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ABSTRACT

The seminal work of Lasry and Lion showed the existence of Nash equilibria in the

continuum limit of agents who try to optimize their own utility functions. However,

a lot of work in this region is predicated on strong assumptions on the asymptotic

independence of the agents and their homogeneity. This work explores the existence

of Equilibria under the limit for Markov Decision Processes for density dependent

continuous time Markov chains. Under suitable conditions it is possible to show

that the empirical measure of the agents converges in finite time to a time invariant

distribution which makes the solution of the MDP tractable. This key step allows

one to show not only the existence of equilibria for these MDPs without asymptotic

independence but also a tractable means to find said equilibria. Finally, this work

shows that a fixed point does exist in the infinite state limit. However, to show that

such a limit is indeed a Nash equilibrium remains an open problem.
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Chapter 1

INTRODUCTION

The original setting by Lasry and Lions (2007) for mean field games considered a

system with N agents who wished to optimize identical cost functionals over a time

horizon in a one-shot game. The devices must choose a control policy that minimizes

their cost given their motion depends on this control policy. The caveat in this case

is that the cost functional depends on the empirical measure of the agents (which

in general is a time varying quantity), as a result the policy itself depends on the

empirical measure of the agents. The paper then looked at the problem in the contin-

uum limit of the agents to try and solve the problem of the coupled set of equations

(the equation for optimal control and the equation for the evolution of the empirical

distribution over time).

It should be noted here that the coupled system requires a two pronged solution. In

order to solve the control problem one typically uses the Hamilton Jacobi Bellman

equation. The boundary condition for this set of partial differential equations is given

in terms of the final time, that is; at the end of the time horizon I have a well defined

cost functional. For example if you were trying to decide how a car should move to

get to its destination within a certain time horizon (say an hour) you can assign a cost

at the end of the hour based on how far the car is from its destination. Therefore,

this set of PDEs must be solved backward in time. On the other hand suppose we

can describe the motion of the car using the velocity at each point in time. We can

now use the Fokker Plank equations to describe the empirical measure as it changes

over time. In this case, we know where all the cars are at time 0,
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so we know our initial empirical measure, thus, we must solve this portion of the

problem forward in time.

For this coupled forward-backward problem, the authors wish to know if a Nash equi-

librium exists. Lasry and Lions (2007) shows that the answer is in fact to the positive

under suitable conditions. We will outline a more thorough (but not even close to

complete) description of the more general Mean Field Game model in Appendix C.

It should be noted that while the existence of these Nash equilibria was solved in the

paper, this does not help us find the NE policy.

A more recent line of work considered repeated games under a variety of different ap-

plications, some of these authors include, Iyer et al. (2014); Li et al. (2016); Xia et al.

(2018). While the state space in these settings are still coupled and often arbitrary

(could be continuous or discrete), the time horizon is often discrete or a jump process.

One of the major advantages of such a process is the tractability of the solution since

it now becomes possible to circumvent the more complicated Fokker-Plank equations.

Examples include games with strategic complementarities and second price auction

games. It should be noted here that be it the first setting or the second, the authors

assumed asymptotic independence either directly or due to previously known results

on the propagation of chaos.

As the title suggests, we will look at an N agent setup where each agent’s state

evolves as a Continuous time density dependent markov process. Each agent wishes

to maximize their own utility function which can be described using a Markov deci-

sion process, in the simplest case, this process simply averages the utility over time

and can be given by a very simple concave functional to be maximized (2 and 4) but

in the more general case can be a countably infinite state MDP as in 3. We will lay

out some assumptions here that will follow throughout the paper,
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Assumption 1:

We assume that the agents are homogeneous. That is, the rates of moving from one

state to the next remains constant. Therefore, the only difference between two devices

(say i and j) with regards to its state changes will be due to differences in policies

(α(i) and α(j)).

Our first major step is approximating the empirical distribution. A recent approach

based on Stein’s method Ying (2016, 2017); Gast (2017); Gast and Van Houdt (2018)

can directly establish the convergence of steady-state distributions to the MFE with-

out the interchange of the limits argument and provide the rate of convergence. Using

Ying (2016) we show that the empirical measure weakly converges to a time invari-

ant distribution given by the fixed point of an ODE constructed by detailed balance

equation.

This means that in the limit as the number of agents grows very large, the fraction of

agents in any given state is constant. Note, while this seems intuitive at first glance,

this is not straightforward as it first seems. The conventional law of large numbers

result does not hold here since the states of the agents are not independent. We call

this limit our mean field limit. Given the mean field limit each device now has a very

simple problem it must solve. In this way the mean field limit greatly simplifies the

complexity of the problem.

For each choice of policy chosen by all the agents, we can now find the fixed point of

the ODE, let {π0, π1, π2, ...} be this fixed point,we now have a map from the policy

space to the fraction of monitored regions,

T1 : α→ {π0, π1, π2, ...} (1.1)

Assumption 2:

Two time scale separation. We assume that there are two time scales of operation.
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The map T1 converges in the fast time scale. Once the fraction has reached the steady

state, the agents will change their policy to optimize their cost function. This portion

occurs on the slow time scale. Thus, given the value of {π0, π1, π2, ...} each agent will

choose a new policy that optimizes their utility. Due to assumption 1, this means

that each UAV will choose the same policy, we denote this map from the fraction of

monitored regions to the policy space by,

T2 : {π0, π1, π2, ...} → α (1.2)

We are now ready to define a mean field equilibrium (MFE). Consider the com-

position of map T1 and T2, given by T2 ◦ T1. This maps from the policy space to the

policy space. We call a point α∗ a mean field equilibrium if,

α∗ = T2 ◦ T1(α∗) = T2(T1(α
∗)) (1.3)

Here for the sake of completeness we define the well known concept of Nash equi-

librium. A strategy profile is called a Nash equilibrium α := {α1, α2, α3...αN} if for

any player i, if everyone else fixes their strategy profile, player i cannot benefit by

choosing a different profile, i.e,

J(αi|α1, α2, ...αi−1, αi+1...αN) ≥ J(α̂|α1, α2, ...αi−1, αi+1...αN) (1.4)

for any valid policy α̂.

Remark 1.

• The fixed point is usually proven using Schauder or Brower’s fixed point theorem

by showing the continuity of the maps from policy space to policy space.
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• If we know that the ODE corresponding to map T1 is globally asymptotically

stable and locally exponentially stable then the other conditions to show the

validity of map T1 are simple to verify.

• Given the points above one can actually say that in the finite state space, every

MFE is in fact a Nash equilibrium.

• Although this form of generality seems nice, in our experience of proving these

results the hardest part of the problem was actually proving the continuity of

the maps T1 and T2 depending on the case when no closed form expression was

available for the maps. And finding and proving that a function is a Lyapunov

function to prove the stability results mentioned above.

1.1 Main Results

• Mean Field Game analysis for distributed MAC Age of Information

(AoI) seeks to ensure that the samples received at an aggregation point satisfy

constraints on the difference between the current time and generation time of

the last received sample, known as “age” Kaul et al. (2012); Yates and Kaul

(2018); Kam et al. (2018); Sun et al. (2019). We wish to model this problem of

a MAC protocol in terms of a mean field game where the density dependence

comes through the fraction of channels that are currently used by the other

agents. We show the existence of a mean field limit and regions depending on the

parameter where the mean field nash equilibrium exists. Surprisingly there are

regions where no MFNE exists at all and the system simply oscillates between

points. Finally, as a metric for performance we bound the price of anarchy
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showing that the difference between a central controller forcing a uniform policy

among the agents and our own distributed policy.

• Age Dependent MAC This can be viewed as a complete generalization of the

previous chapter. Here we use an exponential clock to track the delay over time

and use it to come up with a delay sensitive MAC protocol using the mean field

game setting. We solve this problem by truncating the system using a space

of policies that choose to do nothing beyond some finite state K and show

that under these constraints at least one Nash equilibrium exists and perhaps

more importantly, computed. In this chapter, we show the existence of fixed

points (Mean field equilibria) however, showing that these equilibria are Nash

equilibria remains an open problem.

• Strategic Deconfliction Lest someone accuse us of using contrived MAC pro-

tocols as examples for density - dependent continuous time markov chains for

our models we come up with a contrived task allocation problem for UAVs dur-

ing disaster relief. We are able to show similar results to chapter 2 in this case

as well.
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Chapter 2

A MEAN FIELD GAME ANALYSIS OF DISTRIBUTED MAC

2.1 System Model and an M -player Game

We consider a multi-channel ultra-dense wireless networks with N channels and

M = mN devices as shown in Figure 2.1. At each time instance, one and only

one device can transmit over a given channel due to interference. As in many IoT

applications, each device wants to continuously communicate their latest status to

corresponding receivers, which could be an access point or another IoT device. The

messages are called status messages in this report. We note after a new status mes-

sage is generated, the device does not need to transmit old, unsent status messages

currently in the buffer, so the old status messages will be discarded. This communi-

cation model is an example where the system wants the most fresh information and

wants to minimize the “age of information” Kaul et al. (2011).

We assume for each device, status messages are generated according to a Poisson

process with rate λ. When the device is probing an idle channel to transmit, it

only stores the latest status message. If the device is transmitting a status message

when a new status message arrives, the device keeps the newest status message in the

buffer and transmits it immediately after finishing sending the one in transmission.

A channel being used to transmit a status message is in busy state, otherwise the

channel is in idle state. We further assume that the time it takes to transmit a

message is exponentially distributed with mean one.

When a device has a status message to transmit, it searches for an idle channel to

transmit the message. A device cannot afford to continuously monitor all N frequency
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1

2

3

channel

device
Figure 2.1: A system with M = 3 devices and N = 3 channels. Each device is a
three-state Markov chain.

bands at all times, because channel probing costs energy and battery powered smart

wireless devices are energy constrained. We assume each device maintains an internal

exponential clock with rate k. When the exponential clock ticks, the device probes

d
k

channels. If one of the d
k

channels is idle, the device occupies the channel and

transmits the message in the buffer. A device has three possible states: idle (0),

probing (1) and transmitting (2). Let Qi(t) denote the number of devices in state i

at time t. Each device is associated with a continuous-time Markov chain with three

states as shown in Figure 2.2 in principle. The Markov-chain includes three states

and the transitions occur as follows:

• The state moves from idle to probing when a message arrives, which occurs with

rate λ.
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• Let dl and kl denote the probing parameters used by device l, and d and k denote

M -dimensional vectors that represent the probing parameters of all M devices.

Given Q2(t), the number of devices in the transmitting state, by probing dl
kl

channels, the probability of finding an idle channel is

1−
(
Q2(t)

N

) dl
kl

.

Here we use sampling with replacement to derive the expression, note, as the

number of channels go to infinity this is equivalent to sampling with replace-

ment. Therefore, the state of the Markov chain transits from probing to trans-

mitting with rate

kl

1−
(
Q2(t)

N

) dl
kl

 .

• The state transits from transmitting to idle when (1) the status message is

transmitted, which occurs with rate one, and (2) no new status message arrives

during the transmission, which occurs with probability 1
1+λ

. To see this let T

denote the transmission time of a message, which is an exponential random

variable with mean one. Under the Poisson arrival, the probability of no arrival

during a period of duration t is e−λt. Therefore, the probability that there is no

new message arrival during the transmission is

Pr (no arrival during transmission)

=E [Pr (no arrival during duration T |T )]

=

∫ ∞
t=0

e−λte−t dt

=

∫ ∞
t=0

e−(λ+1)t dt

=
1

1 + λ
.

Therefore, the transition rate is 1
1+λ

.

9



Figure 2.2: The Continuous-Time Markov Chain

Suppose Q2(t) is a constant, then the stationary distribution of this three-state

Markov chain, denoted by π, can be calculated using the global balance equations:

λπ0 = kl

1−
(
Q2

N

) dl
kl

 π1 =
1

1 + λ
π2,

from which, we have

π0 =
1

λ(1 + λ)
π2

π1 =
1

(1 + λ)kl

(
1−

(
Q2

N

) dl
kl

)π2
π2 =

1

1 + 1
λ(1+λ)

+ 1

(1+λ)kl

(
1−(Q2

N )
dl
kl

) .
(2.1)

However, Q2(t) is a random process whose stationary distribution is determined by d

and k so is difficult to calculate. Now let π(l)(d,k) denote the stationary distribution

of the Markov chain associated with device l. As mentioned earlier, calculation of π(l)

is difficult even for fixed k and d.

Making the problem even more difficult, each device needs to balance the energy

consumed for probing and the amount of information transmitted. We consider the

following cost function for each device:

Ĵ(dl, kl) = −π(l)
2 (d,k) + c

(
π
(l)
1 (d,k)dl

)2
. (2.2)

In the equation above, the first term π
(l)
2 (d,k) is the fraction of time the device is in

the transmitting state, so can be viewed as the average throughput. The amount of

energy consumed during the transmission of a message is proportional to the size of the
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message, so the transmission energy is linearly proportional to the throughput and we

can view the throughput term also includes the energy consumption for transmissions.

In the second term, π
(l)
1 (d,k) is the fraction of time the device is in the probing state

and dl is the number of channels it probes per unit time when it is in the probing

state, so π
(l)
1 (d,k)dl is the average number of channels probed per unit time. c is

a constant. The quadratic form is in keeping with the idea that energy usage for

a given task is convex for most communication applications. Given other devices’

probing parameters d−l and k−l, device l aims at finding the optimal d∗l and k∗l such

that

(d∗l , k
∗
l ) ∈ arg min

dl,kl
Ĵ(dl, kl)

= arg min
dl,kl
−π(l)

2 (d,k) + c
(
π
(l)
1 (d,k)dl

)2
. (2.3)

We note that this is an M -player game and the difficulty in solving the Nash equilib-

rium of this M -player game is in calculating π(l)(d,k) as discussed earlier.

2.2 Mean-Field Game for Ultra-Dense Wireless Networks

Since solving the M -player game (2.3) is difficult, we use the MFG approach with

N,M →∞. In the next section, we will show that assuming all devices use the same

probing policy (d, k), then as N,M → ∞, Qi(∞)/M converges weakly to q∗i , which

is the equilibrium point of the following mean-field model:

dq0
dt

= −λq0 +
1

1 + λ
q2

dq1
dt

= λq0 − k(1− (mq2)
d/k)q1

dq2
dt

= k
(
1− (mq2)

d/k
)
q1 −

1

1 + λ
q2

. (2.4)

We defer the derivation of this mean-field model and the proof of convergence to

the Appendix A.1. Intuitively, qi(t) is an approximation of Qi(t)/M and q∗i is an

approximation of Qi(∞)/M at the mean-field limit.
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Given q∗2, the fraction of devices are in transmitting state, the fraction of busy

channels is γ∗ = mq∗2. Now to introduce the MFG, we assume time-scale separation

such that devices adapt their probing strategies in a slower time scale than the con-

vergence of the mean-field model. Under this assumption, when it is the time for

devices to adapt their probing policies, all devices can measure γ, which can be done

accurately under the time-scale separation assumption. Then after measuring the

fraction of busy channels is γ, each device can compute the stationary distribution of

its three-state Markov chain according to (2.1) by substituting γ = Q2/N, and also

the corresponding cost J(d, k). Each device optimizes its probing strategy (d∗, k∗)

such that

(d∗, k∗) ∈ arg min
d,k

J(d, k), (2.5)

where

J(d, k) =− 1

1 + 1
λ(1+λ)

+ 1

(1+λ)k

(
1−γ

d
k

)

+ c

 d

(1 + λ)k
(

1− γ d
k

)
+

k

(
1−γ

d
k

)
λ

+ 1


2

. (2.6)

In other words, choosing a probing strategy to minimize its cost for given γ. Note

that the cost function J(d, k) is different from Ĵ(d, k) defined in (2.2) because γ is a

constant in J(d, k) but it is a function of (d, k) in Ĵ(d, k). We can view Ĵ(d, k) as the

true cost function and J(d, k) is an estimate of the true cost obtained by assuming γ

does not change even when the device changes its probing strategy. We use different

notations to emphasize the difference.
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In summary, given (d, k), the mean-field model (2.4) maps (d, k) to the fraction

of busy channels γ. Let T1 denote this mapping, i.e.

T1 : (d, k)→ γ.

Given the fraction of busy channels γ, each device minimizes the cost function J in

(d, k), which maps γ to policy (d, k). Let T2 denote this mapping, i.e.

T2 : γ → (d, k).

With the notation defined above, we formally define the MFG and Mean Field

Nash Equilibrium (MFNE).

MFG for Distributed MAC:

• Initialization: All devices are initialized with a common probing policy (d, k).

• System Adaptation: The mean-field model (2.4) converges under policy (d, k)

and the fraction of busy channels converges to a constant γ.

• Policy Optimization: All devices learn γ in the system adaptation step,

and optimize their probing strategies by minimizing J(d, k). Go to the system

adaptation step. �

A policy (d∗, k∗) is called the MFNE if

(d∗, k∗) = T2(T1(d
∗, k∗)).

At the MFNE where all devices use the policy (d∗, k∗), no device has incentive to

unilaterally change the strategy in the mean-field limit. We also remark that the

assumption that all devices use the same policy (d, k) at the beginning is not critical.

Under the assumption all devices have the same cost function, the optimal prob-

ing strategy is determined only by γ. Therefore, even devices have different probing
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strategies at the beginning, after they measure γ in the policy optimization step, they

will start to use the same probing policy.

In the next section, we prove the weak convergence of Qi(∞)/M to q∗i , which is

the key assumption we have used to derive the MFG.

2.3 Mean-Field Limit with Fixed (d, k)

Assume all devices have the same cost function. Then given the fraction of busy

channels γ, the solution of the optimal policy (d∗, k∗) is the same for all devices.

Therefore, without loss of generality, we assume all devices use the same policy (d, k)

and consider the convergence of the fraction of busy channels to its mean-field limit

in this homogeneous case. Before proving this result, we first present the following

lemma.

Lemma 1. The cost function J(k, d) satisfies for any k < d,

J(d, d) < J(d, k).

Proof. Given γ, k and d, the stationary distribution of the three-state Markov chain

is given by (2.1) with Q2/N = γ. The cost function J(k, d), therefore, can be written

in terms of γ, k, and d as

J(k, d) =− (1 + λ)k(1− γd/k)
(1 + k(1− γd/k)(1 + λ+ 1

λ
))

+ c

(
d

(1 + k(1− γd/k)(1 + λ+ 1
λ
))

)2

.

The transition rate from the probing state to the transmitting state is k(1−γd/k).

