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ABSTRACT  

   

    The construction industry holds great promise for improvement through the use of 

robotic technologies in its workflow. Although this industry was an early adopter of such 

technologies, growth in construction robotics research and its integration into current 

construction projects is progressing slowly. Some significant factors that have contributed 

to the slow pace are high capital costs, low return on investments, and decreasing public 

infrastructure budgets. Consequently, there is a clear need to reduce the overall costs 

associated with new construction robotics technologies, which would enable greater 

dissemination.  

    One solution is to use a swarm robotics approach, in which a large group of relatively 

low-cost agents are employed to produce a target collective behavior. Given the 

development of deep learning algorithms for object detection and depth estimation, and 

novel technologies such as edge computing and augmented reality, it is becoming feasible 

to engineer low-cost swarm robotic systems that use a vision-only control approach. 

Toward this end, this thesis develops a vision-based controller for a mobile manipulator 

robot that relies only on visual feedback from a monocular camera and does not require 

prior information about the environment. The controller uses deep-learning based methods 

for object detection and depth estimation to accomplish material retrieval and deposition 

tasks. The controller is demonstrated in the Gazebo robot simulator for scenarios in which 

a mobile manipulator must autonomously identify, pick up, transport, and deposit 

individual blocks with specific colors and shapes. The thesis concludes with a discussion 

of possible future extensions to the proposed solution, including its scalability to swarm 

robotic systems.  
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CHAPTER 1 

INTRODUCTION 

    Worldwide, the percentage of people living in cities is expected to grow from the current 

estimate of 54% to 66% by 2050 (Petersen, 2019). Based on historical data, even the recent 

COVID-19 pandemic is unlikely to negatively influence this trend (Florida, 2021). This 

has led to an increase in the need for infrastructure in urban areas. However, owing to a 

shortage of workers, the construction industry has been unable to keep up with the demand, 

dropping the industry’s productivity by 50% compared to the 1960s (Cilia, 2019). Robotics 

and autonomous systems possess immense potential to revolutionize the construction 

industry (Delgado, 2019). However, the adoption of robotics in the construction industry 

has been relatively low owing to several factors, such as high initial capital costs, unskilled 

workforce, and low R&D budgets, with high initial capital costs being the prime factor 

(Delgado, 2019). Thus, there is a clear need to reduce the high initial capital costs 

associated with adopting robotic technologies in the construction industry. 

    Robots deployed in construction applications must operate reliably in the presence of 

the inherent uncertainties associated with a construction environment and work safely 

alongside humans, thus, giving rise to the need for semantically driven decision-making 

(Garg, 2020). According to Garg et al. (2020), semantics in a robotics context is defined as 

the ability of the robot to understand the meaning of places, objects, or other entities in its 

surroundings, which is essential for developing intelligent behaviors and safe human-robot 

collaboration. Such decision-making abilities can be realized by coupling visual sensing 

with learning-based methods, which is a rapidly growing field of research and has seen 

increased research output in recent times (Garg, 2020). 
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    Monocular cameras are one of the most widely-used visual sensing solutions for mobile 

robots owing to their small form factor, low cost, and suitability for agents with space and 

power constraints. Depth estimation using a monocular camera is a research problem that 

has gained significant traction in recent years owing to advances in computer vision 

(Mertan, 2022). With improvements in techniques for depth estimation using monocular 

cameras, the need for more expensive depth sensors such as Lidar and other time-of-flight 

sensors could potentially be eliminated.  

    Thus, to accelerate the adoption of robotic technologies in the construction industry, 

there is a clear need to develop robot control strategies that use measurements from low-

cost sensors, rely on little to no prior knowledge of the environment, and can make 

decisions based on context. Such controllers could potentially reduce the cost of the robots 

used and enable them to work in dynamic construction environments.  

    This thesis aims to leverage advances in the field of deep learning to develop a vision-

based controller where the only sensory input to the controller is obtained from a single 

monocular camera. The controller uses no other inputs, including any prior information 

about the environment. The controller is tested on a small mobile robotic manipulator in 

simulation for a material retrieval task in which the robot needs to repeatedly search for a 

block in a repository zone, pick up the block, and transport it to a deposition zone. The goal 

of this thesis is to demonstrate the effectiveness of the controller at this material retrieval 

task. Such an approach, in which the controller works with sensor information from low-

cost sensors such as monocular cameras, could potentially reduce the cost of robots used 

while facilitating semantically-driven decisions.  
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1.1 Literature Survey 

    Although the earliest works in robotic construction, in the form of robotic bricklaying, 

appeared about 25 years ago, the field has seen limited commercial usage and adaptations 

(Lussi, 2018). As mentioned in the previous section, high capital costs, aversion to change, 

and an unskilled workforce are some of the biggest challenges facing the adoption of 

robotics technologies in the construction industry (Delgado, 2019). However, an increased 

volume of research in the area lately points to a growing interest in the field among 

researchers. Competitions such as the Mohammed Bin Zayed International Robotics 

Challenge (MBZIRC) (MBZIRC, 2022) have fueled this growth in the interest of 

researchers. Mobile manipulators are suitable for construction applications owing to their 

large configuration spaces and ability to maneuver in highly dynamic and unstructured 

environments. Some of the works in the field of robotics for construction are summarized 

in the following paragraphs. 

    This paragraph discusses some of the works in the field of on-site autonomous 

construction using robots. Jung et al. (2014) demonstrated the use of a humanoid robot for 

autonomous on-site floor tiling of mosaics. The tiles were identified using an object 

recognition algorithm that performed edge detection and color detection by calculating the 

position of the tile in the coordinate frame of the robot’s camera. The positions of the 

robot’s joints, relative to the camera frame of reference, were calculated using the robot’s 

kinematics. The robot was able to pick up the tiles using a suction gripper. Feng et al. 

(2014) utilized a 7 Degree-of-Freedom (DOF) robot manipulator for autonomous robotic 

assembly in unstructured construction sites. The manipulator was localized with respect to 

the material repository and deposition zones by utilizing AprilTags (Wang, 2016) 
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visualized through a monocular camera. The resulting pose estimates were used for 

planning the motion of the manipulator. Feng et al. (2015) expanded their previous work 

to include a 3D camera on the manipulator to generate an as-built Building Information 

Model (BIM) using the point clouds generated by the camera. Lussi et al. (2018) utilized a 

mobile manipulator to construct a full-scale, load-bearing, steel-reinforced concrete wall. 

The robot was manually repositioned using a joystick for every meter of wall constructed. 

Localization of the robot and the end-effector were achieved autonomously using 

AprilTags, which were detected by a wide-baseline stereo camera mounted on the arm. The 

system also included an on-the-fly building planner, which used images from the stereo 

camera mounted on the arm to compensate for material deflections during the welding 

process.  

    Basri et al. (2021) and Štibinger et al. (2021) developed a mobile manipulator to compete 

in the MBZIRC 2020, which involved building a predefined structure in an outdoor 

environment. The robots were required to autonomously navigate, identify the materials, 

and pick up and place them at different locations to build the predetermined structure. 

Three Unmanned Aerial Vehicles (UAVs) were used to identify and communicate the 

position of the building materials to the ground robots. For robot localization and waypoint 

navigation, Basiri et al. (2021) combined the IMU data, wheel odometry, and GPS in 

combination with an Extended Kalman Filter (EKF) to obtain the estimated robot pose. In 

contrast, Štibinger et al. (2021) used the Adaptive Monte Carlo Localization (AMCL) 

method coupled with LiDAR data for robot localization and waypoint navigation. In both 

works, the manipulator uses an eye-in-hand approach to detect and pick up the blocks. 
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    In recent years, various vision-based control approaches have been developed for mobile 

robots used in construction tasks. Asadi et al. (2018) developed a vision-based controller 

for the real-time application of Unmanned Vehicles (UVs) in construction environments. 

