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ABSTRACT

This thesis has improved the quality of the solution to the sparse rewards problem

by combining reinforcement learning (RL) with knowledge-rich planning. Classical

methods for coping with sparse rewards during reinforcement learning modify the

reward landscape so as to better guide the learner. In contrast, this work combines

RL with a planner in order to utilize other information about the environment. As

the scope for representing environmental information is limited in RL, this work has

conflated a model-free learning algorithm – temporal difference (TD) learning – with

a Hierarchical Task Network (HTN) planner to accommodate rich environmental

information in the algorithm. In the perpetual sparse rewards problem, rewards

reemerge after being collected within a fixed interval of time, culminating in a lack of a

well-defined goal state as an exit condition to the problem. Incorporating planning in

the learning algorithm not only improves the quality of the solution, but the algorithm

also avoids the ambiguity of incorporating a goal of maximizing profit while using

only a planning algorithm to solve this problem. Upon occasionally using the HTN

planner, this algorithm provides the necessary tweak toward the optimal solution. In

this work, I have demonstrated an on-policy algorithm that has improved the quality

of the solution over vanilla reinforcement learning. The objective of this work has

been to observe the capacity of the synthesized algorithm in finding optimal policies to

maximize rewards, awareness of the environment, and the awareness of the presence

of other agents in the vicinity.
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PREFACE

In a perpetual sparse reward problem, there is no goal state that can act as an

exit state for the problem. Hence, it is challenging to define a planner with only a

goal state, achieving which marks the completion of the planning task and, a list of

operators to change the predicates of the planning domain to achieve the goal state.

In a learning algorithm, there is not much scope in describing rich environmental

information to make decisions.

According to Freitas et al. (2014) rich environmental information such as ontology

in OWL (Web Ontology Language) can be converted to planners such as Hierarchi-

cal Task Network (HTN) with is a rich representation of the environment. In this

research, I have tried to qualitatively and quantitatively explore how the process

of learning can benefit in its efficiency with a process of information rich planning

synthesized within it. With additional information, the learning process is expected

to have tweaks in finding the optimal policy faster by avoiding states that does not

contribute to the overall reward. The learning process still allows for a good prob-

ability of still exploring new reward yielding states that has not been considered by

the information rich planner.
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INTRODUCTION

Classical reinforcement learning is designed with the objective of learning optimal

policies for particular states. The goal of reinforcement-learning-like algorithms is

to maximize the reward value at every time-step. There is little scope in describing

rich information about the environment in their design. Deployment of reinforcement-

learning-based algorithms in real-world scenarios calls for the need to improve classical

reinforcement with strategies to expedite the speed of the learning process. The ability

to add more information about the environment during reinforcement learning will aid

in utilizing prior knowledge of the environment in searching for the optimal actions

faster.

In this work, the problem of sparse reward has been explored with an attempt

to improve the quality of solving sparse reward problem with classical reinforcement

learning. Sparse reward problem is a category of problem which covers the domain

of multi-robot coverage and multi-robot assignment. Improving the solution strategy

and the quality of solution of sparse reward problem will improve the solution strategy

of multi-robot coverage and multi-robot assignment problem.

From the perspective of knowledge representation, there are certain planning algo-

rithms such as the partially ordered Hierarchical Task Network (HTN) planner that

can encode rich information about the environment. Using only planner to solve the

sparse reward problem by encoding information about the environment is not a viable

solution. This is because the distribution of reward is not initially known. A learning

algorithm is required to learn the key aspects of the environment. In addition to

the information of the distribution of rewards, there are other information about the
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environment that can be known and can be incorporated in the knowledge rich plan-

ning algorithm. Using merely a planner to solve the perpetual sparse reward problem

is not possible as there is no clear terminal or exit condition in a perpetual sparse

reward problem. Since an exit condition or a clearly defined goal state is required for

a planner to operate only using planner to solve this problem is not possible.

The key inspiration of this work has been Freitas et al. (2014) where the authors

delineate an algorithm to extract automated HTN planners from ontologies. Freitas

et al. (2014) uses information about the agent and its environment represented seman-

tically in the form of an ontology. An ontology is a formal description of knowledge

as a collection of concepts within a domain and their relationships. Individuals (in-

stances of objects), classes, properties, and relations, as well as limitations, rules, and

axioms, must all be explicitly specified in order for such a description to be possible.

The ontology was encoded in OWL (Web Ontology Language) as published in the

work by Bechhofer et al. (2004). OWL is based on Description Logics.

This work is a novel approach of integrating reinforcement learning with planning

to solve the perpetual sparse reward problem with goal-conditioned policies. The

goal-conditioned policies are learnt from a planner that encodes information about

the environment. This is the first work to integrate HTN with planning to solve the

problem of sparse rewards. The information that is known about the environment is

used to learn the unknown properties of the environment.

In this work we are exploring the improvement of solution of multi-agent systems

by integrating a planner with a type of reinforcement learning called Temporal Dif-

ference (TD) learning. The improvement in the solution of this multi-agent system

problem will improve the quality of solving the applications of sparse-reward based

multi-agent problems. In Alam and Bobadilla (2020), the authors mention that multi-

robot systems has potential to vastly improve performance in important applications
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such as: search and rescue, surveillance, intrusion detection, environmental monitor-

ing, vacuum cleaning, lawn-mowing, mine sweeping, exploration, automated farming,

and painting. All of the application of multi-agent systems mentioned above are in-

stance of two problems: multi-robot coverage problem and multi-robot assignment

problem. In multi-robot coverage, a team of robot is distributed to ensure desired

coverage of an area. Whereas, according to Michael et al. (2008), in multi-robot as-

signment problem, a group of robot that are equally capable of performing a set of

tasks in the environment is assigned only one task at any given time based on certain

constraints.