Note that k(1− γd/k) is increasing in k when d
k
≥ 1 because

∂

∂k

(
k
(

1− γ
d
k

))
= 1− γ

d
k + γ

d
k
d

k
log γ.

14



Now define

f(y, γ) = 1− γy + γyy log γ.

We next prove that f(y) > 0 for y ≥ 1 and 0 < γ ≤ 1. Note that

∂

∂y
f(y, γ) = −γy log γ + γy log γ + γyy(log γ)2 = γyy(log γ)2 > 0.

Now consider

f(1, γ) = 1− γ + γ log γ.

We have

∂

∂γ
f(1, γ) = log γ < 0.

Therefore, we conclude that for y ≥ 1 and 0 < γ ≤ 1, we have

f(y, γ) > f(1, γ) ≥ f(1, 1) = 0,

i.e.

∂

∂k

(
k
(

1− γ
d
k

))
= 1− γ

d
k + γ

d
k
d

k
log γ > 0

Define x = k(1− γd/k). We obtain

J(x) =− (1 + λ)
1
x

+ 1 + λ+ 1
λ

+ c

(
d

1 + x(1 + λ+ 1
λ
)

)2

,

which is clearly a decreasing function of x. Therefore, for fixed d, J(d, k) is a decreasing

function of k. Therefore, we have J(d, d) < J(d, k) when d > k.

According to the lemma above, given γ, the optimal policy (d∗, k∗) satisfies k∗ =

d∗. In other words, given d, it is optimal to probe one channel at a time with rate d.

Therefore, in the following discussion, we focus on probing policies such that d = k.
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Since d = k, we will now proceed assuming that each device wishes to optimize a cost

function written in terms of d. This function can be written as:

J(d) =− (1 + λ)d(1− γ)

1 + d(1− γ)(1 + λ+ 1
λ
)

+ c

(
d

1 + d(1− γ)(1 + λ+ 1
λ
)

)2

.

(2.7)

and the dynamical system can be written as:

dq0
dt

= −λq0 +
1

1 + λ
q2

dq1
dt

= λq0 − d(1−mq2)q1
dq2
dt

= d(1−mq2)q1 −
1

1 + λ
q2

(2.8)

Theorem 1. Assume that all devices use the same policy (d, d). Let γ(N)(∞) denote

the fraction of busy channels at the steady state in a system with N channels and

mN devices. Then γ(N)(∞) converges weakly to γ, which is the unique equilibrium

of mean-field model (2.4) with d = k, and is the unique solution of the following

equation:

γ =
m(1 + λ)k(1− γ)

1 + d(1− γ)(1 + λ+ 1
λ
)
. (2.9)

Due to the lack of space we restrict the proof of convergence to the appendix,

where we also briefly discuss the derivation of the mean-field model (2.4). Figure 2.3

shows the simulation results with m = 5, and c = 10, λ = 0.7, and d = 0.065. We

varied N from 10, to 100 and then to 1,000. We can clearly see that γ converges

to the mean-field limit as N increases, and when N = 1, 000, γ concentrates to the

mean-field limit.
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Figure 2.3: Convergence to the Mean Field Limit with Fixed d

2.4 Uniqueness and Convergence of MFNE

In the previous section, we have shown that given policy (d, d), the stationary

distribution of the mN -device system converges to a unique mean-field limit, which

defines mapping

T1 : d→ γ. (2.10)

The mapping

T2 : γ → d (2.11)

is obtained by solving the optimization problem mink J(d) for given γ.

The following lemma provides the closed-form expression of mapping T2.
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Lemma 2. Given 0 < γ < 1 and d ≥ 0, J(d) has a unique minimizer

d =
a

max {2c− ab, 0}
,

where a = (1− γ)(1 + λ) and b = (1− γ)
(
1 + λ+ 1

λ

)
.

Proof. Define a = (1+λ)(1−γ) and b = (1−γ)(1+λ+ 1
λ
). Then J(d) can be written

as

J(d) = − ad

1 + bd
+ c

(
d

1 + bd

)2

,

and

∂J(d)

∂d
==

1

(1 + bd)2

(
−a+

2cd

1 + bd

)
.

We now consider

h(d) = −a+
2cd

1 + bd
.

Note that h(d) is an increasing function for d ≥ 0. Furthermore h(0) = −a and

h(d) ≤ lim
d→∞

h(d) = −a+
2c

b
.

Therefore, if 2c
b
≤ a, (i.e. h(d) ≤ 0), then J(d) is a strictly decreasing function and

the minimum is achieved at d =∞. Otherwise, the minimum is achieved when

d =
a

2c− ab
.

In summary, J(d) is minimized at

d =
a

max {2c− ab, 0}
.

Now given mapping T1 characterized in Theorem 1 and mapping T2 characterized

in Lemma 2, the following theorem establishes the existence and uniqueness of the

MFNE.
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Theorem 2. The existence of MFG equilibria depends on the traffic load λ and

constant c. The results can be divided into three cases. For fixed c, the following three

cases correspond to“low”, “high” and “medium” traffic regimes.

• Case I (Low Traffic Regime): If

2c ≤
(

max

{
0, 1− m(1 + λ)

1 + λ+ 1
λ

})2

(1 + λ)

(
1 + λ+

1

λ

)
, (2.12)

then d∗ = ∞ is the unique MGF equilibrium. In other words, in this case, a

device should continuously probe idle channels (with no waiting) when there is

a message to transmit.

• Case II (High Traffic Regime): If

2c > (1− γ∗)2 (1 + λ)

(
1 + λ+

1

λ

)
, (2.13)

where

γ∗ =1 +
c

m(1 + λ)2
−

√
c2

m2(1 + λ)4
+

2c

m(1 + λ)2
,

then there exists a unique MGF equilibrium

d∗ =
(1− γ∗)(1 + λ)

2c− (1− γ∗)2(1 + λ)
(
1 + λ+ 1

λ

) . (2.14)

• Case III (Medium Traffic Regime): Otherwise, MFNE does not exist and

devices switch probing strategy between d =∞ and

d =
(1− γ̃)(1 + λ)

2c− (1− γ̃)2(1 + λ)
(
1 + λ+ 1

λ

) ,
where

γ̃ = min

{
1,
m(1 + λ)

1 + λ+ 1
λ

}
.
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Proof. We first consider Case I such that

2c ≤
(

max

{
0, 1− m(1 + λ)

1 + λ+ 1
λ

})2

(1 + λ)

(
1 + λ+

1

λ

)
. (2.15)

Under this condition, we have

1− m(1 + λ)

1 + λ+ 1
λ

> 0. (2.16)

Recall (q∗0, q
∗
1, q
∗
2) denote the unique equilibrium point of mean field model (A.5)

for a given d. For any d ≥ 0, we have

q∗2 ≤
1 + λ

1 + λ+ 1
λ

.

This upper bound holds because the following equations holds for all d > 0 :

λq∗0 =
1

1 + λ
q∗2 (2.17)∑

i

q∗i = 1, (2.18)

which implies
1
λ

1 + λ
q∗2 + q∗1 + q∗2 = 1

and (
1 +

1
λ

1 + λ

)
q∗2 ≤ 1.

Recall that γ∗ = mq∗2, so

γ∗ ≤ m(1 + λ)

1 + λ+ 1
λ

.

Substituting this inequality into (2.15), we have that the following inequality holds

for any d ≥ 0 :

2c ≤ (1− γ∗)2 (1 + λ)

(
1 + λ+

1

λ

)
= ab, (2.19)

where a and b are defined in Lemma 2. Therefore, 2c ≤ ab, and d∗ =∞ according to

Lemma 2. Furthermore, given d∗ =∞, we have

γ∗ =
m(1 + λ)

1 + λ+ 1
λ

> 0
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according to Theorem 1 by taking d → ∞. Therefore, d∗ = ∞ is the unique MFG

equilibrium.

Now if d∗ <∞ is a MFG equilibrium, it satisfies the following two equations

d∗ =
(1− γ∗)(1 + λ)

2c− (1− γ∗)2(1 + λ)
(
1 + λ+ 1

λ

) (2.20)

γ∗ =
md∗(1− γ∗)(1 + λ)

1 + d∗(1− γ∗)(1 + λ+ 1
λ
)
.

Substituting the first equation into the second one, we obtain

γ∗ =
m(1− γ∗)(1 + λ) (1−γ∗)(1+λ)

2c−(1−γ∗)2(1+λ)(1+λ+ 1
λ)

1 + (1− γ∗)(1 + λ+ 1
λ
) (1−γ∗)(1+λ)
2c−(1−γ∗)2(1+λ)(1+λ+ 1

λ)

=
m(1 + λ)2

2c
(1− γ∗)2.

Note that γ∗ = m(1+λ)2

2c
(1 − γ∗)2 has a unique solution γ∗ ∈ (0, 1) since γ∗ is an

increasing function (increasing from 0 to 1) and (1 − γ∗)2 is a decreasing function

(decreasing from 1 to 0). In particular, the unique solution is

γ∗ = 1 +
c

m(1 + λ)2
−

√
c2

m2(1 + λ)4
+

2c

m(1 + λ)2
. (2.21)

Now to guarantee d∗ <∞, it requires

2c > (1− γ∗)2(1 + λ)

(
1 + λ+

1

λ

)
according to (2.20), which concludes Case II.

Finally we consider Case III. When condition

2c > (1− γ∗)2(1 + λ)

(
1 + λ+

1

λ

)
does not hold, after learning γ∗ defined in (2.21), all devices choose strategy d =∞.

However, when

2c >

(
max

{
0, 1− m(1 + λ)

1 + λ+ 1
λ

})2

(1 + λ)

(
1 + λ+

1

λ

)
, (2.22)
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d =∞ is not an MFG equilibrium because

γ̃ = T1(∞) = min

{
1,
m(1 + λ)

1 + λ+ 1
λ

}
but

d̃ = T2 (γ̃) <∞

when

2c > ab = (1− γ̃)2(1 + λ)

(
1 + λ+

1

λ

)
.

Therefore, after all devices choosing d =∞, the fraction of busy channels is γ̃ in the

mean-field limit. After learning the fraction of busy channels is γ̃, all devices change

their policy to d = d̃. It can be verified that T1(d̃) ≤ γ∗, so under policy d̃, the fraction

of busy channels in the mean-field limit is at most γ∗. Then after learning the fraction

of busy channels, all devices switch to policy d =∞. Therefore no MFG equilibrium

exists in this case. The system switches between d =∞ and d = d̃.

The theorem above presents the conditions under which an MFNE exits. Next,

we study the convergence (i.e, stability) of the MFNE. For Case I, the convergence is

immediate as indicated in the proof of Theorem 2, where we can see that all devices

choose strategy d∗ = ∞ after learning the fraction of busy channels and reach the

MFNE. We now focus on Case II under which d∗ is a finite value and have the

following global convergence result. Since no MFNE exits in Case III, the question

of convergence is irrelevant.

Theorem 3. Consider Case II in Theorem 2. For any c > cm,λ where cm,λ is a

positive constant such that

m
(1 + λ)

(1 + λ+ 1/λ)

2cm,λ

(1+λ)(1+λ+ 1
λ)

+ 1(
2cm,λ

(1+λ)(1+λ+ 1
λ)
− 1

)2 = 1,

the system converges to the MFNE starting from any initial condition.
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We remark that convergence to the mean-field limit (Theorem 1) and convergence

to the MFNE (Theorem 3) are two fundamentally different concepts. Convergence to

the mean-field limit shows that the stationary distributions of finite size systems con-

verge weakly to the fixed point of the mean-field model for fixed (d, k), so no “game”

is involved but the result does justify the MFG approach. On contrast, convergence

to the MFNE does not involve finite-size stochastic systems, but investigates the dy-

namics of the MFG. The result shows that the iterative process, defined as the MFG

for distributed MAC in Section 2.2, converges to the unique MFNE.

Proof. Recall mappings T1 and T2. Given policy (d, d), the stationary distribution

of the mN -device system converges to a unique mean-field limit, which defines the

following mapping

T1 : d→ γ. (2.23)

The mapping

T2 : γ → d (2.24)

is obtained by solving the optimization problem mind J(d) for given γ.

We begin by showing that, for fixed m, T1 always has Lipschitz constant which is

upper bounded by m(1 + λ). Based on (2.9), we first obtain

∂γ

∂d
=− m(1 + λ)k(

1 + d(1− γ)(1 + λ+ 1
λ
)
)2 ∂γ∂d

+
m(1 + λ)(1− γ)(

1 + k(1− γ)(1 + λ+ 1
λ
)
)2

which implies that∣∣∣∣∂γ∂d
∣∣∣∣ =

m(1 + λ)(1− γ)

m(1 + λ)d+
(
1 + d(1− γ)(1 + λ+ 1/λ)

)2
< m(1 + λ)(1− γ)

< m(1 + λ).
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Recall that T2 is a map from γ to d which gives us the unique minimizer for the

cost function J(d), and that we consider Case II such that

2c > (1− γ)2(1 + λ)

(
1 + λ+

1

1 + λ

)
,

and

d =
(1− γ)(1 + λ)

2c− (1− γ)2(1 + λ)(1 + λ+ 1/λ)
.

Define α = 2c

(1+λ)(1+λ+ 1
λ)
, we further obtain

k =
1

(1 + λ+ 1/λ)

1− γ
α− (1− γ)2

,

from which, we have ∣∣∣∣∂d∂γ
∣∣∣∣ =

1

1 + λ+ 1/λ

α + (1− γ)2

(α− (1− γ)2)2

<
1

1 + λ+ 1/λ

α + 1

(α− 1)2
.

Define T (d) = T2(T1(d)). From the discussion above, we have

∂T

∂d
=

∣∣∣∣∂d∂γ
∣∣∣∣ ∣∣∣∣∂γ∂d

∣∣∣∣ ≤ m
(1 + λ)

(1 + λ+ 1/λ)

α + 1

(α− 1)2
.

Note

α + 1

(α− 1)2

is a decreasing function of α for α > 1 because

d

dα

(
α + 1

(α− 1)2

)
= − α + 3

(α− 1)3
< 0,

so is a decreasing function of c according to the definition of α. Furthermore,

lim
α→∞

α + 1

(α− 1)2
= 0.
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Therefore, given m and λ, there exists cm,λ > 0 such that

m
(1 + λ)

(1 + λ+ 1/λ)

2cm,λ

(1+λ)(1+λ+ 1
λ)

+ 1(
2cm,λ

(1+λ)(1+λ+ 1
λ)
− 1

)2 = 1.

For any c > cm,λ, we have a contraction mapping and the system converges to the

MFG equilibrium.

The following theorem further shows that under the conditions of Theorem 3, the

MFNE is an ε-Nash-equilibrium such that if all other players use sampling rate at

the MFNE, then the cost of a player who uses a different sampling rate can deviate

no more than O(ε) from the cost of using the sampling rate at the MFNE.

While we did show that under the conditions of Theorem 3, a unique fixed point

exists, this does not necessarily imply that a given user will follow the MFNE strategy.

We need to show that the fixed point is a Nash equilibrium, this means that a given

user cannot hope to benefit through unilateral deviation. Our proof technique shows

that if a single user chooses to deviate, the fraction of busy channels will deviate by a

factor that goes to zero as M tends to infinity. Note, this is a nontrivial proof because

we have to deal with a heterogeneous system without any asymptotic independence

condition. Next given the fraction of busy channels, the probing rate is chosen op-

timally for utility J , and since J is Lipschitz with respect to γ, this means that the

new probing rate will also deviate by a factor that goes to zero as M tends to infinity.

The result is proved using the result on the approximation error of mean-field models

Ying (2016).

Theorem 4. Under the conditions of Theorem 3, the MFNE is an ε-Nash-Equilibrium

of the M-player Baysian game, where ε = O
(

1
M1/3

)
.
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Proof. Under the conditions of Theorem 3, we consider two systems.

• System 1: In this system, all players use sampling rate d∗ defined in (2.14). Let

γ(N)(t) denote the fraction of busy channels of the system at time t, which is a

random variable, and γ(N)(∞) denote the fraction of busy channels at steady

state.

• System 2: The first M − 1 players use sampling rate d∗ and the Mth player

uses a different sampling rate. Let γ̃(N)(t) denote the fraction of busy channels

of the system at time t, which is a random variable, and γ̃(N)(∞) denote the

fraction of busy channels at steady state.

Now to prove the theorem, we first show that the fraction of busy channels γ̃(N)(∞)

remains to be close to γ∗ even when the Mth player uses a sampling rate different

from d∗.

Lemma 3.

E
[∥∥γ̃(N)(∞)− γ∗

∥∥2] ≤ C

M
(2.25)

for some positive constant C independent of M. �

The proof of the lemma can be found in the Appendix.

From lemma 3 and Chebychev’s inequality, we can obtain

Pr(‖γ∗ − γ̃(N)(∞)‖ > ε) ≤ C2

ε2M
.

We now compare the costs of the Mth player in system 1 (using probing rate

d∗ = T2(γ
∗)) and in system 2 (using a different sampling rate α). The policy picked

by any device given fraction of busy channels mq2(∞) is T2(mq2(∞)). The policy

picked by the MFNE policy is T2(γ∗).
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Given γ > 0, the cost function J(d) is Lipschitz in d (see the proof of Lemma 2).

Therefore, for any γ, the map

γ
T2−→ d→ J(d).

is also Lipschitz in γ. Say, the Lipschitz constant is L, then

E
[
J(T2(γ

∗))− J(T2(γ̃
(N)(∞)))

]
≤LE

[
γ∗ − γ̃(N)(∞))

]
≤LE

[
γ∗ − γ̃(N)(∞)

∣∣ ‖γ∗ − γ̃(N)(∞)‖ > ε
]
×

Pr
(
‖γ∗ − γ̃(N)(∞)‖ > ε

)
+

LE
[
γ∗ − γ̃(N)(∞)

∣∣ ‖γ∗ − γ̃(N)(∞)‖ ≤ ε
]

≤2LC2

ε2M
+ Lε.

Choosing ε = 1
M1/3 ,

E
[
J(T2(γ

∗))− J(T2(γ̃
(N)(∞)))

]
= O

(
1

M1/3

)
.

This concludes the proof.

2.5 Price of Anarchy

In this section, we analyse the performance of the distributed MAC with respect

to a global optimal solution where a centralized controller chooses the optimal k for

minimizing

Ĵ(d) =− (1 + λ)d(1− γ)

1 + d(1− γ)(1 + λ+ 1
λ
)
+

c

(
d

1 + d(1− γ)(1 + λ+ 1
λ
)

)2, (2.26)

where

γ =
m(1 + λ)d(1− γ)

1 + d(1− γ)(1 + λ+ 1
λ
)
. (2.27)
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Denote by d̂ the optimal solution. All devices are forced to use probing rate d̂. We will

call the cost corresponding to this probing rate the global optimal cost and compare

it with the cost at the MFNE.

