
Improving Ontology Alignment Using Machine Learning Techniques

by

Tariq M Nasim

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved April 2022 by the
Graduate Supervisory Committee:

Srividya Bansal, Chair
Ayan Banerjee

Alexandra Mehlhase

ARIZONA STATE UNIVERSITY

May 2022

ABSTRACT

Ontologies play an important role in storing and exchanging digitized data. As

the need for semantic web information grows, organizations from around the globe

has defined ontologies in different domains to better represent the data. But different

organizations define ontologies of the same entity in their own way. Finding ontolo-

gies of the same entity in different fields and domains has become very important

for unifying and improving interoperability of data between these multiple domains.

Many different techniques have been used over the year, including human assisted,

automated and hybrid. In recent years with the availability of many machine learn-

ing techniques, researchers are trying to apply these techniques to solve the ontology

alignment problem across different domains. In this study I have looked into the use

of different machine learning techniques such as Support Vector Machine, Stochas-

tic Gradient Descent, Random Forest etc. for solving ontology alignment problem

with some of the most commonly used datasets found from the famous Ontology

Alignment Evaluation Initiative (OAEI). I have proposed a method OntoAlign which

demonstrates the importance of using different types of similarity measures for fea-

ture extraction from ontology data in order to achieve better results for ontology

alignment.

i

ACKNOWLEDGMENTS

My heartfelt gratitude to Dr. Srividya Bansal for her guidance and encouragement

throughout the project. I also want to extend my gratitude to my committee for their

guidance in my research and for taking the time to serve as committee members.

ii

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

CHAPTER

1 INTRODUCTION . 1

1.1 Problem Statement . 1

1.2 Challenges . 2

1.3 Challenges Addressed in OntoAlign . 4

1.4 Overview of Proposed Approach . 5

1.5 Organization . 6

2 BACKGROUND . 8

2.1 Semantic Web . 8

2.2 Ontology . 9

2.3 Ontology Alignment . 10

2.4 Multi-Domain Ontology Alignment. 12

2.5 The Focus of This Research . 13

3 RELATED WORK . 15

4 DATA PREPROCESSING . 19

4.1 Description of Datasets . 19

4.2 Dividing Data Into Train and Test Sets. 22

4.3 Data Preparation . 22

5 FEATURE EXTRACTION . 24

5.1 Similarity Measures . 24

5.1.1 String Based Similarity . 24

iii

CHAPTER Page

5.1.2 Language Based Similarity. 28

5.1.3 Meta-data and Structure Based Similarity 30

5.2 Using the Similarity Measures as Features . 30

5.3 Normalizing the Features . 31

6 MACHINE LEARNING FOR ONTOLOGY ALIGNMENT 33

6.1 Why Machine Learning? . 33

6.2 Supervised vs Unsupervised . 33

6.3 Regression vs Classification . 34

6.4 Classification Algorithms . 35

6.4.1 Logistic Regression Classifier . 35

6.4.2 Decision Tree . 36

6.4.3 Stochastic Gradient Descent Classifier . 37

6.4.4 Support Vector Classifier . 38

6.4.5 Random Forest Classifier . 40

6.4.6 Linear Discriminent Analysis . 41

6.4.7 K Nearest Neighbor Classifier . 42

6.4.8 Multi-Layer Perceptron . 42

6.4.9 Ada Boost Classifier . 43

6.4.10 Other Machine Learning Methods . 44

6.4.11 Summary. 44

7 ONTOLOGY MATCHING . 45

7.1 Using Machine Learning . 45

7.1.1 Alignment Creation Using Similarity Measures 45

7.1.2 Creating dataset and training a machine learning model 47

iv

CHAPTER Page

7.2 Results . 49

7.2.1 Results for the OAEI ’Benchmark’ Dataset 50

7.2.2 Results for the OAEI ’Conference’ Dataset 50

7.2.3 Comparison of Results with Existing Works 51

7.3 Analysis of the Results . 52

8 ABLATION STUDIES . 54

8.1 Similarity Measures . 54

8.2 Using Word2Vector . 58

8.3 Varying ML Parameters . 59

8.3.1 Decision Tree . 59

8.3.2 Random Forest . 60

8.3.3 Logistic Regression . 61

8.3.4 SGD Classifier . 61

8.3.5 Ada Boost Classifier . 61

8.3.6 LDA . 62

8.3.7 KNN Classifier . 63

8.3.8 MLP Classifier . 64

9 FUTURE WORK . 66

9.1 Possible Extension of Current Work . 66

9.2 Neural Network based solutions . 66

9.3 Transfer Learning . 67

10 CONCLUSION . 68

REFERENCES . 69

v

LIST OF TABLES

Table Page

4.1 Properties of the Dataset#1 (Benchmark) . 20

4.2 Properties of the Dataset#2 (Conference) . 20

4.3 Dataset#1 CSV File - Sample Contents after Data Preparation 23

6.1 Machine Learning Algorithms Used in the Experiment 35

7.1 F-Measures from Different Machine Learning Algorithms on Dataset-1.

Word2Vec Dataset: GoogleNews-vectors-negative300 49

7.2 F-Measures from Different Machine Learning Algorithms on Dataset

2. Word2Vec Dataset: GoogleNews-vectors-negative300 50

7.3 Comparison with State of the Art Methods Based on Dataset-1. 51

7.4 Comparison with State of the Art Methods Based on Dataset-2. 52

vi

LIST OF FIGURES

Figure Page

1.1 Overview of the Proposed Solution . 5

2.1 The Semantic Web Stack [Signore et al. (2005)] . 9

2.2 A Sample Ontology File . 10

2.3 A Sample Ontology Alignment for Two Movies . 12

2.4 Focus of Current Research in the Domain of Semantic Web 14

4.1 Sample Alignment File . 21

4.2 Overview of the Data Preparation Step . 23

5.1 Feature Extraction Based on Similarity Measures . 31

8.1 Impact of Number of Similarity Measures on Logistic Regression and

Decision Tree (Dataset#1) . 55

8.2 Impact of Number of Similarity Measures on Random Forest and Stochas-

tic Gradient Descent Classifier (Dataset#1) . 55

8.3 Impact of Number of Similarity Measures on Linear Discriminant Anal-

ysis and SVM Classifier (Dataset#1) . 56

8.4 Impact of Number of Similarity Measures on K-nearest Neighbour

Classifier and MLP Classifier (Dataset#1) . 57

8.5 Average F-measures for All Machine Learning Methods Against the

Number of Similarity Measures Used . 57

8.6 Using Word2vector Alone as a Similarity Measure . 58

8.7 Including Word2vector as a Similarity Measure . 59

8.8 Impact of ’Depth’ for Decision Tree and Random Forest Method 60

8.9 Random Forest - Change of Estimators . 60

8.10 Impact of Parameter Change on Logistic Regression and SGD Classifier 61

8.11 Impact of the Change of Number of Estimators on Ada Boost Classifier 62

vii

Figure Page

8.12 LDA - Change of Shrinkage Value for Eigen Solver 62

8.13 KNN Classifier - Change of K (Dataset#1) . 63

8.14 KNN Classifier - Change of K (Dataset#2) . 63

8.15 MLP Classifier - Number of Layers (Dataset#1) . 64

8.16 MLP Classifier - Number of Layers (Dataset#2) . 65

viii

Chapter 1

INTRODUCTION

The use of Resource Description Framework (RDF) data has increased in recent

years due to the involvement and contributions of many organizations like DBPe-

dia. RDFs has been defined as a framework for data interchange on the web (W3C).

RDFs primarily store metadata information about a class of data that can be eas-

ily read by other web entities and help determine the relationship with a particular

class among other classes. Ontology is used to connect such classes of data and to

define the characteristics of distinct classes of data. Ontology alignment is the pro-

cess of finding relationships and similarity between different ontologies from the same

domain or different domains. Though ontology alignment has been studied a lot in

recent years, automated ontology alignment is still a difficult process, especially when

it comes to solving problems from different domains. Also, most approaches found

in the literature still require advanced human interventions in addition to the auto-

mated procedure. The purpose of current research is to find an automated ontology

alignment that requires no human interaction and which is as fast as or better than

the existing ones.

1.1 Problem Statement

Ontologies contain not only the information itself but also the metadata of the

information, for example the properties of that particular class of information, the

relationship between that and other data and the modality of that class of data. For

this reason, in order to evaluate ontology alignment it is important to take special

1

consideration to convert ontologies into a representation that can be used to match

with other classes. For using machine learning techniques most researchers use vector

representations of ontologies which helps design the inputs for machine learning or

deep learning models. One difficult task for ontology alignment is to get the vec-

tor representation that accurately resembles all necessary properties and data of the

entities. Another one is to handle the diversity of two different entities that might

come from different domains and might contain completely different types of proper-

ties. Almost all the current methods require intensive human intervention which is

very time-consuming and also “prone to” human errors. In our current research we

are looking for a fully automated ontology matcher which can perform well in both

same-domain and cross-domain areas.

1.2 Challenges

There are several reasons why ontology alignment is a difficult task.

First reason is the huge amount of semantic web data available. Because of the vast-

ness of data, it is very difficult and time consuming to perform the alignment tasks

by humans. Even with the help of machines, it is quite difficult to achieve accurate

alignments.

Heterogeneity of data is also a common problem for not only ontology alignment, but

also for researchers working on fields like robotics, big data etc. This problem arises

due to the different process of collecting data. Due to the diverse nature of data it is

difficult to combine them under same classification.

Lack of interoperability is another challenge for ontology alignment and semantic web

in general. Many different organizations stores the same entity in different formats. It

is therefore difficult to create linked entities and match similar entities from multiple

domain. Little initiavies have been taken to overcome this problem of standardizing

2

the format of semantic web data. Ontology Alignment Evaluation Initiativ (OAEI)

is one such initiative that addresses some of this interoperability issues. For example,

the conference track dataset provides collection of ontologies describing the domain

of organising conferences. The largebio track consists of data from three different

groups: Foundational Model of Anatomy (FMA), SNOMED CT, and the National

Cancer Institute Thesaurus (NCI). These datasets allows the researchers to build au-

tomated methods for ontology alignment.

Ontology matching is very time consuming and most of the times not accurate enough.

Though there has been some initiatives like OAEI to help develop faster and more

accurate methods for ontology alignment, only limited number of teams have devel-

oped tools and techniques that can complete required tasks for the largebio track

data in 2020. Vast amount of knowledge is required to develop an efficient semantic

web analyzer or ontology matcher.

Missing background knowledge is another problem in ontology matching. Although

there are a huge amount of data available from different organizations, most of the

times the required background knowledge gets lost in the process of encoding the

data in specific format which is suitable for storing and sharing. This happens be-

cause when human experts encode those data, they are not able to convert all domain

knowledge into the specific data or entity in question. For ontology alignment it is

important to retain those background knowledge.

Ontology alignment is not deterministic. When different matches are presented by

different alignment methods, there is no way to decide which one should be considered

most accurate. The performance of one alignment technique varies based on the na-

ture of data, domain of data, choice of parameters used in the ontology matcher etc.

Therefore a matcher used on a specific dataset can not be used deterministically on

another dataset. The lack of ground truth is another reason for this problem. Some

3

techniques are available to produce ground truth for ontology alignments, but it is

not easy to determine their effectiveness and accuracy. Also, most of these techniques

require intensive human intervention.

Next section describes how our method OntoAlign addresses these challenges.

1.3 Challenges Addressed in OntoAlign

In our proposed method, OntoAlign, we have addressed some of the challenges

described above.

OntoAlign makes the process of ontology alignment automatic, which requires zero

human involvement. In our method, all the steps including data processing, feature

extraction, machine learning model training and alignment prediction, no human in-

teraction is required.

OntoAlign can handle ontologies from heterogeneous sources and produces results

that are comparable with state of the art methods. We have tested this using two

different publicly available datasets from Ontology Alignment Evaluation Initiative

(OAEI)1.

