.01 (right). While the parameters on the right panels are biologically realistic for T.

angustula stingless be colonies, the parameters on the left panels were chosen to produce

a representative diagram with the four possible dynamical outcomes and are not based on

these reference values. They would represent an analogous system (like a different species or

an artificial system) where γc is increasing, so µg > δτµG by Theorem 4.3.5. Thus, the ratio

between the death rates of minor and major guards must be greater than the ratio between

replacement and maturation rates. In this bottom left panel of Figure 19, corresponding to
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case 1b, ρC and ρB are well defined. For ρ values below ρC , the colony size is dictated by

the crisis model ((4.6)) because the parameters satisfy condition ((4.10)) but not ((4.14)).

Similarly, for ρ values above ρB the system follows the non-crisis model ((4.7)) because only

condition ((4.14)) holds. However, higher ρ values violate the Existence Condition (4.3.4)

for the Base Model, so the only stable equilibrium is extinction. However, the fraction of

guards in the colony increases with ρ in case 1b. Thus, increasing the production of majors

in this scenario may reinforce colony defense by increasing the fraction of the population

allocated to guarding, but may also reduce the colony size or even cause extinction.

On the other hand, the bottom right panel of Figure 19, which falls under case 2c,

represents a realistic situation for stingless bee colonies. Since the death rates for major

and minor guards are similar and replacement happens much faster than maturation, I have

µg ≤ δτµG and γc is increasing by Theorem 4.3.5. Thus, the system cannot transition

between crisis and non-crisis states by changing the production of majors. As seen in the

top right panel of Figure 19, for high values of θ, the colony will go extinct for low ρ

values and persist in a crisis state for high enough ρ values. However, for the small θ values

that presumably exist in real colonies, the system transitions from a pseudoequilibrium to

the non-crisis attractor as ρ increases, with the population size peaking at ρB, where the

transition happens. This might suggest why such a small proportion of majors exists in

real colonies: the production is enough to supply the demand indicated by θ, but not much

greater, since this would decrease colony size.

4.4.3 Maturation Time τ

I have mentioned the role of the maturation rate in determining whether the fraction

of guards at the crisis attractor, γc, is increasing or decreasing with respect to ρ. In real
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Figure 22. Effect of τ on colony size bifurcation with respect to ρ (top) and system
sybamics with respect to ρ and θ (bottom). Parameter values:
Λ = 154, b = 1000, τ = 20, µG = 1/5.4, µg = 1/3, µw = 1/28, δ = 4. In top panels,
θ = 0.01

stingless-bee colonies, the maturation rate that is considerably slower than the replacement

rate, δ, and so γc is increasing like in the right panels of Figure 19 and Figure 21. However,

the maturation rate also has an important role in defining the existence conditions Cb, Cp

and Cc. As seen in Figure 22, decreasing the maturation time τ also reduces the region in

the θ-ρ space where the colony can survive. Thus, a colony where majors mature faster will

be able to sustain less majors, since high values of ρ lead to extinction. Also note that the

colony size peaks at a smaller value of ρ for faster maturation times. If colonies regulate

their major production to be near this peak, then this result suggests that colonies where the

transition of majors to guarding happens faster are expected to produce a lower number of

majors.

Figure 23 shows the equilibrium task allocation as ρ varies for the same values of τ

(10 days and 20 days). For τ = 20, which is a biologically realistic value, increasing ρ
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Figure 23. Bifurcation diagram for all population groups with respect to ρ for τ = 10 and
τ = 20. Only stable interior attractors are shown, although extinction is always a stable
equilibrium. .

produces an increment in the non-guarding and guarding major populations (W and G,

respectively, represented by darker lines). There are no minor guards g in the non-crisis

case, which constitutes most ρ values (except for the shaded areas, corresponding to a

pseudoequilibrium). While there are still no minor guards for τ = 10, the major population

does not simply increase with ρ. In fact, both guarding and non-guarding populations peak at

a high value of ρ and then decrease before collapsing drastically to extinction. Thus, for very

fast maturation rates, increasing the production of majors may, perhaps counterintuitively,

decrease the number of guards in the colony.
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4.5 Conclusion

In this work, I developed a framework for modeling task allocation for collective defense

motivated by the stingless bee T. angustula. I studied morphological specialization, age-

based polyethism and behavioral plasticity as mechanisms regulating group defense at

different timescales and interacting to maintain colony growth while responding efficiently

to crisis situations.

Our analysis provides basic conditions for colony survival: a non-guarding worker must

spend enough time rearing brood to ensure that at least one new adult is recruited before she

dies or switches to a guarding task (see Theorem 4.3.2). Even if this condition is satisfied,

the colony may still inevitably collapse if it reaches low numbers, which is known as strong

Allee Effect (see Theorem 4.3.2, Theorem 4.3.4).

The model provides the conditions under which the studied mechanisms work in tandem

to improve collective defense, and the scenarios where their simultaneous implementation

can be detrimental. I asked how the parameters regulating morphological specialization,

age-based polyethism, and behavioral plasticity impact the colony size and task allocation

within the colony. The theoretical results illustrated in Figure 21 show that increasing

the production of majors, who later specialize in defense, can actually have a negative

impact on the fraction of the colony dedicated to guarding (see Theorem 4.3.5). This is

the case if the colony relies on replacement minor guards to satisfy a minimum required

guard proportion (due to either large major death rates or slow maturation of majors), and

reduces the available pool of minors by increasing the production of majors. I also showed

in Figure 22 that, for the parameter values corresponding to stingless bees, the colony size

peaks at low proportions of majors (ρ ≈ 5%) and then decreases (but not to extinction)

when more majors are produced. However, if majors mature into guards at a faster rate,
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then the colony size peaks at a lower proportion of majors, and high major proportions do

cause extinction. Moreover, as shown in Figure 23, if the maturation time is short then a

high production of majors may also decrease the number of guards in the colony.

I also asked how plastic minors should be to allow for a transient recovery from guard

loss without maintaining an inefficient body of minor guards. As shown in Figure 19, for

the reference parameter values, if minors were more plastic or the colony demand for guards

were to increase, the colony could even go extinct. In fact, a colony producing 6% majors

will have at most around 1% of the population as guards. If the demand for guards were

between 1% and 12% and minors switched to guarding with these proportions, then the

colony would have a persistent population of minor guards. If the demand increased above

12%, then the colony would go extinct (see “Extinction” trajectory in Figure 20), since all

minors would adopt guarding tasks at a fast rate and there would not be enough workers

taking care of the brood. If the colony produced a majority of majors, above circa 65%,

then even if all minors always adopted guarding tasks, the colony could survive (with a

persistent population of minor guards, like the orange “Crisis” trajectory in Figure 20). This

is because there would be enough young majors taking care of the brood even if all minors

switch to guarding.