The controller utilized a monocular camera-based localization and context awareness 

system. The former was achieved using ORB-SLAM (Mur-Artal, 2015), and the latter was 

achieved using a lightweight neural network, ENet (Paszke, 2016). The two units worked 

in parallel to determine the feasible paths for the UVs. Asadi et al. (2021) built on their 

previous work by integrating a manipulator on the UV. The monocular camera was 

replaced with a set of two stereo cameras, one for context awareness and localization and 

the other for visualizing and estimating the block's position. ORB-SLAM was replaced 

with RTAB-MAP (Labbé, 2019), and the neural network architecture was changed to 

LNSNet (Asadi, 2019). Tsai et al. (2020) developed a deep convolutional neural network-

based control architecture using imitation learning for controlling an omnidirectional 

mobile manipulator. The controller uses visual data from a stereo camera to drive toward 

and pick up objects of interest and achieves an average success rate of 78.2% for picking 

up the objects. 

    Some of the other approaches used for controlling mobile manipulators outside of 

applications in construction, as outlined in the literature, are as follows. Sandakalum et al. 

(2022), in their review of motion planning techniques used for mobile manipulators, 

identify two primary approaches used for controlling the system: Decoupled and Unified. 

In the Decoupled approach, the mobile base and the manipulator control are considered 

independently, and the task execution is achieved sequentially. First, the base is driven to 

the goal position, and then the arm is used for object manipulation. Some common 
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algorithms used in this approach for both the base and the arm are A*, RRT, RRT-Connect, 

genetic algorithms, or their variants. As the name suggests, the Unified approach considers 

a coupled model of both the base and arm of a mobile manipulator and is computationally 

more expensive. Some of the algorithms used for controlling robots that are modeled using 

the Unified approach include CHOMP (Ratliff, 2009) and STOMP (Kalakrishnan, 2011). 

Iriondo et al. (2019), in their review of Deep Reinforcement Learning (DRL) for pick-and-

place operations in logistics, successfully implemented algorithms such as Proximal Policy 

Optimization (PPO) and Deep Deterministic Policy Gradient (DDPG) on mobile 

manipulators for learning pick-and-place tasks. Similarly, Wang et al. (2020) demonstrated 

the effectiveness of PPO for mobile manipulation by implementing it on an experimental 

platform.  

    Collective robot construction using swarms of low-cost robots, which can be deployed 

autonomously with minimal or no human oversight to build structures far larger than 

themselves, is a promising technique for catering to the increased demand of the 

construction industry (Werfel, 2012) (Petersen, 2017) (Petersen, 2019). In addition, swarm 

foraging is an application that has been researched for a long time (Lu, 2020) and could 

potentially be employed in construction applications for material retrieval and 

transportation tasks. 

 

1.2 Contribution of the Thesis 

    In this thesis, we develop a novel vision-based controller for a nonholonomic 

differential-drive mobile robot equipped with a manipulator arm, which can be used for 

material retrieval tasks in construction applications. This controller differs from existing in 
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that it uses a monocular camera as the primary sensor and does not require prior 

information about the environment. The controller integrates existing deep-learning-based 

object detection and depth estimation algorithms, using images obtained from a single 

monocular camera as the only sensor input. The controller can be deployed on different 

types of mobile manipulator platforms with minimal modifications. We test the controller 

in the Gazebo 3D robot simulator (Koenig, 2004) for scenarios in which a robot must 

autonomously search for, identify, pick up, transport, and deposit individual blocks that 

represent construction material. The controller was simulated for 50 trials, and the success 

rate of the controller was 46%. This thesis presents a thorough failure analysis for the 

controller and proposes solutions to address the different errors. 
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CHAPTER 2 

MATHEMATICAL MODELING OF A MOBILE MANIPULATOR 

2.1 Introduction to Mobile Manipulators (MMs) 

    Mobile manipulators (MMs) are robotic systems consisting of articulated arms 

(manipulators) mounted on holonomic or non-holonomic mobile platforms (Tzafestas, 

2014). A mobile manipulator combines a manipulator's dexterity with a mobile robot's 

mobility, thus creating a platform with far superior capabilities than either one considered 

individually (Tzafestas, 2014). Depending on the number of Degrees of Freedom (DOF) 

of the mobile base and the manipulator, a mobile manipulator could be kinematically 

redundant. Typically, mobile manipulators are kinematically redundant, i.e., they have 

more than 6 DOF (Sandakalum, 2022). A kinematically redundant mobile manipulator can 

realize the same end-effector pose in more than one configuration, thus providing more 

flexibility in terms of the configurations that can be achieved. Mobile manipulators are 

used in a wide array of applications, including but not limited to medicine, military, 

construction, and space exploration (Sandakalum, 2022).  

    In this thesis, a decoupled mathematical model of a mobile manipulator, in which the 

mathematical models of the manipulator and the base are defined independently, is used to 

control the mobile manipulator. This decoupled model suffices for our control objectives 

since we do not require complex robot configurations, and the manipulator is controlled in 

an open-loop manner; moreover, a coupled (i.e., unified) model would be more 

computationally expensive to simulate. The following section discusses the kinematics and 

dynamics of the mobile manipulator. 
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2.2 Homogeneous Transformations 

    The following derivation of the homogeneous transformation of an arbitrary point 𝑷 in  

space (Figure 1) is adopted from (Siciliano, 2012).  

 

 

Figure 2.1: Point 𝑷 in Space Defined With Respect to a Local and Fixed Frame 

(Siciliano, 2012). 

 

Consider the following notations, 

 𝒑𝟎 is the position [𝒙𝟎 , 𝒚𝟎, 𝒛𝟎]𝑇 vector of the point 𝑷 with respect to a fixed reference 

frame, 𝑶𝟎. 

𝒐𝟏
𝟎 is the position vector describing the origin of Frame 1 with respect to Frame 0.  

𝒑𝟏 is the position vector [𝒙𝟏 , 𝒚𝟏, 𝒛𝟏]𝑇 of the point 𝑷 with respect to a fixed reference frame, 

𝑶𝟏. 

𝑹𝟏
𝟎 is the rotation matrix describing the orientation of Frame 1 with respect to Frame 0 

Thus, the position of the point with respect to the base frame can be defined as follows: 

 𝒑𝟎 = 𝒐𝟏
𝟎 + 𝑹𝟏

𝟎𝒑𝟏 (2.1) 

We know that any point in a three-dimensional space is represented as a (3 × 1)  vector, 

with the components representing the Cartesian coordinates of that point in space. To 
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achieve a compact representation of the same point defined in two different frames as in 

equation 2.1, we adopt the homogeneous representation of a vector. By adding a fourth unit 

component to a generic vector 𝒑, we get 𝒑′ which is defined as follows:  

 𝒑′ = [
𝒑
1

] (2.2) 

Thus, by adopting the above notation for 𝒑𝟎 and 𝒑𝟏 the coordinate transformation can be 

written as,  

 
𝑨𝟏

𝟎 = [
𝑹𝟏

𝟎 𝒐𝟏
𝟎

𝟎𝑻 1
] 

(2.3) 

where, 𝟎𝐓 is a (1 × 3) vector of zeros, 𝐨𝟏
𝟎 is the (3 × 1) translation vector of Frame 1 with 

respect to Frame 0 and 𝐑𝟏
𝟎  is as defined earlier.  

 

2.3 Denavit-Hartenberg (DH) Parameters 

    The Denavit-Hartenberg parameters are used to define the relative position of two 

consecutive links in a serial manipulator (Siciliano, 2012). To achieve this, the convention 

lays out a set of basic rules. The following rules and nomenclature have been adopted from 

(Siciliano, 2012). Consider the following assumption:  

𝒊 is the axis of the joint connecting link 𝒊 − 𝟏 to link 𝒊, as shown in Figure 2.2. 

Then, the Denavit-Hartenberg convention is defined as follows: 

• Choose axis 𝒛𝒊 along the axis of Joint 𝒊 − 𝟏. 

• Locate the origin 𝑶𝒊 at the intersection of the axis 𝒛𝒊 with the common normal to 

axes 𝒛𝒊−𝟏 and 𝒛𝒊. Locate 𝑶𝒊′ at the intersection of the common normal with axis 

𝒛𝒊−𝟏. 
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• Choose axis 𝒙𝒊 along the common normal to axes 𝒛𝒊−𝟏 and 𝒛𝒊 with direction from 

Joint 𝒊 to 𝒊 + 𝟏. 

• Choose axis 𝒚𝒊 to complete a right-handed frame of reference.  

    Using the DH Parameters, it is possible to calculate the homogeneous transformation 

matrix between links 𝒊 − 𝟏 and 𝒊 as in equation (2.3), which can be repeated for all links 

to calculate the forward kinematics of the robot arm.  