Even though different organizations define the same ontologies in way, these can be

resolved by using the feature extraction step of OntoAlign. We have used a large num-

ber of similarity measures including some language-based similarities, which enables

the identification of similarities between ontologies defined using different terminolo-

gies.

Structural difference in ontologies defined in different sources is another issue that

is considered in OntoAlign. By using the hierarchical information and meta-data of

each ontologies, e.g. the parent and path of each entity, OntoAlign gives more accu-

rate results than other methods that compares only the textual similarities.

1https://oaei.ontologymatching.org/

4

Combining all the above, OntoAlign gives a comprehensive ontology alignment method

which produces results that is superior to most of the methods’ available in this field.

The comparative results with other methods are presented in 7.3 and 7.4.

1.4 Overview of Proposed Approach

Due to all the challenges mentioned in 1.2, it is very difficult to find an ontology

alignment approach that will be suitable for all domains. Researchers have explored

different approaches for ontology matching. We have discussed those in chapter 3.

After studying other approaches, we propose OntoAlign, where we have decided to

use different machine learning techniques to solve the problem with the help of mul-

tiple similarity measures between the entities of the ontologies. The reason behind

using machine learning is, if we can train a model based on available data, it should

be a simple task to find similarities between a new pair of ontologies.

Figure 1.1: Overview of the Proposed Solution

For each ontology file, we first extract all the classes and properties. From the

classes and properties, we generate all the class-to-class and property-to-property

pairs and assign a value indicating whether the pair is a match or not. This is the

data preparation step as shown in figure 1.1. We call this the entity-alignment tuple.

Then, based on each of these pairs, we calculate different similarity measures. After

normalizing the values of the similarity measures and combining them, we prepare a

feature vector representing these two entities (two classes or two properties).

5

The feature vectors extracted from the entity-alignment tuple are then fed into our

machine learning models. We have designed several machine learning models and

trained them based on the entity-alignment tuples we get from the previous step.

The overall process is shown in figure 1.1. The source code of our tool OntoAlign can

be found on github2.

Different machine learning techniques have been proven quite successful in classi-

fying different types of data especially text-based data. The ontology data that we

have are also represented in textual form, though in a specific structure. In order

address the structural and hierarchical representation of the data we initially extract

the entities from the ontologies along with their hierarchical information (parent and

path of the entities).

For feature extraction, we have used several text-similarity measures including those

related to word-to-word relationship (word2vector). Since ontology data have specific

format, we assumed that instead of feeding just the string similarity based informa-

tion, it would be more fruitful to also extract and feed the syntactic and structural

information as features into the machine learning models. While other researcher have

focused on using only some of these features, our approach is to use all the available

similarity measures. This is the primary contribution of our current research.

1.5 Organization

The whole study is divided into 10 chapters. The overview of this work is already

expressed in chapter 1. Chapter 2 covers the background information relevant to

the study. It includes the basics of Ontologies and their importance in Semantic

Web. Chapter 3 describes the prior works done in ontology alignment. The structure

and organization of the data and the necessary pre-processing is discussed in chapter

2https://github.com/tnasim/ontoalign

6

4. Chapter 5 contains descriptions of different types of similarity measures and the

process used for feature extraction from the ontologies using these similarity measures.

In chapter 6 we discuss different types of machine learning approach and how we

decide on using the ones that are most useful in ontology alignment. Chapter 7

discusses the final process of ontology matching based on the trained machine learning

models and present the results with comparison to other state of the art methods.

Chapter 8 describes an ablation study, i.e. how we have decided on using the feature

extraction methods and the specific parameters chosen for different machine learning

methods. Possible future extensions to this study are provided in chapter 9. Chapter

10 gives an overview of the contributions of this study and provides the concluding

remarks. All the references are listed after this chapter.

7

Chapter 2

BACKGROUND

2.1 Semantic Web

In order to understand ontologies, we first need to understand the field of Se-

mantic Web. Semantic web is a research field which primarily focuses on creating

a machine-readable web of information which enables higher level of interoperability

between information stored on the web as opposed to the currently prevalent human

understandable form of web which makes it very difficult to exchange data between

multiple entities on the internet [Bernstein et al. (2016)]. In other words, the goal

of Semantic Web is the creation, maintenance and application of tools and methods

that enables machine-readable form of information which can be easily exchanged

over the web with zero or minimum human involvement. The Semantic Web is some-

times envisioned as the enhanced form of World Wide Web [Hitzler (2021)]. Since

the initiation of this field with the 2001 Scientific American article by T Berners-Lee

[Berners-Lee et al. (2001)], there has been many publications in this field primarily in

The Semantic Web journal1 the Journal of Web Semantics2 and the proceedings of the

annual International Semantic Web Conference3. Many concepts and tools have been

defined and standardized over the years to support the field of semantic web, namely

the Web Ontology Language (OWL), Resource Description Framework (RDF), Rule

Interchange Format (RIF), SPARQL, Uniform Resource Identifier, XML etc. In his

talk at a 2005 W2C conference, Oreste Signore presented an overview of the Semantic

1http://www.semantic-web-journal.net/
2https://www.journals.elsevier.com/journal-of-web-semantics
3http://swsa.semanticweb.org/content/international-semantic-web-conference-iswc

8

Web Stack which shows the different components of The Semantic Web 4.

Figure 2.1: The Semantic Web Stack [Signore et al. (2005)]

2.2 Ontology

An ontology is a set of structural rules designed to represent concepts in order to

perform logic-based operations to retrieve or infer new information. It is “a formal,

explicit specification of shared conceptualization” [Guarino et al. (2009)], where con-

ceptualisation is an abstract model of some phenomenon in the world. Ontologies were

created to facilitate the sharing of knowledge and its reuse [O’Leary (2005)]. They

are used for organization of knowledge and for communication between computing

systems, people, computing systems and people.

Ontologies deal with the following kinds of entities: classes, properties and indi-

viduals. A class (concept) of ontology is a collection of objects, i.e., “Person” (the

class of all people) or “Car” (the class of all cars). Property (attribute) describes char-

4http://www.w3c.it/talks/2005/openCulture/slide7-0.html

9

Figure 2.2: A Sample Ontology File

acteristics of a class or relations between classes, i.e., “has as name” or “is created

by”. Individual (instance) is a particular instance or object represented by a con-

cept, i.e., “a human cytochrome C” is an instance of the concept “Protein” [Euzenat

et al. (2007)]. A sample ontology file is shown in Figure 2.2. First a ’Person’ entity

is defined and then other ontology like ”Man” and ”Women” are defined that are

childs of ”Person”. The ontology ”Father” is defined as a child of ”Man” which also

has a property ”hasChild”. ”hasChild” property is defined at line 16 which defines

relationship between two persons.

2.3 Ontology Alignment

Ontology matching is a process of establishing correspondences between semanti-

cally related entities in different ontologies [Euzenat et al. (2007)]. A set of correspon-

10

dences (equivalence, subsumption, disjointness) between ontologies elements is called

an alignment. Ontology matching can be applied in many different subject areas:

Semantic Web, Peer-to-Peer (P2P) systems, learning systems, multi-agent systems

[Otero-Cerdeira et al. (2015)] [Shvaiko and Euzenat (2005)]. In the Semantic Web,

logical conclusions from data is extracted using ontologies. Many ontologies on the

same subject areas have been created recently. The format of these ontologies are

different and as a result it is difficult to exchange information between them. So, ap-

plication of ontology matching is important [Euzenat et al. (2007)]. In P2P systems

ontology matching is used to reduce the semantical heterogeneity (differences in the

interpretation of the meaning) between the queries of the users to system [Atencia

et al. (2011)]. In learning systems ontology matching is a way to ease the knowledge

share and reuse [O’Leary (2005)]. In multi-agent systems, ontology matching is used

for interaction of different agents [Mascardi et al. (2011)]. Ontology matching can

also be used for schema mapping during data integration [Li et al. (2015)]. Data

integration is a process of combining the heterogeneous data sources into a unified

view. Schema mapping is a process of establishing correspondences between elements

of two different semantically related schemas (i.e. database schemas) [Rahm and

Bernstein (2001)]. Ontology matching can help to resolve semantical heterogeneity

during schema mapping, for instance, if the schemas have ontologies as metadata or

external domain knowledge [Hlaing (2009)].

A sample ontology alignment process is described in Figure 2.3. It shows how two

movies can be defined by two different sources with different names for the movies.

We can also see that the relationships between the entities for each of the ontologies

are different: one defines the movie as an ’isA’ relationship and the other defines

it as a ’type’. The number of childs can also differ. For the first ontology, both of

the lead characters are described, but for the second one only the primary character

11

for the movie is listed. Because of these differences, it becomes difficult to identify

similarrities between the entities from different ontologies.

Figure 2.3: A Sample Ontology Alignment for Two Movies

As Semantic Web technologies are expanding and becoming more popular, the

amount of data that needs to be represented grows proportionally, as does its complex-

ity. Since web technologies are designed to be decentralised, redundancy inevitably

occurs among knowledge bases. For this reason, finding methods to align equivalent

data or their model is crucial. This is the goal of our research, which is described in

this study.

2.4 Multi-Domain Ontology Alignment

Ontologies differ greatly based on the domain they are taken from. For example,

the anatomy of a human body and the anatomy of that of a mouse has certain simi-

larity and they might share some of the classes and properties that can be considered

similar. But, since they are from different type of animals, the naming of the classes

and properties can be different. Also, there can be ontologies for the same concept

from different organizations and their way of defining the classes and properties might

12

vary, but an ideal ontology matcher should be able to identify the similar concepts

and distinguish among the different concepts with high percentage. Multi-domain on-

tology alignment is the process of finding similarities among ontologies from different

domains.

2.5 The Focus of This Research

Ontology, though a much older concept, in the area of semantic web, it can be

visualized as a building block of the broader domain of Semantic Web, especially

since we are trying to represent information in a structured way. Ontologies support

the The Semantic Web by defining the concepts and relationships used to describe

and represent an area of knowledge. Besides defining the terminologies for specific

contexts, the constraints needed on the properties and logical representations of the

properties, ontologies also define how to find equivalence among the terms in different

ontologies.

Different types of approaches for ontology alignment are discussed in chapter 3. We

have chosen a supervised learning based ontology alignment technique which is suit-

able for cross-domain matching of ontologies. The position of our research in the

domain of Semantic Web is represented hierarchically in Figure 2.4.

13

Figure 2.4: Focus of Current Research in the Domain of Semantic Web

14

Chapter 3

RELATED WORK

A lot of different approaches have been used by researchers over the years to solve

the ontology alignment problem. A well known initiative is the Ontology Alignment

Evaluation Initiative (OAEI 2021) which provides measures to evaluate different on-

tology matching systems. They held an annual competition to evaluate submitted

ontology alignment systems. These systems can be divided into the following cat-

egories. First we can divide the ontology alignment systems into two categories,

learning based and rule based. The rule-based approaches can further be categorized

as syntactic based approaches, structural based approaches and semantic based ap-

proaches.

Syntactic based approaches take into account the names, descriptions and differ-

ent terms of the entities. String based approach is the most common Syntactic based

ontology alignment. The string based approach creates a bag of words based on the

names and descriptions of the entities and compares similarities of these words to

determine similarity between entities. Limes [Ngomo and Auer (2011)], Agreement-

MakerLight [Faria et al. (2013)] and COMA++ [Aumueller et al. (2005)] are tools

that use different types of distance metrics.

Structural based ontology alignment uses some kinds of external tool like Word-

Net in order to find similarity between entities. They use different metrics to find

similarity based on the graph representation of the entities and their relationship.

Since they depend highly on external tools like WordNet, they are not extensible for

15

multilingual domains and specialized domains like biomedical data. Wu palmer [Wu

and Palmer (1994)], Resnik similarity [Resnik (1995)] etc are common metrics used

in structural based approaches.