This work provided a theoretical exploration regarding how morphological specialization,

age-based polyethism and behavioral plasticity interact at different timescales to regulate

group defense and colony growth. However, a more precise comparison to experimental

results will require further research on biologically accurate parameter values. For example,

while the maturation and mortality rates are available in the literature and were used for

simulations, the half-saturation parameter b of the functional response requires fitting to

eclosion data that was not available for this work. Future work also includes exploring

continuous alternatives for the replacement function used, since the step function used
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here was chosen for simplicity and not based on a biological sharp switch. Lastly, a richer

analysis of the balance between reproduction and defense could be obtained by conducting

a study of the risks that the colony engages in for being unprotected, that is, quantifying the

cost of reducing the guard population in terms of potential attacks or robbing.

I have presented a mathematical framework for understanding the demographic fac-

tors constraining collective defense regulation at different timescales and specialization

degrees in social insect colonies. The scenarios shown here shed light on the regulation

of specialization and crisis response in colonies, but can also be adapted to understand

variation at different timescales in the defensive dynamics of other biological systems that

are harder to observe. Moreover, this work can guide the design of potential eusocial-insect

inspired solutions the human domain, like team defense strategies, manufacturing systems

and just-in-time supply chains.
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Chapter 5

CONCLUSION

This Dissertation analyzes how collective differences emerge from variation at the

individual level through mathematical models, using eusocial insects as model organisms.

In Chapter 2, I introduce a Markov-chain decision model to study how rock ant colonies

choose the best among candidate nests when they must emigrate. In particular, it captures

the individual quorum-based recruitment decisions of workers and how they determine

the collective balance between speed of the migration and accuracy of nest choice. The

model presents a framework for understanding the cognitive processes balancing speed and

accuracy under different conditions in ants and reproduces core features of the latency and

outcome characteristics from empirical observations in real ants. Furthermore, because

the model predicts bounded decision latencies even for ambiguous evidence, it provides a

novel logical connection between critical encounter rate and worst-case decision latency.

Although there is no explicit colony diversity in form of distinct worker types, there is explicit

randomness in individual decisions with average parameters shared by the group. Thus,

variation in colony performance can sometimes be a natural effect of stochasticity at the

individual level, but also colonies with different distribution parameters will have consistent

differences in collective performance. In this low within-group heterogeneity case, noisy

behavior may be important to prevent drastic switches where the whole colony cascades

into fast transport to a poor nest alternative (for a similar discussion about the potential

collective benefit of individual noise in harvester-ant foraging regulation see (Davidson

et al. 2016)). This chapter contributes to understanding the colony-level implications of

individual-level cognitive parameters of decision making. More generally, the excitable
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encounter-driven finite-state approach in the model suggests a novel path for incorporating

neuron-like behavior into multi-scale models of collective cognition in biological systems.

While Chapter 2 focuses on individual-level modeling of stochastic decisions, Chapter 3

scales up to mean-field colony-level modeling in order to capture group composition in

honey-bee colonies. The polyandry of honey-bee queens produces intra-colony genetic

variation that manifests in cognitive diversity between foragers (Smith and Cook 2020), and

group compositions with certain degrees of heterogeneity may be favoured by environment.

Thus, I develop an ODE model to study how honey-bee colonies allocate foragers to

explore the landscape and exploit available food sources and, particularly, how cognitive

diversity among workers influences the collective attention allocation between novel and

familiar resources. Moreover, I establish which are the main individual interactions and

processes driving collective attention allocation. The model reproduces the observed

increased foraging activity in colonies with higher proportions of high-attention foragers, as

well as the preference for familiar sources in such colonies. It also provides mechanistic

support for the empirical hypothesis that individual preference, amplified by efficient

communication, is sufficient to produce collective preference at the observed levels in

different colonies. Moreover, sensitivity analysis reveals that collective preference is most

sensitive to changes in recruitment when the fraction of high attention individuals in the

colony is small, but to persistence instead for larger proportions of high attention foragers.

The model suggests future empirical research avenues focusing on these individual processes

that heavily impact collective behavior in a heterogeneous population, and thus contributes to

understanding the role of individual cognitive variation in regulating the collective trade-off

between exploring new resources and exploiting known ones.

In the absence of genetic diversity, heterogeneity may be induced by a colony in other

ways. In stingless bees, the brood-feeding behavior of nurse bees causes permanent mor-
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phological differences in the body sizes of workers. This morphological variation between

majors (large workers with better defensive abilities) and minors (smaller workers) is

complemented by behavioral plasticity in the form of age-based polyethism and fast task

switching. Thus, there are multiple dimensions in which diversity may be tuned. The model

in Chapter 4 shows that, along each of these dimensions, heterogeneity is beneficial only in

a certain range that depends on the others. Outside of this range, certain group compositions

may compromise colony adaptation and survival. Indeed, while colony size peaks at low

proportions of majors, colonies die if minors are too plastic, defensive demands are too

high, or if there is a high proportion of quickly developing majors. For fast maturation,

increasing major production may actually decrease defenses. This model elucidates the

demographic factors constraining collective defense regulation in social insects while also

suggesting new explanations for variation in defensive allocation in biological systems

at smaller scales, where the mechanisms underlying defensive processes are not easily

observable. In fact, results from eusocial insects have been used to understand some aspects

of immune-system responses (Moses et al. 2019), and further research may elucidate the

drivers of collective variation in these systems. Moreover, our work helps to establish social

insects as model organisms for understanding other systems where the transaction costs

for component turnover are nontrivial, as in manufacturing systems and just-in-time supply

chains.

5.1 Limitations and Future Work

This Dissertation considers group heterogeneity in the form of distinct types of in-

dividuals interacting in a group. However, it still assumes that sub-populations of each

type are homogeneous. In natural systems, variation is found as a distribution across the
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population, as opposed to discrete types of individuals. Thus, the models presented here

could be expanded to include continuous distributions of attention phenotypes in Chapter 3

or replacement thresholds, ages and sizes in Chapter 4.

5.2 Broader Impacts

Environmental challenges for colonies require group decision making, efficient resource

collection and effective defense against threats, which are problems relevant to human

societies as well. Understanding how other social systems with such ecological success

address these challenges has the potential to inspire solutions in the human domain. For

example, studying the role of heterogeneity of workers within colonies may shed light on

the importance of diversity in teams for group problem solving in humans.