Recall that for the MFNE, each device minimizes it cost function by assuming

that γ is fixed. For the centralized case, the controller solves (2.5) by considering γ to

be a function of d as defined in (2.27). This is the reason the global optimal solution

differs from the cost at the MFNE. Let γ̂ denote the fraction of busy channels that

occurs as a result of the central controller picking an optimal sampling rate. Define

1− |J(γ∗)|
|Ĵ(γ̂)|

to be the price of anarchy. The following theorem shows that the price of anarchy

is at most 0.5. The price of anarchy can be viewed as a measure of efficiency when

comparing a distributed protocol to a centralized protocol. It measures the loss of

utility that occurs when we pick a distributed implementation instead of a central

one. Note that the cost at the MFNE and the global optimal cost are both negative

because the policy that does not probe any channel and does not transmit any message

has cost zero. Therefore, lower the cost, the larger its absolute value. In the following

proof, we characterize the price-of-anarchy by analyzing the conditions γ̂ and γ∗ have

to satisfy, which yield

|J(γ∗)|
|Ĵ(γ̂)|

=
1

(1 + γ̂)

γ∗

γ̂
, (2.28)

and γ̂ < γ∗. Then we can conclude that the price of anarchy is at most 0.5.

Theorem 5. The price of anarchy, 1− |J(γ∗)|/|Ĵ(γ̂)|, is at most 1/2. In Case I, the

low traffic regime defined in Theorem 2, the price of anarchy is zero.

We note that in the low traffic regime (Case I in Theorem 2), both the distribution

MAC and the centralized solution use probing strategy with k∗ =∞, so the price of

anarchy is zero. We provide a proof for Case II defined in Theorem 2.
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Proof. By substituting (2.27) into (2.5), we obtain

Ĵ(γ) = − γ
m

+ c

(
γ

m(1 + λ)(1− γ)

)2

The optimal solution to minimize Ĵ(γ) can be obtained by setting ∂Ĵ
∂γ

to be zero,

which yields that the minimizer γ̂ is the unique solution to the following equation

γ̂ =
m(1 + λ)2(1− γ̂)3

2c
.

By simple substitution, we further obtain

Ĵ(γ̂) = −(1 + λ)2

4c
(1− γ̂)3(1 + γ̂) (2.29)

It can be shown (and indeed we show this in the appendix) that γ∗ is the unique

solution of the following equation

γ∗ =
m(1 + λ)2(1− γ∗)2

2c
.

By substituting it into (2.5), we have

J(γ∗) = −(1 + λ)2

4c
(1− γ∗)2. (2.30)

The ratio of the cost function at MFNE to the optimal cost function is given by:

|J(γ∗)|
|Ĵ(γ̂)|

=
1

(1 + γ̂)

(1− γ∗)2

(1− γ̂)3
=

1

(1 + γ̂)

γ∗

γ̂
, (2.31)

where the last equality holds because

γ∗

γ̂
=

m(1+λ)2(1−γ∗)2
2c

m(1+λ)2(1−γ̂)3
2c

=
(1− γ∗)2

(1− γ̂)3
.

Observe that γ̂ is strictly smaller than γ∗ because otherwise

γ∗

γ̂
<

(1− γ∗)2

(1− γ̂)3
.

29



Therefore, we conclude that

1 >
|J(γ∗)|
|Ĵ(γ̂)|

>
1

(1 + γ̂)
>

1

2
.

Which implies that:

0 < Price of Anarchy <
1

2

In other words, the price of anarchy is upper bounded by 0.5.

Focusing on Case II defined in Theorem 2, Figure 2.4 shows the price of anarchy

with c = 0.1 and m = 5 with λ varying from 0.5 to 2. We can see that the price of

anarchy increases as λ increases and approaches 0.5.
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Figure 2.4: Price of Anarchy versus λ
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2.6 Simulations

In this section, we use simulations to compare the distributed MAC policy, named

DMAC-G for short with other similar light-weight distributed protocols. We simu-

lated N = 1, 000 devices with m = 5, and c = 10, and the average λ varying from

0.5 to 1. These choices of parameters guarantee the existence and convergence to

the MFNE. We used uniformization to simulate the CTMC described in our system

model in Section 2.1.

DMAC -G :We simulated two different scenarios for the DMAC -G proto-

col:homogeneous case where all devices have the same arrival rate and the same

parameter, c and heterogeneous case where devices have different arrival rates and

different values of parameter c. Since we ran the simulations on a laptop without par-

allelization, to speed up the simulations, the fraction of busy channels was measured

as a common variable shared by all devices. In this way, we were able to simulate an

M -device system efficiently using uniformization.

• The homogeneous case In the homogeneous case every device has the same

arrival rate λ and energy parameter c. Hence, each device has the same utility

function and so will choose the same sampling rate when given the common

random variable for the fraction of busy channels.

• The heterogeneous case Each device follows the policy (d, d), however, the

devices have different arrival rates and parameters c. The arrival rates were

picked uniformly at random from [0.75λ, 1.25λ]. Similarly the values of the

parameter c were chosen uniformly at random from [0.75c, 1.25c] for some c.

Therefore, both cases have the same average arrival rates and cost parameters. Fig-

ures 2.5, 2.6 and 2.7 show that both scenarios yield very similar cost, fraction of busy
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channels and delay. We compare our algorithm under these two scenarios with a

CSMA protocol with exponential back off.

E-CSMA : Each device maintains an exponential clock with initial rate k = 1.

When the clock ticks, the device probes one of the N channels, chosen uniformly at

random. If the probed channel is idle, the device starts to transmit the packet, if not

the device halves its sampling rate and the clock restarts. We simulated this protocol

under both homogeneous and heterogeneous scenarios.

We evaluated the performance of the protocols in terms of the cost and per-packet

delay(for those successfully transmitted packets). We can observe from Figure 2.5

that DMAC-G yield a lower cost than E-CSMA and the gap increases as λ increases.

Note, that the cost function is a linear combination of the probing cost minus the

throughput. From Figure 2.7, we can also observe that our algorithm has much lower

per-packet delay. The average delay is less than 2 for all the λ under DMAC-G, which

reduces the probing rate when the traffic load increases, which reduces overall cost

and per-packet delay(increases the freshness of the information).

These simulations confirm: (i) the analytical results in this report, while derived

for the homogeneous case, also match the performances of the heterogeneous case

reasonably well; and (ii) our low-complexity, adaptive MAC protocol signficantly out-

performs the exponential back-off MAC protocol (a commonly used MAC protocol).
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Figure 2.5: Average Costs under the Four Different Scenarios.
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Figure 2.6: Average Fraction of Busy Channels under the Four Different Scenarios.
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Figure 2.7: Average delay per delivered packet per user under the Four Different
Scenarios.
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Chapter 3

AGE DEPENDENT MAC

3.1 System Model and Mean-Field Game

We consider an N -channel, M -device ultra dense wireless network. We consider

the case when both M and N tend to infinity and M/N is a constant. Each device in

the network generates status messages following a Poisson process with rate λ. As we

mentioned in the introduction, the age of a message evolves following an exponential

clock which ticks with rate 1/δ. We call this clock the delay clock. When the delay

clock ticks, the age/delay of the message increases from i to i + 1. When the device

has no message to transmit, we define its state to be −1. When a new message

arrives, the device goes to state 0. Therefore, the state of the device changes from i

to state i+ 1 with rate 1/δ.

Each device maintains a separate exponential clock with rate αi ∈ (0, A) for some

constant A when in state i. When this clock ticks, the device will probe one channel

at random to see if it is free. If the channel is free, the device grabs the channel and

starts transmitting its message. In this case, the state of the device moves from i to

state −2 which indicates that it is in the transmitting state.If a new message arrives

when the device is in the probing state, the age of message is reset to 0, which means

that the state of the device transits from state i to state 0. On the other hand if

a new message arrives while the device is transmitting its message, the message is

stored and transmitted immediately after the current message without giving up the

channel. The state space diagram for this system in Fig 3.1.
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Figure 3.1: State space model for the Markov chain

A device receives a reward of Ri for transmitting a message with age i (i.e. at

state i). Like in most IoT or status messaging applications, it is important for devices

to transmit their messages with fresh information, so the reward Ri decreases in i

and decreases to 0 as i increases. Further, we assume that for messages that arrive

while the device is in state −2, the reward for transmitting each of these messages is a

constant r−2. Additionally, with probing rate α, the device needs to pay a cost of ĉ(α),

which is a strictly increasing function with ĉ(0) = 0. Consider the corresponding jump

process for the CTMC described above, then we use tj to denote the time between the

jth tick and the j + 1st tick of the overall exponential clock. Note that with probing

rate α, the expected transition time is 1
α+λ+ 1

δ

.

Given the model presented above, each device maximizes the following discounted
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infinite-horizon problem:

ux =
1

A+ λ+ 1/δ
×

max
α∈[0,A]

(
α + λ+

1

δ

)
E

[
∞∑
j=0

βj
(

1X(j+1)=−2RX(j)

− 1{X(j+1)=X(j)
⋃
X(j+1)=−2}ĉ(αX(j))

)∣∣∣∣X(0) = x

]
,

(3.1)

where β is the discount factor, X(0) is the initial state of the CTMC, and X(j) is the

state of the CTMC after the jth transition. We can view this Bellman equation as

the normalized time averaged reward that each device obtains when initialized with

state x with a constant (A+λ+1/δ). If one imagines each device to maintain a super

clock used to simulate all the events, then this super clock will need to have a tick

rate of (A + λ + 1/δ). One can therefore view 1
A+λ+1/δ

as a normalized unit of time.

The time spent in state X(j) before the next event is given by 1
α+λ+1/δ

with probing

clock ticks with rate α.

Note that, in order for a given device to find the optimal policy it must take

into account the fraction of busy channels, γ(t). Which itself is a density dependent

random process that is determined by the states of all the devices. In other words,

this fraction of busy channels γ(t) couples all M devices, and makes it intractable

to solve the steady-state of the system and the optimal policy based on the Bellman

equation.

3.1.1 Mean Field Game

To overcome this difficulty, we approach the problem from a mean-field game per-

spective. We assume the time-scale separation (a similar assumption used Narasimha

et al. (2020)) such that the devices adapt their policies in a slower time-scale than

the convergence of the system to its steady-state with a fixed policy.
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Under this time-scale separation, with a fixed policy α for all devices, the steady-

state of the stochastic system converges to the equilibrium point of a mean field

model, called the mean-field-limit, to be defined in Section 3.2 as the system size

increases. In particular, the fraction of busy channels γ(t) converges to a point mass

γ, i.e. a constant. Let us denote this mapping under this mean-field limit when the

policy α is given by T1 such that

T1 : α→ γ.

This occurs at a fast time-scale.

Now, for the fixed γ under the previous policy, each device solves the Bellman

equation to determine a new policy for the given γ. Thus, for a fixed γ, each device

finds its policy based on the Bellman equation with a constant γ (see details on the

structure of the policy in Section 3.3). We denote this mapping by T2 such that

T2 : γ → α.

We now define an Mean-Field-Nash-Equilibrium (MFNE) as a policy, α∗, such

that

α∗ = T2(T1(α
∗)),

i.e. a fixed point of mapping T2(T1(·)). In order to show the existence of such a fixed

point, we will need to show that the composition of maps T1 and T2 is a continuous

function. We have already characterized T1, in the following sections, we will charac-

terize T2 to show that both T1 and T2 are continuous. Hence, the composition of the

two maps is also continuous. The existence of a fixed point follows from Brouwer’s

fixed point theorem. Brouwer’s fixed point theorem requires the map from some set

Ω → Ω to be continuous and the set Ω must be closed and compact. The last con-

dition can be checked easily, we will prove continuity in Section 3.4 after proving the
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convergence to the mean-field limit in Section 3.2 and analyzing the policy structure

in Section 3.3.

3.2 Mean Field Limit Under a Given Policy: The mapping T1

This section focuses on the convergence of the stochastic system to its mean-field

limit when the policy α := {α0, α1...} is chosen by each device is fixed and such that

there exists a finite K such that αk = 0 for all k > K. Let PK denote the set of all

such policies. We will present the necessary assumptions in Section 3.3 so that this

condition will be satisfied. Let Qj(∞) denote the number of devices in state j at the

steady state so Qj(∞)/M is the fraction of devices in state j. We further denote SK

to be the fraction of devices who are in state j such that j ≥ K, i.e. the fraction of

devices with delay greater than or equal to K.

In the limit as N and M go to infinity, we will show that the fraction of devices

in state Qj(∞)/M j = 1, · · · , K − 1 and SK converge weakly to πj where πj is the

equilibrium point of the mean field model below:

dq−1
dt

=− λq−1 +
1

1 + λ
q−2

dq−2
dt

=
∞∑
i=0

(1− γ)αiqi −
1

1 + λ
q−2

dq0
dt

=λ
(
1− q0 − q−2

)
− q0

1

δ
− α0(1− γ)q0

dqj
dt

=
(
qj−1 − qj

)1

δ
− αj(1− γ)qj − λqj

j = 1, · · · , K − 1

dsK
dt

=qK−1(t)
1

δ
− λsK(t)

(3.2)

Then, if every device fixes this policy α, in the limit as N and M go to infinity we

will show that the fraction of devices in state j, Qj(∞)/M where Qj is the number

of devices in state j, will converge weakly to πj where πj is the equilibrium point of
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the mean field model (3.3) and j ∈ {−2,−1, 0, 1, 2...}. Since, α is in PK , the mean

field dynamical system is given by :

dq−1
dt

=− λq−1 +
1

1 + λ
q−2

dq−2
dt

=
∞∑
i=0

(1−mq−2)αiqi −
1

1 + λ
q−2

dq0
dt

=λ
(
1− q0 − q−2

)
− q0

1

δ
− α0(1−mq−2)q0

dqj
dt

=
(
qj−1 − qj

)1

δ
− αj(1−mq−2)qj − λqj

j = 1, · · · , K − 1

dqj
dt

=
(
qj−1 − qj

)1

δ
− λqj, j ≥ K

. (3.3)

We can reduce the mean field model above into a finite dimensional dynamical

system by truncating the states for delay greater than K.

We will show that for any fixed policy α, the steady-state of the system converges

weakly to the solution of the mean field model as N →∞.

The proof is an application of Theorem 1 in Ying (2016). The theorem states five

conditions that are sufficient to guarantee the weak convergence to the fixed point of

the mean field model. We next verify these conditions under our model:

• Bounded transition rate: This condition can easily be verified from the

system model. At any point in time, the rate of transition from any state to

any other state is bounded above by A+ λ+ 1/δ.

• Bounded state transition condition: Since our model is a collection of M

CTMCs whose transition rates are determined by exponential clocks, at most

one transition can occur at a time. Therefore, the state transitions are bounded.

• Perfect Mean Field Model: Using the system model it can be checked that

the equations (3.2) are derived from the detailed balance equations.
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• Partial Derivative condition: It can be checked that the partial derivatives

for the system (3.2) exist and are Lipschitz.

• Stability conditions: The global exponential convergence in the appendix

in Lemma (9) and Lemma (10).

The following theorem summarizes the result that the Markovian system,(
Q1(∞)

M
, · · · , QK−1(∞)

M
,SK(∞)

)
,

converges weakly to the fixed point of the dynamical system above,

Theorem 6. If every device follows a fixed policy α defined in the beginning of this

section, then the stationary distribution of the system converges to the unique equi-

librium point of system (3.2). This defines the mapping T1 : α→ γ.

Proof. Since, we are showing convergence of the system to the fixed point of dynamical

system 3.2, it is standard practice to center the dynamical system. Let πj for all

j ∈ {−2,−1, 0, 1..., K− 1}and πsK be the equilibrium point of the dynamical system.

Let εi be the difference between the value of qi and πi with εK = sK − πsK . The

dynamical system written in terms of εi is given by :

dε−1
dt

=− λε−1 +
1

1 + λ
ε−2

dε0
dt

=− ε0
(1

δ
+ α0(1− γ) + λ

)
+mα0π0ε2 − λε2

dεj
dt

=
1

δ

(
εj−1 − εj

)
− ε1,j(λ+ αj(1− γ)) + πjαjε2m

dεK
dt

=
1

δ
εJ−1 − λεK

dε−2
dt

=
K∑
j=0

εjαj(1− γ)−m
K∑
j=0

mπjαjε−2 −
1

1 + λ
ε−2

(3.4)

The rest of the proof relies on showing that the dynamical system (??) is in fact locally

exponentially stable and globally asymptotically stable. We shall do this using lemma
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(2) and lemma (3) in the appendix. These proofs are technical and do not add to the

exposition provided in the text so we restrict them to the appendix.

As mentioned in the previous section, to complete the proof we need only invoke

theorem 1 from Ying (2016). The system therefore converges to the equilibrium of

the dynamical system in finite time.

3.3 Characterizing the policy

If γ denotes the fraction of busy channels, which (under the mean field model)

remains to be a constant and is known to a device, then the Bellman equation (3.1)

for the discounted problem becomes

ui = max
α∈[0,A]

α + λ+ 1/δ

A+ λ+ 1/δ

(
(1− γ)α

1/δ + λ+ α

(
Ri + βu−2

)
(3.5)

− ĉ(α)
α

α + λ+ 1/δ
+ β

γα

1/δ + λ+ α
ui+

β
( 1/δ

1/δ + λ+ α
ui+1

)
+ β

( λ

1/δ + λ+ α
u0
))
.

We will henceforth refer to ĉ(α) α
α+λ+1/δ

as c(α) which obeys all the properties of

ĉ(α). Note that conditioned on a state transition occurs when the device is in state

i, we have the following possibilities:

• With probability (1−γ)α
1/δ+λ+α

, the probing clock ticks and the device finds an idle

channel. In this case, the device pays a cost c(α) and receives a reward Ri. The

device transits to state 2.

• With probability γα
1/δ+λ+α

, the probing clock ticks and the device fails to find an

idle channel. In this case, the device pays a cost c(α). The device remains in

state i.

• With probability δ
1/δ+λ+α

, the age of the message increases by one. In this case,

the device moves to state i+ 1.
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• With probability λ
1/δ+λ+α

, a new message arrives and replace the current message

in waiting. In this case, the device moves to state 0.