Semantic based approaches make use of logical models like propositional satisfiabil-

ity (SAT), Description Logic, Rule based inference etc. The description logics are used

to determine whether an entity contains another one and similar other subsumption

properties. The most common semantic based approaches are Paris [Suchanek et al.

(2011)], CtxMatch/CtxMatch2 [Bouquet et al. (2003)], LogMap/LogMap2 [Jiménez-

Ruiz et al. (2013)] and S-Match [Giunchiglia et al. (2004)].

Now, we look into the learning-based approaches. In recent years, many re-

searchers have focused on applying supervised machine learning techniques to solve

the ontology alignment problem. GLUE [Doan et al. (2003)], Yet Another Matcher

(YAM++) [Ngo and Bellahsene (2012)], Context and Inference-based alignER (CIDER)

[Gracia et al. (2011)], DL-Learner [Bühmann et al. (2018)] systems use heuristic learn-

ing methods. GLUE uses probabilistic measures on each pair of source and target on-

tological entities and applies different machine learning techniques on them. CIDER

compares each pair of terms in the entities baked on their context and later aggregates

the results using an artificial neural network. YAM++ calculates different similarity

metrics between the ontological entities. The similarity metrics are determined by us-

ing different machine learning methods like Decision Trees, Support Vector Machines

or Naive Bayes. PARIS is also a probabilistic approach.

OntoConnect is a recent work that has addressed this issue and came up with solu-

tions based on Recursive Neural Networks that are unsupervised. In this method, no

16

human involvement is required. This approach is also domain independent. Though

the results obtained in this research was promising, the model developed was not

tested using other popular datasets provided by the organizers of OAEI 2021 1.

Though some of the tools described above performs well in specific cases, they

have some disadvantages when we consider different scenarios. These tools addresses

some particular challenges in terms of ontology matching but due to a lot of re-

strictions they have some disadvantages. For example, the semantic based approach

PARIS [Suchanek et al. (2011)] is not able to handle structural heterogeneity well.

If the first ontology is more precisely defined than the second one e.g. in a bio-

logical ontology countries are mentioned as the place of origin and in another such

ontology, continents might be mentioned as the place of origin. Syntactic-based on-

tology alignment approaches like Limes [Ngomo and Auer (2011)] and COMA++

[Aumueller et al. (2005)] sometimes cannot calculate correct alignment since they are

using string similarity based approaches. For example, different entity names which

are synonyms. e.g., “Student” vs. “Pupil” and name of entities that are written

in abbreviated forms, i.e., “RDF” vs “Resource Description Framework”, etc. On

the other hand the approaches that uses different machine learning methods, they

require intensive involvement of human experts in order to obtain better labels for

the datasets to be fed into the machine learning algorithms. Coming up with a so-

lution using any one of the above approaches and performing well in diverse range

of ontologies is not easy. That’s why we can also see similar kinds of drawbacks in

other state-of-the-art tools. In order to overcome this, many tools tried to compute

the different similarities parallelly and combined them to a single similarity value.

GLUE [Doan et al. (2003)], AgreementMaker [Faria et al. (2013)], YAM++ [?] and

1http://oaei.ontologymatching.org/2021/

17

similar other tools are using static methods of combining multiple similarities. On

the other hand, some tools like RiMOM [Li et al. (2008)] uses dynamic strategies

to calculate the weights of different similarities. Despite using dynamic strategy, it

relies on a number of threshold values. To overcome this challenge, a number of tools

are using different machine learning techniques. Among them CIDER [Gracia et al.

(2011)], DL-Learner [Bühmann et al. (2018)], GLUE (Doan et al. 2003) are some

examples that use machine learning techniques. Though they perform quite well in

ontology matching, the process of coming up with proper labeled data is tedious and

sometimes require help from domain experts.

In our current research, we have combined some of the above approaches to achieve

high performance which does not require involvement of domain experts, in-fact, our

approach can perform well in cross domain ontology matching. We have taken ad-

vantage of the syntactic based approach by using different types of string similarity

measures. Some of them are character based (e.g. Levenshtein), some are sequence

based (e.g. LCS), few of them are token based (Q-grams, Dice) and others are pho-

netic (Smith-Waterman). We have combined the structural based approach by using

WordNet and by using the parent and path information of ontologies while creating

features. We have also used semantic based approach by incorporating Word2vec.

On top of all these similarity measures, we are using some advanced machine learn-

ing techniques which gives us models that perform well in multi-domain ontology

matching. Also, the use of a huge array of similarity measures between the entities

of the ontologies greatly simplifies the process of model training as well as improve

the results.

18

Chapter 4

DATA PREPROCESSING

In this chapter we first describe the structure, nature and properties of the datasets

we have used. Then we explain how we divide the dataset and preprocess them into

a string-based format that can be later used for calculating the similarity measures

in the feature extraction phase (Chapter 5).

4.1 Description of Datasets

We have used two popular datasets from the OAEI competition: the conference

track dataset and the benchmark dataset.

Dataset#1 - Benchmark Dataset: The OAEI ’benchmark’ dataset1 consists

of data sets that are built from reference ontologies of different sizes and from differ-

ent domains. Most of the ontologies of this dataset are from bibliocal references from

different domains. This dataset was created based on a research on generating on-

tology matching benchmark dataset by Jérôme Euzenat [Euzenat et al. (2013)]. For

this research, as Dataset#1, we have chosen a set of the benchmark test library. 7

ontologies have been selected, among which ontology #101 is the reference ontology,

and the remaining 6 (#102, #103, #301, #302, #303 #304) are matched against

ontology #101. The idea of this partitioning has been taken from the research of

Nezhadi et. al. [Nezhadi et al. (2011)] and Bulygin et. al. [Bulygin and Stupnikov

(2019)]. In their paper, among the 6 true alignments, they have used 3 alignments

for training (101-102, 101-103, 101-301) and 3 others for testing (101-302, 101-303,

1http://oaei.ontologymatching.org/2016/benchmarks/index.html

19

101-304). We have used the similar partitioning which enables us to compare our

results with similar other works. The properties of this dataset are listed in Table

4.2.

Dataset#1 - Benchmark
Ontologies 7
Classes 270
Properties 359
Alignment Files 6
Train-Test Split 3-3 (50%-50%)

Table 4.1: Properties of the Dataset#1 (Benchmark)

Dataset#2 - Conference Dataset: Conference track2 contains 16 ontologies

from the same domain (conference organization). These ontologies are suitable for

ontology matching task because of their heterogenous character of origin. There are

867 classes and 724 properties. Among the 21 alignmnet files, we have taken 4 (20%)

for training and 17 (80%) for testing. This split is taken similar to the other relevant

works who used learning based approaches. We have kept the split similar in order

to make our results comparable with the other works in the field. The properties of

this dataset are listed in Table 4.2.

Dataset#2 - Conference
Ontologies 16
Classes 867
Properties 724
Alignment Files 21
Train-Test Split 4-17 (20%-80%)

Table 4.2: Properties of the Dataset#2 (Conference)

Each of these datasets contain two types of files, the ontology files and the

ontology-alignment files for each pair of the ontologies. Ontology files define the

2http://oaei.ontologymatching.org/2021/conference/index.html

20

structure of the ontology: the classes and properties along with their hierarchical re-

lationships. Each ontology alignment file contains the information whether the classes

and properties for that ontology pair align with each other or not. As an example,

part of the alignment file 101-204.rdf is presented in Figure 4.1. It contains the on-

tology mapping between two ontologies #101 and #204. The ’match’ information

for each of the entities from these ontologies is given in this ontology-alignment file.

We extract these information as described in the data preparation step later in this

chapter (section 4.3).

Figure 4.1: Sample Alignment File

21

4.2 Dividing Data Into Train and Test Sets

We have divided both the datasets into two parts, one part for training and and

the other for testing. The training set is used for training the machine learning models

and the testing set is used for testing the alignments (Chapter 6). For Dataset#1,

among the 6 alignment files, we have taken 3 for training and 3 for testing. For

Dataset#2, there are in total 21 alignment files. We have taken 4 of them for training,

and 17 for testing. Among the test set of Dataset#2, there are some ontologies that

are not present in any of the training alignments, for example, ’sigkdd’ and ’confof’

ontologies. Dividing the dataset in this way gives us the opportunity to prove that

our models can work well for cross-domain ontology matching.

4.3 Data Preparation

In order to extract features from the ontology files, we first re-arrange the data in

a format which contains pairs of classes or pairs of properties from different ontolo-

gies. For example, let’s consider Ontology 1 and Ontology 2. They have many classes

and properties defined in them. We use Owlready2 python library [Lamy (2017)] to

extract all the classes and properties from these ontology files. Then we work on

the classes and properties separately. First we take each class from Ontology 1 and

pair them with each class in Ontology 2. Then based on the provided true ontology

alignment information, we also append a variable ’match’ which indicates whether

each of those pairs is considered a match or not. The value of ’match’ is extracted

from the true-alignment files as shown in Figure 4.2. We do the same for all the

properties defined in the ontologies as well. In other words, after getting the lists of

all classes and properties, we make class pairs for each sets of classes from both the

ontologies and property pairs for each sets of properties from both the ontologies. We

22

also include the parent and path information for each entity (class or property). A

tuple is created from each of these pairs with all these information: the entity names,

parent names, path and the ’match’.

Figure 4.2: Overview of the Data Preparation Step

These tuples are then saved in a CSV file for the feature extraction step. A sample

CSV file is given in Table 4.3. Some fields (i.e. Parent2, Path1, Path2) are omitted

from the table for brevity. During the feature extracton step, all the features are

calculated based on similarity measures for the entities, parents and paths.

Ontology1 Ontology2 Entity1 Entity2 Parent1 ... Match Type
101.rdf 304.rdf Report PageRange Reference ... 0 Class
101.rdf 304.rdf Report Journal Reference ... 0 Class

Table 4.3: Dataset#1 CSV File - Sample Contents after Data Preparation

Algorithm 5 defines the steps how datasets are created from ontology files. The

overall data preparation step is illustrated in figure 4.2. After data preprocessing step,

we get a single CSV file for each of the datasets which contains comma separated string

values as shown in Table 4.3. In order to send them into the machine learning model,

we need to convert them into numerical values which is described in the next chapter.

23

Chapter 5

FEATURE EXTRACTION

The first important task for ontology alignment is to get a feasible format of the

ontology data so that it can be compared with each other in a machine readable way.

We also need a format that is ready to be fed as the inputs of machine learning or

neural network models. In this research we have explored different ways to get a

vecrorized form of the ontologies so that they can be fed into the machine learning

models.

5.1 Similarity Measures

After the data preprocessing step (Chapter 4) we got tuples of strings for each

pair of classes and properties from different ontologies. Now, in order to convert them

into meaningful numbers, we have used different similarity measures. Each of these

similarity measures gives us a similarity score between 0 and 1. All these similarity

scores can then be used together to prepare the features for the machine learning

models. The similarity measures are described in this section.

5.1.1 String Based Similarity

We have used following string based similarity measures in this work.

N-gram consider similarity of substrings and it is efficient when some characters

are missing [Euzenat and Shvaiko (2007)]. For example, when N=2, the words are

divided into 2 character sub-strings and then the number of match between each list

is counted.

similarity(s1, s2) =
2[pairs(s1) ∩ pairs(s2)]

pairs(s1) + pairs(s2)

24

Dice coefficient is defined as twice the number of common words of compared

strings over the total number of words in both strings [Cohen and Fienberg (2007)].

This is calculated in the following way:

d =
2nt

(nx + ny)

where nt is the number of character bigrams found in both strings, nx is the number

of bigrams in string x and ny is the number of bigrams in string y.