Furthermore, the collective cognitive-like properties of eusocial-insect colonies make

them tractable model systems to elucidate general problems in other cognitive architec-

tures. For example, humans exhibit irrational choices based on relative (not absolute) item

valuation. Similarly, acellular slime molds exhibit irrational biases between food items

(Latty and Beekman 2011). In contrast, eusocial-insect colonies of some species choose

rationally whereas single insects or humans do not, apparently because colonies evaluate

alternatives simultaneously (Sasaki, Stott, and Pratt 2019; Sasaki and Pratt 2012). Thus,

highly tractable alternative model systems could help tackle problems in cognitive science,

like the emergence of irrationality in the human brain, and suggest ways to organize humans

in groups to restore rationality.

Moreover, models of collective behavior in social insects have the potential of inspiring

algorithms that capitalize on heterogeneity in artificial intelligence and swarm robotics,

where simple components with no central control must solve complex tasks through in-
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dividual interactions. Component-level variation arises in engineered systems during the

manufacturing processes (Escalante 1999). Similarly, in distributed computing systems,

performance varies between nodes added at different times due to technological advance-

ments. Currently, engineering seeks robustness to variation: quality control systems attempt

to suppress manufacturing variation (Escalante 1999; Lee et al. 2020) and computing

techniques are designed to perform well despite node heterogeneity (Tuncer et al. 2017).

However, novel ways to capitalize on unavoidable variation in future artificially intelligent

collectives may arise from advancing the study of natural systems where function emerges

from intrinsic component-level variation.
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A.1 Convergence

First, we show that the decision process ends with probability 1, that is, one of the
absorbing states is reached in a finite number of steps and the expected time between steps
is finite. The latter, also called average holding time, can be computed from the transition
rates as τ

1+λτ
, which is a finite quantity. Now we verify that the probability of the process

involving an infinite number of steps is 0.
Consider the embedded (jump) discrete chain vk+1 = P⊤vk defined by matrix

P ≜



1 0 0 0 ... 0
1/τ

1/τ+λ
0 λ

1/τ+λ
0 0 0

0 1/τ
1/τ+λ

0 λ
1/τ+λ

. . . 0

0 0
. . . . . . . . . 0

0
. . . 0 1/τ

1/τ+λ
0 λ

1/τ+λ

0 ... 0 0 0 1


,

as described in the main text. The jump chain process is equivalent to a one-dimensional
discrete-time random walk, where in each step there is a p ≜ λ

1/τ+λ
probability of going up

and a q ≜ 1 − p = 1/τ
1/τ+λ

probability of going down, akin to the classical gambler’s ruin
problem. In the original continuous-time process, these steps occur at random, exponentially
distributed time intervals, but the sequence of states is the same between the discrete-time
and continuous-time processes. As in the gambler’s ruin problem, the probability of an
infinite trace can be shown to be zero.

If p = 0 or p = 1, the process is guaranteed to end in exactly n steps. Therefore we
consider 0 < p < 1 and define Qi as the conditional probability of an infinite process given
an initial state of X0 = i. That is,

Qi ≜ P (S = ∞|X0 = i)

where S is the number of steps until absorption. Note that the first transition can take the
state to either i− 1 or i+ 1 and therefore

Qi =


0 if i = −n,

pQi+1 + (1− p)Qi−1 if −n < i < n,

0 if i = n.

(A.1)

Thus, a recursive argument can be used to find Qi.
First, consider the case where p ̸= 1/2. Solving the characteristic equation pr2 − r +

(1 − p) = 0 of the recurrence relation in Equation (A.1) yields the roots r = ((1 − p)/p)
and r = 1. It follows that the general solution has the form

Qi =

(
(1− p)

p

)i

A+ (1)iB
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for constants A,B ∈ R. However, by the boundary conditions in Equation (A.1), it must be
the case that:

0 =

(
(1− p)

p

)−n

A+B =

(
(1− p)

p

)n

A+B

so that
(

(1−p)
p

)−n

A =
(

(1−p)
p

)n
A, which is true if and only if A = 0 or

(
(1−p)

p

)n
=(

(1−p)
p

)−n

. Because the latter requires p = 1/2 and we are focusing on the case where
p ̸= 1/2, we conclude that A = 0, and so B = 0 as well. Consequently, the conditional
probability Qi = 0 for p ̸= 1/2.

Next, consider the case of p = 1/2. The general solution takes the form Qi = Ai+B.
Then, by the boundary conditions in Equation (A.1), −An + B = An + B = 0, and so
A = B = 0. Thus the conditional probability Qi of taking an infinite number of steps to
make a choice starting from state X0 = i is Qi = 0, which is in agreement with the case of
p ̸= 1/2 above.

A.2 Decision Probabilities (limit distribution)

Let P∞ denote the limiting probability distribution for the process, defined by

P∞(i) ≜ P (X∞ = i)

where i is a state in RX and X∞ ≜ limt→∞ Xt. Let P T
i and PR

i denote the conditional
probability that the decision outcome is to recruit by transporting or tandem running,
respectively, given that the ant is in an initial state of X0 = i. For the absorbing states,
P T
n = 1 and P T

−n = 0. Thus, assume that the ant starts in a transient state X0 = i where
|i| < n. After the first transition, it moves to either state i− 1 or i+ 1. Therefore, because
the process is Markovian,

P T
i = qP T

i−1 + pP T
i+1, (A.2)

which is a recurrence relation that has an analytical solution that follows from the character-
istic equation pr2 − r + q = 0. There are two special cases:

• When p = q, the characteristic equation has a double root (r = 1). For this case,
Equation (A.2) has a solution of the form P T

i = iA+B for some constants A,B ∈ R
that, to be consistent with the absorbing states, must be such that:{

nA+B = P T
n = 1

−nA+B = P T
−n = 0

,

and so A = 1/(2n), B = 1/2, and P T
i = (i + n)/(2n). When the process starts at

state i = X0 = 0, the conditional probability of recruiting by transport is P T
0 = 1/2,

which reflects the symmetry of no initial bias in this special p = q case.
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• In the more general case where p ̸= q (but q ≜ 1 − p), the characteristic equation
yields the particular solutions P T

i = 1 and P T
i = (q/p)i. The general solution then

has the form

P T
i =

(
q

p

)i

A+ (1)i B

for constants A,B ∈ R. To fix these constants, the conditional probabilities for the
case of the absorbing states can be used as boundary conditions. Thus, it must be the
case that: 

A

(
q

p

)−n

+B = P T
−n = 0

A

(
q

p

)n

+B = P T
n = 1

,

and so

A =
(q/p)n

(q/p)2n − 1
and B = − 1

(q/p)2n − 1
.

Therefore, for i ∈ RX ,

P T
i =

(q/p)n+1 − 1

(q/p)2n − 1
.

So the conditional probability of recruiting by transporting when starting in the neutral
initial state i = X0 = 0 is:

P T
0 =

(q/p)n − 1

(q/p)2n − 1
=

(q/p)n − 1

((q/p)n − 1) ((q/p)n + 1)

=
1

(q/p)n + 1
=

(p/q)n

(p/q)n + 1
=

(λτ)n

(λτ)n + 1
. (A.3)

Conveniently, when p = q (or, equivalently, λτ = 1), P T
0 = 0.5 as in the special

p = q case above.