 

 

Figure 2.2: Denavit-Hartenberg Convention (Siciliano, 2012). 

 

    However, the convention provides a non-unique definition of the link frames in certain 

cases and configurations of a manipulator (Siciliano, 2012). These have not been discussed 

in this thesis. The reader is encouraged to refer to the cited resource for more information.  

 

2.4 Kinematics and Dynamics of a Differential Drive Wheeled Mobile Robot (WMR) 

    The following derivation has been adopted from (Tzafestas, 2014). Consider a 

differential drive WMR as shown in Figure 2.3 with the following nomenclature: 
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𝑸 is the midpoint of the line connecting the two driven wheels and 𝒗𝑸 is its velocity. 

𝒃 is the distance of 𝑸 from the center of gravity 𝑮 of the robot. 

𝟐𝒂 is the width of the robot. 

(𝒙𝑸, 𝒚𝑸) and (𝒙𝑸̇, 𝒚𝑸̇) are the position and velocity coordinates of point 𝑄, respectively.  

𝝓 is the heading angle of the robot. 

𝒗𝒓 and 𝒗𝒍 are the linear velocities of the right and left wheels, respectively. 

(𝜽𝒓, 𝜽𝒍) and (𝜽𝒓̇, 𝜽𝒍
̇ ) are the angular positions and speeds of the right and left wheels, 

respectively.  

𝒓 is the radius of the wheels. 

The following assumptions are made: 

• The wheels roll without any slippage 

• The steering axis is perpendicular to the 𝒙 − 𝒚 plane  

• The point 𝑸 coincides with the center of gravity 𝑮 

Then, the kinematic model of the WMR can be described by the following equations, 

 𝒙𝑸̇ =
𝒓

𝟐
(𝜽𝒓̇ 𝒄𝒐𝒔 𝝓 + 𝜽𝒍

̇ 𝒄𝒐𝒔 𝝓) 
(2.4) 

 𝒚𝑸̇ =
𝒓

𝟐
(𝜽𝒓̇ 𝒔𝒊𝒏 𝝓 + 𝜽𝒍

̇ 𝒔𝒊𝒏 𝝓) 
(2.5) 

 𝝓̇ =
𝒓

𝟐𝒂
(𝜽𝒓̇ − 𝜽𝒍

̇ ) 
(2.6) 

with the non-holonomic constraints given as follows: 

 𝑴𝒑̇ = 𝟎 (2.7) 

where, 
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 𝑴 =  [− 𝒔𝒊𝒏 𝝓 𝒄𝒐𝒔 𝝓 𝟎] (2.8) 

and, 

 

𝒑̇ =  [

(𝒓 𝟐⁄ ) 𝒄𝒐𝒔 𝝓
(𝒓 𝟐⁄ ) 𝒔𝒊𝒏 𝝓

𝒓 𝟐𝒂⁄
] 𝜽𝒓̇ + [

(𝒓 𝟐⁄ ) 𝒄𝒐𝒔 𝝓
(𝒓 𝟐⁄ ) 𝒔𝒊𝒏 𝝓

− 𝒓 𝟐𝒂⁄
] 𝜽𝒍

̇  

(2.9) 

 

 

Figure 2.3: Differential Drive WMR (Tzafestas, 2014). 

 

The dynamics of differential drive WMR is given by (Tzafestas, 2014): 

 
𝒗̇ =

𝟏

𝒎𝒓
(𝝉𝒓 + 𝝉𝒍) 

(2.10) 

 
𝝎̇ =

𝟐𝒂

𝑰𝒓
(𝝉𝒓 − 𝝉𝒍) 

(2.11) 

Where, 𝛕𝐫 and 𝛕𝐥 are the torques on the right and left wheels due to the corresponding forces 

𝐅𝐫 and 𝐅𝐥, respectively; 𝐈 is the inertia matrix; 𝐦 is the mass of the robot; 𝐫 and 𝐚 are as 

defined earlier. The reader is encouraged to refer to the cited reference for the derivation 

of equations (2.10) and (2.11). 
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2.5 Kinematics and Dynamics of a Serial Manipulator 

    The kinematic analysis of a Serial Manipulator consists of three parts: Forward 

Kinematics, Inverse Kinematics, and Differential Kinematics. Forward Kinematics 

involves the task of finding the end-effector position, given a certain joint configuration of 

the robot arm. Consider the following nomenclature: 

    Let 𝒃 and 𝒆 denote the base frame and the end-effector frame of the robot respectively. 

Let 0 … 𝒏 denote the intermediate frames corresponding to the joints between 𝒃 and 𝒆.  

Thus, using equation (2.3) and the DH convention, the direct kinematics function of the 

serial manipulator which computes the end-effector pose with respect to the base frame can 

be defined as follows (Siciliano, 2012): 

 𝑨𝒆
𝒃 = 𝑨𝟎

𝒃𝑨𝒏
𝟎𝑨𝒆

𝒏 (2.12) 

   In Differential Kinematics the goal is to find the relationship between the joint velocities 

and the end-effector linear and angular velocities (Siciliano, 2012).  

Consider the following nomenclature (Siciliano, 2012): 

𝒒 = [𝑞1 𝑞2 ⋯ 𝑞𝑛−1 𝑞𝑛]𝑇 be the vector of joint variables. 

𝐩̇𝒆 and 𝝎𝒆 be the linear and angular velocity of the end-effector respectively. 

𝑱𝑷(𝒒) and 𝑱𝑶(𝒒) be the (3 × 𝑛) Jacobian matrices relating the contribution of the joint 

velocities to the end-effector linear and angular velocities respectively. 

Thus, the following definitions can be used to determine the relationship between 𝐩̇𝒆 and 

𝝎𝒆 (Siciliano, 2012): 

 𝒑̇𝒆 = 𝑱𝑷(𝒒)𝒒̇ (2.13) 
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 𝝎𝒆 = 𝑱𝑶(𝒒)𝒒̇ (2.14) 

    In Inverse Kinematics the goal is to find the configuration 𝒒 of the robot arm given an 

end-effector pose (Tzafestas, 2014). The solution to the inverse kinematics problem is not 

unique; and depending on the number of degrees of freedom of the system, numerous 

solutions are possible (Siciliano, 2012). Both analytical and numerical methods have been 

developed for calculating the inverse kinematics of a serial manipulator. The reader is 

encouraged to refer to the cited works for a comprehensive treatment of the topic.  

The dynamics of a serial manipulator are typically derived using the Lagrange method and 

the reader is encouraged to refer to the cited works for a thorough treatment of the topic. 

 

2.6 Kinematics and Dynamics of a Mobile Manipulator 

    The following equations and nomenclature for the kinematics and dynamics of the 

mobile manipulator have been adopted from (Tzafestas, 2014).  

Consider the following four coordinate frames: 

𝑶𝒘𝒙𝒘𝒚𝒘𝒛𝒘 is the world coordinate frame. 

𝑶𝒑𝒙𝒑𝒚𝒑𝒛𝒑 is the platform coordinate frame. 

𝑶𝒃𝒙𝒃𝒚𝒃𝒛𝒃 is the coordinate frame of the manipulator’s base. 

𝑶𝒆𝒙𝒆𝒚𝒆𝒛𝒆 is the coordinate frame of the manipulator’s end-effector. 

𝒙𝒆
𝒘 is the end-effector pose in the world coordinate frame. 

𝒖(𝒕) = [𝑢𝑝
𝑇(𝑡), 𝑢𝑚

𝑇 (𝑡)]
𝑇
is the vector of control commands to the platform, and the end-

effector respectively. 

𝒑 = [𝑥 𝑦 𝜙]𝑇 represents the platform configuration. 
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𝜽 = [𝜃1 𝜃2 𝜃3 ⋯ 𝜃𝑛]𝑇 represents the manipulator configuration. 

𝒒 = [𝒑𝑻, 𝜽𝑻]𝑻 denotes the combined configuration of the WMR and manipulator. 

𝑱(𝒒) be the combined Jacobian of the WMR and manipulator. 