Jaccard and Generalized Jaccard similarity are defined as the size of the in-

tersection divided by the size of the union of the sample sets of words [Stoilos and

Kollias (2005a)]. Jaccard similarity measure for two sets A and B can be expressed

using the following equation:

J(A,B) =
A ∩B

A ∪B

If two datasets share the exact same members, their Jaccard Similarity Index will be

1. Conversely, if they have no members in common then their similarity will be 0.

Levenshtein distance between two strings is the minimum number of single-

character edits required to change one word into the other [Euzenat (2004)]. Leven-

shtein distance can be measured using the following formula:

L =

|a|, if |b| = 0

|b|, if |a| = 0

lev(tail(a), tail(b)), if a[0] = b[0]

1 +min

lev(tail(a), b)

lev(a, tail(b))

lev(tail(a), tail(b))

otherwise

25

where the tail() of some string x is a string of all but the first character of x, and

x[n] is the nth character of the string x, counting from 0.

Jaro and Jaro-Winkler measures is edit distance measure designed for short

strings [David (2007)]. Jaro similarity can be measured using the following equation:

J =

0, if m = 0

1
3

(
m
|s1| +

m
s2

+ m−t
m

)
, for m ̸= 0

where,

• m is the number of matching characters

• t is half the number of transpositions

• where |s1| and |s2| are the lengths of strings s1 and s2 respectively.

Jaro-winkler similarity can be measured using the following equation:

Sw = Sj + P ∗ L ∗ (1–Sj)

where,

• Sj, is jaro similarity

• Sw, is jaro- winkler similarity

• P is the scaling factor

• L is the length of the matching prefix.

Monge-Elkan is a type of hybrid similarity measure that combines the benefits

of sequence-based and set-based methods [Straccia and Troncy (2005)].The algorithm

26

uses similarity function (Example : Jaro-Winkler or Levenshtein score) as inner func-

tion. The inner function is used to compute the scores of the best matching token.

MongeElkanSimilarity =
1

|x|

|x|∑
i=1

maxj=1,|y|sim
′
(xi, yj)

The Smith-Waterman measure determine similar regions between two strings

[Cohen and Fienberg (2003)]. Instead of looking at an entire sequence at once, the

S-W algorithm compares multi-lengthed segments, looking for whichever segment

maximizes the scoring measure. The algorithm itself is recursive in nature. First we

need to determine the substitution matrix and the gap penalty scheme

• s(a, b) - Similarity score of the elements that constituted the two sequences

• Wk - The penalty of a gap that has length k

Hi,j = max

Hi−1,j−1 + s(ai, bj)

Hi−k,j −Wk

Hi,j−1 −W1

0

The Needleman-Wunsh distance is computed by assigning a score to each

alignment between the two input strings and choosing the score of the best alignment

[Needleman (1970)].

The Affine gap distance is an extension of the Needleman-Wunsch measure that

handles the longer gaps more gracefully [Doan (2012)].

The Bag distance is edit distance for sets of words [52]. Cosine similarity trans-

forms a string into vector so Euclidean cosine rule is used to determine similarity

27

[Stoilos and Kollias (2005b)].

Fuzzy Wuzzy Partial Ratio finds the similarity measure between the shorter

string and every substring of length m of the longer string, and returns the maximum

of those similarity measures [Rao and Prasad Reddy (2018)].

Soft TF-IDF and TF-IDF are numerical statistics that are intended to reflect

how important a word is to a document in a collection or corpus [Needleman (1970)].

Partial Token Sort and Token Sort are obtained by splitting the two strings

into tokens and then sorting the tokens. The score is the fuzzy wuzzy partial ratio

raw score of the transformed strings.

Fuzzy Wuzzy Ratio is the ratio of the number of matching characters to the

total number of characters of two strings [Rao and Prasad Reddy (2018)].

Editex [Zobel and Dart (1996)] and Soundex3 are phonetic matching measures.

Tversky index is an asymmetric similarity measure on sets that compares a

variant to a prototype [Tversky (1977)].

Overlap coefficient is defined as the size of the intersection divided by the

smaller of the size of the two sets [Vijaymeena and Kavitha (2016)].

5.1.2 Language Based Similarity

It is possible that words differ but are close in meaning, e.g. “car” and “auto”.

WordNet can solve this problem. Wu and Palmer similarity are used for handling

this scenario [Wu (1994)]. If the strings consist of several words then the maximum

similarity measure of all possible pairs of sets of words is taken. But the weakness of

WordNet is that it contains only a part of all words of the language. Usage of vector

representations of words from Word2vec models [Mikolov et al. (2013)] facilitates this

problem. In order to get word2vec similarity, we have tried all the pre-trained models

28

and corpora from the Gensim Data Project1. Among these the ’word2vec-google-

news-300’ has given us the best result. This dataset is based on a database containing

about 100 billion words and contains 3000000 vector representations. Using these,

we calculated the cosine similarity between two vector representations of words. If

the strings consists of several words then Sentence2vec algorithm from [Zhang et al.

(2014)] is used. The process of calculating word2vector similarity is explained in

Algorithm 1. This algorithm takes two rowSets taken from the data preparation step

(section 4.3) and then using a pre-trained word2vector model (using the ’word2vec-

google-news-300’ dataset), it calculates the maximum similarity for a word from the

first rowSet with all other words from the second rowSet. Finally it returns the

average of all these maximum similarity scores.

Algorithm 1: Word2VectorSimilarity() - Calculate Word2Vector Similarity

Data: rowSet1, rowSet2, model - two rows of words and the word2vector
model to use

Result: similarityScore - similarity score for rowSet1 and rowSet2
1 score← 0;
2 N = max(len(rowSet1), len(rowSet2));

/* Loop through all pairs of words from each rowSet */

3 for word1 ∈ rowSet1 do
4 maxSimilarity ← 0;
5 for word2 ∈ rowSet2 do

/* Calculate similarity score using the given model */

6 similarity ← model.wv.similarity(word1, word2);
7 if maxSimilarity < similarity then
8 maxSimilarity ← similarity;
9 else

10 score← score+maxSimilarity;

11 score = score/N ;
12 return score;

1https://github.com/RaRe-Technologies/gensim-data

29

5.1.3 Meta-data and Structure Based Similarity

It’s not possible to get a good ontology matcher without considering the meta-

data of the ontologies. Metadata contains the properties of the entities defined in the

ontologies, the relationships between different entities (classes). These information is

vital for identifying the similarity between two ontologies.

In order to address that issue, in this work we take the similarity measures of the

parents of each entity and add them with the original features. We also take the path

of each entities and get the similarity measures for them. The assumption behind this

is the parents and path for similar entities will have similar information. By taking

the similarity measures for the parents and paths of each entity we are ensuring that

we don’t lose the hierarchical information of the entities.

5.2 Using the Similarity Measures as Features

Based on the above three types of similarity measures, the feature vectors are

prepared for each ontology. For each pair of entities, the feature vector contains

numerical values in the range [0, 1]. The size of the feature vector is same for each

pair because we are applying the same number of similarity measures for a particular

model. While matching, we only match classes against classes and properties against

properties. We are not considering the instances of the ontologies. The overall process

of feature extraction is illustrated in figure 5.1

The ’Classification Model’ in Figure 5.1 represents the machine learning process

which we describe in chapter 6. In general, the output from the feature extraction will

be the feature vector along with the ’match’ information. While training the machine

learning models, the features are sent as input and we get a model after training.

During the alignment prediction step, again these features are sent as input into the

30

Figure 5.1: Feature Extraction Based on Similarity Measures

model and a prediction is found as a result. The prediction is then compared with

the true alignment to decide it’s correctness. Precision, recall and finally f-measure is

calculated based on the predicted number of matches and the true number of matches.

5.3 Normalizing the Features

Normalization is a standard procedure for dealing with any data that needs to be

sent into machine learning models. It ensures that the features are balanced for all

the domains. Normally four common normalization techniques are useful:

• Scaling to a range

• Clipping

• Log scaling

• Z-score

In our case, the data that needs to be fed into mathine learning models are the

similarity scores found from the methods of py stringmatching library. When we

31

calculated string similarity measures the method get raw score() of that library takes

care of fitting the value in the range of [0, 1]. So, we already get the data scaled to a

specific range.

Now that the features are all ready and we have prepared the numerical feature

vectors, we need to design some machine learning models that can help recognize a

match among the entity pairs when those feature vectors are passed as input. In the

next section, we have discussed definitions of different machine learning models, why

we have selected some of those and how they have performed in our experiments.

32

Chapter 6

MACHINE LEARNING FOR ONTOLOGY ALIGNMENT

In this section first we are going to discuss how we have selected certain machine

learning techniques and how they have performed in aligning entities from different

ontologies.

6.1 Why Machine Learning?

First question is, why do we need machine learning to solve this problem? In sec-

tion 1.2 we have identified several challenges of ontology alignment problem. Because

of the huge amount of semantic web data, heterogeneity of the data, lack of interop-

erability among multiple organizations and the time-consuming process of matching

ontologies are primary reason why it is difficult to solve the ontology alignment prob-

lem. The rule-based approaches might be able to define specific rules for a specific

set of ontologies, but the use of that in other areas is difficult and erroneous. On the

other hand, if we can train a machine learning model based on sufficient amount of

data, it will be able to identify alignments among ontologies from different origins.

6.2 Supervised vs Unsupervised

There are primarily two types of machine learning techniques, supervised and

unsupervised. Supervised learning is a machine learning approach that takes the

advantage of already labeled data sets. These data sets are designed to train or

“supervise” algorithms into classifying data or predicting outcomes accurately. Using

labeled inputs and outputs, the model can measure its accuracy and learn over time.

On the other hand unsupervised learning uses machine learning algorithms to

33

analyze and cluster unlabeled data sets. Without the need for human supervision or

intervention, these algorithms are able to discover hidden patterns in data (hence,

they are “unsupervised”).

In our case, we do have labeled data, i.e. whether two entities ’match’ or not. Here,

’match’ is the label which takes values ’0’ (not match) or ’1’ (match). The entity-

pairs from different ontologies (class or property) are the inputs for which the labels

(’match’) are provided by human experts. The availability of labeled data has enabled

us to use supervised machine learning techniques.

6.3 Regression vs Classification

Now, for supervised techniques, there are two types of methods: regression and

classification. Regression is normally used in the case when the label or prediction

has values of continuous nature. Classification is used when the labels are categorical

or discrete in nature. For example, if we want to predict the percentage of rain on

a particular day based on weather data from past few months, we need a regression

problem because percentage is a continuous output. But, if we ask whether it will

rain or not on a certain day, that will become a classification problem (a binary clas-

sification problem in particular).

For our ontology data, we want to find out, given two entities (class or property)

from different ontologies, whether the entities identify the same thing or not; in other

words, whether the entities match with each other or not. It’s a binary classification

problem. So, we have chosen to apply some classification based machine learning

techniques in our experiments.

34

6.4 Classification Algorithms

Different classification algorithms are taken into account for all types of analysis

performed here (Sousa et al., 2015; Liang et al., 2011). Descriptions of all these

methods are given in the following section and the abbreviations listed in this table

are referred in the results tables at the end of chapter 7.

Abbreviation Algorithm Name
LR Logistic Regression Classifier
RF Random Forrest Classifier
ADA Ada Boost Classifier
DT Decision Tree Classifier
SVM Support Vector Machine Classifier
LDA Linear Discriminant Analysis
SGD Stochastic Gradient Descent Classifier
KNN K-Nearest Neighbor Classifier
MLP Multi Layer Perceptron
NB Gaussian Naive Bayes Classifier

Table 6.1: Machine Learning Algorithms Used in the Experiment

6.4.1 Logistic Regression Classifier

Logistic regression is a classification algorithm, used when the value of the target

variable is categorical in nature. Logistic regression is most commonly used when the

data in question has binary output, so when it belongs to one class or another, or is

either a 0 or 1. Regression models usually produce output in a continuous range, but

we need binary classification, either 0 or 1. In order to achieve this, logistic regression

uses a special function called ’sigmoid function’ which resembles an ’S’ shaped curve

when plotted on the graph and squishes the values towards the end both ends of Y

axis. The sigmoid function is defined as y = 1/(1 + e−x). The value of y becomes

close to y 0 if x is a large negative value and close to 1 if x is a large positive value.