A.3 Decision Latency (hitting time)

We will begin by using a recursive approach to find the expected number of steps of the
process before absorption. Knowing the average duration of the exponentially distributed
time intervals between transitions, we will compute the expected decision time.
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Let Si be the number of steps until absorption when starting form state i. Clearly,
S−n and Sn are both 0 since ±n are absorbing states. After the first transition occurs, the
conditional expectation of the number of steps is just Si+1 + 1 if the state increased by one
and Si−1 + 1 if it decreased. We derive the following recursion:

Si = pSi+1 + qSi−1 + 1.

This is an inhomogeneous difference equation with boundary conditions

Sn = 0 , S−n = 0.

The homogeneous solution is

A

(
q

p

)i

+B for p ̸= q

as before, and a particular solution can be found by assuming a linear form Si = ia+ b and
substituting in the recursion to get Si = i/(q − p). Thus,

Si = A

(
q

p

)i

+B +
i

q − p
.

Using the boundary conditions, we get

A =
2n
(

q
p

)n
(p− q)

((
q
p

)2n
− 1

) B = −
n

((
q
p

)2n
+ 1

)
(p− q)

((
q
p

)2n
− 1

) .

Substituting and setting i = 0 (to focus on the case of X0 = i = 0),

S0 = −
n
((

q
p

)n
− 1
)

(p− q)
((

q
p

)n
+ 1
)

When p = q, the particular solution Si = −i2 can be found by assuming a quadratic form
Si = ai2 + bi+ c, which yields a = −1, b = c = 0. Thus,

Si = Ai+B − i2

with boundary conditions 0 = ±An+B − n2, so A = 0, B = n2 so

Si = n2 − i2.
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For the initial state X0 = i = 0, we obtain

S0 =


−

n
((

q
p

)n
− 1
)

(p− q)
((

q
p

)n
+ 1
) if p ̸= q,

n2 if p = q.

Substituting the values for p and q and multiplying by the average holding time, τ
1+λτ

, we
obtain the decision latency for the initial neutral state 0,

Lo ≜


nτ (1− (λτ)n)

(1− λτ) (1 + (λτ)n)
if λτ ̸= 1,

τn2

2
if λτ = 1.
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B.1 Parameter values

B.1.1 Abandoning rate δ

Familiar feeder is 4m away from colony. Novel feeder changes every day, average
distance is 4.3m. According to behavioral experiments by Mosqueiro et al Mosqueiro
et al. 2017 there is a linear relationship between distance and inter-visit interval t, dictated
by

t = αd+ β

where α = 0.28± 0.05 and β = 2.3± 0.3

δf =
1

2.86 ∗ 3.462

B.1.2 High LI proportion: α values

All colonies are composed by 650 workers from selected lines and 650 control workers
(not selected for LI phenotype). Control colonies are made up entirely by control workers.
The proportion of High LI individuals among controls was estimated to be 25% by expert
elicitation (Dr. Chelsea Cook). The selected population of the colonies is either 100% High
LI (High colonies), 50% High LI and 50% Low LI (Mix colonies) or 100% Low LI (Low
colonies). Thus, we estimate alpha to be 62.5%, 37.5%, 12.5% and 12.5% in High, Mix,
Low and Control colonies, respectively.

B.2 Model fitting

Figure 24 shows model fit parabolas

Best-fit estimate of qh : 0.663463 1 SD confidence interval [ 0.6427357 , 0.6852647 ]
Best-fit estimate of β : 0.005755989 1 SD confidence interval [ 0.005669123 , 0.005834892 ]
Best-fit estimate of σh : 0.002053488 1 SD confidence interval [ 0.001712935 , 0.002462578
]

B.3 Sensitivity

Figure 25 shows sensitivity lines
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Figure 24. Results from the Graphical Monte-Carlo method for fitting the model to the
time-series data.
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Figure 25. Sensitivity analysis for the four High LI proportions studied. All parameters
were perturbed by 1% and the percent change in preference (measured as the difference
between the total number of visits to the familiar and novel feeders after 6 hours of
simulation). Left panels show the linearity of the preference with respect to the parameters
in the range of the perturbation.
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C.1 Summary of System Dynamics

Table 5 summarizes the dynamics of Full System ((4.5)).

C.2 Mathematical Proofs

C.2.1 Proof of Theorem 4.3.1 (Basic Dynamical Properties)

Theorem. (Basic Dynamical Properties) Model ((4.5)) is positive invariant and bounded in
R4

+

Proof. If (W,G,w, g) ∈ R4
+, then

dW

dt

∣∣∣
W=0

= Λ
w2

b2 + w2
ρ ≥ 0

dG

dt

∣∣∣
G=0

=
1

τ
W ≥ 0

dw

dt

∣∣∣
w=0

= Λ
W 2

b2 +W 2
(1− ρ) ≥ 0

dg

dt

∣∣∣
g=0

=

[
G

P
≤ θ

]
δw =

{
0 , G

P
> θ,

δw , G
P
≤ θ

≥ 0,

because all parameter values are nonnegative and 0 ≤ ρ ≤ 1. It follows that Model ((4.5))
is positive invariant in R4

+ by Theorem A.4 from Thieme (2018).
To show boundedness, we first prove that W is bounded:

dW

dt
= Λ

(W + w)2

b2 + (W + w)2
ρ− 1

τ
W ≤ Λρ− 1

τ
W.

This yields
lim sup
t→∞

W ≤ Λρτ.

Now let V = W +G+ w + g and µ = min{µG, µw, µg}. Then we have

dV

dt
= Λ

(W + w)2

b2 + (W + w)2
− (µGG+ µww + µgg)

≤ Λ− µV + µW ≤ Λ + µΛρτ − µV,

which gives lim supt→∞ V ≤ Λ/µ+ Λρτ.
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Non-Crisis Mode without Replacement θ <
G∗ + g∗

P ∗ =
ρµw

µG(1− ρ) + ρµw(1 + µGτ)

Extinction Interior

Ee E+ E−

W ∗ 0
1

2

Λρτ +

√√√√(Λρτ)2 −

(
2bτµw

1−ρ
ρ

+ τµw

)2
 1

2

Λρτ −

√√√√(Λρτ)2 −

(
2bτµw

1−ρ
ρ

+ τµw

)2


G∗ 0
1

τµG

W ∗ 1

τµG

W ∗

w∗ 0
(1− ρ)

ρτµw

W ∗ (1− ρ)

ρτµw

W ∗

g∗ 0 0 0

E.C. None
Λ

2b
(ρτ + (1− ρ)