The simulation in this work is an abstraction of the persistent monitoring problem

which is a type of multi-robot coverage problem. According to Alam and Bobadilla

(2020), in a persistent monitoring problem, planning and execution of trajectories for

multiple robots is performed to visit a known set of regions of interest continually

by finding collision-free solutions to the robots trajectories.The reward in the form

of bubbles is an abstraction of the value to allocating UAVs to different regions,

matching drone supply to intelligence demand.

An interesting application of coverage that is tracked in the premise of this work

is Chaimowicz and Kumar (2007), where a group of UAVs are used to coordinate and

control a swarm of ground robots. The formation and pose of the controlled swarm

of ground robots is tracked by blimps, which are UAVs. The blimp controller tracks

the pose and shape of its groups to keep the robots inside its field of view. In this

work it is seen that there is an incentive or a value associated with the position of

blimps at certain locations in space. Like in Chaimowicz and Kumar (2007), in my

work, there is a reward associated with being at certain locations in space. However,

the focus of my work is not to define the control law but to improve the quality of

the control law by combining planning with learning.
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There has been prior work in designing a control law for multi-agent systems.

Adepegba et al. (2016) proposes a control law in cooperation with reinforcement

learning for deploying multiple autonomous agents in a two-dimensional planer area.

This work demonstrates the capabilities of using reinforcement learning to develop a

control law for multi-robot coverage problem. This work has inspired me to explore

reinforcement learning to find solution to the multi-robot sparse rewards problem.

Georgievski and Aiello (2015) explains that in planning, only describing the goal of

the problem is a necessary but not a complete solution to planning problems. Adding

information about the environment in the form of boundary conditions, preconditions

to tasks, modular structured task that delineate the predicates upon which a task be-

gins and a hierarchical task structure can add to the quality of the planner’s solution.

Using HTN planner can add all these components to the planner. My work is not the

first to use HTN planners to control multi-robot systems. There has been prior work

done where multi-agent systems are controlled with HTN planners. Zeng et al. (2016)

generates multi-agent path planning with HTN. However, this is an interesting work

where learning has been combined with planning to improve the quality of solution

of the controller. The learning algorithm used in this work is Temporal Difference

Learning. The following section introduces Temporal Difference learning.

1.1 Temporal Difference Learning

Temporal-difference (TD) learning refers to a particular class of model-free re-

inforcement learning (RL) methods which learn by bootstrapping from the current

estimate of the value function. Just like Monte Carlo methods, these methods sample

from the environment to learn about the environment. Sutton and Barto (1987) in-

troduced the concept of temporal difference for classical conditioning behavior. The

work by Tesauro et al. (1995) is one of the earliest use of Temporal Difference learn-
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ing to abridge the gap between real world problems and problems in simulation with

regards to the temporal credit assignment problem.

In TD learning, the state value function of the MDP is given by:

V π(s) = Ea π

{
∞∑
t=0

γtrt(at)

∣∣∣∣∣s0 = s

}

where rt and γt represent the reward and the discount rate at time t, respectively.

V π(s) satisfies the Hamilton–Jacobi–Bellman Equation:

V π(s) = Eπ{r0 + γV π(s1)|s0 = s}

The TD learning algorithm starts with initializing a value table V (s). α is the learning

rate chosen. A chosen policy π is repeated to evaluate the value of state.

V (s)← V (s) + α(r + γV (s
′
)− V (s))

Figure 1.1: Learning With Planning, From (Sutton and Barto, 2018, Chapter 8)

Sutton and Barto (2018) introduce the concept of learning with planning in their

book: Reinforcement Learning. As depicted in Fig. 1.1, after an agent takes an action

following a policy π , the experience of the action can be observed by the agent and

an optimal policy can be identified. The experience observed can also be used to

define a state of the agent that can be used to learn a model of the environment to

find an optimal policy at that state.
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The same diagram in Fig. 1.1 can be used to indicate the position of the planner

in the learning algorithm. However, in this work we are not learning the planner but

we are using the planner for learning.

Akkaya et al. (2019), Savinov et al. (2018), Zhang et al. (2018) and Faust et al.

(2018) are are some distinguished prior works where a planner has been integrated

with learning. Just as in these cited works, my work uses goal-conditioned policies

Kaelbling (1993). Goal conditioned policies take an input state s and a goal state

sg and find output actions or policies to navigate to the goal state. It can be quite

challenging for Reinforcement Learning (RL) to learn policies to solve long-horizon

tasks. However all the algorithms pertaining to goal-conditioned policies is designed

to reach nearby states as a step towards the goal state.

1.2 Sparse Reward Problems

The problem of sparse-reward has been addressed using numerous approaches of

reinforcement learning. The three essential approaches for solving this kind of problem

are curiosity driven methods, curriculum learning and auxiliary tasks. The agent is

encouraged to visit unseen states that will help the agent to identify reward tasks. A

notable work in curiosity driven method is the work by Pathak et al. (2017), where the

exploration problem is solved by encouraging the agent to explore the environment

such that the agent chooses actions that reduce the error of predicting its results.

In curriculum learning, the agent is present with numerous tasks in a meaningful

sequence. The tasks get more complex over time until the agent is able to solve the

initial tasks.