Note that the term ui appears at both sides of the Bellman equation, by combing

the two terms, we can have (an explicit justification to the equation can be found in

the Appendix A):

ui = max
α∈[0,A]

1

1/δ + λ+ A− γβα
{

(1− γ)α
(
Ri + βu−2

)
−c(α) (α + λ+ 1/δ) +

β

δ
ui+1 + βλu0

}
with the special cases

u−1 = β
λ

A+ λ+ 1/δ
u0

and

u−2 =
1 + λ

A+ λ+ 1/δ

(
r−2 + β

1

1 + λ
u−1 + β

λ

1 + λ
u−2

)
.

Subtracting both sides of the previous equation by β λ
1+λ+A

u−2, multiplying through-

out by 1+λ
1+λ(1−β) and substituting u−1 in terms of u0, we obtain

u−2 = r−2
1 + λ

1/δ + λ(1− β) + A
+ β2u0

λ

1/δ + λ(1− β) + A
.

Now define

r0 := r−2
1 + λ

1/δ + λ(1− β) + A

and

η := β
λ

1/δ + λ(1− β) + A

which gives us the following expression for u−2,

u−2 = r0 + ηβu0

Note that we have essentially treated the fraction of busy channels as a constant in

studying the Bellman equation above. In other words, a device optimizes its probing
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strategy assuming γ is fixed. We will justify this later by presenting the conditions

under which the system converges to a point mass given by the mean field limit.

Before we proceed, we make the following remarks which will be helpful in later

sections,

Remark 2.

1. ui is bounded below by 0. The lower bound is achieved when we choose α =

{0, 0, ...}, i.e. to do nothing at all no matter the delay, reward or cost.

2. ui is bounded above by R
1−β with R = R0 + r−2.

Now assume we begin by initializing all the devices with the same policy in PK .

From the previous section, it is clear that the fraction of busy channels will converge

weakly to some fixed γ. In the rest of the section we will show that the sequence of

value functions {ui} is decreasing and so is well defined for all i ∈ {−2,−1, 0, 1, ...}.

Since both {ui} and {αi} are infinite sequences, we need to establish that {αi} is well

defined in the limit as i goes to infinity. (It is not immediate that the map from {ui}

to {αi} is sequentially continuous). We use the convergence of {ui} to show that the

sequence of {αi} converge to some α∞. This is followed by bounding the difference

in value functions between an optimal policy (which need not lie in PK) and a policy

that lies in PK for sufficiently large K. This justifies the mean field model used in

the previous section and our proof of convergence.

Proposition 1. If {Ri}i is a decreasing sequence in i, then sequence {ui}i is a de-

creasing sequence in i. Consequently, the sequence converges to some u∞ in the limit

as i→∞.

Proof. Let the optimal policy for a device in state i be α∗i for every i in {0, 1, .....}

and denote by u∗i the value functions of the optimal policy. We define function ui(αi)
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as

ui(αi) =
αi(1− γ)

1/δ + λ+ A− αiγβ
(
Ri + βu∗−2

)
− c(αi)

1/δ + λ+ αi
1/δ + λ+ A− αiγβ

+ β
( 1/δ

1/δ + λ+ A− αiγβ
u∗i+1

)
+ β

( λ

1/δ + λ+ A− αiγβ
u∗0
)

.

From this definition, we have

ui(α
∗
i ) = u∗i = max

α
ui(α),

which implies that

u∗i ≥ ui(α
∗
i+1)

=
α∗i+1(1− γ)

1/δ + λ+ α∗i+1(1− γβ)

(
Ri + βu∗−2

)
− c(α∗i+1)

1/δ + λ+ α∗i+1

1/δ + λ+ α∗i+1(1− γβ)

+ β
( 1/δ

1/δ + λ+ α∗i+1(1− γβ)
u∗i+1

)
+ β

( λ

1/δ + λ+ α∗i+1(1− γβ)
u∗0
)

.

Note that we add the superscript ∗ to value function ui to differentiate the nota-

tion from function ui(α). u∗i in this proof is the same as ui defined in (3.5) and the

statement of the proposition. Note there is a similarity between ui(α
∗
i+1) and u∗i+1.

Namely,

u∗i ≥ ui(α
∗
i+1)

= u∗i+1 + β
( 1/δ

1/δ + λ+ α∗i+1(1− γβ)

)
(u∗i+1 − u∗i+2)

.
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Rearranging the terms, we get

u∗i+1 − u∗i

≤β
(

1/δ

1/δ + λ+ α∗i+1(1− γβ)

)
(u∗i+2 − u∗i+1)

≤β
( 1/δ

1/δ + λ

)
(u∗i+2 − u∗i+1)

for all i in {0, 1, ....}. This yields(
β
( 1/δ

1/δ + λ

))J
(u∗i+J+1 − u∗i+J+2) ≥ u∗i+1 − u∗i .

Since the LHS of the inequality above converges to zero as J →∞, we have u∗i ≥ u∗i+1.

So, u∗i is a decreasing sequence which is bounded above and below. Therefore, u∗i

converges to a fixed value. Let u∗∞ := limi→∞ ui. Then by definition, u∗i converges to

u∗∞.

Next we state that α∗i is a Cauchy sequence that converges to some α∞.

Lemma 4. If, Ri is a decreasing sequence in i, then the probing rate under the optimal

policy, denoted by α∗i , is also a decreasing sequence which converges to some α∗∞.

The proof of this lemma is presented in Appendix C. We now make a few remarks

about the results above.

Remark 3.

1. Both results generalize to an M -player game where the reward and costs are

different for different players.

2. It is worth noting that Lemma (4) tells us that a device should probe most

aggressively early on and look to drop the packet as the delay increases. Effec-

tively, this observation seems to suggest at steady state the devices will behave

such that the packets with the least delay will be more likely to be transmitted

before packets with higher delay value.
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3. Proposition 1 holds even if the transition from (i) to (i+ 1) are not exponential

but instead are arbitrary, so long as the same process holds for any i and the

transition rate only depends on the policy at state i i.e, the rate only depends

on αi.

The next result bounds the difference between a device that uses the optimal policy

α∗ = {α∗0, α∗1, ...α∗K , α∗K+1, ...} and the truncated version α(K) := {α∗0, α∗1, ...α∗K , 0, 0, .....}

assuming that all other devices choose the same fixed policy α(K). We show that when

γ is fixed, given any ε > 0, a device can chooses α(K) for a sufficiently large K so

that the difference in average utility the device receives comparing with the original

version is at most ε, where K is independent of the number of devices. Therefore,

a device may effectively choose a finite dimensional policy if it wishes to myopically

optimize its utility function. This justifies our use of a finite dimensional policy while

considering the mean field model to approximate the system.

Proposition 2. Let α∗ and α(K) be as defined above. Given any ε > 0, there exists

constant β0 such that for all β < β0 there exists K large enough so that

|EX{u(X,α∗)} − EX̃{u(X̃, αK)}| < ε,

where the expectation is taken over the stationary distribution of the device for fixed

γ.

The proof of this proposition can be found in Appendix C. Note that we have

shown that point-wise convergence of the policy α yields weak convergence of the

stationary distribution of a device.

We have now characterized to some extent the mapping from γ to α. Given a

fixed γ and a parameter K that is common among all other devices, a device may

now use value iteration while fixing αk = 0 for all k > K to arrive at an approximate

policy, which is the mapping T2.
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3.4 Existence of MFNE

Based on the results in the previous sections, we will now show that there exists

an MFNE using Brouwer’s fixed point theorem. We show that both mappings T1 and

T2 are Lipschitz. Therefore, there exists at least one fixed point (MFNE). This is

stated in the theorem below.

Theorem 7. There exists a constant β0 such that for any β < β0, a fixed point for

the composite map T2 ◦ T1, denoted by T , exists.

Proof. We will show in Lemma (11) and Lemma (13) that T1 : α → γ is Lipschitz

and T2 : γ → α are continuous under the L1-norm. Therefore, the map T : α→ α is

also continuous in γ. The policy space, PK is clearly convex. Since the domain of γ

is compact and T2 is continuous, so the range of T2 must be compact. Therefore, by

Brouwer’s fixed point theorem, there exists a fixed value α∗∗ such that:

T (α∗∗) = α∗∗.

The proof of Lemma (11) and Lemma (13) can be found in the appendix.

Having demonstrated that there exists a fixed point, our next theorem shows that

the fixed point that is obtained using the map T2 ◦T1 is in fact an ε Nash Equilibrium

where ε converges to 0 as M and K tend to infinity.

Theorem 8. The fixed point given by Theorem 7 is an ε-Nash equilibrium when the

set of available policies are from PK, with ε→ 0 as M tends to infinity.

Proof. The main idea of the proof follows from the fact if one player chooses to deviate

by choosing any policy in PK , then the mean field, γ changes by at most ε where ε

goes to zero as M tends to infinity. This follows from a simple extension of the proof
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of ε Nash Equilibrium in Narasimha et al. (2020). The proof relies on Stein’s method

for finite state Markov chains.

Now, since the mean field γ only deviates by a small amount and T2 : γ → α is

continuous, the best response policy in PK will lie close to the mean field policy.

Here we would like to make few comments:

Remark 4.

1. Theorem 8 does not rely on asymptotic independence of the devices in our

system. Therefore, it is not trivial to show that if a finite set of players deviate

the mean field remains unchanged. Infact under typical law of large numbers

results the order of ε is O(
√
M) but in our case ε will actually be O(M

1
3 ).

2. Since PK is ε close to an optimal policy for fixed γ one might be tempted to state

that the result of Theorem 8 holds for any policy instead of policies in PK . This

is not straightforward since if a single node deviates with an arbitrary policy,

the corresponding fraction of busy channels need not deviate by ε. Therefore,

the best response need not necessarily be the MFNE policy.

3. While our theorems do not limit the number of fixed points, we strongly believe

that there is a unique fixed point, primarily because we believe that the function

T is decreasing in γ. Since our fixed points are the set of all γ such that γ = T (γ)

this would ensure that the fixed point is unique. This conjecture of a unique

MFNE is a topic to be investigated later.

From Finite to Countable State MFNE

For each K we know that there exists a MFNE solution to our problem. Let

α∗K denote such a solution. This solution corresponds to a mean field distribution
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πK = {π−2, π−1, π0, ...πK−1, SK} on the state space, {−2,−1, 0, 1, ...., K − 1, K}. Our

results state that the empirical distribution will converge to an invariant measure on

this state space. We can treat both the state space and the policy space α as vectors

belonging to a finite dimensional subspace inside an infinite dimensional space i.e,

αK = {α0, α1, ..αK−1, 0, 0...0} and {−2,−1, 0, 1, ...., K − 1, K, 0, 0...}. We will now

imbue the infinite dimensional state and policy space with the topology of point-wise

convergence.

Note, this is a very natural formalization of our work so far and is closely related

to our finite dimensional approximation of our policy, Proposition (2). With this

technical manipulation, both the state space and the policy space are now separable

metric spaces. Let K1 be the smallest integer such that α∗K1 is ε close to the MFNE

policy. {K1, K2, ...} is an increasing sequence of integers. From our previous results

we know that for each Ki ∈ N in this sequence, at least one fixed point exists in

PKi with the corresponding mean field limit πKi . We now have the tools to state our

theorem that allows us to look at the countably infinite system.

Theorem 9. The sequence, {πKi} has a weakly convergent sub-sequence {πKj(i)} such

that j(i) → ∞ as i → ∞ and {πKj(i)} → π∗ where π∗ is given by the fixed point of

the system of ODEs:

dq−1
dt

=− λq−1 +
1

1 + λ
q−2

dq−2
dt

=
∞∑
i=0

(1− γ)αiqi −
1

1 + λ
q−2

dq0
dt

=λ
(
1− q0 − q−2

)
− q0

1

δ
− α0(1− γ)q0

dqj
dt

=
(
qj−1 − qj

)1

δ
− αj(1− γ)qj − λqj

and α = {α0, α1...}, is the solution to the countably infinite state MDP for fixed

γ = π∗−2
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The theorem above states that a fixed point exists and solves the MDP for the

infninite state MDP problem that was described in section (3.1). The proof is a simple

application of Prokhorov’s theorem and can be found in the Appendix D. Here we

will make some important remarks,

Remark 5.

1. While we have proved the existence of a fixed point for the countably infinite

system, it is still an open problem to show that this fixed point is indeed a

Nash equilibrium. This is primarily because extending the mean field result

to a general countably infinite CTMC is still an open problem. Therefore, if a

single user chooses to deviate from the MFNE policy in this case, we do not

know of any way to bound the deviation of the mean field system.

2. In keeping with Remark (3), part (3), if T is indeed a decreasing function in

γ then; it might be possible to extend the results further and show that the

sequence, {πKi} is in fact a Cauchy sequence which is convergent instead of

dealing with sub-sequences.

3.5 Implementation

The previous section proved that there exists at least one fixed point and the fixed

point obtained is a local ε Nash Equilibrium. However, in the absence of contraction

maps it is difficult to imagine how the device may achieve these equilibria. Here we

propose a scheme by which a device may achieve this equilibria.

We first note that while α can in general be a complicated variable even when it

belongs to PK the variable γ is a one dimensional real variable restricted to a closed

bounded set, (0, 1). For a fixed γ a device may use policy iteration to find a policy

α in PK that is ε close to the optimal policy and for this policy α explicitly compute
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T2(α). This gives the device an estimated value of T (γ) for a fixed value of γ. The

device can now repeat this process for n such values of γ and use this to estimate

the function T computationally. The parameter n can be chosen by the designer

and is independent of K or the number of devices. Now the device can find fixed

points by solving γ = T (γ). The device now picks the fixed point with the highest

expected utility with ties broken based on lower fraction of busy channels. (Although

we strongly believe there will only be one fixed point). [H] Algorithm to find fixed

points input : Rewards (Rj)j, c(.), β, r0, η, λ, δ

initialization : pick γi uniformly from the interval (0, 1)

i < n α ← policy iteration(γ, (Rj)j, c(.), β, r0, η, δ, λ) T (i) ← 1−θ(α)
κ−θ(α) i ← i + 1

interpolate T ; find γ such that γ = T (γ) output : γ Ostensibly one can view

this algorithm as the device playing the game with itself in its own head to estimate

the LMFNE. Under these conditions the LMFNE assumptions of infinite players are

justified and consistent thus, leading to local Nash equilibria for the devices. Since

the devices are homogeneous they will pick the same policies achieving the computed

γ. An example implementation can be found in Figure 3.2.

3.6 Simulation Results

We present simulation results to demonstrate the performance of the proposed

algorithm. We consider the following setting: M = N , i.e. the number of channels

is equal to the number of devices, K = 25, Ri = 10 × 2−i, β = 0.1, δ = 1, A = 5,

and c(α) = 10α2. We evaluate the delay experienced per packet when the system

reaches MFNE and compare it to the throughput-oriented MAC protocol proposed

in Narasimha et al. (2020). The protocols are:

• AD-MAC : This is our age-dependent distributed MAC. We varied the arrival

rate λ from 0 to 2.
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Figure 3.2: An example implementation with K = 25, Ri = 2−i, β = 0.1, δ = 1,
λ = 0.5 and c(α) = 0.3α2

Figure 3.3: A comparison of the delays experienced per packet delivered over some
time duration.

Figure 3.4: Comparing γ as a function of λ for the two protocols.
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• D-MAC : This is the distributed MAC protocol proposed in Narasimha et al.

(2020). We chose c to be 10 and evaluated the delay over the same range of

λ. Our choices of c, λ in this case ensure that the MFNE exists as required in

Narasimha et al. (2020).

The per packet delays are shown in Figure 3.3, where we can observe that AD-

MAC has significant smaller per packet delay when the arrival rate is low, and the

delay of AD-MAC is always smaller than that of D-MAC in our simulations. In

addition to the delay, we also compared the fraction of occupied channels, which

reflects the system throughput. As we can observe from Figure 3.4, AD-MAC achieves

higher throughput when λ ≤ 1.2 (with smaller per packet delay as well). For λ > 1.2,

the throughput is lower than that under D-MAC. This loss is to achieve lower per-

packet delay.

53



Chapter 4

STRATEGIC DECONFLICTION

4.1 System Model

We consider a disaster monitoring system where there are M regions to be moni-

tored by N UAVs. For now we assume that the regions themselves are equal in size

and the UAVs are homogeneous, we will revisit this assumption in the simulations.

In our setting we would like to consider the case when N is large but M/N remains

constant. This is a common theme in an urban setting where traffic management

becomes problematic as the number of UAVs grow large.

Our main problem is to formulate a protocol that allows UAVs to be assigned tasks

towards monitoring a disaster region in a distributed fashion. We assume that the

UAVs have a charging/ repair station the UTM operator may use for repairing, charg-

ing the UAV or for routine maintenance. We will call this state the idle state. As

the UAVs are charged they migrate to a region where they may interact with some

central base station or monitoring network. This station has a list of un-monitored

regions. We also assume that the central station is the primary network that the UAV

may use to send data to the UTM operator or other monitoring stations. When the

devices are capable of interacting with the base station they probe it for un-monitored

regions at a rate that they may control. For UAV i we let the exponential probing

rate (by design) be given by α(i). We call this state the probing state. The UAV’s

drop off from the probing state for recharging or repair to the idle state as an expo-

nential random variable with parameter v0. We model the time taken to move from

idle state to the probing state as another exponential random variable with rate v1.
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When a UAV finds a region to monitor, it travels to this region and begins to monitor

it. Given the UAV spends some time t in this region it does not know how much more

time to spend in this region. For example, it may be looking for an event in a disaster

region whose occurrence time is unknown. We therefore model the monitoring time

by some exponential time with rate µ.

We now have a continuous time markov chain model for each UAV. We show the

corresponding state space evolution below. Note the continuous time markov chain

is reversible and hence, a stationary distribution for this system always exists. We

provide a diagram for the evolution of the state space below.

Note, the transition rate of the markov

process from state probing to monitoring depends on the fraction of UAVs currently

monitoring the region. This makes our markov process a density dependent markov

process.

We will summarize the UAV model below :

• There are three states for each UAV, idle, probing and monitoring (denoted,

0, 1, 2 respectively).

• Let Q0(t) be the total number of UAVs currently in the idle state, Q1 the

corresponding number of UAVs in the probing state and Q2 the number of

UAVs monitoring an area.

• A UAV goes from the idle state to the probing state at rate v0 and returns from

the probing state to the idle state at rate v1.
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• Similarly, a UAV probes a region to check if it is being monitored uniformly

at random at rate α(i). Therefore, its rate of finding an un-monitored region is

α(i)(1− Q2

N
). A UAV monitors a region for an exponential amount of time with

average µ before returning to the probing state.