35

Analysis from our experiments: In our work, we have used sklearn’s1 Logis-

ticRegression class with the following parameters:

• penalty=’l2’, this is used to prevent the function from overfitting problem.

• C=1.5, represents the inverse of regularization strength, the higher the value of

C, the less the regularization. We can see the effect of this in Figure 8.10a.

• class weight=None, means all classes have equal weight, i.e. 1

• max iter=100, maximum number of iterations is 100.

6.4.2 Decision Tree

Decision Trees are designed with the following goals in mind: 1) accurately clas-

sify most of the training samples; 2) be adaptive enough to be equally or at least

comparably good when working on the test dataset; 3) be easy to update for new

incoming training data; 4) and boast a pleasingly simple structure. While designing

a DT the following are key points that are taken into account: the choice of the

structure, the selection of feature subsets for each internal node and the choice of

the strategy to be devised for each node. When the DT design is approached from a

Bayesian perspective, the following optimization problem needs to be solved subject

to limited training data:

min
T,F,d

pe(T, F, d) (6.1)

where pe, is the total probability of error, T represents the selected tree structure

and F and d are the feature subsets and strategies respectively which are to be used

at the internal nodes. This optimization problem can be solved in two steps:

1https://scikit-learn.org/

36

Step 1 For a given T and F search for d∗ as follows:

d∗ = d∗(T, F) such that pe(T, F, d
∗(T, F)) = min

d
Pe(T, F, d) (6.2)

Step 2 Find T ∗ and F ∗ such that:

Pe(T
∗, F ∗, d∗(T ∗, F ∗)) = min

T,F
pe(T, F, d

∗(T, F)) (6.3)

Analysis from our experiments: We have used decision trees of different depth

and finalized with a depth of 2. In Figure 8.8a we can see that with the increase of

depth, the performance of the ontology alignment method decreases. The reason

behind this is, as we go deeper into the decision tree, the feature vector are broken

into smaller values which individually does not carry much information to identify a

particular class.

6.4.3 Stochastic Gradient Descent Classifier

Gradient descent is an iterative optimization technique wherein the solution at

each step is improved by taking a step along the negative of the gradient of the

function to be minimized at the current point. SGD allows the optimization procedure

to take a step along a random direction, as long as the expected value of the direction

is the negative of the gradient. Here, the direction need not be updated to be based

exactly on the gradient. Instead, the direction is set to be a random vector and its

expected value at each iteration equals the gradient direction. In other words, the

expected value of the random vector will be a subgradient of the function at the

current vector. SGD is a simple and an efficient approach to discriminative learning

of linear classifiers under convex loss functions. SGD-Classifier is a Linear classifier

37

with SGD training. The linear classifier to be used is determined based on the hypter

parameter loss. So, if loss=‘hinge’ is used, it is an implementation of Linear SVM

and if we take loss=‘log’ it is an implementation of Logisitic regression.

Analysis from our experiments: We have taken loss=’log’, i.e. implementing

SGD classifier for Logistic Regression. e could not use the ’hinge’ loss, which uses

linear SVM, because it does not give the probabilistic prediction that we need. For

the sk-learn SGDClasiier, by default the maximum number of passes (i.e. epochs) is

set to 1000. In our case after experimenting, we have found that 700 is the optimal

solution for both the datasets we used. In our ablation studies, in Figure 8.10b, it

shows how the number of iterations affects the F-measure for Dataset#2.

6.4.4 Support Vector Classifier

SVMs are binary classifiers and their primary goal is to locate a separating hyper-

plane in the space between the two classes by mapping the data into a higher dimen-

sional space.

Let there be a dataset constituting l patterns where each l happens to be a pair of

the type (xi, yi)∀i ∈ [1, ..., l], xi ∈ Rm, and yi = ±1. A standard binary SVM is

formulated by minimizing a Convex Constrained Quadratic Programming (CCQP)

objective function as follows:

min
α

1
2
αTQα− rTα (6.4)

0 ≤ αi ≤ C∀i ∈ [1, . . . , l], (6.5)

yTα = 0, (6.6)

38

where C is the regularization parameter or penalty term which controls how well the

SVM would perform on unseen test data, ri = 1∀i and Q is the symmetric positive

semidefinite l × l kernel matrix where qi,j = yiyjK(xi, xj).

The solution of the CCQP function affords us with the αi∀i ∈ [1, . . . , l] values which

are plugged into the Feed-Forward Phase (FFP) of the SVM as follows in order to do

class prediction:

f(x) =
l∑

i=1

yiαiK(xi, x) + b (6.7)

where b is the bias term and is generally computed based on the support vectors that

lie in the margins.

Analysis from our experiments: We have tried to use different kernels, i.e.

’linear’, ’polynomial’, Radial Basis Function (RBF) and ’sigmoid’. For natural lan-

guage and text based datasets, the features created by non-linear kernels (polynomial,

RBF and sigmoid) can become very high. That’s why using the ’linear’ kernel gave

us the optimal results since the non-linear kernels can easily handle thousands of

features without overfitting.

We have done some experiments on the regularization parameter, C. In general C in-

structs how strictly SVM will behave in defining the boundary between the two classes

(for binary classification). The larger the value of C, the more strict it becomes, i.e.

tries to find a narrow boundary, but also it increases the chance of overfitting. The

less the value of C, it allows more mistakes, but the chance of overfitting is less. We

have chosen a small value of C (0.025) after doing some experiments that gave us

optimal results.

39

6.4.5 Random Forest Classifier

Random Forest (RF) operates by adding multiple decision trees using and using

the Bootstrap Aggregation Method. It is a highly efficient ML algorithm for pre-

dictive analysis. The random forest model is very suitable at handling tabular data

with numerical features. Unlike linear models, random forests are able to capture

non-linear interaction between the features and the target. However, the tree-based

models are not designed to work with very sparse features. When dealing with sparse

input data, the sparse features need to either be pre-processed to generate numerical

statistics or in such cases, a linear model should be incorporated.

Though random forests are build from decision trees, there are differences. In general,

random forest algorithm randomly selects observations and features to build several

decision trees and then takes an average of the results. When the depth of decision

trees is increased, it causes overfitting problem. But Most of the time, random forest

prevents this by creating random subsets of the features and building smaller trees

using those subsets. Afterwards, it combines the subtrees. It’s important to note this

doesn’t work every time and it also makes the computation slower, depending on how

many trees the random forest builds.

Analysis from our experiments: We have used different depth for the random

forest algorithm on Dataset#2 and found that it does not cause much change in the

result. This is because, the predictions does not emphasize much on a single level of

the decision trees, rather takes average of the results found in different levels. So, in

a large sample, like the one in our dataset, the final result does not vary too much

based on the depth taken. This is also true for the ’number of estimators’, i.e. the

number of decision trees to create from the features. The results of changing these

parameters are shown in graphical form in Figure 8.8b and Figure 8.9 respectively.

40

6.4.6 Linear Discriminent Analysis

Linear Discriminant Analysis (LDA) is based on the originally proposed discrim-

inant analysis in an article by Sir Ronald Fisher (Fisher (1936)). LDA is the process

of finding a set of linear combination of features that characterizes two or more enti-

ties. This combination can be used to classify the entities. Given a data pool X with

higher dimension, LDA reduces them to a set of lower dimension components each of

which represents a specific class in the original data pool. Each class x in the dataset

can be assigned to a particular class j based on two primary rules:

• Maximum likelihood rule: If the probability of each class to occur is equal, then

x would be classified as j if

j = argmaxifi(x)

• Bayesian Rule: If the prior probability of x to be in class j is π, then

j = argmaxiπifi(x)

LDA vs PCA: There is similarity between Principal Component Analysis (PCA)

and LDA because both can be used for dimensionality reduction. LDA deliberately

focuses on modeling the difference among the classes. On the other hand, PCA builds

the feature combinations based on differences in the data rather than similarities

and ignores the differences in classes. In our experiments, LDA has been proved

quite useful because of this nature. Since LDA focuses on separating the features for

each class, it can identify the features that correspond to each entity from different

ontologies. If the entities are same or similar, the features would tend to be same.

Analysis from our experiments: There are different types of solvers that can

be used for LDA: singular value decomposition (SVD), least squares solution (lsqr)

and eigenvalue decomposition (eigen). SVD does not compute the covariance matrix,

41

therefore this solver is recommended for data with a large number of features. In our

case, we are using a large number of features extracted from the similarity measures

of the ontology entities. That’s why we have used the SVD solver in our experiment.

For ’eigen’ solver, we have tried to find a good ’shrinkage’ value. It appears that the

less the value (i.e. close to 0), the better the results are. This experiment is displayed

in Figure 8.12.

6.4.7 K Nearest Neighbor Classifier

K-Nearest Neighbor classifier works by identifying the class which is most common

among it’s k closest neighbor based on a selected distance measure. Choosing the

right value of k is important for KNN. It is important to search for the optimal value

of k for a particular dataset.

Analysis from our experiments: In our experiment for ontology matching, we

have searched for the right value of k for each of the datasets separately. K = 11

gives us the best result for Dataset#1. K = 6 gives us the best result for Dataset#2.

6.4.8 Multi-Layer Perceptron

Multi layer perceptron is a basic step towards artificial neural network, which

eventually was inspired by the complex connections of human brain (Callan (1998)).

Multi layer perceptron was designed based on the observation that the connection

between neurons (the synapses) in human brain can encode necessary information

to make intelligent decisions. During the late 1940s, the McCulloch-Pitts model

proposed a preliminary model for a neurone used in Perceptrons and MLPs. A neuron

42

is modelled based on a threshold function.

f(x) =

1, if x ≥ 1

0, otherwise

Now, in a multilayer perceptron, there are three layers of nodes, input layer, hidden

layer(s) and the output layer. Each node works as a neuron and with them a non-

linear activation function is associated. Also a set of weights wij are associated with

each node that connects to each of the nodes in the next layer. Based on the previous

iteration, and observing the change in the calculated error, the weights are adjusted

in each node. This process continues until no change is observed in the error.

Analysis from our experiments: As an initial step towards solving ontology

alignment problem using artificial neural networks, we have developed an MLP clas-

sifier model and evaluated on the two datasets. Number of hidden layers (4, 2) and

(6, 4) worked best for Dataset#1 and Dataset#2 respectively. We have also tested

using different number of random states for MLP classifier. But, we could not find

any pattern to help us define the number of random states to use.

6.4.9 Ada Boost Classifier

Ada Boost classifier is an ensemble method that uses ’boosting’ to improve the

model iteratively by learning the mistakes done in previous model. The name comes

from ’Adaptive Boosting’. Normally it combines multiple weak classifiers into a single

robust classifier. There are couple of important parameters that needs to be tuned

for AdaBoost Classifier.

• n estimators: Number of weak learners to train in each iteration.

• learning rate: It contributes to the weights of weak learners. It uses 1 as a

43

default value.

Analysis from our experiments: In our experiments, we have primarily tested

with different number of estimators, i.e. the number of weak classifiers to use. In both

cases, lower number of estimators performed well. The results of ablation studies are

illustrated in Figure 8.11a and Figure 8.11b.

6.4.10 Other Machine Learning Methods

We have tried to use some other machine learning methods that didn’t perform

quite well. For example, Gaussian Process Classifier, Gaussian Naive Bayes and

Quadratic Discriminant Analysis (QDA). All of these methods performed poorly for

our setup. Ada Boost Classifier gave us quite good result for Dataset#1 (average

F-Measure 0.81).