In auxiliary learning, along with reward tasks, auxiliary tasks are used during the

training process. The auxiliary tasks are not based on the main task designed in

the form of a curriculum in curriculum learning. Instead, the auxiliary tasks can be
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differentiated into auxiliary control and auxiliary reward prediction tasks.Jaderberg

et al. (2016) use auxiliary tasks to address the lack of continuous reward signals.

While these approaches explore specific techniques of reinforcement learning used

to address the problem of sparse rewards, this work focuses on integrating planning

with reinforcement learning to address the problem of sparse rewards. Charlesworth

and Montana (2020) introduces PlanGAN and integrates it with Reinforcement Learn-

ing address the problem of sparse reward with multiple goals. PlanGAN generates

trajectories as plans that take the agent from its current state to the goal state.

In this work, the problem of sparse rewards is solved with goal-conditioned policies

which is a novel approach of integrating learning with planning. This is the first work

to integrate HTN with planning to solve the problem of sparse rewards.

1.3 Hierarchical Task Network

HTN is based on well-structured and well-conceived domain knowledge. Such

knowledge is likely to contain rich information and guidance on how to solve a plan-

ning problem, thus encoding more of the solution than was envisioned for classical

planning techniques. This structured and rich knowledge gives a primary advan-

tage to HTN planners in terms of speed and scalability when applied to real-world

problems and compared to their counterparts in classical world.

According to Alford et al. (2009) there are two types of classical planners: domain-

independent and domain-configurable. HTN comes under the category of domain-

configurable planner. Unlike domain-independent planners, domain-configurable plan-

ners such as HTN utilizes the domain-specific planning knowledge in the form of

control rules or HTN methods.

SHOP is an HTN-based planner that shows efficient performance even on complex

problems, but at the expense of providing well-written and possibly algorithmic-like
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domain knowledge.

HTN planners have 4 essential descriptive units. They are as follows:

State: A state is description of the different situations in the planning process.

Task: A task is a description of an activity to perform. There are two types of tasks:

primitive task and compound task.

Operator: An operator is a parameterized description of what a basic action does.

Each operator describes how state variables are updated with preconditions and ef-

fects. Actions are operators with arguments.

Method: A method is a parameterized description of ways to perform a compound

task by performing a collection of sub-tasks.

HTN planners take advantage of the least-commitment strategy. According to

Weld (1994), HTN planners need to make two decisions on constraints. The first

decision is on the use of for binding variables and the second decision is on the

ordering tasks in a task network. In least-commitment strategy, the ordering of tasks

and variable bindings are deferred until a decision of a solution is forced.

A Partial-order planning (POP) is a approach of least-commitment strategy plan-

ner which maintains partial ordering between actions. The planner commits ordering

between actions only when forced by constraints. In contrast to partial-order plan-

ning (POP), in total-order planning, these is a fixed order of actions. In problems

where some sequence of actions are required to achieve a goal, a partial-order plan

specifies all actions that need to be taken, but specifies an ordering between actions

only when necessary.

The advantage of HTN planners is primarily their sophisticated knowledge repre-

sentation and reasoning capabilities. Ghallab et al. (2004) discusses the rationale for

calling the HTN planner an ”information-rich” planner. Kambhampati (1995) claims

that the primary advantage of using HTN planning is the flexibility HTN planning
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can provide the user in the type of solution it can generate. Nau et al. (1998), Lekavỳ

and Návrat (2007) and Erol (1995) has discussed about the expressiveness of HTN

planners as an advantage of this type of planning.

Georgievski and Aiello (2015) has identified three categories of properties that

a HTN planner has, which aid its expressive power. The first category of property

covers the system of first-order logic with helps in ensuring logical connectives. HTN

can use conjunction (∧), disjunction (∨), negation (⇁) , universal quantifier (∀)

and existential quantifiers (∃). Logical connectors or quantifiers can be applied on

preconditions and effects of operators and method.

The second and most important category of properties is the quality constraints.

These constraints makes HTN both more descriptive and flexible in terms of goal.

With regards to the quality of planner the mention-able properties are: Typing,

Extended goals and Preferences. HTN enables expressing types of object in the form

of a type hierarchy. This aspect of HTN enables the ease of conversion of HTN to

ontologies and vice versa. Extended goals helps in expressing a planning objective in

a way such that the satisfaction of the objective could occur at any intermittent point

on the whole trajectory of the solution, or it could occur in the final state. Preference

is a condition in the solution trajectory that a user would prefer to be satisfied in

the solution of the problem. However, a solution that does not include the preferred

constraint is still an acceptable solution to the problem.

The third category of property that makes HTN expressive are the resource and

time constraints. These constraint can be used in encoding real-world resource and

time limitations in the planner. Compared to other classical planning algorithms, the

structured format and rich knowledge representation format of HTN gives a primary

advantage to HTN planners in terms of scalability and speed when applied to real-

world problems.
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SIMULATION ENVIRONMENT

Figure 2.1: Top-view Of The Simulation Environment

The simulation of this algorithm has been performed in the ROS-based (Quigley

et al. (2009)) physics engine called gazebo simulator (Koenig and Howard (2004)).