Compounded with the problem of density dependence each UAV is treated as an indi-

vidual agent that wishes to optimize its own long term time average utility function.

We model the long term utility of each device in terms of the fraction of time the

UAV will spend in a monitoring region minus the average cost of probing the central

base station which we model as a convex cost function depending on the probing rate

and time spent by the device probing for regions.

If πij is the fraction of time spent by the UAV i ∈ {1, 2...N} in state j ∈ {0, 1, 2} then

the utility function for each UAV is:

J(α(i)) := πi2 − c(α(i)πi1) (4.1)

Where c is any twice differentiable, increasing, convex cost function.

Note, while this function does not explicitly depend on the density of devices in any

given state, the values of πij will implicitly depend on these density values. In general

this density could be a time varying function which makes this problem extremely

difficult since that would imply that optimizing J over time will yield a time varying

optimal policy. If formulated as a Bayesian game the problem quickly becomes in-

tractable to solve the optimal policy for any given device. With this in mind we turn

towards formulating this problem as a mean field game!
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4.2 Mean Field Limit

In this section we consider the mean field limit as described previously, using the

detail balanced equation:

q̇0 = −q0v0 + q1v1

q̇1 = q0v0 − q1v1 + µq2 − q1α(1− γ)

q̇2 = −µq2 + q1α(1− γ)

Let {π0, π1, π2} be the fixed points of the system above. Note, they are given by the

following set of equations,

π0 = π1
v1
v0

π2 = π1α
(1− γ)

µ

π0 + π1 + π2 = 1

We must first begin by showing that the equations above yield a unique solution to

the problem. We will do so below,

Using the consistency equation q2(t) = γ(t) and the equation above in π2, we get:

π2 =
π1α

µ+ απ1

Combining the equations and writing them in terms of π1 we get,

π1

(
1 +

v1
v0

+
α

µ+ απ1

)
= 1 (4.2)

The equation above is of the form f(q1) = 1. It can be checked that the solution

to this equation is unique because f is an increasing function in q1. Let Qi(∞) be

the number of UAVs in state i as time tends to infinity, i.e, the steady state of the

system, the next theorem formally says the Markovian system {Q0(∞)
N

, Q1(∞)
N

, Q2(∞)
N
}

converges weakly to the fixed point desribed above,
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Theorem 10. Suppose every device fixes a polic α, the system, {Q0(∞)
N

, Q1(∞)
N

, Q2(∞)
N
}

converges weakly to the fixed point {π0, π1, π2} as N tends to infinity. This now defines

our map T1.

Proof. The proof is an application of Theorem 1 in [22]. The theorem states five

conditions that are sufficient to guarantee the weak convergence to the fixed point of

the mean field model. We next verify these conditions under our model:

• Bounded transition rate: This condition can easily be verified from the system

model. At any point in time, the rate of transition from any state to any other

state is bounded above by v1 + v0 + µ+ α.

• Bounded state transition condition: Since our model is a collection ofM CTMCs

whose transition rates are determined by exponential clocks, at most one tran-

sition can occur at a time. Therefore, the state transitions are bounded.

• Perfect Mean Field Model: Using the system model it can be checked that the

equations (2) are derived from the detailed balance equations.

• Partial Derivative condition: It can be checked that the partial derivatives for

the system (2) exist and are Lipschitz.

• Stability conditions: The global asymptotic convergence and local exponential

convergence can be found using the Lyapunov function

V (t) = |q0(t)− π0|+ |q1(t)− π1|+ |q2(t)− π2|

and the analysis from the 2nd Chapter.
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4.3 Existence and Uniqueness of Mean Field Equilibrium

Let γ be the fraction of regions being monitored. We will assume here that the

UAVs know this value of γ. Suppose each UAV chooses to optimize its policy as a

best response to the value of γ, due to homogeneity, each UAV will choose the same

policy as its best response function. For fixed γ the UAV must optimize,

J(α, γ) = π2(α, γ)− c(π1(α, γ)α)

Lemma 5. When γ is fixed, the devices will pick an optimal policy α̃ given by the

unique solution of the following equation,

απ1(α, γ) = c′−1
(

1− γ
µ

)
(4.3)

Proof. Note, for any convex, twice differentiable, increasing function c, if we fix γ,

the best response function given by,

α̃ =α J(α, γ)

is continuous in γ and can be computed simply by taking the derivative with respect

to α and setting it to 0. Note, each agent treats γ like a constant that it cannot

influence. Therefore, when taking the derivative, we will do the same, one can see

this as the fast time scale action from assumption 2. From the previous section,

π1 =
1

1 + v1
v0

+ α 1−γ
µ

and

π2 = π1
α(1− γ)

µ

Note, the derivative of π2 w.r.t α is:

dπ2
dα

=
1− γ
µ

(
π1 + α

π1
dα

)
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The derivative of c(απ1) is

dc(απ1)

dα
= c′(απ1)

(
π1 + α

π1
dα

)
which can be rewritten in terms of dπ2

dα
, note this term never goes to zero.

dc(απ1)

dα
= c′(απ1)

dπ2
dα

µ

1− γ

Also note, since c is an increasing function and convex, c′(απ1) > 0. Subsitituting

this in the derivative of J with respect to α we get, at α = α̃

dπ2
dα

(
1− µ

1− γ
c′(απ1)

)
= 0

which means at α = α̃,

1 =
µ

1− γ
c′(απ1)

For fixed γ, απ1 is an increasing function in α and since c is convex, c′ is an increasing

function. Therefore, the point where c′(απ1) meets 1−γ
µ

is unique. This completes the

proof.

Thus, for any fixed γ, the devices will choose the same policy given by (4.3). We

will denote (4.3) by the map T2 : γ → α̃.

Given an initial policy that every UAV follows, the system will converge weakly

to a fixed γ by theorem (10), given by the map T1. Given this γ, the devices (due to

homogeneity) will pick the same policy to improve their utility functions α̃, given by

(4.3), the map T2. Thus, the composition of the maps, T2 ◦ T1 takes a point in the

policy space α and maps it to another point in the policy space α̃. We may now ask if

a mean field equilibrium exists in this case. The next theorem answers this question

to the positive.
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Theorem 11. Under assumption 1 and 2, there exists a unique mean field equilib-

rium, α∗ such that,

α∗ = T2 ◦ T1(α∗) (4.4)

Proof. We will use Schauder’s fixed point theorem to prove this result, for complete-

ness we state the theorem here,

Theorem 12. Let A be a closed convex subset of a Banach space and assume there

exists a continuous map T sending A to a countably compact subset T (A) of A. Then

T has fixed points.

Note, it is easy to check that both map T1 : α→ γ and T2 : γ → α are continuous.

Since, γ lies between 0 to 1, it lies in a relatively compact set. Therefore, the closure

of T1(0, 1) is compact. Since, γ takes values from a continuous interval in the real

line R and the set of policies are also from the real line, the set of values of α must

also belong to an interval in the real line. Therefore, the map T2 ◦ T1(α) maps the

policies to a convex, relatively compact set. Compactness in this case automatically

implies countably compact, hence, by Schauder’s fixed point theorem there exists at

least one fixed point α∗ such that T2 ◦ T1(α∗) = α∗.

It is easy to check that T1 : α → γ is increasing in α, that is, if α increases then so

does γ. The next lemma describes the map T2 and is left as an exercise to the reader.

Lemma 6. Map T2 : γ → α (which as a reminder occurs in the slow time scale) is

decreasing in γ

Therefore, the composition of T1 and T2 is decreasing. Note, the mean field

equilibrium is a solution of α∗ = T2 ◦ T1(α∗), therefore, it is the intersection of the

curve, y = T2 ◦ T1(x) with the curve, y = x. The first curve was shown to be
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decreasing, the second curve is increasing, therefore, they can intersect at only one

place.

Finally, as in the previous chapters can we relate the mean field equilibrium that

we found to the notion of a Nash equilibrium. The next theorem states that the

unilateral deviation of a single agent doesn’t change the map T1 by a factor greater

that 1
N1/3 . This means that as the number of UAVs grow large, the map remains

intact, therefore,

Theorem 13. Every mean field equilibrium found above is an ε- Nash equilibrium

with ε = 1
N1/3 . That is, no UAV can benefit more than a factor of 1

N1/3 by choosing

to deviate from the mean field equilibrium.

Remark 6.

• Since both maps are Lipschitz, one can look for the region where the composition

of the maps yields a Lipschitz constant less than 1 as in Chapter 2. In this case

one can refer to Chapter 2 for the simple implementation of the a protocol where

the UAVs will perform policy improvement on the slower timescale to arrive at

the Nash equilibrium.

• However, for the more general case, one may use the algorithm from Chapter

3 where the UAV essentially plays the game in its head to find the Nash equi-

librium. Due to the uniqueness of equilibrium we find that all the UAVs will

arrive at the same policy at the end of the game.
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APPENDIX A

PROOFS FOR DISTRIBUTED MAC
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A.1 Proof of Theorem 1

To understand the mean-field model (2.4), consider Q1(t) and a sufficiently small
time interval δ. According to a standard argument of continuous-time Markov chain,
we have

E[Q1(t+ δ)−Q1(t)|Q(t) = Q]

= λQ0δ − k

(
1−

(
Q2

N

)d/k)
Q1δ +O(δ2), (A.1)

where λQ0δ is the probability that during [t, t + δ], one of the devices moves from

idle to probing, and k
(

1−
(
Q2

N

)d/k)
Q1δ is the probability that during [t, t+ δ], one

of the devices moves from probing to transmitting. Now dividing Mδ on both sides,
we obtain

E[Q1(t+ δ)−Q1(t)|Q(t) = Q]

Mδ

= λ
Q0

M
− k

(
1−

(
mQ2

M

)d/k)
Q1

M
+O(

δ

M
), (A.2)

Now defining qi = Qi
M

and

q̇1 = lim
δ→0

E[Q1(t+ δ)−Q1(t)|Q(t) = Q]

Mδ
,

we have

q̇1 = λq0 − k(1− (mq2)
d/k)q1, (A.3)

i.e. the mean-field model for q1. The rest of the mean-field model can be similarly
obtained. We can see that the mean-field model approximates the original stochastic
system by using the expected drift (A.2) as the system dynamic.

In the following lemma, we first show that mean-field model (2.4) has a unique
equilibrium.

Lemma 7. Given d > 0 and k > 0, mean field model (2.4) has a unique equilibrium.

Proof. The equilibrium point of mean field model (2.1) satisfies the following fix point
equations:

q∗0 =
k(1− (mq∗2)d/k)

λ(1 + k(1− (mq∗2)d/k)(1 + λ+ 1
λ
))

q∗1 =
1

(1 + k(1− (mq∗2)d/k)(1 + λ+ 1
λ
))

q∗2 =
(1 + λ)k(1− (mq∗2)d/k)

(1 + k(1− (mq∗2)d/k)(1 + λ+ 1
λ
))

.
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Note that q∗0 and q∗1 are uniquely determined by q∗2. Therefore, we next show that
q∗2 has a unique solution. Recall that γ∗ = mq∗2. Substituting it into the third equation
above, we have

γ∗ = m
(1 + λ)k(1− (γ∗)d/k)

(1 + k(1− (γ∗)d/k)(1 + λ+ 1
λ
))
. (A.4)

Define function θ(·) such that

θ(γ∗) =
m(1 + λ)k(1− (γ∗)

d
k )

1 + k(1− (γ∗)
d
k )((1 + λ) + 1

λ
)

Notice that θ(γ∗) is monotonically decreasing function in γ∗ because

dθ(γ∗)

dγ∗
=−m(1 + λ)d(γ∗)d/k−1×(

1(
1 + k(1− (γ∗)d/k)((1 + λ) + 1

λ
)
)2
)

<0.

Further note that

θ(0) =
m(1 + λ)k(

1 + k((1 + λ) + 1
λ
)
) > 0

and
θ(1) = 0.

Since γ∗ is strictly increasing in γ∗ and θ(γ∗) is strictly decreasing in γ∗, we conclude
that γ∗ = θ(γ∗) has a unique solution, which concludes the lemma.

We need to verify the conditions laid out in the main result of Ying (2016) in order
to complete our proof of convergence. It is straightforward to see that the system has
a bounded transition rate and only a constant number of devices can go from one state
to another at any given point in time t since they are all running exponential clocks.
The ODE systems we use are all twice differentiable. The perfect mean field model
condition,can be verified when k = d through the preceding sections and equation
(A.2) - (A.3). Recall each device uses policy (d, d). The mean field model under this
policy is similar to Equation 2.4 and is the following nonlinear system:

dq0
dt

= −λq0 +
1

1 + λ
q2

dq1
dt

= λq0 − d(1−mq2)q1
dq2
dt

= d(1−mq2)q1 −
1

1 + λ
q2

(A.5)

Let (q∗0, q
∗
1, q
∗
2) denote the unique equilibrium point of this dynamical system. The

uniqueness of the equilibrium point is due to Lemma (7). Define εi(t) to be

εi(t) = qi(t)− q∗i .
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Then the dynamical system (A.5) can be equivalently represented by :

dε0
dt

= −λε0 +
1

1 + λ
ε2

dε1
dt

= λε0 − d(1−mq∗2)ε1 +mdq1ε2

dε2
dt

= d(1−mq∗2)ε1 −mkq1ε2 −
1

1 + λ
ε2

(A.6)

It is clear from the definition that
∑

i∈0,1,2 εi = 0 for any time t. The final condition

to verify before using main result in Ying (2016) is to check the dynamical system is
globally asymptotically stable and locally exponentially stable. We proceed to show
this in the following lemma.

A.2 Proof of Stability Properties

Lemma 8. The dynamical system described by (A.6) is asymptotically stable for any
valid εi and locally exponentially stable near the origin.

Proof. We prove the first part of the lemma using the Lyapunov theorem Khalil
(2001). Define Lyapunov function V (ε) such that

V (ε) = |ε0|+ |ε1|+ |ε2|. (A.7)

Note that
∑

i εi(t) = 0 for all t, so at least one of the εi is negative and one is positive
when ε 6= 0.

We first analyze the cases where only one εi is strictly negative, which includes
the following three cases.

Case I: ε0 < 0, ε2 ≥ 0 and ε1 ≥ 0

In this case, we have
V (ε) = −ε0 + ε1 + ε2.

Therefore,

dV

dt
=− dε0

dt
+
dε1
dt

+
dε2
dt

=λε0 −
1

1 + λ
ε2 + λε0 − k(1−mq∗2)ε1

+mdε2q1 + d(1−mq∗2)ε1 −mdε2q1 −
1

1 + λ
ε2

=− 2
dε0
dt

=2λε0 − 2
1

1 + λ
ε2 < 0.
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Case II: ε1 < 0, ε0 > 0, and ε2 ≥ 0

In this case, we have
V (ε) = ε0 − ε1 + ε2.

Therefore,

dV

dt
=
dε0
dt
− dε1

dt
+
dε2
dt

= −2
dε1
dt

=− 2λε0 + 2d(1−mq∗2)ε1 − 2mdq1ε2 < 0.

Case III: ε2 < 0, ε0 > 0, and ε1 ≥ 0

In this case, we have
V (ε) = ε0 + ε1 − ε2.

Therefore,

dV

dt
=
dε0
dt

+
dε1
dt
− dε2

dt
= −2

dε2
dt

=− 2d(1−mq∗2)ε1 +
1

1 + λ
(2mdq1 + 2)ε2 < 0.

For the cases where one εi is strictly positive, we can similarly show dV
dt
< 0. For

example, when ε0 > 0, ε2 ≤ 0 and ε1 ≤ 0, following a similar analysis to Case I, we
have

dV

dt
= 2

dε0
dt

= −2λε0 + 2
1

1 + λ
ε2 < 0.

Therefore, based on the Lyapunov theorem, we conclude that the system is asymp-
totically stable.

To prove that the system is locally exponentially stable, we need to show that the
linearized system matrix around its equilibrium is negative definite, i.e, has strictly
negative eigenvalues. The linearized dynamical system is given by:

dε0
dt

= −λε0 +
1

1 + λ
ε2

dε2
dt

=

(
−d(1−mq∗2)−mdq∗1 −

1

1 + λ

)
ε2 − d(1−mq∗2)ε0

, (A.8)

where we used the fact ε1 = −ε0 − ε2 and eliminated one of the equations from the
dynamical system.

The matrix corresponding to the linearized form can be written as:

A =

[
−λ 1

1+λ

−d(1−mq∗2) −d(1−mq∗2)−mdq∗1 − 1
1+λ

]
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Let η be an eigenvalue of A, Then η must satisfy

(−λ− η)
(
− d(1−mq∗2)−mdq∗1 −

1

1 + λ
− η
)

+
d

1 + λ
(1−mq∗2) = 0.

If η ≥ 0, then the first term is strictly positive and

(−λ− η)
(
− d(1−mq∗2)−mdq∗1 −

1

1 + λ
− η
)

+
d

1 + λ
(1−mq∗2) > 0.

Therefore, the eigenvalues of A are strictly negative, and the dynamical system is
locally exponentially stable.

The theorem holds by invoking Theorem 1 in Ying (2016).

A.3 Proof of Lemma 3

The proof for this lemma proceeds along the lines of Theorem 1 in Ying (2016).
Note that System 2 is also a CTMC. Let Wm ∈ {0, 1, 2} denotes the state of the nth
device. The state of the CTMC can be represented by the following vector:

X :=


Q̃0

Q̃1

Q̃2

Z0

Z1

Z2

 ,

where

Q̃i :=
1

M

M−1∑
m=1

1Wm=i

is the number of devices of the first M − 1 devices in state i, averaged over M, and

Zi :=
1

M
1WM=i.