1

µw

) ≥ 1

L.S. Stable Stable Unstable

Crisis Mode with Replacement θ ≥ G∗ + g∗

P ∗ =
ρ (µw + δ) + µG(1− ρ) δ

µg

µG(1− ρ)
(

δ
µg

+ 1
)
+ ρ (µw + δ) (1 + τµG)

Extinction Interior

Ee E+ E−

W ∗ 0
1

2

Λρτ +

√√√√(Λρτ)2 −

(
2bτ(µw + δ)

1−ρ
ρ

+ τ(µw + δ)

)2
 1

2

Λρτ −

√√√√(Λρτ)2 −

(
2bτ(µw + δ)

1−ρ
ρ

+ τ(µw + δ)

)2


G∗ 0
1

τµG

W ∗ 1

τµG

W ∗

w∗ 0
(1− ρ)

ρτ(µw + δ)
W ∗ (1− ρ)

ρτ(µw + δ)
W ∗

g∗ 0
δ(1− ρ)

µgρτ(µw + δ)
W ∗ δ(1− ρ)

2µgρτ(µw + δ)
W ∗

E.C. None
Λ

2b
(ρτ + (1− ρ)

1

µw + δ
) ≥ 1

L.S. Stable Stable Unstable

Sliding Mode γb < θ < γc

Ep
+ Ep

−

W ∗ 1
2
ρτ

(
Λ +

√
Λ2 −

(
2bµG(θµg + (1− θ)µw)

(1− θ)(µG(1− ρ) + µgρ+ µGµwρτ)

)2
)

1
2
ρτ

(
Λ−

√
Λ2 −

(
2bµG(θµg + (1− θ)µw)

(1− θ)(µG(1− ρ) + µgρ+ µGµwρτ)

)2
)

G∗ 1

τµG

W ∗ 1

τµG

W ∗

w∗ (1− θ)(µG(1− ρ)− µgρ) + θµGµgρτ)

µGρτ(θµg + µw(1− θ))
W ∗ (1− θ)(µG(1− ρ)− µgρ) + θµGµgρτ)

µGρτ(θµg + µw(1− θ))
W ∗

g∗
−µwρ+ θ(µG(1− ρ) + µwρ(1 + µGτ))

µGρτ(θµg + µw(1− θ))
W ∗ −µwρ+ θ(µG(1− ρ) + µwρ(1 + µGτ))

µGρτ(θµg + µw(1− θ))
W ∗

E.C. Λ
2b

(1− θ)(µgρ+ µG(1− ρ) + µGµwτρ)

µG(θµg + µw(1− θ))
≥ 1

L.S. Stable* Unstable*

Table 5. Summary of the model’s dynamics: Equilibrium points for the non-crisis and crisis
modes (i.e., without and with guard replacement by minors), including existence conditions
(E.C) and local stability (L.S.). *The local stability of the pseudoequilibria Ep

± was shown
only numerically, not analytically.
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C.2.2 Proof of Theorem 4.3.2 (Extinction equilibrium)

Theorem. Model ((4.5)) always has the extinction equilibrium

Ee := (W ∗, G∗, w∗, g∗) = (0, 0, 0, 0),

which is locally stable. If µu = min{1/τ, µw} and Λ < 2µub, then Ee is globally stable.

Proof. When the population is zero, W = w = G = g = 0 and

dW

dt
=

dw

dt
=

dG

dt
=

dg

dt
= 0.

This means that the system has an extinction equilibrium

Ee := (W ∗, G∗, w∗, g∗) = (0, 0, 0, 0).

We can analyze the stability of this point by studying the linearized system near the
origin. It is necessary to evaluate two cases of the Jacobian matrix, one for each case of
[G+g

P
≤ θ]. The Jacobian matrix of the system can be reduced to

2b2W ∗

τ
− 1

τ
0

2b2W ∗

τ
0

1

τ
−µG 0 0

2b2(1− ρ)W ∗

ρτ
0

2b2(1− ρ)W ∗

ρτ
− µw 0

0 0 0 −µg


when G+g

P
≤ θ, and

2b2W ∗

τ
− 1

τ
0

2b2W ∗

τ
0

1

τ
−µG 0 0

2b2(1− ρ)W ∗

ρτ
0

2b2(1− ρ)W ∗

ρτ
− µw − δ 0

0 0 δ −µg


when G+g

P
> θ. Evaluating at Ee, we get

−1

τ
0 0 0

1

τ
−µG 0 0

0 0 −µw 0
0 0 0 −µg

 and


−1

τ
0 0 0

1

τ
−µG 0 0

0 0 −µw − δ 0
0 0 δ −µg


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respectively. The eigenvalues of these matrices are{
−1

τ
,−µg,−µG,−µw

}
and

{
−1

τ
,−µg,−µG,−µw − δ

}
which are all negative values. This means that the zero equilibrium is locally stable,
regardless of the value of G+g

P
in its vicinity.

Now assume that Λ < 2µub for µu = min{1/τ, µw}. We will show that Ee is globally
asymptotically stable.

Let
u = W + w.

Then

du

dt
= Λ

(W + w)2

b2 + (W + w)2
−W/τ − µww

< Λ
u2

b2 + u2
− µuu = u

Λu− µu(b
2 + u2)

b2 + u2

= µuu
ϕ

b2 + u2

for

ϕ = −
(
u− Λ

2µu

)2

+

(
Λ

µu

)2

− 4b2

4
.

Because Λ/µu < 2b, ϕ is negative. Therefore, both W and w collapse to zero if Λ/µu < 2b.
In this case,

dG

dt
= −µGG and

dg

dt
= −µgg.

Therefore, G and g also collapse to extinction. This completes the proof.

C.2.3 Proof of Theorem 4.3.3 (Existence and Stability of the Crisis Interior Equilibria)

Theorem. Define condition

Cc :
Λ

2b

(
ρτ + (1− ρ)

1

µw + δ

)
≥ 1.

Then the Crisis System defined by FSc ((4.6)) has two interior equilibria, Ec
+ and Ec

−, if and
only if Cc holds. Both have the form

(W ∗, G∗, w∗, g∗) = (W ∗,
1

τµG

W ∗,
1− ρ

ρτ(µw + δ)
W ∗,

δ

µg

1− ρ

ρτ(µw + δ)
W ∗)
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where

W ∗ =
1

2

Λρτ ±

√√√√√√√(Λρτ)2 −

 2b(µw + δ)τ
1− ρ

ρ
+ (µw + δ)τ


2
 (C.1)

Moreover,

1. The interior equilibrium Ec
+ is Locally Asymptotically Stable, and Ec

− is unstable.
2. Both Ec

+ and Ec
− are regular equilibria of the Full System ((4.5)) if and only if

γc < θ

for γc defined in Equation ((4.10)).