ROS is an open source framework of robotic software tools that are used in robotic

systems. ROS allows for controlling robotic systems with an architecture similar

to a network with nodes. The ROS nodes can run as individual entities and can

performs computation and communicate information with other ROS nodes. The

communication between these ROS nodes takes place with a channel of streaming

data known as rostopic. Each ROS node can either subscribe to data from these

rostopics or can publish data from these rostopics. The data that is transferred

between the nodes are called ROS messages. In our simulation, there are 4 scripts

that run as separate ROS nodes.
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Gazebo is a robotic simulation that allows to test the robotic system in a real-

world-like physical environments. Gazebo simulator comes with a physics engine.

It integrates directly with ROS, making simulation of ROS-based robotic systems

seamless. Gazebo allows for the creation of custom worlds and robots, allowing for a

plethora of simulation environment and robotic systems. ROS and gazebo makes the

basic framework of the robotic simulation in this work.

The robotic agents in this work are unmanned aerial vehicles (UAVs) in simulation.

PX4 (Meier et al. (2015)) flight stack has been used to simulate the UAVs in this

work. PX4 is an open-source flight control system for aircraft, ground vehicles, and

watercraft. PX4 allows the UAV to have low-level rate control as well as higher-

level velocity and position control. Sensor support, flight logging, and the state

estimator are all included in the PX4 flight stack. The MAVlink communication

protocol enables the UAVs in the PX4 flight stack to communicate with ground

stations or the simulation environment.

The initial set up of the simulation environment has been performed using the

OpenUAV (Schmittle et al. (2018)) platform. OpenUAV is a multi-robot design and

testing bed in simulation. It is based on the based on the ROS, gazebo and PX4

flight stack.

In this experimental setup, we have chosen a 3-D space with 8 positions that a

UAV can assume. In combination to these 8 positions described by three coordinate

values each for the x-coordinate, y-coordinate and the z-coordinate respectively, an

few other parameters are used to describe a state of the UAV which will be explained

in the subsequent paragraphs. In this set-up there are 3 reward bubbles situated at

3 of these 8 assumable positions.

If the UAV is at a distance less than 1 m from the reward bubble, the reward

bubble pops. Once the bubble pops, the bubble does not relapse for the next 3

11



seconds and until there is no UAV present anywhere at a radius of less than 1 m from

the UAV. The bubble relapses and a new reward is seeded at the same location in the

environment after 3 seconds from when the reward bubble popped, provided there is

no UAV in the vicinity of 1 m.

The UAV also needs to be aware of the presence of other UAVs in the environment.

In this regard the proximity and the direction of the presence of the other UAV is the

vicinity is encoded with 5 numbers. Figure 2.2 shows the direction encoding value of

the presence of other UAV in the vicinity.

Figure 2.2: Animated Direction Encoding

The following table enlists the encoded values and the direction in which another

UAV is present:

The UAVs need to be aware of how long the reward bubble shall take to relapse.
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Table 2.1: Direction Encoding To Track Other UAV.

Direction encoding values Direction of another UAV

1 negative x direction

2 positive x direction

3 negative y direction

4 positive y direction

0 no other UAV in the proximity

This can be achieved by encoding how long the reward bubble is gone in seconds.

The time for which each of the rewards has popped can assume 3 values: 0, 2, and

3. The following table encodes how long the rewards bubbles are gone as discrete

integer timestamps. This encoded value of time will be referred to in this literature

as timereward followed by a number to indicate which reward bubble is being referred

to.

Table 2.2: Time Encoding Of The Collected Reward .

Direction encoding values Direction of another UAV

0 reward collected recently

2 reward collected 2 second ago

3 reward is available for collection

again

The state S of the UAV is defines as follows:

S = {x-coordinate of UAV, y-coordinate of UAV, z-coordinate of UAV,

timereward1, timereward2, timereward3, Direction encoding values }

There are seven variable parameters that are used to encode the state of a UAV.
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Each of the fields corresponding to the timereward can assume 3 values. There are a

total of 8 state locations, 27 combination of timereward values and 5 possible direction

encoding of other UAVs. So there is a total of 1080 states in this simulation.
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METHODOLOGY

As introduced in the previous chapter, Temporal Difference (TD) learning is a

model-free reinforcement learning process. I have chosen Temporal Difference (TD)

learning over model-based learning approaches to emulate real-world-like condition in

simulation. Like in real-world, the agent in simulation learns about the environment

and the change in environment as it explores the environment. As discussed in the

chapter: simulation environment, the agent learns about the environment and decides

its state through constantly streaming information from the data channels called a

rostopic. These can be thought of as sensory input data in real-world simulation.

The agents in this work are UAVs in simulation. In this chapter, the terms UAV and

agent have been used interchangeably.

In each new state that the agent visits, a customized action list is generated. The

boundary conditions of the simulation environment is incorporated by this action list

of action. The action list for a state will not have actions that will change the current

state to states that are not permissible. For example, if the agent is at a location

(-1,0,3) and we do not consider any positions where the value of x is lesser than -1,

then our action list will eliminate the action that may result in landing at a state

where the value of x is lesser than -1.

Figure 3.1: Example Of A Generated Plan

15



This work uses Pyhop (Nau (2013)) which is a simple HTN planner written in

Python to generate plans. Pyhop’s planning algorithm is similar to the SHOP cate-

gory of HTN planners. There are however some differences between Pyhop and SHOP

like HTN planner. The biggest advantage of Pyhop is the easy of integrating it with

other computer programs especially in a python development environment. Unlike

logical propositions, Pyhop represents the state of the world using ordinary variable

bindings instead of logical propositions.