So, the transformation from the world coordinate frame to the end-effector coordinate 

frame is given as follows using equation (2.3): 

 𝑨𝒆
𝒘 = 𝑨𝒑

𝒘𝑨𝒃
𝒑

𝑨𝒆
𝒃 (2.15) 

And the overall kinematic model of the mobile manipulator is given as follows: 

 𝒙𝒆
𝒘̇ = 𝑱(𝒒)𝒖(𝒕) (2.16) 

subject to the nonholonomic constraint, 

 𝑴(𝒑)𝒑̇ = 0,   𝑴(𝒑) = [𝑠𝑖𝑛 𝜙 𝑐𝑜𝑠 𝜙 0 ⋯ 0]̇  (2.17) 

    The dynamics of the mobile manipulator are derived using the Lagrange method and the 

reduced (unconstrained) model that describes the dynamic evolution of 𝒒(𝒕) in terms of 

the dynamic evolution of 𝒗(𝒕), is as follows: 

 𝑫̅(𝒒)𝒗 +̇ 𝑪̅(𝒒, 𝒒̇)𝒗 + 𝒈̅(𝒒) = 𝑬̅𝝉 (2.18) 

    For the definitions of the matrices 𝑫̅, 𝑪̅, 𝒈̅ and 𝑬̅, the reader is encouraged to refer to 

references (Tzafestas, 2014, Siciliano, 2012 and Lynch, 2019). 
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CHAPTER 3 

BASIC CONCEPTS IN COMPUTER VISION 

3.1 What is computer vision? 

    Computer vision is the enterprise of automating and integrating a wide range of 

processes and representations used for visual perception and is the inverse problem of 

computer graphics (Szeliski, 2011) (Ballard, 1981). The task is to describe the world we 

see in one or more images and reconstruct its properties, such as shape, illumination, and 

color distributions (Szeliski, 2011). From the engineering point of view, the goal is to build 

autonomous systems which can perform or outperform some of the tasks that the human 

visual system can do (Huang, 1996). Computer vision is widely used today in a wide 

variety of real-world applications such as photogrammetry, automotive applications, 

medicine, motion capture, and 3D modeling (Szeliski, 2011). It is an umbrella term that 

encompasses multiple tasks such as image processing, object detection, and pattern 

classification (Ballard, 1981). Some of the topics relevant to this thesis have been discussed 

briefly in the subsequent sections. 

 

3.2 Object Detection 

    The object detection problem involves two major tasks: (1) to determine the location of 

objects in each image, also called object localization, and (2) to determine which category 

each object belongs to, also called object classification (Zhao, 2019). An example of an 

object detection task has been illustrated in Figure 3.1. An object detection pipeline has 

three major stages: Informative region selection, Feature extraction, and Classification 

(Zhao, 2019). A brief description of the tasks involved in the three stages are as follows: 
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(1) Informative region selection: An image can contain several objects located at different 

positions, which could be of different sizes or aspect ratios (Zhao, 2019). The goal of 

informative region selection is to use a multi-scale sliding window to extract information 

about the positions of different objects in the image (Zhao, 2019). Although this method 

converges, i.e., it can extract the positional information of all objects in the image, it is 

computationally expensive and produces too many redundant windows (Zhao, 2019). (2) 

Feature extraction: The next step is to extract information about an image’s visual 

features, providing semantics and robust representations, which are then used to identify 

the different objects within an image (Zhao, 2019). Scale Invariant Feature Transform 

(SIFT) is one of the methods used in feature extraction (Lowe, 2004). (3) Classification: 

The last task in object detection is the task of classification, where the goal, as the name 

suggests, is to classify the image or the objects in the image into one or more predefined 

categories (Zhao, 2019). This step makes the representations of the objects in the image 

more hierarchical, semantic, and informative for visual recognition (Zhao, 2019). 

 

 

Figure 3.1: Object Detection Examples (He, 2017) 
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3.3 Depth Estimation 

    Estimating the depth information from 2D images is one of the most critical tasks in 

computer vision (Zhao, 2020). It involves evaluating a dense depth map for a given RGB 

image, i.e., one must calculate a metric depth value for each pixel in the given RGB image 

(Mertan, 2022). It is an essential component of understanding the geometric relationships 

within a scene and is used in many applications such as SLAM, navigation, and object 

detection (Eigen, 2014) (Zhao, 2020). An example of depth estimation from a pair of stereo 

images is shown in Figure 3.2, where the shading in the image becomes darker as the 

distance from the camera increases, and the unknown regions are represented in black 

(Scharstein, 2003).  

 

 

Figure 3.2: Example of Depth Estimation Using Stereo Images, Left Camera Image 

(Left), Right Camera Image (Center), and Final Disparity Map (Right) (Scharstein, 2003) 

 

    There are three primary methods for estimating depth from RGB images: Geometry-

based methods, Sensor-based methods, and Deep learning-based methods (Zhao, 2020). 

(1) Geometry-based methods are widely popular within the research community and have 

been studied for the past forty years (Zhao, 2020). One of the most widely used techniques 

is to estimate depth using a pair of stereo images (Zhao, 2020). A stereo image is a pair of 

images captured using two cameras (left and right) separated by a fixed distance. Each 
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camera receives a slightly different view of the world, and this disparity between the 

images is exploited to extract information about the image (Saxena, 2007). These 

disparities vary inversely with the object’s distance from the camera, and small changes in 

disparities result in significant errors in the depth estimates (Saxena, 2007). Another 

example of a geometry-based method is Structure from Motion (SfM) (Ullman, 1979), 

where feature correspondences and geometric constraints between image sequences are 

used to obtain the depth of sparse features (Zhao, 2020). (2) Sensor-based methods, as the 

name suggests, utilize sensors such as RGB-D cameras and LiDAR to directly get the 

corresponding images' depth information without using geometric estimation techniques 

(Zhao, 2020). Although RGB-D cameras can provide pixel-level depth maps, their range 

of operation is limited and they are not robust to intense lighting conditions (Zhao, 2020), 

while LiDAR can only generate sparse 3D maps. These sensors have a few drawbacks in 

terms of cost, weight, and size, thus making them unsuitable for power and size-constrained 

platforms such as small drones (Zhao, 2020). Such issues have led to increased research in 

depth estimation from monocular cameras using deep learning methods (Zhao, 2020). (3) 

Deep learning-based methods have shown incredible potential and breakthrough 

performance on various computer vision tasks, ranging from image classification to depth 

estimation (Zhao, 2020). These methods employ neural networks with varying 

architectures, depending on the task and the accuracy required. The techniques hold great 

promise for use on systems with limited sensing capabilities, since increasing research in 

the field could potentially eliminate the need for large, expensive sensors. 
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3.4 Neural Networks and Deep Learning 

    According to Mitchell (1997), the definition of machine learning is as follows: “A 

computer program is said to learn from experience E with respect to some task T and some 

performance measure P, if its performance on T, as measured by P, improves with 

experience E.” Artificial Neural Networks are popular techniques that simulate the 

mechanisms of biological organisms and are widely used in machine learning applications 

(Aggarwal, 2018). The biological neurons are connected using axons and dendrites, and 

the region between the connections are called synapses (Aggarwal, 2018). An artificial 

neural network consists of mathematical neurons connected in either a fully connected or 

sparsely connected manner, and they are designed to mimic the functions of a biological 

neuron. The perceptron is the simplest neural network and consists of a single input layer 

and an output node, and the illustration of its architecture is shown in Figure 3.3 (Aggarwal, 

2018). The simple mathematical description of a perceptron is as follows (Aggarwal, 

2018): 

Let 𝒅 be the number of nodes that transmit the 𝒅 features. 

𝑿̅ =  [𝑥1 ⋯ 𝑥𝑑] be the feature vector and 𝑾̅̅̅ =  [𝑤1 ⋯ 𝑤𝑑] be the corresponding edge 

weights. 

Therefore, the prediction 𝑦̂ at the output layer is given as follows: 

 

𝒚̂ = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛{∑ 𝑤𝑗𝑥𝑗

𝑑

𝑗=1

} 

(3.1) 

Where the 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 is chosen based on the application, e.g., sign and ReLU, 

a bias value can be selected to influence the output value as well.  
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Figure 3.3: Basic Architecture of a Perceptron, Without Bias (Left) and With Bias (Right) 

(Aggarwal, 2018) 

 

    Unlike the perceptron, which contains a single input and output layer as seen earlier, 

multi-layer neural networks include more than one computational layer (Aggarwal, 2018). 