6.4.11 Summary

In order to create a classification model that can find match between two entities

from different ontologies, we have created some models using some popular machine

learning methods. Some of these models, e.g. Random Forest, Ada Boost, Logistic

Regression, Linear Discriminant Analysis, SVM etc. have given us results that are

comparable to some of the most prominent tools developed for ontology alignment.

We have discussed the definition of each machine learning technique in this chapter

and also provided some insight why we have used certain parameters of these tech-

niques. In the next chapter we discuss in detail how the features extracted in Chapter

5 are used to train these models.

44

Chapter 7

ONTOLOGY MATCHING

7.1 Using Machine Learning

For ontology alignment with machine learning, in our method OntoAlign, we de-

fine an alignment with the tuple (entity1, entity2, align) where the first two are the

entities that we are matching and ’align’ is the percentage of match between the

entities. These tuples can be either obtained manually by domain experts (the true

alignments) or from the output of a machine learning model (the predicted align-

ment).

We have designed the machine learning models that can predict the ontology align-

ments and gives as output the predicted alignments. The inputs to the models are the

vectorized forms of the entities. The input vectors are obtained by taking different

similarity measures.

7.1.1 Alignment Creation Using Similarity Measures

The first step of preparing the dataset for input is to extract the classes and prop-

erties from the ontologies. We use Owlready2 python API (Lamy (2017)) in order

to obtain the classes and properties from the ontologies. Then for each class and

properties we get the values for all the similarity measures described in section 5.1.

Then, each class from the first ontology is matched with each class from the second

ontology. For example, if in the first ontology includes 20 classes and in the second

ontology includes 12 classes, then 240 pairs are matched. Each pair is fed to the input

45

of a machine learning model, which calculates the probability (confidence) of match-

ing for each pair. Then the threshold is set: if the probability is above the threshold,

then the pair is added to the final alignment. Similar procedure is performed on the

properties of the ontologies. This process is described in Algorithm 2 and Algorithm 3.

Algorithm 2: ontoMatch() - Match two ontologies

Data: ontology1, ontology2
Result: finalAlignment - alignment for ontology1 and ontology2
/* Getting the classes for each ontology */

1 classes1← getClasses(ontology1);
2 classes2← getClasses(ontology2);

/* Create alignmnets for the classes using Algorithm 2 */

3 classAlignments← createAlignment(classes1, classes2);
/* Getting the properties for each ontology */

4 properties1← getProperties(ontology1);
5 properties2← getProperties(ontology2);

/* Create alignmnets for the properties using Algorithm 2 */

6 propertyAlignments← createAlignment(properties1, properties2);
7 finalAlignment← classAlignments ∪ propertyAlignment;
8 return finalAlignment;

Algorithm 3: createAlignment() - Predict alignment for two lists of entities

Data: entities1, entities2 - lists of entities, either classes, or properties,
threshold

Result: alignment - alignment for entities1 and entities2
/* Loop through all pairs of entities */

1 for entity1 ∈ entities1 do
2 for entity2 ∈ entities2 do

/* Calculate similarity measures for each entity pair */

3 simMeasures← calculateAllSimMeasures(entity1, entity2);
4 match← predictMatch(simMeasures);
5 if match > threshold then
6 alignment← alignment ∪ (entity1, entity2)
7 else

8 return alignment;

46

Name, parent name, and the full hierarchical path are retrieved from each class.

The parent of a class is its super class. The full path is a string that describe the

entire hierarchy of classes: from the most general class to the current class. For

example, the class “Book” has the name “Book”, the parent name “Publication”

and the full path “Thing/Publication/Book”. Thus, a list of pairs for matching is

generated. For properties, the parent is the class that it describes. And the full

path is a string describing the complete hierarchy up to the class that describes the

property. For each pair, all similarity measures listed in section 5.1 are calculated.

Then all similarity measures are combined into a list. This process is described in

Algorithm 4.

Algorithm 4: calculateAllSimMeasures() - Calculate similarity Measures
for given pair of Entities

Data: entity1, entity2
Result: finalAlignment - alignment for entity1 and entity2

1 name1← getName(entity1) ; /* get name for entity1 */

2 name2← getName(entity2) ; /* get name for entity2 */

3 parent1← getParent(entity1) ; /* get parent for entity1 */

4 parent2← getParent(entity2) ; /* get parent for entity2 */

5 path1← getPath(entity1) ; /* get path for entity1 */

6 path2← getPath(entity2) ; /* get path for entity1 */

7 nameSimilarityMeasures← calculateSimMeasures(name1, name2);
8 parentSimilarityMeasures← calculateSimMeasures(parent1, parent2);
9 pathSimilarityMeasures← calculateSimMeasures(path1, path2);

10 simMeasures←
nameSimMeasures ∪ parentSimMeasures ∪ pathSimMeasures;

11 return simMeasures;

7.1.2 Creating dataset and training a machine learning model

For this part, the input data is a list of ontology pairs and the true alignment

between them. A model from the list of machine learning models (see Table 6.1)

is used and appropriate parameters are also selected. The process is similar to the

47

Algorithm 5: createDatasetAndTrainModel() - Creates dataset and then
train the machine learning models

Data: trainPairsOntologies - tuple containing (ontology1, ontology2 and
trueAlignment);

modelName - the machine learning model to use;
modelParams - parameters for the ML model
Result: model - trained model
/* Loop through all given tuples and extract the classes and properties */

1 for ontology1, ontology2, trueAlignment ∈ trainPairsOntologies do
2 classes1← getClasses(ontology1);
3 classes2← getClasses(ontology2);
4 trainDatasetClasses←

createDataset(classes1, classes2, trueAlignment,′ Class′);
5 properties1← getProperties(ontology1);
6 properties2← getProperties(ontology2);
7 trainDatasetProperties←

createDataset(properties1, properties2, trueAlignment,′ Property′);
/* Merge the training datasets for classes and properties */

8 trainDataset←
trainDataset ∪ trainDatasetClasses ∪ trainDatasetProperties;

9 model← trainModel(trainDataset,modelName,modelParams);
10 return model;

previous step: the names of objects, the names of parents and full paths are retrieved,

and the similarity measures are calculated. First, a dataset is created for the classes,

then for the properties, and after that both the datasets are combined.

A true alignment, two lists of entities and the type of input entities are provided as

the input. Each entity from the first list is mapped to each entity from the second

list. Then, if a pair of entities is contained in the true alignment, then the pair is

assigned label “1”, otherwise - label “0”. Also, each pair indicates the type of en-

tity (either “Class” or “Property”) because the same model was used to map classes

and properties. Then all pairs are combined into one dataset. Further, the model is

trained on the created dataset with the selected parameters. The process is described

in Algorithm 5 and Algorithm 6.

48

Algorithm 6: createDataset() - Create dataset given two lists of entities

Data: entities1, entities2 - lists of entities, either classes, or properties,
threshold, trueAlignment, entityType

Result: trainingDataset - tuple containing entity1 entity2, match,
entityType, simMeasures

/* Loop through all pairs of entities */

1 for entity1 ∈ entities1 do
2 for entity1 ∈ entities1 do

/* Calculate similarity measures for each entity pair */

3 simMeasures← calculateAllSimMeasures(entity1, entity2);
4 if (entity1, entity2) ∈ trueAlignment then
5 trainDataset←

trainDataset ∪ (entity1, entity2, 1, entityType, simMeasures)
6 else
7 trainDataset←

trainDataset ∪ (entity1, entity2, 0, entityType, simMeasures)X

8 return trainDataset;

7.2 Results

The results from using the above discussed machine learning techniques on differ-

ent datasets are discussed in this section. In order to measure the similarity measure

word2vec, we have used dataset ’GoogleNews-vectors-negative300’ for the results in

table 7.1 and table 7.2.

Alignments LR RF ADA DT SVM LDA SGD KNN MLP
101-302.rdf 0.73 0.73 0.72 0.7 0.73 0.67 0.68 0.38 0.28
101-303.rdf 0.83 0.83 0.80 0.73 0.82 0.65 0.71 0.61 0.77
101-304.rdf 0.9 0.92 0.90 0.88 0.89 0.82 0.75 0.83 0.86
Average 0.82 0.83 0.81 0.77 0.81 0.71 0.71 0.61 0.63

Table 7.1: F-Measures from Different Machine Learning Algorithms on Dataset-1.
Word2Vec Dataset: GoogleNews-vectors-negative300

49

7.2.1 Results for the OAEI ’Benchmark’ Dataset

We have used the OAEI 2016 ’benchmark’ dataset as the ”Dataset#1” for our

experiments.

From the results in 7.1, we can see that Random Forrest, Logistic Regression Clas-

sifier, SVM Classifier have the best f-measures, while Decision Tree Classifier, KNN

Classifier, Linear Discriminant Analysis have slightly lower performance for dataset1.

Alignments LR RF ADA DT SVM LDA SGD KNN MLP
conf-edas 0.50 0.56 0.56 0.44 0.56 0.62 0.4 0.36 0.50
cmt-sigkdd 0.63 0.74 0.74 0.8 0.67 0.73 0.52 0.73 0.67
edas-sigkdd 0.61 0.64 0.64 0.64 0.64 0.64 0.61 0.5 0.56
ekaw-sigkdd 0.76 0.78 0.78 0.71 0.78 0.78 0.70 0.71 0.78
cmt-edas 0.73 0.7 0.76 0.57 0.76 0.73 0.7 0.50 0.64
conf-sigkdd 0.56 0.64 0.67 0.48 0.67 0.62 0.45 0.38 0.67
confof-edas 0.58 0.54 0.50 0.56 0.54 0.58 0.53 0.51 0.6
confof-iasted 0.62 0.62 0.62 0.62 0.62 0.62 0.57 0.53 0.71
conf-confof 0.64 0.61 0.61 0.45 0.61 0.72 0.41 0.32 0.61
cmt-confof 0.38 0.41 0.36 0.29 0.36 0.36 0.38 0.38 0.38
conf-ekaw 0.44 0.47 0.47 0.32 0.44 0.41 0.33 0.27 0.49
cmt-ekaw 0.62 0.62 0.58 0.53 0.59 0.67 0.43 0.53 0.59
confof-ekaw 0.67 0.61 0.60 0.79 0.48 0.61 0.67 0.53 0.67
iasted-sigkdd 0.69 0.81 0.76 0.77 0.8 0.71 0.58 0.67 0.75
cmt-iasted 1.00 0.89 0.89 0.89 0.89 0.89 0.43 0.67 0.89
edas-iasted 0.33 0.52 0.46 0.48 0.52 0.52 0.32 0.44 0.44
ekaw-iasted 0.71 0.75 0.75 0.57 0.75 0.75 0.57 0.44 0.75
confof-sigkdd 0.73 0.73 0.73 0.67 0.73 0.73 0.73 0.40 0.73
Average 0.62 0.65 0.64 0.59 0.63 0.65 0.52 0.49 0.63

Table 7.2: F-Measures from Different Machine Learning Algorithms on Dataset 2.
Word2Vec Dataset: GoogleNews-vectors-negative300

7.2.2 Results for the OAEI ’Conference’ Dataset

We have used OAEI 2021 ’conference’ dataset as our dataset 2.

From the results in 7.2, we can see that Random Forrest, Logistic Regression Clas-

50

sifier, SVM Classifier have the best f-measures, while Decision Tree Classifier, KNN

Classifier, Linear Discriminant Analysis have slightly lower performance for dataset2.

7.2.3 Comparison of Results with Existing Works

We have compared the results of our method, OntoAlign, with other state of the

art tools/methods that participated in the OAEI competition. The F-Measure scores

are taken from the OAEI 2016 benchmark dataset results page (Achichi et al. (2016)).

The results are compared with our results in Table 7.3. We can see that OntoAlign

outperforms all the other tools except CorMatch and Lily for the benchmark dataset.