Figure 3.2: Action Decision Tree

Figure 3.3: Mechanism To Control Bubble Popping And Bubble Relapse

In this work, we are using a specific type of algorithm of Temporal Difference

(TD) learning called Q-learning. Two main algorithms are being explored in this
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Algorithm 1: Q-learning

while node Q-LEARNING has not shut down do

s ←− state of UAV ϵ ←− explorating-exploitation factor ;

state dictionary ←− map of visited states and action-qvalue pairs ;

optimal action ←− sort(state dictionary) at s ;

pruned action list←− prune action() at s and apply boundary conditions;

random action ←− randomly choose action from pruned action list ;

if ϵ ≤ random.random() then

action to perform ←− random action;

else

action to perform ←− optimal action;

success status, next state ←− execute action();

if next state not in state dictionary then

next state prunned action list ←− prune action() at next state ;

create action qvalue pair at next state ;

Add next state to state dictionary

else
pass

reward ←− get reward for state, action, next state ;

update cumulative reward() using current reward ;

q old ←− from state dict at s for action to perform ;

q value pair ←− from state dict at s q value ←−

((1−α) ∗ q old)+α ∗ (reward+ γ ∗max(state dict[next state].values()))

update q value pair with q value ;

update state dict with q value pair
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Algorithm 2: Q-learning with planning

while node Q-LEARNING has not shut down do

s ←− state of UAV ϵ ←− explorating-exploitation factor ;

κ ←− planning-exploitation factor ;

state dictionary ←− map of visited states and action-qvalue pairs ;

optimal action ←− sort(state dictionary) at s ;

pruned action list←− prune action() at s and apply boundary conditions;

random action ←− randomly choose action from pruned action list ;

random number ←− random.random() ;

if ϵ ≤ random number then

action to perform ←− random action;

else

if ϵ ≥ random number and κ ≤ random number then

action to perform ←− optimal action;

else

action to perform ←− planning action;

success status, next state ←− execute action();

if next state not in state dictionary then

next state prunned action list ←− prune action() at next state ;

create action qvalue pair at next state ;

Add next state to state dictionary

else
pass

reward ←− get reward for state, action, next state ;
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while node Q-LEARNING has not shut down do

update cumulative reward() using current reward ;

q old ←− from state dict at s for action to perform ;

q value pair ←− from state dict at s q value ←−

((1−α) ∗ q old)+α ∗ (reward+ γ ∗max(state dict[next state].values()))

update q value pair with q value;

update state dict with q value pair

Figure 3.4: Epsilon (ϵexp) VS Time Stamp For Temporal Difference Learning

work- Algorithm1: Q-learning, Algorithm2: Q-learning with planning. In both the

algorithms, the state of the agent, S is defined according to the state introduced

in the chapter: Simulation Environment. Each state is a vector with 7 fields. The

term Q-learning and Temporal Difference learning will be used interchangeable in

this literature. As mentioned in the introduction section, the Value function, V(S)

is learned during the execution of Temporal Difference learning algorithm. In Q-

learning, each state-action pair has a q-value associated with it.In Q-learning, the Q
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function, Q(s,a) is learned. The Q function varies with both- state and action. Each

state has as many q values as the number of permissible action from that state.3.1

is the used to update the Q function upon executing each action in the simulation.

The following section describes Q-learning in details.

3.1 Q-Learning

At every state the agent visits, the agent can choose two types of action. Either

the agent can choose the optimal action from its previous experiences of visiting that

state, or the agent can choose a random action from the list of permissible action from

that state. The exploration-exploitation factor ϵ, is used as a threshold to compare a

randomly sampled number and choose the optimal action or the random action.

A state dictionary is maintained to enlist a mapping between all the visited states

and the action q-value pair. When a new state is visited, a new entry is made in the

state dictionary. A state dictionary is similar to a Q-table, which is commonly used in

Q-learning. The state dictionary is a python dictionary that is used to maintain the

same relationship between states and q-values like in a Q-table. The action q-value

pair is also a python dictionary. This is referred as q-value pair in the Algorithm1

and Algorithm2. Upon visiting a new state, the action q-value pair is instantiated a

customized action list as discussed in the beginning of this chapter. This customized

action list is referred to as the pruned action list in Algorithm1 and Algorithm2.

After the chosen action is executed, the cumulative reward is updated irrespective

of whether a reward was collected or not after execution an action. The current reward

collected is discounted by a factor gamma which is commonly referred as the discount

factor across literature. The discount factor gamma used in this work is a time varying

number. The discount factor is designed such that rewards collected initially in the

simulation are given greater weightage than rewards collected later in the simulation.
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The cumulative reward is updated by the function, update cumulative reward(). It

uses the following formula to update the cumulative reward:

rewardcumulative = rewardprevious+ γstepreward, where reward is the reward collected

at the current time-step.

After the reward is collected, the action q-value pair is updated with a new q-

value corresponding to the action that was taken at the previous state. This algorithm

uses a weightage factor α to combine the previous q-value corresponding the chosen

action at the state, with the newly calculated q-value after collecting the reward. The

q-value is calculated using the following formula:

Q(s, a) = (1− α) ∗Q(s, a)old + α ∗ (reward+ γ ∗maxaQ
′(s′, a′)) (3.1)

Here Q(s,a) stands for the q-value at state S for action a. S ′ stands for the next

state. Q’(s’) stands for all q-values at state S ′. maxa prefix of Q’(s’,a’) denotes the

action corresponding to the maximum Q value at state S ′.