A multi-layer neural network has additional layers between the input and output layers; as 

mentioned earlier, these middle layers are called hidden layers. In multi-layer neural 

networks, the output from each successive layer feeds into the next layer in the forward 

direction and are hence also referred to as feed-forward networks (Aggarwal, 2018). Such 

networks can either be fully or partially connected. However, fully connected architectures 

perform better in many settings and thus are much more common (Aggarwal, 2018). An 

illustration of a fully connected feed-forward neural network is shown in Figure 3.4.  

 

 

Figure 3.4: Example of a Feedforward Neural Network, Without Bias (Left) and With 

Bias (Right) (Aggarwal, 2018) 
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3.5 Depth Estimation and Object detection using Deep Learning 

    As discussed in earlier sections, the power of deep learning methods to learn features 

from images using pixel-level relationships and other visual cues has made them suitable 

for tasks in computer vision, such as depth estimation and deep learning (Zhao, 2020). 

Several well-known neural network architectures, such as Convolutional Neural Networks 

(CNNs), Recurrent Neural Networks (RNNs), Region-based Convolutional Neural 

Networks (R-CNNs), and Generative Adversarial Networks (GANs), have been used for 

the tasks of depth estimation and object detection (Zhao, 2019) (Zhao, 2020). Some newer 

techniques, such as Mask R-CNN, build on top of Faster R-CNNs by adding a binary mask 

for each region of Interest (RoI), thus significantly enhancing the performance metrics of 

the model (He, 2017). An example of depth estimation using a deep neural network-based 

approach is shown in Figure 3.5. Brighter regions in the output image correspond to parts 

of the scene that are closer to the camera, and darker regions represent parts that are farther 

away.  

 

 

Figure 3.5: Example of Depth Estimation Using Deep Learning (Monocular Cameras), 

Input Image (Left), Output Image (Right) (Ranftl, 2022) 
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3.6 What is Transfer Learning 

    According to Pan (2010), Transfer Learning is defined as, “Given a source domain DS 

and learning task Ts, a target domain DT and learning task TT, transfer learning aims to help 

improve the learning of the target predictive function fT(. ) in  DT using the knowledge in 

DS and TS, where DS ≠ DT, or TS ≠ TT”. There are three main tasks in transfer learning, 

(1) What to transfer deals with determining which part of the knowledge can be transferred, 

(2) How to transfer deals with the question of how the existing method would be used for 

the new application, and depends on the task at hand, and (3) When to transfer deals with 

determining the situations and tasks in which transferring should be done (Pan, 2010). An 

example of the transfer learning task described in Pan (2010) is as follows. Consider a 

sentiment classifier that classifies product reviews. To build this classifier, we would need 

to collect a large volume of data, build a model, train it, and tune it to obtain desired output 

and accuracy. If our data is limited, or if there are errors in data annotations, model’s 

performance would not be as desired. In such cases, transfer learning can improve the 

model’s performance and reduce the overall effort in building the model in general.  

 

3.7 YOLO v5  

    You Only Look Once (YOLO) is a family of state-of-the-art object detection algorithms, 

which was initially proposed in 2016 (Redmon, 2016). The model is currently in its fifth 

iteration (v5), which is a PyTorch implementation of its fourth version (v4) (Jocher, 2020). 

The model is widely used within the computer vision research community for many real-

time computer vision applications. The reason for the model’s popularity is its ability to 
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produce high mean average precision (mAP) while maintaining fast runtimes, or frames 

per second (FPS). Different versions of the model and their properties are as follows: 

    YOLO v1 utilizes a single neural network to predict bounding boxes and class 

probabilities directly from full images in one pass and thus, could be optimized directly for 

detection performance (Redmon, 2016). The model formulates the object detection 

problem as a regression problem and maps the image pixels directly to bounding box 

coordinates and probabilities (Redmon, 2016). The model performed extremely well 

compared to other state-of-the-art models at the time, with 9-40% better Average Precision 

(AP), depending on the dataset on which it was evaluated (Redmon, 2016). The 

architecture of YOLO v1 is shown in Figure 3.6. 

 

 

Figure 3.6: Architecture of YOLO v1 (Redmon, 2016) 

 

    YOLO v2, also called YOLO9000, is the second iteration in the YOLO family of 

models. As the name suggests, it could detect over 9000 object categories and used a multi-

scale training method, thus enabling it to run at varying sizes, offering a trade-off between 

speed and accuracy (Redmon, 2017). It also was designed to overcome some of the 
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significant drawbacks of YOLO v1, namely localization errors and low recall compared to 

region-proposal-based networks (Redmon, 2017). On the VOC 2012 dataset, it achieved a 

mAP of 73.4% while running at much faster speeds than competing models (Redmon, 

2017). 

    YOLO v3 was an incremental improvement from the previous version, with a newly 

trained classifier network with added connections to the backbone layer (Redmon, 2018). 

It had a comparable performance with other state-of-the-art models at the time; as 

mentioned earlier was simply an incremental improvement over v2. 

    YOLO v4 implemented a new CSPDarknet53 architecture for the backbone network 

(Bochkovskiy, 2020). It also adds a PANnet for feature aggregation, SPP for increasing the 

receptive field, and data augmentation methods (“bag of freebies”) which increases the 

performance of the network without sacrificing inference times (Bochkovskiy, 2020). This 

resulted in significantly better performance characteristics both in terms of AP and FPS, 

and the plots of FPS vs. AP50 for different GPU architectures are shown in Figure 3.7. 
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Figure 3.7: YOLO v4 FPS vs. AP50 Plots for Different GPU Architectures on the 

Microsoft COCO Dataset: Volta (Top), Pascal (Bottom) (Bochkovskiy, 2020) 

 

    YOLO v5 is a PyTorch implementation of YOLO v4, is open source, and combines the 

power of the YOLO model with the flexibility of PyTorch, making it suitable for real-time 

applications in research (Jocher, 2020). The implementation has a set of pre-trained models 

with varying sizes with trade-offs in inference speed vs. accuracy. The performance 

characteristics of the different implementations are shown in Figure 3.8. Refer to Appendix 

A for the architecture of YOLO v5. 
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Figure 3.8: Inference Speed vs. AP of YOLO v5 Pretrained Models (Jocher, 2020) 

 

 

3.8 MiDaS 

    MiDaS, developed by Ranftl et al. (2022), is a robust monocular depth estimation model 

that can perform across various environments. The authors trained the model on diverse 

datasets, using a novel loss function, making the model invariant to major sources of 

incompatibilities between datasets (Ranftl, 2022). The model trained for about six months 

on different datasets. The performance was evaluated using the principle of “zero-shot 

cross dataset transfer,” i.e., the model was evaluated on datasets it had never seen before 

(Ranftl, 2022). The model outperforms other models in the monocular depth estimation 

using deep learning space, thus making it state-of-the-art. A sample prediction of the model 

has been illustrated in Figure 3.5. The reader is encouraged to refer to the cited work for 

details about the model. 



  29 

CHAPTER 4 

CONTROL ARCHITECTURE AND SIMULATION SETUP 

    This thesis considers a Robotis Turtlebot3 Waffle Pi with an OpenMANIPULATOR-X 

for the simulations (Figure 4.1). A sequential, decoupled approach has been adopted for 

controlling the mobile manipulator, i.e., the control of the base and the manipulator are 

independent of each other. First, the mobile base is controlled using vision-based methods 

and driven to specific locations in the simulated test environment. Once the mobile base 

reaches its goal position, the arm controller is activated and is used to pick up a block. The 

specifics of the individual components of the control architecture, assumptions, and 

simulation setup are discussed in the following sections.   

 

 

Figure 4.1 Turtlebot3 Waffle Pi With OpenMANIPULATOR X (source: Robotis) 

 

4.1 Base Control  

    The proposed base control method has three major components, (1) tag-based 

navigation, (2) object detection, and (3) depth estimation using a Raspberry Pi monocular 

camera, and they are explained briefly in the following paragraphs.  
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(1) The tag-based navigation system consists of AprilTags (Wang, 2016) placed in the 

Gazebo testbed corresponding to pickup and deposition zones (discussed in later 

sections). The onboard monocular camera (Raspberry Pi v2) visualizes the tags, 

and the apriltag_ros package (Wang, 2016) (Malyuta, 2017) computes the pose of 

the tags with respect to the desired frame of reference on the robot. The robot uses 

this information for the initial navigation between different zones in the simulated 

test environment. 