Proof. From relations ((4.9)), each equilibrium of System ((4.6)) takes the form:

(W ∗, G∗, w∗, g∗) = (W ∗,
1

τµG

W ∗,
1− ρ

ρτ(µw + δ)
W ∗,

δ

µg

1− ρ

ρτ(µw + δ)
W ∗).

Furthermore, the value of W ∗ in an interior equilibrium of the System ((4.6)) must be a root
of Equation ((4.11)), which can be rearranged as:

f(W ∗) = W ∗2 − ΛτρW ∗ + (
b(µw + δ)τ

1− ρ

ρ
+ (µw + δ)τ

)2.

with all parameters being positive and finite, and that root must be positive by Theorem 4.3.1.
It follows that there are at most two interior equilibria, Ec

+ and Ec
−, and those equilibria are

such that:

W ∗ =
1

2


Λρτ ±

√√√√√√√(Λρτ)2 − (
2b(µw + δ)τ

1− ρ

ρ
+ (µw + δ)τ

)2

︸ ︷︷ ︸
∗


,

Thus condition Cc of this theorem, equivalent to the discriminant (∗ above) being
positive, holds if and only if the two positive, real roots described by ((C.3)) exist.
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1. We study the local stability of the equilibrium points using the Jacobian matrix J of
the linearized system in their vicinity. From System ((4.6)), we get

J =

2b2Λρ(w +W )

(b2 + (w +W )2)2
− 1

τ
0

2b2Λρ(w +W )

(b2 + (w +W ∗)2)2
0

1

τ
−µG 0 0

−2b2Λ(ρ− 1)(w∗ +W ∗)

(b2 + (w∗ +W ∗)2)2
0 −2b2Λ(ρ− 1)(w +W )

(b2 + (w +W )2)2
− µw − δ 0

0 0 δ −µg


.

From the characteristic polynomial, and using Equations ((4.6)) to obtain an equation
in terms of W , it follows that the eigenvalues of J satisfy the equation

(µg + λ)(µG + λ)
(
λ2 + λB + C

)
where

B :=
1

τ
+ µw + δ − h,

=
W

(W + w) (b2 + (W + w)2) τρ

(
ρ
w

W

(
b2 + (W + w)2

)
+ (1− ρ)

W

w

(
b2 + (W + w)2

)
+ (W + w + b)(W + w − b)

)
,

C :=
1

τ
(µw + δ)− ρh(µw + δ)− 1

τ
(1− ρ)h,

=
(µw+δ)

τ
W

b2 + (W + w)2
f ′(W ),

where h = 2b2Λ(W+w)

(b2+(W+w)2)2
. This yields the two negative eigenvalues −µg and −µG, and

two additional ones, λ+ and λ−, that satisfy a quadratic equation. Define the sum and
product of λ+ and λ− as

Π := λ+λ− = C

Σ := λ+ + λ− = −B.

With this terminology, we analyze the sign of λ+ and λ− for each of the interior
equilibria Ec

+ and Ec
−.

From the existence condition of equilibrium we have that
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W + w − b =
1

2

(
1 +

1− ρ

τρ(µw + δ)

)√√√√√√√(Λρτ)2 −

 2b(µw + δ)τ
1− ρ

ρ
+ (µw + δ)τ


2

+
1

2

(
1 +

1− ρ

τρ(µw + δ)

)
τρΛ− b > 0.

Thus, we have B > 0. Because g′(W ) < 0 at equilibrium Ec
− and g′(W ) > 0

at equilibrium Ec
+, then we have C|Ec

−
< 0 and C|Ec

+
> 0. According to the

Routh–Hurwitz condition, we can get that Ec
− is always unstable and Ec

+ is locally
asymptotically stable.

2. By Definition 4.3.1, Z∗ is a regular equilibrium of System ((4.5)) iff FSc(Z
∗) = 0,

H(Z∗) < 0 or FSb
(Z∗) = 0, H(Z∗) > 0, with FSc and FSb

defined in Equations
((4.6)) and ((4.7)), and H(Z) = (G+ g)− θP . By construction,

FSc(E
c
+) = FSc(E

c
−) = 0.

Moreover, note that both Ec
− and Ec

+ have the same guard ratio
G∗ + g∗

P ∗ , defined as
γc in Equation ((4.10)). It follows that

H(Ec
−) < 0 ⇐⇒ H(Ec

+) < 0 ⇐⇒ γc < 0.

Thus, both Ec
− and Ec

+ are regular equilibria of System ((4.5)) iff γc < θ.

C.2.4 Proof of Theorem 4.3.4 (Existence and Stability of the Non-Crisis Interior Equilib-
ria)

Theorem. Define condition

Cb :
Λ

2b

(
ρτ + (1− ρ)

1

µw

)
≥ 1. (C.2)

Then the Non-Crisis System defined by FSb
((4.7)) has two interior equilibria Eb

+ = Ec
+|δ=0

and Eb
− = Ec

−|δ=0 if and only if Cb holds.
Moreover,

1. The interior equilibrium Eb
+ is Locally Asymptotically Stable, while Eb

− is unstable.
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2. Both Eb
+ and Eb

− are regular equilibria of the Full System ((4.5)) if and only if

γb > θ

for γb defined in Equation ((4.14)).

Proof. The Non-Crisis System FSb
((4.7)) is identical to the Crisis System FSc ((4.6)) when

δ = 0. Thus, following the same analysis as the previous proof in Section C.2.3 in the
special case δ = 0, we get that FSb

((4.7)) has two positive, real equilibria Eb
+ and Eb

−, of
the form

(W ∗, G∗, w∗, g∗) = (W ∗,
1

τµG

W ∗,
1− ρ

ρτµw

W ∗, 0)

with

W ∗ =
1

2

Λρτ ±

√√√√√√√√√(Λρτ)2 −

 2bµwτ
1− ρ

ρ
+ µwτ


2

︸ ︷︷ ︸
∗

 . (C.3)

if and only if the discriminant (∗ above) is guaranteed to be positive or, equivalently,
condition Cb of this theorem holds.

1. We study the local stability of the equilibrium points using the Jacobian matrix J of
the linearized system in their vicinity. From System ((4.7)), we get

J =

2b2Λρ(w +W )

(b2 + (w +W )2)2
− 1

τ
0

2b2Λρ(w +W )

(b2 + (w +W ∗)2)2
0

1

τ
−µG 0 0

−2b2Λ(ρ− 1)(w∗ +W ∗)

(b2 + (w∗ +W ∗)2)2
0 −2b2Λ(ρ− 1)(w +W )

(b2 + (w +W )2)2
− µw 0

0 0 0 −µg


.