3.2 Q-Learning With Planning

In Q-learning with planning, all the steps remain the same at in the Q-learning

algorithm. A new factor κ, the planning-exploration factor has been introduced in

this algorithm. Figure 3.2 depicts the action taken based on the value of the random

number sampled. In this algorithm, there are three possible categories of action

outcomes. Based on the value of the random number and the threshold factors, ϵ

and κ, a random action can be chosen, an optimal action can be chosen or a action

suggested by the planner can be chosen. For Q-learning with planning, I have chosen

a constant value of 0.1 and 0.3 for ϵ and κ respectively. Hence, the probability of the

planner being chosen to indicate the optimal action is 0.7.
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Figure 3.5: Implemented Hierarchical Task Planner

3.3 HTN Planner Design

Figure 3.5 depicts the flow diagram of the HTN planner. Since we are using Pyhop

for designing this HTN planner, the traversal ordering of this planner is fully-ordered.

This planner implements depth-first search with backtracking to reach the goal. Each

of the levels of the planner are tasks. There are two main tasks defined in our HTN

planner- Foraging and Repulsion. These tasks have different goals. The planner first

performs a depth-first search inside foraging to find if there is a reward available
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nearby. If a goal is not reachable within a threshold number of steps or a horizon,

then the planner will try to execute task called repulsion.

Under foraging, the planner first identifies all the nearby available rewards and

chooses the nearest reward. If there is a way of reaching the closest reward following

a heuristic defined shortest path, then the planner will find a plan to execute a set of

actions to reach the closest reward. The closest reward is the goal of the planner.

If the planner is unable to find such a path because of the presence of another

agent in the path or because of large number of steps to reach the reward or goal,

then the planner will abort the execution of the foraging task. The planner will

then execute repulsion, where the agent moves away from the presence of another

agent that has stymied the path of the agent. In a cluttered environment like in

our simulation, repulsion task helps in uncluttering the vicinity of the agents. The

repulsion task checks if any of the actions in the list of permissible actions will lead

to a greater distance between the agents than the previous distance between them.

Under the task repulsion, the planner will reach a goal state the moment an action

in repulsion is identified that succeeds in achieving this goal criteria.

Tasks under Foraging has two hierarchies- First step and Find path. The first step

is a task that can have only one action. The first step helps avoid collision between

agents during planning. The first step considers the next state of the other agent

during planning. The first step is taken such that is does not visit the current position

and the next position of the other agent. This is crucial since the Q-learning with

planning algorithm only executes the first action from the sequence of action produced

by the planner. The Find path task helps us check how many steps it will take to

reach the nearest goal or reward point. If the number of action required to reach

the goal exceeds a threshold or does not follow the heuristic-defined path, then the

agent exits executing the Foraging task. Find path helps in ensuring that the goal is
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reachable following a specific trajectory within a the threshold number of action-steps.

3.4 Simulation Mechanisms

Figure 3.3 depicts the latent mechanism to maintain and update states. There

are two separate controllers running on the two agents. These controllers execute the

Q-learning and the Q-learning with planning algorithm. These controllers subscribe

to and publish to rostopics to learn about the agent’s state and execute actions.

The central script is the action server. This script handles the laws of the envi-

ronment. The action server ensures that: the reward are popped and replenished

based on the acceptance radius of the bubbles, the reward values are assigned to the

correct agents, the state of the agents are updated based on the actions that were

executed by the agents. After a reward is collected, the reward is not available for

3 seconds. This is updated to the central script by the uav0 reward collected and

uav1 reward collected rostopics. The rostopics uav 0 and uav 1 are published by the

central script or the action server. Both agents can access information on each others

state by subscribing to the uav 0 and uav 1 topics.

To execute dynamically popping bubbles and adding them after a fixed amount

of time in simulation, two services have been written in ROS. These services deletes

and adds models in the gazebo simulator. The delete model service is called when

the agent is at the acceptance radius of the reward bubble. The add model service is

called when all agents are outside the acceptance radius of the reward and the reward

was last collected at least 3 seconds ago.

To preserve the information of each reward bubble’s location, a python dictionary

called a sphere dict is used. This dictionary has the location of the reward bubbles

in a tuple as key and the name of the sphere as the value. This dictionary is used

to instantiate the initial simulation environment. This dictionary is also used to look
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up the location of the popped sphere while adding it back. A copy of this dictionary

is used to create a map of all the available rewards and unavailable rewards. When

a reward is collected, the entry from a copy of the sphere dict, associated with the

collected reward is removed. When the reward is replenished again, a new entry is

made to this copy of the dictionary. The copy of sphere dict helps in bookkeeping

the availability of rewards in the environment. delete model and add model calls for

correctly tracking the model of the reward bubbles in the environment. Calling these

services at the two time will lead to error in the simulation.