Clearly, Q̃0 + Q̃1 + Q̃2 = M−1
M

and Z0 + Z1 + Z2 = 1
M

. Let us now follow the steps
used in Ying (2016).
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Let ei denote a vector whose ith element is 1 and the rest are 0, then the transition
rate of the CTMC is

R̃x,y =



(M − 1)λq̃0, if y = x− 1
M

(e1 − e2)

(M − 1)d∗(1− (q̃2 + z2))q̃1, if y = x− 1
M

(e2 − e3)

(M − 1) 1
1+λ

q̃2, if y = x− 1
M

(e3 − e1)

λz0, if y = x− 1
M

(e4 − e5)

α(x)(1− (q̃2 + z2))z1, if y = x− 1
M

(e5 − e6)

1
1+λ

z2, if y = x− 1
M

(e6 − e1)

,

where α(x) is the sampling rate used by player M when the system is in state x.
We then define f(x) to be

f(x) := lim
M→∞

∑
y:x 6=y

R̃x,y(y − x),

and we have the following mean-field model



˙̃q0
˙̃q1
˙̃q2
ż1
ż1
ż2


= f(x) =



−λq̃0 +
1

1 + λ
q̃2

λq̃0 − d∗(1−mq̃2)q̃1

d∗(1−mq̃2)q̃1 −
1

1 + λ
q̃2

0

0

0


, (A.9)

which can be simplified to

 ˙̃q0
˙̃q1
˙̃q2

 = f(q̃) =


−λq̃0 +

1

1 + λ
q̃2

λq̃0 − d∗(1−mq̃2)q̃1

d∗(1−mq̃2)q̃1 −
1

1 + λ
q̃2

 (A.10)

and is identical to the mean-field model (2.4).
We already proved that (2.4) is locally exponentially stable and globally asymp-

totically stable. Next we bound E
[
‖Q̃(∞)− q∗‖2

]
, where q∗ is the mean-field equi-

librium point.
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Let g(q̃) be the solution to the Poisson equation Ying (2016):

Og(q̃)f(q̃) = ‖q̃ − q∗‖2, ∀q̃.

Following the analysis of Ying (2016), we have the following equation: (equation
(8) in Ying (2016)):

E
[
‖Q̃(∞)− q∗‖2 + ‖Z(∞)‖2

]
(A.11)

=E

Og(Q̃(∞)) ·

f(Q̃(∞))−
∑

y:y 6=X(∞)

R̃X(∞),y((y)−X(∞))

 (A.12)

−
∑

y:y 6=X(∞)

(
R̃X(∞),y

(
g(qy)− g(Q̃(∞))

)
(A.13)

−R̃X(∞),y

(
Og(Q̃(∞)) · (qy − Q̃(∞))

))]
, (A.14)

where X(∞) = (Q̃(∞), Z(∞)) and qy = (y1, y2, y3) (i.e. qy includes the first three
elements of y).

To apply the main result in Ying (2016), we note that the following conditions
are valid:

• Bounded state Transition-rate There exists a constant c such that:

1

M
E

[∑
y:y 6=x

R̃x,y

]
≤ c

• Bounded state Transition There exists a constant c1 such that for any (x, y)
with Q̃x,y > 0:

‖y − x‖ ≤ c1
M

• Partial Derivative f(x) is clearly twice differentiable.

• Stability As stated above, f(x) is globally asymptotically stable and locally
exponentially stable.

Therefore, only the Perfect Mean-field Model condition is not satisfied. Without
the perfect mean-field model condition, the following bound still holds:

E

[ ∑
y:y 6=X(∞)

R̃X(∞),y

(
g(qy)− g(Q̃(∞))

−Og(Q̃(∞)) · (qy − Q̃(∞))
)]
≤ C1

M
.
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Therefore, we only need to bound (A.12).
Since ‖Og(q)‖ is bounded by a constant according to the analysis in Ying (2016)

when the system satisfies the stability condition. We now focus on the following term:

f(q)−
∑

y:y 6=(x,z)

R̃x,y(qy − q),

and have ∥∥∥∥∥∥f(q)−
∑

y:y 6=(x,z)

R̃x,y(qy − q)

∥∥∥∥∥∥
=

∥∥∥∥(λ(1− M − 1

M
)(e1 − e2)) + d∗(1− (x2))(1−

M − 1

M
)×

(e2 − e3) +
1

1 + λ
(1− M − 1

M
)(e3 − e1)− d∗z2

M − 1

M
×

(e2 − e3)
∥∥∥∥ < 2

M
‖2λ+

2

λ
+ d∗‖.

,

which concludes the proof.
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APPENDIX B

PROOFS OF AGE DEPENDENT MAC
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B.1 Bellman equation

Note, from the definition of ui, for any α ∈ [0, A] we have,

ui ≥
α + λ+ 1/δ

A+ λ+ 1/δ

(
(1− γ)α

1/δ + λ+ α

(
Ri + βu−2

)
− c(α)+

β
γα

1/δ + λ+ α
ui + β

( 1/δ

1/δ + λ+ α
ui+1

)
+ β

( λ

1/δ + λ+ α
u0
))

We can rewrite this inequality as,

ui ≥
1

A+ λ+ 1/δ − αβγ
×(

(1− γ)α
(
Ri + βu−2

)
− c(α)(α + λ+ 1/δ)

+ β
1

δ
ui+1 + βλu0

)
for any α in [0, A]. But this implies,

ui ≥ sup
α∈[0,A]

1

A+ λ+ 1/δ − αβγ
×(

(1− γ)α
(
Ri + βu−2

)
− c(α)(α + λ+ 1/δ)

+ β
1

δ
ui+1 + βλu0

)
Now since, [0, A] is compact, we know there exists some α ∈ [0, A] such that for any
ε > 0,

ui ≤
α + λ+ 1/δ

A+ λ+ 1/δ

(
(1− γ)α

1/δ + λ+ α

(
Ri + βu−2

)
− c(α)+

β
γα

1/δ + λ+ α
ui + β

( 1/δ

1/δ + λ+ α
ui+1

)
+ β

( λ

1/δ + λ+ α
u0
))

+ ε

But this means,

ui ≤
1

A+ λ+ 1/δ − αβγ
×(

(1− γ)α
(
Ri + βu−2

)
− c(α)(α + λ+ 1/δ)

+ β
1

δ
ui+1 + βλu0

)
+Kε
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for an appropriate constant K. This justifies our claim.

B.2 Convergence to the Mean-Field Limit

Lemma 9. The dynamical system described by (2) is globally asymptotically stable.

Proof. We will use the following Lyapunov function to prove the result,

V :=
K−1∑
i=0

|εi|+ |εK |+ |ε−1|+ |ε−2| (3)

Global asymptotic stability is ensured when the Lyapunov function has a negative
drift but is positive for all points except 0.
We split the function into more easy to manipulate parts, let V1 be the first two terms
of V , let V1 :=

∑1,K−1
i=(1,0) |εi|+ |εK | and let V2 := V1 + |ε−2|.

We will now look at the derivative of V1.

dV1
dt

=
K−1∑

εi>0,i=(0)

dεi
dt
−

K−1∑
εi<0,i=(0)

dεi
dt

+
d|εK |
dt

Collecting all the terms with εj, K > j > 0 together, assuming εj+1 and εj are both
positive we get:

εj
(
− (λ+

1

δ
+ αj(1− γ) +

1

δ
)
)

= −εj
(
λ+ αj(1− γ)

)
if they are both negative :

εj
(
λ+ αj(1− γ)

)
if they have different signs:

−|εj|
(
λ+ 2

1

δ
+ αj(1− γ)

)
Therefore, the terms containing εj ≤ −|εj|

(
λ + αj(1 − γ)

)
and the term containing

εK < −λ|εK |. The term containing ε−1 ≤ −|ε−1|
(
λ+ 1

δ
+α0(1− γ)

)
. This leads us to

the following :

dV1
dt

<−
K−1∑
j=(0)

|εj|
(
λ+ αj(1− γ)

)
− λ|εK |

+mε2

( j=K−1∑
εi>0,j=0

πjαj −
j=K−1∑
εi<0,j=0

πjαj

)
− λε−2
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When ε0 > 0 and

dV1
dt

<−
K−1∑
j=(0)

|εj|
(
λ+ αj(1− γ)

)
− λ|εK |

+mε2

( j=K−1∑
εi>0,j=0

πjαj −
j=K−1∑
εi<0,j=0

πjαj

)
+ λε−2

when ε0 < 0

(4)

ottherwise.
We are now ready to consider dV2

dt
. Recall that :

dε−2
dt

=
K−1∑
j=0

εjαj(1− γ)−mε−2
K−1∑
j=0

πjαj −
1

1 + λ
ε−2

Now if ε−2 > 0 then

d|ε−2|
dt

=
K−1∑
j=0

εjαj(1− γ)−m|ε−2|
K−1∑
j=0

πjαj −
1

1 + λ
ε−2

and if ε−2 < 0 then

d|ε−2|
dt

= −
K−1∑
j=0

εjαj(1− γ) +mε−2

K−1∑
j=0

πjαj +
1

1 + λ
ε−2

which leads us to,

d|ε−2|
dt

≤
K−1∑
j=0

|εj|αj(1− γ)−m|ε−2|
K−1∑
j=0

πjαj −
1

1 + λ
|ε−2|

Plugging this inequality in V2 := V1 + |ε−2| to compute the drift, we get:

dV2
dt

:=
dV1
dt

+
d|ε−2|
dt

<−
K−1∑
j=(1,0)

|εj|
(
λ+ αj(1− γ)

)
− λ|εK |

+mε2

( j=K−1∑
εi>0,j=0

πjαj −
j=K−1∑
εi<0,j=0

πjαj

)
− λ|ε−2|
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+
K−1∑
j=0

|εj|αj(1− γ)−m|ε−2|
K−1∑
j=0

πjαj −
1

1 + λ
|ε−2|

≤ − λ
1,K−1∑
j=(1,0)

|ε1,j|+ |ε2|(λ−
1

λ+ 1
)− λ|εK |

Finally, we can now bound the derivative for V :

dV

dt
:=
dV2
dt

+
d|ε−1|
dt

<− λ
1,K−1∑
j=(1,0)

|εj|+ |ε−2|(λ−
1

λ+ 1
)− λ|ε−1|

+|ε−2|
1

(λ+ 1)
− λ|εK |

≤ − λ
K−1∑
j=(0)

|εj|+ |ε−2|λ− λ|ε−1| − λ|εK |

Further, by definition
∑K−1

j=(0) εj + ε−1 + ε−2 + εK = 0. So,
∑K−1

j=(0) εj + ε−1 + εK = −ε2.
From the triangle inequality we have, |ε2| ≤

∑K−1
j=(0) |εj|+ |ε−1|+ |εK | which gives us:

dV

dt
< λ(|ε2| −

K−1∑
j=(0)

|εj| − |ε−1| − |εK |) ≤ 0

We may now proceed to show (in the next lemma) that the system is in fact
globally exponentially stable.

Lemma 10. We can use equation (3) to show that the system is globally exponentially
stable.

Proof. This proof is simply a more careful handling of equation (3) where instead of
looking for the simplest upper bounds to derive the results we take a more systematic
case by case approach. Consider the Lyapunov function (3). We proceed by finding
the derivative as before and using equation (4) for the function V1. We break the
system into the following cases:
Case I:

(
ε−1 < 0, ε0 > 0, ε−2 < 0

)
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Returning to the equation,

dV1
dt

<−
K−1∑
j=(0)

|εj|
(
λ+ αj(1−mπ−2)

)
− λ|εK |

+mε−2

( j=K−1∑
εi>0,j=0

πjαj −
j=K−1∑
εi<0,j=0

πjαj

)
− λε2

=−
K−1∑
j=(0)

|εj|(λ+ α0(1−mπ−2)) +mε−2π0α0

+mε−2

( j=K−1∑
εi>0,j=1

πjαj −
j=K−1∑
εi<0,j=1

πjαj

)
− λε−2 − λ|εK |

This allows us to bound the derivative of V2.

dV2
dt

<

−
K−1∑
j=(1,0)

|εj|
(
λ+ αj(1− γ)

)
− λ|εK |+mε−2π0α0

+mε−2

( j=K−1∑
εj>0,j=1

πjαj −
j=K−1∑
εj<0,j=1

πjαj

)
− λε−2

+
K−1∑
j=0

εjαj(1− γ)−m|ε−2|
K−1∑
j=0

πjαj −
1

1 + λ
|ε−2|

− λ|εK |

≤ − λ
K−1∑
j=(1,0)

|εj|+ |ε−2|(λ−
1

λ+ 1
− 2mπ0α0)− λ|εK |
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Now we can find a bound on dV
dt

:

dV

dt
:=
dV2
dt

+
d|ε−1|
dt

<− λ
K∑

j=(0)

|εj|+ |ε−2|(λ−
1

λ+ 1
− 2mπ0α0)− λ|εK |

− λ|ε−1|+ |ε−2|
1

(λ+ 1)

≤− λ
K−1∑
j=(0)

|εj|+ |ε−2|(λ− 2mπ0α0)− λ|ε−1| − λ|εK |

− λ|ε−1|+ |ε−2|
1

(λ+ 1)
− λ|εK |

=− λ
K∑
j=0

|εj|+ |ε−2|(λ− 2mπ0α0))− λ|ε−1| − λ|εK |

If (λ−2mπ0α0) < 0 then let ρI be the minimum of λ and 2mπ0α0−λ, then dV
dt
< −ρIV

otherwise, if (λ− 2mπ0α0) ≥ 0 then

dV

dt
=− (λ−mπ0α0)

( K−1∑
j=(1,0)

|εj|+ |ε−1| − |ε−2|+ |εK |
)

−mπ0α0V

≤−mπ0α0V

Where the second inequality follows from ε−2 =
∑K

j=0 εj + ε−1 and the triangle in-
equality.
So ρI = α0mπ(0) and dV

dt
< −ρIV .

By symmetry we can make the same conclusion when
(
ε−1 > 0, ε0 < 0, ε2 > 0

)
. Next

we consider the case ,
Case II: ε0 > 0, ε−2 > 0

This time we can bound the derivative of V1 by,

dV1
dt

<−
K−1∑
j=(1,0)

|εj|
(
λ+ αj(1− γ)

)
− λ|εK |

+mε−2

( j=K−1∑
εj>0,j=0

πjαj −
j=K−1∑
εj<0,j=0

πjαj

)
− λ|ε−2|
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≤− λ
K−1∑
j=(1,0)

|εj| − λ|εK | − |ε2|(λ−
1

λ+ 1
)

+mε−2

( j=K−1∑
εj>0,j=0

πjαj −
j=K−1∑
εj<0,j=0

πjαj

)
Next bounding the derivative for V2 :

dV2
dt

<−
K−1∑
j=0)

|εj|
(
λ+ αj(1− γ)

)
− λ|εK |

+mε−2

( j=K−1∑
εj>0,j=0

πjαj −
j=K−1∑
εj<0,j=0

πjαj

)
− λ|ε−2|

+
K−1∑
j=0

εjαj(1− γ)−m|ε−2|
K−1∑
j=0

πjαj −
1

1 + λ
|ε−2|

≤ − λ
K−1∑
j=(1,0)

|εj| − |ε−2|(λ−
1

λ+ 1
)− λ|εK |

It follows that dV
dt
< −λV . The same can be shown when ε0 < 0, ε2 < 0. The last

case we shall consider is,
Case III:

(
ε−1 > 0, ε0 > 0, ε2 < 0

)
The derivative for the Lyapunov function is:

dV

dt
:=
dV2
dt

+
d|ε−1|
dt

<− λ
1,K∑

j=(1,0)

|ε1,j|+ |ε2|(λ−
1

λ+ 1
)− λ|ε−1|

− |ε2|
1

(λ+ 1)

≤− λ
K−1∑
j=(0)

|εj|+ |ε2|(λ−
2

λ+ 1
)− λ|ε−1|

=λ
K∑

j=(0)

|εj|+ |ε2|(λ−
2

λ+ 1
)− λ|ε0|

If (λ − 2
λ+1

< 0 then let ρI be the minimum of λ and 2
λ+1
− λ), then dV

dt
< −ρIIIV

otherwise, if (λ− 2
λ+1

) ≥ 0 then

dV

dt
=− (λ−mπ(0)α0)

( K−1∑
j=(0)

|εj|+ |ε−1| − |ε−2|+ |εK |
)

−mπ(0)α0V

≤−mπ(0)α0V
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So ρIII = 1
λ+1

and dV
dt
< −ρIIIV . The same can be shown when(

ε−1 < 0, ε0 < 0, ε2 > 0
)

.
Therefore, by setting ρ to be the minimum of λ, ρI and ρIII we can ensure that

the drift of the lyapunov function is given by dV
dt

= −ρV

B.2.1 Proof of lemma (4)

Proof. Our proof of this lemma will be similar to the proof of Proposition (1). Recall
that α∗i is the optimal policy for state i which ranges from {0, 1, 2....}. As in Proposi-
tion (1), we use ui(α) to indicate that at state i a device uses the policy α while fixing
u∗−i, that is, the valuation function at each other state remains fixed at its optimal
value. Then, by definition u∗i := ui(α

∗
i ).From Proposition (1) we know,

u∗i > u∗i+1

Now consider ui(α
∗
i+1). that is the optimal policy for state i+1 used in state i, clearly,

u∗i − u∗i+1 ≥ ui(α
∗
i+1)− u∗i+1

. Similarly, we can upper bound u∗i − u∗i+1 by u∗i − ui+1(α
∗
i ). This gives us,

u∗i − ui+1(α
∗
i ) ≥ u∗i > u∗i+1 ≥ ui(α

∗
i+1)− u∗i+1

Substituting the expressions above, we get:

(Ri −Ri+1)(1− γ)α∗i + β1/δ(u∗i+1 − u∗i+2)

A− αiβγ + λ+ 1/δ
≥

(Ri −Ri+1)(1− γ)α∗i+1 + β1/δ(u∗i+1 − u∗i+2)

A− αi+1βγ + λ+ 1/δ

Note that,

h(x) :=
(Ri −Ri+1)(1− γ)x+ β1/δ(u∗i+1 − u∗i+2)

A− xβγ + λ+ 1/δ

is a monotonically increasing function in x while A − xβγ + λ + 1/δ is greater than
zero. Therefore,

h(α∗i ) ≥ h(α∗i+1) ⇐⇒ α∗i ≥ α∗i+1

B.2.2 Proof of Proposition (2)

Proof. Fix ε̃ > 0. Let u∗i = ui(α
∗) as in the notation above and let ũi = ui(α

K). We
will begin by showing u∗0 − ũ0 < Cuε̃ for some constant Cu for sufficiently large K
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when β < β0.

u∗0 − ũ0 =

(
βλ

λ+ 1/δ + α0(1− γβ)
(u∗0 − ũ0)

+ η
α0(1− γ)

λ+ 1/δ + α0(1− γβ)
(u∗0 − ũ0)

)
+

β1/δ

λ+ 1/δ + α0(1− γβ)
(u∗1 − ũ∗1)

< β

(
λ

λ+ 1/δ
+ η

)
(u∗0 − ũ−1)

+
βλ

λ+ 1/δ

(
β

(
λ

λ+ 1/δ
+ η

)
(u∗0 − ũ0)

+
βλ

λ+ 1/δ
(u∗2 − ũ2)

)
Expanding u∗j − ũj for j > 0 to j < K we get:

u∗0 − ũ0 <β
(

λ

λ+ 1/δ
+ η

)
(u∗0 − ũ0)

K∑
i=0

( β1/δ

λ+ 1/δ

)i
+
( β1/δ

λ+ 1/δ

)K
(u∗K+1 − ũK)

<β

(
λ

λ+ 1/δ
+ η

)
(u∗0 − ũ0)

∞∑
i=0

( β1/δ

λ+ 1/δ

)i
+
( β1/δ

λ+ 1/δ

)K
(u∗K+1 − ũK+1)

For sufficiently large K, we can ensure that
( β1/δ
λ+1/δ

)K/2 R
1−β < ε̃.

u∗0 − ũ0 <β
(

λ

λ+ 1/δ
+ η

)
1

1− β 1/δ
1/δ+λ

(u∗0 − ũ0) + ε̃

<β

(
1 + η

λ+ 1/δ

λ

)
(u∗0 − ũ0) + ε̃

If we fix β0 to be such that β0
(
1 + η λ+1/δ

λ

)
< 1, then (u∗0− ũ0) < Cuε̃. We can use the

same reasoning to show that u∗i − ũi < Cuε̃ for 0 < i < K/2. We have shown that for
sufficiently large K we can ensure that |u∗i − ũi| < Cuε̃ for 0 ≤ i < K/2.