Algorithm/Method F-Measure
CorMatch 0.89
Lily 0.89
OntoAlign-RandomForest 0.83
OntoAlign-LogisticRegression 0.82
OntoAlign-SVM 0.81
OntoAlign-AdaBoost 0.81
OntoAlign-DecisionTree 0.77
OntoAlign-LDA 0.71
OntoAlign-SGD-Classifier 0.71
OntoAlign-MLP 0.63
OntoAlign-KNN 0.61
XMap 0.56
LogMap 0.55
LogMapLite 0.46
AML 0.38
LogMapBio 0.32

Table 7.3: Comparison with State of the Art Methods Based on Dataset-1.

The results for the OAEI ’conference’ dataset is compared with our results in

Table 7.4. The F-Measure scores are collected from the OAEI 2021 conference track

results page (Pour et al. (2020)). We can see that our method using Random Forest

and Linear Discriminant Analysis (LDA) outperforms most of the state-of-the-art

51

methods except the AgreementMakerLight (AML).

Algorithm/Method F-Measure
AgreementMakerLight (AML) 0.69
OntoAlign-RandomForest 0.65
OntoAlign-LDA 0.65
LogMap 0.64
OntoAlign-AdaBoost 0.64
OntoAlign-SVM 0.63
OntoAlign-MLP 0.63
OntoAlign-LogisticRegression 0.62
GMap 0.61
ATMatcher 0.59
Wiktionary 0.59
OntoAlign-DecisionTree 0.59
FineTOM 0.58
TOM 0.57
ALOD2Vec 0.56
edna 0.56
LogMapLite 0.56
LSMatch 0.55
AMD 0.54
StringEquiv 0.53
KGMatcher 0.52
OntoAlign-SGD 0.52
OntoAlign-KNN 0.49

Table 7.4: Comparison with State of the Art Methods Based on Dataset-2.

7.3 Analysis of the Results

Based on the results from both datasets, we can see that Random Forest has

given us best results. As discussed in section 6.4.5, random forest works by randomly

dividing the features and using them to create multiple decision trees. In this way, it

improves the results from using decision trees individually. We can see from Table 7.1

and Table 7.2 that for each instance of the alignments random forest gives us better

f-measure than decision tree as expected.

52

Logistic Regression Classifier and Ada Boost Classifier also gave very similar results

for both the datasets. For ontology alignment, the classification is categorical in na-

ture, i.e. the entity tuple in hand either match or does not match. Logistic regression

works well in such cases of categorical outputs as we can also find from our results.

Ada Boost combines multiple sub models and makes a better model to overcome the

weaknesses of the sub models. The concept is quite similar as we saw in random

forest. Here instead of using a particular sub-model i.e. decision tree, Ada Boost

uses different sub-classifiers and combines the results. For this reason the results of

random forest and Ada Boost based models are very close to each other.

Among other state of the art methods, CorMatch and Lily has performed very well

compared to our results for dataset1. Lily uses subgraph similarity that makes it

find the local meaning of a the components in the entity instead of trying to find

similarity based on the overall entity [Wang and Wang (2015)]. We could not find

any publication related to CorMatch, only the results reported on the OAEI results

website were found.

For dataset2, AML [Faria et al. (2013)] performed better than our approach. In-

stead of using learning based techniques for matching ontologies, it uses four types of

matchers namely lexical matcher, mediating matcher, word matcher and parametric

string matcher. Comparing to our method, we have used similarity measures to train

machine learning models which is analogous to the the matcher defined by AML, but

less robust. We believe our results can be improved by incorporating the ideas of

using multiple matchers from AML.

53

Chapter 8

ABLATION STUDIES

In any machine learning based solution, ablation study is very important. Ablation

study is the procedure to compare different approaches against the proposed approach.

There are many different parameters for each of the machine learning techniques we

used. One purpose of ablation study is to show how changing the parameters affect

the classification results. In our work, there are multiple factors that needs to be

considered for ablation studies.

8.1 Similarity Measures

One primary observation of our research is the effect of using different number

of similarity measures while creating the features for the machine learning methods.

In most of the cases we have found that the increase in the number of similarity

measures improves the f-measures in the results. Figures 8.1, 8.2, 8.3 and 8.11 shows

how increasing the number of similarity measures has changed the outcome for the

different machine learning techniques we have used. Most of the algorithms give better

performance when we use more similarity measures. For Logistic Regression the f-

measure starts falling if we use more that 15 similarity measures. It is also similar

for Linear Discriminant Analysis, i.e. the f-measure decreases after 15 similarity

measures. SVM doesn’t improve much after we use more than 9 similarity measures,

but it keeps giving at a certain level of f-measure.

Figure 8.1 shows how logistic regression and decision tree methods gives higher results

when higher number of similarity measures are used. For logistic regression we get

the best f-measure when 16 similarity measures are used. For decision tree, the best

54

f-measure is found with all the similarity measures.

(a) Logistic Regression (b) Decision Tree

Figure 8.1: Impact of Number of Similarity Measures on Logistic Regression and
Decision Tree (Dataset#1)

(a) Random Forest (b) SGD Classifier

Figure 8.2: Impact of Number of Similarity Measures on Random Forest and Stochas-
tic Gradient Descent Classifier (Dataset#1)

Figure 8.2 shows the results for random forest and SGD classifier with different

numbers of similarity measures used. random forest doesn’t change much until we

use more than 18 similarity measures. The f-measure improves significantly when all

55

the similarity measures are used. For SGD classifier, the we get an improvement of

the f-measure until 15 similarity measures and then it remains almost same after that

with all the similarity measures.

(a) LDA (b) SVM

Figure 8.3: Impact of Number of Similarity Measures on Linear Discriminant Analysis
and SVM Classifier (Dataset#1)

Linear discriminant analysis and SVM does not improve much after using 9 simi-

larity measures (Figure 8.3). In fact LDA gives lower results when all the similarity

measures are used while the f-measure for SVM remains almost same after 9 similarity

measures.

Figure 8.11 also supports the improvement of the machine learning methods KNN

and MLP when we take more similarity measures and the f-measures for them peak

when all the similarity measures are considered.

56

(a) KNN (b) MLP

Figure 8.4: Impact of Number of Similarity Measures on K-nearest Neighbour Clas-
sifier and MLP Classifier (Dataset#1)

We have also calculated the average of the f-measures for all 9 of the machine

learning algorithms against the number of similarity measures. If we look at Figure

8.5, it is clear that using more similarity measures has improved the average F-

Measures for the machine learning algorithms.

Figure 8.5: Average F-measures for All Machine Learning Methods Against the Num-
ber of Similarity Measures Used

57

Figure 8.6: Using Word2vector Alone as a Similarity Measure

8.2 Using Word2Vector

We have also observed how the results change if we use only word2vector as a

similarity measure. Some of the machine learning algorithms show significant im-

provement when we used all similarity measures including word2vector. Logistic

Regression, Random Forest, Decision Tree, Linear Discriminant Analysis has shown

10% to 20% improvement when all other similarity measures are used along with

word2vector. SVM didn’t work well with only word2vector. Multi-layer Perceptron,

K-Nearest Neighbor and Naive Bayes on the other hand produced better results with

only word2vector as a similarity measure. Figure 8.6 shows the comparison.

We have also compared the results excluding word2vector as opposed to including

it with all other similarity measures. 8.7 displays the result for both of the cases,

i.e. including or excluding word2vector. For almost all methods, the results doesn’t

change much when word2vector is used except KNN and Decision Tree for which the

results improve when we use word2vector.

58

Figure 8.7: Including Word2vector as a Similarity Measure

8.3 Varying ML Parameters

Determining the right parameters for the machine learning methods is important

to come up with the optimal model. In this research, we have gone through different

values for the important parameters of each machine learning methods. The effects

of choosing different parameter values is shown graphically in the following section.

8.3.1 Decision Tree

For decision tree, we have changed the depth of the tree and observed the change

in results. The increase of depth actually reduced the f-measures for this method.

The results are displayed graphically in Figure 8.8a. For our final model, we have

taken depth = 2 for decision tree.

59

(a) Decision Tree - change of depth (b) Random Forest - change of depth

Figure 8.8: Impact of ’Depth’ for Decision Tree and Random Forest Method

8.3.2 Random Forest

For random forest, we have changed the depth and observed the change in results.

But in this case, there were no effect of changing the depth. Figure 8.8b shows

the results. We have also changed the number of estimators for random forest and

observed the change in results. The increase in the number of estimators actually

worsened the result in this case. Figure 8.9 shows the results.

Figure 8.9: Random Forest - Change of Estimators

60

8.3.3 Logistic Regression

For logistic regression, we changed the c-value in the algorithm and observed the

change in results. It appeared that c = 5 gives us the best results. Figure 8.10a shows

the results.

(a) Logistic Regression - change of C-value (b) SGD Classifier - number of iterations

Figure 8.10: Impact of Parameter Change on Logistic Regression and SGD Classifier

8.3.4 SGD Classifier

For SGD classifier, in general, the increase in the number of iterations gives better

results as shown in Figure 8.10b

8.3.5 Ada Boost Classifier

For Ada Boost classifier, we have tried different number estimators. For Dataset#1,

number of estimators 17 gives us best result. For Dataset#2, number estimators 1

gives best result.

61

(a) Impact on Dataset#1 (b) Impact on Dataset#2

Figure 8.11: Impact of the Change of Number of Estimators on Ada Boost Classifier

8.3.6 LDA

For LDA classifier we have tested for different shrinkage values for ’eigen’ solver.

In general, the increase in the value of ’shrinkage’ gives less accurate results as shown

in Figure 8.12

Figure 8.12: LDA - Change of Shrinkage Value for Eigen Solver

62

8.3.7 KNN Classifier

For KNN, we have used different values of K. For dataset1, KNN gives best result

for K = 11 and f-measures doesn’t improve after that. For dataset2, KNN gives best

result for K = 6 and f-measures start getting lower after that. The results are shown

in Figure 8.13 and Figure 8.14

Figure 8.13: KNN Classifier - Change of K (Dataset#1)

Figure 8.14: KNN Classifier - Change of K (Dataset#2)

63

8.3.8 MLP Classifier

For MLP classifier, we have tried different number of layers. For Dataset#1,

number of hidden layers (4, 2) gives us best result. For Dataset#2, number of hidden

layers=(6, 4) gives best result.

Figure 8.15: MLP Classifier - Number of Layers (Dataset#1)

64

Figure 8.16: MLP Classifier - Number of Layers (Dataset#2)

65

Chapter 9

FUTURE WORK

9.1 Possible Extension of Current Work

There are datasets that are larger in size. If those datasets can be used to train the

machine learning models, it might lead to finding better models that can give better

results for a wide range of ontologies from multiple domains. In our experiment, due to

limited processing power and memory, we could only use the two datasets mentioned

above (benchmark and conference datasets from OAEI). With higher processing power

and memory, it will be also possible to combine multiple word2vector libraries, which

might improve the matching algorithm further. In our case, we could use upto three

word2vector libraries.

9.2 Neural Network based solutions

Neural Network based solutions should perform well in ontology matching. Since it

is often very difficult to get properly annotated or labeled data for ontology-alignment,

unsupervised approaches can come to rescue. Chakraborty et. al. proposed OntoCon-

nect Chakraborty et al. (2021) where they have demonstrated a very effective method

using recursive neural networks. It would be an interesting work if all the similarity

measures used in current work can be used with the recursive neural network based

solution proposed by OntoConnect.

66

9.3 Transfer Learning

Transfer learning is being used in many recent works especially in the fileds of NLP

and Image Processing. When we don’t have enough data with ground truth for our

domain in question, we can try training a deep learning model from another domain

that has enough data and use that pre-trained model to predict for the domain we

need results for. For example, there are sometimes not enough data related to medical

image processing. But, since there are enough data from natural images on the web,

a deep learning model can be trained based on the natural images, and later that

pre-trained model can be used to predict features (cancers, tumors etc) in medical

images.