To reduce the computation time of executing the dynamics of environment, a

mechanism to only consider reward bubbles in the vicinity of the agent is use. Instead

of checking if the agent is in the acceptance radius of any reward bubble,the search

space is reduced by considering bubbles on in the vicinity of the agent. A binary

search algorithm runs over a list created from the key entries of sphere dict. The key

entries of state dict are tuples that encode the co-ordinates of the bubbles. This list

is sorted based on the first entry of each tuple. The first entry of each tuple is the x-

coordinate of the location of the reward bubble. A binary search algorithm runs twice

to identify the lower limit and the upper limit within the threshold of consideration

around the position of the agent. Only bubbles within the threshold of consideration

will be considered for checking if the bubbles are within the acceptance radius of the

reward. Unlike linear search over all the reward bubbles which has a time complexity

of O(n), the binary-search-based algorithm has a time complexity of O(log n). Since

the position of the agent updates quickly in this simulation, reduction of the time

complexity for the proximity check of agents from the reward location is a significant

reduction in the processing time of latent mechanisms during simulation.
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3.5 Robustness To Uncertainties

Using the PX4 flight stack with gazebo comes with uncertainties. The UAVs are

often not precisely in their expected states. After choosing the optimal action or the

random action at any given state, target way-points are generated as position target

values. A Proportional-Integral controller is used to reduce the error between the

current state and the target way-point and makes the UAV move towards the target

way-point. A tolerance of 0.1 m has been provided in the simulation environment

between the way-points and the position of the UAV. So, the UAV will still be con-

sidered to be situated at the target way-point when the difference in the value of the

position of the UAV and the target way-point can be upto 0.1 m. The pickup radius

of the reward bubble is less than 1 m. So when the UAV is not in the location of the

reward but is at a target way-point that is 1 m away from it, there is a chance that

the UAV still accepts the reward at this position as there is a tolerance of 0.1 m at

the target way-point and the UAV can be closer to the reward than 1.

For example, the target way-point is (-2, 1, 2). The UAV can still pick up the

reward at (-2, 0, 2) if the position of the UAV is (-2, 0.95, 2) instead of the target

way-point. This is because the UAV’s position is closer to the reward than 1 m.

Meanwhile, the UAV will still be considered at the target way-point of (-2, 1, 2) even

though it is actually at position (-2, 0.95, 2) because a tolerance of 0.1 has been

provided in the simulation environment between the way-points and the position of

the UAV. While most of the time, a reward will be collected when the UAV is at

the location of (-2, 0, 2), rewards can also be occasionally collected from ways-point

positions that are 1 m away from the location of the reward.

These uncertainties of actions in this environment emulates the uncertainties of

actions of robots in real world. Q-learning uses the distribution of q-values to identify
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optimal actions at a state. While uncertainties in actions can lead to erroneous q-

values associated with certain state-action pair, these erroneous q-values will increase

the chance of choosing the state-action pair associated with these aberrant actions

resulting in more sampling of the state-action pair. This will result in updating the

q-value of the state-action pair frequently. Thus the error due to uncertainties are

reduced in this algorithm eventually in this simulation.
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RESULTS

To track the evolution of the learning algorithm, I have gauged two properties of

the learning algorithm: the number of states visited over time and the cumulative

reward collected over time. The quality of the solution of the two algorithms being

compared is tracked with these properties. An algorithm with higher value of cumu-

lative reward will indicate that it has been able to find the locations of the reward

faster and has been able to learn the temporal dynamics of the reward bubbles early

on in the simulation. A lower value of cumulative reward will indicate that the al-

gorithm requires a longer time to learn about the environment. An algorithm that

takes higher number of states explored will indicate that more states were explored

to find the optimal policies than in an algorithm with fewer states visited and the

same amount of cumulative reward collected.

Since the trajectory taken by the agent in this simulation varies with the starting

point of the agents in the simulation, the quality of learning of the environment also

varies with the starting point of the agents in the simulation. Hence 60 simulations

were run to observe the nature of the two algorithms with a large sample size. Two

sets of simulations were run: Simulation of Q-learning without planning, Simulation

of Q-learning with planning. In Q-learning with planning, ϵ and κ were chosen such

that there is 70% probability of choosing an action indicated by the planner. For each

of the set of simulations, 30 simulations were performed by changing the position of

the agents. A total of 6 different starting points where set for the agents from which

a pair of starting points are selected one by each agent. A total of 15 combinations

of starting position of the agents are present. Figures 4.1, 4.2, 4.3, 4.4, 4.5, and 4.6
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tracks the cumulative reward collected by UAV0 and UAV1 during the 60 simulations

with the starting position of UAV0 and UAV1 changed in each simulation.

Figures 4.1, 4.2 and 4.3 tracks the cumulative reward collected by UAV0, UAV1 and

a combination of both the agents during Q-learning without planning. Figures 4.4,4.5

and 4.6 tracks the cumulative reward collected by UAV0, UAV1 and a combination

of both the agents during Q-learning with planning.

Figures 4.7, 4.8, shows the number of states visited by Uav0 and Uav1 in Q-

learning without planning. Figures 4.9, 4.10 shows the number of states visited by

Uav0 and Uav1 in Q-learning with planning.

Figure 4.1: Cumulative Reward Collected VS Time Stamp For UAV0 In Q-learning
Without Planning
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Figure 4.2: Cumulative Reward Collected VS Time Stamp For UAV1 In Q-learning
Without Planning

Figure 4.3: Cumulative Reward Collected VS Time Stamp For Sum Of Cumulative
Reward Collected For UAV0 And UAV1 In Q-learning Without Planning
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Figure 4.4: Cumulative Reward Collected VS Time Stamp For UAV0 In Q-learning
With Planning

Figure 4.5: Cumulative Reward Collected VS Time Stamp For UAV1 In Q-learning
With Planning
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Figure 4.6: Cumulative Reward Collected VS Time Stamp For Sum Of Cumulative
Reward Collected For UAV0 And UAV1 In Q-learning With Planning

Figure 4.7: Number Of Visited States VS Time Stamp For UAV0 In Q-learning
Without Planning
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Figure 4.8: Number Of Visited States VS Time Stamp For UAV1 In Q-learning
Without Planning

Figure 4.9: Number Of Visited States VS Time Stamp For UAV0 In Q-learning
With Planning
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Figure 4.10: Number Of Visited States VS Time Stamp For UAV1 In Q-learning
With Planning

Figure 4.11: Cumulative Reward Collected For 30 Simulation Each With Q-learning
And With Q-learning With Planning
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Figure 4.12: Number Of Explored States For 30 Simulation Each With Q-learning
And With Q-learning With Planning
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DISCUSSION

30 simulations were performed for the Q-learning algorithm without planning.