(2) The object detection algorithm was developed by transfer-learning a pre-trained 

YOLOv5 model to identify blocks belonging to one of five classes: Red Cube, Red 

Cylinder, Red Sphere, Green Cube, and Green Cylinder. The robot uses its onboard 

monocular camera to visualize the world around it. The output from the camera is 

resized to 416 × 416 pixels, and the neural network uses this input to run inference 

in real-time. The inference results from the model contain data that includes 

information about the object's class and bounding boxes. The robot's base controller 

calculates the object’s centroid coordinates from the inference results and uses them 

to navigate toward a block of interest. 

 

(3) Depth estimation using the monocular camera is carried out by employing the 

MiDaS v3 (Ranftl, 2022) network. Like the object detection algorithm, the depth 

estimation network runs real-time inference on the resized output images from the 

camera. The output is a depth map of the image that consists of relative inverse 

depth values corresponding to each pixel in the image. Thus, as mentioned earlier, 

combining the outputs from the object detection algorithm and the depth estimation 
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network, we can identify the depth corresponding to the centroid of the object of 

interest.  

    Controlling the robot’s base to navigate the different zones in the test environment is 

achieved using a sequential combination of the three components. The robot uses 

AprilTags for initial navigation toward the Pickup and deposition zones. Once the robot 

reaches a predetermined distance threshold relative to the tags, it switches over to the deep-

learning-based methods for navigating closer to a block. The object detection algorithm 

returns the centroid (𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑_𝑥 and 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑_𝑦) of the block, which is used to obtain the 

corresponding depth value and is further used to calculate the angular velocity command 

for the mobile base using the following equation: 

𝜔𝑧 = (213 − 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑_𝑥)/45 (4.1) 

where 𝜔𝑧 is the angular velocity in rad/s of the mobile base w.r.t the z-axis of the world 

frame, pixel value 213 corresponds to the midpoint of the image, and 45 is a scaling factor. 

The resulting value of  𝜔𝑧   is checked to ensure that it is within predetermined limits (± 0.05 

rad/s) to ensure safe operation of the system. Section 4.3 describes the equations for 

calculating the velocity commands in further detail. The velocity commands generated by 

the control equations are realized on the robot using a standard PID implementation. 

 

4.2 Arm Control  

    The arm control for the system uses the MoveIt Motion Planning Framework (Coleman, 

2014), which is implemented on the Open Motion Planning Library (OMPL) (Șucan,2012) 

backend. The planner chosen for this application is RRT-Connect. The arm is programmed 

to reconfigure into predetermined sets of joint angles to pick up and place objects in the 
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test environment. The arm’s control system is an open-loop controller, i.e., the arm does 

not have sensing capabilities to ensure block pickup and deposition. Instead, we rely on the 

accuracy of the base controller to drive the robot to the required pose (described in Figure 

4.3(b)) to ensure that the arm picks up the block. Although this method works well in 

simulation, a real-world implementation might require the following modifications: (1) an 

additional camera on the arm and a closed-loop controller with vision-based feedback from 

this camera to ensure block pickup, or (2) a neural network that is trained to determine 

whether the block has been picked up using images from the camera mounted on the mobile 

base.  

 

4.3 Complete Control Architecture 

    The overall control architecture of the robot is set up as a finite-state machine, shown in 

Figure 4.2, that incorporates the control approaches discussed in Sections 4.1, 4.2 and 4.4. 

The implementation of the state machine is realized using the ROS smach package. The 

state machine has the following five states: (1) Navigate towards the Material repository, 

(2) Navigate to a block, (3) Pick up a block, (4) Navigate to the Construction zone, and (5) 

Place a block.  
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Figure 4.2 Finite-State Machine Describing the Robot’s Control Architecture 

 

    Figure 4.3 illustrates the controller that governs the robot’s actions in each of the states 

in Figure 4.2. In Figure 4.3(a), d denotes the distance between the reference frames of the 

robot’s camera and the tag, respectively, in the x-direction, and the value of i is 0.3 for 

State 1 and 0.2 for State 4. In Figure 4.3(b), 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑥 denotes the pixel coordinate 

corresponding to the centroid of the block along the horizontal axis. Since the input image 

to the object detection algorithm is resized to 416 × 416 pixels, the output for 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑥 

varies from 0 to 416 pixels, with the pixel value 213 representing the center of the image. 

Thus, the robot executes the states sequentially until it moves all blocks from the Material 

Repository to the Deposition Zone. If the robot is in State 1, 2, or 4 and moves too close to 

a wall, it moves backwards and, if it loses sight of the tag/block, it rotates until the tag/block 

reappears in its field of view (Figure 4.3(d)). 
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Figure 4.3 Robot controller for each of the following states in Figure 4.2: (a, Top Left) 

Move robot base w.r.t AprilTags (State 1 and State 4), (b, Top Right) Move robot base 

w.r.t blocks (State 2), (c, Bottom Left) Move arm (State 3 and State 5), and (d, Bottom 

Right) Rotate recovery. 

 

 

4.4 Simulation Setup – Assumptions 

    To validate the vision-based control approach outlined in this thesis, a test environment 

was set up in the Gazebo robot simulator (Koenig, 2004). The test world is a simplified 

approximation of a controlled construction environment with two zones: the Material 

Repository and the Material Deposition zone. The goal of the robot is to retrieve building 

blocks (one of the five classes described earlier, specified by the user) from the Material 

Repository, and transport them one at a time to the Material Deposition zone. The next 

section describes the Gazebo test world in greater detail. 

    The following assumptions are used in creating the simulation environment and defining 

the information available to the robot: 

• The blocks that the robot needs to pick up are located on the ground, and so for the 

robot’s onboard camera to be able to detect the blocks, it is placed at a lower 

position on the simulated robot than on the physical robot, as illustrated in Figure 

4.4. 

• To avoid collisions with walls in the simulated environment, the robot uses 

estimates of its distance to the walls from the depth estimation algorithm, based on 

images from its onboard camera and measurements from its onboard Lidar. 
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Figure 4.4 Position of the Camera on the Simulated Robot (Green Box) and on the 

Physical Robot (Yellow Box). 

 

• The robot does not have a global localization mechanism and does not require prior 

mapping of the environment for it to execute the controller. Thus, the robot moves 

only based on its perception of the environment through images from its on-board 

camera, and it uses the AprilTags to help it navigate towards the different zones in 

the test environment.  

• The controller does not depend on the dimensions of the robot. This makes the 

controller agent-agnostic, and it can thus potentially work on any mobile base with 

any arm, requiring minimal modifications to the control system. However, this 

approach has a downside: the robot could potentially collide with the objects in its 

environment, since the controller can only account for objects in the field of view 

of the camera. For instance, if the robot performs a 360° rotation close to a wall, 

the back part of the robot could potentially collide with the wall since the controller 

is unaware of the dimensions of the robot.  

• The test environment is assumed to be free of obstacles; the only static obstacles in 

the environment are the walls of the simulated testbed.  
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• The test environment is assumed to have adequate lighting in order to eliminate 

issues pertaining to low lighting conditions such as problems with tag detections.  

• The size of each AprilTag is 18 × 18 𝑐𝑚. This ensures that the tags are visible from 

either end of the testbed, eliminating issues pertaining to tag detections. 

• As mentioned in Section 4.2, the arm does not have sensor feedback, and so the 

robot’s success at picking up a block depends on the accuracy of the controller that 

drives its mobile base. However, adding feedback to the arm controller would 

improve the effectiveness of the robot at picking up blocks (e.g., its robustness to 

navigation errors) and would provide the robot with additional capabilities. 

 

4.5 Simulation Setup – Description  

    The Gazebo simulation consists of the two zones mentioned earlier, the Material 

Repository and the Material Deposition zone. The testbed has the following dimensions: 

4 × 3 × 0.3 𝑚. Figure 4.5 illustrates a top-down view of the testbed in Gazebo, with two 

blocks located in the Repository zone. The red, green, and blue lines correspond to the x-

axis, y-axis, and z-axis respectively, of the global coordinate frame. 
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Figure 4.5 Top-Down View of the Testbed in Gazebo. The Red Blocks are Located in the 

Repository. 