67

Chapter 10

CONCLUSION

In this research we have designed an ontology matcher and conducted experiments

on ontology alignment using a couple of well known datasets from the Ontology

Alignment Evaluation Initiative (OAEI) challenge. We propose a model based on

specialized feature extraction and using supervised machine learning models that will

be able to handle large datasets from the real world and provide better results in terms

of ontology matching. We have shown that feature extraction using larger number

of similarity measures between entities of the ontologies can produce better ontology

matching. The primary contribution of this research is the concept of using multiple

types of similarity measures to create features for machine learning models. Our

method, OntoAlign, can be used to automatically find alignments between ontology

pairs without any human intervention. The results are highly comparable to the

existing state of the art tools and methods presented in the OAEI competition.

68

REFERENCES

Achichi, M., M. Cheatham, Z. Dragisic, J. Euzenat, D. Faria, A. Ferrara, G. Flouris,
I. Fundulaki, I. Harrow, V. Ivanova et al., “Results of the ontology alignment
evaluation initiative 2016”, in “OM: Ontology matching”, No. 1766, pp. 73–129
(2016).

Atencia, M., J. Euzenat, G. Pirro and M.-C. Rousset, “Alignment-based trust for
resource finding in semantic p2p networks”, in “International Semantic Web Con-
ference”, pp. 51–66 (Springer, 2011).

Aumueller, D., H.-H. Do, S. Massmann and E. Rahm, “Schema and ontology matching
with coma++”, in “Proceedings of the 2005 ACM SIGMOD international confer-
ence on Management of data”, pp. 906–908 (2005).

Berners-Lee, T., J. Hendler and O. Lassila, “The semantic web”, Scientific american
284, 5, 34–43 (2001).

Bernstein, A., J. Hendler and N. Noy, “A new look at the semantic web”, Communi-
cations of the ACM 59, 9, 35–37 (2016).

Bouquet, P., F. Giunchiglia, F. v. Harmelen, L. Serafini and H. Stuckenschmidt, “C-
owl: Contextualizing ontologies”, in “International Semantic Web Conference”, pp.
164–179 (Springer, 2003).

Bühmann, L., J. Lehmann, P. Westphal and S. Bin, “Dl-learner structured machine
learning on semantic web data”, in “Companion Proceedings of the The Web Con-
ference 2018”, pp. 467–471 (2018).

Bulygin, L. and S. A. Stupnikov, “Applying of machine learning techniques to combine
string-based, language-based and structure-based similarity measures for ontology
matching.”, in “DAMDID/RCDL”, pp. 129–147 (2019).

Callan, R., Essence of neural networks (Prentice Hall PTR, 1998).

Chakraborty, J., S. K. Bansal, L. Virgili, K. Konar and B. Yaman, “Ontoconnect: Un-
supervised ontology alignment with recursive neural network”, in “Proceedings of
the 36th Annual ACM Symposium on Applied Computing”, pp. 1874–1882 (2021).

Cohen, R. P., W. and S. Fienberg, “A comparison of string metrics for matching
names and records”, In Kdd workshop on data cleaning and object consolidation
3, 73–78 (2003).

Cohen, R. P., W. and S. Fienberg, “A comparison of string metrics for matching
names and records”, In Kdd workshop on data cleaning and object consolidation
3, 73–78 (2007).

David, J., “Association rule ontology matching approach”, International Journal on
Semantic Web and Information Systems (IJSWIS) 3, 2, 27–49 (2007).

69

Doan, A., J. Madhavan, R. Dhamankar, P. Domingos and A. Halevy, “Learning to
match ontologies on the semantic web”, The VLDB journal 12, 4, 303–319 (2003).

Doan, H. A. I. Z., A., “Principles of data integration”, (2012).

Euzenat, J., “An api for ontology alignment”, In International Semantic Web Con-
ference. Springer, Berlin, Heidelberg. November, 698–712 (2004).

Euzenat, J., M.-E. Roşoiu and C. Trojahn, “Ontology matching benchmarks: gener-
ation, stability, and discriminability”, Journal of web semantics 21, 30–48 (2013).

Euzenat, J. and P. Shvaiko, “Ontology matching”, Springer-Verlag Berlin Heidelberg,
Berlin 18 (2007).

Euzenat, J., P. Shvaiko et al., Ontology matching, vol. 18 (Springer, 2007).

Faria, D., C. Pesquita, E. Santos, M. Palmonari, I. F. Cruz and F. M. Couto, “The
agreementmakerlight ontology matching system”, in “OTM Confederated Interna-
tional Conferences” On the Move to Meaningful Internet Systems””, pp. 527–541
(Springer, 2013).

Fisher, R. A., “The use of multiple measurements in taxonomic problems”, Annals
of eugenics 7, 2, 179–188 (1936).

Giunchiglia, F., P. Shvaiko and M. Yatskevich, “S-match: an algorithm and an im-
plementation of semantic matching”, in “European semantic web symposium”, pp.
61–75 (Springer, 2004).

Gracia, J., J. Bernad and E. Mena, “Ontology matching with cider: evaluation report
for oaei 2011”, Ontology Matching 126 (2011).

Guarino, N., D. Oberle and S. Staab, “What is an ontology?”, in “Handbook on
ontologies”, pp. 1–17 (Springer, 2009).

Hitzler, P., “A review of the semantic web field”, Communications of the ACM 64,
2, 76–83 (2021).

Hlaing, S. S., “Ontology based schema matching and mapping approach for structured
databases”, in “Proceedings of the 2nd International Conference on Interaction
Sciences: Information Technology, Culture and Human”, pp. 853–859 (2009).

Jiménez-Ruiz, E., B. C. Grau and I. Horrocks, “Logmap and logmaplt results for oaei
2012”, Ontology Matching 152 (2013).

Lamy, J.-B., “Owlready: Ontology-oriented programming in python with automatic
classification and high level constructs for biomedical ontologies”, Artificial intelli-
gence in medicine 80, 11–28 (2017).

Li, J., J. Tang, Y. Li and Q. Luo, “Rimom: A dynamic multistrategy ontology
alignment framework”, IEEE Transactions on Knowledge and data Engineering
21, 8, 1218–1232 (2008).

70

Li, X., X. L. Dong, K. B. Lyons, W. Meng and D. Srivastava, “Scaling up copy
detection”, in “2015 IEEE 31st International Conference on Data Engineering”,
pp. 89–100 (IEEE, 2015).

Liang, S.-F., C.-E. Kuo, Y.-H. Hu and Y.-S. Cheng, “A rule-based automatic sleep
staging method.”, in “33rd IEEE EMBS Annual International Conference of the
Engineering in Medicine and Biology Society”, pp. 6067–6070 (2011).

Mascardi, V., D. Ancona, R. H. Bordini and A. Ricci, “Cool-agentspeak: Enhanc-
ing agentspeak-dl agents with plan exchange and ontology services”, in “2011
IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent
Agent Technology”, vol. 2, pp. 109–116 (IEEE, 2011).

Mikolov, T., K. Chen, G. Corrado and J. Dean, “Efficient estimation of word repre-
sentations in vector space”, (2013).

Needleman, W. C., S., “A general method applicable to search for similarities in
amino acid sequence of 2 proteins”, In: Journal of Molecular Biology 48, 3, 443–53
(1970).

Nezhadi, A. H., B. Shadgar and A. Osareh, “Ontology alignment using machine
learning techniques”, AIRCC’s International Journal of Computer Science and In-
formation Technology 3, 2, 139–150 (2011).

Ngo, D. H. and Z. Bellahsene, “Yam++:(not) yet another matcher for ontology match-
ing task”, in “BDA: Bases de Données Avancées”, (2012).

Ngomo, A.-C. N. and S. Auer, “Limes—a time-efficient approach for large-scale link
discovery on the web of data”, in “Twenty-Second International Joint Conference
on Artificial Intelligence”, (2011).

O’Leary, D., “Ontologies: A silver bullet for knowledge management and electronic
commerce”, (2005).

Otero-Cerdeira, L., F. J. Rodŕıguez-Mart́ınez and A. Gómez-Rodŕıguez, “Ontology
matching: A literature review”, Expert Systems with Applications 42, 2, 949–971
(2015).

Pour, N., A. Algergawy, R. Amini, D. Faria, I. Fundulaki, I. Harrow, S. Hertling,
E. Jiménez-Ruiz, C. Jonquet, N. Karam et al., “Results of the ontology alignment
evaluation initiative 2020”, in “Proceedings of the 15th International Workshop on
Ontology Matching (OM 2020)”, vol. 2788, pp. 92–138 (CEUR-WS, 2020).

Rahm, E. and P. A. Bernstein, “A survey of approaches to automatic schema match-
ing”, the VLDB Journal 10, 4, 334–350 (2001).

Rao, S. G. V. K., G.A. and P. Prasad Reddy, “A partial ratio and ratio based fuzzy-
wuzzy procedure for characteristic mining of mathematical formulas from docu-
ments”, IJSC—ICTACT J Soft Comput 8, 4, 1728–1732 (2018).

71

Resnik, P., “Using information content to evaluate semantic similarity in a taxon-
omy”, arXiv preprint cmp-lg/9511007 (1995).

Shvaiko, P. and J. Euzenat, “A survey of schema-based matching approaches”, in
“Journal on data semantics IV”, pp. 146–171 (Springer, 2005).

Signore, O. et al., “Representing knowledge in the semantic web”, in “Open Culture
Conference (organised by the Italian office of W3C)”, pp. 27–29 (2005).

Sousa, T., A. Cruz, S. Khalighi, G. Pires and U. Nunes, “A two-step utomatic sleep
stage classification method with dubious range detection”, Computers in Biology
and Medicine 59, 42–43 (2015).

Stoilos, S. G., G. and S. Kollias, “A string metric for ontology alignment”, In Interna-
tional Semantic Web Conference. Springer, Berlin, Heidelberg. 3, 624–637 (2005a).

Stoilos, S. G., G. and S. Kollias, “A string metric for ontology alignment”, In In-
ternational Semantic Web Conference. Springer, Berlin, Heidelberg November,
624–637 (2005b).

Straccia, U. and . Troncy, R., “omap: Combining classifiers for aligning automat-
ically owl ontologies”, In International Conference on Web Information Systems
Engineering. Springer, Berlin, Heidelberg November, 133–147 (2005).

Suchanek, F. M., S. Abiteboul and P. Senellart, “Paris: Probabilistic alignment of
relations, instances, and schema”, arXiv preprint arXiv:1111.7164 (2011).

Tversky, A., “Features of similarity”, In: Psychological Review 84, 4, 327–352 (1977).

Vijaymeena, M. and K. Kavitha, “A survey on similarity measures in text mining”,
Machine Learning and Applications: An International Journal 3, 2, 19–28 (2016).

Wang, W. and P. Wang, “Lily results for oaei 2015.”, in “OM”, pp. 162–170 (2015).

Wu, P. M., Z., “Verbs semantics and lexical selection”, In Proceedings of the 32nd
annual meeting on Association for Computational Linguistics (1994).

Wu, Z. and M. Palmer, “Verb semantics and lexical selection”, arXiv preprint cmp-
lg/9406033 (1994).

Zhang, Y., X. Wang, S. Lai, S. He, K. Liu, J. Zhao and X. Lv, “Ontology matching
with word embeddings”, in “Chinese computational linguistics and natural lan-
guage processing based on naturally annotated big data”, pp. 34–45 (Springer,
2014).

Zobel, J. and P. Dart, “Phonetic string matching: Lessons from information retrieval”,
In Proceedings of the 19th annual international ACM SIGIR conference on Research
and development in information retrieval pp. 166–172 (1996).

72