For any policy x := {x0, x1, x−2.....} with fixed γ, one may use the detail balance
equations derived from the Markov chain in Fig (1)
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to find the fraction of time πj a device spends in state j given by:

π0 =
λ(1− π−2)

λ+ 1/δ + x0(1− γ)

and

πj = πj−1
1/δ

λ+ 1/δ + xj(1− γ)

for j > 0.
and

π−1 =
1

λ(1 + λ)
π−2

This gives us the following equation for the fraction of time spent in state −2 by a
device,

1 = π−2(1 +
1

λ(1 + λ)
) + (1− π−2)

λ

1/δ + λ+ x0(1− γ)

×
∞∑
i=0

Πi
j=1

1/δ

1/δ + λ+ xj(1− γ)
.

.
Now set,

κ := 1 +
1

λ(1 + λ)
(B.1)

and

θ(x) :=
λ

1/δ + λ+ x0(1− γ)

∞∑
i=0

Πi
j=1

1/δ

1/δ + λ+ xj(1− γ)
(B.2)

and the fraction of time a device spends in state −2 is given by :

π−2(x) =
1− θ(x)

κ− θ(x)
(B.3)

. Clearly, there exists K large enough so that |π−2(α) − π−2(α
(K))| < ε. since πi

converges geometrically to zero we can ensure that,

• Kε→ 0 as K tends to infinity.

•
∑∞

i=K/2 πi < ε for both α∗ and αK .

• |πi(α∗)− πi(αK)| < ε for all 0 < i < K/2.

• As above |u∗i − ũi| < ε for all 0 < i < K/2.
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Consider, EX{u(X,α∗)} − EX̃{u(X̃, α(K))}

= |
∑K/2

i=1

(
πi(α)u∗i − pii(αK)ũi

)
+ π0(α

∗)u∗0 − π0(αK)ũ0

+ π−2(α
∗)u−2 − π−2(αK)ũ−2 +

∑∞
i=K/2+1

(
πi(α

∗)u∗i − πi(αK)ũi
)
|

Bounding u∗i (x) by R
1−β , replacing

πi(α
∗)u∗i − πi(αK)ũ∗i

with
πi(α

K)(u∗i − ũi) + u∗i (πi(α
∗)− πi(αK))

and using the triangle inequality we get,

EX{u(X,α∗)} − EX̃{u(X̃, α(K))}

<

K/2∑
=0

|πi(α∗)− πi(αK)|ũ∗i +

K/2∑
=0

|u∗i − ũi|πi(αK)

+ |π−2(α∗)− π−2(αK)|u−2 + |π0(α)− π0(αK)|u0
+ |u∗0 − ũ0|π0(αK) + |u∗−2 − ˜u−2|π−2(αK) +R

ε

1− β

< ε

(
R

1− β
(
K

2
+ 2) + 1

)
for sufficiently large K we then have for any ε̂ > 0,

EX{u(X,α∗)} − EX̃{u(X̃, α(K))} < ε̂

B.3 Existence of LMFNE

Proving T1 is Lipschitz in α under the L1-norm and hence in the ∞-norm turns
out to be much simpler than showing T2 is Lipschitz in γ. Therefore, we start by
showing that T1 is Lipschitz in α in the next lemma while proving T2 is Lipschitz over
the two lemmas following that.

Lemma 11. For T1 and policy α as defined in Section (3.2), T1 is Lipschitz in ‖α‖∞.

Proof. From equation (B.1), (B.2) and (B.3) in section 3.3. The fraction of time spent
for a device to be in state (−2) is given by:

π−2 =
1− θ(α)

κ− θ(α)

We now examine ‖∂π−2

∂αi
‖ for all i∣∣∣∣∂π−2∂αi

∣∣∣∣ =

∣∣∣∣κ+ 1− 2θ(α)

(κ− θ(α))2

∣∣∣∣∣∣∣∣∂θ(α)

∂αi

∣∣∣∣.
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We can explicitly compute

∣∣∣∣∂θ(α)∂αi

∣∣∣∣ as follows:

∣∣∣∣∂θ(α)

∂α0

∣∣∣∣ =
(1− γ)

λ+ 1/δ + α0(1− γ)

λ

1/δ + λ+ α0(1− γ)
×

∞∑
k=0

Πk
j=1

1/δ

1/δ + λ+ αj(1− γ)

and∣∣∣∣∂θ(α)

∂αi

∣∣∣∣ =

(1− γ)

λ+ 1/δ + αi(1− γ)

λ

1/δ + λ+ α0(1− γ)

Πi
n=1

1/δ

1/δ + λ+ αn(1− γ)

∞∑
k=0

Πk
j=1

1/δ

1/δ + λ+ αi+j(1− γ)
. (B.4)

Next we will bound

∣∣∣∣∂θ(α)∂αi

∣∣∣∣ simply by replacing every αi with 0 in the expression above

to obtain : ∣∣∣∣∂θ(α)

∂α0

∣∣∣∣ ≤ (1− γ)

λ+ 1/δ

λ

1/δ + λ

∞∑
k=0

(
1/δ

1/δ + λ

)k
=

(1− γ)

λ+ 1/δ

. Similarly, we have ∣∣∣∣∂θ(α)

∂αi

∣∣∣∣ ≤ (1− γ)

λ+ 1/δ

(
1/δ

1/δ + λ

)i
.

Finally, summing the bounds we get:

∞∑
i=0

∣∣∣∣∂π2∂αi

∣∣∣∣ ≤ ∣∣∣∣κ+ 1− 2θ(α)

(κ− θ(α))2

∣∣∣∣ (1− γ)

λ+ 1/δ

∞∑
i=0

(
1/δ

1/δ + λ

)i
The gradient is therefore bounded. π2 is Lipschitz in α under the l1 norm and hence,
Lipschitz in the l∞ norm.

Next we show ui is Lipschitz in γ for fixed α.

Lemma 12. If β < β0, then ui is Lipschitz in γ for all i.

Proof. Consider, ui(α
∗
i (γ), γ), where α∗i (γ) is the optimal policy at state i given the

fraction of busy channels γ. Following the notation in Proposition (1), ui(αi, γ̂)
indicates the value of the utility for state i given a fraction of busy channels γ̂ when
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the rate is equal to αi. Concretely, if {u∗i (γ̂)}i is the optimal value function given γ̂
then,

ui(αi, γ̂) =
1

1/δ + λ+ A− γ̂βαi
{

(1− γ̂)αi
(
Ri + βu∗−2(γ̂)

)
−c(αi) (αi + λ+ 1/δ) +

β

δ
u∗i+1(γ̂) + βλu∗0(γ̂)

}
u∗i is both an implicit and explicit function of γ, computing how α∗i (γ) varies with γ
would immediately tell us how T2 varies with γ. However, to do so we need to first
compute also compute how u∗i varies with γ. We will avoid this problem as follows;
Let us define 4i,γ1,γ2 by:

4i,γ1,γ2 := |ui(α∗i (γ1), γ1)− ui(α∗i (γ2), γ2)|

For fixed (γ1, γ2), (u1,i(α
∗(γ1), γ1), ui(α

∗(γ2), γ2)) are two positive real numbers. With-
out loss of generality assume ui(α

∗(γ1), γ1) > ui(α
∗(γ2), γ2). Then,

4i,γ1,γ2 =|ui(α∗i (γ1), γ1)− ui(α∗i (γ2), γ2)|
≤|ui(α∗i (γ1), γ1)− ui(α∗i (γ1), γ2)|

For ease of notation in the rest of the section, let

D := A+ λ+ 1/δ,

let

L(α, γ) :=
β

δ
u∗i+1 + βλu∗0 − c(α)(α + λ+ 1/δ)

and let α = α∗(γ1).
Now,

ui(α, γ1) =
1

D − αβγ1

(
α(1− γ1)(Ri + βu∗−2(γ1)) + L(α, γ1)

)
The first term can be rewritten as,

(1− γ1)α(Ri + βu∗−2(γ1)) =(1− γ2)α(Ri + βu∗−2(γ1)) +Ri(γ2 − γ1)α

=(1− γ2)α(Ri + βu∗−2(γ2) + β4−2,γ1,γ2) +Ri(γ2 − γ1)α

=(1− γ2)α(Ri + βu∗−2(γ2) + ηβ240,γ1,γ2) +Riα(γ2 − γ1)

and the second term, L(α, γ1) can be rewritten as,

L(α, γ1) = L(α, γ2) +
β

δ
4i+1,γ1,γ2 + βλ40,γ1,γ2

Substituting into
ui(α(γ1), γ1)− ui(α(γ1), γ2)
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we get,

1

D − αβγ1
Ri(γ2 − γ1)α+(

α(1− γ2)(Ri + u∗−2(γ2)) + L(α, γ2)

)
×[

1

D − αγ1β
− 1

D − αγ2β

]
+

1

D − αγ1β
×[

(1− γ1)αβ2η40,γ1,γ2 + β1/δ4i+1,γ1,γ2 + βλ40,γ1,γ2

]
Collecting the terms with γ2 − γ1, we get:

(γ2 − γ1)
[

1

D − αβγ1
Riα +

(
αβ

(D − αγ1β)(D − αγ2β)

)
×

(
α(1− γ2)(Ri + u∗−2(γ2)) + L(α, γ2)

)]
Note that 1

D−αγ2β (1 − γ2)α(Ri + u−2(γ2)) + L(α, γ2) is bounded above by R0

1−β . This

gives us the following bound,

(γ2 − γ1)
[

1

D − αβγ1
Riα +

(
αβ

(D − αγ1β)(D − αγ2β)

)
×(

α(1− γ2)(Ri + u−2(γ2)) + L(α, γ2)

)]

≤ (γ2 − γ1)
α

D − αγ1β

(
R0 +

βR0

1− β

)
= (γ2 − γ1)

α

D − αγ1β
R0

1− β
We can bound α

D−αγ1β
R0

1−β by a constant C1 that is independent of i or γ. Similarly

let φ0 = 1
D−αγ1β

(
(1− γ1)αβ2η+ βλ

)
and let φ1 = β1/δ

D−αγ1β . Note, both φ0 and φ1 are

less than 1, we now have:

4i,γ1,γ2 ≤ C1|γ1 − γ2|+40,γ1,γ2φ0 +4i+1,γ1,γ2φ1

Expanding 4i+1,γ1,γ2 in the same way as we expanded 4i,γ1,γ2 we get,

4i,γ1,γ2 ≤ C1|γ1 − γ2|+ φ040,γ1,γ2 + φ1C1|γ1 − γ2|
+φ0φ140,γ1,γ2 + φ2

14i+2,γ1,γ2
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This leads us to the following bound for any 4i,γ1,γ2 :

4i,γ1,γ2 ≤
C1

1− φ1

|γ1 − γ2|+
φ0

1− φ1

40,γ1,γ2

In particular this bound holds for 40,γ1,γ2 :

40,γ1,γ2 ≤
C1

1− φ1

|γ1 − γ2|+
φ0

1− φ1

40,γ1,γ2

with a little shuffling we get:

40,γ1,γ2 ≤
C1

1− φ0 − φ1

|γ1 − γ2|

Note that for β < β0, φ0 + φ1 < 1 for all γ1 and γ2. Thus, for any γ1 and γ2,
40,γ1,γ2

γ2−γ1
is bounded.

We will use this result to prove that T2 is Lipschitz in γ. Consider some fixed γ1,

let α(1) := {α(1)
i }i and α(2) := {α(2)

i }i be the optimal policy when the fraction of busy
channels are γ1 and γ2 respectively. Additionally, let α(j), with j = {1, 2} be in PK .

If γ1, γ2 are such that, |γ1 − γ2| < ε then, from the lemma above, supi |ui(γ1, α
(1)
i ) −

ui(γ2, α
(2)
i )| < C1ε. We are now ready to prove that T2 is continuous in γ.

Lemma 13. The map T2 is continuous in γ.

Proof. Using the convention from lemma 12 we have,

ui(α
(1)
i , γ1) =

1

D − α(1)
i βγ1

(
α
(1)
i (1− γ1)(Ri + βu∗−2(γ1))

+ L(α
(1)
i , γ1)

)
Similarly,

ui(α
(2)
i , γ2) =

1

D − α(2)
i βγ2

(
α
(2)
i (1− γ2)(Ri + βu∗−2(γ2))

+ L(α
(2)
i , γ2)

)
Using the first order Taylor expansion of 1

D−α(2)
i βγ2

about γ1 for sufficiently small

ε we get,
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ui(α
(2)
i , γ2) =

[
1

D − α(2)
i βγ1

+
εα

(2)
i β

(D − α(2)
i βγ1)2

]
×(

α
(2)
i (1− γ2)(Ri + βu∗−2(γ2)) + L(α

(2)
i , γ2)

)
From lemma 12,

L(α
(2)
i , γ2) < L(α

(1)
i , γ1) + C1ε(βλ+ β1/δ)+

c(α
(1)
i )(α

(1)
i + λ+ 1/δ)− c(α(2)

i )(α
(2)
i + λ+ 1/δ)

similarly,

α
(2)
i (1− γ2)(Ri + βu∗−2(γ2)) <

α
(1)
i (1− γ1)(Ri + βu∗−2(γ2)) + Aε(Ri + βu∗−2(γ2)) + (α

(2)
i − α

(1)
i )(1− γ2)(Ri + βu∗−2(γ2))

We can use these upper bounds to bound ui(α
(2)
i , γ2).

u∗i (α
(2)
i , γ2) <

[
1

D − α(2)
i βγ1

+
εα

(2)
i β

(D − α(2)
i βγ1)2

]
×

(
α
(1)
i (1− γ1)(Ri + βu∗−2(γ1)) + L(α

(1)
i , γ1)+

Aε(Ri + βu∗−2(γ2)) + C1ε(α
(1)
i (1− γ1)β + βλ+ β1/δ)+

(α
(2)
i − α

(1)
i )(1− γ2)(Ri + βu∗−2(γ2)+

c(α
(1)
i )(α

(1)
i + λ+ 1/δ)− c(α(2)

i )(α
(2)
i + λ+ 1/δ)

)
Note that each term that is multiplied with ε is bounded. We will use C2 for a bound
on the sum of these terms. This gives us,

ui(α
(2)
i , γ2) <

[
1

D − α(2)
i βγ1

]
×(

α
(1)
i (1− γ1)(Ri + βu−2(γ1)) + L(α

(1)
i , γ1)+

(α
(2)
i − α

(1)
i )(1− γ2)(Ri + βu∗−2(γ2)+

c(α
(1)
i )(α

(1)
i + λ+ 1/δ)− c(α(2)

i )(α
(2)
i + λ+ 1/δ)

)
+ C2ε
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From lemma 12,

|ui(α(1)
i , γ1)− ui(α(2)

i , γ1)| < C1ε

Substituting the upper bound obtained into the inequality above we get,

∣∣∣∣[ 1

D − α(1)
i βγ1

− 1

D − α(2)
i βγ1

]
×(

α
(1)
i (1− γ1)(Ri + βu−2(γ1)) + L(α

(1)
i , γ1)

)
+

1

D − α(1)
i βγ1

(
(α

(2)
i − α

(1)
i )(1− γ2)(Ri + βu−2(γ2)+

c(α
(1)
i )(α

(1)
i + λ+ 1/δ)− c(α(2)

i )(α
(2)
i + λ+ 1/δ)

)∣∣∣∣
< (C1 + C2)ε

It follows that supi |α
(1)
i − α

(2)
i |

γ(1)→γ(2)−−−−−→ 0. From Proposition (2), there are only

finitely many non zero αi, this means that
∑∞

i=0 |α
(1)
i − α

(2)
i | ≤ K supi |α

(1)
i − α

(2)
i |

which converges to zero as γ(1) converges to γ(2). Thus, α is continuous in γ under
the L1 norm. Therefore, the map T2 is continuous in γ.

B.3.1 Proof of Theorem (9)

Proof. Let us begin by fixing K ≥ K1. For any policy, x = {x0, x1, ...xK−1, 0, 0, ...} ∈
PK , by Theorem (1), the system converges to the mean field limit, given by:

π0(x) =
λ

λ+ 1/δ + x0(1− γ)

πj(x) = πj−1(x)
1/δ

λ+ 1/δ + xj(1− γ)

for K > j > 0, and

πK(x) =
1

λδ
πK−1(x)

Clearly, πi(x) is geometrically decreasing in i upto K−1 with rate smaller than 1/δ
λ+1/δ

.

Hence, for any η > 0, there exists a finite N(η) independent of K (order, O(log(1/η))
such that

N(η)∑
j=−2

πj(x) > 1− η

Since, this is true for any x ∈ PK and PK ⊂ PK+1 ⊂ PK+2..., we know that {π(x)|x ∈
PK} is tight (there exists a compact set, S, such that the measure of S is greater than
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or equal to 1− ε i,e, , πK(x)(S) =
∑

j∈S πj(x) > 1− ε for all x ∈ PK). Since our state
space is a separable metric space under the topology of point-wise convergence, by
Prokhorov’s theorem, {π(x)|x ∈ PK} is relatively compact and metrizable. Similarly,
note that the sequence of MFNE, {πKi} is relatively compact. Therefore, the sequence

{πKi}, contains a convergent subsequence, πKij → π∗. Defining a sequence, j(i) = ij
completes the first part of the theorem.