 

    The repository and the deposition zones are positioned diagonally opposite to each other, 

and the robot is tasked with retrieving objects from the repository and transporting them to 

the deposition zone. Figure 4.6 depicts a closer view of the repository with different shape 

blocks and Table 4.1 outlines the dimensions of the blocks used in the simulation. 

 

Table 4.1 

Dimensions of the Blocks Used in Simulation  

 

OBJECT DIMENSIONS 

Red and Green cubes 4 x 4 x 4 cm 

Red and Green Cylinders Radius: 2.5 cm; Length: 10 cm 

Red Sphere Radius: 2.5 cm 
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Figure 4.6 Closer View of the Repository Containing a Few Blocks in the Simulated 

Testbed.  

 

 

4.6 Distributed Computing 

    To reduce the computational load, this thesis uses a distributed computing approach to 

running the simulations. The simulations leverage the power of the Robot Operating 

System (ROS) Melodic architecture to run the deep learning nodes on separate computers. 

Let 𝑆𝑦𝑠𝑡𝑒𝑚1 and 𝑆𝑦𝑠𝑡𝑒𝑚2 denote the two systems on which the nodes run. 𝑆𝑦𝑠𝑡𝑒𝑚1 runs 

the ROS Master and the object detection node, while 𝑆𝑦𝑠𝑡𝑒𝑚2 runs the depth estimation 

node. The systems are connected to each other with wired connections via a common 

router, which is in turn connected to the Arizona State University wired network, thus 

ensuring a bidirectional connection between the two systems. Table 4.2 highlights the 

specifications of both systems used to run the simulations.  
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Table 4.2 

Specifications of the Systems Used to Run the Simulations 

 

𝑺𝒚𝒔𝒕𝒆𝒎𝟏 𝑺𝒚𝒔𝒕𝒆𝒎𝟐 

Intel Xeon E5-2623 processor Intel i7-9750H processor 

32 GB RAM 16 GB RAM 

Nvidia Quadro M4000 8 GB GPU Nvidia GTX 1660Ti 6 GB GPU 

 

 

4.7 Experiment 1 – Simulation using Object Detection Algorithm and RGB-D Camera 

    To establish the baseline performance of the proposed vision-only control approach, the 

monocular camera was replaced by an RGB-D camera to obtain depth values directly, 

without estimating them from monocular images. The depth data obtained from the RGB-

D camera was used in conjunction with the object detection algorithm to drive the robot to 

positions that facilitate block pickup. The next chapter discusses the results of the 

experiment.  

 

4.8 Experiment 2 – Simulation Using Object Detection and Monocular Depth Estimation 

Algorithms 

    The second experiment was carried out using only the input from the robot’s on-board 

monocular camera, together with the control approaches described earlier in the chapter. 

The next chapter discusses the results of the experiment. 
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CHAPTER 5 

RESULTS AND DISCUSSION 

5.1 Object Detection Algorithm 

    The object detection algorithm for identifying the building blocks was created by 

transfer learning on top of the YOLO v5 model. A set of 1087 images were collected from 

the Gazebo robot simulator by initially capturing a video of the objects of interest in the 

test bed, and individual frames were isolated to create the images required for training. The 

generated images were manually annotated using roboflow. Then data augmentation 

methods, namely changing the brightness and mirroring, were applied to increase the 

robustness of the model to variations in lighting and the orientations of the blocks. The size 

of the final dataset generated was 2777 images. The model was trained on the Google Colab 

platform on a Tesla P100 GPU. Although the model was trained for 500 epochs, there was 

no significant improvement in the model after epoch 294 (best model), and the training was 

terminated at epoch 394. The parameters of the dataset and the training routine used for 

transfer learning are summarized in Table 5.1. 

 

Table 5.1 

Training and dataset parameters 

Parameter Value 

Number of Images 2777; Training: 2535, Test: 121, Validation: 121 

Image Classes 5 (Red – cube, cylinder, sphere; Green – cube, cylinder) 

Input Image size (pixels) 416×416 
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    The results of transfer learning are shown in the following plots: Confusion matrix 

(Singh 2021) (Figure 5.1), F1 curve (Kulkarni, 2020) (Figure 5.2), and Precision-Recall 

curve (Ozenne, 2015) (Figure 5.3). 

 

 

Figure 5.1 Confusion Matrix 

YOLO model YOLOv5s 

Batch size 16 

Number of Epochs 500 
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Figure 5.2 Precision-Recall Curve 

 

 

Figure 5.3 F1 Curve 
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    From the plots above, it is evident that the model fits the data very well, since it has a 

mean average precision (mAP) of 0.99 and an average F1 score of 0.98 at a confidence 

level of 0.7. Some sample predictions from the model on the test dataset are shown in 

Figure 5.4. Additional results on the performance of the algorithm are included in 

Appendix B, and the reader is encouraged to refer to that section for further information. 

 

   

Figure 5.4 Sample Predictions of the Model for Images From the Test Dataset. The 

Numeric Values Indicate the Confidence Levels for Each Identified Object. 

 

 

5.2 Simulation 1 – Using RGB-D Camera 

    The first simulation uses an RGB-D camera (Section 4.7) to set a performance 

benchmark for the controller. The robot's goal is to retrieve one block (red cube) at a time 

from the Material Repository and transport it to the Deposition Zone. Once the robot picks 

up a block from the repository, another block is manually replaced in the Material 

Repository at a different location with respect to the previous block. Only one block is 

present at a time in the Material Repository to avoid sudden variations in the value of 

𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑥 that arise when the object detection algorithm identifies multiple blocks in a 

single image. Section 5.2.1 discusses this in further detail.     
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   A Trial is defined as a single iteration in the simulation where the robot navigates to the 

Material Repository, identifies a block, picks it up with its manipulator, navigates to the 

Deposition Zone, and places the block down. A Trial is successful (Success) if the robot 

correctly executes each of the actions in this sequence. If the robot fails to execute any 

action in a trial successfully, then the Trial is a failed run (Fail). Since the control of the 

arm is open-loop, the controller cannot determine from sensor feedback whether the robot 

has indeed picked up a block. Thus, the robot still performs a complete Trial even in the 

case of a Fail; however, in such a case the robot does not transport the block to the 

Deposition Zone (it arrives there “empty-handed”).  

    A human observer determines whether the outcome of a Trial is a Success or a Fail. The 

controller was tested for 50 Trials, and the outcome of each trial is plotted in the graph 

shown in Figure 5.5. The value 1 on the y-axis corresponds to Success and the value 0 

corresponds to Fail. This implies that the green regions of the graph correspond to 

successful Trials and the white regions correspond to failed attempts.  

 

 

Figure 5.5 Outcomes of 50 Trials for the Simulation Using RGB-D Camera 
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    Since 34 out of 50 Trials were successful, the controller has a success rate of  68%. 

Figure 5.6 shows snapshots of the robot picking up a block during several successful Trials 

for Simulation 1.  

 

   

   

Figure 5.6 Instances of Successful Block Pickup in Simulation 1  

 

5.2.1 Failure Analysis 

    It is imperative to mention the different cases under which the controller Fails in order 

to understand the overall performance of the system better. Figure 5.7 illustrates a few 

examples where the controller Fails. Based on observations of the outcomes for of 25 

Trials, three major factors have been identified which cause a Trial to Fail. They are: 

Failure Mode 1: Failure during navigation towards Material Repository (State 1, Section 
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4.3), Failure Mode 2: Errors in the object detection algorithm, and Failure Mode 3: 

Sensor errors. The subsequent paragraphs discuss the Failure Modes in greater detail.  

 

   

   

Figure 5.7 Instances of Failed Block Pickup in Simulation 1  

 

   Failure Mode 1: The tags corresponding to the Material Repository and the Deposition 

zones are placed almost diagonally opposite to each other. Since the shortest path between 

two given points is a straight line, the controller is set up to traverse a straight line while 

navigating between the two zones. However, since there are an infinite number of parallel 

lines with the same slope, the robot could traverse along any parallel line, which could 

cause the controller to potentially Fail.  