From the characteristic polynomial, it follows that the eigenvalues of J are roots of

(µg + λ)(µG + λ)
(
λ2 + λB + C

)
= 0
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where

B :=
1

τ
+ µw − h,

=
W

(W + w) (b2 + (W + w)2) τρ

(
ρ
w

W

(
b2 + (W + w)2

)
+ (1− ρ)

W

w

(
b2 + (W + w)2

)
+ (W + w + b)(W + w − b)

)
,

C :=
µw

τ
− µwρh− 1

τ
(1− ρ)h,

=
µw

τ
W

b2 + (W + w)2
f ′(W ),

and h = (2b2Λ(W + w))/(b2 + (W + w)2)2. Consequently, there are two negative
eigenvalues −µg and −µG, and two additional ones, λ+ and λ−, that satisfy a quadratic
equation. Define the sum and product of λ+ and λ− as

Π := λ+λ− = C

Σ := λ+ + λ− = −B.

With this terminology, we analyze the sign of λ+ and λ− for each of the interior
equilibria Eb

+ and Eb
−.

From the existence condition Cb, we have that

W + w − b =
1

2

(
1 +

1− ρ

τρµw

)√√√√√√√(Λρτ)2 −

 2bµwτ
1− ρ

ρ
+ µwτ


2

+
1

2

(
1 +

1− ρ

τρµw

)
τρΛ− b > 0.

Thus, we have B > 0. Because f ′(W ) < 0 at equilibrium Eb
− and f ′(W ) > 0 at

equilibrium Eb
+, then we have C|Eb

−
< 0 and C|Eb

+
> 0. According to Routh–Hurwitz

condition, we get that Eb
− is always unstable and Eb

+ is locally asymptotically stable.
This completes this proof.

2. By Definition 4.3.1, Z∗ is a regular equilibrium of System ((4.5)) iff FSc(Z
∗) = 0,

H(Z∗) < 0 or FSb
(Z∗) = 0, H(Z∗) > 0, with FSc and FSb

defined in Equations
((4.6)) and ((4.7)), and H(Z) = (G+ g)− θP . By construction,

FSb
(Eb

+) = FSb
(Eb

−) = 0.

Moreover, note that both Eb
− and Eb

+ have the same guard ratio
G∗ + g∗

P ∗ , defined as
γb in Equation ((4.14)). It follows that

H(Eb
−) < 0 ⇐⇒ H(Eb

+) < 0 ⇐⇒ γb < 0.
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Thus, both Eb
− and Eb

+ are regular equilibria of System ((4.5)) iff γb > θ.

C.2.5 Proof of Theorem 4.3.6 (Existence of Pseudoequilibria)

Theorem. Define condition

Cp :
Λ

2b

(1− θ)(µgρ+ µG(1− ρ) + µGµwτρ)

µG(θµg + µw(1− θ))
≥ 1.

Then System ((4.5)) has two pseudoequilibria Ep
+ and Ep

− on the switching surface Σ if and
only if Cp holds and γb ≤ θ < γc. The pseudoequilibria have the form

(W ∗, G∗, g∗, w∗) =

(
W ∗,

1

τµG

W ∗,
(1− θ)(µG(1− ρ)− µgρ) + θµGµgρτ)

µGρτ(θµg + µw(1− θ))
W ∗,

−µwρ+ θ(µG(1− ρ) + µwρ(1 + µGτ))

µGρτ(θµg + µw(1− θ))
W ∗
)

with

W ∗|Ep
±
=

1

2
ρτ

Λ±

√
Λ2 −

(
2bµG(θµg + (1− θ)µw)

(1− θ)(µG(1− ρ) + µgρ+ µGµwρτ)

)2


Proof. From relations ((4.20)), any pseudoequilibrium of System ((4.5)) must take the form:

(W ∗, G∗, g∗, w∗) = (W ∗,
1

τµG

W ∗,
1− ρ

ρτ(µw + δ(1− λ∗))
W ∗,

δ(1− λ∗)(1− ρ)

µgρτ(µw + δ(1− λ∗))
W ∗)

Recall the value of λ∗ in Equation ((4.22))

λ∗ =
µGµgθ(δτρ+ 1− ρ+ µwρτ)− (1− θ)(δ(µG(1− ρ) + µgρ) + µgµwρ)

δ(µGµgρτθ − (1− θ)(µG(1− ρ) + µgρ))
(C.4)

First, note that λ∗ ∈ [0, 1] ⇐⇒ γb ≤ θ ≤ γc. In fact, the equation for λ∗ can be rearranged
as a function of θ as

λ∗(θ) =
−A+ θB

δ (C + θD)
(C.5)

with

A = δ(µG(1− ρ) + µgρ) + µgµwρ

B = δ(µG(1− ρ) + µgρ(1 + µGτ)) + µg(µG(1− ρ) + µwρ(1 + µGτ))

C = −µG(1− ρ) + µgρ

D = µG(1− ρ) + µgρ(1 + µGτ).
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This is a monotonically decreasing hyperbola, since the derivative

∂λ∗

∂θ
=

−µgµG(1− ρ) (µG(1− ρ) + µgρ+ µGµwρτ)

δ2 (−(1− θ)µgρ+ µG(−(1− ρ) + θ(1− ρ+ µgρτ)))
2

is negative for all θ except at the vertical asymptote, where it is undefined. Furthermore, the
hyperbola has a horizontal asymptote at

1 +
µg (µG(1− ρ) + µwρ(1 + µGτ))

δ (µG(1− ρ) + µgρ(1 + µGτ))
> 1.

Moreover, θ = γb =⇒ λ∗ = 1 and θ = γc =⇒ λ∗ = 0. Thus,

λ∗ ∈ [0, 1] ⇐⇒ γb ≤ θ ≤ γc

By substituting the value of λ∗ from Equation ((4.22)), we get the form

(W ∗, G∗, g∗, w∗) =

(
W ∗,

1

τµG

W ∗,
(1− θ)(µG(1− ρ)− µgρ) + θµGµgρτ)

µGρτ(θµg + µw(1− θ))
W ∗,

−µwρ+ θ(µG(1− ρ) + µwρ(1 + µGτ))

µGρτ(θµg + µw(1− θ))
W ∗
)

Furthermore, the value of W ∗ must be a root of

f(W ∗) = W ∗2 − ΛτρW ∗ + (
b(µw + δ(1− λ∗))τ

1− ρ

ρ
+ (µw + δ(1− λ∗))τ

)2

with all parameters being positive and finite, and that root must be positive by Theorem 4.3.1.
This yields the existence condition

Cp :
Λ

2b
(ρτ + (1− ρ)

1

µw + δ(1− λ∗)
) ≥ 1

Substituting λ∗ again from ((4.22)), it follows that there are at most two pseudoequilibria,
Ep