The map Tproj : π → γ is continuous, since γ = π−2 for any distribution π (it is
simply the projection map). Now, T2 is continuous in γ hence, T2 ◦Tproj is continuous
in π. The sequence {T2 ◦ Tproj(πKi)} must also be relatively compact. Since, T2
is continuous and maps from [0, 1] → l∞ under the supremum norm, it must be
continuous in the topology of pointwise convergence. Therefore, the sub-sequence
T2 ◦ Tproj(πKji ) is convergent and converges to α = {α0, α1...}. The fixed point for
the system of ODEs is simply the map T1(α) which is also convergent under the weak
topology.
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APPENDIX C

INTRODUCTION TO MEAN FIELD GAME
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C.1 A general Model

Suppose we start with a set of players P , for the sake of an initial model. We will
start with a finite set, #(P ) = N . Each player can choose an action αi from an action
set A. The agents inhabit a state space X, for example in a congestion game where
the agents have to travel to a location, the state space maybe their position. To be
more concrete, we assume our state space is X ⊂ Rd for some finite d. For the rest of
the paper we will assume that an agents state evolves as a Brownian motion which
is dependent on the action taken by the player as well as the state. Mathematically,
if a player i takes action αit we state that a given players state changes based on the
stochastic differential equation,

dX i
t = b(t,X i

t , α
i
t, X

−i
t )dt+ σ(X i

t , α
i
t)dW

i
t (C.1)

Where W i
t is a k× 1 dimensional Wiener process. A small side note, the action set is

the set of all controls for t ≥ 0 and is W i
t adapted. Each player, i has a cost function

Ji that he wishes to minimize, if we wish to consider a congestion game, then the cost
function can be a model for fuel efficiency.
Suppose the N agents fix their actions to be (α1, α2, ...αN), let αi denote the action
chosen by player i and let a−i denote the actions taken by all the other agents,
additionally assume that the initial position of the agents is fixed and given. Then,
according to Lasry and Lions (2007) we can define Ji from AN → R by,

J i(αi, α2...αN) = inf
αi
E

[∫ T

0

Li(X i
t , α

i
t) + F i(X1

t , ...X
N
t )dt

]
(C.2)

We assume that Li(X i
T , α

i
T ) + F i(X1

T , ...X
N
T ) are given final values for the equation

above. Here, we assume that F i is Lipschitz on XN , Li is Lipschitz in xi ∈ X and
uniformly in αi bounded, finally,

inf
xi
Li(xi, αi)/|αi| → ∞ (C.3)

when |α| → ∞. For a full exposition on the necessity of these conditions to find
the optimal control, the reader is directed to chapter 3, Evans (2010) section (3.3.2)
onward or Chapter 4, Yong and Zhou (2010). A Nash point α∗ here is defined in the
conventional sense, for fixed α−i,

J i(αi, α−i) ≥ J i(α∗, α−i) (C.4)

Remark 7.

• Here we will force σ in (C.1) to lie in L2([0, T ],Rd×k) (under some appropriate
norms) and we would like σ to always remain positive definite. The idea is to
use the Burkholder-Davis-Gundy Inequality inequality to show uniqueness of
(C.1) for fixed αi.
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• Here, if mi(t) denotes the law of the random variable X i
t then, at first glance

it would appear that the evolution of mi(t) will be very hard to track. The
reason for this specific form of (C.1) is under certain conditions we will be able
to assume asymptotic independence of the agents state distribution, that is, if
mN is the joint distribution of the agents then, under suitable conditions we
are able to replace the joint distribution with the product distribution, Πjm

j
t .

In statistical physics this phenomenon is called Propagation of chaos . The
most famous text on the topic is Sznitman’s book, Sznitman (1991).

It is clear here that both (C.1) and (C.2) will depend on the joint distribution of
all the agents, mN . We would like to examine the asymptotic regime, N → ∞ to
approximate the behaviour of individual agents in order to simplify the problem. In
the regime where N → ∞ if we can show mN → m for some appropriate limiting
distribution m we may have some hope to jointly solve the (C.1) and (C.2). It turns
out that this is too much to ask under the most general conditions, the joint evolution
of the system will follow some variant of the fokker plank equation. We will now try
to simplify (C.2).
Let,

m :=
1

N − 1

∑
j 6=i

δxj (C.5)

denote the empirical distribution of the agents. Then, we will replace F i by an
operator V [m](x) from the space of probability measures on X into a bounded set of
Lipschitz functions on X,

V [
1

N − 1

∑
j 6=i

δxj ](x
i) = F i(x1, x2...xN) (C.6)

A good example of a class of such functions V [m](x) := F (K ? m(x), x) where K is
any Lipschitz function on Rd×X → R and K?m(x) :=

∫
X
K(x, y)m(y)dy. Addition-

ally we will assume that the operator V is continuous in m, that is, V [mn] converges
to V [m] whenever, mn converges to m.

Remark 8.
Note, whenever X is compact, the set of empirical measures is always tight (in

the sense of Prokhorov) and therefore, the set of empirical distributions is always
relatively compact. Thus, so long as V is continuous, it maps a relatively compact
set to a relatively compact set. This fact will come particularly handy when we want
to talk about the existence of convergent sub-sequences!

Further, we will perform the same treatment on the motion of the agents,

dX i
t = b(t,X i, α,m)dt+ σ(t,X i, αi)dWt (C.7)

It turns out that given the states evolve according to the Brownian motion described
above we cannot have a more general setup. For example, we cannot really allow σ to
depend on any other state except X i

t and αit. Essentially, this allows us to interpret
states evolving according to the optimal control plus some state, action dependent
noise given by a Wiener process W i

t .
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We will now summarize the model we have come up with so far. Since all the
cost functions are now the same, the agents are homogeneous. We can then com-
pute the solution of the problem described so far by computing the solution for one
representative agent.

Representative agent’s problem

For fixed empirical distribution m, solve:

J(a(.),m) = inf
a∈A

E

[ ∫
Li(X i

t , α
i
t) + V [m](x)

]
(C.8)

This equation will be solved backwards since, at time T we are given the terminal
conditions for the control problem. Subject to,

dX i
t := b(t,X i, αi,m)dt+ σ(t,X i, αi)dW i

t (C.9)

We are given initial conditions for this SDE which we can use to deduce the trajectory
of any agent. Finally given the initial positions of all the agents it is now possible to
compute the empirical distribution of the system. Thus, given the initial conditions
we can solve in the forward direction the combined distribution of the agents m.

Remark 9.

• Readers familiar with the Stochastic Maximum principle will notice that the
notion of solving the system forward and backward is commonly referred to as
the forward-backward stochastic differential equation.

• Instead of considering N − 1 individual agents the representative agent now
computes the combined effect of the other players through the empirical mea-
sure. In the limit as N tends to infinity this measure may be easier to model
using either ODEs or PDEs. The modelling of the limiting behaviour in this
way is referred to as our mean field approximation.

• In the remark above we talked about the agent approximating the combined
effect of the other agents using the limiting behaviour as N → ∞. However,
technically the model we will be using is in fact going to assume the continuum
limit of agents rather than the more intuitive countable limit. It turns out that
in scenarios where we can use propagation of chaos, technically either forms
of infinite might be used although this is far from the scope of this report.
Interested readers may check Carmona (2004).

A mean field game equilibrium is a consistency condition (α∗,m∗) such that given
distribution m∗ an agent chooses control α∗ and given all agents choose α∗ the com-
bined density function of the agents is given by m∗

96



C.2 Hamilton Jacobi Bellman Equation

Let the rest of the actions of the agents be fixed. Additionally, the agent believes
that he might not be able to influence the empirical distribution m. This problem
boils down to a single agent trying to optimize their path in space time with respect
to a fixed cost function.
We are going to use the calculus of variation for the deterministic simple case to
introduce (at least heuristically) the method the agent may use to solve their problem
(most of the derivation for this section and the next can be found both in Evans (2010)
and TT (2010)). For now let us simplify the problem as follows, let the agent choose
his velocity vector at every instance in time, this is his policy α. We will also simplify
the motion of the agent, he now simply moves as dx = αdt,the cost function is now:

J(x0) = inf
α

∫ T

0

L(α)dt+ J(xT )

where xT is some arbitrary end point and x0 is a given initial position at time 0. Now
we can generalize the initial point and the initial time, instead of starting at 0 we
now start at some arbitrary time t0 between 0 and T . Let, (with a lot of abuse of
notation)

J(x0, t0) = inf
α

∫ T

t0

L(α)dt+ J(xT )

Presumably, given that the agent starts at (x0, t0) and solves the problem correctly
at this time, he moves to a new location, x0 +αdt, therefore, the agents problem now
is to solve the problem at (x0 + αdt, t0 + dt), combining the two we have,

J(x0, t0) = inf
α
J(x0 + αdt, t0 + dt) + L(α)dt

using first order Taylor expansion,

J(x0, t0) = inf
α

[
J(x0, t0) + dt

[∂J(x0, t0)

∂t
+ α.∇J(x0, t0) + L(α)

]]
we are choosing α to minimize the expression above, essentially, choosing it such that
we minimize the term multiplied by dt should yield the minimizer. Now if we further
assume the convexity of L we should be able to obtain a unique minimizer,

α∗ = inf
α

[∂J(x0, t0)

∂t
+ α.∇J(x0, t0) + L(α)

]
Define the Hamiltonian for L by,

H(p) := sup
α
α.p− L(α)

then, −H(∇J(t0, x0)) is going to minimize α.∇J(x0, t0) + L(α), therefore, we can
equivalently write the problem as, find α such that,

−∂J(x0, t0)

∂t
+H(∇J(t0, x0)) = 0
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however, our choice of (x0, t0) are arbitrary, this will lead us to the Hamilton Jacobi
Bellman equation,

−∂J
∂t

+H(∇J) = 0 (C.10)

This equation is being solved back in time starting from T onward. From the method
of characteristics for this PDE we obtain the following ODE,

dx

dt
(s) = −∂H

∂p
(p(s), x(s)) = α(s) (C.11)

dp

dt
(s) =

∂H

∂x
(p(s), x(s)) (C.12)

While the equations derived above are a useful tool in optimal control, we need to ex-
port this process to a stochastic setting. Suppose for the problem above, additionally,
the motion is now, dx = αdt+ σdWt. The cost function remains the same, except we
will need to take an expectation over the trajectory of the agent,

J(x0) = inf
α
E

[ ∫ T

0

L(α)dt+ J(xT )

]
using the same treatment as before, we have, the change in position for a small amount
of time is now (x0 + αdt+ σdWt, t0 + dt):

J(x0, t0) = inf
α
EJ(x0 + αdt+ σdWt, t0 + dt) + L(α)dt

writing out first order terms in t and second order terms for the Wiener process, one
may use Ito’s formula to obtain (due to quadratic variation of the brownian motion):

J(t0, x0) =E

[
J(x0, t0) +

∂J(x0, t0)

∂t
dt+ α.∇J(x0, t0)dt+ σdWt.∇J(x0, t0)

+
σ2

2
∇2J(x0, t0)dW

2
t + L(α)dt

]

Now, we are given x0, t0 and we have inherently assumed that our policy is Ft adapted,
so we can compute the expectation, this means the Wt term will go to 0 and the W 2

t

term will become t,

J(t0, x0) = J(x0, t0) +

[
∂J(x0, t0)

∂t
+ α.∇J(x0, t0) +

σ2

2
∇2J(x0, t0) + L(α)

]
dt

Substituting our definition of the Hamiltonian and replacing σ2/2 by ν we now obtain
what is called the Viscous Hamilton Jacobi Bellman equations,

−∂J
∂t
− ν∆J +H(∇J) = 0 (C.13)
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C.3 Fokker Plank Equation

As in the previous section, we are going to begin with a simple model and move
up toward a more complete model for our setting. It should be noted here that we are
inherently assuming that the agents are identical in cost function and in the functions
b and σ and in our setting we already have a propagation of chaos result available.
It should also be noted that our derivation will be an informal sketch rather than a
complete formal proof.
Rather than deal with each of the agents separately, we will pass to a continuum limit
N →∞ and consider just the (normalised) density function m(t, x) of the agents,
which is a non-negative function with total mass

∫
Rdm(t, x) dx = 1 for each time t.

Informally, for an infinitesimal box in space [x, x+ dx], the number of agents in that
box should be approximately Nm(t, x)|dx|.
Suppose the velocity at each point in space time, α(x, t) is given to us as well as
the initial distribution of the agents m(0). Let G be some convenient smooth test
function, we are looking for ways to describe m as a weak solution (often called
distributional solution in PDEs) concept to some PDE. We will show how this can
be done using G.
Intuitively, ∫

Rd
m(t, x)G(x) dx ≈ 1

N

N∑
i=1

G(xi(t))

Taking a time derivative and noting that G is explicitly independent of time we get,∫
Rd

∂

∂t
(m(t, x))G(x)dx ≈ 1

N

N∑
i=1

α(t, xi(t))∇G(xi(t))

In the continuum limit, the right hand side can be rewritten as,

1

N

N∑
i=1

α(t, xi(t))G(xi(t))→
∫
Rd
α(t, x)m(t, x)∇G(x)dx

integrating by parts we get,

−
∫
Rd
∇.(α(t, x)m(t, x))G(x)dx

Here we are ignoring the constant term from integration by parts since we are free
to choose G(x) to be any candidate function, in particular one whose terminal values
are 0. combining the equations we now have,∫

Rd

(
∂

∂t
(m(t, x)) +∇.(α(t, x)m(t, x))

)
G(x)dx = 0

This gives us the following equation, (known as the advection equation)

∂

∂t
(m(t, x)) +∇.(α(t, x)m(t, x)) = 0
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Using the procedure from the previous section to export this derivation to the stochas-
tic setting, thanks to Ito’s formula we get the Fokker Plank equation :

∂

∂t
(m(t, x)) +∇.(α(t, x)m(t, x))− ν∆m(t, x) = 0 (C.14)

Note this equation is solved forward in time given our initial condition m(0, x) for all
x in the domain.

C.4 Main Results

In the previous section we presented the tools needed to solve our problem. We
are now going to use these tools to present the main result that we have been building
up to so far. We need some general conditions on the state and action space in order
to show our results,

Assumptions for Compactness and smoothness assumptions

1. Assume that the state space X ⊂ Rd is compact.

2. Assume that the action set is A is compact.

3. We are given our agent moves according to (C.9) and has cost function (C.8)

4. With regards to the (C.9), assume that the initial distribution of the agents are
smooth.

5. The cost function (C.8) is convex and at least C1.

6. Let us define our Hamiltonian for by

H(x, p) = sup
α

(p.α− L(x, α)) (C.15)

7. (C.3) holds, additionally assume that

∃θ ∈ (0, 1), inf
x

(
∇H.p+

θ

d
νi(H)2

)
> 0for |p| large (C.16)

,

Theorem 14. Let N agents optimize their costs according to (C.9) and has cost
function (C.8) under the assumptions above, then, for fixed, finite N , Nash equilib-
ria exist given by these 3 N tuples, (λN1 , λ

N
2 ...λ

N
N), (JN1 , ..J

N
N ) and (mN

1 , ..m
N
N) which

satisfy the following:
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• The optimal control policy is given by:

αi = − ∂

∂p
H(x,∇Ji) (C.17)

• Each λNi is bounded in R, JNi is relatively compact in C2(X), mN
i is relatively

compact in the space of probability measures of X. This is true for all N ∈ N

•
sup
i,j

(
|λNi − λNj |+ ‖JNi − JNj ‖∞ + ‖mN

i −mN
j ‖∞

)
→ 0

as N →∞.

• Any converging subsequence (λNki , JNki ,mNk
i )Nk converges to some triplet (λ, J,m)

satisfying
−ν∆J +H(x,∇J) + λ− V [m] = 0 (C.18)

− ∂

∂t
(m(t, x)) +∇.

(
∂

∂p
H(x,∇J)m(t, x)

)
+ ν∆m(t, x) = 0 (C.19)

Remark 10.

• The theorems here can be split into two parts, the first part about the existence
of a Nash equilibrium the second about convergence of the Nash equilibrium to
the continuum limit which are given by the solutions of PDE (C.18) and (C.19).

• The existence theorem can actually be generalized a lot further, however, in the
absence of the second part of the theorem, (the convergence to the solution of
the PDE) the computation of the Nash equilibrium quickly becomes intractable.

• Underlying the main results of the theorem is an inherent result (propagation
of chaos) that allows us to use the law of large numbers to compute, m using
the different mN

i . Infact, in any given problem of mean field games, one of
the hardest parts to prove is the existence of a closed form limit for the joint
distribution of the agents. Our choice of trajectory and cost function play a
critical role in allowing us to leverage results that already exist in statistical
physics. In general the evolution may follow what are called Mckean Vlasov
equations which are not easy to solve. Dawson (1995)

Proof. We will now present a very rough sketch of the proof.

• Let us assume that we have a fixed distribution m for all time t and x.

• A typical agent i can now compute his own best response (optimal control)
policy using

−νi∆vi +H(x,∇vi) + λi =

∫
V [m](x)dm (C.20)

101



• Now, given that each agent has computed their optimal policy, there is a fixed
action set for all the other agents α−i. The agent can now compute the emprical
distribution over time, assuming the initial distributionm0(0, x) is known to him
by computing

−∂mj

∂t
+ νj∆mj +∇.

(
αjmj

)
= 0 (C.21)

• Using the law of large numbers agent i can now extrapolate to find the empirical
distribution of the joint system of the agents m̂.

• We have now defined a map from Φ :M(X) →M(X), where M is the space
of probability distribution on X. Φ(m) = m̂

• Due to assumption 2, using Prokhorov theorem, we know that the set of m is
relatively compact.

• Due to assumption 1, 5, 6 and 7, the Hamilton Jacobi bellman equation says
that the optimal policy for each agent i is unique, what is more the map from
m to αi is continuous. The joint action space AN is compact. Therefore, the
map m→ (α1...αN) is continuous and maps to a relatively compact set.

• Finally, due to assumption 4 the Fokker Plank equations yield a continuous
solution to our problem and the map from (α1...αN) → m̂ is continuous (the
Hopf maximum principle for elliptical operators).

• Therefore, the map from Φ : m → m̂ is continous, the set of distributions
are relatively compact, which implies that the closure is compact and they are
obviously convex. Hence, by Shauder’s fixed point theorem, therefore, for each
N a fixed point exists.

• Due to the relative compactness of the set of distributions, we now know, for
the sequence mN has a convergent subsequence Nk. The last set of results come
from verifying that each agent i will satisfy the equations (C.18) and (C.19).
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