    To understand this further, consider Figure 5.7. The blue region represents the 

approximate operating region where the controller executes State 1 and State 4 as intended. 
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The red arrow represents the direction along which the robot and the tags are aligned. The 

maroon lines represent the parallel lines along which the robot could potentially traverse. 

When the robot loses sight of a tag, it performs a Rotate Recovery behavior (Figure 4.3) 

until the robot identifies the tags. At this point, the robot continues to move along another 

parallel line with the same slope determined by the robot controllers associated with State 

1 and State 4 (Section 4.3). 

 

 

Figure 5.8 Illustration for Failure Mode 1 

 

    Therefore, when the robot picks a line below the blue operating region, it could 

potentially traverse along a path like the purple trajectory in Figure 5.9. Similarly, when 

the robot picks a line above the blue operating region, it could display a behavior such as 



  49 

the yellow trajectory shown in Figure 5.9. Thus, in the unlikely case that the robot steers 

far off from the blue operating region, it could potentially strike the walls of the test bed 

and not exhibit the desired behaviors. A different controller for navigating between the tags 

could potentially resolve this problem. 

 

 

Figure 5.9 Sample Robot Paths for Failure Mode 1. Red Arrows Indicate Direction of 

Travel. 

 

    Failure Mode 2 is caused by erroneous outputs from the object detection algorithm. 

Figure 5.10 illustrates some examples of such erroneous outputs. Erroneous outputs cause 

the value of 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑥 to fluctuate suddenly, which then causes sudden variations in the 

angular velocity commands. Thus, the robot could suddenly steer off course and miss the 



  50 

block pickup, which causes the Trial to Fail. This behavior is especially pronounced when 

multiple blocks are in the Repository Zone. Since the object detection algorithm cannot 

uniquely identify instances of objects within a given image, the order in which the objects 

are detected varies with each frame and thus causes the output value of 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑥 to 

fluctuate. Using an instance segmentation algorithm instead of the object detection 

algorithm could solve this problem. 

 

   

Figure 5.10 Sample Erroneous Outputs of the Object Detection Algorithm in the 

Simulations 

 

    Failure Mode 3 occurs due to errors and uncertainty associated with the depth estimates 

from the RGB-D camera. These depend upon the type of camera used and its 

characteristics. Based on observations, this type of failure was relatively rare and could be 

easily eliminated by using a more accurate RGB-D camera.  

 

5.3 Simulation 2 – Using Monocular Camera 

    The second simulation replaces the RGB-D camera with a monocular camera as 

discussed in Chapter 4. The definitions for Trial, Success and Fail are as defined in 

Simulation 1 (Section 5.2). The controller was tested for 50 Trial’s and the outcomes have 
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been plotted in the Graph as shown in Figure 5.11. The value 1 on the y-axis corrsponds to 

Success and the value 0 corresponds to Fail. This implies that the green regions of the 

graph correspond to successful Trial’s and the white regions correspond to failed attempts. 

 

 

Figure 5.11 Outcomes of 50 Trials for the Simulation Using Monocular Camera 

 

    Since 23 out of 50 Trials were successful, the controller has a success rate of 46%. Figure 

5.12 shows snapshots of the robot picking up a block during several successful Trials for 

Simulation 2. 
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Figure 5.12 Instances of Successful Block Pickup in Simulation 2  

 

5.3.1 Failure Analysis 

    The failure analysis for Simulation 2 is similar to that for Simulation 1. Figure 5.13 

illustrates a few examples where the controller Fails. The following modes of failure were 

observed: Failure Mode 1: Failure during navigation towards Material Repository (State 

1, Section 4.3), Failure Mode 2: Errors in the object detection algorithm, and Failure 

Mode 3: Failure due to inconsistent depth estimates from the depth estimation algorithm.  

Failure Modes 1 and 3 have been discussed in detail in the previous section (Section 5.2.1). 

The subsequent paragraphs elaborate on Failure Mode 3.  
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Figure 5.13 Instances of Failed Block Pickup in Simulation 2  

    Failure Mode 3 in Simulation 2 occurs due to the variations in the depth estimates from 

the depth estimation algorithm. Figure 5.14 illustrates variations in the depth map 

generated by the algorithm for an input image during the robot’s transition from State 2 to 

State 3 (Section 4.3). Brighter points in the image correspond to the regions closer to the 

camera, according to the algorithm, and darker points correspond to regions farther away 

from the camera. Such variations in the depth estimates cause the controller to misjudge 

the distance of the block from the robot and result in a Failed Trial.  
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Figure 5.14 Depth Map for Different Runs Before Block Pickup 

    However, a closer examination of the failed runs in Simulation 2 and Figure 5.14 

provides insight into the margin by which the pickup fails in most Trials. Figure 5.15 

illustrates the region around the block where the gripper attempts a pickup in the case of a 

Fail. This region has an approximate margin of 2 inches on all sides measured with respect 

to the vertical faces of the block. Thus, the lower success rate of the controller can largely 

be attributed to the slight variations in the estimates of the depth estimation algorithm, 

which causes the pickup to fail within a tolerance of approximately ± 2 inches on all sides 

with respect to the block, which is a very low margin of error. Transfer learning the depth 

estimation model on a custom dataset obtained from the simulations could improve the 

stability of the depth estimates, thus increasing the success rate of the controller.     

 

Figure 5.15 Typical Failure Envelope around a block in Simulation 2 
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

6.1 Conclusion 

    In this thesis, we developed a novel vision-based controller that combines existing 

techniques in deep-learning-based object detection and depth estimation using a monocular 

camera. The controller is designed to be used for material pick-and-place tasks in 

construction applications. Sensor information from a single monocular camera is the only 

input that the controller requires. There is no global localization mechanism, and the 

controller does not require prior mapping of the environment. Two simulations of 50 trials 

each were performed. The first simulation used an RGB-D camera to benchmark the 

controller’s performance, and the success rate was calculated to be 68% over the 50 trials. 

In the second simulation, the RGB-D camera was replaced with a monocular camera, and 

the success rate, in this case, was determined to be 46% over the 50 trials.  

    To better understand the controller’s performance, a thorough analysis of the cases under 

which the controller fails was performed. Based on the analysis, the lower success rate 

observed in the second simulation was attributed to the unstable depth estimates from the 

depth estimation network. Thus, improving the stability of the depth estimates from the 

network could potentially increase the success rate of the robot in Simulation 2.  

 

6.2 Future Work 

    Some possible extensions of the work in this thesis are as follows:  
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• Train the depth estimation model using a custom dataset derived from the simulation 

environment to obtain more stable and consistent depth estimates, which could improve 

the success rate of the robot. 

• Replace object detection with instance segmentation to uniquely identify different 

instances of objects in a single camera frame, such as blocks of different colors and 

shapes, which could potentially avoid Failure Mode 2 (Section 5.2.1 and Section 5.3.1).  

• Train the object detection model to identify more classes of objects.  

• Add force sensing or vision-based feedback to the arm, to enable the use of closed-loop 

controllers that can compensate for errors during block pickup and deposition, thus 

potentially increasing the success rate of the robot.  

• Extend the proposed control approach to develop robot controllers for collective 

construction tasks performed by multiple robots, incorporating rules for collision 

avoidance and coordination among the robots.  
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APPENDIX A 

YOLO v5 SYSTEM ARCHITECTURE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  64 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.1 YOLO V5s model architecture, Source: GitHub (Jocher, 2020) 
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APPENDIX B 

TRAINING RESULTS – OBJECT DETECTION ALGORITHM 
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Additional results on the performance of the transfer learning algorithm for object detection 

are included in this section.  

 

 
 

Figure B.1 Mean Average Precision (mAP) vs. Number of Epochs for (Left) Intersection 

over Union (IOU) = 0.5, and (Right) IOU = 0.5-0.95 

 

 

  

Figure B.2 Metrics Precision vs. Number of Epochs (Left) and Metrics Recall vs. 

Number of Epochs (Right) 
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Figure B.3 Precision Curve 

 

 

Figure B.4 Recall Curve 
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Figure B.5 Training: Box Loss (Top Left), (b) Class Loss (Top Right), and Object Loss 

(Bottom) vs. Number of Epochs 
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Figure B.6 Validation: Box Loss (Top Left), Class Loss (Top Right), and Object Loss 

(Bottom) vs. Number of Epochs 

 

 