+ and Ep
−, such that

W ∗|Ep
±
=

1

2
ρτ

Λ±

√
Λ2 −

(
2bµG(θµg + (1− θ)µw)

(1− θ)(µG(1− ρ) + µgρ+ µGµwρτ)

)2


Now assume that γb ≤ θ < γc. We will show that Ep
+ and Ep

− lay on the sliding set
Σs ⊆ Σ. That is, we will demonstrate σ(Ep

±) ≤ 0, for the function σ defined in ((4.17)). In
fact,
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σ(Ep
±) = ϕ

(
Λ±

√
Λ2 −

(
2bµG(θ(µg − µw) + µw)

(1− θ)(µG + µgρ+ µGρ(−1 + µwτ)

)2
)2

4µ2
G(θ(µg − µw) + µw)2

with

ϕ :=

θ2
(
δρµg (µG + ρµG (τµw − 1) + ρµw) + δρµG (τµg − 1) (µG + ρµG (τµw − 1) + ρµw)

+ µg (µG + ρµG (τµw − 1) + ρµw)
2 + δµG (µG + ρµG (τµw − 1) + ρµw)

)
+ θ

(
−δρ2µGµw (τµg − 1)− δρµg

(
µG + ρµG (τµw − 1) + ρµw

)
− 2ρµgµw (µG + ρµG (τµw − 1) + ρµw)− δρ2µgµw

+ δρµG (µG + ρµG (τµw − 1) + ρµw)

− δµG (µG + ρµG (τµw − 1) + ρµw)− δρµGµw

)
+ δρ2µgµw + ρ2µgµ

2
w − δρ2µGµw + δρµGµw

It follows that σ(Ep
±) ≤ 0 ⇐⇒ ϕ ≤ 0. Therefore, we examine the sign of ϕ. As a

function of θ, ϕ(θ) is a parabola with two positive roots γb and γc. Moreover,

ϕ(0) = δρ2µgµw + ρ2µgµ
2
w + δρµGµw(1− ρ) ≥ 0

so the parabola has a positive intercept and two positive roots. Then it must be negative
between its roots, that is, ϕ(θ) ≤ 0 for γb ≤ θ ≤ γc. Therefore, Ep

− and Ep
+ belong to the

sliding set Σs.
We have shown that Ep

− and Ep
+ are indeed pseudoequilibria when γb ≤ θ ≤ γc and

condition Cp holds. We can also see that, should any of these conditions fail to hold, there
are no pseudoequilibria. In fact, if θ < γb or θ > γc, then λ∗ ̸∈ [0, 1] and Ep

− and Ep
+ do not

lay on the sliding segment Σs, and if Cp is false then Ep
− and Ep

+ are not real values. This
completes the proof.

C.2.6 Proof of Theorem 4.3.5 (Characterization of the Equilibrium Guard Ratios)

Theorem. The ratio
γb =

ρµw

µG(1− ρ) + ρµw(1 + µGτ)
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is monotonically increasing with respect to ρ, while the ratio

γc =
ρ (µw + δ) + µG(1− ρ) δ

µg

µG(1− ρ)
(

δ
µg

+ 1
)
+ ρ (µw + δ) (1 + τµG)

is monotonically decreasing with respect to ρ if µg ≤ δτµG and monotonically increasing
otherwise

Proof. 1. Consider the derivatives of γb and γc with respect to ρ:

∂γb
∂ρ

=
µGµw

(µG(1− ρ) + ρµw(1 + µGτ))
2 > 0

∂γc
∂ρ

=
µgµG (δ + µw) (µg − δτµG)(

µG(1− ρ)
(

δ
µg

+ 1
)
+ ρ (µw + δ) (1 + τµG)

)2

=⇒


∂γc
∂ρ

≤ 0 , µg ≤ δτµG

∂γc
∂ρ

> 0 , otherwise
.

Thus, both ratios are monotonic functions of ρ.
2. Moreover,

ρµw

µG(1− ρ) + ρµw(1 + µGτ)
≤ ρ(µw + δ) + µG(1− ρ)δ/µg

µG(1− ρ)(1 + δ/µg) + ρ(µw + δ)(1 + τµG)

⇐⇒ ρµwµG(1− ρ)(1 + δ/µg) + µwρ
2(µw + δ)(1 + µGτ)

≤ (ρ(µw + δ) + µG(1− ρ)δ/µg)(µG(1− ρ) + ρµw(1 + µGτ))

After some manipulation, the last inequality can be reduced to

−ρµwµGτδ/µg − ρδ − µG(1− ρ)δ/µg ≤ 0

which is always true. Therefore, γb ≤ γc. Therefore, by the conditions on θ from
Theorems 4.3.3–4.3.4, it follows that the Full System ((4.5)) can have at most one
stable regular equilibrium.

This completes the proof.

C.3 Parameter values for T. angustula stingless bees

General assumptions for stingless bee colonies:
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• δ >> 1/τ : replacement by minors is a fast response mechanism and occurs at a faster
rate than the natural maturation of majors into guards

• τ < 1/µw: maturation of majors is shorter than the average lifespan of minors
• µg > µG: minors are worst at defense, so they die sooner thank major guards
• ρ << 1: majors are the minority of the colony

Specific values found in literature, summarized in Table 4:

• The average guarding duration was estimated to be 5.4 ± 1.5 days Hammel et al. 2015;
Grüter, Kärcher, and Ratnieks 2011

• The average age of guarding workers was 26.3 ± 3.3 days, and bees started guarding
at 20 days of age Hammel et al. 2015

• Replacement guards are observed 5h after removing guards Baudier et al. 2019. That
is, replacement occurs within 5 hours (δ is at least 4/day)

• The final age (last day a bee was seen in the hive) between the two size classes
(majors: 27.85 ± 5.6 days; minors: 27.0 ± 8.4 days) does not differ Hammel et
al. 2015. In another study, the average lifespan of bees was estimated to be 21 days
Grüter, Kärcher, and Ratnieks 2011

• In a swarming colony estimated to have around 10,000 adults, the recently founded
offspring colonies had between 500 and 1000 workers Van Veen and Sommeijer 2000

• The egg-laying rate by the queen was on average 6.41 eggs per hour in an observation
period of 18 hours per day. Koedam, Brone, and Van Tienen 1997

148


	Table of Contents
	List of Tables
	List of Figures
	Chapter
	1 Introduction
	2 A model for ant quorum sensing with bounded latency for hard decisions
	3 From Individual Phenotypes to Collective Behavior in Honeybee Foragers: A Mathematical Model
	4 A mathematical framework for adaptive collective defense: Crisis response in social-insect colonies
	5 Conclusion

	References
	Appendix
	A Supplementary material for Chapter 2
	B Supplementary material for Chapter 3
	C Supplementary material for Chapter 4