Figures 4.1, 4.2 and 4.3 shows the change in the cumulative reward collected versus

time for Q-learning without planning. The sum of cumulative reward of both the

agents are considered for each simulation. It is observed that the mean of the sum of

cumulative reward collected is around 15 in the case of Q-learning without planning.

Figures 4.4, 4.5 and 4.6 shows the changes in the cumulative reward collected ver-

sus time for Q-learning with planning. Like in the simulations of Q-learning without

planning, the sum of cumulative reward of both the agents are calculated for each

simulation. It is observed that the mean of the sum of cumulative reward collected

is around 19 in the case of Q-learning with planning.

Figure 4.11 compares the cumulative rewards collected by each agent in both the

algorithms. It is observed from Figures 4.3, 4.6 and 4.11 that the mean of the sum

of the cumulative rewards collected in Q-learning with planning is greater than the

cumulative rewards collected in Q-learning without planning. The ranges of the sum

of the cumulative rewards collected in the two algorithms do not coincide. The range

of the cumulative rewards collected in the Q-learning without planning algorithm

is between 14.5 and 17.3. Whereas, the range of the cumulative reward collected

in the Q-learning with planning algorithm is between 19 and 21. Thus the range

of the cumulative reward collected in Q-learning with planning is more constricted

in comparison to Q-learning without planning. Thus the Q-learning with planning

algorithm is less affected by the changes in the starting positions of the agents in the

simulation that the Q-learning without planning algorithm.
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Figures 4.7, 4.8 tracks the number of visited states in the Q-learning without

planning algorithm. Figures 4.9 and 4.10 tracks the number of visited states in the

Q-learning with planning algorithm. It is observed that the number of visited states

in the Q-learning without planning has assume a wide range of values between 12 and

27 for Uav0 and, between 7 and 32 for Uav1 at the end of the 5 minute simulation.

The number of visited states in the Q-learning with planning has assumed a value

between 4 and 8 for Uav0 and, between 4 and 12 for Uav1 at the end of the 5 minute of

simulation. This means that the number of visited states in Q-learning with planning

is not only less than the number of visited states in Q-learning without planning

but, the range of the number of visited states is also more constricted in the case of

Q-learning with planning. This means that the Q-learning without planning explores

a wider range of states to identify the optimal policies for the visited states. From

4.12 it is observed that the mean of the number of visited states for Uav0 in the case

of Q-learning is 16.4 and in the case of Q-learning with planning is 6.2. The mean of

the number of visited states for Uav1 in the case of Q-learning is 17.6 and in the case

of Q-learning with planning is 7.5.

From figure 4.11 and figure 4.12 it is observed that overall, the Q-learning with

planning explores less number of states and still it collects more reward that Q-

learning without planning.
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CONCLUSION

On observing the trajectory of the UAVs and the convergence of the cumulative

reward of UAVs, it can be concluded that both Q-learning and Q-learning with plan-

ning are reasonable choices of learning algorithm for the problem of perpetual sparse

reward where the rewards reemerge at the same place after a fixed interval of time

upon collection.

In comparison to Q-learning learning, the drastic reduction in the number of

visited states, the faster convergence of cumulative reward and a higher value of cu-

mulative reward in Q-learning with planning, indicates that Q-learning with planning

is a slight improvement in the quality of solution of the learning process. Q-learning

with planning is able to collect more cumulative reward but exploring less number of

states in comparison to vanilla Q-learning algorithm.

In addition to these quantifiable performances, the planner allows for representing

more information about the environment in comparison to vanilla Q-learning. Thus

the Q-learning with planning algorithm opens door for more information representa-

tion. These information does not only help us improve the performance of the learning

algorithm but it also allows for more scope of incorporating multiple behaviours to

the agent and multiple goals for the agent.
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FUTURE WORK

The primary motivation of this work has been the ability to integrate rich in-

formation frameworks such as ontology with learning to use information about the

environment to aide in the process of learning.

This work has developed a framework that can be reused to incorporate different

characteristic nature of swarms such as- foraging, repulsion and attraction to observe

how multi-agent systems are able to learn to emulate swarm characteristics and also

observer how multi-agent systems can solve real-world problems by observing swarm

behaviours of bees, birds and ants. The ability to incorporate HTN planner with

learning will broaden the scope of exploring these swarm characteristics. This is

because the swarm characteristics are easy to represent and transfer with modularity.

Pyhop is easy to learn and implement. Adding different modules in the HTN planner

to emulate these characters in easy.

Since this work is inspired by the capability of creation of HTN planners from

ontologies depicted by the work in Freitas et al. (2014) the most important future

work would be using ontologies for creating the HTN planners for the agents in the

environment that are considered as entities in the language of ontology. The HTN

planner from ontologies can be explored to track the ease of representing knowledge

with HTNs and the performance of the learning algorithm upon using these ontology

based HTN planners.
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